JQ/2H M/ J2i KQ/2H *QKTQbBiBQM, a2T °
JTTBM; M/ AMi2 T 2i iBQM 7Q IMB7vBM; 1t
*QKTQbBIiBQM h2+?MB[m2b
JB+F H*H p 2mH

hQ +Bi2 i?Bb p2 ' bBQM,

JB+F H*H p 2mHX JQ/2H M/ J2i KQ/2H *QKTQbBiBQM, a2T " iBQM Q7
IMB7vBM; 1tBbiBM; JQ/2H *QKTQbBiBQM h2+?MB[m2bX aQ7ir "2 1M;B
R- KYRRX 1M;HBb?X i2H@yye9e3Nj

> G A/, i2H@yye9e3Nj
21iTb,ffi2HX "+?Bp2b@Qmp2 i2bX7 fiZH@yye9
am#KBii2/ QM jy LQp kyRR

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

N° d'ordre : 4407

ANNEE 2011

THESE / UNIVERSITE DE RENNES 1
sous le sceau de I'Université Européenne de Bretagne

pour le grade de
DOCTEUR DE L'UNIVERSITE DE RENNES 1

Mention : Informatique

Ecole doctorale Matisse

présentée par

Mickaél C LAVREUL

préparée a l'unité de recherche IRISA — UMR6074
Institut de Recherche en Informatique et Systémes Aléatoires

Composition de
modeles et de
métamodeles :

Séparation des correspondances
et des interprétations pour uni er
les approches de composition ex-

istantes

Thése a soutenir & Rennes
le 7 décembre 2011

devant le jury composé de :
Philippe L AHIRE

Professeur a I'Université de Nice — Sophia Antipolis /
Rapporteur

Siobhan C LARKE
Full Professor, Trinity College, Dublin / Rapporteur

Olivier R IDoux
Professeur a I'Université de Rennes 1 / Examinateur

Olivier B EAUDOUX

Enseignant—Chercheur a 'ESEO / Examinateur
Jean-Marc J EZEQUEL

Professeur a I'Université de Rennes 1 / Directeur de thése
Olivier B ARAIS

Maitre de Conférence a I'Université de Rennes 1 /
Co-directeur de thése

Acknowledgements

This thesis is the result of three years of work within the Triskell team which
excellence in both research and atmosphere brings motivation and leads to active
collaborations.

First of all, | would like to thank Jean-Marc Jézéquel who does me the honors to
integrate the Triskell team. His support and e cient advice let me focus on the main
topic of my thesis while | was free to explore alternatives. | am grateful that he lets me
participate to rst-class research that helped me to discover a vocation for myself as a
scientist.

| would like also to thank Olivier Barais. While he is a very busy person, he took
the necessary amount of time in helping me put the pieces of my thesis together and
nalize the composition of this thesis.

My thanks go also to Benoit Combemale and Benoit Baudry with whom | partici-
pated in interesting developments of my work. Our discussions were always fruitful
and gave birth to multiple tracks of research that we are still exploring.

I would like to thank the whole Triskell team and their members whom good-nature
participates in the very pleasant work atmosphere.

I would like also to acknowledge in advance Olivier Ridoux that does the honors
to take the chair of the jury along with Philippe Lahire and Siobhan Clarke who had
accepted to review this work.

Within the MOPCOM-I project, | would like to thank the various partners and
especially Christian Nicolas for the interesting feedback on the proposed tools and
approaches.

Last but not least, | would like to thank Olivier Beaudoux about the discussions
that we had at the beginning of these three years of work on the de nition of mappings
between models and the speci c requirements that exist in the domain of graphical
interfaces.

On a personal basis, | would like to thank my family and my friends for their
support on an everyday basis.

Résume en francais

Introduction

Les logiciels font maintenant partie intégrante de notre société. La plupart des
activités telles que I'économie, la nance, le transport ou encore les communications
reposent sur des systémes logiciels qui permettent de dé nir, de gérer, de modéliser,
d'améliorer ou encore de mettre en valeur les activités humaines. L'omniprésence de la
technologie améne ala dé nition de systémes de plus en plus complexes, ce quiimpacte
fortement les techniques traditionnelles de développement logiciel : la composition de
programmes, modules ou fonctions est au cceur de cycles de développement logiciel
contrdlés et éventuellement géographiqguement distribués dans lesquels participent de
multiples acteurs.

La gestion voire la diminution de la complexité est une problématique récurrente
a tout raisonnement scienti que. La décomposition d'un probléme en sous-problémes
est la clé pour comprendre une situation donnée et proposer des solutions. Lorsque
gu'une solution est disponible pour chaque sous-probléme, on produit une représen-
tation globale de la solution sur laquelle on peut raisonner. Le degré de séparation et
de recomposition de ces sous—problémes est le principe méme demodularité

L' Ingénierie Dirigée par les Modéles (IDM) estbasée sur le principe d' abstractiorqui
imite le raisonnement scienti que dans le sens ou, pour produire des logiciels de bonne
qualité, les ingénieurs s'appuient sur des représentations abstraites partielles dédiées
alarésolution d'un probléme particulier. L'IDM propose de traiter les modéles comme
des entités de premier ordre et encourage I'utilisation des modéles pour la production
de systemes et non plus seulement pour la documentation de ces mémes systemes.
Les modéles sont alors au centre de processus de développement complexes visant a
rendre le cycle de développement d'un logiciel plus e cace, mains cher et plus sdr.

Bien que I'application des principes de modularitéet d'abstractionvise a gérere -
cacement la complexité des développement logiciels, les équipes de développement
font face a une augmentation du nombre de représentations partielles a manipuler.
Pour pouvoir raisonner sur la construction, la validation ou encore la véri cation
des inconsistances d'un systeme en développement, il est nécessaire de disposer d'un
moyen de recomposer les représentations partielles entre elles. Cette étape de recompo-
sition est, par nature, complexe et chronophage et sujette a I'introduction involontaire
d'erreurs. Dans le cadre de I'IDM, la composition de modéles est un domaine de
recherche trés actif qui s'intéresse a I'automatisation des taches de recomposition des
représentations partielles, autrement dit, des modéles.

Alors que de plus en plus de techniques sont proposées pour composer des mod-
éles dans des contextes particuliers, la quasi-inexistence de consensus pour comparer
les techniques existantes de composition de modéles et pour identi er des artéfacts
réutilisables entraine une explosion de I'e ort nécessaire pour produire de nouveaux
outils spéci ques de composition de modéles a partir de techniques existantes.

En pratique, il est nécessaire d'identi er les points communs aux techniques de

composition existantes pour non plus dé nir des opérateurs de composition spéci-
gues a un usage mais plutdt des opérations de composition paramétrables, s'ap-
puyant sur des opérateurs existants, et traitant un large spectre d'usages.

La contribution principale de cette thése est de proposer une dé nition originale de
la composition de modéles comme étant une paire correspondance-interprétation
Une correspondance dé nit la similarité entre deux modéles ou plus a partir d'un
ensemble de régles d'alignement entre des «patterns» d'éléments de modéles. Une
interprétation représente a la fois l'intention du processus de compaosition de modéles
ainsi que les exigences de I'utilisateur en termes de sous-produits de la composition
de modéles. Cette dé nition de la composition de modéles permet d'identi er des
correspondances et des interprétations réutilisables pour spéci er une multitude de
techniques de compaosition de modéles. A partir de cette dé nition, nous proposons un
cadre théorique qui aide a (1) uni er les représentations des techniques existantes de
composition de modéles et a (2) automatiser les processus de développement d'outils
de composition de modéles dédiés.

La pertinence et I'utilisabilité du cadre théorique implique la proposition de deux
sous-contributions supplémentaires :

— Nous proposons un ensemble de catégories pour classer les techniques de
correspondance entre modeles et les interprétations existantes de ces corre-
spondances entre modéles. Ces catégories nous permettent de proposer une
grille de lecture pour I'analyse et la comparaison des techniques existantes de
composition de modeéles.

— Nous proposons un langage de modélisation spéci que inspiré des catégories
pour la dé nition de correspondances génériques entre modéles et pour la
dé nition d'interprétations . Ce langage de modélisation outille la spéci cation
et la construction de nouvelles approches pour la composition de modéles.

Les contributions proposées dans cette thése ont été validées au travers de deux
expérimentations principales : (i)les catégories de correspondances et d'interprétations
ont été comparées en termes de précision et de pertinence a un ensemble signi catif
d'approches extraites de lalittérature ; (ii) un prototype logiciel a été développé et utilisé
dans le cadre du projet MOPCOM-I du pdle de compétitivité Images & Réseaux de la
région Bretagne. La validation du langage de modélisation ainsi que I'approche globale
de composition de modéles a été mise en ceuvre sur un cas d'étude proposé par Tech-
nicolor pour l'intégration de librairies existantes dédiées a la gestion d'équipements
numériques de di usion vidéo.

Composition de Modeles et Ingénierie des Logiciels

L'état de I'art sur la composition de modéles dans le cadre de l'ingénierie du logiciel
estdécrit dans cette thése au travers d'un processus en quatre étapes illustré en Figurel.
Nous proposons dans cette section (i)d'explorer I'état de la pratique du développe-
ment de logiciels de maniére a faire apparaitre comment la modularité, I''DM et la
composition de modéles participent a la construction de logiciels complexes; (ii)de

Figure 1 — Processus d'exploration de I'état de I'art de la composition de modéles

dé nir de maniére intuitive les concepts principaux de la composition de modéles et
ainsi construire une grille de lecture pour comparer les techniques de composition
de modéles existantes ;(iii) de réaliser une étude systématique de la littérature pour
valider les concepts principaux et ainsi proposer un cadre théorique uni é visant a
améliorer la réutilisation et I'adaptation des techniques de composition de modéles.

Modularité, Abstraction et Composition de Modeles

La construction de modéles dans le cadre de I''DM conduit a la production de
langages dédiés et de modéles spéci ques qui facilitent la spéci cation de systémes
logiciels. Le principe de modularitéimpose la décomposition des problémes en divers
modéles qui participent & dé nir I'ensemble des préoccupations d'un systeme parti-
culier. De ce fait, la récomposition des modéles est une tache sujette a l'introduction
d'erreurs, et particulierement chronophage. La composition de modéles propose des
solutions a ces deux problémes en automatisant tout ou partie du processus de recom-
position.

Pour illustrer la problématique que nous adressons dans cette these qui est la dif-
culté de comparer des techniques de composition de modéles et par conséquence
la di culté de les réutiliser ou de les adapter, nous avons analysé les approches de
composition de modéles proposées par I'équipe—projet Triskell. Nous voulons ainsi
démontrer qu'au sein méme d'un groupe de travail partageant la méme culture et la
méme compréhension de I''DM, les di érences de contexte et d'objectif de chaque tech-
nique de composition de modéles entrave fortement la capitalisation de I'expérience
acquise au travers de ces travaux. Nous voulons également souligner que, bien que
ces techniques de composition de modéles aient des objectifs di érents, il est possible
de détecter des points communs tels que :

— Chaque approche compose une paire de modéles.

— Chaque approche utilise un mécanisme de détection d'éléments de modéles

similaires ou équivalents (i.e, appariement)

— Chaque approche propose un mécanisme de composition basé sur les appariements

détectés au préalable.

Au sein méme de ces points communs, on observe de la variabilité. Cette variabilité
dépend (i)du résultat escompté du processus de composition, (ii)des caractéristiques
propres au modeéles, ou bien (iii) du degré de généricité proposé par ces techniques de
composition de modeéles.

Bien gu'inspirées de travaux existants dans la littérature, ces techniques ont été
majoritairement congues et redéveloppées a partir de nouvelles spéci cations et non
adaptées a partir de modules de composition existants, ce qui démontre une fois de
plus la di culté a identi er les parties communes a un ensemble de techniques de
composition de modeéles.

Jeanneretet al. proposent un cadre pour comparer des techniques de composi-
tion [JFBO8 ; Jea08] et identi ent sur une douzaine d'approches existantes, quels élé-
ments sont composés (uoi?, ou ces éléments devront étre ajoutés ou remplacés et
commente processus de composition s'applique. Bézivin et al.proposent également de
dériver un «...ensemble de dé nitions de base...» pour la composition de modéles de
fagon a créer un consensus sur la terminologie employée [BBDF06].

En étendant le concept de composition de modeles & un ensemble d'opérations
plus large, communément appelé «gestion de modéles» dans la terminologie de Bern-
stein [Ber03], nous pouvons citer les travaux de Brunet et al.[BCE+06] qui utilisent un
ensemble d'opérations sur les modéles pour comparer les techniques de composition.

On entrevoit aisément, au travers de ces tentatives pour caractériser et classi er les
techniques de composition, que la dé nition de critéres de comparaison ainsi que la
proposition d'une théorie formalisant la composition de modeles et son outillage est
une attente forte dans la communauté des chercheurs en informatique en général, et
des chercheurs en ingénierie des modéles en particulier.

Revue Systématique des Techniques de Composition de Modeles

L'utilisation étendue des langages dédiés pour le développement de logiciels né-
cessite une compréhension accrue des concepts clés de la composition de modéles.
La premiére étape vers cette compréhension nécessité de capitaliser les connaissances
acquises sur la composition de modéles. Au vu des points communs observes sur un
petit échantillon de techniques de composition et au vu des tentatives de classi cation
décrites précédemment, nous avons observé gue les correspondances entre éléments de
modéles et I'interprétation de ces correspondances in uencent les caractéristiques des
techniques de composition de modéles. En conséquence, nous proposons six types de
relations de correspondances (.e, relations permettant d'identi er des appariements)
ainsi que quinze types d'interprétations de ces correspondances (i.e, la sémantique
d'une relation de correspondance dans un contexte et pour un objectif donné) pour
améliorer la comparaison et la classi cation des di érentes approches ainsi que pour
détecter des modules réutilisables a moindre e ort.

La pertinence et la précision de ces deux catégories ont été validées au travers
d'une revue systématique de 88 techniques de composition de modéles existantes
dans la littérature. La revue systématique suit le protocole d'analyse adapté a partir

des travaux de Kitchenham [Kit04] et proposé par Biolchini et al.[BMA +05].

En bref, les observations faites sur I'état courant de la pratique dans le domaine
de la composition de modéles corroborent la classi cation intuitive des types de cor-
respondances et des types d'interprétations. Avec une précision globale de 65% pour
la catégorie de correspondances et un précision de 92% pour la catégorie d'interpré-
tations, nous démontrons que d'une part, toutes les techniques de composition de
modéles peuvent étre analysées au travers de leurs correspondances et de leurs
interprétations , et que d'autre part, les catégories proposées sont su samment ex-
haustives et précises pour classer toutes les techniques de composition de modéles
considérées.

Le protocole d'expérimentations et |a totalité des résultats de I'étude sont présentés
dans le Chapitre 1.

Travaux connexes

En comparant les approches génériques de composition de modéles (cf. Tablel),

nous proposons de traiter dans cette thése les points suivants :

— Le couplage entre un mapping et une interprétation est généralement trés élevé,
ce qui impligue de dé nir de nouvelles relations de correspondances dés que
l'objectif change et ce qui limite fortement I'adaptation et la réutilisation. Une
diminution voire une absence compléte de couplage entre un mapping et une
interprétation faciliterait d'autant la réutilisation de ces deux concepts dans des
contextes et pour des objectifs di érents.

— Le paramétrage de I'objectif global d'une technique de composition est générale-
ment manuel. Il serait préférable qu'une partie au moins de ce paramétrage
puisse étre formalisé de fagon a optimiser la construction d'approches génériques
et paramétrables pour la composition de modéles.

Les criteres proposés pour comparer les approches génériques de composition sont

détaillés en Section1.4.4

Vi

Prede ned Coupling Mapping / | Supports Composition
Characteristics | Interpretations | Interpretation various model Process Customization
GCF for mappings composition
operations

ATLAS Model Weaver | manual medium /high | * manual

(AMW) [DFB +05b] (Java Methods)

Object-Relational Mapping | * medium 1 manual

(ORM) [GG10] (Interpreter)

Relation-based Approach | * high * manual

[CNM11]

Canonical Scheme manual high 1 manual

[BBDF+06]

Model Management * high * manual

[BHPOO] (Operators)

Kompose 1 high 1 manual

[FFR+07 ; FBF-08] (Algorithm)

GeKo and SmartAdapter 1 high 2 manual

[MKB +08 ; MPL+09]

ReuseWare [HHJ}+08] 1 high * manual
(Combine
two atomic
operations)

Generic Aspect-Oriented manual medium 1 manual

Modeling Framework

[MBJ+07]

DUALLy [MMP +10] manual medium 1 manual

(State Machines)

Table 1 — Comparison of existing generic model composition frameworks (GCFs)

Un Cadre Théorique pour la Composition de Modéles

Nous proposons une dé nition originale de la composition de modéles qui s'inspire
de la notion de structure en logique mathématique et de la notion de signeen linguis-
tique. La dé nition d'un cadre spéci que pour la composition de modéles est une paire
constituée d'un mapping et d'un ensemble d'interprétations de ces mappings.

La dé nition d'une structure en logique mathématique nous permet de relier les
concepts de mapping et interprétation a une théorie fondée qui sépare concrétement
di érents concepts et qui dé nit explicitement les relations entre ces concepts. La
nature exacte de ces relations entre mapping et interprétation n'est cependant que
partiellement capturée dans I'état courant de la pratique. Nous proposons alors d'u-
tiliser des notions empruntées a la linguistique pour détailler en quoi I'objectif d'une
composition de modéles et en quoi la part d'interaction avec I'humain in uencent a
la fois ces relations entre mapping et interprétation, et I'objectif global d'une approche

Vii

générique pour la composition de modéles.

A partir de ces deux paralléles, nous proposons une dé nition de la composition
de modéles comme étant une paire constituée d'un mapping et d'un ensemble d'in-
terprétations pour ces mapppings tel que MC = hMM;l i, ot MC est la dé nition
d'un cadre spéci que pour la composition de modeles, MM est un mapping et | est un
ensemble d'interprétations.

Pour répondre a la problématique du couplage entre mapping et interprétation,
nous proposons une théorie uni ée pour la composition de modéles qui dé nit de
facon formelle les di érents types de mappings et les di érents types d'interprétations
(cf. Chapitre 2).

La construction d'un opérateur de composition de modeles spéci que a un contexte
de composition particulier est une ta ¢he di cile et chronophage. La contribution de
ce chapitre permet d'obtenir une dé nition formelle des di érents types de mappings
etdesdi érents types d'interprétations. La formalisation aide & comprendre la séman-
tigue de chaque mapping et de chaque interprétation et facilite ainsi la dé nition de
nouvelles opérations de composition.

Ce chapitre nous permet également de mettre en exergue les deux étapes de la
dé nition d'un nouvel opérateur de composition :

— Les utilisateurs sélectionnent une paire d'un mapping et d'un ensemble d'inter-
prétations qui participent a la réalisation de l'objectif de I'opérateur de compo-
sition. Cette paire devient de fait la spéci cation de I'opérateur.

— Le paramétrage de l'opérateur ainsi dé ni permet de prendre en compte le
contexte dans lequel l'opérateur de composition sera utilisé. Le contexte fait
référence a la fois aux types de modéles manipulés par I'opération mais aussi
aux spéci cités de l'opération de composition qui ne peuvent étre capturée par
les interprétations.

La Figure 2 présente ce processus en deux étapes dans le cas particulier du
développement d'un opérateur de fusion («merge ») de modeéles. La sélection d'un
mapping et d'une interprétation de ce mapping dé nit une opération de composi-
tion dont I'objectif général est la fusion de modeles. L'utilisateur doit paramétrer cet
objectif en proposant plusieurs algorithmes. Ces algorithmes permettent I'exécution
de l'opérateur de fusion sur di érents formalismes. Sur la Figure 2 par exemple, le
paramétrage permet a partir d'une unique paire d'un mapping et d'un ensemble d'in-
terprétations de proposer une opération de fusion de modéles UML ou ECore, et ce de
maniére homogeéne (les modéles sont conformes au méme méta-modéle) ou hétérogéne
(les modeles sont conformes a des méta-modéles di érents). Bien entendu, le paramé-
trage de l'opération de fusion est réalisée en fonction des exigences de I'utilisateur et
de ces besoins.

viii

Figure 2 —Une paire d'un mapping et d'une interprétation est paramétrée pour dé nir
plusieurs opérations spéci ques de fusion de modéles.

ModMap : Un Langage de Modélisation pour la Composition
de Modéles

Une approche générique pour la composition de modéles outille un objectif par-
ticulier de composition, représentant concretement un type d'opérations particuliéres
entre modéles. Le Chapitre 3 de cette thése présente I'outil ModMap (MODel MAP-
ping). Cette outil permet de dé nir des mappings et leur associer des interprétations
pour construire des langages de composition de modéles et des opérateurs de compo-
sition concrets.

