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comme un test du Modèle Standard et au-delà
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Résumé

La désintégration radiative du méson B en méson étrange axiale, B → K1(1270)γ, a été
observée récemment avec un rapport d’embranchement assez grand que B → K∗γ. Ce
processus est particulièrement intéressant car la désintégration du K1 dans un état final
à trois corps nous permet de déterminer la polarisation du photon, qui est surtout gauche
(droit) pour B(B) dans le Modèle Standard tandis que des modèles divers de nouvelle
physique prédisent une composante droite (gauche) supplémentaire. Dans cette thèse, une
nouvelle méthode est proposée pour déterminer la polarisation, en exploitant la distribu-
tion totale du Dalitz plot, qui semble réduire considérablement les erreurs statistiques de
la mesure du paramètre de la polarisation λγ.

Cependant, cette mesure de la polarisation nécessite une connaissance détaillée de la
désintégration forte K1 → Kππ : c’est-à-dire l’ensemble complexe des différentes ampli-
tudes d’ondes partielles en plusieurs canaux en quasi-deux-corps ainsi que leurs phases
relatives. Un certain nombre d’expériences ont été faites pour extraire ces informations
bien qu’il reste divers problèmes dans ces études. Dans cette thèse, nous étudions en détail
ces problèmes en nous aidant d’un modèle théorique. Nous utilisons ainsi le modèle 3P0

de création d’une paire de quarks pour améliorer notre compréhension des désintégrations
fortes du K1.

A partir de ce modèle nous estimons les incertitudes théoriques : en particulier, celle
venant de l’incertitude de l’angle de mélange du K1, et celle due à l’effet d’une phase
“off-set” dans les désintégrations fortes en ondes-S. Selon nos estimations, les erreurs
systématiques se trouvent être de l’ordre de σth

λγ
. 20%. D’autre part nous discutons de

la sensibilité des expériences futures, notamment les usines SuperB et LHCb, pour λγ. En
estimant näıvement les taux annuels d’évenements, nous trouvons que l’erreur statistique
de la nouvelle méthode est σstat

λγ
. 10%, ce qui est deux fois plus petit qu’en utilisant

seulement les distributions angulaires simples.
Nous discutons également de la comparaison avec les autres méthodes de mesure de

la polarisation en utilisant les processus tels que B → K∗e+e−, Bd → K∗γ et Bs → φγ,
pour la détermination du rapport des coefficients de Wilson C ′ eff

7γ /Ceff
7γ . Nous montrons

un exemple de contraintes possibles sur C ′ eff
7γ /Ceff

7γ dans plusieurs scénarios de modèles
supersymétriques.

Mots clés: Modèle Standard, au-delà du Modèle Standard, interaction faible, physique
du B, désintégration radiative de meson-B, polarisation de photon, propriétés de meson-
K1, modèle des quarks, matrice-K, asymétrie CP , supersymétrie.
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Abstract

Recently the radiative B-decay to strange axial-vector mesons, B → K1(1270)γ, was
observed with a rather large branching ratio. This process is particularly interesting
as the subsequent K1-decay into its three-body final state allows us to determine the
polarization of the photon, which is mostly left(right)-handed for B(B) in the Standard
Model while various new physics models predict additional right(left)-handed components.
In this thesis, a new method is proposed to determine the polarization, exploiting the full
Dalitz plot distribution, which seems to reduce significantly the statistical errors on the
polarization parameter λγ measurement.

This polarization measurement requires, however a detailed knowledge of the K1 →
Kππ strong interaction decays, namely, the complex pattern of various partial wave am-
plitudes into the several possible quasi-two-body channels as well as their relative phases.
A number of experiments have been done to extract all these information while there
remain various problems in the previous studies. In this thesis, we investigate the details
of these problems. As a theoretical tool, we use the 3P0 quark-pair-creation model in
order to improve our understanding of strong K1-decays.

Finally we try to estimate some theoretical uncertainties: in particular, the one coming
from the uncertainty on the K1 mixing angle, and the effect of a possible “off-set” phase
in strong decay S-waves. According to our estimations, the systematic errors are found
to be of the order of σth

λγ
. 20%. On the other hand, we discuss the sensitivity of the

future experiments, namely the SuperB factories and LHCb, to λγ. Naively estimating the
annual signal yields, we found the statistical error of the new method to be σstat

λγ
. 10%

which turns out to be reduced by a factor 2 with respect to using the simple angular
distribution.

We also discuss a comparison to the other methods of the polarization measurement
using processes, such as B → K∗e+e−, Bd → K∗γ and Bs → φγ, for the determination
of the ratio of the Wilson coefficients C ′ eff

7γ /Ceff
7γ . We show an example of potential

constraints on the C ′ eff
7γ /Ceff

7γ in several scenarios of supersymmetric models.

Keywords: Standard Model, beyond the Standard Model, weak interaction, B-physics,
radiative B-decay, photon polarization, K1 properties, quark model, K-matrix, CP asym-
metry, supersymmetry.
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Introduction

The radiative decay b→ sγ has been extensively studied as a probe of the flavour structure
of the Standard Model (SM) as well as new physics beyond the SM. While the majority
of studies has been focused on the prediction of the decay rates of exclusive and inclusive
b→ sγ decays, there is one very interesting feature of this process which has attracted far
less attention: in the SM, the emitted photon is predominantly left-handed in b, and right-
handed in b decays. This is due to the fact that the dominant contribution is from the
chiral-odd dipole operator sL(R)σµνbR(L). As only left-handed quarks participate in weak
interaction, this effective operator induces a helicity flip on one of the external quark lines,
which results in a factor mb for bR → sLγL and a factor ms for bL → sRγR. Hence, the
emission of right-handed photons is suppressed by a factor ms/mb. This suppression can
be relieved in some new physics models where the helicity flip occurs on an internal line,
resulting in a factor mNP/mb instead of ms/mb. Unless the amplitude for b → sγR is of
the same order as the SM prediction, or the enhancement of b→ sγR goes along with the
suppression of b→ sγL, the impact on the branching ratio is small since the two helicity
amplitudes add incoherently. This implies that there can be a substantial contribution
of new physics to b → sγ escaping detection when only branching ratios are measured.
Therefore, the photon polarization measurement could provide a good test of the SM.
In Chapter 1, after a mini-review of the SM, we present the basic theoretical knowledge
needed for the polarization study in b → sγ such as operator product expansion. We
also briefly discuss QCD effects and the consequent contamination from the right-handed
polarization in exclusive processes.

Although the photon helicity is, in principle, a measurable quantity, it is very difficult
to measure it directly. In this thesis we investigate one of the methods based on the
study of the recently observed exclusive decay B → K1(1270)γ followed by the three-
body decay K1(1270) → Kππ. Since the photon helicity is parity-odd and we measure
only the momenta of the final state particles, one can form a triple product of three
momenta like ~pγ · (~pπ × ~pK) which is a pseudo-scalar and applying parity transformation
it has the opposite sign for left- and right-handed photons. Therefore, this process is
particularly interesting as the subsequent K1-decay into its three-body final state allows
us to determine the polarization directly. In Chapter 2, we derive the master formula for
the decay distribution of B → (Kππ)K1

γ and introduce a new method for the polarization
determination. We propose a new variable, ω, to determine the polarization parameter
λγ. The use of ω significantly simplifies the experimental analysis and allows us to include
not only the angular dependence of the polarization parameter but also the three-body
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Dalitz variable dependence to the fit.
In order to measure the polarization parameter λγ precisely, a sufficiently accurate

modelling of the hadronic decays of K1 → Kππ is required. We first introduce the
basic hadronic parameters required in our analysis, namely the various partial wave am-
plitudes into several possible quasi-two-body channels, as well as their relative phases.
These parameters can, in principle, be determined by experimental measurements of the
K1(1270) → Kππ decay. On the other hand, although the ACCMOR experiment had
provided an extensive study of this decay, we find that the information one can extract
from it is not accurate enough. In Chapter 3, we describe some of the problems en-
countered in our analysis, which include the strong phase between different intermediate
resonance states and the controversial K1(1270) → κπ channel. Being unable to obtain
the hadronic parameters from the fundamental theory, we resort to combine experimental
data and phenomenological models. In particular, combining the experimental results
of the partial wave analysis of the K1-decays using the K-matrix formalism and the
predictions of the 3P0 quark-pair-creation model, we determine the phenomenological pa-
rameters of the model such as the K1 mixing angle and the universal quark-pair-creation
constant.

In Chapter 4, we estimate the sensitivity of the future experiments to λγ using Monte
Carlo simulation and discuss statistical errors and theoretical uncertainties of the hadronic
model. It turns out that the probability density function, or equivalently the properly
normalized differential decay width distribution, is linearly dependent on the polarization
parameter λγ: W (ω) = ϕ(ω)(1 + λγω). In principle, ϕ(ω) is a very complicated and
unknown function which analytical form is very hard to derive. Thus, we use a numerical
Monte Carlo method in order to simulate the ω-distribution. We find out that the inclu-
sion of the full Dalitz information can improve the sensitivity by typically a factor of two
compared to the pure angular fit. In Chapter 5, we discuss the sensitivity of the future
experiments, namely the SuperB factories and LHCb to λγ, and compare our new method
with the other methods of the polarization determination using different processes, such as
B0 → K∗0e+e−, B0 → K∗0(→ KSπ

0)γ and Bs → φγ. Combining these different methods,
we give an example of possible future constraints on the ratio of the Wilson coefficients
C ′ eff

7γ /Ceff
7γ in several scenarios of the Minimal Supersymmetric Standard Model.

We give our conclusions and perspectives for the future potential measurement of the
photon polarization in Chapter 6. Some more technical aspects and details are discussed
in the Appendices.



Chapter 1

Flavour physics in the Standard
Model and beyond

1.1 The Standard Model

The Standard Model (SM) of strong, weak and electromagnetic interactions is a relativistic
quantum field theory that describes all known interactions of quarks and leptons. The
SM is made up of the Glashow-Weinberg-Salam model of the electroweak interactions
and Quantum Chromodynamics (QCD). The SM is a gauge theory based on the gauge
group SU(3)c × SU(2)L × U(1)Y . The SU(3)c gauge group describes the strong colour
interactions among quarks, and the SU(2)L×U(1)Y gauge group describes the electroweak
interactions. At the present time three generations of quarks and leptons have been
observed. The measured width of the Z boson does not permit a fourth generation with
a massless (or light) neutrino. Many extensions of the minimal SM have been proposed,
and there is evidence in the present data for neutrino masses, which requires new physics
beyond the SM. Low-energy supersymmetry, dynamical weak symmetry breaking, extra
dimensions, or something totally unexpected may be discovered at the next generation of
high-energy particle accelerators.

The matter fields in the minimal SM are three families of spin-1/2 quarks and leptons,
and a spin-zero Higgs boson, shown in Table 1.1. Qi

L, uiR, diR are the quark fields and LiL,
eiR are the lepton fields. All the particles associated with the fields in Table 1.1 have been
observed experimentally, except for the Higgs boson. The index i on the fermion fields
is a family or generation index (i = 1, 2, 3), and the subscripts L and R denote left- and
right-handed fields respectively,

ψL = PLψ, ψR = PRψ (1.1)

where PL and PR are the projection operators

PL =
1

2
(1 − γ5), PR =

1

2
(1 + γ5) (1.2)
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Field SU(3) SU(2) U(1) Lorentz

Qi
L =

(
uiL
diL

)

3 2 1/6 (1/2, 0)

uiR 3 2 2/3 (0, 1/2)
diR 3 2 -1/3 (0, 1/2)

LiL =

(
νiL
eiL

)

1 2 -1/2 (1/2, 0)

eiR 1 1 -1 (0, 1/2)

φ =

(
φ+

φ0

)

1 2 1/2 (0, 0)

Table 1.1: Matter fields in the SM.

The SU(2)L × U(1)Y symmetry of the electroweak sector is not manifest at low ener-
gies. In the SM, the SU(2)L × U(1)Y symmetry is spontaneously broken by the vacuum
expectation value of the Higgs doublet φ. The spontaneous breakdown of SU(2)L×U(1)Y
gives mass to the W± and Z0 gauge bosons. A single Higgs doublet is the simplest way to
achieve the observed pattern of spontaneous symmetry breaking, but a more complicated
scalar sector, such as two doublets, is possible.

The terms in the SM Lagrangian density that involve only the Higgs doublet

φ =

(
φ+

φ0

)

(1.3)

are

LHiggs = (Dµφ)†(Dµφ) − V (φ) (1.4)

where Dµ is the covariant derivative and V (φ) is the Higgs potential

V (φ) = µ2(φ†φ) + λ(φ†φ)2 (1.5)

For µ2 < 0 the Higgs potential is minimized when φ†φ = −µ2/2λ. This gives the vacuum
expectation value in the standard form

〈φ〉 =

(
0

υ/
√

2

)

(1.6)

where υ =
√

−µ2/λ is real and positive.
The gauge covariant derivative acting on any field ψ is

Dµ = ∂µ − igsA
a
µt
a − ig2W

i
µT

i − ig1BµY (1.7)

where ta (a = 1, . . . , 8) are the eight color SU(3) generators, T i (i = 1, 2, 3) are the weak
SU(2) generators, and Y is the U(1) hypercharge generator. The generators are chosen to
be in the representation of the field ψ on which the covariant generator acts. The gauge
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bosons and the coupling constants associated with these gauge groups are denoted Aaµ,
W i
µ and Bµ and gs, g2 and g1 respectively. The kinetic term for the Higgs field contains a

piece quadratic in the gauge fields when expanded about the Higgs vacuum expectation
value. The quadratic terms that produce a gauge-boson mass are

Lgauge boson mass =
g2
2υ

2

8
(W 1W 1 +W 2W 2) +

υ2

8
(g2W

3 − g1B)2 (1.8)

where for simplicity of notation the Lorentz indices are suppressed. The charged W -boson
fields

W±
µ =

W 1
µ ∓ iW 2

µ√
2

(1.9)

have mass

MW =
g2υ

2
(1.10)

It is convenient to introduce the weak mixing angle θW defined by

sin θW =
g1

√

g2
1 + g2

2

, cos θW =
g2

√

g2
1 + g2

2

(1.11)

The Z-boson field and photon field A are defined as linear combinations of the neutral
gauge-boson fields W 3 and B:

Zµ = W 3
µ cos θW −Bµ sin θW

Aµ = W 3
µ sin θW +Bµ cos θW

(1.12)

The Z boson has a mass at tree level

MZ =

√

g2
1 + g2

2

2
υ =

MW

cos θW
(1.13)

and the photon is massless.
The covariant derivative in Eq. (1.7) can be expressed in terms of the mass-eigenstate
fields as

Dµ = ∂µ−igsAaµta−i
g2√
2
(W+

µ T
++W−

µ T
−)−i

√

g2
1 + g2

2(T
3−Q sin2 θW )Zµ−ig2Q sin θWAµ

(1.14)
where T± = T 1 ± iT 2. The photon couplings constant in Eq. (1.14) leads to relation of
the electric charge e and g1,2 couplings: e = g2 sin θW .

SU(3)c × SU(2)L × U(1)Y gauge invariance prevents bare mass terms for the quarks
and leptons from appearing in the Lagrangian density. The quarks and leptons get mass
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because of their Yukawa couplings to the Higgs field (colour indices are suppressed for
simplicity):

LYukawa = Y ij
u u

i
Rφ

T ǫQj
L − Y ij

d d
i

Rφ
†Qj

L − Y ij
e e

i
Rφ

†LjL + h.c. (1.15)

Since φ has a vacuum expectation value, the Yukawa couplings in Eq. (1.15) give rise to
the 3 × 3 quark and lepton masses

M ij
u = υY ij

u /
√

2, M ij
d = υY ij

d /
√

2, M ij
e = υY ij

e /
√

2 (1.16)

Neutrinos do not get mass from the Yukawa interactions in Eq. (1.15) since there is no
right-handed neutrino field.

Any matrix M can be brought into diagonal form by separate unitary transformations
on the left and right, M → ULMdiagU †

R, where UL and UR are unitary and Mdiag is real,
diagonal and non-negative. One can make separate unitary transformations on the left-
and right-handed quark and lepton fields, while leaving the kinetic energy terms for the

quarks, Q
i

Li/∂Q
i
L, uiRi/∂u

i
R and d

i

Ri/∂d
i
R, and also those for the leptons, invariant. The

unitary transformations are

uL = Uu
Lu

′
L, uR = Uu

Ru
′
R,

dL = Ud
Ld

′
L, dR = Ud

Rd
′
R,

eL = U e
Le

′
L, eR = U e

Re
′
R.

(1.17)

Here u, d and e are three-component column vectors (in flavour space) for the quarks
and leptons, and the primed fields represent the corresponding mass eigenstates. The
transformation matrices U are 3× 3 unitary matrices which are chosen to diagonalize the
mass matrices:

Uu†
R MuUu

L = Diag(mu,mc,mt)

Ud†
R MdUd

L = Diag(md,ms,mb)

U e†
RMeU e

L = Diag(me,mµ,mτ )

(1.18)

Diagonalizing the quark mass matrices in Eq. (1.18) requires different transformations of
uL and dL, which are part of the same SU(2) doublet QL. The original quark doublet
can be rewritten as

(
uL
dL

)

=

(
Uu
Lu

′
L

Ud
Ld

′
L

)

= Uu
L

(
u′L

VCKMd
′
L

)

(1.19)

where the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix VCKM [1, 2] is defined as

VCKM = Uu†
L Ud

L (1.20)
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It is convenient to reexpress the SM Lagrangian in terms of the primed mass-eigenstate
fields. The unitary matrices in Eq. (1.19) leave the quark kinetic terms unchanged. The
Z and photon couplings are also unaffected, so there are no flavour-changing neutral
currents (FCNC) in the SM Lagrangian at tree level. The W couplings are left unchanged
by Uu

L but not by VCKM:

g2√
2
uLγ

µdLW
+
µ =

g2√
2
u′Lγ

µVCKMd
′
LW

+
µ (1.21)

As a result there are flavour-changing charged currents at tree level.
The CKM matrix VCKM is a 3×3 unitary matrix, and so is completely specified by nine

real parameters. Some of these can be eliminated my making phase redefinitions of the
quark fields. The u and d quark mass matrices are unchanged if one makes independent
phase rotations on the six quarks, provided the same phase is used for the left- and right-
handed quarks of a given flavour. An overall phase rotation of all the quarks leaves the
CKM matrix unchanged but the remaining five rotations can be used to eliminate five
parameters, so that VCKM can be written in terms of four parameters. One of the most
convenient CKM parametrizations of VCKM was introduced by Wolfenstein [3] which is
defined by four parameters λ, A, ρ and η in the following way:

VCKM =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 =





1 − λ2/2 λ Aλ3(ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1



+O(λ4)

(1.22)
The analysis for leptons is similar to that for quarks, with one notable difference- because
the neutrinos are massless, one can choose to make the same unitary transformation of
the left-handed charged leptons and neutrinos.

1.2 Motivation for New Physics beyond the Standard

Model

For the present moment the SM has been very successful in explaining a wide variety
of existing experimental data. It covers a wide range of phenomena from low energy
(less than a GeV) physics, such as kaon decays, to high energy (a few hundred GeV)
processes involving real weak gauge bosons and top quarks. However, the SM is not
satisfactory as the theory of elementary particles beyond the TeV energy scale. First
of all, it does not explain the characteristic pattern of the mass spectrum of quarks
and leptons. The second generation quarks and leptons are several orders of magnitude
heavier than the corresponding first generation particles, and the third generation is even
heavier by another order of magnitude. The quark flavour mixing CKM matrix also
has a remarkable hierarchical structure, i.e. the diagonal terms are very close to unity
and θ13 ≪ θ23 ≪ θ12 ≪ 1, where θij denotes a mixing angle between the i-th and
j-th generations. The observation of neutrino oscillations implies that there is also a
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rich flavour structure in the leptonic sector. All of these masses and mixings are free
parameters in the SM, but ideally they should be explained by some higher scale theory
that could be responsible for this disparity.

The particles in the SM acquire masses from the Higgs mechanism. As is well known,
the Higgs potential (1.5) is described by a scalar field theory, which contains a quadratic
mass divergence due to the quantum corrections. This means that a Higgs mass of the
order 100 GeV1 is realized only after a huge cancellation between the bare Higgs mass
squared µ2 and the quadratically divergent mass renormalization, both of which are quan-
tities of order Λ2 where Λ is the cutoff scale of the theory. If Λ is of the order of the Planck
scale (MPl ∼ 1019 GeV), then a cancellation of more than 30 orders of magnitude is re-
quired. This represents a fine-tuning which is often called the hierarchy problem. It
would be highly unnatural if the SM was the theory valid at a very high energy scale,
such as the MPl. Hence, the SM should be considered as an effective theory of some more
fundamental theory, which most likely lies in the TeV energy region.

CP -violation is needed to produce the observed baryon number (or matter-antimatter)
asymmetry in the universe. In the SM the complex phase of the CKM matrix (the Vub and
Vtd matrix elements in Eq. (1.22) are complex) provides the only source of CP -violation,
but models of baryogenesis suggest that it is quantitatively insufficient (for example, the
Vub and Vtd contain the dominant source of the complex phase). This is another motivation
to consider new physics models.

Several scenarios have been proposed for the physics beyond the SM. They introduce
new particles, dynamics, symmetries or even extra-dimensions at the TeV energy scale.
One of the most popular scenarios are the supersymmetric theories (SUSY). In SUSY one
introduces a new symmetry between bosons and fermions, and a number of new particles
(superpartners) that form supersymmetric pairs with the existing SM particles. The
quadratic divergence of the Higgs mass term is then canceled out among the superpartners.
The large extra space-time dimension models solve the problem by extending the number
of spacetime dimensions beyond four. The Planck scale is diluted due to the large extra
dimensions in the ADD-type models [6] since gravity is much more weaker because of
this extra volume. In the Randall-Sundrum-type models [7] the hierarchy between the
electroweak and Planck branes is diluted due to the exponential factor of the warped
metric. Of course, this list is not complete and there exist many other proposed scenarios
and models.

FCNC processes, such as B − B mixing and the b → sγ transition, provide strong
constraints on new physics beyond the SM. If there is no suppression mechanism for
FCNC processes, such as the Glashow-Iliopoulos-Maiani (GIM) mechanism [8] in the
SM, the new physics contribution can easily become too large to be consistent with the
experimental data. Therefore, the measurement of FCNC processes provides a good
test of the flavour structure in new physics models. In chapter 5 we will illustrate one

1The non-observation of the Higgs boson at LEP provides the lower bound at 95% CL: mh0
>

114.4 GeV [4]. Quite recently CDF and D∅ experiments at Tevatron excluded at 95% CL the range
158 < mh0 < 173 GeV [5]. A global fit of the electroweak precision data in the SM gives the upper bound
at 95% CL: mh0 < 185 GeV.
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particular supersymmetric scenario and demonstrate the possible constraints on some
SUSY parameters coming from the study of the b→ sγ process.

1.3 b→ sγ in the SM

The b→ sγ process has played an important role in our understanding of the electro-weak
interaction of the SM. The GIM mechanism shows that in the SM, FCNC such as b→ sγ
is forbidden at the tree level and only occurs through a loop level diagram. Inside of the
loop, heavy particles, much heavier than b quark, can propagate. Therefore, the b → sγ
process can be used to probe indirectly such heavy particles, namely top quarks in the
case of SM or as yet unknown particles introduced by given models beyond the SM.

By now, the branching ratio of the inclusive B → Xsγ process is measured at a quite
high precision (B(B → Xsγ)exp = (3.55 ± 0.24 ± 0.09) × 10−4 [9]). The SM theoretical
predictions for this observable are obtained at the next-to-next-to-leading order in QCD
(B(B → Xsγ)th = (3.15 ± 0.23) × 10−4 [10]) and they are in relatively good agreement
with the experimental value. However, these predictions have theoretical uncertainties
coming from the CKM matrix element as well as various kinds of QCD corrections. As a
result, even if we add some new physics contributions to the theoretical predictions, the
total branching ratio often agrees with the experimental value within those theoretical
uncertainties. While tremendous efforts in order to improve the precision of the theoretical
prediction have been made so as to match the experimental precision, which could become
even higher at future machines, it is necessary to investigate the characteristics of the
particles inside the loop of the b → sγ process using another kind of observable. In this
thesis, we discuss a measurement of the circular-polarization of the photon of the b→ sγ
process, which has the left- and right-handedness of the couplings of the interactions
among the particles inside of the loop. In the SM, the fact that the W boson couples
to left-handed quarks induces the photon polarization to be mostly left-handed. On the
other hand, many new physics models contain new particles which couple differently from
the SM. Therefore, the measurement of the photon polarization can be a useful tool to
distinguish the interactions of the particles inside the b→ sγ loop from the SM-like ones.

Although, there have been several proposals for how to measure this photon polar-
ization, a precise measurement has not been achieved yet. In this chapter, we revisit
the method proposed by Gronau et al. [11, 12] (the GGPR method in the following) us-
ing the exclusive B → Kresonanceγ followed by the three-body decay of the Kresonance.
Most interestingly, the Belle collaboration recently observed one of these decay channels,
B → K1(1270)γ → (Kππ)γ, and found a relatively large branching ratio [13]

B(B+ → K+
1 (1270)γ) = (4.3 ± 0.9(stat) ± 0.9(syst)) × 10−5 (1.23)

which dominates over the decay to K1(1400), previously studied in detail by Gronau et
al. [11, 12]. In this thesis, we introduce a new variable, ω, which was originally proposed
by Davier et al. [14] for the τ polarization measurement at LEP (the DDLR method in the
following). As we show later-on, the fact that the decay width of B → K1γ → (Kππ)γ
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process depends only linearly on the polarization parameter λγ, allows us to use the
variable ω in our study. The simplification in the fit by using ω makes it easier to include
in the fit not only the angular dependence of the polarization parameter but also the
three-body Dalitz variable dependence, which improves the sensitivity to the polarization
parameter as also pointed out in [14]. On the other hand, the new radiative decay to
K1(1270)γ instead of the K1(1400)γ, implies a more complex pattern of hadronic decay
channels, not only through K∗π, but also through Kρ and a possible κπ. In this thesis, we
discuss in detail the hadronic parameters required in this analysis. In particular, having
various difficulties to extract them fully from the currently available experimental data,
we attempt to evaluate them with the help of the so-called 3P0 decay model.

1.3.1 Photon polarization of the quark level b → sγ process in
the SM

In the SM, the quark level b→ sγ vertex without any QCD corrections is given as:

sΓb→sγ
µ b =

e

(4π)2

g2

2M2
W

V ∗
tsVtbF2siσµνq

ν

(

mb
1 + γ5

2
+ms

1 − γ5

2

)

b (1.24)

where q = pb− ps with pb and ps four-momentum of the b and s quark, respectively, F2 is
the loop function, whose expression can be found in [15]. If we fix the three momentum
direction, namely the q direction, as +z in the b quark rest frame (i.e. qµ = (|~q|, 0, 0, |~q|))
and define the right- and left-handed polarization vectors as

εµR,L = ∓ 1√
2







0
1
±i
0







(1.25)

one can compute the helicity amplitude and demonstrate explicitly that

sLσµνq
νbRε

µ∗
R = sRσµνq

νbLε
µ∗
L = 0 (1.26)

So we readily find that the first(second) term in Eq. (1.24) is non-zero only when we
multiply by the left(right)-handed circular-polarization vector.

That means that the first term in Eq. (1.24), proportional to mb, describes the
bR → sLγL transition while the second one, proportional to ms, describes the bL → sRγR
transition2. Since ms/mb ≃ 0.02 ≪ 1, the photon in b → sγ in the SM is known to be
predominantly left-handed.

2More intuitively, the outgoing photon polarization can be determined in the following way: due to
the chiral structure of the W boson coupling to quarks the first term in Eq. (1.24) describes bR → sL

transition; since b → sγ is a two-body back-to-back decay in the b-quark reference frame, due to the
helicity conservation the photon must be left-handed. Correspondingly, the second term in Eq. (1.24)
describes the right-handed photon emission.
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Once we include the QCD corrections, other types of Dirac structure contribute and
the above conclusion can be slightly modified. The result can typically be described in
terms of the following effective Hamiltonian:

Heff = −4GF√
2
V ∗
tsVtb

(
6∑

i=1

Ci(µ)Oi(µ) + C7γ(µ)O7γ(µ) + C8g(µ)O8g(µ)

+
6∑

i=1

C ′
i(µ)O′

i(µ) + C ′
7γ(µ)O′

7γ(µ) + C ′
8g(µ)O′

8g(µ)

) (1.27)

where Ci are the short-distance Wilson coefficients that can be calculated in perturbation
theory, Oi are the local long-distance operators which originate from diagrams in Fig. 1.1
and are given as follows:

Current-current:

O1 = (sαLγµcβL)(cβLγ
µbαL), O′

1 = (sαRγµcβR)(cβRγ
µbαR) (1.28a)

O2 = (sαLγµcαL)(cβLγ
µbβL), O′

2 = (sαRγµcαR)(cβRγ
µbβR) (1.28b)

QCD-penguins:

O3 = (sαLγµbαL)
∑

q

(qαLγ
µqαL), O′

3 = (sαRγµbαR)
∑

q

(qαRγ
µqαR) (1.29a)

O4 = (sαLγµbβL)
∑

q

(qβLγ
µqαL), O′

4 = (sαRγµbβR)
∑

q

(qβRγ
µqαR) (1.29b)

O5 = (sαLγµbαL)
∑

q

(qαRγ
µqαR), O′

5 = (sαRγµbαR)
∑

q

(qαLγ
µqαL) (1.29c)

O6 = (sαLγµbβL)
∑

q

(qβRγ
µqαR), O′

6 = (sαRγµbβR)
∑

q

(qβLγ
µqαL) (1.29d)

Magnetic penguins:

O7γ =
e

16π2
mbsαLσ

µνbαRFµν , O′
7γ =

e

16π2
mbsαRσ

µνbαLFµν (1.30a)

O8g =
e

16π2
mbsαLσ

µνtaαβbβRG
a
µν , O′

8g =
e

16π2
mbsαRσ

µνtaαβbβLG
a
µν (1.30b)

where α, β are the colour indices, qR,L = 1±γ5
2
q, σµν = i

2
[γµ, γν ], ta (a = 1, . . . , 8) are the

SU(3) colour generators, Fµν and Ga
µν denote the electromagnetic and chromomagnetic

field strength tensors correspondingly. The µ is the renormalization scale which is usually
chosen as around mb. One can notice that, making the Fourier transform

−σµνFµν → 2iσµνq
ν (1.31)
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Figure 1.1: Typical diagrams in the full theory, from which the operators (1.28)-(1.30)
originate: current-current (a) with QCD corrections (b, c, d); gluon penguin (e); electro-
magnetic photon penguin (f, g); chromomagnetic gluon penguin (h).

the dominant electromagnetic penguin operator O7γ is equivalent to the first term in
Eq. (1.24)3.

Note that in the SM O′
i (i = 1, . . . 6) have no contribution and hence C ′

i = 0. The
contribution of O′

7γ and O′
8g is also negligible because C ′

7γ and C ′
8g are suppressed due to

the smallness of the strange quark mass

C ′
7γ

C7γ

=
C ′

8g

C8g

=
ms

mb

≃ 0.02 (1.32)

At leading order (LO), one has to calculate and match the full end effective theory
without taking into account QCD corrections and compute the anomalous dimension
8 × 8 matrix to order αs. The corresponding leading logarithmic contribution is then
obtained by calculating the tree-level matrix element of the O7γ operator and one-loop
matrix elements of four-quark operators {O1, . . . ,O6}4 (see Fig. 1.2). Their effect can
be absorbed into redefinition of the C7 coefficient by introducing the so-called “effective”
coefficient, Ceff

7γ (for more details see Appendix A). So that the amplitude of the b→ sγ
can be written as

M(b→ sγ)LO = −4GF√
2

(C
(0)eff
7γ (µ)〈O7γ(µ)〉 + C

′ (0)eff
7γ (µ)〈O′

7γ(µ)〉) (1.33)

3The term proportional to ms (the second term in Eq. (1.24)) is often neglected in this expression due
to its smallness.

