H. Morkoç and Ü. Özgür, Zinc oxide : fundamentals, materials and device technology, 2009.

. Properties, Processing and Applications of Gallium Nitride and Related Semiconductors. Institution of Electrical Engineers, 1999.

H. Karzel, W. Potzel, M. Köerlein, W. Schiessl, M. Steiner et al., Lattice dynamics and hyperne interactions in ZnO and ZnSe at high external pressures, Kisi and M. M. Elcombe. u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diraction. Acta Crystallographica Section C Crystal Structure Communications, pp.11425-4518671870, 1989.

M. Catti, Y. Noel, and R. Dovesi, Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by rst-principles calculations, Journal of Physics and Chemistry of Solids, vol.646, issue.11, p.21832190, 2003.

D. Vogel, P. Krüger, J. Pollmann, B. K. Meyer, H. Alves et al., Ab initio electronic-structure calculations for II-VI semiconductors using self-interaction-corrected pseudopotentials Bound exciton and donoracceptor pair recombinations in ZnO, Physical Review B Physica Status Solidi, vol.528, issue.202, pp.14316-241231, 1995.

A. Dal-corso, M. Posternak, R. Resta, and A. Baldereschi, Ab initio study of piezoelectricity and spontaneous polarization in ZnO, Physical Review B, vol.509, issue.15, p.10715, 1994.

F. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Physical Review B, vol.56, issue.16, p.10024, 1997.
DOI : 10.1103/PhysRevB.56.R10024

D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton et al., Electrical properties of bulk ZnO, Solid State Communications, vol.105, issue.6, pp.399-401, 1998.
DOI : 10.1016/S0038-1098(97)10145-4

]. J. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. Lambrecht, and K. F. Brennan, High eld electron transport properties of bulk ZnO, Journal of Applied Physics, issue.1112, p.866864, 1999.

G. E. Jellison and L. A. Boatner, Optical functions of uniaxial ZnO determined by generalized ellipsometry, 13] Y. S. Park. Index of refraction of ZnO, pp.3586-393049, 1968.
DOI : 10.1103/PhysRevB.58.3586

J. Chen, W. Shen, N. Chen, D. J. Qiu, and H. Wu, The study of composition nonuniformity in ternary Mg x Zn 1?x O thin lms, Journal of Physics : Condensed Matter, issue.30, pp.15-475, 2003.

]. A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda et al., Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices, Applied Physics Letters, vol.75, issue.7, p.980, 1999.
DOI : 10.1063/1.124573

. Zno, Zn)O multiple quantum wells on lattice-matched substrates, Applied Physics Letters, vol.7717, issue.7, p.975, 2000.

G. Coli, K. K. Bajaj, A. Abiyasa, S. Yu, W. Fan et al., Excitonic transitions in ZnO/MgZnO quantum well heterostructures, Applied Physics Letters, vol.78, issue.19, pp.2861-42455, 2001.
DOI : 10.1063/1.1370116

A. Janotti, C. G. Van-de-walle, A. Ohtomo, R. Shiroki, I. Ohkubo et al., Fundamentals of zinc oxide as a semiconductor, Thermal stability of supersaturated Mg x Zn 1?x O alloy lms and Mg x Zn 1?x O/ZnO heterointerfaces. Applied Physics Letters, pp.126501-754088, 1999.
DOI : 10.1088/0034-4885/72/12/126501

T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, and N. Sakagami, Hydrothermal growth of ZnO single crystals and their optical characterization, Journal of Crystal Growth, vol.214, issue.215, pp.214-2157276, 2000.
DOI : 10.1016/S0022-0248(00)00065-8

E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato et al., Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method, Journal of Crystal Growth, vol.260, issue.1-2, p.166170, 2004.
DOI : 10.1016/j.jcrysgro.2003.08.019

J. Therry, Elaboration par MOCVD à injection pulsée d'oxydes de fer et de BIFEO3, 2006.

M. Tajima, Determination of boron and phosphorus concentration in silicon by photoluminescence analysis, Applied Physics Letters, vol.32, issue.11, p.719, 1978.
DOI : 10.1063/1.89897

J. Yoo, G. Yi, and L. S. Dang, Probing exciton diusion in semiconductors using Semiconductor-Nanorod quantum structures, Small, vol.426, issue.4, p.467470, 2008.