L'implémentation de ModMap propose (i)un langage de dé nition de mappings
entre modeéles efou méta—modéles; (i) une sémantique opérationnelle pour chaque
type d'interprétations ; (iii) une syntaxe concréte graphique quisimpli e la spéci cation
de mappings et la sélection des interprétations nécessaires (iv)une méthodologie pour
construire de nouvelles approches générique de composition de modeles.

La méthodologie pour la construction de nouvelles approches de composition de
modéles s'appuie sur l'architecture de ModMap décrite en Figure 3.

Figure 3 —Processus de dé nition d'approche de composition de modéles spéci ques.

Le langage de dé nition de mappings entre modéles et méta-modéles (i.e, langage

d'alignement) est décomposé en quatre préoccupations telles que :

— Mapping est la représentation de mappings entre éléments de modéles (voir
Section3.2.2.).

— Filtero reaux utilisateursla possibilité de proposer des fonctionnalités de Itrage
sur les mappings (voir Section 3.2.2.1.

— Strategy représente les di érents types d'interprétations (voir Section 3.2.2.9
formalisés dans le Chapitre 2 et permet d'associer des interprétations spéci ques
a un mapping.

— Directivesreprésente un ensemble d'opérations atomiques applicables sur les
éléments de modeéles (voir Section3.2.2.9. Ces opérations servent & paramétrer
les interprétations, o rant un moyen aux utilisateurs de paramétrer l'opération
de composition de modéles pour leurs propres besoins.

Mise en ceuvre, la méthodologie améne a produire des langages d'alignements
spéci ques pour un objectif de composition donné. La prise en compte du contexte
de composition est représentée par un processus spéci que (i.e, un ensemble d'al-
gorithmes) fourni par les utilisateurs. Chaque algorithme devrait permettre alors de
traiter un cas particulier de I'objectif global de la composition de modeéles, lui-méme
dé nit par le langage d'alignement.

L'outil ModMap répond a la problématique du paramétrage de I'objectif d'une ap-
proche de composition de modéles. La construction et le paramétrage d'une approche
générique pour la composition de modéles sont basées sur des modules réutilisables
et combinables entre eux pour traiter un objectif particulier.

Mise en oeuvre et Validation

Lavalidation de notre approche et de I'outil ModMap s'appuie sur deux expérimen-
tations principales : la premiére consiste a évaluer la capacité de ModMap a redé nir
des technigues existantes pour la composition de modéles homogénes; la seconde
consiste a évaluer l'utilisation de ModMap pour des problématiques de composition
di érentes telles que l'intégration ou la synchronisation de modéles hétérogénes.

L'intégration de modéles hétérogénes fait partie du cas d'étude proposé par Tech-
nicolor pour l'intégration de librairies existantes dédiées a la gestion d'équipements
numériques de di usion vidéo. Au travers de ce cas d'étude industriel, nous avons
mis en application les principes de ModMap. L'outil dédié a l'intégration de modéles
fait actuellement I'objet de plusieurs expérimentations surdi érentes librairies. L'outil
proposé pourrait également répondre a d'autres problématiques au sein du projet
MOPCOM-I. Des études préliminaires sont en cours avec nos partenaires de France
Télécom ainsi que ceux de Thalés Systémes Aéroportés.

Les cas d'études ainsi que la validation sont détaillés dans le Chapitre 4.

Perspectives

Cette thése propose un cadre de modélisation outillé qui permet la dé nition de
mappings et d'interprétations dans le but de construire des opérateurs de composition
spéci ques. Ce cadre de modélisation est une boite a outils que les experts peuvent
utiliser et paramétrer pour répondre a des problemes particuliers de composition de
modeéles.

Nous pensons que la contribution principale de cette thése est un pas important
vers la dé nition d' opérations de composition paramétrables, s'appuyant sur des
opérateurs existants, et traitant un large spectre d'usages. Dans ce contexte, la contri-
bution de cette thése ouvre de nouvelles perspectives de recherche.

Extension de la Revue Systématique de Littérature

Dans le cadre de cette thése, nous avons mis un e ort particulier sur la dé nition
des concepts principaux de la composition de modeles, qui sont les correspondances
et les interprétations. La variabilité de ces deux concepts au sein des techniques de
composition de modéles existantes est présentée dans le Chapitrel. Les catégories
de correspondances et d'interprétations vont évoluer a mesure que le cadre théorique
sera mis en pratique. En plus de cette évolution liée a I'utilisation du cadre théorique,
nous envisageons trois pistes de recherche supplémentaires.

In uence des Activités de Développement Logiciel

Nous sommes convaincu que les activités de développement logiciel in uencent la
dé nition et la spéci cation des correspondances et des interprétations. Nous jugeons
utile de poursuivre I'analyse des données issues de la revue systématique pour extraire
des informations sur I'in uence de ces activités de développement. Nous pensons que
cette information permettrait de (i)lister les paires de correspondances et d'interpré-
tations pertinentes pour une activité de développement donnée, et ultimement de
(i) fournir une liste des techniques de composition de modéles qui supportent une
activité de développement particuliere. Nous fournissons quelques pistes a ce sujet
dans la revue systématique mais de plus amples analyses sont nécessaires.

Adaptation des Techniques de Composition Existantes

Dans les résultats de la revue systématique de littérature, on observe que certaines
technigues de composition proposent déja di érentes opérations sur un ensemble de
modéles. Dans des cas particuliers, la réutilisation ou l'adaptation de ces techniques
semblent étre des pistes intéressantes pour construire de nouvelles opérations de com-
position de modéles.

Xi

Complétude de la Classi cation

La présentation des résultats de la revue systématique de littérature sous la forme
de tables permet de détecter des paires d'un mapping avec une interprétation ainsi que
des paires d'un mapping avec une activité de développement pour lesquelles aucune
approche n'a été identifée. Dans I'optique de fournir une classi cation compléte des
technigues de composition, il serait intéressant d'identi er les raisons pour lesquelles
de telles paires n'ont pas encore été proposées dans la littérature et quels sont les dé s
scienti ques sous-jacents.

Composition de Modeles : Une Entité de Premier Ordre pour I''DM

La composition de modéles dans des environnements d'ingénierie logicielle multi-
vues est une activité clé. Bézivin et al.sont persuadés que les techniques de composi-
tion de modeéles devraient étre promues au statut d'éléments de premier ordre, tout
comme il a été fait avec les techniques de transformation de modeles [BBDF06]. En
proposant une sémantique opérationnelle pour Uni ed Modeling Language (UML),
Siobha Clarke propose que «les modéles de conception orientés acteurs puisse sup-
porter un nouveau type de concept appelé une relation de composition qui devrait
pouvoir spéci er comment les modéles doivent étre composés.» [Cla02, 8§83, p.6]. Con-
formément a la dé nition de composition de modeéles proposée dans cette thése et en
accord avec ces deux propositions, nous proposons deux perspectives de recherche
sur ce point précis.

Une Relation «Composable»dans le Meta-Object Facility (MOF)

Les observations proposées dans cette thése con rment le fait que la composition
de modeles est une technique pertinente pour adresser une large panel d'activités sur
les modeles. La composition de modeles serait alors, au méme titre que la transfor-
mation, un concept clé. La prochaine étape vers une dé nition de la composition de
modéles serait de proposer une représentation a un niveau d'abstraction supérieur de
fac a o rir aux utilisateurs un outil intégré dans leurs modélisations. Cette proposition
revient a créer un nouveau concept dans le meta-meta-modéle Meta-Object Facility
(MOF). En d'autres termes, le concept Propertydu MOF pourrait intégrer un nouveau
type d'association tel que proposé en Figure 4. Nous pourrions alors lui donner la sé-
mantique suivante qui s'inspire des propositions de sémantiques pour les associations
du MOF [OMG10a, 8§12.5, p.45] :

Property : :isComposition == true

— Un objet peut étre compos@avec plusieurs objets

— La composition cyclique est valide : I'ordre de composition est déterminé par

l'implémentation concréte des instances d'associations.

— Chaque association de type composition devrait recevoir une sémantique parti-

culiére en utilisant un langage d'action tel que Kermeta [MFJO5 ; JBF10].

La sémantique de cette nouvelle association de composition devrait inclure le
Domain-Speci c Modeling Language (DSML) de mappings et d'interprétations présenté

Xii

Figure 4 — Méta-modéle MOF : Classes de EssentialMOF et adaptées a partir de
[OMG10a, §812.2, p.40]

dans le Chapitre

The semantics of the new compositiorrelationship would include the mapping and
interpretation DSML semantics that are presented in 3. Une telle association devrait
alors améliorer la spéci cation d'opérations de composition sur les modéles et devrait
intégrer cette spéci cation au sein méme de l'activité de conception des systémes et
des langages.

Composition d'Ordre Supérieur

Une des conséquences directes de la promotion de la composition de modeles a un
niveau d'abstraction supérieur est le fait de pouvoir manipuler cette composition de la
méme fagon que tous les autres concepts. L'application de la composition de modéles
a un ordre supérieur (HOC) permettrait de composer des compositions de modéles
existantes and le but de faciliter la conception de certains systémes. Par exemple, une
HOC pourrait dé nir la composition de deux langages DSML; et DSML3 a partir de
deux compositions existantes telles que DSML; avec DSML, et DSML, avec DSML .
Proposer de manipuler des HOC devrait permettre d'ouvrir de houveaux espaces de
recherche et d'applications pour la génération d'opérations de composition a partir de
techniques existantes.

Xiii

ModMap
Extension du Champ d'Application de ModMap

Les résultats préliminaires obtenus dans la validation permettent de généraliser
la dé nition de la fusion de modéles et de redé nir quatre techniques existantes avec
un module d'appariement et un module de fusion génériques. Les perspectives sur
ce travail sont doubles : (i)évaluer le passage a I'échelle d'une telle généralisation et
découvrir les limites d'application du cadre théorique ; mettre en place un dépét de
composants de composition «sur étagere»reutilisables et extensibles pour di érentes
opérations sur les modéles.

L'utilisation de ModMap pour l'intégration et la synchronisation de modéles ap-
pelle a poursuivre les expérimentations pour d'autres activités liées au développement
logiciel telles que la dérivation de modeéles, I'orchestration de modeles, la véri cation
de consistence ou encore la recon guration dynamique de systémes a base de modéles.

Collaborations

Dans le cadre du projet MOPCOM-I and au vu des résultats encourageant de
ModMap sur le cas d'étude de Technicolor, nous envisageons de futures collabora-
tions avec di érents partenaires du projet tels que France Télécom et Thales Systémes
Aéroportés. Des réunions de travail dédiées sont actuellement menées avec nos parte-
naires de France Télécom sur la dé nition de mappings entre des WebServices et les
fonctionnalités d'un systéme existante pour automatiser la conception des interfaces
de WebServices. Thales Systemes Aéroportés propose trois cas d'étude(i)la dé nition
de mappings modéle-a-modéle pour la spéci cation de transformations entre DSML ;
(i) la dé nition de mappings entre documents semi-structurés et un DSML pour as-
surer la persistence de données (iii) la dé nition de mappings entre un DSML et une
représentation abstraite de I'environnement pour la conception d'interfaces logicielles.
En supplément des nouvelles expériementations proposées, hous envisageons de con-
tinuer le développement du prototype de fagcon a permettre son utilisation dans un
contexte plus industriel et nous envisageons de mettre en place des métriques pour
évaluer I'adéquation de ModMap avec des contextes d'utilisation particuliers.

Table of contents

Introduction 1
1 Model Composition in Software Engineering 5
1.1 Modularity in Software Engineering 5
1.1.1 Modularity e 6
1.1.2 Abstraction and Model-Driven Engineering 7
1.1.3 Modularity, Abstraction and Model Composition 8
1.1.4 A brief Overview of Model Composition Techniques 8
1.1.4.1 Kompose : A Generic Model Composition Tool 9
1.1.4.2 SmartAdapters : A Model Weaver for Variability 9
1.1.4.3 GeKo: A Generic Aspect Oriented Composer 10
1.1.4.4 Semantic-based Weaving of Scenarios 10
1.1.45 DIiscussion 11
1.1.5 Comparing Model Composition Techniques 11
1.2 Key concepts in Model Composition 12
1.2.1 Correspondences. e 13
1.2.1.1 Operator-based correspondence. 13
1.2.1.2 Pattern-based correspondence. 13
1.2.1.3 Rule-based correspondence 13
1.2.1.4 Constraint-based correspondence. 14
1.2.1.5 Model-based correspondence 14
1.2.1.6 Delta representation-based correspondence. 14
1.2.2 Interpretation 14
1.221 Overlapping 15
1.222 Cross-cutting. 16
1223 Interaction 16
1.2.2.4 Uncategorized Interpretations 18
1.3 Validating the key elements of model composition 18
1.3.1 Systematic Review Protocol 19
1.3.1.1 ResearchObjectives. 19
1.3.1.2 Model Composition and Synonyms 21
1.3.1.3 Valuable Information Characterization 21
1.3.1.4 Articles Selection Criteria and Methods 21
1.3.1.5 Studyselection. 22

1.4

1.3.2

133

134

135

TABLE OF CONTENTS

1.3.1.6 Study qualityassessment.
1.3.1.7 DataExtraction.,
Model Composition for Systems Design
1.3.21 Composition
1.3.2.2 Derivation
1.3.2.3 Orchestration.
1.3.24 Integration
Model Composition for Validation and Veri cation
1.3.3.1 Model Composition for Checking Consistency
1.3.3.2 Model Composition for Checking Correctness
Model Composition for Evolution and Maintenance
1.3.4.1 Dynamic Reconguration
1.3.4.2 Refactoring.
1.3.4.3 Adaptation
1.3.4.4 Synchronization
1.3.4.5 Reconciliation oL
Systematic Literature Review Summary
1.3.5.1 Kind of Correspondences and Distribution of Articles
1.3.5.2 Interpretation and Distribution of Articles

1.3.5.3 Software Activities and Distribution of Articles
Discussion
1.4.1 Are Correspondences and Interpretations Pervasive?
1.4.2 Is Model Composition a Common Operation?
1.4.3 Summary of the Contribution
1.4.4 Overview of Existing Generic Composition Frameworks

1.4.4.1 Relationship—based Approach
1.4.4.2 ATLAS Model Weaver and Virtual EMF
1.4.4.3 Object—Relational Mapping.
1.4.4.4 Contribution Challenges

2 A Theoretical Framework for Model Composition
2.1 Decomposing Model Composition,

2.2

2.11
2.1.2

Model Compositionisa Structure
Model Compositionis a LinguisticSign
2.1.2.1 \VariabiltyofaSign
2.1.2.2 Mapping and Interpretation Coupling
2.1.2.3 From Linguistics to Model-Driven Engineering

Towards a Uni ed Theory for Model Composition
2.2.1 Mathematical Symbols and De nitions

2.2.1.1 Domain-Speci c Modeling Language

2212 Sets.
2.2.1.3 FunctionsandRelations.
2214 Symbols. e

2.2.2 MappingDenition

TABLE OF CONTENTS 3

2.2.2.1 Operator-basedMapping 76
2.2.2.2 Pattern- or Rule-based Mapping 76
2.2.2.3 Constraint-basedMapping 76
2.2.2.4 Model-basedMapping 76
2.2.25 Delta-basedMapping 76
2.2.3 Interpretation De nition oL 77
2.2.31 “Add”Interpretation 77
2.2.3.2 “Delete” Interpretation 77
2.2.3.3 Overlapping 78
2234 Cross—Cutting 79
2235 Interaction 80
2.2.4 Model CompositionisaDSML 80
2.3 Conclusion 81
3 ModMap : A Framework for Unifying Model Composition Activities 83
3.1 An Intuitive Process for Building Model Composition Frameworks . . . 83
3.1.1 ARunningExample 83
3.1.2 AFramework for Model Merging, 85
3.1.2.1 Selection of a pair of Mapping and a set of Interpretations 85
3.1.2.2 Customization of the Framework 85
3.1.3 Generalization of the Intuitive Process 86
3.2 The ModMap Framework 87
3.2.1 Architecture Overview e 87
3.2.2 A lLanguage for (meta—)Model Alignment 89
3.2.2.1 MappingConcern 89
3.2.2.2 StrategyConcern. 0 e 91
3.2.3 A Tool for Building Model Composition Frameworks 94
3.2.3.1 Methodology and Techniques for Operational Semantics 95
3.2.3.2 Operational Semantics for the Mapping Concern 96
3.2.3.3 Operational Semantics for the Strategies Concern. . . . 99
3.2.3.4 Operational Semantics for Directives 107
3.24 ModMap Concrete Syntax oo 108
3.3 Conclusion 109
4 Validation and Application 111
4.1 Generalizing Model Merging o 111
4.1.1 Existing Tools for Model Merging 112
4111 UMLPackageMerge 112
4.1.1.2 Kompose : A Generic Model Composition Tool 113
4.1.1.3 Match and Merge of Statechart Speci cations 114
4.1.1.4 Composition of Orchestration of Services with ADORE 117
4.1.2 Capitalization on the Match and Merge Processes 120
4.1.3 Application of the Uni ed Framework 121

4.1.3.1 Model Composition Framework Customization 121

TABLE OF CONTENTS

4.1.3.2 Model-Alignment Language for Model Merging 121
4.1.3.3 MappingsandMatches. 122
4.1.3.4 A Unique Algorithm for Matching using Mappings . . . 124
4.1.3.5 AGeneric Sum Algorithm 126
4.1.4 Properties of the Merge Implementation 127
4141 DIiSCUSSION e 128
4.2 Interoperability and Heterogeneous Composition 128
421 Context. e 129
4.2.2 Technicolor Distribution and Broadcasting Devices Management 129
4.2.3 Legacy Systems and TranslationIssues 130
4.2.4 A Semi—Automated Solution for Integrating Legacy Systems . . . 130
4.2.5 Application of the Uni ed Framework 131
4.2.5.1 Model Composition Framework Customization 132
4.2.5.2 Model-Alignment Language for Model Integration . . . 132
4.2.5.3 Design Converters for the Integration of MTEP and XMS 133
4.2.5.4 Generation of Bidirectional Non Invasive Adapters . . . 136
426 Evaluation. 136
4.2.6.1 Impact of Automation on Adapters Production 136
4.2.6.2 ComparisonofEort 137
427 Discussion. 139
4.3 Bridging the Gap between Structure and Behavior in the context of SOA 140
4.3.1 Service—Oriented Architecture Background 140
4.3.2 Design a Car Crash Crisis Management System 141
4.3.2.1 The Crisis Management System. 141
4.3.2.2 The Car Crash Crisis Management 141
4.3.2.3 Domain ModelDesign 142
4.3.2.4 BusinessModelDesign. 142
4.3.3 Challenges and Synchronization Process 143
4.3.4 Identifying Model Divergences 145
4.3.4.1 Naive Synchronization withMerge 145
4.3.4.2 Divergence Detection Mechanism. 146
4.3.5 Application of the Unied Framework 148
4.3.5.1 Model Composition Framework Customization 148
4.3.5.2 Model-Alignment Language for Model Synchronization 148
4.3.5.3 Proposing and Automating Resolution Strategies 149
4.3.6 Propagation of the Resolution Strategies. 151
4.3.6.1 Name-Mismatch Strategy 151
4.3.6.2 Concept Enforcing and Concept Usage Strategies. . . . 151
4.3.7 Discussion. e 153
Conclusion 155
I.1 A Decomposition of the De nition of Model Composition 155
I.1.1 Literature Review and Observations 156

I.1.2 Formal De nition of Mappings and Interpretations 156

TABLE OF CONTENTS

1.1.3 A Framework for Unifying Model Composition Activities .. 157
[.1.4 Validation and Experiments 157
.2 Perspectives e e 158
[1.2.1 Extension of the Systematic Literature Review 158
11.2.1.1 In uence of Software Development Activities 158
11.2.1.2 Existing Model Composition Approaches Adaptation . 158
11.2.1.3 Classication Completeness 159
[1.2.2 Model Composition as a rst—class EntityinMDE 159
[1.2.2.1 *“Composable” RelationshipinMOF 159
11.2.2.2 High-Order Composition 160
[1.2.3 Application and Futureof ModMap 160
11.2.3.1 Extending the scope of application of ModMap 160
11.2.3.2 Collaborations 161
Glossary 161
Bibliography 179
List of gures 181
List of tables 183

TABLE OF CONTENTS

Introduction

Information Technology and Complexity

Information Technology has become predominant and pervasive in industry, eco-
nomics, nance, communication or transportation, to cite only a few ones. These ac-
tivities all rely on systems which help to design, to manage, to model, to improve, to
enhance orto supportthose activities. Pervasiveness of information technology leads to
the de nition of more and more complex systems to handle a wider and wider range of
situations and standard techniques for systems development and engineering are dra-
matically impacted. Combination of programs, modules or functions become a matter
of multiple actors within controlled life—cycles, possibly geographically distributed.

