C. References, P. A. Abraham, E. Cornillon, N. Matzner-løber, and . Molinari, Unsupervised curve clustering using B-splines, Scandinavian Journal of Statistics, vol.30, issue.3, pp.581-595, 2003.

L. F. Aguiar and M. J. Soares, Business cycle synchronization across the euro-area: a wavelet analysis, NIPE Working Papers, vol.8, 2009.

U. Amato, A. Antoniadis, and M. Pensky, Wavelet kernel penalized estimation for non-equispaced design regression, Statistics and Computing, vol.23, issue.1, pp.37-55, 2006.
DOI : 10.1007/s11222-006-5283-4

URL : https://hal.archives-ouvertes.fr/hal-00103268

J. Andersson and J. Lillestol, Modeling and forecasting electricity consumption by functional data analysis, The Journal of Energy Markets, vol.3, issue.1, pp.3-15, 2010.
DOI : 10.21314/JEM.2010.038

G. Aneiros, R. Cao, J. Vilar-fernandez, and A. Muñoz-san-roque, Functional prediction for the residual demand in electricity spot markets, Recent advances in functional data analysis and related topics, Contributions to Statistics. Physica-Verlag Heidelberg, 2011.

J. Antoch, L. Prchal, M. R. De-rosa, and P. Sarda, Functional Linear Regression with Functional Response: Application to Prediction of Electricity Consumption, Functional and Operatorial Statistics, 2008.
DOI : 10.1007/978-3-7908-2062-1_4

URL : https://hal.archives-ouvertes.fr/hal-00634499

A. Antoniadis, Smoothing noisy data with coiflets, Statistica Sinica, vol.4, pp.651-678, 1994.

A. Antoniadis and T. Sapatinas, Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes, Journal of Multivariate Analysis, vol.87, issue.1, pp.133-158, 2003.
DOI : 10.1016/S0047-259X(03)00028-9

A. Antoniadis, E. Paparoditis, and T. Sapatinas, A functional wavelet?kernel approach for time series prediction, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.42, issue.5, p.837, 2006.
DOI : 10.1073/pnas.42.1.43

A. Antoniadis, E. Paparoditis, and T. Sapatinas, Bandwidth selection for functional time series prediction, Statistics & Probability Letters, vol.79, issue.6, pp.733-740, 2009.
DOI : 10.1016/j.spl.2008.10.028

URL : https://hal.archives-ouvertes.fr/hal-00511172

M. A. Ariño, P. A. Morettin, and B. Vidakovic, On wavelet scalograms and their applications in economic time series, Brazilian Journal of Probability and Statistics, vol.18, pp.37-51, 2004.

P. Besse and H. Cardot, Approximation spline de la pr??vision d'un processus fonctionnel autor??gressif d'ordre 1, Canadian Journal of Statistics, vol.53, issue.82, pp.467-487, 1996.
DOI : 10.2307/3315328

P. Besse, H. Cardot, and D. Stephenson, Autoregressive Forecasting of Some Functional Climatic Variations, Scandinavian Journal of Statistics, vol.27, issue.4, pp.673-687, 2000.
DOI : 10.1111/1467-9469.00215

D. Bosq, Modelization, Nonparametric Estimation and Prediction for Continuous Time Processes, Nonparametric functional estimation and related topics NATO ASI Series, pp.509-529, 1991.
DOI : 10.1007/978-94-011-3222-0_38

D. Bosq, Nonparametric statistics for stochastic processes. Estimation and prediction, 1996.

D. Bosq, Linear processes in function spaces: Theory and applications, 2000.
DOI : 10.1007/978-1-4612-1154-9

D. Bosq and D. Blanke, Inference and Prediction in Large Dimensions Wiley series in probability and statistics, 2007.

A. Bruhns, G. Deurveilher, and J. S. Roy, A non linear regression model for mid-term load forecasting and improvements in seasonality, Proceedings of the 15th Power Systems Computation Conference, pp.22-26, 2005.

J. Cancelo, A. Espasa, and R. Grafe, Forecasting the electricity load from one day to one week ahead for the Spanish system operator, International Journal of Forecasting, vol.24, issue.4, pp.588-602, 2008.
DOI : 10.1016/j.ijforecast.2008.07.005

H. Cardot, Conditional Functional Principal Components Analysis, Scandinavian Journal of Statistics, vol.57, issue.2, p.317, 2007.
DOI : 10.1016/0047-259X(76)90001-4

URL : https://hal.archives-ouvertes.fr/hal-00004472

C. Chatfield, The Analysis of Time Series, 1989.

A. Cohen, I. Daubechies, and P. Vial, Wavelets on the Interval and Fast Wavelet Transforms, Applied and Computational Harmonic Analysis, vol.1, issue.1, pp.54-81, 1993.
DOI : 10.1006/acha.1993.1005