J. I. Pankove, Optical Processes in Semiconductors. Nick Holonyak, Jr, solid state physical electronics series edition, 1971.

D. G. Thomas, The exciton spectrum of zinc oxide, Journal of Physics and Chemistry of Solids, vol.15, issue.1-2, p.8696, 1960.
DOI : 10.1016/0022-3697(60)90104-9

Y. S. Park, C. W. Litton, T. C. Collins, and D. C. Reynolds, Exciton Spectrum of ZnO, Physical Review, vol.143, issue.2, p.512, 1966.
DOI : 10.1103/PhysRev.143.512

]. K. Thonke, . Th, N. Gruber, R. Teolov, A. Schönfelder et al., Donoracceptor pair transitions in ZnO substrate material, Physica B : Condensed Matter, pp.308-310945948, 2001.

. Everitt, Excitonic ne structure and recombination dynamics in single-crystalline ZnO, Physical Review B, vol.70, issue.19, p.195207, 2004.

W. Y. Liang and A. D. Yoe, Transmission Spectra of ZnO Single Crystals, Physical Review Letters, vol.20, issue.2, p.59, 1968.
DOI : 10.1103/PhysRevLett.20.59

S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C. W. Litton, Polarized photoreflectance spectra of excitonic polaritons in a ZnO single crystal, Journal of Applied Physics, vol.93, issue.1, p.756, 2003.
DOI : 10.1063/1.1527707

D. C. Reynolds, High-quality, melt-grown ZnO single crystals, Journal of Applied Physics, vol.95, issue.9, p.4802, 2004.
DOI : 10.1063/1.1691186

C. F. Klingshirn, F. A. Driessen, H. G. Lochs, S. M. Olsthoorn, and L. J. Giling, Semiconductor Optics An analysis of the two electron satellite spectrum of GaAs in high magnetic elds, Journal of Applied Physics, vol.69, issue.2, p.906, 1991.

J. R. Haynes, Experimental Proof of the Existence of a New Electronic Complex in Silicon, Physical Review Letters, vol.4, issue.7, p.361, 1960.
DOI : 10.1103/PhysRevLett.4.361

B. K. Meyer, J. Sann, S. Lautenschläger, M. R. Wagner, and A. Homann, Ionized and neutral donor-bound excitons in ZnO, 39] A. Schildknecht, R. Sauer, and K. Thonke. Donor-related defect states in ZnO substrate material. Physica B : Condensed Matter, pp.184120-340, 2003.
DOI : 10.1103/PhysRevB.76.184120

J. C. Bouley, P. Blanconnier, A. Herman, . Ph, P. Ged et al., ???type ZnSe, Journal of Applied Physics, vol.46, issue.8, pp.3549-1061043076, 1975.
DOI : 10.1063/1.322266

. Park, . Minegishi, . Oh, . Lee, . Taishi et al., High-Quality p-Type ZnO lms grown by Co-Doping of n and te on Zn-Face ZnO substrates, Applied Physics Express Nanotechnology, vol.34344, issue.345, p.18455707, 2007.

Y. Peter, M. Yu, A. Cardona, A. Kteyan, R. Musayelyan et al., Fundamentals of semiconductors Optical investigations on the annealing behavior of gallium-and nitrogenimplanted ZnO Auger recombination involving dislocations in semiconductors, Lischka, and W. Zulehner. Excitation-power dependence of the nearband-edge photoluminescence of semiconductors, pp.338584458453-458989, 1992.

R. Pässler, P. Misra, T. K. Sharma, and L. M. Kukreja, Parameter sets due to ttings of the temperature dependencies of fundamental bandgaps in semiconductors Temperature dependent photoluminescence processes in ZnO thin lms grown on sapphire by pulsed laser deposition, Physica Status Solidi Current Applied Physics, vol.216, issue.91, p.9751007179183, 1999.