Dealing with Complexity

Managing and pruning complexity are recurrent problems in any scienti c rea-
soning. The activities of decomposing problems into more manageable subproblems
and propose abstract representations to hide unnecessary details are the keys to prop-
erly understand a given situation and to successfully provide solutions. The degree
to which these subproblems may be separated and recombined is the principle of
modularity.

Model-Driven Engineering (MDE) is based on the principle of abstraction which
consists in proposing partial and abstract representations to solve a given subproblem.
The MDE also proposes to shift practices from “models for documentation*“ to “models
for production” thus promoting models as rst-class entities and productive artifacts
to make software engineering more e cient, cost—e ective and safer.

Model Composition in MDE

While the application of modularity and abstraction principles helps tackling com-
plexity, designers are required to manipulate an increasing number of partial repre-
sentations. The activity of decomposing problems needs a step of recomposition at a
speci ctime to get a global representation of a system under construction and to reason
about the system as a whole for veri cation, validation and consistency checking pur-
poses. The recomposition step is however an error—prone and time—consuming activity.
Within the framework of MDE, model composition is an active eld of research that

2 Introduction

focuses on automating the composition of model-based artifacts in a multi-modeling
environment.

Genericity in Model Composition Techniques

Model composition is a challenging topic of interest in which the de nition of
new approaches should bene t from existing model compasition techniques. In the
perspective of proposing adaptable model composition approaches, genericity plays
a signi cant role. Generic model composition frameworks (GCFs) deal with various
kinds of models in various contexts. However GCFs are initially designed to tackle a
speci ¢ goal. When new goals emerge, building new GCFs may bene t from existing
GCFs and things go round and round.

Identifying Model Composition Key Concepts

Reuse and adaptation imply to identify commonalties among GCFs and shift from
composition as an operator (a single de nition for a single use — whatever large the
spectrum of composable models could be) to composition as an operation (a customiz-
able de nition and a choice of existing operators to achieve a possibly large range
of goals). However, the lack of a common formalism for analyzing and comparing
the multitude of model composition approaches hinders the identi cation of reusable
artifacts.

The main contribution of this thesis is to propose a novel definition of model
composition as a pair of a mapping and an interpretation .Amappingisaset
of alignment rules between patterns of model element to detect how similar a set of
models are. An interpretation is the representation of both the purpose of the model
composition process and the user's expectations on the model composition process
by-products. This de nition paves the way to a theoretical framework that helps
(hunifying the de nition of existing model composition techniques and (i) automating
the process of building problem-speci ¢ model composition tools.

The main contribution is supported by two subsidiaries propositions :

— We propose categories to classify existing model mapping techniques

and existing model mapping interpretations . This leads to the de nition
of an interpretive lens for analyzing and comparing existing model composition
approaches.

— We de ne a modeling language that supports the de nition of generic map-

pings among models and the de nition of interpretations . The language is
inspired from the proposed categories.

Validation

We implemented a prototype that supports the novel de nition of model composi-
tion. We validate the main contribution of this thesis through three experiments : (i)we
use the theoretical framework to unify four existing model merging techniques and

Introduction 3

propose a unique kernel for model composition; (ii)we demonstrate the applicabil-
ity of the framework on the integration of legacy Application Programming Interface
(API) for the con guration and management of heterogeneous video and broadcast-
ing equipments in collaboration with industrial partners from Technicolor 1 (iii) we
demonstrate the applicability of the framework on the synchronization of heteroge-
neous models in the context of modeling service—oriented architectures (SOA).

Outline

Chapter 1 presents the thesis background, the classi cation of the key concepts of
model composition, and the systematic literature review protocol and results. Chap-
ter 2 proposes a formal de nition of the theoretical framework for unifying model
composition approaches. Chapter 3 details the ModMap modeling language for the
de nition of mappings and interpretations and how it helps building new model com-
position frameworks. Chapter 4 lists experiments that validate the relevance of the
ModMap modeling language with regard to the de nition of model composition ap-
proaches. We conclude this thesis by providing perspectives and insights of this work
regarding future research on model composition techniques.

1. http ://www.technicolor.com /en/hi/technology/research-and-innovation-centers/rennes

Introduction

Chapitre 1

Model Composition in Software
Engineering

This chapter presents the context in which this thesis has been conducted and
draws up the state of the art in literature about the importance of this thesis topic in
computer science in general and software engineering in particular.

The purpose of this chapter is threefold : (i)Explore the current state of practice
in software development and give an overview of how modular design, MDE and
model composition bring pragmatic solutions to deal with the growing complexity of
systems;; (ii) Propose an intuitive de nition of the key concepts in model composition
to provide an interpretive lens for comparing existing model composition approaches ;
(iii) Conduct a systematic literature review on model compaosition techniques to vali-
date the proposed key concepts and ultimately propose a uni ed theoretical framework
on model composition for enhancing model composition tools reuse and adaptation.

Figure 1.lillustrates the outline of this chapter : Section 1.1 presents how model
composition helps tackle complexity in systems design and development. Section 1.2
proposes categories of the key concepts in model composition to classify existing model
composition techniques. Section 1.3 presents the protocol and results of the systematic
literature review that we conducted.

1.1 Modularity in Software Engineering

Facing a given problem, the scienti ¢ reasoning implies the decomposition of a
problem into simpler and more manageable subproblems. The activity of decomposing
problems thus put scientists in situations that they may already know or for which they
are most likely to successfully nd a solution. The degree to which these subproblems
may be separated and recombined is the very principle of modularity.

6 Model Composition in Software Engineering

Figure 1.1 — lllustration of the process followed in Chapter 1

1.1.1 Modularity

In Computer Science, modularity allows the reuse and the composition of small
chunks of programs to achieve a bigger purpose.

Inthe fties, automatic programming was a very active eld of research. Automatic
programming refers to combining various routines for a single machine to perform
the nal computation. For instance, Curry proposed a linear notation to express the
combination of program routines in [Cur54].

In the seventies, Dijkstra [Dij97] and Parnas [Par72] introduced the Separation of
Concerns (SoC) principle that invites designers to break down systems into units of
behavior or units of function to improve program composition and to control the
ever-growing complexity of systems.

In the nineties, Chandy and Taylor [CT90], Vargas—Vera [VV95] and Jackson [Jac90]
approaches addressed the challenge of software complexity in proposing to automate
the combination of units of decomposition in imperative programs. These approaches
provide answers to Jackson's statement about “[h]aving divided to conquer, we must
reunite to rule” [Jac90].

Within the Object-Oriented (OO) paradigm, the application of the SoC principle
helps designers to decompose problems into objects that represent functional unit
of the overall system. OO programming is a technology that can fundamentally aid
software engineering because the underlying object model provides a better t with
real domain problems. However according to Kiczales et al, in many situations, the
OO paradigmisnotsu cientto clearly capture all the important design decisions that
a program must implement.

Thus, Kiczales et al. proposes to separate the main concern of a system from the
non functional and cross-cutting concerns [KLM +97]. He proposes to capture non
functional and cross—cutting code of a given system into units of decomposition called
aspectsin the event of building a consistent and global view of a system, aspects
are composed with one another within an operation called weaving An aspect is
decomposed into two parts : (i)the advicecontains the code of the concern that is to

Modularity in Software Engineering 7

be woven in speci ¢ places (i.e, join pointsin the control ow of the main concern;
(ii)a pointcut descriptor that allows identifying join points within the main concern.
Most tools that support the Aspect—Oriented Programming (AOP) paradigm extend
existing programming languages such as C or Java. For instance, the AspectJ extends
Java both with a new class named “aspect” that contains pointcuts and advices, and
with a speci ¢ syntax for the de nition of both pointcuts and advices.

Considering the evolution of practices in modular design and the di culty to
tackle the ever growing complexity of systems, the MDE approach emerged as a new
approach for software engineering.

1.1.2 Abstraction and Model-Driven Engineering

The MDE approach is based on the principle that “everything is a model”. Going
further from the use of design patterngGHJ+95] and aspect§KLM +97], MDE targets
the manipulation of a large number of models to capture the various concerns of a
system. The de nition of a model, proposed by the Object Management Group (OMG)
is as follows :

[A] model is a representation of a part of the function, structure and /or
behavior of a system. [A model is a] speci cation [that] is said to be formal
when it is based on a language that has a well-de ned form (“syntax”),
meaning (“semantics”), and possibly rules of analysis, inference, or proof
for its constructs. The syntax may be graphical or textual. The semantics
might be de ned, more or less formally, in terms of things observed in the
world being described (e.g, message sends and replies, object states and
state changes, etc.), or by translating higher-level language constructs into
other constructs that have a well-de ned meaning. [OMGO01, 82.2.1, p.3]

A model encapsulates a partial and/or simpli ed description of a real “object”
from a speci ¢ point-of-view and for a given purpose. Software speci cation and
documentation are examples of abstractions that allow various people to participate,
interact and exchange speci c information about a given system under development.

The OMG proposed to go one step further and to move from “design for documen-
tation” to “design for production”, promoting models (i.e, abstractions) as rst-class
entities. In other words, models should both document software and be machine read-
able to make software development safer, cheaper and more e cient.

Building models require a modeling language that de nes the concepts (i.e, model
elements), the structure and the semantics of a model. Concepts, structure and seman-
tics are captured into a representation called a meta—model : a model at a higher level of
abstraction that de nes the modeling language of a speci ¢ model. The conformance
relationship between a model and its meta—model is such that : a model only contains
concepts from the meta—model and satis es the meta—model constraints.

Since a meta-model is yet another model, it conforms to its own meta-model that
we call meta-meta-model. Meta-meta-models are usually re exive (i.e, they de ne
their own elements, structure and semantics) to avoid the multiplication of the levels
of abstraction. In the terminology of MDE, this thesis focus on the technical space

8 Model Composition in Software Engineering

of ModelWare as shown in the pyramidal representation of meta-models (see Fig-
ure 1.2) [FEBO6].

/ A\

Figure 1.2 — A pyramidal representation of the levels of abstraction in Model-Driven
Engineering.

In the context of this thesis, we focus on the Modelware technical space which
own general-purpose modeling languages (GPML) such as MOF, UML or EMFCore
(ECore) and domain-speci ¢ modeling languages (DSML) such as SysML.

1.1.3 Modularity, Abstraction and Model Composition

Building models following the approach of MDE leads to the development of
dedicated languages and models to ease the speci cation of systems. Dealing with
complexity requires to build modular model. Modular design subsequently imposes
to create models for each concern that the system should tackle. Thus, designers are
required to manipulate an increasing number of models. This situation makes hand-
made composition an error-prone and time-consuming activity. Model composition
approaches helps in automating the process of recombining models with one another
to get dedicated and consistent views of the system under design/development.

1.1.4 A brief Overview of Model Composition Techniques

Most model composition techniques available are built for a speci ¢ purpose in a
given context. As an illustration, Sections 1.1.4.1to 1.1.4.4brie y describe the model
composition approaches proposed by the Triskell * team and its partners. This demon-
strates that even among persons who share the same culture and knowledge about
MDE and model composition, di erent contexts and purposes prevent embodying

1. http :/imwww.irisa.fr /triskell

Modularity in Software Engineering 9

the experience of individuals in the de nition of a common approach for composing
models.

1.1.4.1 Kompose : A Generic Model Compaosition Tool

Kompose [FBF08] is a model composition technique that supports merging ho-
mogeneous models (.e, models that conform to the same meta—model). The merging
process is decomposed into four steps as follows :

1. Adapting the models that are going to be merged with directives, generalized
from [RGF+06] to prepare or force the merge of two models elements.

2. Matching model elements with one another using signatures. Signatures are the
speci cation of the matching mechanism. Signhatures state on which data two
model elements should be compared with one another.

3. Merging the model elements uses re exivity and introspection. Model elements
that match are merged into a single model element while the elements with no
counterpart are added untouched in the output model.

4. Finalizing the merging process using directives to tune the output model to get
the expected result.

The Kompose tool has an extension mechanism called “specialization”. A special-
ization is the adaptation of the model merging tool to support various MOF-based
modeling languages. The Kompose approach allows automating most of the merging
process whilst providing a certain degree of customization and user interaction if the
situation requires it.

1.1.4.2 SmartAdapters : A Model Weaver that supports Variability

The SmartAdapters [MPL +09; LMV+07] approach has been developed in collab-
oration with the Triskell team, the CoCoa team 2 from the LIFL French laboratory and
the MODALIS team 3 from the 13S French laboratory. SmartAdapters has been origi-
nally designed to provide capabilities for functional or extra—functional concerns to be
reused in the context of variability. SmartAdapters is a homogeneous and asymmetric
approach to weave reusable concerns {.e, aspects) into one or several base models.
Each aspect is related to an adapter that declares a composition protocol. A compo-
sition protocol is a set of atomic operations and a set of target model elements that
speci es how the aspect should be woven with other aspects. The adapter speci cation
is the basis for identifying reusable aspects. Inspired by Software Product Line (SPL),
the composition protocol supports optional parts, variants de nition and dependency
constraints to ensure consistency. The SmartAdapters process is composed of ve steps
as follows :

1. Generating an extensible Aspect-Oriented Modeling (AOM) framework speci ¢
to a meta—model.

2. http ://www?2.li .fr /GOAL /cocod
3. http ://modalis.polytech.unice.fr /

10 Model Composition in Software Engineering

2. De ning aspects and associated weaving directives.

3. Matching all the places that match the aspect model. This step is supported by a
pattern—matching engine that relies on Drools *.

4. Processing the Drools rules in memory.
5. Weaving the base model with the aspects models at runtime.

1.1.4.3 GeKo: A Generic Aspect Oriented Composer

With GeKo (Generic Komposer) [MKB +08], Morin et al.explore the use of mappings
between di erent views of an aspect in the context of software product lines. GeKo
relies on the de nition of a pointcut model, possibly automatically generated from
an automatic Prolog-based pattern—matching mechanism, and on the de nition of
two morphisms that identify which operations can be performed on the base model
and on the aspect models. Morphisms partition the base and aspect models into sets
that contain model elements to keep unchanged, model elements to remove, model
elements to be replaced and model elements to be added in the based model. The GeKo
process is as follows :

1. Weakening the metamodel of the based model allows the de nition of abstract
pointcuts which can match a larger number of model elements in the base model.
Weakening a metamodel consists in removing constraints, declare all feature as
optional and making all abstract model elements concrete.

2. ldentifying join points is achieved by a Prolog—based pattern—matching mech-
anism that tries to match pointcut with model elements from the base model. A
Prolog query is executed over a knowledge base containing the domain meta-
model, the base model, and the abstract pointcuts and results are converted back
into a Kermeta [MFJO5 ; JBF10] data-structure.

3. Applying morphisms to match pointcuts with the advice model to compute the
sets of model elements to add, to replace, or to remove.

4, Finalizing the weaving process by constructing a result from the union of the
models elements to keep, to add and to replace, and replacing or removing model
elements that should not be part of the result. Then a “cleaning” step is performed
to delete the relationships to the model elements that have been removed in the
the rst phase of the nalization.

1.1.4.4 Semantic-based Weaving of Scenarios

In [KHJO06], Klein et al. proposed an algorithm to weave aspects into Message
Sequence Charts (MSC), taking into account the semantics of the MSCs. Aspects are
represented as alternative scenarios that address speci ¢ behavior in case the nominal
scenario cannot be executed. Providing a matching algorithm that allows the detection
of multiple minimal matchings in MSCs, they extend the matching algorithm to detect

4. http ://lwww.jboss.org /drools/drools-expert.html

Modularity in Software Engineering 11

matchings into a possibly in nite set of behaviors extracted from hierarchical MSCs
(hMSC). The global process consists of phases as follows :

1. Detect potential matches from unfolding hierarchical MSC and produce an
acyclic hMSC.

2. Detect future matches from unfolding hMSCs, starting from end nodes.
3. Replace all join points detected from the previous steps with the advice.

This approach su ers from several limitations inherent to the MSC but provide a
procedure to weave aspects into MSC at some degree. This approach does not seem
generic at a rst glance, since the de nition of pointcut and advice, and the proposed
algorithms are speci c to the MSC structure.

1.1.4.5 Discussion

In the light of these four model composition techniques, we intuitively identify
three similarities as follows :
— Every technique composes a pair of models.
— Every technique proposes a mechanism for detecting similar or equivalent model
elements (.e, matching).
— Every technique proposes a mechanism that uses matchings for combining mod-
els.
Among these very similarities, we observe variability that may depend on (i)the
result that designers expect, (ii)the characteristics of the models, or (iii) the degree of
genericity that the techniques propose. In Section 1.1.5 we discuss existing approaches
and frameworks for comparing model composition techniques.

1.1.5 Comparing Model Composition Techniques

We presented in Section 1.1.4 several model composition techniques that allow
composing models with one another in a speci ¢ context or for a speci ¢ purpose.
Inspired by previous works, these techniques were nonetheless mainly developed
from scratch. Reusing and adapting existing model composition techniques to address
new contexts or purposes is still a challenge and remains a di cult and error-prone
activity.

In [JFBO8] and [Jea08], Jeannerett al. propose a framework to compare model
composition techniques and listed a dozen dedicated model composition techniques.
The basics of Jeanneret's comparison framework is the triplet what-where-how ques-
tions identifying respectively which elements should be composed, where elements
should be inserted or modi ed and how the composition process works to get the
expected result. This work also proposes haming conventions to distinguish between
model composition, model weaving, model merging, and model alignment that are
often mixed up in the literature. As Jorg Striegnitz stated, coming to an agreement on
model composition terminology needs a “...theory of extensible languages to reason
about language ... compositions.”[C@V02, 2002, p.13]. Until now, we are not aware of
any such unifying theory or any such consensus.

12 Model Composition in Software Engineering

Extending the de nition of model composition to a wider ranger of operations
on models is usually referred as model managemenin the terminology of Bern-
stein [Ber03]. In [BCE+06], Brunet et al. proposed a framework for comparing existing
merging approaches. They propose a set of model management operations and they
identify relevant properties for a model merging operator. Similarly, Boucké et al.pro-
posed to characterize relations between various views of a system to extract a compar-
ison framework [BWH +08]. The comparison framework stresses the following three
dimensions : Usagewhich refers to the purpose of the relationships between views,
Scopewhich encompasses the range of the relationships, and Mechanismwhich details
the nature of the elements related with one another. In [Ber03], Bernstein proposed
several model management operators but still he asks for “[m]ore detailed semantics
of model management operators”’[Ber03, 2003, p.11] and a de nition of “the boundary
of useful model management computations”’[Ber03, 2003, p.12]. In [ZDDO06], Zito et al.
also propose to see the issues of “package merge and extension...in a even wider con-
text as particular problems in generic model management,...towards a general theory
of model manipulation and transformation.”[ZDD06, 2006, p.5].

Steel and Jézéquel concludes their proposition on model typing [SJO07] stating that
“[tlhe lack of proper mechanisms for typing operations on models such as model
transformations leads to brittle and overly restrictive reuse characteristics” [SJO7, 2007,
p.11]. We think that a common background for comparing and analyzing existing
model composition techniques is necessary to de ne and /or identify such reuse char-
acteristics.

Inthe light of these attempts to classify or at least organize model composition tech-
niques, the computer science community and especially the model-driven engineering
community is eager to have such a comparison tool or theory on model compaosition
to “...help giving rst class status to model composition...”[BBDF +06, 2006, p.14] and
to leverage research on model composition.

1.2 Key concepts in Model Composition

Among the multitude of model composition techniques and tools available, we
consider that organizing the body of knowledge encompassing existing model com-
position tools and techniques is the rst step towards understanding the key concepts
in model composition and leveraging the applicability of Domain-Speci ¢ Language
(DSL) in software developers and designers day-to-day activities.

In the light of Section 1.1.4.5and previous attempts to classify model composition
approaches (see Sectionl.1.5, we observe that correspondences and interpretations
of these correspondences have a strong in uence in the characterization of model
composition approaches. We expect that proposing categories of correspondences and
categories of interpretations will ease comparing, classifying and detecting reusable
modules in existing model composition techniques.

Sectionl1.2.1propose the de nition of six categories of correspondence relation-
ships that are the basis of the identi cation of the model elements involved in any

Key concepts in Model Composition 13

model composition process. Since model composition techniques work towards a spe-
ci c purpose, we propose fteen kinds of interpretation for these correspondences
divided in three categories (see Section1.2.2. Interpretation is what we de ne as the
meaning of the correspondence relationships for a given purpose in a speci ¢ context.
For the purpose of validation, we conducted a systematic literature review (see Sec-
tion 1.3to evaluate how precise and relevant each category is, regarding the state of
practice in model composition.