4In the naive dimensional regularization scheme the non-zero contributions come from O5,6 operators,
while in the ’t Hooft-Veltman scheme they all vanish (see Ref. [16] and references therein for more details).
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where C
(0)eff
7γ denotes the leading logarithmic approximation to Ceff

7γ . The renormalization
scale µ is often chosen as of order of mb.

The strong enhancement of C
(0)eff
7γ by short-distance QCD effects can be seen using

Eq. (A.19b). For instance, for mt = 170 GeV/c2, mb = 5 GeV/c2 and α
(5)
s (MZ) = 0.118,

one obtains [16]

C
(0)eff
7γ (µb) = 0.695 C

(0)
7γ (µW ) + 0.085 C

(0)
8g (µW ) − 0.158 C

(0)
2 (µW )

= 0.695(−0.193) + 0.085(−0.096) − 0.158 = −0.300
(1.34)

Thus, one observes a large enhancement with respect to C
(0)
7γ (MW ) = −0.193 due to the

last term in Eq. (1.34) proportional to C2. Hence, the short-distance QCD corrections are
very important for the b→ sγ process.

b s

γ

C7γ O7γ

+ b s

q q̄

γ

C1,...,6 O1,...,6

Figure 1.2: Leading order tree and one-loop level O(α0
s) contributions to b → sγ of

electromagnetic operator O7γ and four-quark O1,...,6 operators respectively.

More recently, there has been a new development in computing the perturbative QCD
corrections to the matrix element part [17,18]. Such corrections are important particularly
to cancel the renormalization scale dependence in Eq. (1.33). Examples of diagrams of
such corrections are shown in Fig. 1.3 and 1.4. Most importantly, it turned out that the
photon coming from these diagrams could potentially carry different polarization from
that ones we expect from the O7γ diagram. Many efforts to evaluate such effects have
been made in the case of B → K∗γ [17, 18, 19, 20]. In the next section, we will follow
the work by Khodjamirian et al. and Ball et al. based on the QCD sum rules and give
some idea on the size of this “wrong” chirality contamination. However, it should be
mentioned that there are some theoretical issues remaining on this issue5 and further

5For example, in Ref. [19,20], authors made the dimensional estimate in the framework of the so-called
Soft Collinear Effective Theory of the O2 contribution shown in Fig. 1.4 (left).

M(B → K
∗

γR)

M(B → K
∗

γL)
∼ 1

3

C
(0)
2

C
(0)eff
7γ

ΛQCD

mb

(1.35)

This result indicates up to 10% of “wrong” chirality contamination. However, as we will see, this value
is much larger than other computations, such as the one we present in the next section.
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theoretical works are required to reach to a more rigorous conclusion.

b s

c c̄

O2

g

b s

c c̄

O2

g

b s

O8g

g

b s

O8g

g

Figure 1.3: Next-to-leading order two- and one-loop level O(αs) contributions to b → sγ
of the four-quark O2 and the electromagnetic O8g operators respectively. The crosses
indicate the places where the emitted photon can be attached.

b s

u, d u, d

c c̄

g

O2

b s

u, d u, d

g

O8g

Figure 1.4: Next-to-leading order one-loop and tree level O(αs) contributions to exclusive
process b → sγ (e.g. B → K

∗
γ) involving hard gluon exchange with spectator quark of

four-quark O2 and chromomagnetic O8g operators respectively. The crosses indicate the
places where the emitted photon can be attached.
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1.3.2 Possible contamination of “wrong” chirality contribution
due to the O2 term

In this subsection, we follow [21] and [22] to have a brief view of how the O2 contribution
leads to the “wrong” chirality contribution in light-cone QCD sum rules6.

The theoretical description of the exclusive b → sγ decays involves both short- and
long-distance contributions. In terms of the effective Hamiltonian the decay amplitude,
for instance for the B → K

∗
γ decay, can be written as

M(B → K
∗
γ) = −4GF√

2
VtbV

∗
ts〈K

∗
γ|C7γO7γ + C ′

7γO′
7γ

+ iεµ∗γ
∑

i6=7

Ci

∫

d4xeiqxT{jemµ (x)Oi(0)}|B〉
(1.36)

A possibility to relieve the helicity suppression of right-handed photons is to consider
an additional gluon emission resulting into three-particle final state b → sγg. The main
effect comes from the cc̄ resonances and is contributed by the O2 operator as depicted in
Fig. 1.5. In the inclusive decay this is a bremsstrahlung correction and can be calculated
in the perturbation theory. In the exclusive decays the emitted gluon can be either hard
or soft. If it is hard, it attaches to the spectator quark (see Fig. 1.3), which induces O(αs)
corrections. If it is soft (i.e. |k2

g | ≪ 4m2
c), it must be interpreted as a parton in one of the

external hadrons [21, 22]. The later case is beyond the perturbation theory. Thus, here
we apply one of the non-perturbative QCD approaches called light-cone QCD sum rules.

b s

c c̄

γ g

O2

Figure 1.5: Dominant contribution to b→ sγg. A second diagram with photon and gluon
exchanged is implied.

Using the property

taαβt
a
γδ = − 1

2Nc

δαβδγδ +
1

2
δαδδβγ (1.37)

6The original work on this line was performed by Khodjamirian et al. [21] where the local QCD sum
rule is applied.
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(where Nc = 3 is the number of colours) and performing the Fierz transformation, the
dominant O2 operator can be rewritten as

O2 =
1

3
(cαLγµcαL)(sβLγ

µbβL)
︸ ︷︷ ︸

O1

+2(cαLγµt
a
αβcβL)(sρLγ

µtaρδbδL) (1.38)

Note that the O1 contribution vanishes for the on-shell photon due to its colour structure.
Hence, only the second term of Eq. (1.38) contributes. Attaching a gluon to the charm
loop and expanding the correlation function in Eq. (1.36) of the rewritten operator O2

(see the diagram in Fig. 1.5) in terms of the inverse powers of the charm quark mass, one
obtains the effective quark-quark-gluon operator [21,22]

OF = iεµ∗γ

∫

d4xeiqxT{[c(x)γµc(x)]O2(0)}

= − 1

48π2m2
c

(DρFαβ)[sγρ(1 − γ5)gsG̃
a
αβt

ab] + . . .
(1.39)

where Fαβ = i(qαεβ∗ − qβεα∗) and the dots denote terms of higher order in 1/mc.
Two hadronic matrix elements can be parametrized in terms of three form factors, T1,

L and L̃ in the following way [22]:

〈K∗
γ|O(′)

7γ |B〉 = − e

8π2
mbT

(K∗)
1 (0)

[
ǫµνρσε

µ∗
γ ε

ν∗
K∗p

ρ
K∗qσ

± i{(ε∗γε∗K∗)(pK∗q) − (ε∗γpK∗)(ε∗K∗q)}
] (1.40)

and

〈K∗
γ|OF |B〉 = 〈K∗

γ|(DρFαβ)[sγρ(1 − γ5)gG̃
a
αβt

ab]|〉B
= 2〈K∗

γ|sγµ(1 − γ5)q
µgsG̃αβb|B〉εα∗γ qβ

= 2
(

Lǫµνρσε
µ∗
γ ε

ν∗
K∗p

ρ
K∗qσ + iL̃[(ε∗γε

∗
K∗)(pK∗q) − (ε∗γpK∗)(ε∗K∗q)]

)
(1.41)

The B → K∗ form factor T1 and L, L̃ are computed using the light-cone QCD sum
rules. Note that L and L̃ are functions of the three-particle (s-quark, spectator quark and
gluon) K∗ wave function. The difference between L and L̃ comes e.g. from the different
distribution amplitudes of the vector and axial vector wave functions of K∗. The T1 form
factor was computed in Ref. [23] and its updated value can be found in [24]

T
(K∗)
1 (0) = 0.31 ± 0.04 (1.42)

and the most recent calculation by Ball and Zwicky [22] gives the values of L and L̃:

L = (0.2 ± 0.1) GeV3, L̃ = (0.3 ± 0.2) GeV3 (1.43)
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Writing explicitly the left- and right-handed polarization vectors of the photon andK∗,
one finds that the operator OF induces corrections of (L ± L̃)/(mbm

2
c) to the left/right-

handed amplitudes. Thus the amplitudes for the left- and right-handed photon emission
in the B → K

∗
γ can be written as follows:

M(B → K
∗
γL) = −4GF√

2
CL〈K∗

γL|O7γ|B〉 (1.44a)

M(B → K
∗
γR) = −4GF√

2
CR〈K∗

γR|O′
7γ|B〉) (1.44b)

where the new left/right-handed coefficients are defined as [22]

CL = C
(0)eff
7γ (mb) − C

(0)
2 (mb)

L+ L̃

36mbm2
cT

(K∗)
1 (0)

(1.45a)

CR = C
′ (0)eff
7γ (mb) − C

(0)
2 (mb)

L− L̃

36mbm2
cT

(K∗)
1 (0)

(1.45b)

Therefore, in addition to the smallms/mb contribution of O′
7γ, there is potentially non-

negligible right-handed pollution non-perturbative contribution. A numerical estimate
for them is extremely important. Khodjamirian et al. [21] and later Ball and Zwicky [22]
roughly agree on the magnitude of the non-perturbative contribution of the O2 operator.
We quote the estimate for B → K∗γ using the form factors calculated by Ball and Zwicky:

CL = C
(0)eff
7γ (mb) × (1 + (0.02 ± 0.01))

CR = C
(0)eff
7γ (mb) ×

ms

mb

× (1 − (0.17 ± 0.18))
(1.46)

which gives the ratio
CR
CL

≃ ms

mb

× (0.8 ± 0.2) (1.47)

Therefore, the right-handed contribution is rather small and the non-perturbative cor-
rection is of the order of 20% decrease to the leading ms/mb term (in particular, this
correction is important for the precise determination of the time-dependent CP asymme-
try in B → KSπ

0γ decay which is proportional to CR/CL). Note that this calculation has
not been provided for the case of B → K1γ. It should be noticed that CR/CL obtained
by Khodjamirian et al. and by Ball and Zwicky is much smaller than the one estimated
by Grinstein et al. in Eq. (1.35).

1.4 Photon polarization with new physics

When we consider the new physics contributions, the right-handed contribution can be
significantly enlarged by different types of Dirac structure that those new physics models
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can induce. It should be emphasized that there are many new physics models which can
accommodate e.g. a large coefficient to the right-handed electro-magnetic operator O′

7γ

without contradicting the precise measurement of the inclusive B → Xsγ branching ratio
as well as the time-dependent CP asymmetry of B → KSπ

0γ [25,26] (see Ref. [27,28,29,
30,31,32] for some examples of the constraints on the right-handed contribution obtained
for specific new physics models).

1.4.1 Extra source of flavour violation in MSSM

Supersymmetric models are an example of new physics models beyond the SM at the
TeV scale. The SUSY models are attractive not only because they solve the Higgs mass
hierarchy problem. They can also be consistent with Grand Unification. This provides
the unification of all three gauge couplings under the renormalization group running by
the supersymmetric partners causing them to intersect at the same point at MGUT ≃
1016 GeV.

General SUSY model contains sufficiently large number of parameters corresponding
to the masses and mixings of the superpartners for each SM particle. Even in the Minimal
Supersymmetric Standard Model (MSSM) the number is more than a hundred. These
masses and mixing parameters are, at least partially, generated by the soft supersymmetry
breaking mechanism, which is necessary to make all superpartners heavy enough such that
they have not been detected at existing collider experiments. Therefore, in order to predict
the masses and flavour mixing parameters of the SUSY particles one has to specify the
mechanism of the SUSY breaking.

The MSSM is a minimal supersymmetric extension of the SM, containing a superpart-
ner for each SM particle and two Higgs doublets (for the introduction to SUSY see for
instance Ref. [33]). Its matter fields are organized in the chiral supermultiplets as

Qi(3, 2, 1/6), U i(3̄, 1,−2/3), Di(3̄, 1, 1/3) (1.48)

for the left-handed (Q) and right-handed (U , D) quark sector,

Li(1, 2,−1/2), Ei(1, 1, 1) (1.49)

for the left-handed (L) and right-handed (E) lepton sector, and

H1(1, 2,−1/2), H2(1, 2,−1/2) (1.50)

for the Higgs fields. As before, index i = 1, 2, 3 denotes a generation index. Under the
condition of R-parity conservation, which is required to avoid a large proton decay rate,
the superpotential can be written as

WMSSM = Y ij
D DiQjH1 + Y ij

U U iQjH2 + Y ij
E EiLjH1 + µH1H2 (1.51)
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where Y ij
U and Y ij

D are quark Yukawa couplings. The soft SUSY breaking terms, induced
by this superpotential, are

Lsoft = (m2
Q)ij q̃

†
Liq̃Lj + (m2

U)ijũ
†
RiũRj + (m2

D)ij d̃
†
Rid̃Rj

+ (m2
L)ij l̃

†
Lil̃Lj + (m2

E)ij ẽ
†
RiẽRj

+M2
H1
h†1h1 +M2

H2
h†2h2 − (Bµh1h2 + h.c.)

+ (AijU ũ
†
Riq̃Ljh2 + AijDd̃

†
Riq̃Ljh1 + AijE ẽ

†
Ril̃Ljh2 + h.c.)

+
M1

2
B̃B̃ +

M2

2
W̃W̃ +

M3

2
g̃g̃

(1.52)

This soft SUSY breaking part of Lagrangian in MSSM consists of mass terms for scalar
fields (q̃Li, ũRi, d̃Ri, l̃Li, ẽRi, h1, h2), Higgs mixing terms, trilinear scalar couplings and
gaugino (B̃, W̃ , g̃) mass terms.

One can see from Eq. (1.52) that after the spontaneous symmetry breaking the squark
mass can come from any combination of left- and right-handed couplings:

Lsquark mass
soft = (m2

Q)ij q̃
†
Liq̃Lj + (m2

U)ijũ
†
RiũRj + (m2

D)ij d̃
†
Rid̃Rj

+ (υ2A
ij
U ũ

†
Riq̃Lj + υ1A

ij
Dd̃

†
Riq̃Lj + h.c.)

(1.53)

where υ1,2 are the vacuum expectation values of the Higgs fields. Since the squark mass
matrices (mQ, mU , mD) and the trilinear couplings (AijU , AijD) are not diagonal in the
quark basis, the squark propagators can change flavour and chirality (see Fig. 1.6).

b̃L s̃L

(δdLL)23

b̃L s̃R

(δdRL)23

b̃R s̃L

(δdLR)23

b̃R s̃R

(δdRR)23

Figure 1.6: Flavour and chirality change in the squark propagators.

Once these new terms are introduced, the b→ sγ process could receive a significantly
new contribution. In particular, the chirality can be flipped on the squark propagator in
the loop of b→ sγ which can lead to a right-handed photon emission. As was discussed in
detail in the previous sections, the right-handed suppression factor ms/mb comes from the
left-handed coupling of W to quarks. However, if the loop contains right-handed coupling
SUSY contribution (as an example, see Fig. 1.7), this suppression can be reduced.

1.4.2 Mass Insertion Approximation

As discussed in the previous subsection, the soft SUSY breaking terms which provide a
new source of flavour violation, contain a huge number of parameters. In order to organize
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bL sR
g̃

γR(δdRL)23

b̃L s̃R

Figure 1.7: Example of one of the diagrams with the squark-gluino loop contribution to
b→ sγ.

them, the so-called mass insertion approximation (MIA) [34] is used. In the MIA, one
uses a basis where the fermion and sfermion mass matrices are rotated in the same way to
diagonalize the fermion mass matrix (the super-CKM basis). In this basis, the couplings
of fermions and sfermions to neutral gauginos are flavour diagonal, leaving the source of
flavour violation in the off-diagonal terms of the sfermion mass matrix. These terms are
described by (∆q

AB)ij, where A, B denote the chirality (L/R) and q indicate the (u/d)
type. The sfermion propagator can be expanded as [31]

〈
q̃Aiq̃

∗
Bj

〉
= i(k2 −m2

q̃ − ∆q
AB)−1

ij ≃ iδij
k2 −m2

q̃

+
i(∆q

AB)ij
(k2 −m2

q̃)
2

+ . . . (1.54)

where mq̃ is the average squark mass. One assumes that ∆2 ≪ m2
q̃ so that the first

term in expansion is sufficient. In this way, the flavour violation in SUSY models can be
parametrized in a model independent way by dimensionless mass insertion parameters

(δqAB)ij ≡
(∆q

AB)ij
m2
q̃

(1.55)

which can be constrained by various flavour experiments.
Here we consider the gluino contribution to the C

(′) eff
7γ Wilson coefficients. Then C

(g̃)
7γ

and C
′ (g̃)
7γ are written in terms of down-type mass insertion parameters as

C
(g̃)
7γ = − 4

√
2αsπ

9GFVtbV ∗
tsm

2
q̃

[

(δdLR)23
mg̃

mb

M1(x) + (δdLL)23

(

M3(x) + (δdLR)33
mg̃

mb

Ma(x)

)]

(1.56a)

C
′ (g̃)
7γ = − 4

√
2αsπ

9GFVtbV ∗
tsm

2
q̃

[

(δdRL)23
mg̃

mb

M1(x) + (δdRR)23

(

M3(x) + (δdRL)33
mg̃

mb

Ma(x)

)]

(1.56b)

where x = m2
g̃/m

2
q̃ and the loop functions Mi can be found in Ref. [35]. One can note

that in SUSY models with large RL mixing the factor mb is replaced by the internal
gluino mass as can be seen from the first term in Eq. (1.56). As we will see in Chapter 5,
this effect, often called chiral-enhancement, could lead to a dramatic enhancement of the
right-handed photon emission in b→ sγ process.



Chapter 2

The B → K1γ → (Kππ)γ decay and
polarization measurement

In this chapter, we introduce our new method for the photon polarization measurement
using the B → K1γ decay. In Section 2.1, the basic idea, first proposed by Gronau et
al. [11], is discussed. It is explained why we need a three-body decay of the K1 meson in
order to have a direct measurement of the polarization. Section 2.2 contains the discussion
of photon polarization determination using exclusive B → K1γ decay. In Section 2.3, the
angular decay distribution of B → K1(→ Kππ)γ is calculated and the master formula is
derived. Section 2.4 considers a general introduction of the method, proposed by Davier
et al. [14]. It is shown that a new introduced variable ω, which contains not only the
angular but also the tree-body Dalitz variable information, turns out to be very sensitive
to the photon polarization parameter λγ.

2.1 How to measure the polarization: basic idea

In this section, we first demonstrate why the B → K1γ decay is useful to determine the
photon polarization, and why the other simpler mode such as B → K∗γ is not sufficient.
One can not determine directly the polarization in the B → K∗(→ Kπ)γ decay by the
following reason: since the photon helicity is parity-odd and we measure only the momenta
of the photon and the final hadrons, we can not form a hadronic quantity that would be
also parity-odd. Moreover, one can demonstrate that the decay plane K−π is symmetric
around helicity axis (i.e. the photon momentum direction) in the B reference frame (see
Fig. 2.1); that means that we can not distinguish between left and right circular rotations.
That is why the two-body decay of K∗ provides no helicity information. That is not the
case for the three-body decay of K1 into Kππ final state, which is no longer symmetric
around the photon direction. In this case one can form a triple product of three momenta
like

~pγ · (~pπ × ~pK) (2.1)



32 The B → K1γ → (Kππ)γ decay and polarization measurement

which is a pseudo-scalar and applying parity transformation it has the opposite sign for
left- and right-handed photons.

γ

z

K∗

π

K

symmetric

B

NO
he

lic
ity

inf
or

mati
on 2 → 3-body

π

γ

zK1

π

K∗
K

B

Figure 2.1: Comparison of the radiative B-decays involving two- and three-body decays
of kaon resonance states.

On the other hand, it is known that the triple product is odd under time reversal
and that the final state interactions break T -parity. Hence, the K1 → Kππ amplitude
must involve a strong phase, coming from the interference of at least two amplitudes
leading to a common tree-body final state. That could be an interference between two
different charge states of K∗π (K∗+π0 and K∗0π+ for instance), or between the K∗π and
Kρ intermediate channels, or between their different partial S- and D-waves. According
to Watson’s theorem (for more details see Appendix B), the phase generated by the
strong interactions coincides with the phases of the S-wave elastic scattering below the
first threshold taken at the mass of the decaying particle [36]. Parametrization of the
intermediate isobar states, K∗ and ρ, in terms of Breit-Wigner forms provides a good
estimation of the strong rescattering phases. The importance of the interference terms
and the relative signs of the amplitudes will be discussed in detail later in Chapter 3.

2.2 Photon polarization determination with B → K1γ

decay

The decay width of the exclusive decay B → K1γ can be written as

M(B → K1γ) = −4GF√
2
V ∗
tsVtb

(
CL〈K1γ|O7γ|B〉 + CR〈K1γ|O′

7γ|B〉
)

(2.2)

Note that the left/right-handed coefficients CL,R in this equation are different from the

ones determined by Eq. (1.45) for the B → K
∗
γ due to the difference in the B → K∗

and B → K1 hadronic form factors and the unknown contribution of the long-distance
effects of the O2 operator for B → K1γ. Therefore, we will neglect the long-distance O2

potential contribution in the following, but keeping in mind the theoretical uncertainty of
the order of 10% to the right-handed polarization amplitude (see Eq. (1.35)).

In the exclusive radiative B-decays the matrix elements of the electromagnetic penguin
operator for the B → K1 transition can be parametrized in terms of the hadronic form
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factors using the following convention:

〈K1|s̄σµν(1 ± γ5)q
νb|B〉 = T

(K1)
2 (q2)

[
ε∗K1µ

(m2
B −m2

K1
) − (ε∗K1

· pB)(pB + pK1
)µ
]

+ T
(K1)
3 (q2)(ε∗K1

· pB)

[

qµ −
q2

m2
B −m2

K1

(pB + pK1
)µ

]

± 2T
(K1)
1 (q2)ǫµνρσiε

ν∗
K1
pρBp

σ
K1

(2.3)

with T
(K1)
1 (0) = T

(K1)
2 (0) to avoid a kinematical singularity of the matrix element at

q2 = 0. Since the outgoing photon is on-shell, q2 = 0 and qµε
µ∗ = 0. Thus the second

term in Eq. (2.3), proportional to T
(K1)
3 , vanishes when it is multiplied by εµ∗, and the

hadronic matrix element is parametrized with only one form factor T
(K1)
1 in radiative

B-decays.
Due to the angular momentum conservation and the fact that B-meson is a pseu-

doscalar meson, helicity is conserved. Thus in order to determine the photon polarization
it is sufficient to measure the polarization of K1 through its three-body decay into Kππ
final state. The angular distribution of this three-body decay carries the information of
the K1 polarization, εν∗K1

. Setting the helicity axis z along the K1 direction in the B
reference frame, the polarization vectors of K1 will be determined by Eq. (1.25) while
the photon polarization vectors will be obtained by a rotation (e.g. around x-axis) which
takes the z-axis into the direction of ~q so that

εµK1R,L
= ∓ 1√

2







0
1
±i
0






, εµγR,L = ∓ 1√

2







0
1
∓i
0







(2.4)

Thus, fixing the momentum and the polarization vectors of the photon and K1 in the B
reference frame and using the parametrization (2.3), one obtains the matrix elements for
the left- and right-handed operators

〈K1LγL|O7γ|B〉 = 〈K1RγR|O′
7γ|B〉 = i

e

8π2
mb(m

2
B −m2

K1
)T

(K1)
1 (0) (2.5)

and

〈K1R(L)γR(L)|O(′)
7γ |B〉 = 〈K1L(R)γR(L)|O7γ|B〉 = 〈K1L(R)γR(L)|O′

7γ|B〉 = 0 (2.6)

as expected from Eq. (1.26). As a result, we obtain

Γ(B → K1LγL) =
αG2

F

32π4
|V ∗
tsVtb|2|CL|2m2

bm
3
B

(

1 − m2
K1

m2
B

)3

|T (K1)
1 (0)|2 (2.7a)

Γ(B → K1RγR) =
αG2

F

32π4
|V ∗
tsVtb|2|CR|2m2

bm
3
B

(

1 − m2
K1

m2
B

)3

|T (K1)
1 (0)|2 (2.7b)
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In the SM, CR/CL ≃ C ′ eff
7γ /Ceff

7γ ≃ ms/mb ≪ 1, thus, the photons are predominantly

left(right)-handed polarized in B(B) decays. Although at leading logarithmic approxima-
tion (LLA) only electromagnetic penguin operator O7γ contributes, one has always not
to forget about the long-distance contribution of the other operators, especially of O2,
which can lead to an enhancement of the right(left)-handed photon emission in the B(B)
decays up to 10% (as discussed in the end of Chapter 1).

If we could measure these two decay widths with different polarization separately, the
ratio |CR/CL| would provide a direct information of the right-handed current contribution
of new physics in b→ sγ process. However, experimentally, what we can only measure is
the sum:

Γ(B → K1γ) = Γ(B → K1LγL) + Γ(B → K1RγR) (2.8)

As it has been explained in the previous sections, we use the kinematical information of
the subsequent decay of K1 in order to disentangle these two contributions. Assuming
the narrow width of K1, one can write the total quasi-four body decay width by Γ(B →
K1LγL) and Γ(B → K1RγR), respectively, followed by the three-body decay widths

Γ(K1L → Kππ), Γ(K1R → Kππ) (2.9)

Now, our decay widths can be written as:

dΓ(B → K1γ → (Kππ)γ)

dsds13ds23dφdψd cos θ
∝

∑

pol.=L,R

Γ(B → K1pol.γpol.) ×
dΓ(K1pol. → Kππ)

dsds13ds23dφdψd cos θ

× 1

(s−m2
K1

)2 +m2
K1

Γ2
K1

(2.10)

where s = (p1 + p2 + p3)
2 is the off-shell ”p2” of the K1 and sij = (pi + pj)

2 with pi to be
the four-momentum of the final state mesons. The orientation of the Kππ decay system
in the K1 reference frame is determined by three angles θ, φ, ψ. The polar and azimuth
angles, θ and ψ1 respectively, determine the orientation of the normal ~n to the Kππ plane
with respect to z-axis. Defining the −z direction as the photon direction in the K1 rest

frame (see Fig. 2.2), the polar angle θ is given as cos θ ≡
(
~p1×~p2
|~p1×~p2|

)

z
. The third angle φ

defines the common rotation of ~p1 and ~p2 in the decay plane.
Here, the width of theK1 is not really negligible (Γ(K1(1270)) = 90 MeV/c2, Γ(K1(1400)) =

174 MeV/c2 according to PDG [37]). Therefore, we present for completeness, in the follow-
ing, a prescription that includes the initial state width of the K1 decay into the three-body
final state assuming the Breit-Wigner form, but which will not be used in practice. The
Breit-Wigner factor is common for both polarizations and appears in modulus squared
(therefore, its phase does not affect the crucial interference between different amplitudes).

1Angle ψ is unobservable due to the rotation symmetry of the decay plane around the z-axis and is
dropped out from the total squared amplitude as is demonstrated later in Eq. (2.17).
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;

; ~n = ~p1×~p2
|~p1×~p2|

γ

π(~p1)

K(~p3)

π(~p2)

;
x

y

z

ψ

θ
φ

Figure 2.2: The K1 → Kππ decay plane in the rest frame of K1. Defining the −z direction

as the photon direction, the θ is given as cos θ ≡
(
~p1×~p2
|~p1×~p2|

)

z
.

2.3 Master formula for B → K1γ → (Kππ)γ decays

2.3.1 Master formula

In the following section, we will derive the master formula for the differential decay dis-
tributions of B → K1γ → (Kππ)γ:

dΓ(B → K1γ → (Kππ)γ)

dsds13ds23d cos θ
∝
{

1

4
| ~J |2(1 + cos2 θ) + λγ

1

2
Im[~n · ( ~J × ~J ∗)] cos θ

}

× 1

(s−M2
K1

)2 +M2
K1

Γ2
K1

(2.11)

where J (s, s13, s23) is the helicity amplitude of the K1 → Kππ decay. The “photon
polarization parameter” λγ is defined as

λγ ≡
Γ(B → K1RγR) − Γ(B → K1LγL)

Γ(B → K1γ)
=

|CR|2 − |CL|2
|CR|2 + |CL|2

(2.12)

which we want to extract. In the SM, λγ ≃ 1(−1) for the B(B) decays. It is clear from
this master formula, that in order to determine λγ from the angular and the Dalitz plot
analysis, we need a precise information on the helicity amplitude J , which we will discuss
in detail in this thesis.

Before closing this subsection, we make a comment on the master formula. In order
to determine the polarization parameter λγ, we need non-zero value for Im[~n · ( ~J × ~J ∗)],
which requires the amplitude J to contain more than one amplitude with a non-vanishing
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relative phase. Such a condition can be nicely realised in this decay channel since when
K1 decays into three-body final states through more than one intermediate quasi-two-
body channels, such as K∗π and Kρ (the different decay channels and the possible vector
resonances for K+

1 (1270/1400) and K0
1(1270/1400) are listed below in Eq. (2.13)), there

is a non-vanishing relative strong phase originating from their Breit-Wigner forms (based
on the isobar model)2.

I : K+
1 (1270/1400) → π 0(p1)π

ρ+

K∗+

+(p2)K

K∗0

0(p3) (2.13a)

II : K+
1 (1270/1400) → π −(p1)π

ρ0

+(p2)K

K∗0

+(p3) (2.13b)

III : K0
1(1270/1400) → π 0(p1)π

ρ−

K∗0

−(p2)K

K∗+

+(p3) (2.13c)

IV : K0
1(1270/1400) → π +(p1)π

ρ0

−(p2)K

K∗+

0(p3) (2.13d)

Since the two K1 resonances, K1(1270) and K1(1400), are rather close to each other
and also relatively wide, the overlap between these two resonances may play a significant
role in the polarization determination. On the other hand, the Belle collaboration [13]
found no significant signal for B → K1(1400)γ and set only the upper limit at 90% CL.
Indeed, in [40, 41] it has been shown that such a suppression can be explained by taking
into account the fact that these two states are a mixture of 13P1 and 11P1 states and
by a reasonable choice of the mixing angle: our fitted value for the mixing angle gives
a suppression of a factor of 40 in B → K1(1400)γ mode with respect to the observed
B → K1(1270)γ. Nevertheless, this issue must be kept in mind3.

2The case of the B → φKγ decay, first considered in [38] and revisited in [39], is different since there
is no observed prominent φK resonance state and that the φ meson is very narrow.

3Although the Belle collaboration did not claim the clear observation of the B → K1(1400)γ decay,
one observes a non-negligible peak around 1.4 GeV/c2 in the Kππ invariant mass spectrum [42]
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2.3.2 Derivation of the master formula

Helicity amplitude of K1 → P1P2P3 decay

The differential decay width of K1L,R decay into three pseudoscalar mesons (P1, P2, P3)
can be described by the helicity amplitude, Jµ, which we define as:

M(K1L,R → P1P2P3) = εµK1L,R
Jµ (2.14)

Considering that Jµ represents the decay amplitude of the K1 decaying into three pseu-
doscalar mesons, we can parameterize it in terms of two functions C1,2:

Jµ = C1(s, s13, s23)p1µ − C2(s, s13, s23)p2µ (2.15)

where we omitted to write explicitly the Dalitz and angular variable dependences of
Jµ. Here p1 and p2 denote the four-momenta of two pions defined in Eq. (2.13). Note
the s-dependence of the coefficients, which means that in principle there could be some
dependence on the off-shell p2 of the K1. Nevertheless, this dependence is not important
as soon as the integration is limited to the K1 bump, especially for the ratio ω which
is the relevant quantity in our method (see next section). The detailed expressions of
C1,2(s, s13, s23) for given channels are derived later in this subsection but here we note
that C1,2(s, s13, s23) can contain complex numbers.