H. Zhao, H. Kalt51, . Dean, G. Williams, J. Meyer et al., Novel type of optical transition observed in [52 Excited state properties of donor bound excitons in ZnO, 2010. [53] S. Müller, D. Stichtenoth, M. Uhrmacher, H. Hofsäss, C. Ronning, and J. Röder. Unambiguous identication of the PL-I[sub 9] line in zinc oxide. Applied Physics Letters, p.125309012107, 2003.

M. Strassburg, A. Rodina, M. Dworzak, U. Haboeck, I. L. Krestnikov et al., Identication of bound exciton complexes in ZnO, Physica Status Solidi, vol.55, issue.3, p.241607611, 2004.

M. Detlev, A. Hofmann, F. Hofstaetter, H. Leiter, F. Zhou et al., Hydrogen : A relevant shallow donor in zinc oxide, Physical Review Letters, vol.88, issue.4, p.45504, 2002.

M. Schilling, R. Helbig, and G. Pensl, Bound exciton luminescence of Ar- and Al-implanted ZnO, Journal of Luminescence, vol.33, issue.2, p.201212, 1985.
DOI : 10.1016/0022-2313(85)90018-3

H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao et al., Ga-doped ZnO lms grown on GaN templates by plasma-assisted molecular-beam epitaxy Shallow donors and acceptors in ZnO, S62S66, 2005. [59] S. Lautenschlaeger, J. Sann, N. Volbers, B. K. Meyer, A. Homann, U. Haboeck, and M. R, p.3761, 2000.

. Wagner, Asymmetry in the excitonic recombinations and impurity incorporation of the two polar faces of homoepitaxially grown ZnO lms, Physical Review B, vol.77, issue.14, p.144108, 2008.

D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason et al., -type ZnO grown by molecular beam epitaxy, Applied Physics Letters, vol.81, issue.10, p.81183061, 2002.
DOI : 10.1063/1.1504875

URL : https://hal.archives-ouvertes.fr/hal-00531939

K. Thonke, . Schirra, . Schneider, . Reiser, . Prinz et al., The role of stacking faults and their associated 0.13ev acceptor state in doped and undoped ZnO layers and nanostructures, Microelectronics Journal, vol.40, issue.2, p.210214, 2009.
DOI : 10.1016/j.mejo.2008.07.031

D. Hwang, H. Kim, J. Lim, J. Oh, J. Yang et al., Study of the photoluminescence of phosphorus-doped p-type ZnO thin lms grown by radio-frequency magnetron sputtering

R. Ryu, T. S. Lee, and H. W. White, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition, Min-Chang Jeong, and Jae-Min Myoung. Optical characteristics of arsenicdoped ZnO nanowires, pp.151917-856167, 2003.
DOI : 10.1063/1.1590423

H. Alves, Optical investigations on excitons bound to impurities and dislocations in ZnO, Optical Materials, vol.23, issue.1-2, p.3337, 2003.
DOI : 10.1016/S0925-3467(03)00055-7

. Myhajlenko, . Jl-batstone, J. Hutchinson, ]. P. Steeds67, . A. Dean et al., Luminescence studies of individual dislocations in II-VI (ZnSe) and III-V (InP) semiconductors Comparison of MOCVD-Grown with conventional II-VI materials parameters for EL thin lms) Physica Status Solidi (a) Luminescence due to lattice-mismatch defects in ZnTe layers grown by metalorganic vapor phase epitaxy, Mensching, and B. Rauschenbach. On the nature of the 3.41 eV luminescence in hexagonal GaN, pp.647764926256462581-189, 1984.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Applied Physics Letters, vol.68, issue.3, p.403, 1996.
DOI : 10.1063/1.116699

G. Heiland, F. Mollwo, and . Stockmann, Electronic processes in zinc oxide Solid State Physics -Advances in research and applications [73] R. Dingle. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide Schirmer and D. Zwingel. The yellow luminescence of zinc oxide, Physical Review Letters Solid State Communications, vol.8, issue.8, p.57915591563, 1959.