1.2.1 Correspondences

In the de nition of an operation that manipulates models to achieve a speci ¢ goal,
we consider correspondences as any kind of implicit or explicit relationships between
sets of models or sets of model elements. This section presents an intuitive de nition
of the six kinds of correspondences relationships (see Figure 1.3) that we propose. The
proposed classi cation is based on an extensive work on identifying correspondence
relationships from various model manipulation techniques. Sections 1.2.1.1to 1.2.1.6
present an intuitive de nition of the six categories of relationships.

1.2.1.1 Operator-based correspondence

Operator-based correspondence relationships rely on a set of functions or similar
constructs which operational semantics encompasses both the speci cation of the
correspondence between model elements and the interpretation of the correspondence.
This category includes techniques which provide prede ned operators with xed
semantics for a given purpose (e.g, [LNK +01; ASM+10; PGP+-07 ; Ber03; Bar08]).

1.2.1.2 Pattern-based correspondence

Pattern—based correspondences are patterns or constructs very similar to patterns to
both nd and express similarities between model elements. This category ranges from
very straight-forward pattern de nitions for term-matching on names or other linguis-
tic terms to complex join-points, pointcuts, signatures or morphisms that provide more
control, more expressiveness and more exibility in the de nition of correspondences
(e.g, [Cla02; Jez08 ; BSMO07 ; ACL+10; MKB+08; TTO08]).

1.2.1.3 Rule-based correspondence

Rule—based correspondences are expressed as speci ¢ rules that support identi -
cation, selection and Itering of model elements that should be in relation with one
another (e.g, [CRR+07; JWE-07 ; HKG+10; SY10; PBB09; BTFO05]). Similar to pat-
terns that consist in looking for templates adequateness to identify correspondences,
rules allow nevertheless more expressiveness and more complex computations.

14 Model Composition in Software Engineering

1.2.1.4 Constraint-based correspondence

Satisfying constraints such as pre- or post-conditions, invariants, context-free or
context-dependent is another way of detecting correspondences. We call this kind of
correspondence a constraint-based correspondence €.g, [PVSG+08 ; BBN+10; AT98;;
1K04]).

1.2.1.5 Model-based correspondence

Model-based correspondences are formally de ned by a modeling language or a
well-typed representation (i.e, a meta—model). A correspondence model is a dedicated
tree—based or graph—based representation with its own structure and semantics. The
creation of such model is often supported by an (semi—)automatic process that uses
other kind of correspondences (e.g, [BHPO0O ; MBJ08 ; NB04 ; PR04 ; SE06 ; ZLL09 ; ZC07 ;
GWO09]).

1.2.1.6 Delta representation-based correspondence

When correspondences are identi ed by analyzing the di erence between two or
more versions of the same representation, we call them delta-based correspondences.
Deltas may be captured as traces, di s (similar to version control tools), or in a dedi-
cated model (e.g, [CDRPO08 ; CRE-08 ; EPK06]).

Figure 1.3 — Intuitive classi cation of correspondences

1.2.2 Interpretation

Interpretation is what Jeanneret et al.called the “why”, that is the “...speci cation
and requirements of the [model] composition”[JFB08, 2008, p.5]. In other words, an
interpretation is what relates the correspondence relationships to the global purpose of
a model composition technique. Classifying interpretation of correspondences is sim-
ilar to intentional views proposed by Mens et al. proposed in [MMWO02]. Intentional
views de ne intention relationships between views and bound a speci ¢ meaning to

Key concepts in Model Composition 15

each intention relationship. Instead of considering the relationship and its interpreta-
tion as highly coupled, we rather distinguish the correspondence relationships from
their interpretation to allow comparing techniques with each other and to eventually
increase the reusability of the correspondence relationships and of the interpretation
(see Figurel.4). We identi ed three major situations in which model composition needs
speci ¢ interpretations to handle a wide range of software development activities :

— The creation of multiple models about the same of closely related concepts leads
to overlap . We propose seven interpretations to reconcile these models into a
uni ed representation and to deal with divergences.

— Separating concerns of abase model into reusable fragments leads t@ross-cutting
models that describe ways to alter the behavior or structure. We propose three
interpretations to re ect the changes on the base model.

— Run-time interaction between models may allow to ful ll a given goal. We
propose three interpretations that specify how models are assembled with one
another.

1.2.2.1 Overlapping

Composing a set of overlapping model with the intent to create a uni ed rep-
resentation is usually referred as model merging. Overlapping models contain same
or closely related fragments that most model merging techniques use as join point.
The seven interpretations presented below are the expression of the variability in the
merging process.

Equivalence An equivalence interpretation means that the model elements that are
related to each other have the same semantics and structure. A merging process will
create a single concept from these model elements and will aggregate their attributes
and references.

Similarity ~ Similarity is close to an equivalence interpretation in a sense that the
sets of elements have a close but still di erent structure/semantics. Small changes
are thus necessary to align the two set of models with each other to create a uni ed
representation.

Generalization A generalization interpretation implies that one set of model ele-
ments acts as a specializatiorigeneralization of another set of elements. In Object—
Oriented design, it means that one set of model elements inherits /is—inherited—by an-
other set of model elements. Specialization/generalization is very useful when models
participates in model re nement activities.

Aggregation An aggregation interpretation means that one set of model elements
“contains” another set of model elements. In Object—Oriented design, it means that
one set of model elements has ais-part-of relationship to the other set of model

16 Model Composition in Software Engineering

elements and respectively the other set of model elements has ahas-a relationship to
the source set of model elements.

Override Anoverride interpretation means that one set of model elements is replaced
by another set of model elements. This happens when a speci ¢ representation is
deprecated and we replace this representation with a more adequate one.

Information Gap An information gap interpretation means that a specic set of
model elements (i.e, a fragment of structure) is required to properly merge the set of
model elements.

Ad hoc An ad hoc interpretation applies in all other situations when the construc-
tion of the uni ed representation needs more complex computation such as model
transformations to achieve a speci ¢ manipulation on a set of model elements.

1.2.2.2 Cross-cutting

Composing a set of cross-cutting fragments (i.e, aspects) that describe ways to alter
the behavior or structure of a base model is usually referred as model weaving. Cross-
cutting aspects are associated with pointcuts that help detect the join points in the
base model and in aspects to create a meaningful and consistent representation. Model
weaving covers three interpretations that allow (i)replacing a fragment with another
one, (ii)augmenting a fragment with the contents of another fragment or (iii) removing
a speci ¢ fragment that should not participate in the de nition of the global system.

Replace Replacing an aspect with another aspectimplies that one structure or behav-
ior de ned in an aspect is not useful for a given purpose. This aspect is thus removed
and a more adequate aspect is woven instead.

Augment Aspects often represent di erent concerns that possibly work together to
achieve a speci ¢ goal. The intent of augmenting an aspect with another aspect is to
mix the structure and behavior of the concerns.

Remove Since aspects are concerns of a system, we may consider that every single
concern is not useful for every purpose of a given system. It means that for a speci c
use a of system, an aspect may be not adequate or not relevant for a speci ¢ purpose,
or may clash with another aspect. Such a situation requires an operator that allows
removing an aspect from the base model.

1.2.2.3 Interaction

Interaction interpretations refer to behavioral models only. Behavioral models de-
scribe the expected behavior of a given system. This behavior is represented as a set of

Key concepts in Model Composition 17

activities (i.e, model elements are activities) which execution has to follow a speci c
order. The order of execution is usually described on a time basis.

In this context, correspondence relationships allow to de ne an order of execution
between sets of activities.

Sequence A correspondence relationship that is interpreted as a sequence means
that model elements from one model are executed before or after the model elements
from another model.

Parallel Parallelinterpretation is close to the notion of parallelism in General-purpose
Programmation Language (GPL) : models elements from di erent models are executed
at the same time.

Co-dependency Co-dependency is the state of two sets of model elements to be
mutually dependent. Project planning and work ow management activities propose
four relations to represent the relative execution of two sets of models :
— start-to-start means the execution of one set of model elements is allowed to start
only if another set model elements has been started.
— start-to- nish means the execution of one set of model elements is not allowed
to nish until another set model elements has been started.
— nish-to-start means the execution of one set of model elements is not allowed
to start until another set model elements has been nished.
— nish-to- nish means the execution of one set of model elements is not allowed
to nish until another set model elements has been nished.

| |
I

Figure 1.4 — Intuitive classi cation of interpretations. This classi cation includes the
“add” and “delete” interpretations from Section 1.2.2.4 linked with dotted lines.

18 Model Composition in Software Engineering

1.2.2.4 Uncategorized Interpretations

As an extension to the three situations described in the beginning of Section 1.2.2
we assume that knowledge about the internal structure of a model is not necessary to
propose correspondence relationships. This situation leads to the proposition of two
additional interpretations that allows inserting or removing set of model elements to
produce an expected result. We provide the following semantics for these interpreta-
tions :

Add An add interpretation allows inserting a set of model elements into another set
of model elements. Since the correspondence relationship is drawn between models,
we may consider two situations where an add interpretation occurs :

— Experts have a tacit knowledge of the internal structure of a model and decide
to add a speci c set of model elements from one model into another model.

— The goal of the model composition operation is to include model elements that
do not exist in the model to compose. Experts thus provide enough data to build
these model elements prior to their composition.

However, if the model composition process has no data about the internal structure of
the models, we expect that the set of model elements to add will have no side-e ect
on the original set of model elements.

Delete A delete relationship allows removing a set of model elements from another
set of model elements. Similarly to the add interpretation, the remove interpretation is
used in two situations as follows :

— Experts have a tacit knowledge of the internal structure of a model and decide
to remove a speci ¢ set of model elements owned by one of the model involved
in the correspondence relationship.

— A well-known set of model elements should be discarded from the result.
However, if the model composition process has no data about the internal structure
of the models, there is no guaranty that the original set of model elements will be
changed.

1.3 Validating the key elements of model composition

We propose to validate the categories of correspondence relationships and inter-
pretation proposed in Section 1.2 against model composition techniques from the
literature. Since a multitude of model composition techniques are available to support
multiple software engineering activities in multiple domains of application, time has
come to review and reason about model composition at a higher level of abstraction.
We conducted a systematic literature review to extract and collect valuable, analyzable
and reusable information that validate the proposed categories. Detecting similari-
ties between multiple model composition techniques developed for speci ¢ purposes
provide enough insights for proposing e cient ways to de ne and build model com-
position tools for speci ¢ problems not yet addressed.

Validating the key elements of model composition 19

In the following sections, we use the protocol template [BMA +05] proposed by
Biolchini et al. and adapted from the work of Kitchenham [Kit04] to describe the
systematic review protocol (see Figure 1.5).

Section 1.3.1details the systematic literature review protocol and process. For pre-
sentation purposes, we regroup data as follows : (i)Section1.3.1.1presents problems,
research objectives and hypotheses that this review should help respectively to an-
swer, to corroborate and to validate ; (i) Section 1.3.1.2lists keywords and synonyms
that literature usually use to refer to model composition; (iii) Section 1.3.1.3details re-
quirements which characterize the relevance of the information that we gathered from
articles; (iv)Sections1.3.1.4and 1.3.1.5presents the data sources, the selection process,
the selection review and the initial list of articles selected for the systematic literature
review, with regard to selection criteria; (v)Section 1.3.1.6presents biases and threats
to the internal validity of the current systematic literature review; (vi)Section 1.3.1.7
details how we choose to list extracted data.

Sections1.3.2to 1.3.4presents the body of data that we extracted from the applica-
tion of the systematic literature protocol. Section 1.4 ultimately discusses results and
expectations with regard to the research objectives.

1.3.1 Systematic Review Protocol
1.3.1.1 Research Objectives

The systematic literature review should provide answers to the following research
questions :

Q1 Do all model composition techniques use correspondences between models or
model elements and is there a speci ¢ meaning given to these correspondences ?

Qla Do the correspondences tinto the proposed categories ?
Q1b Do the meanings re ect the category proposed interpretations ?

Q2 Do model composition goals and purposes cover a wide range of software devel-
opment activities ?

With regard to the intuitive categories of correspondence and interpretation that
we proposed in Section 1.2, we expect to validate the following hypotheses named
after the questions they refer to :

H1.0 Every model composition technique uses a set of correspondence relationships
and a speci ¢ interpretation given a speci ¢ problem

Hla.1l Correspondence relationships from the literature should correspond to the pro-
posed categories

H1b.1 Interpretations fromthe literature should correspond to the proposed categories

H1.3 The list of correspondence and interpretation is exhaustive and precise enough
to cover all model composition techniques

H1.4 We observe an even distribution of the model composition techniques in the
proposed categories

20 Model Composition in Software Engineering

N o1

(x7*
(* * 8

65)% .. 4

6% (* !

7% 2 3 p—
7x)* 2 2, .3, 4
7H(* 4 3 " E——
7%6* 3 3

757 %

) s .
MY 0
6 I

o

-

" # $ % & %' %
(

Figure 1.5 — Template proposed by Biolchini for the de nition and execution of sys-
tematic review protocol. For presentation purposes, we regroup the description of the
protocol, the extracted data, and the results into nine sections referenced on the gure.

Validating the key elements of model composition 21

H2.0 A wide range of the software life-cycle activities are supported by model com-
position technigues

1.3.1.2 Model Composition and Synonyms

The selection of a relevant set of articles relies on a proper de nition of keywords
and synonyms to look for model composition techniques. The term maodelis not pre-
cise enough to produce interesting results by itself and since some model composition
techniques often refer the the higher level of abstraction of a model to present their
approaches, we need to add metamodel as part of the keywords of interest. Looking
for model compositiobrings out a lot of results since the term compositiors overloaded
in the literature. However, this helps to capture a wider range of techniques. In ad-
dition to compositionauthors often use the terms merge(-ing) fusion, or weavingwhich
corresponds to speci ¢ applications of model composition in Software Engineering
(SE). Some of them are discussed in Sectiori.3.2

1.3.1.3 Valuable Information Characterization

The identi cation of relevant information in articles must provide answers to the re-
search objectives that we de ne in Section 1.3.1.1 The characterization of the relevance
of the information is represented as a set of requirements as follows :

R1 Authors use an explicit or an implicit representation of correspondences between
models and/or metamodels.

R2 A model composition technique has a speci ¢ purpose for which it was designed
for

R3 A set of correspondences has at least one meaning (interpretation) which is pre-
sented in the paper

From these requirements, we should gather enough data to classify existing model
composition technigues with regard to the categories of correspondence relationships
and interpretations proposed in Section 1.2 Classi cation should help comparing
model composition approaches with one another. Exploring the uses of model com-
position in various software development activities is the rst step in proposing an
interpretive lens to identify the core concepts of model composition. This will help
software designers, software architects and tool providers to reuse existing techniques
for their own needs.

1.3.1.4 Articles Selection Criteria and Methods

Articles of interest for this systematic literature review have been published in
software engineering conferences. Available and properly referenced technical re-
ports about model composition techniques are also valid candidates. The articles
are mainly written in English but French articles were also allowed. Articles that
we discuss in this review were extracted from electronic data sources including the
ACM Digital Library[Ass11], the IEEE Xplore Digital Library [IEE11b], the RefDoc

22 Model Composition in Software Engineering

Service [Inil11], the open access archive named HAL [CCS11], the IEEE Computer Soci-
ety Digital Library, [[IEE11a], the CiteSeerX Digital Library [Pen11], the IBM Technical
Journals [IBM11], and the book series of Lectures Notes in Computer Science available
on SpringerLink [Spr11].

These data sources were crawled using web-based servicesto retrieve the references
of the articles to include in the selection. We use mainly the Google Scholar [Gool1]
service but also to some extentthe Researchr [Res11], the SciVerse ScienceDirect [Els11],
the Oxford Journals [Oxf11], the ArnetMiner [KEG11] and CiteULike [Ovell] websites,
and several authors or research team projects homepages.

We perform our selection of articles using the following string that conforms to the
explanations of Section1.3.1.2:
model composition OR metamodel OR merging OR fusion OR weaving OR combination

The articles that are selected for this review are only those which discuss model
composition operators or methods and techniques leading to the de nition of such
model composition operator. The selection process starts by running the search on the
identi ed web-based search engines. Relevant articles are identi ed rst by their title
and second by reading the abstract. If the articles do not discuss model composition
techniques or discuss the speci ¢ kind of relation in UML called compositionthe article
is not included in the selection. Once a paper has been selected for review, it is read
entirely to capture valuable information. The adequateness of articles regarding selec-
tion criteria is checked by a main reviewer and at least by two more reviewers who
have an expertise on the domain of model composition.

1.3.1.5 Study selection

Among the articles that match the research criteria, some of them do not propose
any model composition technique or approach, but deal instead with industrial re-
quirements for e cient model merging [BEO9], with internal properties of a specic
composition operator [PB09], or even with identifying compatibility issues with UML2
Package Merge [ZDDO06]. The articles that were not proposing any model composition
technique or approach explicitly were removed from the set of selected articles for this
study. The complete list of articles that we selected for this systematic literature review
is presented in Table 1.1

brary migration »

Validating the key elements of model composition 23
Key Author(s) Title Year
[ACL+10] | Acher, Collet, Lahire et | « Managing Variability in Work ow 2010
al. with Feature Model Composition
Operators »
[ACL+09] | Acher, Collet, Lahire et | « Composing Feature Models » 2009
al.
[AEC+07] | Anwar, Ebersold | « Vers une approche a base de ré-| 2007
Coulette et al. gles pour la composition de mod-
eles. Application au pro | VUML. »
[AJT+09] Apel, Janda, Trujillo et | « Model Superimposition in Soft- | 2009
al. ware Product Lines »
[ASM+10] | Alférez, Santos Moreira | « Multi-view Composition Lan- 2010
et al. guage for Software Product Line
Requirements »
[AT98] Aksit et Tekinerdogan Solving the Modeling Problems| 1998
of Object-Oriented Languages By
Composing Multiple Aspects Using
Composition Filters
[BAOOQ] Bergmanset Aksit « Composing Software from Multi- | 2000
ple Concerns : A Model and Com-
position Anomalies »
[BBN+10] | Bensalem Bozga | « Compositional veri cation for 2010
Nguyenet al. component-based systems and ap-
plication »
[BCRO5] Boronat, CarsietRamos | « MOMENT : a formal MOdel man- | 2005
ageMENT tool »
[BCR+07] | Boronat, Carsi, Ramos | « Formal Model Merging Applied | 2007
etal. to Class Diagram Integration »
[BHPOO] Bernstein, Halevy et | «A vision for management of com- | 2000
Pottinger plex models »
[BKB+08] | Barais, Klein, Baudry et | « Composing Multi-view Aspect | 2008
al. Models »
[BLTN1O] Brottier, Le Traon et | « Composing Models at Two Mod- | 2010
Nicolas eling Levels to Capture Heteroge-
neous Concerns in Requirements »
[BSM+07] | Balasubramanian « Component-Based System Inte-| 2007
Schmidt, Molnar et al. gration via (Meta)Model Composi-
tion »
[BTFO5] Balaban, Tip et Fuhrer | « Refactoring support for class li- | 2005

Continued on next page

24 Model Composition in Software Engineering
Key Author(s) Title Year
[BWH10] Boucké Weyns et | « Composition of architectural | 2010

Holvoet models : Empirical analysis and
language support »
[Bar08] Bartelt « Consistence preserving model | 2008
merge in collaborative develop-
ment processes »
[Bel04] Belapurkar Use AOP to maintain legacy Java| 2004
applications
[Ber03] Bernstein « Applying Model Management to | 2003
Classical Meta Data Problems »
[CBJ10] Clavreul, Barais et | «Integrating Legacy Systems with | 2010
Jézéquel MDE »
[CDK+07] | Curbera, Duftler,Khalaf | « Bite : Work ow Composition for 2007
etal. the Web »
[CDRPO08] | Cicchetti, Di Ruscio et | « Managing Model Con icts in Dis- 2008
Pierantonio tributed Development »
[CRE+08] Cicchetti, Ruscio, | « Automating Co-evolution in | 2008
Eramo et al. Model-Driven Engineering »
[CRR+07] | Chitchyan, Rashid, | « Semantics-based composition for | 2007
Raysonet al. aspect-oriented requirements engi-
neering »
[Cla02] Clarke « Extending standard UML with | 2002
model composition semantics »
[CSNO08] Chen, Sztipanovits et | « Compositional Specication of | 2008
Neema Behavioral Semantics »
[FDVO7] Fabro, Didonet et | « Semi-automatic model integra- | 2007
Valduriez tion using matching transforma-
tions and weaving models »
[DRMM +10] | Di Ruscio, Malavolta, | « Developing nextgeneration ADLs | 2010
Muccini et al. through MDE techniques »
[EPKO6] Engel, Paigeet Kolovos | «Using a Model Merging Language | 2006
for Reconciling Model Versions »
[ES06] Emersonet Sztipanovits | « Techniques for metamodel com- | 2006
position »
[FBB+07] Fleurey, Breton, Baudry | « Model-Driven Engineering for | 2007
etal. Software Migration in a Large In-
dustrial Context »
[FBF08] Fleurey, Baudry, France | « A Generic Approach for Auto- | 2008
et al. matic Model Composition »
[DFB+05b] | Didonet, Fabro, Bézivin | « AMW : a generic model weaver » | 2005

etal.

