Skip to Main content Skip to Navigation
Theses

Nouveaux matériaux magnétocaloriques à base de terres rares pour la réfrigération magnétique

Abstract : The studies presented in this manuscript deal with the synthesis and characterization of new rare-earth based magnetocaloric materials for magnetic refrigeration applications. The first chapter is an introduction to the concepts of magnetocaloric effect and magnetic refrigeration and establishes a review of the magnetocaloric materials existing today. Two research axes were explored in order to obtain materials with a high refrigeration capacity (RC) and to identify strategies for improving this performance criterion: the enlargement of magnetic transition and the effect of transition element M and p-element X in the metallic glasses Gd60M30X10 (M = Mn, Fe, Co, Ni, Cu et X = Al, Ga, In) on one hand, and the synthesis of new ternary silicides in the RE-M-Si systems (RE = Nd, Gd, Tb et M = Co, Ni) with high magnetocaloric potential on the other hand. The second chapter of this thesis presents the magnetic properties of Gd-based amorphous ribbons synthesized by the melt-spinning technique, in which the structural disorder induces a very strong enlargement of the magnetic transition (compared to that of pure Gd for instance). In a first part, it shows the weak influence of the p element (X) on the magnetic properties of Gd60Mn30X10 (X = Al, Ga, In) ribbons. A second part presents the very strong influence of the transition element M, either on the nature of the magnetic transition and on the magnetocaloric properties of Gd60M30In10 (M = Mn, Fe, Co, Ni, Cu) metallic glasses with, in particular, a Curie temperature varying between 86 (M = Ni) and 220 K (M = Fe) and the occurrence of a cluster-glass behavior below 35 K when M = Mn. The third chapter of this thesis is composed of three parts. The first one describes the synthesis conditions of RE5MSi2 (RE = Nd, Gd, Tb), Gd5Si3 and of the compound with existence domain Gd3Co2.5 ± xSi1.5 ± y. These syntheses are sometimes delicate, particularly in the choice of annealing temperatures. The use of the Rietveld method to refine the X-ray and neutron powder diffraction patterns allowed showing that RE5MSi2 compounds adopt a Cr5B3 type structure, with a mixed occupation of 8h site by Co and Si at 50 %/50 % and that Gd3Co2.5 ± xSi1.5 ± y adopts an Er4Ge4 type structure with mixed Co/Si occupation in 4a et 4c positions. The second part presents the magnetic and magnetocaloric properties of the Gd5CoSi2 silicide. This compound exhibits a ferromagnetic transition at the Curie temperature TC = 169 K that is accompanied by a magnetic entropy change of -4.7 and 8.7 kg-1 K-1 at 2 and 5 T, respectively, as calculated by the application of Maxwell's relationship. The third part is this chapter describes the magnetic properties of Nd5CoSi2 and Nd5NiSi2 which order ferromagnetically at 55 and 44 K, respectively. It also presents the refinement of the canted ferromagnetic structure on Nd5CoSi2, obtained by neutron diffraction measurements. These study show that evaluating the magnetocaloric materials by only considering the criterion of refrigeration capacity does not lead to the elaboration of the best materials for the applications. It could be more efficient to target more pragmatic criteria, for each considered refrigeration cycle, such as a temperature window of use around the Curie temperature or an optimal specific heat value in order to lead the research of new magnetocaloric materials at best.
Document type :
Theses
Complete list of metadatas

Cited literature [90 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00649399
Contributor : Stéphane Toulin <>
Submitted on : Wednesday, December 7, 2011 - 6:51:26 PM
Last modification on : Wednesday, March 21, 2018 - 3:06:32 PM
Long-term archiving on: : Friday, November 16, 2012 - 2:45:43 PM

Licence


Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Identifiers

  • HAL Id : tel-00649399, version 1

Collections

Citation

Charlotte Mayer. Nouveaux matériaux magnétocaloriques à base de terres rares pour la réfrigération magnétique. Matériaux. Université Sciences et Technologies - Bordeaux I, 2011. Français. ⟨NNT : 2011BOR14303⟩. ⟨tel-00649399⟩

Share

Metrics

Record views

724

Files downloads

4483