R. T. Cox, D. Block, A. Hervé, R. Picard, C. Santier et al., Exchange broadened, optically detected ESR spectra for luminescent donor-acceptor pairs in Li doped ZnO, Solid State Communications, vol.25, issue.2, p.7780, 1978.
DOI : 10.1016/0038-1098(78)90361-7

. Garces, . Wang, . Bai, L. Giles, G. Halliburton et al., Role of copper in the green luminescence from ZnO crystals, Applied Physics Letters, vol.81, issue.4, p.622624, 2002.
DOI : 10.1063/1.1494125

]. F. Leiter, H. Alves, D. Psterer, N. G. Romanov, D. M. Hofmann et al., Oxygen vacancies in ZnO, Physica B: Condensed Matter, vol.340, issue.342, pp.340-342, 2003.
DOI : 10.1016/j.physb.2003.09.031

J. M. Bunch, Mollwo-Ivey relation between peak color-center absorption energy and average oxygen ion spacing in several oxides of group-II and -III metals, Physical Review B, vol.16, issue.2, p.724, 1977.
DOI : 10.1103/PhysRevB.16.724

A. Janotti and C. G. Van-de-walle, Oxygen vacancies in ZnO, Applied Physics Letters, vol.87, issue.12, p.122102, 2005.
DOI : 10.1063/1.2053360

A. Janotti and C. G. Van-de-walle, Native point defects in ZnO, Physical Review B, vol.76, issue.16, p.165202, 2007.
DOI : 10.1103/PhysRevB.76.165202

L. J. Brillson, H. L. Mosbacker, M. J. Hetzer, Y. Strzhemechny, G. H. Jessen et al., Dominant effect of near-interface native point defects on ZnO Schottky barriers, Watkins. Optical detection of electron paramagnetic resonance for intrinsic defects produced in ZnO by 2.5-MeV electron irradiation in situ at 4.2 k, p.102116, 2005.
DOI : 10.1063/1.2711536

Z. Dong, D. C. Fang, D. R. Look, . Doutt, . Cantwell et al., Defects at oxygen plasma cleaned ZnO polar surfaces, Journal of Applied Physics, vol.108, issue.10, p.1037181037184, 2010.
DOI : 10.1063/1.3514102

A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van-de-walle, First-principles study of native point defects in ZnO, Physical Review B, vol.61, issue.22, p.6115019, 2000.
DOI : 10.1103/PhysRevB.61.15019

A. Janotti and C. G. Van-de-walle, New insights into the role of native point defects in ZnO, Journal of Crystal Growth, vol.287, issue.1, p.5865, 2006.
DOI : 10.1016/j.jcrysgro.2005.10.043

]. D. Look, J. W. Hemsky, and J. R. Sizelove, Residual Native Shallow Donor in ZnO, Physical Review Letters, vol.82, issue.12, p.2552, 1999.
DOI : 10.1103/PhysRevLett.82.2552

T. Minami, H. Sato, H. Nanto, and S. Takata, Group III impurity doped zinc oxide thin lms prepared by RF magnetron sputtering, Japanese Journal of Applied Physics, vol.2489, issue.2 10, pp.781-784, 1985.

C. G. Van-de-walle, Hydrogen as a Cause of Doping in Zinc Oxide, Physical Review Letters, vol.85, issue.5, p.1012, 2000.
DOI : 10.1103/PhysRevLett.85.1012

G. Mandel, Self-Compensation Limited Conductivity in Binary Semiconductors. I. Theory, Physical Review, vol.134, issue.4A, p.1073, 1964.
DOI : 10.1103/PhysRev.134.A1073

G. Mandel, F. F. Morehead, and P. R. Wagner, Self-Compensation-Limited Conductivity in Binary Semiconductors. III. Expected Correlations With Fundamental Parameters, Physical Review, vol.136, issue.3A, p.826, 1964.
DOI : 10.1103/PhysRev.136.A826

J. J. Lander, Reactions of Lithium as a donor and an acceptor in ZnO, Journal of Physics and Chemistry of Solids, vol.15, issue.3-4, pp.3-4324334, 1960.
DOI : 10.1016/0022-3697(60)90255-9

E. D. Kolb, R. A. Laudise, B. K. Meyer, J. Sann, A. Zeuner et al., Properties of Lithium-Doped hydrothermally grown single crystals of zinc oxide Lithium and sodium acceptors in ZnO Origin of p-type doping diculty in ZnO : the impurity perspective, Journal of the American Ceramic Society Superlattices and Microstructures Physical Review B, vol.4896, issue.667, p.342345344348073202, 1965.