Continued on next page

Validating the key elements of model composition 25
Key Author(s) Title Year
[FFR+07] France, Fleurey, Reddy | « Providing Support for Model | 2007
etal. Composition in Metamodels »
[FGF+08] Fritzsche, Gilani, | « Towards Utilizing Model-Driven 2008
Fritzsche et al. Engineering of Composite Appli-
cations for Business Performance
Analysis »

[GJO5] Groenmoet Jaeger « Model-driven semantic Web ser- | 2005
vice composition »

[GKR+08] | Gronniger, Krahn, | « MontiCore : a framework for | 2008
Rumpeet al. the development of textual domain
speci ¢ languages »

[GSO03] Gossleret Sifakis « Composition for Component- | 2003
Based Modeling »

[GWO09] Gieseet Wagner « From model transformation to in- | 2009
cremental bidirectional model syn-
chronization »

[HHJ+08] Henriksson « Extending grammars and meta- | 2008
Heidenreich Johannes| models for reuse : the Reuseware
etal. approach »
[HKG +10] | Hemel Kats, | « Code generation by model trans- | 2010
Groenewegeret al. formation : a case study in transfor-
mation modularity »

[IKO4] Ivkovic et Kontogiannis | « Tracing evolution changes of soft- | 2004
ware artifacts through model syn-
chronization »

[JKB+06] Jackson Klein, Baudry | « Executable Aspect Oriented Mod- | 2006

etal. els for Improved Model Testing »
[JWE+07] | Jayaraman, Whittle , | « Model Composition in Product | 2007
Elkhodary et al. Lines and Feature Interaction De-
tection Using Critical Pair Analy-
Sis »
[JZF09] Johannes Zschaler | « Abstracting Complex Languages | 2009
Fernandezet al. through Transformation and Com-
position »

[Jez08] Jezequel « Model driven design and aspect | 2008

weaving »
[KAAKO9] Kienzle, Al Abed et | «Aspect-oriented multi-view mod- | 2009
Klein eling »
[KHJO6] Klein, Hélouet et | « Semantic-based Weaving of Sce-| 2006
Jézeéquel narios »
[KIPO5] Klein, Jézéquel et | « Weaving Behavioural Models » 2005
Plouzeau
Continued on next page

26 Model Composition in Software Engineering
Key Author(s) Title Year
[KM10] Kelsenet Ma « A Modular Model Composition | 2010
Technique »
[KPPO6] Kolovos, Paigeet Polack | « Merging Models with the Epsilon | 2006
Merging Language (EML) »
[KUL +10] | Krause, Uhlendorf, | « Annotation and merging of SBML | 2010
Lubitz et al. models with semanticSBML »
[LNK +01] | Ledeczj Nordstrom, | « On metamodel composition » 2001
Karsai et al.
[LPO3] Liang et Paredis « A port ontology for automated | 2003
model composition »
[LetO7] Letkeman Comparing and merging UML mod- | 2007
els in IBM Rational Software Archi-
tect : Ad-hoc modeling - Fusing two
models with diagrams
[MBFF10] Mosser Blay-Fornarino | « Work ow Design Using Fragment | 2010
et France Composition »
[MBJO8] Morin, Barais et | « Weaving Aspect Con gurations | 2008
Jézéquel for Managing System Variability »
[MBJ+07] Morin, Barais, Jézéquel| « Towards a Generic Aspect- | 2007
et al. Oriented Modeling Framework »
[MKB+08] | Morin, Klein, Barais et | « A Generic Weaver for Supporting | 2008
al. Product Lines »
[MBN +09] | Morin, Barais, Nain et | « Taming Dynamically Adaptive | 2009
al. Systems using models and aspects »
[MMP +10] | Malavolta, Muccini, | « Providing Architectural Lan- | 2010
Pelliccioneet al. guages and Tools Interoperability
through Model Transformation
Technologies »
[MPL+09] | Morin, Perrouin, Lahire | « Weaving Variability into Domain 2009
etal. Metamodels »
[Mos10] Mosser « Behavioral Compositions in | 2010
Service-Oriented Architecture »
[NBO4] Nahrstedt et Balke « A taxonomy for multimedia ser- | 2004
vice composition »
[NMOO] Noy et Musen « PROMPT : Algorithm and Tool for | 2000
Automated Ontology Merging and
Alignment »
[NSC+07] | Nejati, Sabetzadeh | « Matching and Merging of State- | 2007
Chechiket al. charts Speci cations »
[OMKO9] Oldevik, Menarini et | « Model Composition Contracts » 2009
Kriger

Continued on next page

Validating the key elements of model composition 27
Key Author(s) Title Year

[0O007] Oliveira et de Oliveira « A Guidance for Model Composi- | 2007
tion »

[PBB+09] Perrouin, Brottier, | « Composing Models for Detecting | 2009

Baudry et al. Inconsistencies : A Requirements
Engineering Perspective »
[PBC+11] Parra, Blanc, Cleveetal. | « Unifying Design and Runtime | 2011
Adaptations Using Aspect Models »
[PDCS+01] | Paredis, Diaz-Calderon | « Composable Models for | 2001
Sinhaet al. Simulation-Based Design »
[PGP+07] Pons, Giandini, Perezet | « An Algebraic Approach for Com- | 2007
al. posing Model Transformations in
QVT »

[PRO4] Park et Ram « Information systems interoper- | 2004
ability : What lies beneath ? »

[PRB+09] Pedro, Risoldi, Buchs et | « Composing Visual Syntax for Do- | 2009

al. main Speci ¢ Languages »

[RCEO08] Rubin, Chechik et | « Declarative approach for model | 2008

Easterbrook composition »
[SE06] Sabetzadeh et | « View merging in the presence of | 2006
Easterbrook incompleteness and inconsistency »
[SFS-08] Sanchez Fuentes Stein | « Aspect-Oriented Model Weaving | 2008
etal. Beyond Model Composition and
Model Transformation »

[SY10] Shonleet Yuen « Compose & conquer : modularity | 2010
for end-users »

[TTO8] Tanseyet Tilevich « Annotation refactoring : inferring 2008
upgrade transformations for legacy
applications »

[PVSG+08] | von Pilgrim, Vanhoo , | « Constructing and Visualizing | 2008
Schulz-Gerlachet al. Transformation Chains »

[WJ08] Whittle et Jayaraman « MATA A Tool for Aspect- | 2008
Oriented Modeling Based on Graph
Transformation »

[WSO08] Weisemolleret Schurr « Formal De nition of MOF 2.0 | 2008
Metamodel Components and Com-
position »

[Wac07] Wachsmuth « Metamodel Adaptation and | 2007
Model Co-adaptation »

[Wag08] Wagelaar « Composition Techniques for Rule- | 2008
Based Model Transformation Lan-
guages »

Continued on next page

28 Model Composition in Software Engineering

Key Author(s) Title Year
[XLH +07] | Xiong, Liu, Hu et al. « Towards automatic model syn- | 2007
chronization from model transfor-
mations »
[ZCO7] Zhang et Cheng « Towards Re-engineering Legacy | 2007
Systems for Assured Dynamic
Adaptation »
[ZLLO9] Zhang, Li et Liu « An Approach for Model Compo- | 2009
sition and Veri cation »

Table 1.1 — Full list of selected articles

1.3.1.6 Study quality assessment

Three kinds of threats to the internal validity of the study have been identi ed.
We avoided selection biases by using the same search string on every session of data
sources crawling. However, the identi cation of articles of interest has been achieved
by reading the title and abstract of articles and it is possible that some references were
involuntarily not selected. The selection of articles relies on papers published in inter-
national conferences on software engineering and thus we cannot avoid publication
biases that prevent accessing non-published articles of interest. Information of interest
is captured by a manual process of reading the articles entirely. Because of the nature
of data, this process is both systematic (search for keywords) and subjective (provide a
context and extract data about purpose and interpretation mainly. This process is even
more di cult because of the use of wordings speci ¢ to each authors. The process of
peer reviewing is proposed to tackle this issue. The last threat to validity is related
with the application of Biolchini et al.guidelines [BMA +05]. We closely followed the
guidelines for conducting this experiment to avoid misinterpreting some information.

1.3.1.7 Data Extraction

As a guiding thread for further discussion on model composition, we propose to
organize the body of knowledge about model composition techniques regarding the
main activities in the software life-cycle. We do not follow any existing development
or life-cycle model such as incremental, V, Y or evolutionary life-cycles to properly
cover a signi cant part of the domain and to avoid introducing any bias. We focus
on three of four main activities in software engineering which are : (i)Design (see
Section 1.3.2 as the full range of activities for building software and systems from
scratch or by assembling existing reusable software artifacts ; (ii) Veri cation and Vali-
dation (see Sectionl1.3.3 as the set of activities for validating software, ensuring that it
behaves as expected and that it answers the end—user expectations (iii) Evolution (see
Section1.3.9 as the set of activities that deal with software maintenance, xing errors,
providing new functionalities, re-engineering existing systems or versioning software
artifacts to ensure traceability and information backup. In the following sections, we

Validating the key elements of model composition 29

investigate various model techniques under the scope of the software engineering ac-
tivities that authors claim to address. The following sections present articles of interest.
Data presentation rst focuses on the de nition of terms that represent subactivities of

a given software life-cycle activity. Then we propose a detailed presentation of articles
of interest if any for each category of correspondence relationship. The selection of
articles for which we provide more details is based on (i)the relevance of the approach
regarding both the category of the correspondence relationships and the category of
interpretation and on (ii)the number of citations gathered from electronic data sources
that we referenced in Section 1.3.1.4

s

This section lists the contributions in the literature that deal with the general activity
of designing software. We consider the following activities as subtypes of the design
activity :

1.3.2 Model Composition for Systems Design

Model Composition # The term “composition” is overloaded in the MDE commu-
nity, so we choose to focus on all activities that enable to build a system from
the union of several independent and dependent software artifacts. This de ni-
tion includes the usual terms of merging, union, weaving or fusion along with
any activity whose intent is to create a software from reusable chunks of other
systems.

Derivation &4 Derivation is borrowed from the domain of SPL, where applications
are built from the selection of variants. These variants may be represented in a
feature model / diagram for instance where designers choose which ones are part
of one product. Derivation is di erent from the de nition of model composition
above since “features” are speci ed in a speci ¢ formalism that allows identifying
relationships between features such as optionality, coupling, mutual-exclusion,
etc.

Orchestration ~% The term “composition” when related with the domain of services
engineering, is connoted with the notion of assembly. For instance, Software as
a Service (SaaS) promotes the use of multiple services and their interaction to
support user requirements. While some techniques in the literature address the
speci ¢ problem of merging internal behavior of services to create new services,
composition and composite services usually refer to what is called orchestration
in the domain of work ow. Orchestration (centralized decision) or choreography
(decentralized decision) is the activity of arranging services execution with one
another to create a fully running process.

Integration L& is another engineering activity focused on building software for a
given purpose. The main di erence with the three categories above is that it
generally manipulates existing systems as wholes. In other words, this activ-
ity produces new systems from the “interaction” of several independent and
running systems.

5. Each category is assigned a symbol to ease reading and understanding

30 Model Composition in Software Engineering

The following subsections will give details about techniques found in the literature that
address these four speci ¢ activities. Each description is completed by the description
of a selected subset of techniques that support this activities.

1.3.2.1 Composition %]n Eg

Model composition is the activity of manipulating model elements from at least
two source models to produce a uni ed representation that may be serialized (case of
merging, union or fusion) or made only available at run-time (weaving for instance).
Usually the source models are speci ed using the same meta—language, i.e, the source
models share common concepts such as entities or relationships. Most research in
the literature is focused on this speci ¢ goal of being able to produce systems from
the union of existing models, automatically or semi-automatically. The reason why
there are so many approaches is mainly because of the inherent complexity of the
domain(s) considered, the language(s) that de ne the models, and the result of the
composition that may vary depending on the user expectations. As an illustration of
model composition, we give details about six technigues as follows.

Zln %

Operator-based Correspondence

“On Metamodel Composition” In[LNK +01], Ledecziet al.proposed three UML-
based operators to build new DSML from existing metamodels. These operators sup-
port model modi cations such as equivalence, implementation inheritance and inter-
face inheritance. The equivalence operator helps to de ne and execute a full union
of two UML class objects. Implementation inheritance captures all parent's attributes
and containment relationships and “inject” them into the corresponding class. Inter-
face inheritance only deals with capturing relationships other than containment and
with binding them to another class.

Similar model composition approaches are proposed by Boronat et al. [BCRO05;
BCR+07], Kelsen and Ma [KM10], Pedro et al.[PRB+09], Henriksson et al.[HHJ+08]

and Gronniger et al.[GKR+08].
Hh

Pattern-based Correspondence

“Extending standard UML with model composition semantics” In the broader
scope of model integration [Cla02], Clarke proposed a technique for aligning artifacts
written in di erent paradigms. Along with the de nition of relationships as rst-class
entities, she proposed composition patterns to indicate how model elements from one
model should be overridden by model elements from another model. These patterns
are represented as a list of elements (classes,operations,attributes) from the model.

Similar model composition approaches are proposed by Wagelaar [Wag08], Jo-
hannesetal.[JZF09],Fleurey and al. [FBF+08], Letkeman [Let07], Nejati etal. [NSC+07],
Mosser et al.[MBFF10], Rubin et al.[RCE08], Noy and Musen [NMO0O], Emerson and
Sztipanovits [ES06], Oliveira and de Oliveira [O0O07], France et al.[FFR+07], Krause et

Validating the key elements of model composition 31

al. [KUL +10], Bouckéet al.[BWH10], Kienzle et al.[KAAKQ9], Sanchez et al.[SFS+08],
Klein et al.[KHJO06 ; KIJPO5], Jézéquel [Jez08], Moriret al.[MBJ+07], Weisemdéller and
Schirr [WSO08], Apel et al.[AJT+09], and Acher et al.[ACL +10].

o

Rule-based Correspondence

“Semantics-based composition for Aspect-Oriented Requirements Engineering”
Chitchyan et al. approach for composing requirements ([CRR+07]) is using a set of
rules to describe pointcuts and joinpoints in the requirements speci cations. Based
on a dedicated language called Requirements Description Language, they support
requirements composition using a set of prede ned operators for composition. From a
step of natural language processing, they detect “relationships” and “actions” classes
of verbs to which they bind speci c composition operations. Semantic queries are then
used to select concerns that act as the constraint to be imposed. Finally, intersections
between constraints enable to nd new requirements that come from the composition
of existing requirements.

Similar model composition approaches are proposed by Kolovos et al. [KPPO06],
Whittle and Jayaraman [WJO08], Jayaramanet al.[JWE+Q7], Brottier et al.[BLTN10], and

Oldevik et al.[OMKO09].
Hoa

Model-based Correspondence

“A vision for management of complex models” Bernstein et al. model-based ap-
proach ([BHPOOQ]) for management for complex models relies on high-level operations
on models and models mappings to manage changes and transformations of models.
The main part of the paper is focused on providing a formal de nition and semantics of
correspondences relationships (or mappings) between model elements. Composition
has two meaning in this paper. First they propose composition between mappings to
provide mappings transitivity (map(A,B) composed with map(B,C) o ers map(A,C)).
Second, they proposed a de nition of a merge operator between models. They propose
to use an additional input to the merge operator, using a delta model of the source
and target models, to drive the merge activity. Existing implementations of the merge
operator are very similar to the de nition that they proposed, for instance in [FFR +07]
and [ZDDO0g].

Similar model composition approaches are proposed by Fabro et al. [DFB+05b],
Wachsmuth [Wac07], Liang and Paredis [LP03], and Paredis et al.[PDCS+01].

Hon

Delta-based Correspondence

“Managing Model Con icts in Distributed Development” In [CDRPO03], Cic-
chetti et al.proposed a DSL for syntactic and semantics con icts. Con icts are relation-
ships between di erence models, i.e delta models. Delta models are easy to process

32 Model Composition in Software Engineering

to identify structural con icts and scenarios are thereafter used to identify semantic-
related patterns for con icts. From con icts identi cation they build a di erence model
and add new model elements to model additions, deletions and changes. From this
representation, authors propose to achieve sequential and parallel combination. Se-
gquential composition means merging modi cation conveyed by the rst model with
the second one. About parallel composition, they distinguish two kinds : parallel de-
pendent and parallel independent. Parallel independent means that changes do not
e ect the same model elements, so they apply the merge process they proposed for
sequential combination. About parallel dependent, they claim it requires additional
analysis to determine an order in the composition process. Automation of the com-
position process is achieved through the use of a set of Object-Constraint Language
(OCL) constraints with post-conditions that return collections of elements

1.3.2.2 Derivation -:%n %

Derivation is a relatively new domain of research in software engineering. The
demand of fast-paced development and production of new software from existing
products increases in a lot of domains including but not limited to telephony services
or on-board car systems. Derivation is a important activity in the context of software
product lines. It extends the traditional body of knowledge about software building
from reusable artifact in a sense that all end-products are related to one another with
the same global characteristics and expectations but tailored for speci c usages. The
following sections illustrates derivation examples found in the literature.

Fan

Operator-based Correspondence

“Multi-view Composition Language for Software Product Line Requirements”
In the context of SPL, Alferez et al. propose an approach [ASM+10] for composing
elements de ned in separated and heterogeneous requirement models using a simple
set of operators. Using a DSL called Variability Modeling Language for Requirements
Engineering to support the de nition of relationships between SPL features from
various feature models. They propose also a set of composition operators such as
insert, replace or remove that they de ne as a specic graph-transformation rule.
Those operators are then use to build SPL products from feature models.

A similar model composition approach is proposed by Morin et al.[MPL +09].

Fan

Pattern-based Correspondence

“Model-Driven Design and Aspect Weaving” In [Jez08], Jezequel explores the
relationship between modeling and aspect weaving with regard to the large domain
of software product line. The author rst pinpoints the fact that modeling is not only
abstracting but also analyzing a domain in a sense of separating various cross-cutting
and non cross-cutting concerns. Those concerns becomes then aspects that designers
can weave with one another to build a detailed design model. As the author said,

Validating the key elements of model composition 33

mixing and dealing with multiple concerns at a time to build a system is something
that engineers are able to do but what is really challenging is to quickly, cheaply and
safely change variants of aspects to build several products in the context of product
lines. Along the line of several papers about aspect weaving, Jezequel describes what
aspects are composed of and how they are composed with one another. Concepts of
joinpoints, pointcuts and advices are described as general aspect-weaving concepts
and then instantiated on the speci ¢ example of sequence diagrams where additional
issues arise. One of them is about temporality of the joinpoint detection or in other
words when a speci ¢ pointcut (as g sequence of messages) can be detected. Because
of interleaved messages that may occur when we weave multiple aspects, a specic
joinpoint may not be replaced by the advice without losing some information. To solve
this problem, the author introduces a speci ¢ operator called amalgamated sum which
helps capturing commonalties between a base model and the advice.

Similar model compaosition approaches are proposed by Apel etal.[AJT+09], Morin
et al[MBJ08 ; MKB+08 ; MPL+09], and Parraet al.[PBC+11].

Fan

Rule-based Correspondence

“Model Composition in Product Lines and Feature Interaction Detection Using
Critical-Pair Analysis” Jayaramanet al.proposed the MATA approach to compose
variant features in the context of SPL [JWE+07]. Variants are modeled as UML mod-
els and MATA allows automatic composition of such models. Relationships between
variants are captured in the MATA language and the ordering of the features may be
describe to provide additional detection of structural con icts between models. Since
MATA de nes rules on graphs, they use AGG [Tae04] to execute each rule and produce
a composed model that is then converted back in the UML language.

A similar model composition approach is proposed by Alférez et al.[ASM +10].