Since the product of four-vectors is invariant under Lorentz transformations, the ampli-
tude (2.14) is invariant under spacial rotation transformations. In this case it is convenient
to express the J -function in the K1-decay reference frame, which is rotated by (θ, ψ, φ)
angles as shown in Fig. 2.2 (z′-axis is directed along the normal to the decay plane ~n while
the other rotated axes x′ and y′ are set to form an orthogonal basis). In this reference
frame, J , which is a linear combination of the p1 and p2 (Eq. (2.15)), has only two spacial
x′- and y′-components which significantly simplifies the calculations. Performing three
subsequent rotation transformations of the xyz-system of coordinates by angle θ around
the y-axis, then by angle ψ around the z-axis and finally by angle φ around the new
z′-axis (which coincides with the normal ~n) one obtains

~J =





cos θ cosψ(J ′
x cosφ− J ′

y sinφ) − sinψ(J ′
x sinφ+ J ′

y cosφ)
cos θ sinψ(J ′

x cosφ− J ′
y sinφ) + cosψ(J ′

x sinφ+ J ′
y cosφ)

sin θ(−J ′
x cosφ+ J ′

y sinφ)



 (2.16)

where vector ~J ′ = (J ′
x,J ′

y, 0) is defined in the rotated x′y′z′-system and is lying in the
decay plane of P1P2P3.

Using Eq. (2.16) and the definition of helicity in Eq. (1.25), we can rewrite the K1-
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decay amplitude (2.14) in the K1 reference frame as4

M(K1R,L → P1P2P3) = −~εK1R,L
· ~J

=
i√
2
e±iψ[(J ′

x sinφ+ J ′
y cosφ) ∓ i cos θ(J ′

x cosφ− J ′
y sinφ)]

(2.17)

Squaring the helicity amplitude (2.17) and integrating over φ one finds

1

2π

∫ 2π

0

|M(K1R,L → P1P2P3)|2dφ =
1

4

[

(1 + cos2 θ)| ~J ′|2 ± 2i cos θ(J ′
yJ ′∗

x − J ′
xJ ′∗

y )
]

(2.18)

where | ~J ′|2 = |J ′
x|2 + |J ′

y|2. One can easily notice by writing explicitly by components
that

i(J ′
yJ ′∗

x − J ′
xJ ′∗

y ) = Im[~n′ · ( ~J ′ × ~J ′∗)] (2.19)

with ~n′ = ~ez′ = (0, 0, 1) in the x′y′z′ system of coordinates. It can be easily seen that the
scalar and triple products are invariant under rotation transformations (it can be trivially
demonstrated explicitly by using that fact that the rotation matrices are orthogonal).
Therefore,

| ~J ′|2 = | ~J |2, Im[~n′ · ( ~J ′ × ~J ′∗)] = Im[~n · ( ~J × ~J ∗)] (2.20)

Thus, after the integration over φ one can easily find the decay distribution in the K1

reference frame

dΓ(K1R,L → P1P2P3)

dsds13ds23d cos θ
∝ 1

4
| ~J |2(1 + cos2 θ) ± 1

2
Im[~n · ( ~J × ~J ∗)] cos θ (2.21)

where ~n ≡ ~p1×~p2
|~p1×~p2| so that:

| ~J |2 = |C1|2|~p1|2 + |C2|2|~p2|2 − (C1C∗
2 + C∗

1C2)(~p1 · ~p2), (2.22)

~n · ( ~J × ~J ∗) = −(C1C∗
2 − C∗

1C2)|~p1 × ~p2| (2.23)

where

4One can notice that the same expression could also be obtained by defining the initial system of
coordinates xyz by setting the decay plane in the xy-plane and defining the z-axis along the normal to
the decay plane. In this case one should rotate the K1 polarization vectors (2.4) by (θ, ψ, φ) angles.
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~p1 · ~p2 =
1

2
(E1E2 − (s12 −m2

1 −m2
2)), (2.24)

|~p1 × ~p2| = ~p1 · ~p2 tan−1 ϕ, (2.25)

Ei =
s− sj3 +m2

i

2
√
s

, (2.26)

ϕ = cos−1

[
~p1 · ~p2

|~p1||~p2|

]

(2.27)

Computation of J -function in terms of quasi-two-body K1 → V (→ PiPj)Pk
couplings

Here we compute the J function (2.15) in terms of the quasi-two-body couplings. Assum-
ing that the decay of K1 to three pseudoscalar mesons (PiPjPk) proceeds via intermediate
isobar V that subsequently decays to PiPj, these couplings are the two K1 → V Pk form
factors and one vector-pseudoscalar V → PiPj coupling.

The decay amplitudes for these decay channels (2.13) can be written as the sum of
the amplitude with different intermediate vector meson channel:

M(K1 → P1P2P3) =
∑

V

cijkMV
(PiPj)Pk

(2.28)

where P1,2,3 represent the final state mesons carrying the momentum p1,2,3 as assigned in
Eq. (2.13) and V represents the vector meson resonance. The Clebsch-Gordan coefficients,
cijk, for each intermediate channel are given as:

MI(K
+
1 → π0(p1)π

+(p2)K
0(p3)) =

√
2

3
MK∗0

(P1P3)P2
−

√
2

3
MK∗+

(P2P3)P1
+

1√
3
Mρ+

(P1P2)P3

(2.29a)

MII(K
+
1 → π−(p1)π

+(p2)K
+(p3)) = −2

3
MK∗0

(P1P3)P2
− 1√

6
Mρ0

(P1P2)P3
(2.29b)

MIII(K
0
1 → π0(p1)π

−(p2)K
+(p3)) =

√
2

3
MK∗+

(P1P3)P2
−

√
2

3
MK∗0

(P2P3)P1
+

1√
3
Mρ−

(P1P2)P3

(2.29c)

MIV (K0
1 → π+(p1)π

−(p2)K
0(p3)) = −2

3
MK∗+

(P1P3)P2
− 1√

6
Mρ0

(P1P2)P3
(2.29d)

For the computation of the quasi-two-body decay amplitude MV
(PiPj)Pk

, we take into
account the vector meson resonance width effect assuming the Breit-Wigner form, thus

MV
(PiPj)Pk

≡ M(K1 → V Pk) ×M(V → PiPj) ×BWV (sij) (2.30)
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The decay amplitude of the axial-vector K1 to a vector (V ) and a pseudoscalar (Pk)
meson can be expressed in the following Lorentz invariant form:

〈V (pV , εV )Pk(pk))|∆HK1
|K1(pK1

, εK1
)〉 = εµK1

Tµνε
ν∗
V (2.31)

where the hadronic tensor Tµν can be parametrized in terms of two form factors fV and
hV ,

Tµν = fV gµν + hV pV µpK1ν (2.32)

The amplitude of the subsequent decay V to two pseudoscalar mesons Pi and Pj can
be parametrized in terms of one vector-pseudoscalar coupling gV PiPj

:

〈Pi(pi)Pj(pj)|∆HV |V (pV , ε
(V ))〉 = gV PiPj

εµV (pi − pj)µ (2.33)

Using these form factors, we can obtain in the K1 reference frame

MV
(PiPj)Pk

= (~pi · ~εK1
)aVij + (~pj · ~εK1

)bVij (2.34)

where

aVij = gV PiPj
BWV (sij)[f

V + hV
√
s(Ei − Ej) − ∆ij] (2.35a)

bVij = gV PiPj
BWV (sij)[−fV + hV

√
s(Ei − Ej) − ∆ij] (2.35b)

with ∆ij ≡
(m2

i−m2
j )

M2
V

[fV + hV
√
s(Ei + Ej)].

Finally, we obtain the general K1 → P1P2P3 amplitude as:

M(K1 → P1P2P3) = c132MV
(P1P3)P2

+ c231MV
(P2P3)P1

+ c123MV
(P1P2)P3

≡ C1(~p1 · ~εK1
) − C2(~p2 · ~εK1

)
(2.36)

where

C1 = c132(a
V
13 − bV13) − c231b

V
23 + c123a

V
12 (2.37a)

C2 = c132b
V
13 − c231(a

V
23 − bV23) − c123b

V
12 (2.37b)

Thus, using Eqs. (2.36) and (2.37), the amplitudes (2.29) can be rewritten in the
following form:

M(K1L,R → Kππ)A=I∼IV = εµK1L,R
J A
µ (2.38a)

J A
µ = CA1 (s, s13, s23)p1µ − CA2 (s, s13, s23)p2µ (2.38b)
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with

CI,III1 =

√
2

3
(aK

∗

13 − bK
∗

13 ) +

√
2

3
bK

∗

23 +
1√
3
aρ12, CII,IV1 = −2

3
(aK

∗

13 − bK
∗

13 ) − 1√
6
aρ12

(2.39a)

CI,III2 =

√
2

3
bK

∗

13 +

√
2

3
(aK

∗

23 − bK
∗

23 ) − 1√
3
bρ12, CII,IV2 = −2

3
bK

∗

13 +
1√
6
bρ12 (2.39b)

2.3.3 Hadronic parameters

The next step is to obtain the coupling constants and the form factors determining the
above functions C1,2, i.e. the following hadronic parameters

gρππ, gK∗Kπ, fV , hV (2.40)

Noting that there are a total of four fV and hV (V = ρ,K∗) for each K1(1270) and
K1(1400), we have ten free parameters in this decay mode. One may consider the relative
phases between the form factors fV and hV , which increases the number of free parameter.
However, these phases could actually be determined theoretically or experimentally.

Ideally, these parameters should be extracted from the same experimental data as the
B → K1γ decay. However, in practice, it is not realistic as it requires a huge number of
data, which will not be achieved by this rare process. Therefore, it would be necessary
to use other experimental data which provide information of the K1 → Kππ decay. In
this section, we first present how to relate these experimental information to our hadronic
parameters. In fact, it turns out that the currently available data is not sufficient to
obtain all necessary information. Thus, in this thesis, we will use a theoretical model to
complement them. It should also be noted that strictly speaking, to obtain these listed
parameters from other experiments is not enough for the full model independent analysis,
since the formulae derived in the previous subsection are based on certain assumptions
such as the quasi-two-body decay, isobar model etc.

The V PiPj coupling constant gV PiPj

The gV PiPj
coupling can be extracted from the partial decay width of the vector mesons.

These are well measured for V = ρ,K∗ so that we can obtain this coupling rather precisely.
The partial decay width can be written as:

Γ(V → PiPj) =
g2
V PiPj

2πM2
V

|~p|3 1

3
(2.41)

where |~p| =
√

(M2
V − (mi +mj)2)(M2

V − (mi −mj)2)/2MV . Then, using the experimen-
tal values of ρ and K∗ widths, we find5

gρππ = −(5.98 ± 0.02), gK∗Kπ = (5.68 ± 0.05) (2.42)

5The relative sign of the couplings gρππ and gK∗Kπ is fixed by the 3P0 quark-pair-creation model, so
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The K1 → V Pk form factors fV and hV
To describe the K1 → V Pk decay, we used two independent form factors fV and hV

in (2.31). On the other hand, the K1 → V Pk can also be written in terms of the he-
licity amplitudes for the two possible +z spin projection of K1 and the vector meson,
(λK1

, λV ) = (0, 0) and (1, 1). These two amplitudes actually can be written in terms of
common partial wave amplitudes. Thus, when we expand them up to L = 2, we can
equivalently write these helicity amplitudes in terms of two partial wave amplitudes [44]:

〈V (~pV , λV )P (−~pV )|∆HK1
|K1(~0, λK1

)〉 = (AVS +
√

5〈2, 0; 1, λV |1, λV 〉AVD)D1∗
λK1

,λV
(ΩV )

(2.43)
where AVS,D are the partial wave amplitudes. Then, these amplitudes can be experimen-
tally extracted through the partial wave analysis of the K1 → V Pk processes using:

Γ(K1 → V Pk)S−wave =
|~pV |

8πsK1

|AVS |2 (2.44a)

Γ(K1 → V Pk)D−wave =
|~pV |

8πsK1

|AVD|2 (2.44b)

Comparing Eq. (2.31) and (2.43), we can immediately find the relation between the
two form factors and the partial wave amplitudes (fV , hV depend in general on sK1

and
sV ):

fV = −AVS − 1√
2
AVD (2.45a)

hV =
EV√

sK1
|~pV |2

[(

1 − EV√
sV

)

AVS +

(

1 +
2EV√
sV

)
1√
2
AVD

]

(2.45b)

Partial wave analysis of the K1 → V Pk process has indeed been performed by the
ACCMOR collaboration [45] and very precious information related to K1 meson has been
extracted, which constitute the basis of the PDG entries. It is the currently available
most extensive study of the Kππ channels, with full angular distributions analysis, deter-
mination of relative phases between all amplitudes. On the other hand, the interpretation
of the ACCMOR data contains various problems in the theoretical point of view, or even
empirically. We will come back to some of these issues later in the next chapter. In any
case, we found that it is currently impossible to extract all the parameters from experi-
mental data. Thus, we need the help of theoretical model inputs for this reason. In the
following, we try to use the so-called 3P0 model, which is an intuitive model describing
the decay by the creation of a quark-antiquark pair.

that the relative sign of the total amplitudes of K1 → K∗π → Kππ and K1 → ρK → Kππ is as predicted
by the model (see Appendix D). This sign can be in principle verified by analysing the Dalitz plot of the
recent data of the B → ψK1 decay [43].



2.4 Determination of λγ in the DDLR method 43

2.4 Determination of λγ in the DDLR method

In this section, we demonstrate how to determine the polarization parameter λγ from the
experimental data using the maximum likelihood method. In particular, we introduce the
DDLR method which was first applied in the τ polarization measurement at the ALEPH
experiment [14].

2.4.1 The previous method of Gronau et al.

It is often thought that the polarization information can be obtained only from the angular
distribution analysis. Such is the case in the method of Gronau et al. [11], where they
proposed to measure the up-down asymmetry, defined as

Aup−down =

∫ 1

0
d cos θ dΓ

d cos θ
−
∫ 0

−1
d cos θ dΓ

d cos θ
∫ 1

−1
d cos θ dΓ

d cos θ

=
3

4
λγ

∫
ds13ds23Im[~n · ( ~J × ~J ∗)]

∫
ds13ds23| ~J |2

(2.46)

which is the asymmetry between the total number of the events with the photons emitted
above and below the Kππ-plane in the K1 reference frame, which is proportional to λγ.
The main conclusions of the two papers of Gronau et al. are:

• In Ref. [12] Gronau et al. studied only the B → K1(1400)γ decay. In Ref. [11]
Gronau and Pirjol made a generalization of their method by combining the contri-
butions from several overlapping resonances in a Kππ mass range near 1.4 GeV/c2,
K1(1400), K∗

2(1430) and K∗(1410). However they concluded that K∗(1410) leads to
no asymmetry, while the K∗

2(1430) adds a relatively small contribution. Therefore,
the dominance of the K1(1400) mode was assumed and the K1(1270) contribution
was left aside.

• In particular, they focused on the K1(1400) decay modes involving one neutral pion.
This was done in order to have two interfering K∗π amplitudes related by the isospin
symmetry.

• Since cos θ changes the sign under the exchange of s13 and s23, the up-down asym-
metry integrated over the full Dalitz region vanishes (for the decay modes I and

III (Eqs. (2.13a) and (2.13c)) the Im[~n · ( ~J × ~J ∗)] function changes the sign under
s13 ↔ s23 and consequently, being integrated over the Dalitz plot, gives zero). In
this case, in order to solve this problem, Gronau et al. proposed to define a new
angle θ̃ in the following way: cos θ = sgn(s13 − s23) cos θ̃.

• Using the trick of the cos θ redefinition, the up-down asymmetry was found to be [11]

Aup−down

(
B+ → (K0π+π0)K1(1400)γ
B0 → (K+π−π0)K1(1400)γ

)

= (0.33 ± 0.05)λγ (2.47)
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The corresponding asymmetry in the K+π−π+ and K0π+π− channels was found
to be smaller since only one K∗π intermediate state contributes and the dominant
contribution to the asymmetry comes from the interference of S- and D-wave am-
plitudes6 [11]

Aup−down

(
B+ → (K+π−π+)K1(1400)γ
B0 → (K0π+π−)K1(1400)γ

)

≈ 0.07λγ (2.48)

Since one of the radiative B-decay modes involving K1 was observed by the Belle
collaboration [13], in this thesis we study the B → K1(1270)γ decay instead of B →
K1(1400)γ as it was done by Gronau et al..

Despite the study of the averaged over the Dalitz plot cos θ-distribution in the Aup−down
measurement method, the use of ω-distribution (which is introduced in the next subsec-
tion) does not require the trick of the redefinition of cos θ in order to have a non-zero
asymmetry. In addition, the DDLR method allows to combine all the possible Kππ
charged states to be analysed together, what can significantly improve the sensitivity by
increasing the event statistics.

2.4.2 Application of the DDLR method for the λγ determination

Usually experiment measures the differential decay distribution of the observed number
of signal events depending on kinematic variables (angles, momenta, etc.) which is fitted
with a theoretical distribution in order to determine the unknown theoretical parameters.
As a simple illustration, consider the τ -polarization measurement in the two-body decay
τ → πντ . In the two-body decay the angular distribution of the pion momentum direction
with respect to the τ helicity axis in the τ rest frame is studied. This angular distribution
is described by the probability density function (PDF) of the signal event observation
at the given cosϑ, which is defined as a properly normalized differential branching ratio
distribution

Wτ→πντ
(ϑ) =

1

2
(1 + Pτ cosϑ) (2.49)

where Pτ is the τ -polarization. In order to extract Pτ from experimental data we must
fit the experimental cosϑ-distribution with our theoretical prediction using, for example,
the method of least squares.

The method of least squares is a standard approach to the approximate solution of
overdetermined systems, i.e. sets of equations in which there are more equations than
unknowns. “Least squares” means that the overall solution minimizes the sum of the
squares of the errors made in solving every single equation. The best fit in the least-squares

6As it was pointed out in [11], the following result can be changed by about 50% due to the correction
of the Kρ channel depending on the relative strong phase δρ.
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sense minimizes the sum of weighted squared residuals, a residual being the difference
between the observed value and the fitted value provided by a model:

χ2(Pτ ) =
Nbins
∑

i=1

(N exp
i −N th

i )2

σ2
Nexp

i

(2.50)

where N exp
i is the observed number of signal events in the ith bin of the cosϑ-distribution

histogram, while N th
i is the expected number of events predicted by a model, i.e.

N th
i ≡ N th(ϑi) = N events ×Wτ→πντ

(ϑi) (2.51)

Thus, the value of Pτ that minimises the χ2 function (2.50), gives us the best fitted
τ -polarization parameter. Here one has to emphasize that the comparison of data and
theoretical prediction requires the optimal binning of the histogram since an inappropriate
choice of the bin width and the total number of bins can lead to a loss of sensitivity of
the polarization measurement.

Now, if we take another example of the τ -decay, τ → ρντ . In this case, the PDF (i.e.
the normalized decay distribution) has a much more complicated form including not only
cosϑ as a kinematical variable but also another angle e.g. β (ϑ is the angle between the
momentum of ρ and the τ -direction in the τ rest frame while β is the angle between the
momentum of one of the pions and the ρ-direction in the ρ rest frame) and also the ππ
invariant mass mππ. In this case χ2 would be

χ2(Pτ ) =

Nbins
ϑ∑

i=1

Nbins
β∑

j=1

Nbins
mππ∑

k=1

(N exp
ijk −N th

ijk)
2

σ2
Nexp

ijk

(2.52)

with N
exp/th
ijk denoting the number of events that are in the {ϑi, βj,mππk} point of the

available discrete phase space,

N th
ijk ≡ N th(ϑi, βj,mππk) = N events ×Wτ→ρντ

(ϑi, βj,mππk) (2.53)

One can see, that the addition of more observables (angles, invariant masses of the in-
termediate resonances, etc.) increases the sensitivity of the measurement due to the
augmentation of the number of “equations” (i.e. number of terms in Eq. (2.52)), but, at
the same time, it increases the complexity of the fit as well.

However, Davier et al. pointed out in [14] that such a complication of the multidimen-
sional fit can be avoided in this particular case when the PDF depends on the polarization
parameter Pτ only linearly. A new variable ω was introduced in this article, which can
represent all the kinematical variables, thus allows to extract Pτ from a fit with this single
variable. As we describe in the following, since our PDF also depends on the polarization
parameter λγ linearly, the ω-method can be applied.

Now, we briefly introduce the basics of the DDLR method applied to determine the
photon polarization parameter λγ in the B → K1(1270)γ decay (for more details of the
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general method see Appendix E). In the maximum likelihood method, knowing the λγ
dependence of the PDF of the signal event observation at the given point of the phase
space {s, s13, s23, cos θ}, which is defined as the properly normalized differential branching
ratio distribution

W (s, s13, s23, cos θ) =
1

Γ

dΓ(B → K1(1270)γ → Kππγ)

dsds13ds23d cos θ
, (2.54)

the λγ closest to its true value can be obtained where the likelihood function (or equiv-
alently, log-likelihood) given by the N sample of data takes its maximum value. In our
case, the PDF, W , can be given as the decay width integrand normalized to unity (after
multiplication by the modulus squared of the Breit-Wigner). Let us reiterate our state-
ment that when one remains within the bump of the K1-resonance, the decay amplitude
weakly depends on s = p2

K1
, and one can set s = M2

K1
in Eq. (2.11), i.e. in the J ’s, which

we assume hereafter.
Thus, using Eq. (2.11), the PDF for B → K1γ → (Kππ)γ can be given as

W (s13, s23, cos θ) = f(s13, s23, cos θ) + λγg(s13, s23, cos θ) (2.55)

where

f(s13, s23, cos θ) =
1

4I
| ~J |2(1 + cos2 θ) (2.56a)

g(s13, s23, cos θ) =
1

2I
Im[~n · ( ~J × ~J ∗)] cos θ (2.56b)

I =
2

3

∫

ds13ds23| ~J |2 (2.56c)

where f and g are normalised relatively to the measure ds13ds23d cos θ.
Then, similarly to Eq. (E.12) the likelihood function for the N events of data can be

given as

L =
N∏

i=1

[
f(si13, s

i
23, cos θi) + λγg(s

i
13, s

i
23, cos θi)

]
(2.57)

where i indicates the kinematic variable of each event. The true value of λγ should
maximize this function, namely it should be the solution of the following equation:

∂L
∂λγ

= 0 (2.58)

The next procedure to look for the value of λγ in our problem is usually to use the
known distribution of f - and g-functions and fit the value of λγ so as to maximize the
likelihood function. As has been shown in the example of τ → ρν → (ππ)ν, it should be
noted that this is not a very simple task, especially since f and g in Eq. (2.56c) are very
complicated functions. However, in [14], it is pointed out that when the PDF depends
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on the parameter, which we are interested in, only linearly, one can reduce such a multi-
dimensional fit to a one-dimensional one using a single variable ω which is defined as
follows:

ω(s13, s23, cos θ) =
g(s13, s23, cos θ)

f(s13, s23, cos θ)
. (2.59)

which contains all information about the photon polarization.

Considering the fact that f , g and ω have very complicated dependences on these
kinematic variables, the reduction to the one-dimensional fit achieved by using the variable
ω is very efficient for the data analysis as shown in the following.
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Figure 2.3: The simulated ω-distribution for λγ = +1 (red) and λγ = −1 (blue). The
polarization parameter λγ can be determined from the difference between these two dis-
tributions (see the footnote 7 for more details).

Now we explain how to extract the value of λγ as well as its statistical error from a
given ω-distribution. Since the use of the ω-variable reduces our fit to a one-dimensional
one, λγ is obtained simply as a solution to the following equation:

∂ lnL
∂λγ

= N〈 ω

1 + λγω
〉 = 0. (2.60)

where the averaged (integrated) quantity is defined in the standard way:

〈X〉 ≡ 1

N

N∑

i=1

Xi (2.61)
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Of course, one could solve equation (2.60) by successive searches. However, we can
provide an explicit expression for λγ. Although the ω-distribution is centered around zero
(see Fig. 2.3) and consequently the approximate solution for λγ in terms of ω-moments
(E.17) could be used, one sees that the normalised distribution in ω, W ′(ω), can be written
as

W ′(ω) = ϕ(ω)(1 + λγω) (2.62)

where ϕ(ω) corresponds to the image of f(s13, s23, cos θ) in the ω-space. In principle, it
is a very complicated and unknown function with an analytical form that is very hard
to derive. That is why we use a numerical MC method for the evaluation of ϕ(ω) in
order to get the ω-distribution. However, ϕ(ω) turns out to be an even function of ω (for
more details see Appendix E). Then, one can easily demonstrate by integration over the
interval −1 ≤ ω ≤ 1 that λγ can be expressed as ratios of odd over even momenta:

λγ =
〈ω2n−1〉
〈ω2n〉 (n ≥ 1) (2.63)

Therefore, the expression (E.17) obtained by DDLR for small λγ seems exact. We ver-
ified the relation (2.63) by numerical calculation using MC simulation and found up to
statistical error that indeed

λγ =
〈ω〉
〈ω2〉 =

〈ω3〉
〈ω4〉 = . . . (2.64)

Using Eq. (E.15), one can also obtain the statistical error of the given value of λγ
(2.63) as:

σ2
λγ

=
1

N〈
(

ω
1+λγω

)2

〉
. (2.65)

Thus, once the ω distribution is obtained experimentally, Eqs. (2.60) or (2.63) and (2.65)
immediately provide the values of λγ and σλγ

7.

7In the real data, one must consider the systematic errors coming from detector effect etc. and
perform a χ2-fit instead of using these simple formulae. There is one subtlety for that case. For each
event, the photon should have the polarization either left- or right-handed. Thus, in MC, we produce the
ω-distribution with purely left- and right-handed PDF. Then, the total ω-distribution of the experimental
data is expected to be a linear combination of these two distribution with a ratio of ε:

N exp(ω) = εNMC
R (ω) + (1 − ε)NMC

L (ω) (2.66)

with ε ≡ 1+λγ

2 . The N is the number of events in the experimental measurement. We show an example
of the ω distribution of λγ = −1 (red) and λγ = +1 (blue) in Fig. 2.3. As seen in this equation, the λγ

can be determined from the difference between these two distributions.



Chapter 3

Strong interaction decays of the
K1-mesons

3.1 Overview of the previous K1-decay studies

3.1.1 Experimental overview

Here we summarise the experimental results of the axial vector K1-resonance study.

1. Two close in mass axial-vector mesons, K1(1270) and K1(1400), were disentangled
in the experiments on the diffractive production of the 1+(Kππ) system in the
Kp → Kππp reaction, first by the group at SLAC [46] and then by the ACCMOR
collaboration in WA3 experiment at CERN [45]. They also observed separately:
one K1(1270) in the strangeness-exchange reaction π−p→ ΛKππ [47] and the other

K1(1400) in the charge-exchange reaction K−p → K
0
π+π−n [48]. We rely mainly

on the diffractive reactions which allow a more detailed study. The relative ratios
of two dominant channels, K∗π and Kρ, indicate that K1(1400) decouples from the
Kρ, while the Kρ decay mode of K1(1270) is dominant (see Table 3.1). This decay
pattern suggests that the observed mass eigenstates, K1(1270) and K1(1400), are
the mixtures of two strange axial-vector SU(3) octet states K1A(3P1) and K1B(1P1).

• In the experiment, carried out at SLAC by Carnegie et al. [46], the mixing angle
was determined from the SU(3) couplings to the K∗π and Kρ channels to be
θK1

= (41± 4)◦. While the partial wave analysis of the WA3 experiment data,
done by the ACCMOR collaboration (Daum et al. [45]), gives θK1

= (64± 8)◦

and θK1
= (54 ± 4)◦ for the low and high momentum transfer to the recoiling

proton respectively.

• In the work by Suzuki [49] two possible solutions for the K1 mixing angle were
found in order to explain the observed hierarchy in the K1-decays to K∗π and
Kρ: θK1

≈ 33◦ or 57◦.
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2. TheK1-resonances were also observed and studied in τ -decays by TPC/Two-gamma [50],
ALEPH [51], OPAL [52] and CLEO [53] collaborations.

• The results of the TPC/Two-gamma experiment [50] suggest that the decay
proceeds mostly through K1(1400) (the corresponding measured branching ra-
tios are B(τ− → K1(1270)−ντ ) = (0.41+0.41

−0.35)% and B(τ− → K1(1400)−ντ ) =
(0.76+0.40

−0.33)%), although their errors are too large to make a strong statement.

• The latest measurements [51, 52, 53] show that the K1(1270) production is
favoured over the K1(1400) production: B(τ− → K1(1270)−ντ ) = (4.7±1.1)×
10−3 while B(τ− → K1(1400)−ντ ) = (1.7 ± 2.6) × 10−3 [37]. In the analysis,
done by the CLEO collaboration [53], the K1 mixing angle was determined

from the measured ratio B(τ→K1(1270)ντ )
B(τ→K1(1400)ντ )

: θK1
= (69±16±19)◦ for δ = 0.18 and

θK1
= (49±16±19)◦ for δ = −0.18 where |δ| = (ms−mu)/

√
2(ms+mu) ≈ 0.18

is a phenomenological SU(3) breaking parameter. This result is consistent with
the calculation in [49].

3. Radiative B-decays involving the K1-mesons were also observed by the Belle col-
laboration [13]. The data indicate that B(B → K1(1270)γ) ≫ B(B → K1(1400)γ).
At present moment the measurement of branching ratio B(B+ → K+

1 (1270)γ) =
(4.3± 0.9(stat)± 0.9(syst))× 10−5 has large experimental uncertainty while no sig-
nificant signal for B+ → K+

1 (1400)γ was found and only an upper limit B(B+ →
K+

1 (1400)γ) < 1.5 × 10−5 at 90% CL was set.

4. Quite recently the Belle collaboration published a paper on B → J/ψ(ψ′)Kππ
decays [43], which will be discussed in detail later.

5. In addition, the BABAR collaboration reported the measurement of the branching
ratios of neutral and charged B-meson decays to final states containing a K1(1270)
andK1(1400) meson and a charged pion: B(B0 → K1(1270)+π−+B0 → K1(1400)+π−) =
3.1+0.8

−0.7 × 10−5 and B(B+ → K1(1270)0π+ + B+ → K1(1400)0π+) = 2.9+2.9
−1.7 ×

10−5 [54]. In order to parametrize the signal component for the production of
the K1-resonances in B-decays, the K-matrix formalism, used in the analysis by
Daum et al. in [45], was applied to the model description. Since only some pa-
rameters, used in the analysis of the ACCMOR collaboration, have been reported,
the BABAR collaboration refitted the ACCMOR data in order to determine the
parameters describing the diffractive production of the K1-mesons and their decays.
On observes that some results are somewhat different. In particular, using the low
t-data, the refitted value of the K1 mixing angle turns out to be 72◦ compared to
64◦ from the ACCMOR fit.

3.1.2 Theoretical overview

1. A study of the strange axial-vector mesons was done in by Blundell, Godfrey and
Phelps [55], who studied the properties of K1 by combining the wave functions,
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K1
MACCMOR

K1
,

GeV/c2
ΓACCMOR
K1

,
MeV/c2

B(K∗π)S B(K∗π)D B(Kρ)S

K1(1270) 1.27±0.007 90±8 0.13±0.03 0.07±0.006 0.39±0.04
K1(1400) 1.41±0.025 165±35 0.87±0.05 0.03±0.005 0.05±0.04

Table 3.1: Fitted masses, total widths and partial branching ratios of K1(1
+) decays into

vector-pseudoscalar states, measured by ACCMOR collaboration in the Kp → Kππp
reaction for the low momentum transfer to the recoiling proton [45]. The total widths,
defined by the ACCMOR collaboration, seem to be misleading for the calculation of
partial widths as discussed later in the text.

inspired by the Godfrey-Isgur quark model, to describe the bound states and the
flux-tube-breaking or 3P0 models (which are in fact non-relativistic) to describe the
decays.