M. G. Wardle, J. P. Goss, and P. R. Briddon, -type doping, Physical Review B, vol.71, issue.15, p.71155205, 2005.
DOI : 10.1103/PhysRevB.71.155205

URL : https://hal.archives-ouvertes.fr/hal-01331784

K. Lee and . Chang, P-type doping with group-I elements and hydrogenation eect in ZnO, 98] D. J. Chadi. Column v acceptors in ZnSe : theory and experiment, pp.376-377707710, 1991.

T. Aoki, Y. Hatanaka, and D. C. Look, ZnO diode fabricated by excimer-laser doping, Applied Physics Letters, vol.76, issue.22, p.3257, 2000.
DOI : 10.1063/1.126599

Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong et al., Synthesis of p-type ZnO lms, Journal of Crystal Growth, vol.216, pp.1-4330334, 2000.

B. J. Kim, Y. R. Ryu, T. S. Lee, and H. W. White, Output power enhancement of GaN light emitting diodes with p-type ZnO hole injection layer, Applied Physics Letters, vol.94, issue.10, p.94103506, 2009.
DOI : 10.1063/1.3097243

Y. R. Ryu, T. S. Lee, and H. W. White, A technique of hybrid beam deposition for synthesis of ZnO and other metal oxides, Journal of Crystal Growth, vol.261, issue.4, p.502507, 2004.
DOI : 10.1016/j.jcrysgro.2003.09.037

S. Limpijumnong, S. B. Zhang, S. Wei, and C. H. Park, -Type Zinc Oxide, Physical Review Letters, vol.92, issue.15, p.92155504, 2004.
DOI : 10.1103/PhysRevLett.92.155504

J. Woo-jin-lee, K. J. Kang, and . Chang, Defect properties and p -type doping eciency in phosphorus-doped ZnO, Physical Review B, vol.73, issue.2, p.24117, 2006.

K. Ohkawa, T. Karasawa, and . Mitsuyu, Doping of nitrogen acceptors into ZnSe using a radical beam during MBE growth, Journal of Crystal Growth, vol.111, issue.1-4, pp.1-4797801, 1991.
DOI : 10.1016/0022-0248(91)91084-N

L. Svob, C. Thiandoume, A. Lusson, M. Bouanani, Y. Marfaing et al., -type doping with N and Li acceptors of ZnS grown by metalorganic vapor phase epitaxy, Applied Physics Letters, vol.76, issue.13, p.761695, 2000.
DOI : 10.1063/1.126139

URL : https://hal.archives-ouvertes.fr/in2p3-00017506

W. Harrison, Elementary electronic structure, World Scientic, 1999.

H. Von-wenckstern, R. Pickenhain, H. Schmidt, M. Brandt, G. Biehne et al., Deep acceptor states in ZnO single crystals, Applied Physics Letters, vol.89, issue.9, p.92122, 2006.
DOI : 10.1063/1.2335798

J. F. Rommeluere, L. Svob, F. Jomard, J. Mimila-arroyo, A. Lusson et al., Electrical activity of nitrogen acceptors in ZnO films grown by metalorganic vapor phase epitaxy, Applied Physics Letters, vol.83, issue.2, p.287, 2003.
DOI : 10.1063/1.1592621

K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga et al., Growth of p-type zinc oxide lms by chemical vapor deposition

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino et al., Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nature Materials, vol.72, issue.1, p.4246, 2005.
DOI : 10.1038/nmat1284

A. Zeuner, H. Alves, J. Sann, W. Kriegseis, C. Neumann et al., Nitrogen doping in bulk and epitaxial ZnO, physica status solidi (c), vol.1, issue.4, p.731734, 2004.
DOI : 10.1002/pssc.200304255

S. Yamauchi, Y. Goto, and T. Hariu, Photoluminescence studies of undoped and nitrogendoped ZnO layers grown by plasma-assisted epitaxy, Journal of Crystal Growth, vol.260, issue.1 2, p.16, 2004.