Fan

Model-based Correspondence

“Weaving Aspect Con gurations for Managing System Variability” In[MBJO08],
Morin et al. propose to tackle the issue of limited reusability of aspects by integrating
variability mechanisms into aspects. Using AOM concepts such as joinpoints, point-
cuts and advices, they propose a template model that expresses joinpoints in a more
generic way and that relaxes existing metamodel constraints to increase exibility in
the de nition of join points. The weaving process uses adapters that describe what is
going to be composed, where it should be composed (template model) and how it is
going to be composed (compaosition protocol). The composition protocol is described
by an adaptation model which contains prede ned adaptations operations such as
makeUnique, create, clone, setProperty and unsetProperty. Variability is addressed
by mixing SPL concepts with the adaptation model. Adapters can support variants,
optional features or dependency constraints. Bindings between the adaptation model

34 Model Composition in Software Engineering

and actual model elements is necessary for the composition protocol to properly weave
model all together.
A similar model composition approach is proposed by Parra et al.[PBC+11].

1.3.2.3 Orchestration E n -

This idea of orchestration has been an underlying activity since the early days of
Computer Science and computing. The management of software artifacts in terms of
precedence and successiveness in time has been undergone from the very day the rst
computer programs emerged until now with more complex abstractions but the basic
idea is quite the same. The term “orchestration” is part of the domain that deals with
modeling work ows, business processes and so on. Conforming to the previous de -
nition, orchestration is the de nition of how artifacts or fragments “interact” with one
another, considering these fragments as black-boxes. The following sections illustrate
orchestration examples found in the literature.

on OF

“An Algebraic Approach for Composing Model Transformations in QVT” Pons
et al. proposed an approach [PGP+07] for the orchestration of model transformation
in QVT [BBB+]. Their approach is based on using the algebraic theory of problems as
a mathematical foundation. The theory of problems de nes a problem as a quadruple
<D,R,q,I> where D is the data domain, R is the result domain, q is a binary relation on
D Randlis asetof instances of interest in the scope of the problem. By comparison
with QVT, they de ne QVT relations as problems and QVTOp [OMGO07] mappings as
solutions. Based on this analogy, they propose a set of composition operators such as
union, sequence or fork between QVT relations and QVTOp mappings. Composition
operators are included in what they call a composition calculator that automatically
compose existing QVT-based transformations.

A similar model composition approachis proposed by von Pilgrim etal.[PVSG+08].

o0 F

Operator-based Correspondence

Pattern-based Correspondence

“Code Generation by model transformation : a Case Study in Transformation
Modularity” In [HKG +10], Hemel et al. propose techniques for improving separa-
tion of concerns in the implementation of code generators for DSMLs. Using model
composition between transformation rules, they support code generation and model-
to-model transformation. Composition operators between rules represent composition
strategies such as sequential composition, deterministic choices, identi ers composi-
tion, etc. In their approach, correspondences between rules has a special meaning that
depends on the type of elements involved. When correspondence is achieved through
a rule, they composition means orchestration or weaving. When correspondence is a
speci ¢ operator “#” or a speci c transformation, then composition refers to weaving
or merging.

Validating the key elements of model composition 35

A similar model composition approach is proposed by Mosser [Mos10].

- ve

Rule-based Correspondence

“Bite : Work ow Composition for the Web” Curbera et al.present an approach
to deliver compaosition capabilities in a resource-centric environment [CDK +07], “such
that data and behavioral compositions are seamlessly supported by a common work ow-
oriented model”. Bite is a minimalist choreography language and runtime that relies
on the concepts of activity and dependency link between activities. Bite proposes a
set of basic constructs that represent actions in Web work ows such as receiving and
replying to a message, invoking a service or waiting for a xed time for a ow to ter-
minate. With regard to this de nition, Bite natively supports web data ows in which
several processing steps are connected with one another by data dependencies. Their
execution is considered as a data ow composition that executes each one of them syn-
chronously. Interactive ows, meaning web applications that ask users to provide data,
are widespread and Bite supports their de nition and execution by proposing asyn-
chronous execution and supporting seamless integration of Web interaction models
and interactions.

Similar model composition approaches are proposed by Chitchyan et a. [CRR +07],
Ponset al.[PGP+07], and Hemel et al.[HKG +10].

cn °F

Constraint-based Correspondence

“Constructing and Visualizing Transformation Chains” Based on UniTI[VAVB +07],
a uni ed representation of transformations, von Pilgrim et al.propose an approach for
representing dependencies between transformations and products of these transfor-
mations [PVSG+08]. They use traceability links to propose user-friendly visualization
of chains of transformations. UniTI framework is based on three principles namely (1)
black-boxing by hiding internal behavior of transformations, (2) external speci cation
of provided and required interfaces for each transformation, and (3) composition of
transformations that they consider as reusable building blocks. Through the de nition
and use of well-de ned interfaces for transformations, interconnecting them in the
way component can be connected with one another is pretty straight-forward.

= ve

Model-based Correspondence

“A Taxonomy for Multimedia Service Composition” In [NBO4], Nahrstedt and
Balke proposed to bridge the multimedia domain with the Web Services domain to
bene t from web service composition techniques. They propose a taxonomy frame-
work that includes metrics about web and multimedia integration. The framework also
provide partitioning the composition space into successive composition, concurrent

36 Model Composition in Software Engineering

composition and hybrid composition. This taxonomy of partitions is re ned with con-
cepts of performance, content and infrastructural support metrics to allow decompos-
ing multimedia composition problems. To give a few more details about composition,
successive composition is a composition of functionally dependent services that are
invoked sequentially. Concurrent composition is a composition of independent ser-
vices that are executed in parallel. Hybrid composition combines both successive and
parallel composition of services executions demonstrating functional dependencies
and time-based synchronization. However, authors do not give details in the paper
about how the composition is achieved.

A similar model composition approach is proposed by Bernstein et al.[BHPOO].

1.3.2.4 Integration ﬁn Eg

Integration is the design activity that allows communication between systems that
were not design to communicate. Communication is necessary to build a new sys-
tem from existing software or at least a whole that behaves like a single system. A
more usual term that describes interaction between existing system is interoperability.
While integration as a goal may be achieved with the use of composition, derivation or
orchestration, it is an activity that should take into account the characteristics of deal-
ing with existing systems. Those systems have been developed independently, which
means that it is pretty sure that they were not implemented using the same technolo-
gies. Here comes the di cult task of making heterogeneous systems interact. Second,
building a new system which integrates existing systems does not mean discarding
existing ones. Integration should then be conducted as if systems were gray-boxes,
where we have knowledge of some of the internal machinery of these systems, but
still we do not have full control on their implementation. It means that it is very of-
ten forbidden to modify existing systems to implement the integration. We must then
build some intermediate and consensual representation that we share between the
systems to be integrated. We usually consider two major ways to de ne the intermedi-
ate representation® : (1) message-based integration captures the calls and events from
one system and adapts these calls into the representation of another system; (2) Data
transformation integration requires to build an intermediate format with serialization
and unserialization from the legacy systems own data. The following sections illustrate
integration examples found in the literature.

Lin %F

Operator-based Correspondence

“Applying Model Management to Classical Meta Data Problems” In [Ber03],
Bernstein propose an extension to previous work [BHP0O] composition operators and
applies them on integration, evolution and round-trip engineering activities. From
the de nition of mappings as a representation encompassing two morphisms from
the mapping to the input model, he uses these mappings to de ne an algebra and

6. http ://en.wikipedia.org /wiki /Enterprise_application_integration#Patterns

Validating the key elements of model composition 37

implement speci ¢ model operators for model manipulation. Examples of operators
are: (1) Match that creates a mapping between two input models, (2) Di that computes
a di erence between a model to a given mapping, (3) Merge that returns a copy of
all the model elements of the input model after collapsing equivalent elements into a
single elementin the output model, (4) Compose that combines two existing mappings.
Additional operators such as Apply, Copy, ModelGen or Enumerate allows performing
speci ¢ operations on models and /or mappings.

Similar model composition approaches are proposed by Boronat et al.[BCRO5;
BCR+07], Gossler and Sifakis [GS03], and Shonle and Yuen [SY10].

Tl &

Pattern-based Correspondence

“Component—Based System Integration via (Meta)Model Composition” Bala-
subramanian et al.propose a model composition approach to integrate heterogeneous
systems [BSM+07]. The integration process creates a new DSML from existing DSML
and is supported by their System Integration Modeling Language (SIML) tool. They
propose to map interfaces from di erent technologies to achieve integration. Mapping
of interfaces involves (1) “mapping datatypes from source to target technology”, (2)
“mapping exceptions from source to target technology” and (3) “mapping languages”,
that is “mapping datatypes while accounting for di erences in languages at the same
time”. Di erences between technologies should be considered at a low-level of abstrac-
tion to allow providing mappings for protocols, to allow discovering components and
to allow providing mappings for Quality of Service (QoS) mechanisms. The composite
DSML obtained by SIML de nes the semantics of the integration process which might
include reconciling di erences between technologies. Elements from sub-DSMLs are
black-boxes which behavior and structure cannot be modi ed.

Tl, &7

Rule-based Correspondence

“Compose & Conquer : Modularity for End-Users” In [SY10], Shonle and Yuen
propose an innovative approach for providing end-users with on-the- y solutions
that may possibly involve complex computation. The list of solutions is built from
a “creativity engine” that selects existing modules and compose the modules with
one another to provide integrated solutions. Selection of modules and libraries and
the various ways to compute the expected result are supported by ontology-based
computation. The approach is similar to code mashups since it requires adapters for
every candidate library or module but they do not need to know the modules names.
They presented two examples, one about producing a PDF document from a JPEG
document in various ways, and the other example dealt with crawling a website to
get the phone number, address and city of a restaurant from data scattered in various
places and various content types.

Similar model composition approaches are proposed by Bernstein [Ber03] and
Balasubramanian et al.[BSM+07].

38 Model Composition in Software Engineering

n

Model-based Correspondence

“Information Systems Interoperability : What Lies Beneath ?” Park and Ram
proposed a framework for helping the integration of databases [PR04]. The frame-
work is called Con ict Resolution Environment for Autonomous Mediation (CREAM)
is designed to identify semantically related data from di erent databases and resolve
semantic con ict among them before the integration process. The framework relies
on schema for modeling data and shareable data from the databases, ontologies for
capturing contextual knowledge, mappings between schema to generate valid local
queries, relationships between concepts of knowledge for semantic reconciliation and
mediators to detect con icts between schema and provide data access and transfor-
mation.

Similar model composition approaches are proposed by Liang and Paredis [LP03],
Paredis et al.[PDCS+01], Malavolta et al.[MMP +10], Clavreul et al.[CBJ10], and Del
Fabro and Valduriez [FDVO7].

1.3.3 Model Composition for the Veri cation and the Validation
of Systems

This section presents techniques from the literature that address veri cation and
validation of systems.

Software veri cation and validation processes determine whether the de-
velopment products of a given activity conform to the requirements of that

activity and whether the software satis es its intended use and user needs.
[IEEOS5, 81, p.1]

Validation is the process of

providing evidence that the software and its associated products satisfy

system requirements allocated to software at the end of each life cycle
activity, solve the right problem (e.g, correctly model physical laws, im-

plement business rules, use the proper system assumptions), and satisfy
intended use and user needs. [IEEOQ5, §3.1.35, p.9]

Veri cation is the process of

providing objective evidence that the software and its associated products
conform to requirements (e.g, for correctness, completeness, consistency,
accuracy) for all life cycle activities during each life cycle process (acquisi-
tion, supply, development, operation, and maintenance) ; satisfy standards,
practices, and conventions during life cycle processes; and successfully
complete each life cycle activity and satisfy all the criteria for initiating suc-
ceeding life cycle activities (e.qg, building the software correctly). [IEEQ5,
§3.1.36, p.9]

This section lists the articles in the literature that deal with model composition to
validate and/or verify software. We focus on the following activities as subtypes of the
V&YV activity :

Validating the key elements of model composition 39

Checking Consistency ensures that a system design is complete and detects de ni-
tion overlaps or con icting situations otherwise. Model composition techniques
propose methods to identify con icts, resolve overlaps and ensure completeness.

Checking Correctness ensures that a system produces data that is valid against
the values expected by the same system or another system in interaction. Model
composition techniques provide global representations that suit well with satis-
fying a set of constraints or rules for data correctness.

The following subsections give details about techniques found in the literature that
address these two speci ¢ activities. Each description of an activity is completed by
the description of a selected subset of techniques that support this activity.

1.3.3.1 Model Composition for Checking Consistency n

Checking the consistency of a system is ensuring that the data ow of a system
remains consistent between two transactions. This is particularly true for databases
systems : each time a data is changed, the integrity of the database must remains.
In other words, the transaction should not introduce invalid data or else be canceled.
Broadening the de nition to general-purpose software, checking consistency implies to
be consistent with a set of rules which are either provided by the system's architecture
or design, or by the business domain which the system targets. The following sections
illustrate consistency checking examples found in the literature.

Operator-based Correspondence

“Consistence Preserving Model Merge in Collaborative Development Process-
es” In[Bar08], Bartelt proposes mechanisms to synchronize models in a collaborative
development environment. The author proposes a merge operator for multiple ver-
sions of the same model, this operator ensuring consistency of the merged model. By
analogy with traditional document merging tools such as SVN or CVS, Bartelt pro-
poses several atomic operators such as add or delete and a set of mappings such as
changeditem, predecessors or successors for revision tasks. In addition to these op-
erators, two functions are provided : (1) changeState that determines the last change
operation on an information item and (2) mergeState that determines the information
items of a document after processing all changes of a revision task and its predeces-
sors. However the author speci cally mentions that all these structures are not enough
for building valid model merging tools so the author focuses instead on consistency
checking. Consistency checking is dealt with in terms of checking constraints on mod-
els but no mechanism for automatically solving inconsistencies is proposed. It still rely
on developers meetings for providing solutions.

Pattern-based Correspondence

40 Model Composition in Software Engineering

“Managing Variability in Work ow with Feature Model Composition Opera-
tors” Acher et al.propose to compose parameterized services into work ows using
SPL and AOM techniques in [ACL +10]. Their intent is (1) to capture commonalties
and variabilities in parameterized services and (2) to provide support for tailoring
and composing services. Using a set of composition operators, they insert a concern
into the description of services and they merge models of connected services with one
another. The set of operators are based on join points to express where concerns have
to be woven in the description. The current approach deals with merging services with
the same names. The composition operators o er consistency checking facilities such
as verifying that sequential, concurrent or condition-based communication between
services is con ict-free when reasoning on the global work ow.

Similar model composition approaches are proposed by Fleurey et al. [FBF08],
Noy and Musen [NMOQQ], and Barais et al.[BKB+08].

Rule-based Correspondence

“Composing Models for Detecting Inconsistencies : A Requirements Engineer-
ing Perspective” In [PBB+09], Perrouin et al.propose a generic composition frame-
work which extracts information from heterogeneous models and translate it into a
set of fragments. The fragments are composed with one another to check for under-
speci cation and inconsistencies. The fragment composition (or fusion in their termi-
nology) process is driven by a set of fusion rules which are either equivalence rules
(ER) or normalization rules (NR). ERs are operations that replace equivalent objects
by a composed object and NRs transform fragments to detect inconsistencies. ER are
atomic operations on models which computes the union of a source and a target object.
NRs are constraints used to detect false positive inconsistencies.

Similar model composition approaches are proposed by Whittle and Jayaraman [WJ08],
Jayaramanet al.[JWE+07], Perrouin et al.[PBB+09], and Brottier et al.[BLTN10].

n
Model-based Correspondence

“An Approach for Model Composition and Veri cation” Zhang et al.propose a
model weaving framework [ZLL09] that de nes a set of model composition operators
that are related with source and target models. These models are transformed into
Alloy and a LinkModel captures the composition relationships (LinkPoints) between
model elements with precise semantics. The LinkModel is transformed into Alloy
and drives the model composition engine. Running the Alloy Analyzer on top of this
LinkModel, we obtain valid instances of the composed model and we can check that
the composition de nition is consistent.

Similar model composition approaches are proposed by Park and Ram [PR04],
Zhang et al.[ZLL09], and Sabetzadeh and Easterbrook [SE06].

Validating the key elements of model composition 41

Delta-based Correspondence

The approach proposed by Cicchetti et al. [CDRP08] and presented in details in
Section 1.3.2.1also applies for checking model consistency.

1.3.3.2 Model Composition for Checking Correctness n

Validating how a system or component behaves regarding the data it reads or
produces requires the full picture of the system. Checking data for each component
does not implies that the composition of all components produce data that is still
correct. The following sections illustrate correctness checking examples found in the
literature.

Pattern-based Correspondence

“Annotation and merging of SBML models with semanticSBML” In[KUL +10],
Krause et al.propose a tool to check and edit MIRIAM annotations and SBO terms in
SBML models. SBML (Systems Biology MArkup Language) is the leading exchange
format for mathematical models in Systems Biology. Semantic annotations link model
elements with external knowledge via unique database identi ers and ontology terms.
The proposed model merging process joined duplicate elements of two models. Match-
ing elements relies on a comparison of their MIRIAM annotations to resolve name
di erences. The composition process is driven by the modeler interpretation of the
models and the semanticSBML tool help modelers to detect syntactic and semantic
con icts. The main purpose of using model merging on SBML models is to build a set
of validity criteria for SBML models.

A similar model composition approach is proposed by Jackson et al.[JKB+06].

n
Constraint-based Correspondence

“Compositional Veri cation for component-based systems and applications”
Bensalemet al. propose an algebraic model [BBN+10] that states how a system com-
posed of atomic components may satisfy a given global invariant. They compute
interaction invariants for each component of the system and they compute component
invariants to obtain the set of reachable states of the system. This iterative method
produces invariants that are progressively stronger and thus satisfying these invari-
ants should lead to better veri cation of the system. They demonstrate their approach
on checking for deadlock situations not considering synchronization-based deadlocks
and four other use-cases.

Model-based Correspondence

42 Model Composition in Software Engineering

“View Merging in the presence of incompleteness and inconsistency” In[SEO06],
Sabetzadeh and Easterbrook propose an approach for merging overlapping views of
a single system. Views are used by many people with di erent skills and their own
understanding of the system. It leads to "have discrepancies over the terminology be-
ing used" or on the semantics or the structure of the elements being used. The authors
propose a framework for merging these incomplete or inconsistent views based on a
graph-based formalism. Domain experts annotate these graphs with a degree of knowl-
edge to express their con dence in the design. This degree of knowledge participates
in the detection of inconsistencies or incomplete speci cations. The process of merging
views is based on a disjoint union of the graphs nodes and edges and knowledge
about how to resolve inconsistency and incompleteness is captured in both connec-
tors (fragments of graphs that contains overlapping elements) and correspondences
between the elements from the connector and the elements from the views. The corre-
spondences are interpreted as equivalences between graph elements or addinghiding
speci ¢ graph elements. All correspondences have to provided explicitly since the
merging process does not embed any matching mechanism.

1.3.4 Model Composition for the Evolution and the Maintenance of Sys-
tems

This section presents techniques from the literature that deal with the evolution of soft-
ware. Evolution in Computer Science represents a large part of the software life-cycle to
cope with environment changes, end-users expectations evolution, technological ad-
vances and bug correction. We consider the following activities as subtypes of software
evolution and maintenance :

Dynamic Recon guration Adaptation of a system once it has been deployed for
being used by end-users is an active eld of research. Due to the increasing
pace of evolution in software, software have to be adapted constantly and this
activity may require relative long time of shutdown. In contexts where service
unavailability is not possible or nota ordable, systems have to be adapted while
running. Compared to static adaptation, dynamic (or runtime) adaptation re-
quires speci ¢ mechanisms to both keep the system running and to provide
synchronous or asynchronous ways to modify a system. Examples of dynamic
adaptation are “fast-switch” of contexts or degradation and requires also speci ¢
validation techniques before deployment to avoid loss of service.

Refactoring The refactoring activity is the application of “a set of ... restructur-
ing operations (refactorings)” [Opd92, p.2] on an existing software design or
implementation. William Opdyke give the following de nition to refactorings
as:

Refactorings are reorganization plans that support change at an inter-
mediate level. ... While refactorings do not change the behavior of a
program, they support software design and evolution by restructuring

Validating the key elements of model composition 43

a program in a way that allows other changes to be made more easily.
[Opd92, 81.2, p.10-11]

Goals of refactoring are numerous and to give some examples, we may think
about increasing maintainability using design patterns or SoC, improve read-
ability by adding comments, or removing dead code using analysis techniques.

Adaptation Adapting a software has several goals. While it may refer to refactor-
ing, the meaning we choose here is adapting a system to be able to communicate
with another piece of software. Similarly to integration at design-time, develop-
ers have to provide adapters, wrappers, proxies, facades, etc. to achieve systems
interaction and inter-communication.