URL : https://hal.archives-ouvertes.fr/hal-01311753

S. Collineau, Some remarks about the scalograms of wavelet transform coefficients, Wavelets and their applications, pp.325-329, 1996.
DOI : 10.1007/978-94-011-1028-0_15

J. A. Cuesta-albertos and R. Fraiman, Impartial trimmed k-means for functional data, Computational Statistics & Data Analysis, vol.51, issue.10, pp.4864-4877, 2007.
DOI : 10.1016/j.csda.2006.07.011

A. Cuevas, M. Febrero, and R. Fraiman, On the use of the bootstrap for estimating functions with functional data, Computational Statistics & Data Analysis, vol.51, issue.2, pp.1063-1074, 2006.
DOI : 10.1016/j.csda.2005.10.012

S. Dabo-niang and N. Rhomari, Kernel regression estimation in a Banach space, Journal of Statistical Planning and Inference, vol.139, issue.4, pp.1421-1434, 2009.
DOI : 10.1016/j.jspi.2008.06.015

J. Damon and S. Guillas, The inclusion of exogenous variables in functional autoregressive ozone forecasting, Environmetrics, vol.3, issue.7, pp.759-774, 2002.
DOI : 10.1002/env.527

J. Damon and S. Guillas, Estimation and Simulation of Autoregressive Hilbertian Processes with Exogenous Variables, Statistical Inference for Stochastic Processes, pp.185-204, 2005.
DOI : 10.1007/s11203-004-1031-6

J. Damon and S. Guillas, far: Modelization for Functional AutoRegressive processes URL http://cran.r-project.org. R package version 0, pp.6-8, 2007.

I. Daubechies, Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.34, issue.7, pp.909-996, 1988.
DOI : 10.1002/cpa.3160410705

I. Daubechies, Ten lectures on wavelets, Society of Industrial Mathematics, 1992.

V. Dordonnat, State-space modelling for high frequency data, 2009.

M. Febrero, P. Galeano, and W. González-manteiga, Outlier detection in functional data by depth measures, with application to identify abnormal NOx levels, Environmetrics, vol.28, issue.4, pp.331-345, 2008.
DOI : 10.1002/env.878

F. Ferraty and P. Vieu, Nonparametric functional data analysis: theory and practice, 2006.

A. Goia, C. May, and G. Fusai, Functional clustering and linear regression for peak load forecasting, International Journal of Forecasting, vol.26, issue.4, pp.700-711, 2010.
DOI : 10.1016/j.ijforecast.2009.05.015

Y. Goude, Mélange de prédicteurs et application à la prévision de consommation électrique, 2008.

A. Grinsted, J. C. Moore, and S. Jevrejeva, Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlinear Processes in Geophysics, vol.11, issue.5/6, pp.561-566, 2004.
DOI : 10.5194/npg-11-561-2004

URL : https://hal.archives-ouvertes.fr/hal-00302394

S. Guillas, Doubly stochastic Hilbertian processes, Journal of Applied Probability, vol.21, issue.03, pp.566-580, 2002.
DOI : 10.1111/j.1467-9892.1986.tb00490.x

URL : http://projecteuclid.org/download/pdfview_1/euclid.jap/1034082128

K. Gurley, T. Kijewski, and A. Kareem, First- and Higher-Order Correlation Detection Using Wavelet Transforms, Journal of Engineering Mechanics, vol.129, issue.2, pp.188-201, 2003.
DOI : 10.1061/(ASCE)0733-9399(2003)129:2(188)

P. Hall and M. Hosseini-nasab, On properties of functional principal components analysis, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.57, issue.1, pp.109-126, 2006.
DOI : 10.1198/016214504000001745

W. Härdle, Applied nonparametric regression, 1990.

T. Hastie and R. Tibshirani, Varying-coefficient models (with discussion), Journal of the Royal Statistician Society Series B, vol.55, issue.4, pp.757-796, 1993.

L. Horváth, M. Hu?ková, and P. Kokoszka, Testing the stability of the functional autoregressive process, Journal of Multivariate Analysis, vol.101, issue.2, pp.352-367, 2010.
DOI : 10.1016/j.jmva.2008.12.008

L. Hubert and P. Arabie, Comparing partitions, Journal of Classification, vol.78, issue.1, pp.193-218, 1985.
DOI : 10.1007/BF01908075

S. Hörmann and P. Kokoszka, Weakly dependent functional data, Annals of Statistics, vol.38, issue.3, pp.1875-1884, 2010.

G. M. James and C. A. Sugar, Clustering for Sparsely Sampled Functional Data, Journal of the American Statistical Association, vol.98, issue.462, pp.397-409, 2003.
DOI : 10.1198/016214503000189

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. M. James and C. A. Sugar, Finding the number of clusters in a dataset: An informationtheoretic approach, Journal of the American Statistical Association, issue.463, pp.98750-764, 2003.