• Using the TPC/Two-gamma results on the ratio B(τ→K1(1270)ντ )
B(τ→K1(1400)ντ )

and the quark
model calculation of the K1 decay constants to the decays τ → K1ντ , the
obtained constraint is −35◦ . θK1

. 45◦ at 68% CL, which is in agreement
with [49]. Although the relative errors for the individual branching ratios are
smaller than those of the ratio, using the branching ratios introduces addi-
tional uncertainties due to the errors associated with the poorly known K1

wavefunctions, which makes the θK1
-extraction very model dependent.

• The strong decays of the K1 mesons to the final states K∗π and Kρ were
studied as well in order to determine the mixing angle. A χ2 fit of the ex-
perimental data on the partial decay widths Γ(K1(1270/1400) → K∗π) and
Γ(K1(1270/1400) → Kρ) was used for the θK1

-determination.

– Performing a χ2-fit with the predicted decay widths, calculated within
the pseudo-scalar-meson-emission model, using simple harmonic oscillator
wave functions with a single parameter β = 0.40 GeV, the fitted value of
the mixing angle was obtained to be θK1

= (48 ± 5)◦.

– The strongK1-decays were also calculated using both the flux-tube-breaking
model and the 3P0 model for several sets of meson wavefunctions. In all
cases a second fit was performed by allowing both θK1

and the quark-
pair-creation constant γ to vary, which reduces the χ2 significantly. Using
simple harmonic oscillator wave functions with β = 0.40 GeV, comparison
of the predicted decay widths by the 3P0 model to experimental results
gives θK1

= (45 ± 4)◦, while the flux-tube-breaking model’s prediction
gives θK1

= (44 ± 4)◦. The last result for θK1
is slightly changed for the

case of use of different set of the meson wave functions from Ref. [56]:
θK1

= (51 ± 3)◦.

2. In addition, a detailed study of the B → K1(1270)γ and B → K1(1400)γ decays
in the light-cone QCD sum rules approach was presented by Hatanaka and Yang
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in [40].

• The sign ambiguity of the mixing angle is resolved by defining the signs of the
decay constants fK1A

and f⊥
K1B

.

• From the comparison of the theoretical calculation and the data for decays
B → K1γ and τ → K1ντ , it was found that θK1

= −(34 ± 13)◦ is favoured
within the conventions of Hatanaka and Yang. It is difficult to establish the
relation with our own convention.

• The predicted branching ratios, B(B → K1(1400)γ) and B(B → K1(1270)γ),
are in agreement with the Belle collaboration measurement within the errors.

3.2 Theoretical model

The need for a theoretical model

In principle, all the hadronic parameters (i.e. K1 masses and partial decay widths,
form factors and relative phases) can be determined from the fits of the experimental
data. However, at present moment we are far from being able to perform this with the
accuracy, required to determine the photon polarization λγ. We found that the up-down
asymmetry and the ω-moments are sensitive to certain hadronic parameters which are
hard to determine, e.g. to the relative phases of couplings or to the D-waves.

Up to now the most complete and accurate experimental analysis is the one by Daum
et al.. However, as it is explained later in the next section, one discovers many difficulties
in understanding and using the results of the ACCMOR analysis. Among them there are
problems with conventions of the coupling signs, there is an incomplete report of the pa-
rameters of the fit and intrinsic difficulties with physical treatment. Other experiments,
which have been mentioned above, give precious complementary information but they
are not able to solve all the problems, all the more since they are less accurate. Due to
the insufficient knowledge of hadronic parameters it becomes necessary to use the help
of a theoretical model. Of course, there is no fundamental theoretical treatment of such
processes. We have only at our disposal the phenomenological approach of the quark
models. Indeed, in the case of decays, which is our concern, they include an essential
approximation: they are non-relativistic. There is an inherent sizable uncertainty. There-
fore, the quark model can not provide accurate predictions which are ultimately needed
for the precise determination of λγ. It is a provisory step in the expectation of new sys-
tematic experimental studies which could provide a precise measurement of a whole set
of hadronic parameters.

However, approximate as it is, the quark model can be very precious to check the
consistency of the present data and to orient the future studies of K1-decays. Moreover,
it allows to make an estimation of the sensitivity of λγ potential measurement methods.
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3.2.1 The mixing of the kaon resonances

In the quark model there are two possible states for the orbitally excited axial-vector
mesons: JPC = 1++ and JPC = 1+−, depending on different spin couplings of two
constituent quarks. In the SU(3)-limit these states can not mix, but since the s-quark is
actually heavier than the u- and d-quarks, the observedK1(1270) andK1(1400) mesons are
not pure 13P1 or 11P1 states. They are considered to be mixtures of non mass eigenstates
K1A and K1B. Introducing a K1A−K1B mixing angle θK1

, mass eigenstates can be defined
in the following way [49]: 1

|K1(1270)〉 = |K1A〉 sin θK1
+ |K1B〉 cos θK1

|K1(1400)〉 = |K1A〉 cos θK1
− |K1B〉 sin θK1

(3.1)

Since all of SU(3) operators can be expressed as combinations of isospin, U - and V -spin
operators, if an operator describing the interaction is invariant under the SU(3)-group
transformations, it is also invariant under the isospin, U -spin and V -spin transforma-
tions [57]. However, it is sufficient to require the invariance only under the isospin and
U -spin (or V -spin) transformations, since V -spin is dependent on the isospin and U -spin
and the V -spin operators can be obtained from the U -spin operators by an isospin trans-
formation (U -spin can be turned into V -spin via rotation by 120◦).

Analogously to G-parity, one can define U - and V -parities: GU = C(−1)U and GV =
C(−1)V respectively, where C is the charge-conjugation parity of the neutral non-strange
members of the multiplet. The neutral and charged kaons in the octets are the eigenstates
of U - and V -parities and always have U or V = 1 respectively.

In the SU(3)-limit two kaons that belong to the octets of the same spin but opposite
C-parity can not mix. To illustrate it, one can consider a matrix element of some arbitrary
operator O between two neutral kaons from different octets [58, 59]:

〈KA|O|KB〉 = 〈KA|G−1
U GUOG−1

U GU |KB〉 = CACB〈KA|GUOG−1
U |KB〉 (3.2)

If the O operator is SU(3)-invariant, i.e. GUOG−1
U = O, the matrix element of the

transition 〈KA|O|KB〉 = 0 unless CA = CB.
Strong interactions can break the SU(3)-symmetry and produce the mass splittings.

It is experimentally confirmed that isospin is conserved in strong interactions. Hence,

1To be able to compare with other mixing angle estimations, one has to be careful due to the
different parametrizations that are used in the literature. For instance, in the analysis by Carnegie

et al. [46] the parametrization is |K1(1270)〉 = |K1A〉 cos θ
(SLAC)
K1

+ |K1B〉 sin θ
(SLAC)
K1

, |K1(1400)〉 =

−|K1A〉 sin θ
(SLAC)
K1

+ |K1B〉 cos θ
(SLAC)
K1

. To compare with the results made by Daum et al. [45],

parametrization is written as follows: |K1(1270)〉 = −|K1A〉 sin θ
(ACCMOR)
K1

+ |K1B〉 cos θ
(ACCMOR)
K1

,

|K1(1400)〉 = |K1A〉 cos θ
(ACCMOR)
K1

+ |K1B〉 sin θ
(ACCMOR)
K1

. Comparing the fitted effective couplings one
can see that the coupling to K1B has a different sign in these two definitions. Since one can measure only
the absolute value of the amplitude, this sign changes nothing and hence it is possible to redefine the sign of
this coupling in the paper by Daum et al.. After that one can easily establish the correspondence between

these two forms of parametrization and the one we use in this paper: θK1
= θ

(ACCMOR)
K1

= 90◦−θ(SLAC)
K1

.
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if the strong interaction operator breaks the SU(3)-symmetry, U - and V -parities are
not conserved anymore, even if G-parity is conserved. In this case GUOG−1

U 6= O and
consequently 〈KA|O|KB〉 6= 0 and the mixing takes place.

3.2.2 3P0 Quark-Pair-Creation Model

There are several additive quark models of strong vertices. All these models relate to the
recoupling coefficients of unitary spin, quark spin and the quark orbital angular momenta,
but differ in the dynamical description. One of the simplest additive quark model describ-
ing three-meson vertices is the naive quark-pair-creation model (QPCM) of Micu and of
Carlitz and Kislinger [60,61] and developed by Le Yaouanc et al. [62] and then extensively
discussed by the group of N. Isgur in Canada [56,63,55,64]. As in the usual additive quark
models with spectator quarks, the quark-antiquark pair is “naively” created not from the
ingoing quark lines but within the hadronic vacuum. The strong interactions vertices in
the QPCM are expressed in terms of the explicit harmonic oscillator spacial SU(6) wave
functions (compared to the work by Micu [60], who just fitted the various spacial integrals
using the measured decay widths, what does not allow to study the polarization effects)
and a nonlocal vacuum quark-antiquark pair production matrix element, depending on
the internal quark momenta (while Carlitz and Kislinger [61] neglected the internal mo-
mentum distributions). Contrary to the QPCM by Colglazier and Rosner [65], the 3P0

structure of the created pair describes any decay process of any hadron, using one univer-
sal parameter. The model parameters are of the hadron itself and not the decay process
as in [65], where the various extra couplings between the pair and the incoming meson
depend on the nature of the hadron states and may be weighted by different arbitrary
coefficients for different hadrons.

The naive QPCM has the advantage of making definite predictions for all hadronic
vertices and moreover, contrary to the other works, it predicts the relative signs of the
couplings. Another appealing feature of the model is that it consists only one phenomeno-
logical parameter (the quark-pair-creation constant), what allows a much more general
description and relates the amplitudes of different processes. The main weakness of the
QPCM is that it cannot take into account the symmetry breaking effecting on the hadron
wave functions and that the emitted hadrons are considered to be non-relativistic. Thus
one has to look for the decays that are not significantly sensitive to these effects.

Formalism

In the QPCM, instead of being produced from the gluon emission, the quark-antiquark
pair qq̄ (see Fig. 3.1) is created anywhere within the hadronic vacuum by an operator
proportional to (uū+dd̄+ss̄)S ·p where S refers to spin 1 and p is the relative momentum
of the pair. It is combined with the initial quark-antiquark system q̄2q1 and produces
the final state B(q1q̄)C(qq̄2). The initial spectator quarks are supposed not to change
their SU(3) quantum numbers, nor their momentum and spin. In order to conserve the
vacuum quantum numbers the pair must be created in the 3P0 state due to P = −(−1)L
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and C = (−1)L+S parity conservation with 0-total momentum (~k3 + ~k4 = 0) and to be
a SU(3)-singlet. Thus the matrix element of the quark-antiquark pair production from
the vacuum is unambiguously constructed with the help of the spins and momenta of the
quark and antiquark only [62]:

〈q̄q|T̂vac|0〉 = δ(~k3 + ~k4)γ
∑

m

(1,m; 1,−m|0, 0)Ym
1 (~k3 − ~k4)χ

−m
1 φ0 (3.3)

where γ is a phenomenological dimensionless pair-creation constant (which is determined
from the measured partial decay widths and taken to be of the order of 3-5), χ−m

1 are the
spin-triplet wave functions, φ0 = 1√

3
(uū+dd̄+ss̄) is the SU(3)-singlet and Ym

1 represents
the L = 1 angular momentum of the pair.

Taking the matrix element of the pair-creation operator between the SU(6) harmonic-
oscillator wave functions of hadrons, the matrix element for the decay A → B + C can
be written as:

〈BC|T̂ |A〉 = γ
∑

m

(1,m; 1,−m|0, 0)ΦBΦCΦm
AΦ−m

vac I
(ABC)
m (3.4)

where Φ = χm1 φ are the SU(6) spin-flavour wave functions and I
(ABC)
m are the spacial

integrals dependent on the momentum of the final states, which are computed in Ap-
pendix D.

q1(~k1)

q̄2(~k2)

γ
q̄(~k3)

q(~k4)
A

B

C

∗

Figure 3.1: Three-meson vertex in the quark-pair-creation model.

Assuming A, B and C to be an axial vector, pseudoscalar and vector mesons respec-
tively, the spin part of the matrix element can be written as

χCχBχAχpair =
∑

mi

(
1

2
,m1;

1

2
,m3|0, 0)(

1

2
,m4;

1

2
,m2|1, λC)

× (
1

2
,m1;

1

2
,m2|SA,mSA

)(1,mLA
;SA,mSA

|1, λA)(
1

2
,m4;

1

2
,m3|1,−m)

(3.5)

Consider for instance K∗0π+ decay mode of K1-meson. After the summation over the
spin projections the calculated helicity amplitudes for the K1A (13P1) and K1B (11P1)
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will be (the definition of the helicity amplitudes and their relation with the partial wave
amplitudes can be found in Appendix D):

M10(A)
00 = −γ I

(K1K∗π)
1

3
√

2
, M11(A)

10 = −γ I
(K1K∗π)
1 − I

(K1K∗π)
0

6
√

2

M10(B)
00 = −γ I

(K1K∗π)
0

6
, M11(B)

10 = γ
I

(K1K∗π)
1

6

(3.6)

The corresponding amplitudes for the K+ρ0 mode are obtained by multiplying the K∗0π+

amplitudes by 1/
√

2 and changing the sign of K1A-part.

Taking into account the isospin factors for different charge states2, the generalized
amplitudes are summarized in Table 3.2. The functions S and D are defined as

S(ABC) = γ

√

3

2

2I
(ABC)
1 − I

(ABC)
0

18
, D(ABC) = γ

√

3

2

I
(ABC)
1 + I

(ABC)
0

18
(3.7)

Decay mode AS AD
K1B → K∗π −S(K1K∗π) −

√
2D(K1K∗π)

K1A → K∗π
√

2S(K1K∗π) −D(K1K∗π)

K1B → Kρ S(K1Kρ)
√

2D(K1Kρ)

K1A → Kρ
√

2S(K1Kρ) −D(K1Kρ)

Table 3.2: Partial wave amplitudes of K1A(13P1) and K1B(11P1) decays into vector-
pseudoscalar states, calculated within QPCM.

One has to point out that our treatment obeys the SU(3)-symmetry. SU(3) breaking
effects are present only in two places: 1) we use the physical observed masses of hadrons;
2) we introduce mixing between the K1A and K1B states. This is indeed the effect of the
symmetry breaking. It is induced, for instance, by spin-orbit forces with different s and
u, d quark masses. And also the mixing is generated by the loops as depicted in Fig. 3.2.
The K∗π and Kρ loop contributions cancel each other only if one sets MK∗ = Mρ and
mπ = mK , i.e. in the case of the exact SU(3)-symmetry.

Then the decay amplitudes of K1 into K∗π or Kρ final states can be expressed as
functions of the pseudoscalar meson momentum in the K1 reference frame and the mixing

2The amplitudes were calculated for K+
1 → K∗0π+ and K+

1 → K+ρ0. The amplitude of Kρ must
be divided over

√
2 due to isospin wave function of ρ0. To obtain the general amplitude which doesn’t

depend on the charge combination one has to divide over the isopin factor: −
√

2/3 for K∗ and
√

1/3 for
ρ since for the matching with the relativistic form factors the charge combination is not relevant. Finally
one obtains the factor

√

3/2 in Eq. (3.7).
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K1A K1B

K∗

π

K1A K1B

ρ

K

Figure 3.2: K1A −K1B mixing via loop effects.

angle θK1
:

AS(K1(1270) → K∗π/Kρ) = S(K1K∗π/K1Kρ)(
√

2 sin θK1
∓ cos θK1

)

AD(K1(1270) → K∗π/Kρ) = D(K1K∗π/K1Kρ)(− sin θK1
∓
√

2 cos θK1
)

AS(K1(1400) → K∗π/Kρ) = S(K1K∗π/K1Kρ)(
√

2 cos θK1
± sin θK1

)

AD(K1(1400) → K∗π/Kρ) = D(K1K∗π/K1Kρ)(− cos θK1
±
√

2 sin θK1
)

(3.8)

Correspondingly, the partial decay widths can be determined by using amplitudes squared
from the Eqs. (3.8) multiplied by the phase space factors:

ΓQPCMS/D (K1 → V P ) = 8π2EVEPkP
MK1

|AS/D(K1 → V P )|2. (3.9)

The choice of the wave functions

The unknown parameters of the model are the quark-pair-creation constant γ and the
K1 mixing angle, which we determine by fitting the experimental data on the K1-decays
(see the next section). However, before proceeding to this determination, the model must
be specified by the choice of the set of meson wave functions. In accordance with a
fact that the 3P0 model is a simple model, we will remain within the traditional SU(6)
approximation which describes rather well ordinary radiative decays (e.g. ω → πγ). This
includes the SU(3)-symmetry approximation which anyway is also present in the 3P0

model through the fact that the quark-pair-creation constant is the same for all reactions.
In this approach the effect of the SU(3) breaking is taken into account only through
the dependence of the decay momentum of the physical hadronic masses. For practical
reasons, we choose a set of harmonic oscillator wave functions, which are known to give a
reasonable approximation.

Here one has to stress that the harmonic oscillator radius of the meson wave func-
tion (ψ(r) ∝ exp(−r2/2R2), for details see Appendix D) is not a free phenomenological
parameter. In principle, it can be predicted by the quark-potential model describing the
bound states of two quarks. To get a first and rough estimate we can use the following
relation, obtained in the non-relativistic harmonic oscillator model for the energy shift
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between the ground state and the first radial excitation:

∆E1 =
2

mqR2
(3.10)

with mq being the quark mass, which can be standardly estimated from the magnetic
moment of the proton: µp = e

2mq
= 2.79

2mN
. Whencemq ≃ 0.34 GeV 3. ∆E1 can be estimated

from the energy of the L = 1 state of the order of (1.2-1.3) GeV and the weighted average
energy of the ground state (3mρ +mπ)/4 ≃ 0.6 GeV. Then the estimated radius is given
by

R =

√

2

∆E1mq

∼
√

2

(1.25 − 0.6) 0.34
≃ 3 GeV−1 (3.11)

On the other hand, it is obvious that this approximation of the Schroedinger equation
with the harmonic oscillator potential is rather naive: the realistic potential is known to be
of the form of linear (that describes confinement) plus Coulomb potential. One has also to
notice that the application of the use of the non-relativistic character of the Schroedinger
equation to the heavy-light systems is dubious. Therefore, one could take a value inspired
by the well known model of Godfrey and Isgur. Of course, in the latter model the solutions
are no longer the harmonic oscillator wave functions. However, such harmonic oscillator
wave functions can represent a good approximation if the radius R is adjusted. For most
L = 0, 1 states one finds in this model the typical value R ∼ 2.5 GeV−1 [63]. For our
predictions we therefore adopt a set of wave functions with a common harmonic oscillator
radius having precisely this value,

R = 2.5 GeV−1 (3.12)

This is also one of the choices made by Blundell et al. [55]. We must warn that in
this model pion and kaon have actually quite smaller radius (∼ 1.4 GeV−1 [63]) due
to the strong spin-spin interaction force. We disregard this fact in the spirit of the
SU(6) approach. If we were adopting the low values for the Goldstone boson we would
obtain unsatisfactory results. For example, using Rπ ≃ 1.4 GeV−1, we can not reproduce
correctly the D/S ratio in the b1 → ωπ decay which is precisely measured.

3.2.3 The issue of the damping factor

In the end of the introduction of the theoretical model, we discuss the necessity of intro-
ducing an additional cut-off (or damping factor) in the coupling vertices, in addition to
the natural one provided by the 3P0 model. Generally speaking, there is need in the cut-off
for calculations involving far off-shell particles. This appears in various circumstances:

3Note that this is the phenomenological mass in the quark models and not the physical constituent
quark mass.
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• In the calculation of λγ. Indeed, the interference of several channels needed to

obtain a non-zero imaginary part of ~n · ( ~J × ~J ∗) (see Eq. (2.11) requires a large
off-shellness of the intermediate isobars.

• In the branching ratios, obtained by the integration over the large phase space for
the production of Kππ (e.g. B → Kππγ). This is especially important for the
higher partial waves like D-waves.

• Another effect appears in the decay to one isobar and one stable particle: integrating
over the mass of the isobar, the calculated partial width depends on the presence of
the damping factor. The low end of the isobar mass spectrum corresponds indeed
to large off-shell momenta.

The later effect is especially crucial for the transition rate of K1(1270) → Kρ, which
is large, although it would be kinematically almost forbidden at the nominal values of the
masses. A well-known and simple way to take the widths into account is by integrating
over the off-shell “masses”, p2, with the weight of the Breit-Wigner’s. However, it is then
found that the integrals will diverge for P - orD-waves, due to the k2l factors, where k is the
decay momentum, if the coefficients are taken to remain constant. Of course, the reactions
will in general provide natural limits of integration: for instance, the spectrum studied by
the ACCMOR collaboration stops at MKππ = 1.6 GeV/c2, but even that cut would give
exceedingly large P - or D-wave contributions. In fact, it seems that various indications
hint at the necessity of a strong dynamical cut-off, or “damping factor”, affecting for
instance the Breit-Wigner shape (e.g. accurate studies of ∆(1236) [66] or K∗(890), see
Ref. [48]), the prototype of which are the Blatt-Weisskopf factors. The need for it is also
shown by calculations of hadronic loops in the 3P0 model [67]. One obtains a natural
damping factor through the Gaussian factors e−βk

2

:

AS ∝ (3 − αk2)e−βk
2

, AD ∝ αk2e−βk
2

(3.13)

but one finds β ∼ 0.3 GeV−2 which is too small. Following Ref. [67], we introduce the
empirical Gaussian cutoff exp[−β′(k2 − k2

0)] with β′ ≈ 3 GeV−2, where k0 is the decay
momentum when all the particles are put on-shell:

AS ∝ (3 − αk2)e−βk
2 × e−β

′(k2−k2
0), AD ∝ αk2e−βk

2 × e−β
′(k2−k2

0) (3.14)

With this additional damping factor one finds that the integrated D/S-ratio becomes
stable. The isobar (K∗/ρ) decay does not depend much on the damping factor.

3.3 How to compare the theoretical model computa-

tion with the experimental data?

Let us emphasize that the very extensive work of Daum et al. consists of two distinct
steps:
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• The first one is the partial wave analysis (PWA) where the Kππ three-body final
state is decomposed into a sum of quasi-two-body “partial waves” (K∗π, Kρ, etc.)
with various quantum numbers of the total spin and orbital momentum. In this first
step there is no reference to any parent resonance like K1. This step corresponds
to the fitted values of the quasi-two-body partial wave amplitudes plotted with the
corresponding error bars in [45].

• The second step is the fit of the partial wave amplitudes, extracted on the pre-
vious step, within the K-matrix formalism in order to study the structure of the
initial parent resonance and its properties (pole masses, couplings to various decay
channels, etc.).

Let us stress that this two-step procedure is different from the modern Dalitz plot
analyses where the isobar and parent resonances are included together in one unique
formula of the total amplitude. In that case the total amplitude is written as a product of
the parent resonance decay amplitude and the amplitude of the subsequent decay of the
isobar taking into account the width effects of the unstable resonances by the Breit-Wigner
forms.

In the following we do not question the first step; we rather indicate various difficulties
which we have encountered in trying to use the K-matrix parameters from the analysis of
Daum et al.. In the following subsection, we first recall the general K-matrix formalism.

3.3.1 The K-matrix formalism

In order to extract our theoretical parameters, γ and θK1
, we need the experimental partial

widths. We also need them to verify our prediction of the model. And the question is: how
to define a partial width? Resonances are often parametrized in terms of the Breit-Wigner
form

BW (NR)
r (m) ∝ 1

mr −m− iΓr

2

, or BW (R)
r (m) ∝ 1

m2
r −m2 − imrΓr

(3.15)

in the non-relativistic and relativistic cases respectively. Resonance width, in principle,
depends on energy, Γr(m). This approximation assumes an isolated resonance with a
single measured decay. If there is more than one resonance in the same partial wave
which strongly overlap, an elegant way that provides the unitarity of the S-matrix4 is to
use the K-matrix formalism for the two-body decays of the resonance states (for more
details see Appendix C).

4Note that in the case of two overlapping resonances the Breit-Wigner parametrization of the ampli-
tude satisfies the unitarity condition of the S-matrix only with the complex couplings satisfying certain
condition. As we demonstrate later, these complex couplings can be obtained from the real K-matrix
couplings by a complex rotation.



3.3.1 The K-matrix formalism 61

From the unitarity of the S-matrix

S ≡ 1 + 2iρ
1
2Tρ

1
2 (3.16)

one gets

T − T † = 2iT †ρT = 2iTρT † (3.17)

where the diagonal matrix ρij(m) is the phase space factor which is discussed in detail
later in this section. In terms of the inverse operators Eq. (3.17) can be rewritten as

(T †)−1 − T−1 = 2iρ (3.18)

One can further transform this expression into

(T−1 + iρ)† = T−1 + iρ (3.19)

Using the definition of the K-matrix

K−1 ≡ T−1 + iρ (3.20)

one can easily find from Eq. (3.19), (3.20) that the K-operator is Hermitian, i.e.

K = K† (3.21)

From the time reversal invariance of S and T it follows that K must be symmetric, i.e.
the K-matrix can be chosen to be real and symmetric. Resonances should appear as a
sum of poles in the K-matrix. In the approximation of resonance dominance one gets
therefore

Kij =
∑

a′

fa′ifa′j
ma′ −m

(3.22)

where the sum on a′ goes over the number of poles with masses ma′ . In the common
approximation in the resonance theory, the couplings fa′i are taken to be real.

The partial and total K-matrix widths can be defined as

Γa′i(m) = 2f 2
a′iρii(m) (3.23a)

Γa′(m) =
∑

i

Γa′i(m) (3.23b)

Note that the K-matrix width does not need to be identical with the width which is
observed in experiment nor with the width of the T -matrix pole in the complex energy
plane.

For the illustration, we give two simple examples.
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• One resonance decaying to one channel

Consider a resonance a′ that couples to one channel i:

1

2

Πa′a′

1

2

i i

Using the definition (3.22), the K-matrix for the elastic scattering is given by

K =
f 2
a′1

ma′ −m
(3.24)

One can easily obtain the transition amplitude

T =
f 2
a′i

ma′ −m− ifa′iρii(m)
=

f 2
a′i

ma′ −m− i
Γa′ (m)

2

(3.25)

which is equivalent to the non-relativistic Breit-Wigner parametrization of Eq. (3.15).

• Two resonances decaying to one channel

Consider again an elastic scattering at mass m, but suppose that there exist two
resonances with masses ma′ and mb′ coupling to channel i:

1

2

Πa′a′

1

2

i i +

1

2

Πb′b′

1

2

i i

In this case the K-matrix is

K =
f 2
a′i

ma′ −m
+

f 2
b′i

mb′ −m
(3.26)

Thus, the transition amplitude is given by

T =
f 2
a′i

ma′ −m− i
Γa′ (m)

2
− i

Γb′ (m)

2

ma′−m
mb′−m

+
f 2
b′i

mb′ −m− i
Γb′ (m)

2
− i

Γa′ (m)

2

mb′−m
ma′−m

(3.27)

If ma′ and mb′ are quite far away from each other relative to the widths, then the
dominating contribution is either from the first or the second resonance depending
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on whether m is near ma′ or mb′ . If it is so, then the amplitude is given merely by
the sum of two Breit-Wigner forms:

T ≃ f 2
a′i

ma′ −m− i
Γa′ (m)

2

+
f 2
b′i

mb′ −m− i
Γb′ (m)

2

(3.28)

In the other case, when two resonances are sufficiently close to each other or if they
have rather large widths, the approximation (3.28) is no longer valid, however one
can still write T as a sum of two Breit-Wigners (see Appendix C) but using different
masses and couplings.

Then, as we show in the Appendix C, one should identify the K-matrix couplings with
the ones predicted by the 3P0 model taking into account the mixing effect. To establish
the relation between the definitions in these two formalisms, we identify the 3P0 partial
widths ΓQPCMK1i

(Mpeak) with

ΓK1i = 2f 2
K1i
Re[ρii(Mpeak)] (3.29)

where ρij and fK1i are the phase space (we use the real part of the phase space since ρij
is defined as a complex quantity as will be explained later) and the K-matrix couplings
in the formalism of Daum et al. (see Appendix C where it is explained in detail how to
embed the quark model into the K-matrix formalism).

Indeed, the main experiments on the K1-decays [45, 46] were analysed with the same
K-matrix formalism developed by Bowler et al. [68] and obtained very similar results.
We use in our analysis the parameters of the analysis done by Daum et al.(ACCMOR
experiment) which seems to be the most detailed. On the other hand, there are certain
physical parameters of the fit which are not tabulated in the this paper. Then we also
use, where necessary, the results of the K-matrix re-analysis of the ACCMOR data by
the BABAR collaboration [54].

Now, Eq. (3.9) is valid only for the narrow isobar. If we have to take into account
the effect of the finite width of the isobar, we have to integrate the quasi-two-body phase
space over the Breit-Wigner of the isobar. One has to underline, that in this approach we
do not have to integrate over the Breit-Wigner of the K1-resonance unlike what is done,
for instance, in Ref. [63]. We indeed calculate the width at the peak. On the contrary,
if we would like to compare with the results of the Belle collaboration analysis [43], this
approach must be changed and we would have to integrate over the whole three-boby
phase space of Kππ.

3.3.2 Observed problems in the K-matrix analysis

We found several problems in using the experimental analysis:

• Absence of the Kππ non-resonant contribution in the K-matrix.
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We note that the K-matrix of Daum et al. is composed only of two resonance poles.
There is no non-resonant contribution which is usually parametrized as polynomial
in terms of m in the K-matrix parametrization. This implies the strong assumption
that the quasi-two-body scattering of vector-scalar mesons (K∗π and Kρ) passes
only through the K1 resonant intermediate states.

• D-wave amplitudes issue.

The results of the ACCMOR analysis show that the D-wave in K1(1270) → K∗π
depends strongly on the production transfer t in the Kp → Kππp reaction. This
fact may escape the attention of PDG reader, because it averages between two sets
of data (low t, high t). As for the D-wave amplitude in the Kρ channel, there is no
information; only branching ratios are quoted in the paper but not the K-matrix
couplings and their phases which are crucial for our study.

• The problem of correct definition of the total width

When the mass of the resonance at the peak is close to a decay threshold, different
definitions of the resonance width are no longer equivalent. Such possible definitions
are the width at the peak Γ(Mpeak), the width at the S-matrix pole, and finally the
full width if measured at one-half the maximum height (FWHH) of the Breit-Wigner
distribution defined as

ΓFWHH
K1

≡ m2 −m1, (3.30)

where m1 and m2 are defined as two solutions in m of the equation

f 2
a′(b′)1ρ11(m)

ma′(b′) −m− iΓa′(b′)(m)
=

1

2

f 2
a′(b′)1ρ11(Mpeak)

ma′(b′) −Mpeak − iΓa′(b′)(Mpeak)
(3.31)

using the K∗π channel (labelled as channel 1).

The last two widths are found to be smaller than the first one. That is why the
K1(1270) width, ΓK1(1270) = (90 ± 8) MeV/c2 [45], which is assumed to be defined
as the full width if measured at one-half the maximum height of the Breit-Wigner
distribution of K1, is less by a factor 1.5-2 than the total width at the peak (see
Table 3.3) which is computed using the K-matrix couplings and summing over all
possible intermediate channels, i.e.