Synchronization Synchronization is another activity involving several indepen-
dent systems. Contrary to adaptation which refer to build a new software from
existing ones, synchronization is focused on ensuring consistency between sys-
tems while considering them as di erent entities.

Reconciliation Reconciliation is an activity that focuses on synchronizing two
representations of the same system. These representations have a common an-
cestor from which they evolved independently. This is a very common use case
in versioning systems.

1.3.4.1 Dynamic Recon guration n

In the literature, we found a single approach that deals with dynamic recon gura-
tion of systems. This approach proposed by Morin et al.is detailled in the following
section.

Pattern-based Correspondence

“Taming Dynamically Adaptive Systems using Models and Aspects” In[MKB +08],
Morin et al. propose an approach to tackle the challenge of recon guring Dynamic
Adaptive Systems at runtime. These systems rely on modes that capture the current
state and con guration of the system. They use Aspect-oriented Modeling techniques
and generative approaches to tackle the combinatorial explosion in the computation of
modes for these systems. They propose a ve-step process as follows : (1) gather data
about the current con guration and build an abstract representation of the running
system, (2) compute a con guration on-demand with aspect weaving techniques, (3)
generate recon guration scripts, (4) validate the new con guration and (5) adapt the
running system with the new con guration. The construction of a con guration is
supported by SmartAdapters [LMV +07], an aspect-weaving tool that uses join points,
pointcuts and advices to specify what, where and how aspects are woven with one
another. Additional correspondences are implicitly created in step 4 in which the
comparison of the new con guration with the original one produces a match model
and a di model. The match model captures which model elements are equivalent

44 Model Composition in Software Engineering

whereas the di model includes "addition /removal of components/bindings, changes
in attributes values, etc.".

1.3.4.2 Refactoring n

The following sections illustrate examples of approaches found in the literature
regarding refactoring existing systems.

Operator-based Correspondence N
The approach proposed by Berstein [Ber03] and presented in Sectionl.3.2.4also applies
for system refactoring.

Pattern-based Correspondence

“Annotation Refactoring : Inferring Upgrade Transformations for Legacy Ap-
plications” Tansey and Tilevich proposed an approach for performing legacy appli-
cations refactoring [TTO08]. The paper is intended to solve the problem of upgrading
text- and name-based frameworks into metadata-based frameworks, speci cally with
annotations. Using metadata from these annotations, they are able to infer general
transformation rules to perform the refactoring. From a set of representative examples,
users guide the inference engine by de ning upgrade patterns and parameterize the
transformation engine using provided generated rules. Representative examples are
classes or interfaces that uses framework features that di er between versions or ven-
dors. Di erences may occur in types, method signatures, elds, annotations, imports
or statements. Upgrade patterns capture the refactoring for many upgrade scenarios.
Patterns are de ned within what we may call scopes such as : (1) bottom-up when
changes in the code depend of the enclosing class, (2) top-down when a speci ¢ class
migration imposes a special structure, or (3) identity when correspondences are found
between elements of the same type. From the analysis of these representative examples,
authors build transformation rules from a speci ¢ DSL that eases further changes by
end-users. To help the de nition of transformation rules, representative examples are
analyzed by an inference algorithm that generates a set of rules for a given refactoring.

A similar model composition approach is proposed by Belapurkar [Bel04].

Rule-based Correspondence :

“Refactoring Support for Class Library Migration” In [BTFO5], Balaban et al.
propose a technique for automatic migration of applications that use legacy library
classes. Based on mappings between legacy classes and their replacement classes, they
use type-based constraints to determine where it is possible to migrate code without
e ecting the program's type-correctness or behavior. Type-based constraints are a for-
malism for expressing relationships between the types of declarations and expressions

Validating the key elements of model composition 45

that are used for type-checking, type inference or refactoring. These constraints are
generated from the Abstract Syntax Tree (AST) of a program. Solving these constraints
isthen achieved by a speci c algorithm. A solution encompasses the maximum number
of legacy classes that can be transformed to their replacement classes.

Similar model composition approaches are proposed by Bernstein [Ber03] and
Fleurey et al.[FBB+07].

Model-based Correspondence n

“Metamodel Adaptation and Model Co-Adaptation”
Di erent from previous approaches on a more “classic” de nition of refactoring, the
work of Wachsmuth [Wac07] on the adaptation of meta—models and models is another
illustration of refactoring in a more general meaning. We intentionally classi ed this
paper in the Refactoring Section because of the de nition that we give of Refactoring
versus Adaptation. In this paper, the author propose to propagate the changes of a
meta—model to the models that conform to this meta—model. This allows keeping con-
sistency and validity of existing models regarding changes. Wachsmuth proposes eight
types of relationships between meta—models to capture changes and evolutions. Rela-
tionships are used to map meta—models together, considering equivalence, submodel
or enrichment, variation or extension, instance or semantic preservation, etc. Based on
this theoretical basis, they achieve meta—model evolution through the development of
a set of Query/View /Transformation (QVT) relations. Once the meta—models have been
related with each other, speci ¢ transformations are available for refactoring models.
Refactoring may or may not be necessary, depending the type of relations. For instance,
adding new instances should have no impact on old instances whereas modifying re-
lationships cardinality (and by the time, restricting relations) may need refactoring for
some instances that do not meet the new requirements.

Similar model composition approaches are proposed by Bernstein et al.[BHPOO],
Fleurey et al.[FBB+07], and Zhang and Chen [ZCO7].

1.3.4.3 Adaptation n

The following sections illustrate examples of approaches found in the literature
regarding adaptation of existing systems.

n
Operator-based Correspondence

The approach proposed by Berstein [Ber03] and presented in Sectionl.3.2.4also applies
for system adaptation.

n
Pattern-based Correspondence

The approach proposed by Tansey and Tilevich [TT08] and presented in Section 1.3.4.2
also applies for system adaptation.

46 Model Composition in Software Engineering

n

Rule-based Correspondence
The approach proposed by Berstein [Ber03] and presented in Sectionl1.3.2.4also applies
for system adaptation using rule-based correspondences.

Constraint-based Correspondence

“Solving the modeling problems of object-oriented languages by composing
multiple aspects using composition lters” Aksit and Tekinerdogan proposed
Composition—Filters [AT98] to validate or invalidate a message that is received by
an object in an object-oriented based application. Filters are conditions or constraints
with a special “action” part which is either reject a message or dispatch a message.
| selected this approach as the illustration of an alternative way to weave aspects in
an aspect-oriented approach for objects that were not designed to be reusable in the
rst hand. Every Iter is an extension of an existing class and is de ned using the
class elements such as the operations. Allowing or rejecting messages are one way
to adapt existing elements and provide adaptation mechanisms without modifying
existing objects speci cations.

Model-based Correspondence

“Towards Re-Engineering Legacy Systems for Assured Dynamic Adaptation”
In [ZCO7], Zhang and Cheng propose a model-driven approach for adapting legacy
systems that were not meant to be adapted. Adaptation must also ensure that the sys-
tems still ful Il their intended purpose and that the systems correctness is preserved.
Using UML models to bridge the gap between software veri cation and software im-
plementation, they propose Petri nets based representations to produce an adaptation
model. Based on previous work about formalizing a subset of UML diagrams using
mappings between meta—models, they integrate a reverse-engineering step to tackle
legacy and newly developed code adaptation. They propose thus a four-step process
that (1) selects a set of legacy programs to be adapted from requirements analysis, (2)
translates these programs into UML Statecharts diagrams for veri cation, (3) helps
developers to create an adaptation model for veri cation, and (4) integrates and trans-
lates adaptation models into executable programs. This technique is invasive which
means that legacy programs have to be modi ed to use the adaptive programs that
have been generated along the adaptation process.

A similar model composition approach is proposed by Bernstein et al.[BHPOO].

1.3.4.4 Synchronization n

The following sections illustrate examples of approaches found in the literature
regarding synchronization of existing systems.

Validating the key elements of model composition a7

Operator-based Correspondence

“Towards Automatic Model Synchronization from Model Transformations”
Based on existing model transformations, Xiong et al.propose an approach for synchro-
nizing the models involved in the model transformations [XLH +07]. Given a specic
transformation, they have implemented a set of ATL rules to build a synchroniza-
tion system. Since ATL rules only provide a one-way transformation, they calculate
the backward transformation by extending the ATL Virtual Machine with push-back
functions. The synchronization step relies on two common operators in model-driven
engineering. The rst one deals with identifying di erences between two versions of
the same model. The second one called Merging achieves the merging of two models
by unifying the sets of their model elements. To keep track of di erences and to guide
the merging process, di erencing two models produces metadata that are concretely
bound to the original model using annotations. These annotations indicate if a model
element has not been modi ed, or if it has been replaced, or if it has been inserted, or
if it has been deleted. Using these tags, they are able to produce di erent models that
includes modi cations from the target model or the source model and that we should
propagate. Propagation if performed by the merging operator and according to a set
of rules provided by the authors for con icts resolution, both the target model and the
source model are updated.

n
Rule-based Correspondence

The approach proposed by Xiong et al.[XLH +07] and presented in Section1.3.4.4is an
hybrid approach that uses both operator-based and rule—based correspondences.

. n
Constraint-based Correspondence

“Tracing Evolution Changes of Software Artifacts through Model Synchroniza-
tion” In [IKO4], Ivkovic and Kontogiannis use model transformations to achieve
model synchronization. Their approach rely on a set of rules and relationships to cap-
ture dependencies or equivalence between models and to evaluate if these models
are synchronized or not. They propose a new metamodel for the de nition of models
with synchronization capabilities. This generic metamodel is called Graph Metamodel
for Synchronization. Based on the information captured in this language and a set
of mappings, they propose another language to synchronize existing models. Mod-
els that conform to the transformation language contain the concrete algorithm for
propagating changes from one model to the other and vice-versa.

Model-based Correspondence

“From Model Transformation to Incremental Bidirectional Model Synchroniza-
tion” [GWO09] is an extension of [GWO06] where Giese and Warner use Triple Graph

48 Model Composition in Software Engineering

Grammar (TGG) to synchronize models. In TGG, transformation designers manip-
ulates three models that correspond to the source model, the target model and an
additional correspondence model that de nes mappings using prede ned classes and
associations. Information gathered in the correspondence model is very similar to the
information that we may capture to build transformation traces. Using TGG, designers
also manipulate “stereotypes” on classes and relations between the source model, the
correspondence model and the target model. These “stereotypes” carry information
about the possible creation or deletion of an element during the model transformation
process. Based on the correspondence model, Giese and Warner propose an algorithm
to navigate through this model and synchronize the two models.

A similar model composition approach is proposed by Wachsmuth [Wac07].

n
Delta-based Correspondence

“Automating Co-Evolution in Model-Driven Engineering” This work of Cic-
chetti et al.[CRE+08] propose an approach for vertical co-evolution, i.e, synchronize
a metamodel and its conforming models in the case of modi cations. Based on a
model-based representation of di erences between models, they automatically gener-
ate a transformation that performs the necessary synchronization steps. The di erence
metamodel that captures the di erences between models is automatically generated
from the source and target models. They end up with a new language that is dedicated
torepresentdi erences for agivenlanguage. Di erences are characterized within three
categories : additions, deletions or changes. Once the di erence model is computed,
two transformations are generated, one from the source to the target and one from
the target to the source. These two transformations may then be used to synchronize
source and target models with each other.

1.3.4.5 Reconciliation n

The following sections illustrate reconciliation with examples from the literature.

n
Operator-based Correspondence

The approach proposed by Bartelt. [Bar08] and presented in Section 1.3.4.4also applies
for system reconciliation.

Rule-based Correspondence

“Using a Model Merging Language for Reconciling Model Versions” Engel et
al. propose an approach for reconciling di erent versions of a model and to provide
automatic versioning [EPKO06]. Their tool uses a di erencing and merging process
with possible interaction with developers, to identify how to compose versions of a
model. Using Epsilon Merging Language (EML) [KPPQ06], they de ne matching and
merging rules for reconciling versions of models. Matching rules compares model

Validating the key elements of model composition 49

elements from the input models to identify equivalent model elements. The merging
process is realized by merging rules which state how to elements have to be composed
with each other and how to compute the merged element. In the speci ¢ example of
models reconciliation, they use matching rules to detect which elements have been
added or deleted between two versions of a model. Detecting changes is also part
of the matching process however no step in the merging process refers to it so this
interpretation is discarded. Once model elements are marked to be added or deleted,
the merging model follows a straight-forward algorithm for deleting /adding model
elements from/to the resulting model. Attributes and relationships between model
elements are handled in a fourth and fth steps.

n
Model-based Correspondence

The approaches proposed by Wachsmuth [Wac07] and Bernstein et al.[BHPO0Q] and
presented respectively in Section 1.3.4.2and in Model-based correspondence in Sec-
tion 1.3.2.1also applies for system reconciliation.

n
Delta-based Correspondence

The approach proposed by Engel et al.[EPKO06] and presented in Section 1.3.4.5also
uses delta-based correspondences. The approach proposed by Cicchettet al. [CDRPO0S8]
and presented in Section 1.3.2.1also applies for system reconciliation.

1.3.5 Systematic Literature Review Summary

The systematic literature review provides examples that supports the categories
of correspondence and interpretation that we presented in Section 1.2 This section
presents results from the systematic literature review to summarize the distribution
of articles regarding (i)the kind of correspondence that they use (see Section1.3.5.)),
(ithe kind of correspondence that they use against the interpretation of these cor-
respondences (see Sectiorl.3.5.2 and (iii) the kind of correspondence that they use
against the software development activity (see Section 1.3.5.3. We provide additional
discussion and validation with regard to the research objectives in Section 1.4.

Raw results from the systematic literature are presented in Section 1.3.5.1 1.3.5.2
and 1.3.5.3 Section1.4discusses the research objectives proposed in Sectiori.3.1.1

1.3.5.1 Kind of Correspondences and Distribution of Articles

From the total number of 88 articles, 19 use operator-based correspondences, 32
use patterns to de ne correspondences, 15 use rule-based correspondences, 4 use
constraint-based correspondences, 24 use models to represent correspondences and 3
use delta-based correspondences. The sum of the distributed articles is greater than
the total number of articles since some approaches are hybrid (see Figure 1.6) such as
operators with patterns, operators with models, patterns with models.

Results corroborate the Hla.1 hypothesis from Section 1.3.1.1: every model com-
position technique has successfully been assigned a kind of correspondence from the

50 Model Composition in Software Engineering

Figure 1.6 — Distribution of articles with respect to the type of correspondences. Circles
represents the number of articles for each kind of correspondence and lines represents
the number of hybrid approaches

category. Let RA; the number of articles that are assigned to only one kind of corre-
spondencei and HA; the number of articles that are assigned to at least two kinds of
correspondence. We compute the precision of the n kinds of correspondence such that :

X RA
_, RA + HA; (1.1)

Precision= -

Values of precision for each kind of correspondence and the global precision of
the proposed categories is shown in Table 1.2with TA (RA;j+HA,) the total number of
articles for one kind of correspondence 1.

Operator Pattern Rule Constraint Model Delta | Total

RA 9 29 9 3 16 2

HA 10 8 10 1 6 1

TA 19 37 19 4 22 3
Precision 0.47 0.78 0.47 0.75 0.73 0.67 0.65

Table 1.2 — Precision for each kind of correspondence and global precision for the
category

As an additional criteria, we compute the ratio of hybrid approaches HA against
the number SA of approaches that use a single kind of correspondence such that :

Ratio= 22 = 0:27 (1.2)

1.3.5.2 Interpretation and Distribution of Articles

Table 1.4 presents results with regard to the class of overlapping interpretations
of correspondences. Since the interpretations of correspondences are rarely provided

Validating the key elements of model composition 51

by the authors explicitly, the classi cation re ects the global feeling of how corre-
spondences may be interpreted in a given context for a speci c problem. Moreover,
approaches usually supports several interpretations with regard to a given context.
However, among a total number of 78 articles that deal with overlapping models, a
large number of model composition techniques propose equivalence and similarity
as the main interpretations. The results agree with the idea that usually, overlapping
models contains model elements which are semantically equivalent or very close to
one another, these interpretation have respectively 51 and 23 candidates. The Ad Hoc
interpretation has 28 candidates since this interpretation includes all articles which
interpretations do not tin the proposed classi cation. Other interpretations have far
less candidates in the set of articles since they correspond to more speci ¢ processing
of the correspondences for a given problem : 11 occurrences of the add interpretation,
11 occurrences of the delete interpretation, 5 occurrences of the change interpretation,
7 occurrences of the generalization interpretation, 5 occurrences of the aggregation
interpretation, 7 occurrences of the overriding interpretation, and 1 occurrence of the
information gap interpretation.

Table 1.5 shows results with regard to the classes of cross-cutting and interaction
interpretations of the correspondences. The distribution of articles in these interpreta-
tion is almost even except for the co-dependency interpretation which only collect 4
occurrences in the set of articles. Co-dependency is speci ¢ to the representation of pro-
cesses and few papers dealing with model composition in this domain go beyond the
sequentiality and parallelism of activities. The distribution for each interpretation is as
follows : 11 occurrences are about replacing model elements, 18 occurrences are about
augmenting, 8 occurrences are about removing, 15 occurrences are about sequencing,
and 12 occurrences are about paralleling.

Results corroborate the H1b.1 hypothesis from Section 1.3.1.1: every model com-
position technique has successfully been assigned a kind of correspondence from the
category. However articles within the Ad Hoc category have either an unde ned in-
terpretation or a too large interpretation to t in the categories. Thus, we compare
the number of articles that are only led in the Ad Hoc kind of interpretation against
the total number of articles to strengthen the relevance of the proposed categories of
interpretations. Let Al be the number of articles that le the Ad Hoc category only and
TI the total number of articles. We compute the rate of articles P that do not use the Ad
Hoc interpretation such that :

P= % :%87 :g—é =092 (13)

Let Al the number of articles that le the Ad Hoc category in addition to other
categories, we the rate of articles P° that use the Ad Hoc interpretation among others
such that :

0_— Tl Al —_ 8821 _ 67 _— N
po= TLAL -82 -6 =76 (1.4)

Most of the model composition approaches propose more than one interpretation for
correspondences. We explain this result by the fact that some interpretations are related
with each other in a specic context. For instance, a model composition technique

52 Model Composition in Software Engineering

that handles cross-cutting models and provides an “augment” interpretation without
proposing “remove” or “replace” would look incomplete. Computing the number of
articles with only one interpretation against the total number of articles using at least
this interpretation is not a relevant criterion in this situation. We propose to calculate
the accuracy of the categories of interpretation using the following scale :
— Classi cation of an approach in exactly one kind of interpretation is a very
relevant classi cation and is valued 1.
— Classi cation of an approach in exactly two kinds of interpretations is a some-
what relevant classi cation and is valued 0.8.
— Classi cation of an approach in exactly three kinds of interpretations is a some-
what irrelevant classi cation and is valued 0.3.
— Classi cation of an approach in at least four kinds of interpretations is an irrele-
vant classi cation and is valued 0.
Using this scale, we compute a value of accuracy for the categories of interpre-
tations. Results are shown in Table 1.3with NI the number of interpretations, R the

scale of relevance,NA the number of articles for a gjyen number of interpretations,

TA = 83 the total number of articles and Accuracy= % the value of accuracy for

this category.

NI R NA NA /TA | Accuracy
1 1 23 0.28
2 08 28 0.34
3 05 17 0.21

4 0 15 0.18

0.65

Table 1.3 — Accuracy of the categories of interpretations

Overlapping

Interpretation
Correspondence

Add

Delete

Equ

Sim

Gen

Aggr

Overriding

B

Info Gap
|

Ad Hoc

¢.))