V. Kargin and A. Onatski, Curve forecasting by functional autoregression, Journal of Multivariate Analysis, vol.99, issue.10, pp.2508-2526, 2008.
DOI : 10.1016/j.jmva.2008.03.001

URL : http://doi.org/10.1016/j.jmva.2008.03.001

T. Kato, Perturbation Theory for Linear Operators, 1976.

A. Keogh and M. Pazzani, An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback, Proceedings of the 4th International Conference of Knowledge Discovery and Data Mining, 1998.

A. Laukatis, Functional data analysis for cash flow and transactions intensity continuous-time prediction using Hilbert-valued autoregressive processes, European Journal of Operational Research, vol.185, issue.3, pp.1607-1614, 2008.
DOI : 10.1016/j.ejor.2006.08.030

F. Leisch, A toolbox for -centroids cluster analysis, Computational Statistics & Data Analysis, vol.51, issue.2, pp.526-544, 2006.
DOI : 10.1016/j.csda.2005.10.006

F. Leisch, Neighborhood graphs, stripes and shadow plots for??cluster??visualization, Statistics and Computing, vol.53, issue.4, pp.457-469, 2010.
DOI : 10.1007/s11222-009-9137-8

Y. Luan and H. Li, Clustering of time-course gene expression data using a mixed-effects model with B-splines, Bioinformatics, vol.19, issue.4, pp.474-482, 2003.
DOI : 10.1093/bioinformatics/btg014

S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of l2(r) Transactions of the, pp.69-87, 1989.

S. G. Mallat, A theory for multiresolution signal decomposition: The wavelet representation . IEEE transaction on pattern analysis and machine intelligence, pp.674-693, 1989.

S. G. Mallat, A wavelet tour of signal processing, 1999.

D. Maraun and J. Kurths, Cross wavelet analysis: significance testing and pitfalls, Nonlinear Processes in Geophysics, vol.11, issue.4, pp.505-514, 2004.
DOI : 10.5194/npg-11-505-2004

URL : https://hal.archives-ouvertes.fr/hal-00302384

D. Maraun, J. Kurths, and M. Holschneider, Nonstationary Gaussian processes in wavelet domain: Synthesis, estimation, and significance testing, Physical Review E, vol.75, issue.1, p.16707, 2007.
DOI : 10.1103/PhysRevE.75.016707

A. Mas, Estimation d'opérateurs de corrélation de processus fonctionnels: lois limites, tests, déviations modérées, 2000.

A. Mas, Weak convergence in the functional autoregressive model, Journal of Multivariate Analysis, vol.98, issue.6, pp.1231-1261, 2007.
DOI : 10.1016/j.jmva.2006.05.010

URL : https://hal.archives-ouvertes.fr/hal-00008621

A. Mas and L. Menneteau, Perturbation Approach Applied to the Asymptotic Study of Random Operators, Progress in Probability, vol.55, issue.1, pp.127-133, 2003.
DOI : 10.1007/978-3-0348-8059-6_8

A. Mas and B. Pumo, The ARHD model, Journal of Statistical Planning and Inference, vol.137, issue.2, pp.538-553, 2007.
DOI : 10.1016/j.jspi.2005.12.006

URL : https://hal.archives-ouvertes.fr/hal-00004252

A. Mas and B. Pumo, Linear processes for functional data The Oxford Handbook of Functional Data Analysis, Oxford Handbooks in Mathematics, pp.47-71, 2011.

E. A. Nadaraya, On Estimating Regression, Theory of Probability & Its Applications, vol.9, issue.1, pp.141-142, 1964.
DOI : 10.1137/1109020

G. Nason, Wavelet methods in statistics with R, 2008.
DOI : 10.1007/978-0-387-75961-6

G. Nason, wavethresh: Wavelets statistics and transforms, 2010.

J. Nowicka-zagrajek and R. Weron, Modeling electricity loads in California: ARMA models with hyperbolic noise, Signal Processing, vol.82, issue.12, 2001.
DOI : 10.1016/S0165-1684(02)00318-3

P. A. Nze, P. Bühlmann, and P. Doukhan, Weak dependence beyond mixing and asymptotics for nonparametric regression. The Annals of Statistics, pp.397-430, 2002.

D. B. Percival and A. T. Walden, Wavelet methods for time series analysis, 2006.

M. Piao, H. G. Lee, J. H. Park, and K. H. Ryu, Application of Classification Methods for Forecasting Mid-Term Power Load Patterns, Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques, pp.47-54, 2008.
DOI : 10.1007/978-3-540-85930-7_7

S. Pittner and S. V. Kamarthi, Feature extraction from wavelet coefficients for pattern recognition tasks. Pattern Analysis and Machine Learning, IEEE Transactions on, vol.21, issue.1, pp.83-55, 1999.