ΓpeakK1
≡ 2

∑

i

f 2
K1i
Re[ρii(Mpeak)] (3.32)

We find, indeed, for the later to be of the order of 200 MeV/c2 with the inclusion of
the κπ channel (see Table 3.3). As a consequence, one observes a large discrepancy
between the two possible definitions of the partial width that can be extracted from
data of the ACCMOR collaboration: the partial width, defined in a “standard”
way as Γ(K1(1270) → Kρ) = ΓK1

× B(K1(1270) → Kρ), is less by a factor 2-3
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compared to the partial width at the peak, defined from the K-matrix couplings (see
Table 3.4). The total width, defined by ACCMOR collaboration, seems therefore to
be misleading. And, indeed, previous theoretical analyses (for instance, in Ref. [55])
unduely used for experimental partial widths the product of branching ratios with
this total width.

K1 ΓACCMOR
K1

, MeV/c2 ΓpeakK1
, MeV/c2 ΓFWHH

K1
, MeV/c2

K1(1270) 90±8 ∼190 ∼80
K1(1400) 165±35 ∼230 ∼230

Table 3.3: Experimental total decay widths, calculated using the fitted parameters from
Ref. [45]. In our opinion, only the widths calculated at the peak must be used to compute
partial widths from the branching ratios. Note that the D-waves are not included in the
ΓpeakK1

estimation.

Decay channel i
ΓK1i = BK1i × ΓACCMOR

K1
,

MeV/c2
ΓpeakK1i

= 2f 2
K1i
Reρii,

MeV/c2

K1(1270) → (K∗π)S 12±3 28±26
K1(1270) → (Kρ)S 41±10 122±28
K1(1400) → (K∗π)S 162±13 211±59
K1(1400) → (Kρ)S 2±2 20±25

Table 3.4: Experimental partial decay widths, calculated using the fitted parameters from
Ref. [45]. As is is underlined before, only the values from the last column must be used.

• The problem of the phase space, ρij

In the expression of the T -matrix in the K-matrix formalism the phase space factor
ρij is defined as

ρij(m) =
2ki(m)

m
δij (3.33)

Naively, ki, is the break-up momentum for the two-body decay channel i. But, in
fact, Bowler et al. used for ki a particular formulation, proposed by Nauenberg and
Pais [69], which tries to take into account two important effects:

– The requirement of the analiticity of the amplitude. The simplest way to satisfy
it is the analytic continuation of the phase space through the threshold:

ρij(m) =

{
2ki(m)
m

δij, above threshold
2i|ki(m)|

m
δij, below threshold

(3.34)

It is the basic idea of the so called “Flatte model” which has been used to
analyse the a0(980) decay into ηπ and KK states, the resonance being very
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close to the KK decay threshold. Similarly, this effect is also present in the
K1(1270) decays into Kρ and K∗π channels with the resonance being at the
threshold of Kρ. This is not so relevant for the K1(1400) decays where the
resonance is far above the thresholds.

– The effect of the isobar width. The peculiarity of the K1(1270) with respect to
a0(980) case is that the two-body final state includes one unstable particle, the
isobar V (V = ρ or K∗). In order to take into account the width of the isobar,
it is logical to integrate the three-body phase space over the Breit-Wigner of
the isobar:

ki(m) =

∫ ∞

mmin
V

ki(m,mV )
ΓV /2π

(MV −mV )2 +
Γ2

V

4

dmV (3.35)

where ki(m,mV ) has its non-relativistic expression5

ki(m,mV ) =

√
2mVmP

mV +mP

(m−mV −mP ) (3.36)

The infinite upper limit in Eq. (3.35) corresponds to the analytical continuation
of ki below the threshold for mV > m−mP .

As an approximation to this integral, Nauenberg and Pais proposed to use the
complex mass of the isobar, MV →MV −iΓV /2, in the expression of the momentum
ki(m,mV ). These two prescriptions lead to a complex phase space, defined as

ρij(m) =
2ki(m)

m
δij =

2

m

√

2MVmP

MV +mP

(

m−MV −mP + i
ΓV
2

)

i

δij (3.37)

where P (P = K or π) is the final state pseudoscalar meson in the quasi-two-body
decay. According to us this prescription of using a complex mass is not satisfactory
for the ρ and K∗, especially for K1(1270) → Kρ. Indeed, we found by direct
integration of Eq. (3.35) that the results are quite different from the ones obtained
using Eq. (3.37), especially the real part of ρij(m) which corresponds to the real
phase space in the K1(1270) → Kρ case (see Fig. 3.3). The same observation was
formulated by Frazer and Hendry [70] when the paper of Nauenberg and Pais was
published. They pointed out that this approximation is valid only for the very
narrow resonances. The failure of this approach is very worrying since it is basic for
the whole analysis.

• The problem of the P - and D-waves

5For the relativistic phase space Eq. (3.20) no longer defines a real K-matrix in the physical region.
The reason is that the relativistic momentum does not remain imaginary below the threshold due to
an additional complex branch point ∝

√

m2 − (mV −mP )2. Therefore Nauenberg and Pais Ref. [69]
restricted to non-relativistic case.
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Figure 3.3: Dependence of the phase space factor ρij on the mass of the decaying resonance
m for the K∗π (top) and Kρ (bottom) channels. For comparison, ρij is calculated using
the proper analytic continuation, Eq. (3.35), (blue) and the approximation of Nauenberg
and Pais, Eq. (3.37), (red). The difference between two approaches for Re(ρ22) turns out
to be significant for the Kρ channel.

In addition, the prescription of Nauenberg and Pais has not been established for the
P - and D-waves. We do not know what has been done exactly by Daum et al. to
treat these waves. On the other hand, such waves are to be included in the analysis,
especially the κπ in the P -wave is very important. Since we are not able to redo
the analysis by Daum et al. we use the couplings to K∗

0(1430)π channel refitted by
BABAR collaboration [54]. They include a centrifugal barrier factor depending on
the complex momentum which is defined by Eq. (3.37)6. However, there is a new
following problem here. The approximation of BABAR for the centrifugal barrier
factor is not an approximation to the integral

∫ ∞

mmin
V

ki(m,mV )

[

k2
i (m,mV )R̃2

1 + k2
i (m,mV )R̃2

]

ΓV /2π

(MV −mV )2 +
Γ2

V

4

dmV (3.38)

which gives a positive real part while the approximation gives a negative one. This
contradiction can be masked by the normalization of the centrifugal barrier factor

6According to private communications.
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at the peak. Although, this is obviously not a satisfactory solution.

• The diagonalization of the mass matrix and corresponding rotation of
the K-matrix couplings

In several cases we have to deal not with the K-matrix couplings but with Breit-
Wigner parametrization of the intermediate resonances. This is the case, for exam-
ple, in our calculation of the J -function (2.15). This is also the case of the Dalitz
plot analyses such as the one of the Belle collaboration [43]. Then the relevant
couplings are slightly different from those of the K-matrix. They are obtained from
the latter by a complex rotation. Indeed, to pass to the physical states we have
to diagonalize the mass matrix of the states in the K-matrix formalism (see Ap-
pendix C). This diagonalization can be performed by a complex orthogonal matrix.
This rotation is complex because of the non-diagonal elements of the imaginary part
of the mass matrix. The complex rotation angle (which depends on the energy) has
both real and imaginary parts which are found to be of the order 10◦ (this result was
obtained by explicit diagonalization of the mass matrix). As a consequence, this
rotation affects the couplings: the rotation makes the couplings of the Breit-Wigner
somewhat different from the ones of the real K-matrix. The magnitudes of the new
couplings are different and phases appear. We found that the largest couplings (i.e.
considering the dominant decay channels, K1(1270) → Kρ and K1(1400) → K∗π)
are slightly affected and acquire small phases. On the other hand for the smallest
couplings (K1(1270) → K∗π and K1(1400) → Kρ) the rotation effects are more
important. In practical calculations of λγ for the present moment we have neglected
these effects so that we use directly the couplings obtained from the 3P0 model.

• Relative signs and phases

It appears that the phases of the amplitudes, deduced from the K-matrix are not
exactly what is observed: this is a phenomenon of so-called “off-set” phases. The
Kρ channel was found to have an additional unexplained phase of 30◦ [45] relative
to the (K∗π)S which was set as a reference one. For the κπ channel the discrepancy
reaches 90◦.

3.4 Numerical results

Let us summarize our final prescriptions we use for the calculation of the partial widths
and for the further extraction of our theoretical model parameters from the experimental
measurements. Our basic approach is to use partial widths at the peak on both, theoretical
and experimental, sides. We abandon the idea of using the branching fractions and the
total K1-widths for the comparison with our predictions.

1. For the theoretical prediction, in order to take into account the isobar width effects
in our theoretical prediction of the partial widths ΓQPCMK1i

, the amplitudes (3.8)
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squared are integrated over the invariant mass of the isobar:

ΓQPCMK1i
= 8π2

∫ MK1
−mP

mmin
V

EVEPkP
MK1

|Ai(K1 → V P )|2 ΓV /2π

(MV −mV )2 +
Γ2

V

4

dmV (3.39)

Note that since we consider the widths at the peak there is no integration over
the K1 invariant mass unlike what is done in several theoretical papers (e.g. see
Ref. [63]). Moreover, one can notice that the integration over the mass of the isobar
is one within the correct physical region restricted by the corresponding physical
bound of the two-body decay (i.e. we use the real phase space).

2. For the experimental input, we make the simple assumption that the partial widths,
calculated from the K-matrix couplings at the peak according to Eq. (3.40), are
correct, although the complex phase space à la Nauenberg and Pais (3.37) might
be not correct (i.e. what we measure by fitting data, is always the combination like
f 2
a′(b′)i× ρij(m) which are assumed to be extracted correctly). Therefore, we use the
K-matrix couplings and the real part of the complex phase space à la Nauenberg
and Pais in order to extract the experimental values of the partial widths

ΓpeakK1i
= 2f 2

a′(b′)iRe[ρij(Mpeak)] (3.40)

3. We calculate this partial width according to Eq. (3.23) also for the P (L = 1)
and D-waves (L = 2), assuming that the K-matrix couplings f contain the barrier
factors BL

i (m) that are properly normalized at the peak:

fa(b)i(m)
∣
∣
P,D−waves

= fa(b)i
BL
i (m)

BL
i (Mpeak)

BL
i (m) =

[

k2
i (m)R̃2

1 + k2
i (m)R̃2

]L/2 (3.41)

where R̃2 = 25 GeV−2 [54]. This assumption seems to be correct since it leads to
the calculated branching ratios that are very close to the ones announced in the
paper by Daum et al.. In any case we avoid as much as possible to rely on the
experimental data on K1(1270) → Kρ and the D-wave of K1(1270) → K∗π and we
trust our theoretical prediction.

3.4.1 Fit of parameters γ and θK1

In order to extract our phenomenological parameters, the quark-pair-creation constant γ
and K1 mixing angle, we do a fit using the method of least squares. As an experimental
input we use the partial widths (namely, ΓpeakK1i

from Table 3.4) only of the following
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processes: K1(1270) → (K∗π)S, K1(1400) → (K∗π)S, K1(1400) → (Kρ)S, which are
assumed to be Gaussian distributed with mean ΓQPCMK1i

(γ, θK1
) and known variance σΓpeak

K1i
.

The D-waves are not taken into account in our fit. Moreover, the dominant channel
K1(1270) → Kρ due to the dangerous threshold and phase space effects is avoided since
the narrow width approximation can be incorrect for the decays near the threshold and
here the width effects can play a significant role.

Then, the likelihood function is constructed as a sum of squares

χ2(γ, θK1
) = −2 lnL(γ, θK1

) =
3∑

i=1

(ΓpeakK1i
− ΓQPCMK1i

(γ, θK1
))2

σ2

Γpeak
K1i

(3.42)

In order to find the unknown parameter θK1
the function χ2 is minimized, or equiva-

lently the likelihood function L(θK1
) is maximized. The minimization of the χ2 gives the

minimal value χ2
min = 0.61 and the estimators γ̂ = 4.0 and θ̂K1

= 59◦.
The covariance matrix for the estimators Vij = cov[ξ̂i, ξ̂j] can be found from

(V−1)ij =
1

2

∂2χ2

∂ξi∂ξj

∣
∣
∣
∣
ξ=ξ̂

(3.43)

Thus one obtains

cov[γ̂, θ̂K1
] =

(
σ2
γ CγθK1

CγθK1
σ2
θK1

)

=

(
0.29 0.99
0.99 107.0

)

(3.44)

where the diagonal elements give the variances σ2
γ̂ and σ2

θ̂K1

. Finally, one finds the fitted

values of the quark-pair-creation constant and K1 mixing angle:

γ ≃ 4.0 ± 0.5, θK1
≃ (59 ± 10)◦ (3.45)

Taking for granted that our theory is correct, one is now interested in the quality of
the agreement between data and various realizations of the theory, determined by the
set of parameters, namely {γ, θK1

}. For metrological purposes one should attempt to
estimate as best as possible the complete set of parameters {γ, θK1

}. In this case we use
the offset-corrected χ2 [71]:

∆χ2(γ, θK1
) = χ2(γ, θK1

) − χ2
min (3.46)

where χ2
min is the absolute minimum value of the χ2 function of Eq. (3.42) which is obtained

when letting our model parameters free to vary. The minimum value of ∆χ2 is zero by
construction. Here one has to notice, that this absolute minimum does not correspond
to a unique choice of the model parameters. This is due to the fact that the theoretical
predictions used in the analysis are affected by important theoretical systematical errors.
Since these systematics are restricted in the allowed regions there is always a multi-
dimensional degeneracy for any value of χ2. However, since in our analysis there are
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only two model parameters, our predictions for {γ, θK1
} are not affected by any other

theoretical predictions.
A necessary condition is that the confidence level (CL) constructed from ∆χ2(γ, θK1

)
provides correct coverage is that the CL interval7 for {γ, θK1

} covers the true parame-
ter value with a frequency 1-CL if the measurements were repeated many times. The
corresponding CL intervals for the confidence level of CL=68% are shown in Fig. 3.4.

3.4.2 Model predictions for partial widths

Now, we can make systematic predictions for various processes. First, it is very useful to
check our result for the quark-pair-creation constant γ prediction with the much better
studied b1 → (ωπ)S and b1 → (ωπ)D decays8 which depend only on γ. One can see from
Fig. 3.5 that our estimation for γ, determined from the K1-decays (3.45), is in a good
agreement with the one extracted from the b1 → ωπ decay. Moreover, the extracted D/S
ratio of the partial amplitudes is very well predicted and coincides with the measured
value including the sign: (AD/AS)QPCM ≃ 0.28 while the experiment gives (AD/AS)exp =
0.277±0.027 [37]. Note that the Belle collaboration omits the D-waves in the B → J/ψK1

analysis.
To summarize, we give in Table 3.5 our predictions for the S-wave partial widths of

the strong interaction decays of the K1-mesons, using the fitted values of γ and θK1
. One

can see that the agreement is satisfactory except for the K1(1270) → Kρ channel. This
is not unexpected in view of the difficulties of the experimental treatment as explained in
the previous section.

Decay channel i ΓQPCMK1i
, MeV/c2 ΓpeakK1i

, MeV/c2

K1(1270) → (K∗π)S 31 28±26
K1(1270) → (Kρ)S 61 122±28
K1(1400) → (K∗π)S 209 211±59
K1(1400) → (Kρ)S 1 20±25

Table 3.5: Theoretical predictions for the partial decay widths, calculated using the fitted
parameters γ = 4.0 and θK1

= 59◦ and compared to the experimental partial values of
widths at the peak (see Table 3.4).

As for theD-waves in theK1-decays, our impression is that they are poorly determined
experimentally. Our prediction (Γ(K1(1270) → (K∗π)D) ≃ 3 MeV/c2) lies below the
experimental numbers: the couplings for the D-waves are not given in the paper by Daum

7In statistics, a confidence level interval is a particular kind of interval estimate of a fitted parameter
and is used to indicate the reliability of an estimate. It is an observed interval (i.e. it is calculated from
the observations), in principle different from sample to sample, that frequently includes the parameter of
interest, if the experiment is repeated. How frequently the observed interval contains the parameter is
determined by the confidence level.

8One has to point out that the branching ratio of b1 → ωπ has not been measured precisely. However,
the ωπ is considered to be the dominant decay mode [37], so that we assume B(b1 → ωπ) ≃ 100%.
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Figure 3.4: χ2 distributions for the fitted parameters, K1 mixing angle θK1
and quark-

pair-creation constant γ (left), with the confidence level intervals that determine how
frequently the observed interval contains the parameters (right).
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Figure 3.5: QPCM constraints for the quark-pair-creation constant γ and the K1 mixing
angle θK1

obtained from the fitted partial decay widths at the peak, calculated using the
K-matrix couplings (Table 3.4). The cross indicates the optimal values of γ and θK1

extracted from the fit.

et al.. Tentatively they were re-fitted by the BABAR collaboration [54] from which we
deduce the partial width Γ(K1(1270) → (K∗π)D) = (34 ± 3) MeV/c2. Here one has
to notice that the errors of the re-fitted parameters are surprisingly small as the ones
obtained by Daum et al..

3.4.3 Prediction of signs of decay amplitudes and the “off-set”
phase issue

Let us recall that our goal is to calculate the J -function (2.15) which describes the three-
body K1 → Kππ decay. Let us stress that the ωn moments, used for the determination
of the photon polarization parameter λγ, include the expression Im[~n · ( ~J × ~J ∗)] which
depends crucially on the relative phases of the couplings (2.42) and form factors (2.45).
These quantities are directly related to the two-body decay amplitudes, calculated by
using the quark model. The phases of these amplitudes do not make sense by themselves
but only in the product of two amplitudes of the subsequent processes which describe the
final three-body decay K1 → Kππ. We define the relative phases for two K1 → Kππ
amplitudes of various partial waves via different intermediate isobar states (i.e. (K∗π)S,
(K∗π)D, (Kρ)S). Standardly, the reference partial wave is chosen to be the S-wave of
K∗π. For instance, the relative phase of the K1 → Kρ→ Kππ channel is defined as

δρ ≡ arg

[
AS(K1 → Kρ) × AP (ρ→ ππ)

AS(K1 → K∗π) × AP (K∗ → Kπ)

]

(3.47)

One has to note, that the total relative phase which is contained in the J -function contains
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of course complex the phase of the denominator of Breit-Wigner of the isobar. For the
conventions necessary to define δρ we refer to Appendix D.

δρ is independent of the conventional phase factors of the meson states (e.g. meson
wave functions). In the 3P0 model each decay amplitude is real with suitable conventions
of the wave functions and by factorization of spherical harmonics. Then in the quark
model δρ is real. This is due to specific properties of the transition operator.

Sign of the D/S ratio

The simplest prediction is the one concerning the D/S ratio in the b1 → ωπ and a1 → ρπ
decays. Indeed, this sign depends only on the well known standard conventions. It is then
striking that all the signs are correctly predicted by the model. In the case of b1 and a1

these signs are well measured and given in PDG. For the K1 → K∗π channel the signs are
not given by Daum et al. in [45]. However, we can read the relative phase for K1(1270)
from Fig. (13) in Ref. [45] which is positive (fb5/fb1 > 0), while for K1(1400) we have to
rely on the analysis of BABAR because it is not possible to fix it from the figure since the
D-wave is too weak overwhelmed compared to the D-wave of K1(1270) (fa5/fa1 < 0).

In the paper of Gronau et al. [11, 12] the D/S phase for K∗π is given as δD/S =
(260±20)◦. We believe that the authors were misled by incorrect interpretation of Fig. (13)
(bottom-right) in [45]: the plotted phase indeed peaks at 260◦ at MKππ ≈ 1.4 GeV/c2 .
But this is not the phase we are looking for since it contains the phase from the Breit-
Wigner of K1(1270) which is dominating over the K1(1400) contribution and gives an
additional phase of approximately 90◦. Hence, the phase we are interested in must be
read as δD/S ≈ (260−90)◦ ∼ 180◦. We must stress the following subtle point: the plotted
phase is the difference of the phases of the D-wave strongly dominated by K1(1270)
and the one of the S-wave which includes large contributions of both resonances. As a
consequence, paradoxically, there appears a bump in the D-wave phase diagram, peaked
at MKππ ∼ (1.3 − 1.4) GeV/c2 which is essentially determined by the tail of the Breit-
Wigner of K1(1270). We checked this conclusion by explicit calculation of the amplitudes
using the K-matrix couplings (see Fig. 3.6).

Relative sign of the Kρ/K∗π couplings.

We study the real phase (i.e. the relative sign) of the K1(1270) → K∗π and K1(1270) →
Kρ amplitudes, which plays important role in the λγ determination using the ω-method

(due to the strong dependence on the phase of the interference term Im[~n · ( ~J × ~J ∗)]).
Indeed, the odd moments of ω change their sign if one changes the relative sign between
the K+

1 → K+ρ0 → K+π−π+ and K+
1 → K0∗π+ → K+π−π+ amplitudes. One has to

notice that in this case this phase can be hardly extracted from the K-matrix analysis
by Daum et al. due to some unknown conventions (in particular, the order of particles
that is significant for the determination of the couplings signs). We then rely on the
recent analysis by the Belle collaboration of the B → J/ψ(ψ′)Kππ decay which gives
more explicit explanation of the conventions.
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Figure 3.6: The D-wave phase relative to the S-wave of K∗π, calculated using the K-
matrix couplings. One can see a bump at MKππ ∼ (1.3 − 1.4) GeV/c2.

Here we summarise what is new in the Belle B → J/ψ(ψ′)Kππ paper [43]. First we
will list up the general conclusions of this paper and then, discuss some details of the
Dalitz plot shown in this paper, which provides important information to our work.

General conclusions of the study of B → J/ψKππ by the Belle collaboration

This paper, in principle, focuses on the measurement of the branching ratios of B+ →
J/ψK+π+π− and B+ → ψ′K+π+π−. Since the Kππ final state comes from various
resonances, Kres, this analysis provides information of the Kres → Kππ strong decays.
Since the Kres = K1(1270) turned out to be a prominent component (for both J/ψ and
ψ′), some detailed study of K1(1270) → Kππ has been done:

• The Dalitz plot for the three-body decays is shown. We discuss more details on this
later.

• The intermediated two-body decay branching ratios have been re-determined (see
Table 3.6). The branching ratios for the dominant decay modes, K1(1270) → Kρ
and K1(1270) → K∗π, are found to be slightly different from the previous measure-
ments (PDG), although they are still in accordance within several standard devia-
tions. On the other hand, the K1(1270) → K∗

0(1430)π channel, which was supposed
to have a large branching fraction (B(K1(1270) → K∗

0(1430)π) = (28±4)%) accord-
ing to the previous measurements [45,37], was found to have a significantly smaller
contribution of the order of 2% (see Table 3.6).

• In addition, by floating the mass and width of theK1(1270) in an additional fit of the
B+ → J/ψK+π+π− data, a smaller mass of (1248.1±3.3(stat)±1.4(syst)) MeV/c2

and larger width (119.5 ± 5.2(stat) ± 6.7(syst)) MeV/c2 were measured for the
K1(1270). Of course, there is a correlation between the fact that the “scalar+π”
component becomes much smaller and the fact that the K∗π and Kρ contributions
become larger (see Table 3.6).
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Decay mode PDG (%) Fit 1 (%) Fit 2 (%)
Kρ 42 ± 6 57.3 ± 3.5 58.4 ± 4.3
K∗π 16 ± 5 26.0 ± 2.1 17.1 ± 2.3

K∗
0(1430)π 28 ± 4 1.90 ± 0.66 2.01 ± 0.64

Table 3.6: The fitted branching ratios of the K1-decays measured by the Belle collabora-
tion in the analysis of B → J/ψKππ decay [43].

Here we want to draw attention of the reader to the conceptual difficulties raised by
the definition of the K1(1270)-width. In the Fit 1 the K1 width is the one given by
PDG while in the Fit 2 the width was treated as a free parameter. Due to the threshold
effect one should not expect that the width measured by the Belle collaboration from
the Breit-Wigner denominator at the peak should coincide with the one defined by PDG,
although it should be much larger. One observes that the floated width is larger than the
PDG value but it is still much smaller than 200 MeV/c2 as we would expect from the
calculation using the K-matrix formalism (see Table 3.3).

One has to point out that theD-waves are not taken into account in the master formula
of Belle. On the other hand, we found from the theoretical study that the D-wave of K∗π
can have a small but non-negligible effect. In principle, there are two bumps due the
presence of the D-wave, but it is found that the one located in the intersection region of
the MKπ ∼MK∗ and Mππ ∼Mρ on the Dalitz plot is masked by the dominating peak of
ρ. Using a Monte-Carlo simulation, we observed a second small but non-negligible bump
at low Mππ (see Fig. 3.7 in the center).

Dalitz analysis

In [43], the Dalitz plots for K1(1270) → Kππ is shown in the three variable planes,
M2(K+π+π−), M2(K+π−) and M2(π+π−). On the Dalitz plot in the M2(Kπ)−M2(ππ)
plane, a strong interference effect between K1 → K∗π and K1(1270) → Kρ is observed
(see Fig. 3.7). In particular, it is pointed out that the weakening of the Kρ in the region
of M(Kπ) > MK∗(892) is originated from the interference of the Kρ and K∗π amplitudes.
Here we will attempt to study the real phase (in another word, the relative sign) of
the K1 → K∗π and K1(1270) → Kρ amplitudes using this Dalitz plot. Indeed, as we
will see later-on, this information of the phase has an important consequence on our λγ
determination.

Determining the relative sign of the Kρ/K∗π amplitudes

In this section, we demonstrate how the relative phase between the Kρ/K∗π amplitudes
can be determined from the Dalitz plot.

In [43], the full amplitude of K1 three-body decays is defined as

|M(sK1
, sK∗ , sρ)|2 = |aK∗AK∗(sK1

, sK∗) + aρAρ(sK1
, sρ)|2 (3.48)
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Figure 3.7: Dalitz plots of B+ → K+
1 (1270)γ → K+π−π+γ, measured by the Belle

collaboration [43] (left) and MC simulated for the “off-set” phase equal to 0 (center) and
π (right) of the Kρ channel relative to (K∗π)S. The “correct” phase δρ = 0 corresponds
to our quark model prediction.

where the coefficients aK∗, ρ represent the strong decay of K1 → Kππ through K∗, ρ
intermediate states. The amplitudes AK∗, ρ are defined as9

AV (sK1
, sV ) =

√
MK1

ΓK1

M2
K1

− s− iMK1
ΓK1

×
√
MV ΓV

M2
V − sV − iMV ΓV

×
√

1 +
~p2
i

sK1

cos2 θik (3.49)

where pi is the breakup momentum of Pi or V in the K1 reference frame and θik is the
angle between the momenta of Pi and Pk in the V reference frame, which can be expressed
in terms of sK1

, sij, sik.
Compared to the obtained Dalitz plot, we can determine the coefficients aK∗, ρ in-

cluding the relative phase between them. The obtained result by the Belle collaboration
yields [43]:

|aK∗| = 0.962 ± 0.058 ± 0.176, |aρ| = 1.813 ± 0.090 ± 0.243

δρ ≡ arg(aρ/aK∗) = −(43.8 ± 4.0 ± 7.3)◦ (3.50)

Formula (3.48) can be written in the following general form factorizing out the phase:

|M(sK1
, sK∗ , sρ)|2 = c0(sK1

, sK∗ , sρ)+c1(sK1
, sK∗ , sρ) cos δρ+c2(sK1

, sK∗ , sρ) sin δρ (3.51)

where ci(s, sKπ, sππ) are the known functions, expressed in terms of various combinations
of the real and imaginary parts of |aK∗|AK∗(sK1

, sK∗) and |aρ|Aρ(sK1
, sρ). So, in order to

establish the correspondence between our parametrization of |M|2 (| ~J |2 in our case) one

9One has to notice that the D-wave amplitude is not taken into account in the following parametriza-
tion and that the last factor in Eq. (3.49) corresponds to the S-wave.
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can compare the relative signs of the cos δρ and sin δρ coefficients, c1,2, on the Dalitz plot.
Direct numerical calculation shows that

sign
(
cmodel
1

)
= sign

(
cBelle
1

)
, sign

(
cmodel
2

)
= −sign

(
cBelle
2

)
(3.52)

The issue of the complex phase

In principle, the QPCM predicts real K1 → V P amplitudes, without any complex phases.
This should correspond to the K-matrix couplings. The complex rotation of the K-matrix
states to the physical states should introduce complex phases but we found by explicit
calculation (see Appendix C) that the imaginary part of the rotation angle is small:

ϕa′→aph ≃ 10◦ (3.53)

However, the Belle collaboration measured a sizebly larger imaginary relative phase
(i.e. Eq. (3.50)) of δρ ≃ −44◦. We recall also that Daum et al. measured a non-zero phase
of the order of 30◦. Similar value was found in the reanalysis of the ACCMOR data by
the BABAR collaboration: δρ = −31◦ [54].

There is no explanation of this complex phase in a definite theoretical model: neither in
the 3P0 quark model nor in the most general quasi-two-body K-matrix approach. Indeed,
the “off-set” phase which is introduced in the analysis by Daum et al. depends only
on the decay channel and is the same for the lower and upper resonances. The general
production amplitude for each channel in the reaction K−p → (K−π+π−)p is written
as [45,54]

Fi = eiδi
∑

j

(1 − iKρ)−1
ij Pj (3.54)

where the factor (1−iK)−1 represents the propagation and the decay of the K1-resonance.
The last factor Pj describes the resonance production which can be in principle complex
(indeed, one finds in [45] that there is a non-zero relative phase between the production
couplings of two K1-resonances). From Eq. (3.54) it is obvious the “off-set” phase δi can
not be ascribed to either the resonance decay or production amplitude.

This puzzling situation must not be ignored and has to be studied more carefully.
In the present, we use the model prediction for the J -function as it is with pure real
couplings. On the other hand, to adopt pragmatic attitude we explore the effect of
introducing this additional “off-set” phase δρ = −δBelle

ρ in the calculation of the J -function
and the estimation of the theoretical uncertainty of λγ.

3.4.4 The issue of the κπ channel

The PDG assigns a large branching ratio B(K1(1270) → K∗
0(1430)π) = (28 ± 4)%. It is

extracted as all the branching ratios, from the ACCMOR data and analysis. However,
this interpretation is dubious. The original ACCMOR measurement shows indeed a clear,
strongly coupled peak in the “scalar + π” channel around the massMKππ ∼ 1270 MeV/c2.
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However, it is not at all claimed that the scalar is K∗
0(1430); it is treated as a lower

and much broader scalar meson (M ≃ 1.25 GeV/c2, Γ ≃ 600 MeV/c2); or could be a
continuum (Kπ)S−wave according to [72].

The K∗
0(1430) meson is the scalar orbitally excited state of kaon which has the mass

MK∗

0 (1430) = (1425±50) MeV/c2 and width ΓK∗

0 (1430) = (270±80) MeV/c2 [37]. According
to quark models, the constituent quarks are in the 3P0 state. In order to estimate the
K∗

0(1430)π contribution we use QPCM to calculate the P -wave amplitude for the decays
K1(1270) → K∗

0(1430)π. One can see from Fig. 3.8 that AP (K1(1270) → K∗
0(1430)π)

is strongly suppressed compared to AS(K1(1270) → K∗π). Moreover, there is also a
suppression due to the phase space. Finally, after the integration over the phase space for√
sKπ within the allowed physical range [mK +mπ;MK1(1270) −mπ], we predict that

B(K1(1270) → K∗
0(1430)π)

B(K1(1270) → K∗(892)π)
< 0.01% (3.55)

in blatant contradiction with the PDG entry.
What is most striking is that indeed, the Belle collaboration finds B(K1(1270) →

K∗
0(1430)π) ≃ 2% (see Table 3.6); it is very small as we predict. They did not find

any other “lower scalar+π” component in the K1-decay: the B missing with respect to
ACCMOR seems to be filled by an enlargement of Kρ. Therefore, in our analysis, we do
not include the K1(1270) → K∗

0(1430)π channel. Neither do we include any other possible
scalar in the presented results. However, to take into account the contrary conclusions
of ACCMOR, we keep in mind the possibility that there is some significant portion of
the branching ratio carried by a very wide scalar meson, different from the K∗

0(1430),
such as the low lying state K∗

0(800) (also called κ) [73]. Note that such state is most
probably not a qq state and therefore the decay into κπ can not be estimated within our
theoretical model. Such contribution has not been tested explicitly in the analysis by the
Belle collaboration.