K. Tamura, T. Makino, A. Tsukazaki, M. Sumiya, S. Fuke et al., Donor-acceptor pair luminescence in nitrogen-doped ZnO lms grown on lattice-matched ScAlMgO4 (0001) substrates, Solid State Communications, vol.127, issue.4, p.265269, 2003.

X. Guo, J. Choi, H. Tabata, and T. Kawai, Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural Light-Emitting Diode, Japanese Journal of Applied Physics, vol.40, issue.Part 2, No. 3A, pp.177-180, 2001.
DOI : 10.1143/JJAP.40.L177

E. Lee, Y. Kim, Y. Jin, and K. J. Chang, Compensation mechanism for N acceptors in ZnO, Physical Review B, vol.64, issue.8, p.85120, 2001.
DOI : 10.1103/PhysRevB.64.085120

P. Fons, H. Tampo, A. V. Kolobov, M. Ohkubo, S. Niki et al., Direct Observation of Nitrogen Location in Molecular Beam Epitaxy Grown Nitrogen-Doped ZnO, Physical Review Letters, vol.96, issue.4, p.45504, 2006.
DOI : 10.1103/PhysRevLett.96.045504

J. L. Lyons, A. Janotti, and C. G. Van-de-walle, Why nitrogen cannot lead to p-type conductivity in ZnO, Applied Physics Letters, vol.95, issue.25, p.95252105, 2009.
DOI : 10.1063/1.3274043

Y. Marfaing and A. Lusson, Doping engineering of p-type ZnO, Superlattices and Microstructures, vol.38, issue.4-6, pp.4-6385396, 2005.
DOI : 10.1016/j.spmi.2005.08.036

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster et al., Bound exciton and donor???acceptor pair recombinations in ZnO, physica status solidi (b), vol.241, issue.2, pp.241231-260, 2004.
DOI : 10.1002/pssb.200301962

B. K. Meyer, J. Stehr, A. Hofstaetter, N. Volbers, A. Zeuner et al., On the role of group I elements in ZnO, Applied Physics A, vol.86, issue.1, p.119123, 2007.
DOI : 10.1007/s00339-007-3962-4

C. P. Dietrich, M. Lange, and G. Benndorf, Holger von Wenckstern, and Marius Grundmann. Donor-acceptor pair recombination in non-stoichiometric ZnO thin lms

J. Sann, J. Stehr, A. Hofstaetter, D. M. Hofmann, A. Neumann et al., Zn interstitial related donors in ammonia-treated ZnO powders, Physical Review B, vol.76, issue.19, p.76195203, 2007.
DOI : 10.1103/PhysRevB.76.195203

E. Prze¹dziecka, K. Kami«ska, . Korona, . Dynowska, . Dobrowolski et al., Photoluminescence study and structural characterization of p-type ZnO doped by n and/or as acceptors, Semiconductor Science and Technology, vol.22, issue.2, p.1014, 2007.

E. Prze¹dziecka, . Wachnicki, . Paszkowicz, . Krajewski, M. Guziewicz et al., Photoluminescence, electrical and structural properties of ZnO lms, grown by ALD at low temperature, Semiconductor Science and Technology, issue.10, p.24105014, 2009.

B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, and N. Usami, Optical properties of ZnO rods formed by metalorganic chemical vapor deposition, Applied Physics Letters, vol.83, issue.8, p.831635, 2003.
DOI : 10.1063/1.1605803

. Meyer, Incorporation of nitrogen acceptors in ZnO powder, Physica Status Solidi, vol.243, issue.1, pp.1-3, 2006.

D. Taino, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux et al., Competition between exciton-phonon interaction and defects states in the 3.31 eV band in ZnO, Physical Review B, issue.11, p.81, 2010.

H. Shibata, Negative Thermal Quenching Curves in Photoluminescence of Solids, Japanese Journal of Applied Physics, vol.37, issue.Part 1, No. 2, p.550553, 1998.
DOI : 10.1143/JJAP.37.550