J. Poggi, Prévision nonprametrique de la consommation électrique, Rev. Statistiqué Appliquée, XLII, issue.4, pp.93-98, 1994.

A. D. Poularikas, Transforms and Applications Hanbook, 2009.

B. Pumo, Estimation et prévision de processus autorégressifs fonctionnels, 1992.

B. Pumo, Prediction of continuous time processes by c [0, 1]-valued autoregressive process, Statistical Inference for Stochastic Processes, pp.297-309, 1998.

R. Q. Quiroga, Z. Nadasdy, and Y. Ben, Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering, Neural Computation, vol.84, issue.8, pp.1661-1687, 2004.
DOI : 10.1016/0370-2693(89)91563-3

URL : http://authors.library.caltech.edu/13699/1/QUInc04.pdf

J. O. Ramsay and C. J. , Some tools for functional data analysis (with discussion), Journal of the Royal Statistical Society. Series B, vol.53, issue.3, pp.539-572, 1991.

J. O. Ramsay and B. W. Silverman, Functional data analysis, 1997.

J. O. Ramsay and B. Silverman, Applied functional data analysis: methods and case studies, 2002.
DOI : 10.1007/b98886

W. M. Rand, Objective Criteria for the Evaluation of Clustering Methods, Journal of the American Statistical Association, vol.15, issue.336, pp.846-850, 1971.
DOI : 10.1080/01621459.1963.10500845

T. Rouyer, J. M. Fromentin, N. C. Stenseth, and B. Cazelles, Analysing multiple time series and extending significance testing in wavelet analysis, Marine Ecology Progress Series, vol.359, pp.11-23, 2008.
DOI : 10.3354/meps07330

N. Serban and L. Wasserman, CATS, Journal of the American Statistical Association, vol.100, issue.471, pp.990-999, 2004.
DOI : 10.1198/016214504000001574

R. Shubhankar and B. Mallick, Functional clustering by Bayesian wavelet methods, Journal of the Royal Statistical Society. Series B, vol.68, issue.2, pp.305-332, 2006.

L. J. Soares and M. C. Medeiros, Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data, International Journal of Forecasting, vol.24, issue.4, pp.630-644, 2008.
DOI : 10.1016/j.ijforecast.2008.08.003

D. Steinley and M. J. Brusco, -means Cluster Analysis, Multivariate Behavioral Research, vol.21, issue.1, p.32, 2008.
DOI : 10.2307/2282967

D. Steinley and M. J. Brusco, Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures, Psychometrika, vol.54, issue.1, pp.125-144, 2008.
DOI : 10.1007/s11336-007-9019-y

T. Tarpey, Linear transformations and the k-means clustering algorithm: Applications to clustering curves. The American Statistician, p.34, 2007.

T. Tarpey and K. K. Kinateder, Clustering Functional Data, Journal of Classification, vol.20, issue.1, pp.93-114, 2003.
DOI : 10.1007/s00357-003-0007-3

J. W. Taylor, Triple seasonal methods for short-term electricity demand forecasting, European Journal of Operational Research, vol.204, issue.1, pp.139-152, 2010.
DOI : 10.1016/j.ejor.2009.10.003

R. Tibshirani, G. Walther, and T. Hastie, Estimating the number of clusters in a data set via the gap statistic, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.63, issue.2, pp.411-423, 2001.
DOI : 10.1111/1467-9868.00293

C. Torrence and G. P. Compo, A Practical Guide to Wavelet Analysis, Bulletin of the American Meteorological Society, vol.79, issue.1, pp.61-78, 1998.
DOI : 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2

B. Vidakovic, Statistical modeling by wavelets Wiley series in probability and mathematical statistics: Applied probability and statistics, 1999.

H. Wang, J. Neill, and F. Miller, Nonparametric clustering of functional data, Statistics and its interface, vol.1, pp.47-62, 2008.

G. S. Watson, Smooth regression analysis, Sankhya Ser. A, vol.25, pp.359-372, 1964.

R. Weron, Modeling and forecasting electricity loads and prices: a statistical approach, volume 396 of Wiley finance series, 2006.
DOI : 10.1002/9781118673362

Y. Wu, J. Fan, and H. Müller, Varying-coefficient functional linear regression, Bernoulli, vol.16, issue.3, pp.730-758, 2010.
DOI : 10.3150/09-BEJ231

M. Yan and K. Ye, Determining the Number of Clusters Using the Weighted Gap Statistic, Biometrics, vol.87, issue.4, pp.1031-1037, 2007.
DOI : 10.1111/j.1541-0420.2007.00784.x