Let us mention two other relevant facts: on the one hand the non-strange counter
part of κ(800), σ, is found with sizable branching ratio in the decay of a1(1260) in the σπ
state. On the other hand it is surprising, as noticed by Daum et al., that there is no κπ
channel in the K1(1400) decay.
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Figure 3.8: |AS(K1(1270) → K∗π)|2 (red) and |AP (K1(1270) → K∗
0(1430)π)|2 (blue) for

sK1
= M2

K1(1270). The K1 mixing angle θK1
is taken to be 60◦.



Chapter 4

Sensitivity studies of the
polarization measurement with
B → K1(1270)γ in the DDLR method

In this chapter, we perform a Monte Carlo simulation in order to estimate the sensitivity
of the future experiments to the polarization parameter λγ using the DDLR method.

4.1 Statistical error on the polarization parameter

Our target is to experimentally justify or falsify the left-handed nature of the SM, e.g.
|λγ| ≃ 1. However, since the measured value is always accompanied by the experimental
errors, the test of the SM can be achieved only in terms of probability. In this section,
we will investigate at which extent the polarization parameter can be determined in the
future measurements by SuperB and LHCb1.

As described in Section 2.4.2, in the DDLR method, once experimental data is ob-
tained, we compute the ω-value for each event (inputting the kinematical variables of
the event into Eq. (2.59)), which immediately gives the best fitted value of λγ through
Eq. (2.64):

λobs
γ =

〈ω〉
〈ω2〉 (4.1)

Then, using this λobs
γ value, Eq. (2.65) readily gives the experimental error to the λγ:

σ−2
λobs

γ
= N〈

(
ω

1 + λobs
γ ω

)2

〉 (4.2)

In the following, we attempt to obtain the σλγ
value by assuming the SM, i.e. we

generate “fake” data by using λγ = 1 (N = 103 and N = 104 events as an example) and

1Throughout this section, we assume “ideal” situation, i.e. detector and background effects are not
taken into account. Thus, the experimental error contains only the statistical ones.
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follow the procedure described above (see also the flow chart in Fig. 4.1).
In order to generate the events as well as to compute the ω distribution, we use the

input hadronic parameters as given in Chapter 3, taking into account the form factor
momentum transfer dependence. These parameters include the experimentally measured
isobar widths, the 3P0 model parameters (the meson wave function radii, the quark-pair-
creation constant, damping factor) and the phenomenological K1 mixing angle.

Fix λγ = λth
γ

MC generation of N
events according to PDF

event “i”: {si
13, s

i
23, cosi}

Calculation of ωi =
ω(si

13, s
i
23, cosi) for each event

Calculation of the 〈ω〉
and 〈ω2〉 moments:

〈ωn〉 ≡ 1

N

∑∑∑N

i=1
ωn

i

Determination of λobs
γ

and σλγ
: λobs

γ = 〈ω〉/〈ω2〉,

σ−2

λobs
γ

= N〈
(

ω

1+λobs
γ ω

)2

〉

Figure 4.1: MC generation and λγ error determination procedure.

In Table 4.1, we present our result in the case of the SM, i.e. λγ = 1. One can see
from the table, that for 104 events the error on λγ is smaller than 0.1. We found that the
errors do not change much for different values of λγ. We found that the ω distributions
for the K+π+π− and K0π+π−, and K0π+π0 and K+π−π0 are the same. Then, it should
be pointed out an advantage of using the ω-variable: all the channels corresponding to
the same PDF can be merged altogether. That means that one can compute ω-variable
for each event and build a single histogram, which can increase the statistical significance.

In the above, we use the full decay distribution, not only on the information of the
angular part but also the information of the invariant mass of the hadronic system. In
the original DDLR paper [14], it was pointed out that using an average decay distribution
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in place of a full decay distribution for each set of invariant masses results in a decrease
of the sensitivity. In order to test this, we also produce the ω′-distribution including only
the cos θ-dependence, i.e. integrated over the Dalitz plot

ω′(cos θ) =
〈Im[~n · ( ~J × ~J ∗)]〉

〈| ~J |2〉
2 cos θ

1 + cos2 θ
(4.3)

where

〈| ~J |2〉 =

∫

| ~J |2ds13ds23

〈Im[~n · ( ~J × ~J ∗)]〉 =

∫

Im[~n · ( ~J × ~J ∗)]ds13ds23

(4.4)

and compute σλγ
. We found that the inclusion of the full Dalitz information can indeed

improve the sensitivity by typically a factor of two comparing to the angular fit. The use of
the ω′ is equivalent to the up-down asymmetry method of Gronau et al.. We confirmed this
fact by comparison of the corresponding statistical errors which turn out to be practically
the same. The comparison of the statistical errors of two methods, DDLR and the one
by Gronau et al., depending on the annual yield of signal events is presented in Fig. 4.2.

200 500 1000 2000 5000
0.0

0.2

0.4

0.6

0.8

1.0

Nevents

Σ
Λ
Γ
Hs

ta
t.L

Figure 4.2: Dependence of the statistical error σλ on the total number of signal events
of the decays B+ → (K+π−π+)K1(1270)γ and B0 → (K0π+π−)K1(1270)γ depending on
the λγ determination method: the error of λγ which is determined by using the DDLR
method (red) and the error determined from the up-down asymmetry (blue). Red
dashed curve corresponds to the error of λγ determined by the DDLR method for
B+ → (K0π+π0)K1(1270)γ and B0 → (K+π−π0)K1(1270)γ decays.

Finally, let us give a rough estimate for the event numbers expected by the future
experiments, namely the SuperB factories and LHCb. Taking the exclusive branching
fraction B(B+ → K+

1 (1270)γ) = 4.3 × 10−5 and assuming that the decays K1 → Kππ
are by K∗π (16%) and Kρ (42%) channels, we obtain the observable branching fraction
of B(B+ → (K+π−π+)K1(1270)γ) = 4.3× 10−5 × (0.16 ∗ 4/9 + 0.42 ∗ 1/6) ≃ 0.6× 10−5 and
B(B+ → (K0π+π0)K1(1270)γ) = 4.3×10−5 × (2∗0.16∗2/9+0.42∗1/3)×1/3 ≃ 0.3×10−5
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σλγ
(statistical error) Nevents = 103 Nevents = 104

B+ → (K+π−π+)K1(1270)γ ± 0.18 ± 0.06
B+ → (K0π+π0)K1(1270)γ ± 0.12 ± 0.04
B0 → (K0π+π−)K1(1270)γ ± 0.18 ± 0.06
B0 → (K+π−π0)K1(1270)γ ± 0.12 ± 0.04

Table 4.1: Sensitivity study of the polarization measurement with B → K1(1270)γ in
the DDLR method. Our estimates of the statistical errors to λγ in the case of SM (i.e.
λγ = +1) is shown in this table. The event sample, 103 and 104, roughly corresponds
to the annual expected events of SuperB and LHCb, respectively. The systematic error
due to the uncertainties from these hadronic parameters is not included and has to be
carefully studied.

(here the last factor 1/3 comes from the fact that K0 is observed as π+π− from the
KS-decay). In order to get a more realistic estimation of the required number of signal
events at the future experiments, we take the total efficiency of the reconstruction and
selection to be of the order of 0.1% as in the case of B → K∗γ and Bs → φγ at the LHCb
experiment [74] and of the order of 1% at the B-factories2 [13]. Then, we obtain the yield
of the nominal data taking to be of the order of

NLHCb(B+ → (K+π−π+)K1(1270)γ) ≈ 5 × 103

NLHCb(B+ → (K0π+π0)K1(1270)γ) ≈ 2.5 × 103
(4.5)

of signal events for an accumulated luminosity of 2 fb−1 at LHCb. The estimated annual
yield at SuperB factories with 2 ab−1 of integrated luminosity is of the order of

NSuperB(B+ → (K+π−π+)K1(1270)γ) ≈ 1 × 103

NSuperB(B+ → (K0π+π0)K1(1270)γ) ≈ 0.5 × 103
(4.6)

events, respectively. Thus, the event sample, 103 and 104, studied in Table 4.1, roughly
corresponds to the annual expected events of SuperB and LHCb, respectively. It should
be noted that the decay modes including a neutral particle are difficult to study at LHCb,
i.e. LHCb may well study the first decay channel in Table 4.1 whereas SuperB can study
all of them reasonably well.

We want to underline that the above considerations assume a perfect knowledge of
the decay observables. In practise, in order to be realistic, the experimental effects,
such as measurement errors, backgrounds, reduced acceptance, etc., must be taken into

2This estimate is for the decay modes which contain only charged pion and K in the final state. For
the decay modes which contain the neutral mesons, we expect lower sensitivity, in general. The realistic
estimate requires more detailed simulations considering the experimental performance.
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account. In practice, this can be done by constructing the reduced variable ω from decay
distributions convoluted with functions describing the detector effects [14]

W ′(s13, s23, cos θ) =
D(f + λγg)

∫
D(f + λγg)ds13ds23d cos θ

(4.7)

where D(s13, s23, cos θ) describes the detector acceptance and efficiency. Thus, the photon
polarization parameter can be extracted by comparing the experimental ω-distribution to
the corrected theoretical distributions computed with the help of MC methods.

4.2 Theoretical uncertainties of the hadronic model

and error on the polarization parameter

Up to now, we have not considered the systematic errors coming from the hadronic pa-
rameters. We must reiterate that our hadronic model applied in the above analysis is
approximate; it depends on basic assumptions like the non-relativistic approximations in-
herent to the quark models. It depends also on parameters, some of them being internal
to the full quark model, like the meson radii, and one being purely phenomenological, the
mixing angle θK1

(we must note that there exists a correlation between the mixing angle,
extracted from the data, and the chosen set of meson radii). It depends also on the set of
experimental data which we claim to describe by such models as discussed in Chapter 3.

Let us explain how the errors in the hadronic model generate systematic errors or in
another word, theoretical uncertainties, on λγ. Starting from the experimental distribu-
tion dΓ

ds13ds23d cos θ
we obtain the distribution of ω by calculating ω according to Eq. (2.59).

In this formula, the function J which determines ω for each event is fixed by the hadronic
model (let us call it as ωmodel). Thus, the λγ can be determined by knowing the hadronic
model as well as the hadronic input parameter describing the K1 strong decay:

λobs
γ =

〈ω〉model

〈ω2〉model
(4.8)

Therefore, if we were using a “wrong” hadronic model, the extracted polarization param-
eter λobs

γ would be different from the “true” value λth
γ . Having the hadronic model which

we have applied to explain the K1 strong decays relatively well as shown in Chapter 3,
we would believe the model itself may not be too bad. On the other hand, the input
parameters contain some uncertainties. In the following, we will estimate the systematic
error on λγ caused by the uncertainties in the hadronic input parameters, namely the K1

mixing angle θK1
and the “off-set” phase δρ.

Similar to the estimate of the statistical error in the previous section, the errors gen-
erally depend on the assumed λth

γ value. In this section, we evaluate the theoretical error
in the case of

λth
γ = 0.5 (4.9)
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We chose this value since, as we will see in Chapter 5, our decay channel is most sensitive
to the polarization parameter around this value.

4.2.1 Theoretical uncertainty due to the K1 mixing angle

For the estimation of the uncertainty, related to our determination of the K1 mixing angle
(see previous chapter), we follow the procedure:

• First, we generate the MC sample of the “fake data” according to PDF (2.55)
assuming λth

γ = 0.5 and fixing the mixing angle at its fitted central value θth
K1

= 60◦.
Since both ACCMOR and Belle collaborations observed a non-zero “off-set” phase
of the order of 30◦, we study the δρ-dependence of λγ by testing three MC data sets:
generated with δth

ρ = 0 (i.e. pure quark model prediction) and δth
ρ = ±30◦.

• Then, we randomly generate θK1
according to the Gaussian distribution with the

mean value of 60◦ and the standard deviation of 10◦.

– For each generated value of θK1
we recalculate for each event the value of

ω(si13, s
i
23, cos θi) from Eq. (2.59) (i = 1, . . . , Nevents) using the “fake data”

generated on the fist step.

– Having calculated the ω’s for each event at particular value of the randomly
generated θK1

, we compute the ω-moments (i.e. the average values) and eval-
uate λγ:

λobs
γ (θK1

) =
〈ω〉
〈ω2〉 (4.10)

• Finally, we fill the histogram of λobs
γ (Fig. 4.4). This normalized histogram provides

us the PDF of the extracted polarization parameter as a function of θK1
.

One can see from Fig. 4.3 that within one standard deviation region of θK1
the dis-

crepancy between three analyzed MC data, which were generated using δth
ρ = 0,±30◦, is

rather small. The total deviation of λobsγ does not exceed 0.2; the calculated values of λobs
γ

lie within the interval [0.3;0.6] (note, the true value is supposed to be λth
γ = 0.5).

Allowing the K1-mixing angle to be varied according to Gaussian distribution with
the central value of 60◦ and standard deviation of 10◦, one finds that the systematic effect
on the λγ measurement hardly reaches beyond 0.5 ± 0.2 region. We find from Fig. 4.4
that λγ is restricted to the following 68% CL intervals:

λobsγ ∈







[0.42; 0.60] (δth
ρ = 0)

[0.46; 0.54] (δth
ρ = −30◦)

[0.40; 0.64] (δth
ρ = 30◦)

(4.11)
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Figure 4.3: The mixing angle θK1
dependence of λγ obtained from the “fake data” which

was generated using the fixed values λth
γ = 0.5 and θth

K1
= 60◦. Black curve corresponds

to the analysis of the MC data generated by using the pure 3P0 quark model prediction
with the “off-set” phase δth

ρ = 0, while the blue and red curves correspond to the data
generated with δth

ρ = −30◦ and δth
ρ = +30◦ respectively.

4.2.2 Theoretical uncertainty due to the “off-set” phase δρ

Estimating the theoretical uncertainties, we take into account that the ACCMOR, BABAR
and Belle collaborations observed a non-zero relative phase δρ of the Kρ and K∗π channels
(see the discussion of Section 3.4.3 of Chapter 3) which is of the order of 30◦. Although
our 3P0 quark-pair-creation model predicts no complex phase (but it fixes the relative sign
of the amplitudes), we test several “hadronic models” by adding by hands an additional
complex “off-set” phase δρ = ±30◦ to our model prediction. The experimental values of
the error to δρ, measured by Belle collaboration [43] are of the order of 7◦ and surprisingly
small error of 1◦ from the reanalysis of the ACCMOR data by BABAR collaboration [54].
To be conservative, we put the error of 10◦ in our study.

Similarly to the estimation of the uncertainty due to the K1 mixing angle, we repeat
the procedure to study the “off-set” phase δρ effects:

• We generate the MC sample of the “fake data” according to PDF (2.55) assuming
λth
γ = 0.5 and fixing the mixing angle at its fitted central value θth

K1
= 60◦. As in
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Figure 4.4: Normalized probability density function distribution of λobs
γ . The “true” value

of the polarization parameter, used for the MC simulation, is set to be λth
γ = 0.5. The

K1 mixing angle is varied randomly according to Gaussian distribution with mean value
θK1

= 60◦ and standard deviation σθK1
= 10◦. The “off-set” phase δρ is set to zero

(top-left), −30◦ (top-right) and +30◦ (bottom).

the previous case, we study the δρ dependence of λγ by testing three MC data sets:
generated with δth

ρ = 0 and δth
ρ = ±30◦.

• Then, we randomly generate δρ according to the Gaussian distribution with the
mean values δth

ρ = 0,±30◦ respectively and the standard deviation of 10◦.

– For each generated value of δρ we recalculate for each event the value of
ω(si13, s

i
23, cos θi) from Eq. (2.59) (i = 1, . . . , Nevents) using the “fake data”

generated on the fist step.

– Having calculated the ω’s for each event at particular value of the randomly
generated δρ, we compute the ω-moments (i.e. the average values) and evaluate
λγ:

λobs
γ (δρ) =

〈ω〉
〈ω2〉 (4.12)

• Finally, we fill the histogram of λobs
γ (Fig. 4.6). This normalized histogram provides
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us the PDF of the extracted polarization parameter as a function of δρ.
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Figure 4.5: The “off-set” phase δρ dependence of λγ obtained from the “fake data” which
was generated using the fixed values λth

γ = 0.5 and θth
K1

= 60◦. Black curve corresponds to
the analysis of the MC data generated by using the pure 3P0 quark model prediction with
the “off-set” phase δth

ρ = 0, while the blue and red curves correspond to the data generated
with δth

ρ = −30◦ and δth
ρ = +30◦ respectively. The plots on the right and bottom represent

the zoomed parts of gray, blue and red areas which correspond to δth
ρ ± 10◦ region.

Allowing δρ to be varied according to Gaussian distribution with the central values
δth
ρ = 0,±30◦ and standard deviation of 10◦, one finds that the systematic effect on the
λγ measurement hardly reaches beyond 5%. We find from Fig. 4.6 that λγ is restricted
to the following 68% CL intervals:

λobs
γ ∈







[0.46; 0.50] (δth
ρ = 0)

[0.48; 0.52] (δth
ρ = −30◦)

[0.48; 0.52] (δth
ρ = 30◦)

(4.13)

One has to notice that, allowing θK1
and δρ vary within ±10◦ intervals around their

central values θth
K1

and δth
ρ , there is a large gap between the largest possible value of the

computed λobs
γ (∼ 0.6) and the SM prediction λSM

γ ≃ 1 (see Fig. 4.3 and 4.5). This fact is
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Figure 4.6: Normalized probability density function distribution of λobs
γ . The “true” value

of polarization parameter, used for the MC simulation, is set to be λth
γ = 0.5. The K1

mixing angle is fixed to be θK1
= 60◦. The “off-set” phase δρ is varied randomly according

to Gaussian distribution with standard deviation σδρ = 10◦ and mean value equal to zero
(top-left), −30◦ (top-right) and +30◦ (bottom).

rather encouraging since our study is concentrated on the search of NP beyond the SM
with theoretical value of λγ sizebly different from |λγ|SM ≃ 1. That implies that λγ will
never be close to 1 which will allow us to exclude the SM prediction (see Chapter 5 for
more details).

4.3 Discussion on the importance of the D-waves and

the cut-off

In the end of this chapter we discuss the role of the cut-off β′ in the λγ determination.
Since there is no safe determination of this parameter it is important to emphasize its
effect. For demonstration we generate two MC samples ofB+ → K+

1 (1270)γ → K+π−π+γ
decays setting λth

γ = 0.5 and β′ = 3 GeV−2.

• First, we test the case when the D-wave of the K∗π channel is neglected in the
MC generation (in the following we call it MC(I)-sample). Then we recalculate ω
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for each event setting β′ = 0 and compute the ω-moments. This gives us the value
λ

obs(I)
γ which turns out to be

λobs(I)
γ ≈ λth

γ = 0.50 ± 0.02(stat) (4.14)

• After that, we test the case when the D-wave of the K∗π channel is taken into
account in the MC generation (in the following we call it MC(II)-sample). Then we
recalculate ω for each event setting β′ = 0 and compute the ω-moments. This gives
us the value λ

obs(I)
γ which turns out to be

λobs(II)
γ ≃ 0.35 ± 0.02(stat) (4.15)

i.e. δλ
(II)
γ /λth

γ ≃ 0.3.

Thus, as already discussed in the previous chapter, we conclude that having only the
S-waves the role of the cut-off in our 3P0 model is not significant. On the other hand,
the choice of the cut-off becomes significant for the λγ estimation in the presence of the
D-waves, which contribution to the interference terms becomes large for large momentum
transfer in the quasi-two-body decay K1 → K∗π.
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Chapter 5

Future prospects of the photon
polarization measurement

In this chapter, we discuss the sensitivity of the future experiments, namely the SuperB
factories and LHCb to λγ, using B → K1(1270)γ → (Kππ)γ. We also discuss the advan-
tages and disadvantages of our method compared to the other methods of the polarization
measurement using the other processes, such as B → K∗e+e−, Bd → K∗γ and Bs → φγ.

5.1 Comparison to the other methods

5.1.1 Up-down asymmetry of GGPR

One of the direct methods of the photon polarization determination methods, proposed
by Gronau et al. [11, 12], is to study the angular distribution in the B → Kππγ decay
and extract the polarization parameter λγ from the angular correlations among the final
hadronic decay products Kππ. An observable called up-down asymmetry is defined by
Eq. (2.46) and represents the asymmetry between the measured number of signal events
with the photons emitted above and below the Kππ decay plane in the K1 reference
frame. Having the theoretical prediction of J , one can determine λγ.

Our conclusion, identical to the one for the angular fit, is that the statistical error on
λγ is about twice the one in our method (see Fig. 4.2).

5.1.2 The angular analysis of B → K∗ℓ+ℓ−

From the analysis of the angular distributions of the four-body final state in the B0 →
K∗0(→ K−π+)ℓ+ℓ− decay in the low ℓ+ℓ− invariant mass region one can study various
observables that involve different combinations of K∗ spin amplitudes [75].

Working in the transversity basis

M⊥ =
MR −ML√

2
M‖ =

MR + ML√
2

(5.1)
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ℓ+
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K∗0

φ

θK∗

θℓ

Figure 5.1: Definition of kinematical variables in the B → K∗(→ Kπ)ℓ+ℓ− decay.

one of the most promising observables, that has a small impact from the theoretical
uncertainties, are two transverse asymmetries defined as [75,76]

A
(2)
T (q2) ≡ |M⊥|2 − |M‖|2

|M⊥|2 + |M‖|2
= − 2Re[MRM∗

L]

|MR|2 + |ML|2
(5.2a)

A
(im)
T (q2) ≡

2Im[M⊥M∗
‖]

|M⊥|2 + |M‖|2
=

2Im[MRM∗
L]

|MR|2 + |ML|2
(5.2b)

which can be experimentally extracted from the differential decay distribution as a func-
tion of the dilepton invariant mass q2 and the angle φ between the dilepton-plane (ℓ+ℓ−)
and the K∗-plane (Kπ)1

dΓ

dq2dφ
=

1

2π

dΓ

dq2

[

1 +
1

2
FT (q2)

(

A
(2)
T (q2) cos 2φ+ A

(im)
T (q2) sin 2φ

)]

(5.3)

where FT (q2) is a fraction of the decay product with transversely polarized K∗

FT (q2) = β2
ℓ

|M⊥|2 + |M‖|2
dΓ/dq2

, with βℓ =

√

1 − 4m2
ℓ

q2
(5.4)

Note that we assume that in the low ℓ+ℓ− invariant mass region the O7γ is dominating
over the semileptonic O9 and O10 operators defined as

O9 =
e2

16π2
(sαLγ

µbαL)(ℓγµℓ) (5.5a)

O10 =
e2

16π2
(sαLγ

µbαL)(ℓγµγ5ℓ) (5.5b)

1The full angular quasi-three-body decay distribution can be found in the original paper by Kruger
and Matias [75].
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Figure 5.2: Typical diagrams in the full theory, from which the operators O9,10 (5.5)
originate.

As a result, the K∗ helicity amplitudes ML,R can be identified with the decay amplitudes

of b→ sγL,R and are related to our polarization parameter as λγ = |CR|2−|CL|2
|CR|2+|CL|2 . Therefore,

the transverse asymmetry can be written as

A
(2)
T (0) =

2Re[Ceff
7γ C ′ eff∗

7γ ]

|Ceff
7γ |2 + |C ′ eff

7γ |2
(5.6a)

A
(im)
T (0) =

2Im[Ceff
7γ C ′ eff∗

7γ ]

|Ceff
7γ |2 + |C ′ eff

7γ |2
(5.6b)

Note that approximation of Eq. (5.6) is strictly valid only at q2 = 0 and away from this

point the expression for A
(2,im)
T becomes much more complicated due to the non-negligible

contributions from the terms proportional to C
(′) eff
9,10 . In the SM, these asymmetries vanish

due to the ms/mb chiral suppression:

A
(2)
T (0)SM ≃ 2

C
′ eff (SM)
7γ

C
eff (SM)
7γ

≪ 1

A
(im)
T (0)SM = 0

(5.7)

The new analysis of the B → K∗e+e− decay mode by the LHCb collaboration [77]
shows that one can expect an annual signal yield of 200 to 250 events for 2 fb−1 in this
q2-region q2 < 1 GeV. With this number, it is found that the LHCb can reach a precision
of

σ(A
(2)
T )LHCb ∼ 0.2 (5.8)

corresponding to the statistical error on |C ′ eff
7γ /Ceff

7γ | to be σ(|C ′ eff
7γ /Ceff

7γ |) ∼ 0.1 [77].

By comparison we recall the expected number of events for the reactionB → K1(1270)γ,
namely 104 signal events at 2 fb−1. A priori it seems much more than the expected number
of B → K∗e+e−.
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However, it should be noticed that method of the transverse asymmetry in the semilep-
tonic decay allows the direct measurement of the ratio

x ≡
∣
∣
∣
∣
∣

C ′ eff
7γ

Ceff
7γ

∣
∣
∣
∣
∣

(5.9)

while our polarization parameter λγ

λγ ≡
|CR|2 − |CL|2
|CR|2 + |CL|2

=

{ |x|2−1
|x|2+1

, for B − decays
1−|x|2
|x|2+1

, for B − decays
(5.10)

is sensitive only to the amplitude ratio square, x2. Therefore, the errors of these two
methods are to be compared using the following equation:

σx =
(1 + x2)2

4x
σλγ

(5.11)

which shows that the sensitivity depends on the value of x. We should immediately
notice that for verifying the SM value, x ≃ 0, the method accessible to x is much more
advantageous than the one to x2: our λγ is in fact insensitive to the SM point (requiring
an infinitesimal error). We plot Eq. (5.11) in Fig. 5.3. Let us look at the horizontal line
of σx = 0.1, expected error on x with the B → K∗e+e− measurement. One can see that
our method, which has an estimated statistical error of the λγ determination σλγ

. 0.1
(see Table 4.1), becomes more advantageous for the measured value of x above x ∼ 0.3
(i.e. |λγ| . 0.8). Moreover, the same sensitivity to x can be achieved even having a larger
error σλγ

& 0.1.
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Figure 5.3: Comparison of the sensitivity of the two methods: the one directly determining
x ≡ |C ′ eff

7γ /Ceff
7γ | and the other one determining x2 such as our λγ (see Eq. (5.11)). One

can see that when we assume the same errors for the both methods, a better significance
can be obtained with the later method only for x & 0.3. Gray region is excluded by the
measurement of B(B → Xsγ).
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5.1.3 Methods invoking CP -asymmetries

An indirect method to measure the photon polarization is to study the time-dependent
CP -asymmetry in the neutral Bq (q = d, s) mesons. For the generic radiative decay
of the neutral Bq-meson into any hadronic self-conjugate state fCP , Bq(t) → fCPγ,
neglecting direct CP -violation and the small width difference between two B-mesons, the
CP -asymmetry is given by [78] 2

ACP (t) ≡ Γ(B(t) → fCPγ) − Γ(B(t) → fCPγ)

Γ(B(t) → fCPγ) + Γ(B(t) → fCPγ)

= −ξ sin(2ψ) sin(φM − φL − φR) sin(∆mt) = SfCP sin(∆mt)

(5.12)

where ξ(= ±1) is the CP -eigenvalue of fCP ; sin(2ψ) which is defined as

sin(2ψ) ≡ 2|MLMR|
|ML|2 + |MR|2

, (5.13)

parametrizes the relative amount of left- and right-polarized photons; φM is one in the
Bq −Bq mixing; φL,R are the relative CP -odd weak phases in the b→ sγ process, i.e.

φL,R = sin−1

(
ImML,R

|ML,R|

)

(5.14)

These phases are φL,R = 0, φd = 2β, φs ≃ 0 in the SM.
Note that here ML,R denote the amplitudes of the left/right-handed photon emission

in B → K
∗
γL,R respectively. Due the smallness of the right-handed amplitude, the SM

predicts

ASM
CP (t) ≃ 0 (5.15)

We should emphasise that ACP (t) measures the combination of x = |MR/ML| and
the CP violating phases φM,L,R but not separately. Thus, the value of x can be obtained
from this measurement, only by having the value of the CP violating phases in the b→ sγ
as well as the Bq-mixing.

The current world average for the asymmetry in the Bd → KSπ
0γ process is [9]

Sexp
KSπ0γ = −0.15 ± 0.20 (5.16)

which is expected to be improved by the SuperB factory by reducing the error down to
2% [80]. The LHCb experiment is going to measure the Bs → φγ process. Based on the
MC simulation for 2 fb−1, it is claimed in [74] that LHCb will be able to measure x with
the accuracy of σx ≃ 0.1. Therefore, similar to the case of B → K∗e+e−, our method using

2In fact, the non-negligible width difference ∆Γs in Bs-mesons leads to another measurable observable
H which can be also sensitive to the right-handed currents (e.g. see Ref. [79]). This makes the formula
(5.12) more complicated in the case of Bs → φγ. However, for simplicity, for the present moment we
neglect this term proportional to sinh

(
∆Γs

2 t
)

but keep in mind its significance.
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λγ can be more sensitive to x & 0.3 (see Fig. 5.3). Again, it should be emphasised that
although an observation ACP (t) 6= 0 in this method immediately indicates the existence
of new physics, a quantitative determination of x is not possible unless we fix the new
physics model, namely the CP violating phases in b→ sγ as well as Bq-mixing.

5.2 New physics constraints combining various meth-

ods of the polarization determination

In this section we present an example of potential constraints for right-handed current
contribution to the photon polarization by combining several possible polarization mea-
surement methods, descried in the previous section.

In Fig. 5.4, we show constraints on CL and CR, which are currently available or will
be available in the future. The x- and y-axes are the real and imaginary parts of

x =
C ′ eff

7γ

Ceff
7γ

=
C

′ eff (SM)
7γ + C

′ eff (NP)
7γ

C
eff (SM)
7γ + C

eff (NP)
7γ

≈ C
′ eff (NP)
7γ

C
eff (SM)
7γ + C

eff (NP)
7γ

(5.17)

Note that the SM being left-handed photon contribution, the C
eff (SM)
7γ and C

eff (NP)
7γ

contributions are coherently added in the denominator. It should be noted therefore,
if the new physics contribution to the left-handed photons, i.e. C

eff (NP)
7γ , has the sign

opposite to the sign of the C
eff (SM)
7γ , one could have a relative enhancement of the right-

handed amplitude.
Here we put the constraints on the normalized real and imaginary parts of C ′ eff

7γ /Ceff
7γ

assuming that the new physics affects only the right-handed photon emission amplitude
(i.e. C

eff (NP)
7γ = 0, C

eff (SM)
7γ = −0.304).

First, we use the constraint coming from the measured branching ratio of the inclusive
decay [9]

B(B → Xsγ)exp = (3.55 ± 0.24) × 10−4 (5.18)

The current bound is represented as white circle in Fig. 5.4. We can see from this figure
that there is still a large allowed range for new physics.

The constraint from the time-dependent CP -asymmetry in B0 → KSπ
0γ is shown as

black lines labeled with values of SKSπ0γ (top-left). We show the bound including ±3σ
error on the current experimental value [9]

Sexp
KSπ0γ = −0.15 ± 0.2 (5.19)

Note, that the diagonal constraint results from the factor sin(2β − φR) = (sin 2βRe[x] −
cos 2βIm[x])/|x| in Eq. (5.12).

Similarly, the labeled red circles (top-right) denote the constraints from potential
measurement of the polarization parameter λγ in the B → K1γ decay. The labeled
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blue and green curves represent the possible constraints from the transverse asymme-
tries A

(2)
T (bottom-left) and A

(im)
T (bottom-right) respectively at low dilepton mass in the

B → K
∗
ℓ+ℓ− decay. The interval of the lines represents the uncertainty for λγ and the

transverse asymmetries which can be in principle achieved by LHCb:

σ(λγ) ≃ 0.2

σ(A
(2)
T )LHCb ≃ σ(A

(im)
T )LHCb ≃ 0.2

(5.20)

The Fig. 5.4 shows that combining the measurements of SKSπ0γ, λλ, A
(2)
T ,A

(im)
T will pin

down the value of x very precisely in the future.

On Fig. 5.5 (left) we present the confidence level regions for the ratio C ′ eff
7γ /Ceff

7γ in

the SM for the case when all the polarization quantities {SKSπ0γ, λγ, A
(2)
T (0), A

(im)
T (0)}

are measured in future collider experiments. We assume Ceff
7γ to be purely SM-like (i.e.

C
eff (NP)
7γ = 0, C

eff (SM)
7γ = −0.304). Thus the CL represents the exclusion potential of

SM points. The figure can simultaneously give an indication that the new physics models
whose prediction for C ′ eff

7γ /Ceff
7γ stays within the CL circles can not be distinguished from

the SM. Let us see the SUSY example. As briefly discussed in Section 1.4.2 the SUSY
contribution to C ′ eff

7γ /Ceff
7γ in the mass insertion approximation can be given as Eq. (5.21).

Then, inputing an example mass of gluino and squark as mg̃ ≃ mq̃ = 500 GeV, using
Eq. (1.56) we find [81]

C
′ eff (SUSY)
7γ

C
eff (SM)
7γ

= (134 + 2.7i)(δdRL)23 + (0.28 + 00.0057i)(δdRR)23

+ (80 + 1.6i)(δdRL)33(δ
d
RR)23

(5.21)

Recall, the large value in the coefficient of the first term in the numerator comes from the
chiral-enhancement as discussed in subsection 1.4.2. We need to fix the SUSY breaking
model in order to find the value of the mass insertions. Let us give a few examples (see
Ref. [81] and references therein).

• SUSY SO(10)

(δdRR)23 ≃ 0.5 + 0.5i

(δdLL,LR,RL)23 ≃ 0
(5.22)

• mSUGRA

(δdLL)23 ≃ 0.009 + 0.001i

(δdRR,LR,RL)23 ≃ 0
(5.23)
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Figure 5.4: Constraints on the normalized real and imaginary parts of C ′ eff
7γ /Ceff

7γ assum-

ing Ceff
7γ to be purely SM-like (i.e. C

eff (NP)
7γ = 0, C

eff (SM)
7γ = −0.304). The white circle

represents the constraint coming from the measured branching ratio B(B → Xsγ). The
constraint from the time-dependent CP asymmetry of B0 → KSπ

0γ is shown as black
lines labeled with values of SKSπ0γ (top-left). Note that the current experimental bound
is Sexp

KSπ0γ = −0.15 ± 0.2 (we show our result in a range including ±3σ error). Similarly,
the labeled red circles (top right) denote the constraints from potential measurement of
the polarization parameter λγ in the B → K1γ decay. The labeled blue and green curves

represent the possible constraints from the transverse asymmetries A
(2)
T (bottom-left) and

A
(im)
T (bottom-right) respectively at low dilepton mass in the B → K

∗
ℓ+ℓ− decay.
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• Hermitian Yukawa

(δdRL)23 ≃ (δdLR)23 ≃ 0.002 + 0.005i

(δdLL,RR)23 ≃ 0
(5.24)

We plot the resulting x values from these models in Fig. 5.5. One can see that the
Minimal Supergravity (mSUGRA) model is perfectly consistent with the SM prediction
which is supposed to be centered at zero. Although the SUSY SO(10) model prediction
is beyond the SM point, it is located within our predicted SM-like 99%CL bound3. The
model with Hermitian Yukawa couplings is relatively far beyond of our predicted SM-like
CL bounds. However, one can observe that all three considered MSSM models are still
consistent with the current experimental bounds from B(B → Xsγ) and SKSπ0γ which
will be improved by LHCb and SuperB experiments.

3One has to note that this is an example and that the other set of SUSY parameters can make the
point on the plot to be beyond the SM allowed region. This aspect requires a more detailed study and it
has not been done in this thesis.
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Figure 5.5: Dark and light blue regions represent the CL (68% and 99% respectively)
regions for the ratio C ′ eff

7γ /Ceff
7γ in the SM assuming Ceff

7γ to be purely SM-like (i.e.

C
eff (NP)
7γ = 0, C

eff (SM)
7γ = −0.304). The region bounds are obtained from the χ2 fit of the

constrains of the measured time-dependent CP -asymmetry in B0 → KSπ
0γ (Sexp

KSπ0γ =

−0.15±0.2), the transverse asymmetries in B → K
∗
ℓ+ℓ− (in our study we put the central

values of A
(2)
T and A

(im)
T to be zero as predicted by the SM, while the errors are assumed

to be σ(A
(2)
T ) = σ(A

(im)
T ) = 0.2) and from the λγ potential measurement in B → K1γ

(we assume λSM
γ = −1.0 ± 0.2(syst.)). Gray region is excluded by the B(B → Xsγ)

measurement. Yellow region represents the ±3σ region allowed by the current constraint
from the time-dependent CP -asymmetry in B → KSπ

0γ.



Chapter 6

Conclusions

6.1 The general method of Gronau et al.: a critical

view

• Although we are quite aware of the very important work accumulated in the study of
competing methods since its proposal in 2002, we have estimated that the method,
proposed by Gronau et al. for measuring the photon polarisation in FCNC through
the B → Kresγ → Kππγ processes, has several interests and advantages and de-
serves further investigation and update. A good news has been the observation
of the unexpected large rate for the transition B → K1(1270)γ in 2005, by Belle
collaboration. Additional information has been provided in the study of B → Kργ
time-dependent CP -asymmetry by the same collaboration. Moreover, in view of the
importance of the issue of the structure of FCNC, we feel that it is worth exploring
and exploiting several complementary approaches. Having worked and discussed
a good deal, we conclude that the application of the method is appreciably more
complex than expected first by Gronau et al..

Nevertheless, it appears still worth to emphasize first its advantages. The advantage
of the method of Gronau et al. for determining the photon polarization can be
summarized as follows. The method is very simple in principle. It relies on the study
of the process B → Kresγ → Kππγ and allows to extract the photon polarisation
by fitting one normalized angular distribution a (1 + cos2 θ) +Pγ b cos θ where Pγ is
the photon polarisation parameter defined as

Pγ ≡
|Γ(B → KππγR)|2 − |Γ(B → KππγL)|2
|Γ(B → KππγR)|2 + |Γ(B → KππγL)|2

(6.1)

and a, b are purely hadronic quantities and functions of the Dalitz plot variables,
characterising the three-body decays of the Kres-resonances (note that this implies
the sum over all possible Kres-states, e.g. K1(1270/1400), K∗(1410), K∗

2(1430), that
decay to the common Kππ final state). A detailed knowledge of a and b allows the
precise determination of Pγ.



104 Conclusions

In the case when one can isolate one of the Kres’s, the photon polarisation is directly
equal to the parameter characterising the electroweak interaction mixture of abnor-
mal (right-handed) helicity in the effective Hamiltonian, λγ, due to the cancellation
of the common form factor in the ratio (6.1):

Pγ = λγ (for one isolated resonance) (6.2)

Therefore, the problem of the B → K1 transition and the further K1-decays de-
scription is reduced to a purely strong interaction problem of the K1-decays, which
have already been studied in detail in the literature.

On the other hand, the method has encountered some drawbacks and difficulties:

• In particular, it must be said that the photon polarisation parameter λγ is quadratic
in the helicity amplitudes. Then, in order to observe the “abnormal” helicity (which
could be an indication of physics beyond the SM), CR/CL should be large, i.e.
|λγ| must be significantly different from the SM-value, or the accuracy of the λγ-
measurement has to be good.

• Although it is quite simple in its principle, the method is revealed to be more
complex in practice, because one has to know the strong decays in a rather detailed
way. In particular, the relative phases of various intermediate decay channels and
the relevant quantity Im[~n · ( ~J × ~J ∗)] are very important.

• The fact that the K1(1270)-resonance, not considered by Gronau et al., is produced
with a rather large branching ratio, seems on the one hand quite positive, since it
allows to have a relatively large statistics. But on the other hand, it complicates
the analysis since the pattern of decays of this resonance is much more complex.

In this thesis, we have tried to face this situation by two main contributions :

1. Improving the accuracy of the polarization parameter determination by recourse to
the DDLR method, developped by Davier et al., which is precisely well suited for
the problem at hand due to the linear dependence on λγ of the decay distribution.
It amounts to determine optimally λγ by exploiting not only the pure angular distri-
bution, but also the additional information from the whole Dalitz plot and without
having to perform a complex multidimensional fit.

2. Improving also as much as possible the treatment of the strong K1-decays by in-
troducing the input of quark models into our knowledge of the K1-decays. We
concentrate on the B → K1(1270)γ decay. We leave aside for the moment a possi-
ble K1(1400)γ-contribution, which seems to be small according to the observation
of Belle collaboration and to our estimations. Yet, in the strong interaction de-
cay analysis, we must address the full system of the two resonances because of the
well known phenomenon of mixing between the two states, and since, in the main
experiments (i.e. in diffractive production), they are strongly entangled.
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Then, we applied this improved knowledge of the hadronic side to estimate the errors
(statistical as well as theoretical ones) on the polarisation measurement.

6.2 Improvement of statistical errors by the DDLR

method

The fact that the normalised distribution of the number of events depends linearly on the
polarisation parameter allows us to use the DDLR method. This has the great advantage
of reducing the multidimensional problem of fitting the polarisation over the whole Dalitz
plot and angle θ to a simple one-dimensional fit of one variable ω defined in our case by
Eq. (2.59). We have given an explicit expression for the new ω-distribution and demon-
strated that the polarisation is exactly given by ratios of two moments of the distribution:

λγ =
〈ω2n−1〉
〈ω2n〉 (6.3)

with arbitrary n ≥ 1.

At the present moment, there is no data available. However, we can discuss the method
by generating “fake” data with an assumed value of the polarisation, and compare this
one with the one deduced from the moments. The statistical error can also be evaluated
either by an explicit formula (which is very complex and, in practise, is unknown) or
by random sampling from the dispersion of the moments ratio using the MC simulation.
Then, a strong conclusion is that the statistical error is reduced by a factor 2 with
respect to the method of Gronau et al..

6.3 The treatment of the full system of the K1-decays

6.3.1 Critical view of the experimental analyses of theK1-system
of strong decays

Not only the strong decay pattern of K1(1270) is quite complex, but, not surprisingly, it is
then difficult to analyze the whole system experimentally. In spite of many efforts, we have
found that much information is missing and that certain weaknesses may be suspected
in various analyses (which imply many theoretical assumptions, like the prescription of
Nauenberg and Pais for the quasi-two-body phase space). In addition, the interpretation
of width in the presence of nearby quasi-two body thresholds (like in K1(1270) → Kρ) is
delicate.
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6.3.2 A semi-theoretical treatment of the K1-system of strong
decays

In view of this, it has appeared necessary to assess the present experimental studies by a
more theoretical treatment. In lack of more fundamental treatments, we have recoursed
to the quark model approach, which, although approximate, is at the basis of our whole
understanding of spectroscopy. The 3P0 quark-pair-creation model for decays presents
the advantage of handling in a simple way the whole set of L = 1 decays. On the other
hand, experimental inputs are still required to fix the crucial K1 mixing angle. We have
determined this angle by comparing our theoretical predictions for the partial widths and
the ones deduced from the K-matrix formalism.

6.4 Theoretical errors on the polarisation measure-

ment

It appears that the polarisation measurement through the ω-moments will be sensitive to
several errors in the modelling of the hadronic K1-decays, which will change the value of
the moments corresponding to a given λγ. These errors include those affecting the relative
phase of the Kρ/K∗π-amplitudes ratio, the magnitude and phase of the D-waves, and
the damping factor. After fixing the parameters from our theoretical considerations, we
try to estimate some remaining uncertainties: in particular, the one coming from the
uncertainty on the K1 mixing angle, and the effect of a possible “off-set” phase in strong
decay S-waves (which are not deducible from theory, but apparently present in data).

6.5 The need for improvements of our experimental

knowledge and some future prospects

From our whole discussion, it appears clearly that an important improvement of our
experimental knowledge on the strong K1-decays is required in order to obtain a better
accuracy in the photon polarisation determination.

Indeed, we have observed a sensitivity of λγ to various model parameters, whose
values, in our mixed approach, depend both on certain experimental data and on the
theoretical model of the decays. It is important to recall that there is no fundamental
theoretical treatment, and that our theoretical model is based on quark models, which
being much valuable contains essential approximations, i.e. ones that can not be improved
systematically. In addition, the quark model does not provide any prediction for the
decays involving non-qq intermediate state like κ(800) or purely continuum Kππ-state.

Then it seems that progress should come mainly from better and more complete deter-
mination of the magnitude and phases of the various couplings by experiment. Certainly,
the experiments with production of K1 by strong interaction scattering (as the old ones
of SLAC and ACCMOR) have much larger statistics for decays involving K1 than present
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at B-factories. Yet there is little prospect of them being redone, and they have also their
own weakness in the fact that the production process is rather complex. There is some
hope that a new detailed study could be made in B-decays. Encouraging examples have
been coming from both BABAR and Belle experiments. A new study of B → K1ψ with
angular analysis in the angle θ could yield directly the crucial quantity Im[~n · ( ~J × ~J ∗)]
up to a multiplicative constant. The analyses could be guided by our semi-theoretical and
approximate investigation, which, for instance, emphasizes the need to take into account
the D-waves.
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Appendix A

Renormalization and running of the
Wilson coefficients

In this appendix we present a brief description of general concepts of the renomalization
group evolution and scale running of the Wilson coefficients following the lectures of
A. Buras [16].

A.1 Renormalization and operator mixing

One has to note that the Wilson coefficients do not depend only on the scale µ like
the usual gauge couplings but also on the renormalization scheme used for the local
operators. It is not surprising that the local operators Oi, as the usual vertices in the
field theory, must be renormalized when the quantum QED and QCD corrections are taken
into account. Hence, the matrix elements 〈Oi(µ)〉 are renormalization scheme dependent
and this dependence (as well as the scale µ dependence) must be cancelled by the one of
Ci(µ) since the physical amplitudes must be scheme independent.

The renormalization procedure is the process of relating the unphysical (bare) and
physical (renormalized) parameters like couplings or masses and rewrite the observables
as functions of the physical quantities. In the SM, which is a renormalized theory, all
divergences can be absorbed into the renormalization constants Z and can be removed by
introducing a finite number of counterterms in the Lagrangian. In general, one can have
many different local operators Oi with the same quantum numbers which can mix under
renormalization. In this case the relationship between bare and renormalized operators
has the form

O(bare)
i = ZijOj (A.1)

Since the bare operator is µ independent

0 = µ
d

dµ
O(bare)
i =

(

µ
d

dµ
Zij

)

Oi + Zij

(

µ
d

dµ
Oj

)

(A.2)
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what gives

µ
d

dµ
Oj = −γjiOi (A.3)

where

γji = Z−1
jk

(

µ
d

dµ
Zki

)

(A.4)

Here γij is called the anomalous dimension matrix. It can be calculated order by order in
the coupling constant from the renormalization constants Z.

Due to the renormalization group invariance, the physical amplitudes must be inde-
pendent on the scales µ at which the heavy quark masses are defined or the other heavy
particles are integrated out. The scale independence of the weak Hamiltonian implies
that (

µ
d

dµ
Cj

)

Oj − CjγjiOi = 0 (A.5)

This gives us the Renormalization Group Equation (RGE) for the Wilson coefficients:

µ
d

dµ
Ci = γjiCj (A.6)

The solution of this equation is

Ci(µ) = exp

[
∫ g(µ)

g(MW )

γT

β(g)
dg

]

ij

Cj(MW ) (A.7)

where the β-function that describes the running of the couplings constant is defined in
the standard way:

β(g) = µ
dg

dµ
(A.8)

A.2 b→ sγ at Leading Logarithmic Approximation

The renormalization matrix Z and, consequently, the anomalous dimension matrix can
be perturbatively expanded in powers of αs:

Z = 1 +
αs
4π
Z(1) +

α2
s

4π
Z(2) + · · · (A.9a)

γ(αs) = γ(0)αs
4π

+ γ(1)
(αs

4π

)2

+ · · · (A.9b)

The 6× 6 submatrix of γ(0) describing mixing of O1, . . . ,O6) and the 2× 2 submatrix
for (O7γ,O7g) follow from one-loop computations. On the other hand, the entries in the
anomalous dimension matrix representing the mixing between (O1, . . . ,O6) and (O7γ,O7g)
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sectors at leading order appears at two-loop level. Consequently, to calculate the coef-
ficients C7(µb) and C8(µb) at leading logarithmic approximation, two-loop computations
of O(eg2

s) and O(g3
s) are required. Going beyond the leading order, the two-loop mixing

between O7γ and O7g) plus the three-loop mixing between these two sets of operators
enter matrix γ(1) in the next-to-leading order analysis.

Expanding Eq. (A.7) in terms of αs, the Wilson coefficients can be written as

Cj(µ) = C
(0)
j (µ) +

αs(µ)

4π
C

(1)
j (µ) + · · · (A.10)

Due to the mixing of the operators it is convenient to introduce the so-called “effective
coefficients” for the operators O7 and O8. One observes at leading order that in any regu-
larization scheme one can write the one-loop matrix elements of the four-quark operators
(O1, . . . ,O6) can be written as

〈sγ|Oi|b〉one-loop = yi〈sγ|O7γ|b〉tree (i = 1, . . . , 6) (A.11a)

〈sg|Oi|b〉one-loop = zi〈sγ|O8g|b〉tree (i = 1, . . . , 6) (A.11b)

with yi, zi coming from purely short-distance part of the one-loop diagrams. The vec-
tors ~y and ~z can be considered as the effect of mixing of order α0

s among O1,...,6 and
magnetic operators. In the naive dimensional regularization (NDR) scheme they are
~y = (0, 0, 0, 0,−1/3,−1) and ~z = (0, 0, 0, 0, 1, 0). Defining the “effective coefficients” as

C
(0)eff
7 (µb) = C

(0)
7 (µb) +

6∑

i=1

yiC
(0)
i (µb)

C
(0)eff
8 (µb) = C

(0)
8 (µb) +

6∑

i=1

ziC
(0)
i (µb)

(A.12)

the amplitude of the inclusive b→ sγ process will be of the form

M(b→ sγ)LO = −4GF√
2
VtbV

∗
tsC

(0)eff
7γ (µb)〈sγ|O7γ|b〉tree (A.13)

One has to note that the regularization scheme dependence of Ci(µ) is cancelled by a cor-
responding regularization scheme dependence in γ(0). Consequently, the quantity Ceff

7γ (µ)
is scheme-independent.

The evolution of C
(0)eff
i (µ)

µ
d

dµ
C

(0)eff
i (µ) =

αs
4π
γ

(0)eff
ji C

(0)eff
j (µ) (A.14)
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is driven by the effective anomalous dimension matrix

γ
(0)eff
ji =







γ
(0)
j7 +

∑6
k=1 ykγ

(0)
jk − yjγ

(0)
77 − zjγ

(0)
87

γ
(0)
j8 +

∑6
k=1 zkγ

(0)
jk − zjγ

(0)
88

γ
(0)
ji

i = 7, j = 1, . . . 6
i = 8, j = 1, . . . 6

otherwise
(A.15)

At LO the anomalous dimension 8 × 8 matrix for the O1, . . . ,O8 operator basis is given
by [16]

γ
(0)
ji =















−2 6 0 0 0 0 0 3
6 −2 −2

9
2
3

−2
9

2
3

416
81

70
27

0 0 −22
9

22
3

−4
9

4
3

−464
81

140
27

+ 3f

0 0 6 − 2f
9

−2 + 2f
3

−2f
9

2f
3

416
81
u− 232

81
d 6 + 70

27
f

0 0 0 0 2 −6 32
9

−14
3
− 3f

0 0 −2f
9

2f
3

−2f
9

−16 + 2f
3

200
81
d− 448

81
u −4 − 119

27
f

0 0 0 0 0 0 32
3

0
0 0 0 0 0 0 −32

9
28
3















(A.16)
where u and d are the numbers of active up- and down-type quark flavours at a certain
scale µ respectively and f = u+ d.

The initial conditions for the coefficients at a large scale µW are obtained from a
matching of the effective and the full theory. In the SM C

(0)
i (µW ) read as follows:

C
(0)
1,3,...,6(µW ) = 0

C
(0)
2 (µW ) = 1

C
(0)
7 (µW ) = −1

2
D′

0(xt)

C
(0)
8 (µW ) = −1

2
E ′

0(xt)

(A.17)

where the one-loop functions D′
0(xt) and E ′

0(xt) have the standard definition [15]

D′
0(xt) = −x

2
t (3xt − 2)

2(xt − 1)4
lnxt +

xt(8x
2
t + 5xt − 7)

12(xt − 1)3

E ′
0(xt) =

3x2
t

2(xt − 1)4
lnxt +

xt(x
2
t − 5xt − 2)

4(xt − 1)3

(A.18)

with xt = m2
t/M

2
W .
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i 1 2 3 4 5 6 7 8
ai

14
23

16
23

6
23

-12
23

0.4086 -0.4230 -0.8994 0.1456
hi 2.2996 -1.0880 -3

7
- 1
14

-0.6494 -0.0380 -0.0185 -0.0057
h̄i 0.8623 0 0 0 -0.9135 0.0873 -0.0571 0.0209
k1i 0 0 1

2
-1
2

0 0 0 0
k2i 0 0 1

2
1
2

0 0 0 0
k3i 0 0 - 1

14
1
6

0.0510 -0.1403 -0.0113 0.0054
k4i 0 0 - 1

14
-1
6

0.0984 0.1214 0.0156 0.0026
k5i 0 0 0 0 -0.0397 0.0117 -0.0025 0.0304
k6i 0 0 0 0 0.0335 0.0239 -0.0462 -0.0112

Table A.1: “Magic numbers” taken from Ref. [16].

Finally, the leading order results for Wilson coefficients of all operators that are present
in the effective Hamiltonian can be written in analytic form [16] as follows:

C
(0)
j (µb) =

8∑

i=1

kjiη
ai (j = 1, . . . , 6) (A.19a)

C
(0)eff
7 (µb) = η

16
23C

(0)
7 (µW ) +

8

3

(

η
14
23 − η

16
23

)

C
(0)
8 (µW ) + C

(0)
2

8∑

i=1

hiη
ai (A.19b)

C
(0)eff
8 (µb) = η

14
23C

(0)
8 (µW ) + C

(0)
2

8∑

i=1

h̄iη
ai (A.19c)

where η = αs(µW )
αs(µb)

. The numbers ai, kji, hi and h̄i are given in Table A.1. It is useful to
write αs at LO as

αs(µb) =
αs(MZ)

1 − β0
αs(MZ)

2π
ln
(
MZ

µb

) (A.20)
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Appendix B

Watson’s theorem

Final state interactions play an important role in the test of CP and T violation. A
test for T violation is to observe a T -odd correlation of the form of triple product like
~p1 · [~p2 × ~p3]. In the contrast with the partial decay rate difference which is used to test
CP violation a T -odd correlation can be produced by by final state interactions even if
the T invariance is not violated. Watson’s theorem that relates the final state interaction
phase of the decay products and the elastic scattering phase, can be illustrated on the
following example.

The amplitude for the decay A → B + C induced by weak interactions Hamiltonian
can be written as [36]

〈BC; out|Hweak|A; in〉 = Aeiδs (B.1)

where δs is the phase generated by strong interactions. If T is conserved A is real.
Assuming that

• the weak Hamiltonian is invariant under the time-reversal:

THweakT
−1 = Hweak (B.2)

• with the time-reversal operator T is anti-unitary, i.e.

〈out|T †T |in〉 = 〈out|in〉∗ = 〈in|out〉 (B.3)

we can write

〈BC; out|Hweak|A; in〉 = 〈BC; out|T †THweakT
−1T |A; in〉∗ = 〈BC; in|Hweak|A; in〉∗ (B.4)

since for a single particle state A there is no distinction between “in” and “out” states.
Then we can insert a complete set of “out” states:

〈BC; out|Hweak|A; in〉 =
∑

n

(〈BC; in|n; out〉〈n; out|Hweak|A; in〉)∗ (B.5)
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The S-matrix element for the elastic B + C → B + C scattering is given by the
standard formula

Selastic ≡ 〈BC; out|BC; in〉 = e2iδelastic (B.6)

where δelastic is the BC elastic scattering phase. Thus, the A → B + C decay amplitude
(B.5) can be written as

〈BC; out|Hweak|A; in〉 = e2iδelastic〈BC; out|Hweak|A; in〉∗ = Aei(2δelastic−δs) (B.7)

Comparing Eqs. (B.7) and (B.1), we immediately find

δs = δelastic (B.8)

Eq. (B.8) gives the desired formulation of the Watson’s theorem: the phase generated by
the strong interactions coincides with the S-wave elastic scattering of decay products below
the first threshold taken at the mass of the decaying particle.

A

B

C

∝ eiδs

B

C

B

C

∝ e2iδelastic

Figure B.1: bc strong final state interaction in the decay of particle A (left) and elastic
BC scattering (right).
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K-matrix formalism

C.1 General formalism for the overlapping resonances

In Ref. [82] the role of the K-matrix formalism is explained in detail, in a form precisely
suited to match to our quark model approach.

In potential theory formalism, the T -matrix elements Tij for transition between the
continuum two-body states i and j (i.e. scattering) via the overlapping resonances
{a0, b0, . . . } forming the intermediate states can be written as [82]

Tij = fia0Πa0b0fb0j (C.1)

where the elements of the resonance propagator matrix are parametrized as

Πa0b0 =

(

M − i
Γ

2
−m

)−1

a0b0
(C.2)

where m is the total energy in the center of mass frame and M is a Hermitian mass matrix
and Γ is a Hermitian width matrix, given by

Γa0b0 =
∑

i

2ρiifa0ifib0 (C.3)

Πa0b0

i j

Figure C.1: Transition from state i to state j via set of overlapping resonance states
described by the propagator Πa0b0 .

The states {a0, b0, · · · } are the “bare” resonance states as they exist before either the
coupling to the continuum channels i or direct coupling between the states is turned on.
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Therefore, they are bound states. The factor ρii the diagonal element of is the phase-
space factor matrix (3.33) for channel i, and f are the matrix elements between the bare
states a0 and the continuum states i. Some comments must be made concerning the phase
space matrix. First, it is a diagonal matrix as can be seen from Eq. (3.33). Second, in
usual calculations ρij is a real quantity but which vanishes below the threshold. However,
in some works including the work by Daum et al. the phase space is defined below the
threshold by analytic continuation in the complex plane [69].

If the potential is Hermitian fa0i = f ∗
ia0 and if the time reversal is valid one can choose

the couplings f to be real and such that fa0i = fia0 .
The matrices M and Γ do not in general commute and they can not be diagonalized

simultaneously by a unitary transformation. But it is possible to diagonalize one of them,
in particular M , by a unitary1 matrix U :

U−1
a′a0Ma0b0Ub0b′ = M ′

a′b′ = ma′δa′b′ (C.4)

Thus U transforms the set of base states {a0, b0, · · · } to a new set {a′, b′, · · · }. This set
of states diagonalize M and are called the mass-mixed states. Note that they are not the
physical states which diagonalize M − iΓ/2.

Defining the new rotated couplings as

fia′ = fia0Ua0a′ , fb′j = U−1
b′b0fb0j (C.5)

the T -matrix has the form

Tij = fia′Π
′
a′b′fb′j (C.6)

where

Π′−1
a′b′ =

(

U−1MU − i

2
U−1ΓU −m

)

a′b′

= (ma′ −m)δa′b′ −
i

2

∑

i

2ρiifa′ifib′ = D−1
a′b′ − Σa′b′

(C.7)

with

D−1
a′b′ = (M ′ −m)a′b′ = (ma′ −m)δa′b′ , Σa′b′ =

i

2
Γ′
a′b′ = i

∑

i

ρiifa′ifib′ (C.8)

Eq. (C.7) can be written in the matrix form

Π′ = D + Π′ΣD (C.9)

which can be iterated as

Π′ = D +DΣD +DΣDΣΠ + . . . (C.10)

1As discussed in the next section when the M -matrix is symmetric the transformation is orthogonal
which is the case of the T -invariant interactions.
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Substituting the iterated form of Π′ from Eq. (C.10) in Eq. (C.6), one obtains

Tij = fia′Da′b′fb′j + fia′Da′c′Σc′d′Dd′b′fb′j + . . .

= fia′Da′b′fb′j + fia′Da′c′

(

i
∑

k

ρkkfc′kfkd′

)

Dd′b′fb′j + · · ·

= Kij + i
∑

k

KikρkkKkj + . . .

(C.11)

which is the iterated form of

T = K(1 − iρK)−1 (C.12)

Eq. (C.12) is the standard expression for the T -matrix in terms of the K-matrix, which
is defined as

Kij = fia′Da′b′fb′j =
∑

a′

fia′fa′j
ma′ −m

(C.13)

Note that this is not the most general form of the K-matrix. Quite often in addition to
the pole terms one introduces additional non-resonant terms (e.g. terms polynomial in the
massm) to Eq. (C.13). Remote wide resonances can contribute similarly to the continuum
if we consider restricted range ofm. One has to point out that in the experimental analyses
we are discussing [45,68] only the two K1 resonance contributions are considered, what is
a rather strong assumption.

The physical states of the system which have definite mass and lifetime are neither
{a0, b0, . . . } nor {a′, b′, . . . } but the eigenstates {aph, bph, . . . } of the full operatorM−iΓ/2:

(

M − i
Γ

2

)

|aph〉 = maph|aph〉 (C.14)

where maph is complex. These states have a definite mass Re(maph) and lifetime τ−1 =
−2Im(maph). Of course, these masses maph are also the poles of the T -matrix in the form
of (C.1) in the potential theory formalism and (C.6) in the K-matrix formalism at the
eigenvalues m = maph .

In order to relate the T -matrix elements, expressed in the physical state and K-matrix
bases, one has to diagonalize the matrix ma′δa′b′ − Σa′b′ :

V −1
apha′

(ma′δa′b′ − Σa′b′)Vb′bph = maphδaphbph (C.15)

One has to note that since M − iΓ
2

is not Hermitian, the transformation matrix V , which
relates the K-matrix and T -matrix states, is not unitary though it is (complex) orthogonal
since the matrices are symmetric.

Rotating the K-matrix couplings fia′ to the couplings to the physical mass eigenstates
fiaph

fiaph = fia′Va′aph , fbphj = V −1
bpha′

fa′j (C.16)
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the T -matrix (C.6) can be rewritten in terms of the physical states:

Tij = fiaphΠ′
aphbphfbphj =

∑

aph

fiaphfaphj

maph −m
(C.17)

where

Π′−1
aphbph = (maph −m)δaphbph (C.18)

The physical masses and widths of the overlapping resonances can be determined from
Eq. (C.15):

Maph = Re (maph(m)) = Re

(
∑

a′

V −1
apha′

ma′Va′aph − i
∑

k

ρkkfaphkfkaph

)

Γaph = −2Im (maph(m)) = −2Im

(
∑

a′

V −1
apha′

ma′Va′aph − i
∑

k

ρkkfaphkfkaph

) (C.19)

Note that there is a contribution to the mass due to the complex part of ρij(m) below
the threshold.

C.2 Relation of the couplings in theK-matrix method

and the quark model

In this section we identify in a systematic approach the couplings deduced from the 3P0

quark model, including the mixing of K1 resonances, with the couplings introduced in
the K-matrix formalism by Bowler et al. [68]. To justify this identification, we establish
the connection between the formalism, introduced in the previous section, and the quark
model.

1. To make explicit the discussion in Ref. [82], we distinguish two types of interactions:

• The first type of interactions is described by Hamiltonian H0, which describes
the qq potential of the bound states of mesons, {a0, b0, . . . }. It generates the
initial meson masses and wave functions which are used to calculate the matrix
elements of meson decays in the quark model (see next item).

• The second type of interactions, described by Hamiltonian H ′, represents the
interaction vertices connecting these bound states to the continuum of all pos-
sible states of two interacting mesons, {i, j, . . . }:

fa0i = 〈a0|H ′|i〉 (C.20)
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We commonly call these vertex interactions “couplings”. These couplings can
be precisely calculated within the 3P0 quark-pair-creation model. With ade-
quate choice of phases of the wave functions of the bound states the couplings
can be set to be real.

2. No direct interaction is assumed between two mesons. Nevertheless, there is rescat-
tering since a meson pair can annihilate into one bound state and then be created
again from the decay of this bound state. This rescattering process can be iterated
arbitrary number of times, what is equivalent to a resummation of meson loops
between the initial and final vertices (see Fig. C.2).

a0

i j
a0 b0

i jk
a0 b0 c0

i jk l+ + + . . .

Figure C.2: Rescattering process.

All these possible processes can be resummed into a matrix propagator Πa0b0 (C.2)
connecting two vertices. Defining the “bare” scattering amplitude for the first dia-
gram in Fig. C.2

T
a0(0)
ij =

fia0fa0j

ma0 −m
(C.21)

this leads to the scattering amplitude (C.1):

Tij =
∑

a0

T
a0(0)
ij +

∑

a0,k,b0

T
a0(0)
ik IkT

b0(0)
kj +

∑

a0,k,b0,l,c0

T
a0(0)
ik IkT

b0(0)
kl IlT

c0(0)
lj + . . .

=
∑

a0,b0

fia0Πa0b0fb0j
(C.22)

where Ik denotes the loop integral.

The mass matrix M − iΓ/2 in Πa0b0 (C.2) is in general non-diagonal. It contains

• the initial diagonal mass matrix diag(ma0 ,mb0 , . . . ) of the bound states;

• the contribution of the loops for each possible channel, which can be non-
diagonal since common two-body channels can couple to two different bound
states. The loop integrals contain real and imaginary parts, which appear only
when a two-body channel is open at the energy m.

3. Now the mass matrix must be diagonalized in two steps as explained in the pre-
vious section. Thus, one first diagonalises the real part, M , then one passes to a
diagonalization of the full new matrix, M ′ − iΓ′/2.
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(a) Diagonalisation of the real part of the denominator of Πa0b0 matrix, M , leads
to the introduction of the new diagonal mass matrix (see Eq. (C.4))

M ′(m) = diag(ma′ ,mb′ , . . . ) (C.23)

This mass diagonalization implies a simultaneous rotation of the couplings
(C.5). If there exists only one resonance which couples to the initial and final
states, no rotation is needed. In this case all bare couplings {fa0i} coincide
with the ones of the K-matrix, {fa′i}. Thus, one can relate them with cou-
plings calculated in the quark model. Otherwise, when there are two possible
overlapping resonances, namely the two K1’s, we have to make a rotation and
introduce a mixing angle. We notice then that we have introduced an arbitrary
rotation angle θK1

in our model computations which allows us to identify the
set of the observed K-matrix couplings with the theoretical ones by the fit of
data with our model predictions. This identification means that:

• the effect of the real part of the loops, i.e. Re(Ik) in Eq. (C.22), are taken
into account in our model;

• mixing angle θK1
is not predicted by the model but is simply adjusted to

data;

• introduction of the mixing angle θK1
can also take into account the uncal-

culated rotation of the pure spin states K1A and K1B into the eigenstates
of Hamiltonian H0 due to the spin-orbit forces [83].

(b) The second step consists the diagonalization of the new mass matrix

(

M ′ − i
Γ′

2

)

a′b′
= ma′δa′b′ − i

∑

i

ρii(m)fa′ifib′ (C.24)

This leads to the physical mass eigenstates and to the Breit-Wigner parametriza-
tion with energy-dependent width. This new rotation that accomplishes the last
transformation into the physical states must have a complex and the angle of this
rotation must have a complex phase. This would lead to the complex couplings of
the mass eigenstates to set of continuum states. As we have already mentioned in
the text, this rotation seems to be rather small.

4. Let us now discuss the dependence of various variables on the energy m. In prin-
ciple, all the masses and couplings, produced by two previous steps are dependent
on m because of the loop effects. However, as regards the mass matrix, its real
and imaginary parts have rather different behaviour depending on m. In first ap-
proximation, the real part of the mass matrix, which includes the sum of the large
number of loops, varies slowly with m and can be considered as constants. This is
what was done in the analysis of Daum et al.. On the contrary, the imaginary part,
which corresponds to the partial widths of the opened channels, is a rapidly varying
function near the threshold.
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In principle, one can go beyond the approximation of the real part of the mass
matrix by taking into account that there is some variation near the threshold. This
is obtained by analytic continuation of the phase space through the threshold. This
effect is included in the prescription of Naunberg and Pais of the complex phase
space. This corresponds to having imaginary part of the widths generating a m-
dependent mass shift. For instance, for the K-matrix width one have

Γa′b′(m) =
∑

i

ρii(m)fa′ifib′ (C.25)

where the phase-space factor ρij(m) can be complex in general.

Finally, one obtains for the physical states that the physical masses ofK1(1270/1400)
are varying slowly as functions of m while the physical widths are rapidly changing
functions; moreover the mass of K1(1270) has a more rapid variation around the
peak due to the closeness of the K1-mass to the Kρ threshold (see Fig. C.4).

C.3 Watson’s theorem: another view

One can introduce “bubble” diagrams of rescattering as depicted on the figure below:

a0 b0

i jk =
f

ia0fa0k

m
a0−m Ik

f
kb0

f
b0j

m
b0
−m = T

a0(0)
ik IkT

b0(0)
kj

(C.26)

where Ik denote the loop integral which has a complex phase. Now, summing the series
of such “bubble” diagrams with the initial production of resonance a0, we obtain

T a
0

ij = T
a0(0)
ij +

∑

k,b0

T
a0(0)
ik IkT

b0(0)
kj +

∑

k,b0,l,c0

T
a0(0)
ik IkT

b0(0)
kl IlT

c0(0)
lj + . . .

= T (0)(1 − IT (0))−1

(C.27)

For the production of the resonance one can follow the same procedure:

ga0

a0 b0
jk =

g
a0fa0k

m
a0−mIk

f
kb0

f
b0j

m
b0
−m = F a0(0)IkT

b0(0)
kj

(C.28)

where ga0 is the resonance production constant. The summation of the “bubble” diagrams
gives

F a0

= F a0(0) +
∑

k,b0

F a0(0)IkT
b0(0)
kj +

∑

k,b0,l,c0

F a0(0)IkT
b0(0)
kl IlT

c0(0)
lj + . . .

= F a0(0)(1 − IT (0))−1

(C.29)
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Comparing Eqs. (C.27) and (C.29), one can notice that since the couplings fa0k are taken
to be real, the complex phase comes from the loop integrals Ik and, moreover, is the same
for the rescattering and production. In the case of one resonance, the Watson’s theorem
formulation is the following: the production and the scattering phases are the same below
the first inelastic threshold. If there are several resonances, coupled to the same decay
channels, the formulation of Watson’s theorem can be treated at the matrix level.

C.4 Re-interpreting the ACCMOR result

In order to determine our model parameters and the K1 mixing angle from comparison of
the predicted partial decay widths of the K1 meson decays into the dominant K∗π and Kρ
channels with the measured experimental values, we use the fitted K-matrix parameters
extracted by Daum et al. from Ref. [45] (see Table C.2).

Using the definition of the K1 mixing by Daum et al. (which is different from (3.1)
that we use)

|K1(1270)〉 = −|K1A〉 sin θK1
+ |K1B〉 cos θK1

|K1(1400)〉 = |K1A〉 cos θK1
+ |K1B〉 sin θK1

(C.30)

the dominant S-wave K-matrix couplings of the K1’s to the states K∗π (channel 1) and
Kρ (channel 2) are given as [45]

fa′1 =
1

2
γ+ cos θK1

+

√

9

20
γ− sin θK1

fb′1 = −1

2
γ+ sin θK1

+

√

9

20
γ− cos θK1

fa′2 =
1

2
γ+ cos θK1

−
√

9

20
γ− sin θK1

fb′2 = −1

2
γ+ sin θK1

−
√

9

20
γ− cos θK1

(C.31)

where γ+ and γ− are the reduced SU(3) couplings for K1A (F -type) and K1B (D-type)
respectively. Their fitted experimental values are given in Table C.1. The indices a′ and
b′ denote the upper and lower K1 resonances.

ma′ , GeV/c2 mb′ , GeV/c2 γ+ γ− θ̃K1

1.4±0.02 1.17±0.02 0.78±0.1 0.54±0.1 64◦±8◦

Table C.1: Fitted K-matrix pole masses, S-wave reduced SU(3) couplings and mixing
angle for K1A (F -type) and K1B (D-type), taken from Ref. [45] (low t data). The indices
a′ and b′ denote the upper and lower K1 resonances.
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fa′1 fb′1 fa′2 fb′2 fa′3 fb′3
0.50±0.07 -0.19±0.09 -0.15±0.10 -0.51±0.06 0 0.32

Table C.2: K-matrix couplings, calculated from Eq. (C.31) using the fitted parameters
from Table C.1. The indices a′ and b′ denote the upper and lower K1 resonances decaying
into K∗π (channel 1) and Kρ (channel 2) hadronic states respectively. The coupling to the
K∗

0(1430)π channel, where K∗
0(1430) resonance is supposed to have the mass 1.25 GeV/c2

and width 600 MeV/c2, fb3 is taken from Ref. [54].

Using the experimental values of the K-matrix couplings from Table C.2 and perform-
ing the diagonalization of the complex mass matrix (C.24), we observed that

• The variation of the absolute values and phases of the new rotated physical couplings
{faphi, fbphi} around the masses at the peak of Breit-Wigner (i.e. m ∼1.27 GeV/c2

and 1.4 GeV/c2) turn out to be small (see Fig. C.3).

• Contribution of the complex phase space for energy below the decay threshold
(which implies ρij(m) → i|ρij(m)|) is very small for diagonalized physical mass
of K1(1400) (see Fig. C.4). But one observes a threshold effect for K1(1270) near
m ∼ 1.2 GeV/c2. However, the mass variation of MK1

(m) around the peak of
Breit-Wigner can be considered not so significant.

• One can see from Fig. C.4 that, contrary to MK1
(m) dependence, the width ΓK1

(m)
is a rapidly varying function of the energy m.

• Non-diagonal elements of the mass matrix (C.24) are sufficiently small compared to
the diagonal ones. One can see from Fig. C.4 that the difference between the prop-
erly diagonalized masses and widths (C.19) (blue/red curves), which are calculated
in terms of the rotated physical couplings, and the real and imaginary parts of the
diagonal elements of (C.24) (green/orange curves) is insignificant. As a consequence,
our assumption for the partial widths

Γaphi(Mpeak) ≃ Γa′i(Mpeak) = ΓQPCMa′i (Mpeak) (C.32)

seems to be reasonable. This means that we can use the experimental measured K-
matrix couplings in order to calculate the partial decay widths and fit our moedel
parameters, namely quark-pair-creation constant γ and the mixing angle θK1

, which
can further be used for the J function computation.
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Figure C.3: Energy dependence of the physical couplings (blue). The red lines represent
the values of the real couplings for the K-matrix states, fitted by ACCMOR collaboration
[45].



C.4 Re-interpreting the ACCMOR result 127

1.0 1.1 1.2 1.3 1.4 1.5 1.6
1.1

1.2

1.3

1.4

1.5

1.6

m @GeV�c2D

M
K

1
@G

eV
�c

2
D

1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

m @GeV�c2D

G
K

1
@G

eV
�c

2
D

Figure C.4: Energy dependence of the mass (left) and width (right) of K1(1270) (red,
orange) and K1(1400) (blue, green). Red and blue curves correspond to the masses
and total widths of the physical eigenstates, i.e. diagonal mass matrix elements (C.19)
which are calculated in terms of the rotated physical couplings. Orange and green curves
represent the leading diagonal elements of the complex mass matrix (M ′ − iΓ′/2)a′b′ (C.7)
in the K-matrix eigenstate basis. The D-wave contribution is not taken into account due
to the absence of knowledge of the corresponding couplings.
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Appendix D

QPCM

D.1 Spacial integrals in QPCM

For the decay A→ B + C (see Fig. 3.1) the spacial integrals are given by

I(ABC)
m =

∫

d3~k1d
3~k2d

3~k3d
3~k4δ(~k1 + ~k2 − ~kA)δ(~k2 + ~k3 − ~kB)δ(~k4 + ~k1 − ~kC)δ(~k3 + ~k4)

× Ym
1 (~k3 − ~k4)ψ

(A)(~k1 − ~k2)ψ
(B)(~k2 − ~k3)ψ

(C)(~k4 − ~k1)

=
1

8

∫

d3~kYm
1 (~kB − ~k)ψ(A)(~kB + ~k)ψ(B)(−~k)ψ(C)(~k)

(D.1)

where ψ’s are the normalized Fourier transforms of harmonic oscillator meson wave func-
tions. The wave functions for the ground (L = 0) and orbitally excited (L = 1) meson
states are defined as

ψ
(i)
0 (~k) =

R
3/2
i

π3/4
exp

(

−
~k2R2

i

8

)

(L = 0)

ψ
m(i)
1 (~k) =

√

2

3

R
5/2
i

π1/4
Ym

1 (~k) exp

(

−
~k2R2

i

8

)

(L = 1, Lz = m)

Ym
1 (~k) = |~k|Y m

1 (~̂k) = (~εm~k)

√

3

4π

(D.2)

Here Ri is the meson wave function radius and ~εm are the A-polarization vectors, defined
as

~ε0 =





0
0
1



 , ~ε±1 = ∓ 1√
2





1
∓i
0



 (D.3)

Performing the integration over ~k one obtains for the orbitally excited axial-vector
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meson decay into pseudoscalar and vector mesons in the A-meson reference frame:

I(ABC)
m = −4

√
3

π5/4

R
5/2
A (RBRC)3/2

(R2
A +R2

B +R2
C)5/2

(

(~εm · ~ε−m) − (~εm · ~kB)(~ε−m · ~kB)

×(2R2
A +R2

B +R2
C)(R2

B +R2
C)

4(R2
A +R2

B +R2
C)

)

exp

[

−~k2
B

R2
A(R2

B +R2
C)

8(R2
A +R2

B +R2
C)

] (D.4)

Setting ~kB along z-axis, the integrals become

I
(ABC)
0 = − 4

√
3

π5/4

R
5/2
A (RBRC)3/2

(R2
A +R2

B +R2
C)5/2

(

1 − ~k2
B

(2R2
A +R2

B +R2
C)(R2

B +R2
C)

4(R2
A +R2

B +R2
C)

)

× exp

[

−~k2
B

R2
A(R2

B +R2
C)

8(R2
A +R2

B +R2
C)

]

I
(ABC)
1 =

4
√

3

π5/4

R
5/2
A (RBRC)3/2

(R2
A +R2

B +R2
C)5/2

exp

[

−~k2
B

R2
A(R2

B +R2
C)

8(R2
A +R2

B +R2
C)

]

(D.5)

For the vector meson ground state decay into two pseudoscalar mesons the spacial
integral is

I(ABC)
m =

√
6

π5/4
(~εm · ~kC)

(RARBRC)3/2(2R2
A +R2

B +R2
C)

(R2
A +R2

B +R2
C)5/2

× exp

[

−~k2
C

R2
A(R2

B +R2
C)

8(R2
A +R2

B +R2
C)

] (D.6)

D.2 Fixing the relative signs for tree-body decay

D.2.1 Clebsch-Gordan coefficients

We decided to use the convention “down→up” (see Fig. D.1). For instance, for the case
of K+

1 → K+π−π+ decay that implies that we take the Clebsch-Gordan coefficients as

(K∗0π+|K+
1 ) = (1/2,−1/2; 1, 1|1/2, 1/2) = −

√

2

3

(K+π−|K∗0) = (1/2, 1/2;−1, 1| − 1/2, 1/2) = +

√

2

3

(K+ρ0|K+
1 ) = (1/2, 1/2; 1, 0|1/2, 1/2) = +

1√
3

(π−π+|ρ0) = (1,−1; 1, 1|1, 0) = − 1√
2

(D.7)

This gives the signs of the amplitudes listed in Table 3.2 and the coefficients −2/3 for
K∗π and −1/

√
6 for ρK contributions in Eq. 24 from Ref. [11].
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Figure D.1: K+
1 → K+π−π+ decay

D.2.2 Determination of the relative sign of gK∗Kπ and gρππ

Following the definition in the work of Gronau et al., the total amplitude of the two
possible channels is written as

M(a) = ε(K1)
µ T µνK∗πε

(K∗)∗
ν gK∗Kπε

(K∗)
σ (pπ− − pK+)σ

M(b) = ε(K1)
µ T µνKρε

(ρ)∗
ν gρππε

(ρ)
σ (pπ+ − pπ−)σ

(D.8)

where T µνV P is the hadronic tensor, parametrized in terms of the form factors fV , hV (or
equivalently the S and D partial wave amplitudes).

Now, using the same Clebsch-Gordan coefficients, defined above in Eq. (D.7), one can
write the amplitude of the V → PP decay, calculated the general tensor Lorenz-invariant
form in the vector meson reference frame:

M(K∗0 → K+π−) = −
√

2

3
gK∗Kπ(~εK∗ · (~pπ− − ~pK+)) =

√

8

3
gK∗Kπ(~εK∗ · ~pK+)

M(ρ0 → π−π+) =

√

1

2
gρππ(~ερ · (~pπ+ − ~pπ−)) = −

√
2gρππ(~ερ · ~pπ−)

(D.9)

Taking into account all the spin and isospin couplings, the QPCM prediction is

MQPCM
m (K∗0 → K+π−) = −1

6
γI(K∗Kπ)

m = −1

6
γĨ(K∗Kπ)(~εm · ~pK+)

MQPCM
m (ρ0 → π−π+) = − 1

3
√

2
γI(ρππ)

m = − 1

3
√

2
γĨ(ρππ)(~εm · ~pπ−)

(D.10)

where Ĩ(V PP ) can be defined from Eq. (D.6)1.

1One has to be careful with the choice of the momentum, i.e. ~pC or ~pB = −~pC , since it changes the
sign of the P -wave amplitude.
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Now, doing a matching between two approaches and factorizing out the common factor
~ε · ~pi, we can write the following equations:

√

8

3
gK∗Kπ = −1

6
γĨ(K∗Kπ)

−
√

2gρππ = − 1

3
√

2
γĨ(ρππ)

(D.11)

Since Ĩ(V PP ) is a positive function, one can see that

sign(gK∗Kπ) = −sign(gρππ)

and in the SU(3) limit gρππ

gK∗Kπ
= −

√
8
3
.

One can notice that the choice of the order in the isospin factors of the vector meson
decay into two pseudoscalars in Eq. (D.7) well fixes the relative sign of the gV PP couplings.
Moreover, this method makes the calculation of the quasi-two-body decay amplitude
independent on the intermediate vector meson state (K∗, ρ) wave function sign (which,
in principle, can be arbitrary in the quasi-two-body calculation since the final state is not
the same)!

D.3 Partial Wave Amplitudes

With the quark models one can directly calculate the amplitudes with definite spin or he-
licity states. An experiment can measure the partial wave amplitudes of particular quan-
tum numbers of the final state. Since both canonical (orbital) and helicity approaches
give complete description of the process, one can find the relation between two represen-
tations for the decay of the initial at-rest state |J,M〉 with spin J and spin projection M
on to the z-axis into two particles with spins s1,2, helicities λ1,2, total spin S and relative
orbital momentum L [44]:

MJM
λ1λ2

(Ω1) = NJf
J
λ1λ2

DJ∗
M,λ1−λ2

(Ω1) (D.12)

with the normalization factor NJ =
√

2J+1
4π

.

The observed number of events is given by

∑

M,λi,λ
′

i

∫

MJM
λ1λ2

(Ω1)MJM∗
λ
′

1λ
′

2

(Ω1)dΩ1 = 4π
∑

λi,λ
′

i

λ1−λ2=λ
′

1−λ
′

2

N2
Jf

J
λ1λ2

fJ∗
λ
′

1λ
′

2

(D.13)

The recoupling from the canonical to the helicity representation is

NJf
J
λ1λ2

=
∑

L,S

√
2L+ 1(L, 0;S, λ1 − λ2|J, λ1 − λ2)(s1, λ1; s2,−λ2|S, λ1 − λ2)AL (D.14)
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The two-body decay of the axial-vector meson into vector and pseudoscalar mesons
can proceed in S and D-waves. Using J = 1, λ1 = λV , λ2 = 0, the helicity amplitudes in
the A reference frame can be written in terms of partial wave amplitudes:

N1f
1
λV 0 =

∑

L=0,2

√
2L+ 1(L, 0; 1, λV |1, λV )AL (D.15)

Setting ~kV along z-direction (i.e. θV = 0), the helicity amplitudes are

M10
00 = N1f

1
00 = AS −

√
2AD

M1,±1
±1,0 = N1f

1
±1,0 = AS +

1√
2
AD

(D.16)

By-turn, the partial wave amplitudes are related to the helicity amplitudes as following:

AS =
1

3
(2M11

10 + M10
00)

AD =

√
2

3
(M11

10 −M10
00)

(D.17)

Summing over the final and averaging over the initial spin states, the partial width is then
given by

Γ(A→ V P ) = (|AS|2 + |AD|2)PS2 (D.18)

For the V -decay into two pseudoscalar mesons P1 and P2 in the P -wave the decay
amplitude will be given by

M1M
00 (Ω1) = N1f

1
00D

1∗
M,0(Ω1) (D.19)

where the helicity amplitude is N1f
1
00 =

√
3aP .

Correspondingly, averaging over the V -spin states, the partial width is then given by

Γ(V → P1P2) = |AP |2PS2 (D.20)

D.4 Phase space convention

The non-relativistic partial width is given by

Γ(A→ BC) = 2π|M(NR)
A→BC |2 × PS

(NR)
2 (D.21)

where two-body non invariant phase space can be written as

PS
(NR)
2 =

∫

d3 ~kBd
3~kCδ

3(~kB + ~kC)δ(EB + EC −mA) = 4π
EBECkC
mA

(D.22)
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Since QPCM is in principle a non-relativistic model and we are using the relativistic
Lorentz-invariant tensor formalism to describe B → K1γ decay, one has to make some
kind of continuation. In order to do that one has to

• Use relativistic kinematics (i.e. E2
i = ~ki

2
+m2

i ).

• Use relativistic Breit-Wigner forms.

• Make the non-relativistic decay amplitudes to be “relativistic” correcting the phase
space:

Γ(A→ BC) =
1

8π

kC
m2
A

|M(R)
A→BC |2 = 8π2EBECkC

mA

|M(NR)
A→BC |2

from where one immediately obtains the relation between the amplitudes

M(R)
A→BC = 8π3/2

√

EBECmAM(NR)
A→BC (D.23)

Here Ei, ~ki are the energies and momentum in the A-reference frame.



Appendix E

Some notes on statistics

E.1 Maximum likelihood method

Let F (x, a) be some function of a variable x and an unknown parameter a. Lets measure
the value of F at some different xi: yi ± σi. The central limit theorem (CLT) states that
the mean of a sufficiently large number of independent random identically distributed
variables, each with finite mean and variance, will be approximately normally distributed.
So according to CLT, the measurement yi is assumed to be Gaussian distributed with mean
F (xi, a) and variance σi and the likelihood function can be written as

L(a) =
N∏

i=1

1
√

2πσ2
i

exp

[

−(yi − F (xi, a))
2

2σ2
i

]

(E.1)

and the log likelihood

lnL(a) = −
N∑

i=1

[yi − F (xi, a)]
2

2σ2
i

+
N∑

i=1

ln
1

√

2πσ2
i

(E.2)

Using the method of maximum likelihood, the “true” value or estimator â can be
found from the following equation:

∂ lnL
∂a

∣
∣
∣
∣
a=â

≡ 0 (E.3)

To estimate the error one can expand the log likelihood around â:

lnL(a) = lnL(â) +
1

2

∂2 lnL
∂a2

∣
∣
∣
∣
a=â

(a− â)2 + O
(
(a− â)3

)
(E.4)

It is easy to see from Eq. (E.4) that if the derivatives ∂kL/∂ak = 0 for k > 2, parameter
a has the normal distribution. Assuming a is Gaussian distributed with mean value ā and
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standard deviation σa

L(a) =
1

√

2πσ2
a

exp

[

−(a− ā)2

2σ2
a

]

(E.5)

it is easy to show that the likelihood maximization condition (Eq. (E.3)) gives

ā ≡ â (E.6)

Taking the second derivative

∂2 lnL
∂a2

= − 1

σ2
a

(E.7)

whence it follows that the variance of the mean value is

σa =

(

− ∂2L
∂a2

∣
∣
∣
∣
a=ā

)−1/2

(E.8)

In many practical cases the situation when F (x, a) is a linear function of a takes place.
In this particular case it is obvious that L(a) will have a Gaussian distribution (E.5) (since
the product of Gaussians always remains a Gaussian) and Eq. (E.6)-(E.8) will be valid.

E.2 General DDLR method

We review the DDLR method [14]. Let {ξ} be the set of experimentally observed param-
eters that describes the kinematics of the four-body decay (Dalitz variables, angles that
determine the orientation of the four-body system, invariant masses of the resonances
and intermediate isobars, etc.). Then the normalized decay distribution has the following
form:

W (ξ) = f(ξ) + λγg(ξ) (E.9)

where the functions f and g satisfy the conditions

∫

gdξ = 0,

∫

fdξ = 1, f ≥ 0, |g| ≤ f (E.10)

The first condition in Eq. (E.10),
∫
gdξ = 0, expresses the fact that the decay width does

not depend on the polarization, while the second one is the probability normalization
condition. The two last conditions, f ≥ 0 and |g| ≤ f , represent the positive character of
W which is proportional to the matrix element squared.

For a sample of N measured events the likelihood function L can be defined as

L =
N∏

i=1

(f(ξi) + λγg(ξi)) (E.11)



E.2 General DDLR method 137

However it is more convenient to use the logarithmic likelihood

lnL =
N∑

i=1

ln[f(ξi)(1 + λγωi)]

=
N∑

i=1

ln(1 + λγωi) + other terms independent on λγ

(E.12)

One can see from Eq. (E.12) that the quantity

ωi =
g(ξi)

f(ξi)
(E.13)

contains all information to measure the polarization and depends only on the kinematic
variables.

Using the method of maximum likelihood, the true polarization parameter λγ maxi-
mizes L and consequently can be determined as the solution of the equation

∂ lnL
∂λγ

=
N∑

i=1

ωi
1 + λγωi

= N〈 ω

1 + λγω
〉 = 0 (E.14)

The standard error of the optimal mean value of λγ is also determined as a function
of ω-variable:

1

σ2
λγ

= −∂
2 lnL
∂2λγ

=
N∑

i=1

ω2
i

(1 + λγωi)2
= N〈

(
ω

1 + λγω

)2

〉 (E.15)

For the small values of λγ
1 the likelihood maximization is equivalent to a moment

method:

〈 ω

1 + λγω
〉 ≈ 〈ω〉 − λγ〈ω2〉 = 0 (E.16)

and hence the polarization parameter can be determined as

λγ ≈
〈ω〉
〈ω2〉 (E.17)

On the other side, one can write the new PDF of the ω-distribution as

W ′(ω) = ϕ(ω)(1 + λγω) (E.18)

where ϕ(ω) is an unknown function, which is very hard to determine analytically. This
requires to perform a numerical MC simulation. However, in some particular cases ϕ(ω)

1τ -polarization is of the order of 0.1 and the expansion in terms of λγ is reasonable, while in our case
λγ ≃ ±1 in the SM. But one can see from Fig. 2.3 that ω is concentrated around 0, so one can assume
that such expansion can be used.
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turns out to be an even function of ω (one can be see from Eq. (2.56c) f(s13, s23, cos θ) is
an even function of cos θ while ω(s13, s23, cos θ) is an odd one).

Then, one can easily demonstrate by integration over the interval −1 ≤ ω ≤ 1 that
λγ can be expressed as ratios of odd over even momenta:

λγ =
〈ω2n−1〉
〈ω2n〉 (n ≥ 1) (E.19)

where the moments are defined as

〈ωn〉 ≡
∫ 1

−1

ωnW ′(ω)dω (E.20)

Therefore, the expression obtained by DDLR for small λγ (E.17) seems exact.

Here we provide a demonstration that, indeed, ϕ(ω) is the even function of ω in the
case of polarization measurement in the B → K1γ decay.

The normalization condition for our PDFs, W (s13, s23, cos θ) (Eq. (2.55)) and W ′(ω)
(Eq. (E.18)) can be written as

∫

W (s13, s23, cos θ)ds13ds23d cos θ = 1 (E.21a)

∫ 1

−1

W ′(ω)dω = 1 (E.21b)

This normalization equation (E.21) can be modified by inserting the integration over new
“independent” variable ω, defined by Eq. (2.59), and be identified with the new W ′(ω)
function:

∫ 1

−1

dω

∫

W (s13, s23, cos θ)δ

(

ω − rJ
2 cos θ

1 + cos2 θ

)

ds13ds23d cos θ

︸ ︷︷ ︸

W ′(ω)

= 1 (E.22)

whith

rJ (s13, s23) =
Im[~n · ( ~J × ~J ∗)]

| ~J |2
(E.23)

Using the well known property of the delta-function

δ(y(x)) =
∑

k

δ(x− xk)

|y′(xk)|
, y(xk) ≡ 0 (E.24)



E.2 General DDLR method 139

one can write

δ

(

ω − rJ
2 cos θ

1 + cos2 θ

)

=
1

2|rJ |
∑

+,−

(1 + cos2 θ±)2

1 − cos2 θ±
δ(cos θ − cos θ±) (E.25)

with

cos θ± =
rJ ±

√
r2
J − ω2

ω
(E.26)

Note that only one of these two solutions satisfies the condition | cos θ±| ≤ 1 depending
on the sign of rJ (see Fig. E.1). However, it is easy to notice that

cos2 θ± =
(|rJ | −

√
r2
J − ω2)2

ω2
(E.27)

satisfies | cos θ±| ≤ 1 for both positive and negative values of rJ .

ÈcosΘ+È£1 ÈcosΘ-È£1

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

rJ

Ω

Figure E.1: Allowed regions for the rJ−ω space coming from the requirement | cos θ±| ≤ 1.

Therefore, using Eq. (E.27) and integrating Eq. (E.22) over cos θ, we obtain

W ′(ω) =

∫ | ~J |2
4I

(1 + cos2 θ±)3

2|rJ |(1 − cos2 θ±)
(1 + λγω)ds13ds23

=

∫ | ~J |2
2I

r2
J

√
r2
J − ω2(|rJ | −

√
r2
J − ω2)2

(1 + λγω)ds13ds23

(E.28)

One can easily see from Eq. (E.28) that ϕ(ω)

ϕ(ω) =

∫ | ~J |2
2I

r2
J

√
r2
J − ω2(|rJ | −

√
r2
J − ω2)2

ds13ds23 (E.29)

is indeed the even function of ω as desired.
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