Operators

[XLH +07]

[Bar08]

[ASM +10]

[DRMM +10]

[XLH +07]

[Bar08]

[ASM +10]

[Ber03]
[DRMM +10]
[GS03]
[BCRO5]
[BCR+07]
[KM10]
[MPL +09]
[LNK +01]
[MBN +09]
[PRB+09]
[HHJ +08]
[HKG +10]

[Ber03]
[DRMM +10]

[BCROS5]
[BCR+07]

[CSNO8]

[LNK +01]

[PRB+09]

[DRMM +10]

[PRB+09]

[Ber03]

[PRB+09]
[HHJ +08]

[XLH +07]

[PGP+07]

[PVSG+08]
[ASM +10]

Patterns

[Let07]

[ACL +09]

[Let07]

[BKB +08]
[FBF+08]
[Let07]
[NMOO]
[ACL +09]
[Cla02]
[ES06]
[0007]
[FFR+07]

[ES06]

[BKB +08]

[ES06]

[Let07]

[Cla02]
[ES06]

[ES06]

uonisodwod [apouw Jo Sluawale A3y ayl Bunepiren

€9

_ Overlapping
Interpretation - —
\ Add Delete Equ Sim Gen Aggr Overriding Info Gap Ad Hoc
Correspondence
+ = , B 3 B ! ¢..)
[KUL +10] [KUL +10]
[BWH10] [BWH10]
[MPL +09] [MPL +09] [MPL +09]
[SFS+08] [SFS+08]
[Jez08]
[TTO8] [TTO8]
[wso08]
[AJT+09] [AJT+09]
[ACL +10]
[Wag08]
[JZF+09]
[NSC+07]
[CSNO8]
[FBB+07]
[MBJO08]
Rules [EPKO6] [EPKO6] [EPKO6] [EPKO6] [EPKO6]
[BSM+07] | [BSM+07] [BSM +07]
[RCEO08] [RCEO08]
[ACL +09]
[KPPO6]
[AEC+07]
[BTFO5] [BTFO5]
[BLTN10] [BLTN10]
[PBB+09]
[HKG +10]
[CRR+07]
[XLH +07] | [XLH +07] [XLH +07]

1]

BunisauIBbuz aremyjos ul uonisodwo) |9poIN

_ Overlapping
Interpretation - i
\ Add Delete Equ Sim Gen Aggr Overriding Info Gap Ad Hoc
Correspondence
+ = , _ _ B ! (...)
[WJ08]
[JWE+07]
Constraints [1KO4] [IKO4]
[PVSG+08]
Models [ZLLO9] [ZLLO9]
[GWOB] [GWO6]
[GWO9] [GW09]
[FDVO07] [FDV07] [FDV07] [FDV07]
[CBJ10] [CBJ10] [CBJ10]
[MMP +10] | [MMP +10] | [MMP +10] [MMP +10]
[PRO4] [PRO4]
[DRMM +10]
[AEC+07] [AEC+07] [AEC+07]
[DFB+05b] | [DFB+05b] | [DFB+05b] [DFB+05b]
[Wac07] [Wac07] [Wac07] [Wac07] [Wac07] [Wac07]
[SE06] [SE06] [SE06]
[BAOQ]
[BHPOO]
[zC07] [FBB+07]
[LPO3]
[PDCS+01]
[MBJO8]
Deltas [EPKO6] [EPKO6]
[CRE+08] | [CRE+08]

Table 1.4 — Distribution of articles with regard to the types of correspondence and the overlapping interpretations. The
Add and Delete interpretations are included in this table for convenience purposes.

uonisodwod [apouw Jo Sluawale A3y ayl Bunepiren

SS

_ Cross-Cutting Interaction
Interpretation
\ Replace Augment Remove Sequence Parallel Co-Dependency
Correspondence
B += n ; k -
[DRMM +10]
[GKR +08]
[GS03] [GS03]
Operators [PGP+07] [PGP+07]
[SY10] [SY10]
[PVSG+08]
[BBN +10]
[Bar08]
[JKB+06] [JKB+086] [JKB+086]
[BKB +08] [BKB+08] [BKB+08] || [BKB+08]
[MKB +08] [MKB +08] [MKB +08]
[MBN +09] [MBN +09] [MBN +09]
[Cla02]
[KAAKO9] [KAAKO9]
[SFS+08]
Patterns [Jez08] [Jez08]
[Belo4] [Belo4] [Bel04]
[MBJ+07] [MBJ+07]
[KHJ06 ; KIP05] [KHJO06 ;
KJPO05]
[PBC+11] [PBC+11]
[HKG +10] [HKG +10] [HKG +10]
[MBJO08]
[MBFF10] [MBFF10] [MBFF10]
[Mos10] [Mos10]
Rules [OMKO09] [OMKO09] [OMKO09]

Continued on next page

99

Burioauibu3 aremyjos ul uonisodwod |9poN

, Cross-Cutting Interaction
Interpretation
Replace Augment Remove Sequence Parallel Co-Dependency
Correspondence
B += n ; k —
[CRR+07] [CRR+07] [CRR+07] [CRR+07]
[HKG +10] [HKG +10] [HKG +10]
[CDK +07] [CDK+07]
[PGP+07] [PGP+07]
[SY10] [SY10]
. AT98
Constraints []
[PVSG+08]
[DRMM +10]
[ZLLO9]
[PBC+11] [PBC+11]
MBJO8
Models []
[BAOO] [BAOO]
[NBO4] [NBO4]
[GJ05] [GJ05]
Deltas [CDRP08] [CDRPO08]

Table 1.5 — Distribution of articles with regard to the type of correspondence and the cross-cutting
and interaction interpretations

uonisodwod [apouw Jo Sluawala Aay ayl Bunepien

A

58 Model Composition in Software Engineering

1.3.5.3 Software Activities and Distribution of Articles

Table 1.6 presents results with regard to the intention of designing software. As
we expected, 47 of the articles refer to the activity of model composition as their rst
intention. However the use of model composition for other activities is signi cant,
respectively 9 articles about derivation, 12 about orchestration and 12 about integra-
tion. Table 1.7 presents results with regard to the intention of verifying and validating
software. Among 17 articles related to veri cation and validation, 13 articles pro-
pose approaches for checking software consistency and 4 are about checking software
correctness. Tablel1.8 shows results with regard to the intention of making existing
software evolve. On a total of 24 articles, 1 propose dynamic recon guration facili-
ties, 7 are about refactoring, 4 deals with software adaptation, 7 are about software
synchronization and 5 propose approaches for software reconciliation.

Results corroborate the H2.0 hypothesis from Section 1.3.1.1: a large range of
software life-cycle activities are actually supported by model composition techniques
to some extent. The model composition activity plays a signi cantrole inthese software
life-cycle activities although not always being emphasized.

Validating the key elements of model composition 59

Intention Design
Correspondence Composition Derivation Orchestration Integration
[PGP+07],[Ber03] [ASM +10] [PGP+07] [Ber03],[SY10]
[KM10] ,[LNK +01] [MPL +09] [FGF+08] [GSO03]
[PRB+09] [PVSG+08] [BCRO5 ; BCR+07]
Operators [HHJ +08],[GKR +08] [HKG +10]
[CSNO08],[HKG +10]
[DRMM +10]
[BCRO5; BCR+07]
[Wag08],[Let07] [MPL +09] [Mos10]
[NSC+07],[MBFF10] [MBJOS]
[Cla02],[ES06] [JZF+09]
[NMO00] ,[0007] [Jez08]
[FFR+07],[KUL +10] [AJT+09]
Patterns [BWH10] ,[CSNO08] [PBC+11]

[KAAKO9] ,[SFS+08]
[PBC+11],[ACL +10]
[Jez08}[MBJ+07]
[WS08],[AJT +09]
[KHJ06 ; KIPOS5]

[MKB +08]
[CRR+07],[RCEO08] [JWE+07] [CRR+07] [BSM +07]
[ACL +09],[KPPO6] [HKG +10]
Rules [AEC+07],]WJ08] [CDK +07]
[JWE+07],[BLTN10]
[HKG +10],[OMK09]
Constraints [AT98] [PVSG+08]
[BHPOO],[DFB +05b] [PBC+11] | [BHPOO],[NBO4] | [FDV07],[CBJ10]
[DRMM +10],|[AEC+07] | [MBJO8] | [GJOS],[FGF+08] | [MMP +10],[PR04]
Models [PBC+11],[SE06] [LPO3; PDCS+01]
[Wac07]
[LPO3; PDCS+01]
Deltas [CDRPOS8]

Table 1.6 — Distribution of articles with respect to the type of correspondences and the
software design intention

60

Model Composition in Software Engineering

Intention Veri cation
Correspondence Consistency Correctness

Operators [Bar08] [BAOO]

Patterns | [FBF+08],[NM00] ,]ACL +10],[BKB+08] | [KUL +10],[JKB+06]
Rules | [wJ08],[JWE+07],[PBB+09],[BLTN10]
Constraints [BBN +10]
Models [PRO4],[ZLL09] ,[SE08] [SEO06]
Deltas [CDRPOS]

Table 1.7 — Distribution of articles with respect to the type of correspondences and the
software veri cation and validation intentions

Intention Evolution
Correspondence Recon guration Refactoring | Adaptation Synchronization Reconciliation
Operators [MBN +09] [Ber03] [Ber03],[XLH +07] [Bar08]
Patterns [MBN +09] [FBB+07] [TTO8]
[TTO8]
Rules [BTFO5] [XLH +07] [EPKO06]
Constraints [1K04]
[BHPOO] [BHPOO], [GWO06 ; GWO09] [BHPOO]
Models [zcoT7] [zCoT7] [Wac07] [Wac07]
[Wac07] [FBB+07]
Deltas [CRE+08] [EPKO6]
[CDRPO8]

Table 1.8 — Distribution of articles with respect to the type of correspondences and the
software evolution intention

Discussion 61

1.4 Discussion

With respect to the possible review biases that we discussed in Section 1.3.1.6and
in Section 1.3.1.7 this section proposes to go further on interpreting the systematic
literature review results regarding the research objectives (see Section1.3.1.)).

1.4.1 Are Correspondences and Interpretations Pervasive ?

The systematic literature review validates the precision and relevance of the clas-
si cation of the key concepts of model composition techniques. Observations back up
the intuitive classi cation of the kinds of correspondence and of the kinds of interpre-
tations and increase the con dence that we have in the proposed classi cations as a
basis for characterizing and comparing model composition techniques. With a global
precision of 65% (see Tablel.2) for the classi cation of the kinds of correspondence and
a precision of 92% (see Equationl.3) for the classi cation of the kinds of interpretation,
we consider the hypothesesHla.1, H1b.1 and H1.3 as valid.

Validity of the H1.3 hypothesis implies that the H1.0 hypothesis is also valid. Since
the list of correspondences and interpretations is precise enough to cover all model
composition techniques, we deduce that every model composition technique uses a set
of correspondence relationships and a speci c interpretation to these correspondences.
The proposed classi cation and decomposition into a set of correspondences and
interpretations to these correspondences (Question QJ) is thus relevant to characterize
model composition approaches.

We must however moderate the validity of the H1.3 hypothesis since (i)26% (see
Equation 1.2) of the studied model composition approaches use hybrid kinds of cor-
respondences,(ii) 76% (see Equationl.4) of the model composition approaches use an
Ad Hoc interpretation in conjunction with other interpretations, and (iii) the global
accuracy of the categories of interpretations is about 65% (see Tablel.3). These gures
pinpointthe di culty to extract valuable information due to the lack of formalization
and precise de nition of the model composition techniques. Model composition tech-
niques also often propose several interpretations to achieve the same goal in a given
context, these interpretations being logically related with one another. Ultimately, the
wording of model composition approaches may lead to some misinterpretation of their
description and de nition.

Results from the systematic literature review do not satisfy the H1.4 hypothesis. The
distribution of model composition techniques among each category (correspondences
and interpretations) is far from even. We details our explanation as follows :

Correspondences
— Pattern is the most represented kind of correspondences in the studied articles.
A pattern is a general word that covers a lot of techniques to compare elements
with one another and this probably explains why almost half of the hybrid
techniques uses patterns in conjunction with another kind of correspondence.
— The choice of a kind of correspondence may probably results from cultural
background or designers preference in addition to a trade-o between ex-

62 Model Composition in Software Engineering

pressiveness, degree of automation and further considerations related to the
context and purpose of a speci ¢ model composition technique.

Interpretations

— Equivalence, similarity are the most represented kinds of interpretation in the
studied articles. Cultural background has probably an impact on this result
since the de nition of model composition is often narrowed to merging model
with close structures at design—time.

— Ad Hoc interpretations are also well represented in the studied articles. The
lack of formalization or classi cation for interpretation probably prevents slic-
ing very expressive operators that perform complex computations into more
manageable and reusable modules of computation.

1.4.2 Is Model Composition a Common Operation in Software Develop-
ment ?

The validity of hypothesis H2.0 has been brie y discussed in Section 1.3.5.3and an-
swers positively to Question Q2from the research objectives. Inthe context of this thesis
we will not further analyze the relationship between correspondences and software
activities nor propose any further explanation on the distribution of correspondences
and interpretations among software activities. We use software activities mainly for
presentation purpose only and our intent was to rely on examples to con rm that
model composition tackles far more software activities than merging structural mod-
els at design-time.

1.4.3 Summary of the Contribution

The validation of the two questions Qland Q2from the research objectivesisthe rst
step in the detection of commonalties among various operations on models and among
existing model composition techniques. We demonstrate that categories proposed in
Section1.2are valid with regard to the current state of practice in model composition.
Based on these categories, the rst contribution of this thesis is the de nition of an
interpretive lens to analyze and compare existing model composition techniques

The main contribution of this thesis is to propose novel de nition of model com-
position as a pair of a mapping and a set of interpretations . This novel de nition
allows capitalizing the commonalties of the various model composition techniques.
Capitalization motivates the second contribution of this thesis that is the de nition
of a uni ed theoretical framework . The de nition of a uni ed theoretical framework
should (i)allow the rede nition of the various model composition techniques and of
the model composition purposes; and (ii)allow the de nition of speci c model com-
position frameworks for a given purpose.

In Section 1.4.4 we present an overview of existing generic model composition
frameworks (GCF). We propose a set of objectives that we consider as important to
achieve capitalization and we stress the speci ¢ challenges that this thesis address.

Discussion 63

1.4.4 Overview of Existing Generic Composition Frameworks

We consider that the following objectives are important towards capitalizing com-
monalties across various model composition approaches that adress various model
composition goals :

— We should propose semantics for mappings relationships as a set of prede ned
interpretations. A list of prede ned interpretations should allow designers to
reuse them to address speci ¢ model compaosition purposes.

— We should keep the coupling between a mapping and its interpretation as low as
possible. Low coupling allows both (i)reusing a mapping withdi erent interpre-
tations to tackle various purposes ; and (ii)reusing a given set of interpretations
that tackle a speci ¢ purpose with di erent mappings.

— We should support various model composition operations to cover the whole
range of activities that are supported by model composition approaches.

— We should support the customization of the model composition process to de-
crease the e ort in building speci ¢ model composition frameworks.

Sections 1.4.4.1to 1.4.4.3discuss existing GCFs with regard to the contributions
of this thesis. Section 1.4.4.4summarizes how existing GCFs support the proposed
objectives and emphasizes the challenges that the main contribution addresses.

1.4.4.1 Relationship—based Approach

Chechik et al.propose arelationship—based approach to ease model integration [CNM11].

They state that “...relationships [which hold between a set of models] should be treated

as rst—class artifacts...” [CNM11, 86, p.14] to reduce the global complexity of the

de nition of model composition frameworks. The categories of interpretations from
Section1.2.2are inspired from this work : we keep the list of overlapping relationships

with the same semantics and detail the types of relationships for the model interaction

and model cross-cutting categories. Extending the types of relationships available for
model composition and validating the categories by conducting a systematic literature
review, we propose a formalization for each type of relationship and a process for
building model composition frameworks.

Chechik et al.claim that future research should “...develop a more thorough classi-
cation of the purposes for which merge is applied applied, and subsequently study
the applicability and tradeo s between di erent merge operators for a given pur-
pose.” [CNM11, 86, p.14]. Proposing a novel de nition of model composition as a
pair of a mapping and an interpretation allows exploring how the purpose of a spe-
ci ¢ model composition operation in uences the meaning of relationships which hold
between a set of models. While providing an extensive list of purposes for model com-
position is out of the scope of this thesis, results from the systematic literature review
may provide a starting point for future research in this direction.

64 Model Composition in Software Engineering

1.4.4.2 ATLAS Model Weaver and Virtual EMF

The novel de nition of model composition as a pair of a mapping and an interpre-
tation is close to the experiments that Didonet et al.and Fabro et al. have undergone
proposing the generic AMW [DFB +05b; DFB+05a; FDVO07]. Claiming that no uni ed
meta—model for mapping is enough to handle every model composition situation, there
is aneed to build a “variety of small dedicated mapping languages” [DFB +05b, 81, p.2].
They subsequently propose a minimal meta—model for identifying correspondences
that can be extended to support speci ¢ requirements. The generic meta—model pro-
vides no meaning to the correspondences links but designers may provide extensions
of these links to de ne special semantics.

Our approach is similar in a sense that we propose to distinguish a mapping from
its interpretation to allow reusing correspondences for various model composition pur-
poses. Our contributiondi ers such that we propose a set of prede ned interpretations
to handle situations that often occur. Providing prede ned interpretations is twofold :
(Dit helps proposing precise semantics to a set of given correspondence links; (ii) it
allows reusing and capitalizing mappings and their semantics among various model
composition operations. While prede ned operators may not cope with speci c re-
quirements or situations, the extension mechanism that we propose — using the Ad
Hoc interpretation — supports the same expressiveness as developing an extension to
a weaving link in AMW.

Using AMW, Clasen et al. proposed a new model composition approach based
on the use of a virtual model [CJC11]. A virtual model is a seamless model that
contains elements that are proxies to elements contained in other models : it allows
manipulating model elements from contributing models in a single workspace, without
taking into account the meta—models that these model elements conform to. While this
approach seems to target issues that are di erent from ours, proposing speci ¢ model
composition operations for speci ¢ correspondence links is still one of the central goals
of the approach .

1.4.4.3 Object—Relational Mapping

ORM has originally being designed to synchronize OO representations of data
with data structures in relational databases. Based on a set of mappings (i.e, annota-
tions) that propose equivalences betweenobjectsand data in tables, the synchronization
mechanism is embedded in the interpreter of the mapping language. Since persistence
techniques evolved to support various formats and various kinds of databases, multi-
ple mappings should have been necessary to handle this heterogeneity. ObjectSpaces
from Microsoft and Java Data Objects (JDO) handle this heterogeneity making anno-
tations independent from the target persistence storage. Using a single language for
annotations, developers can accessstore data from/to various data storage.

The goal of proposing a novel de nition for model compaosition in which mappings
and their interpretation are separated and loosely—coupled is similar : with a unique

7. Section Correspondence Model in http ://code.google.confa/eclipselabs.org/p/virtual-emf /wiki /userguide

Discussion 65

set of mappings between sets of models, di erent sets of interpretations should lead
to the de nition of di erent model composition techniques.

1.4.4.4 Contribution Challenges

Table 1.9 summarizes how GCFs from the literature meet the proposed objectives
for capitalization.

We observe that most GCFs either let designers de ne their own interpretations
or propose a single interpretation for mappings. While some GCFs propose several
interpretations for mappings, coupling between mappings and interpretations is still
high, thus hindering generalization and reuse of mappings and / or interpretations.

Most GCFs support very few model composition operations. Designed for a speci ¢
purpose in a given context, e ort and time for adapting these approaches to support
di erent model composition operations is signi cant.

Capturing a speci ¢ composition process is still challenging and surely explain
why even the adaptation of GCFs that propose a large number of model composi-
tion operations requires manual customization. Techniques for manual customization
varies but mostly require developing new application code, rewriting mappings inter-
preters, modifying existing model compaosition algorithms or even providing behavior
in another kind of representation (i.e, state machines).

The contribution of this thesis focuses on improving the state of practice in build-
ing generic model composition frameworks. We propose a theoretical framework that
supports the de nition of model composition as a pair of a mapping and a set of
interpretations. Formalization of the concepts of mapping and interpretation is done
separately to keep coupling as low as possible. We propose a list of prede ned map-
pings and a list of prede ned interpretations as a basis for the construction of speci ¢
model composition frameworks.

A pair of a mapping and a set of interpretations de ne a speci ¢ model composi-
tion framework for a given purpose. The theoretical framework thus support various
model composition operations through the construction of di erent pairs of map-
pings and interpretations .

The model composition process supported by a speci ¢ model composition frame-
work depends on domain— or problem— speci ¢ characteristics. The contribution of
this thesis partially tackles the customization challenge. The selection of a set of
interpretations provides default semantics to the model composition process and
captures characteristics related to the problem (i.e, the purpose of the model compo-
sition process). Additional semantics that refer to domain—speci c concerns are still to
be captured manually.

66

Model Composition in Software Engineering

Prede ned Coupling Mapping / | Supports Composition
Characteristics | Interpretations | Interpretation various model Process Customization
GCF for mappings composition
operations

AMW [DFB +05b] manual medium / high | * manual
(Java Methods)

ORM [GG10] * medium 1 manual
(Interpreter)

Relation-based Approach | * high * manual

[CNM11]

Canonical Scheme manual high 1 manual

[BBDF+06]

Model Management * high * manual

[BHPOO] (Operators)

Kompose 1 high 1 manual

[FFR+07 ; FBF-08] (Algorithm)

GeKo and SmartAdapter 1 high 2 manual

[MKB +08 ; MPL+09]

ReuseWare [HHJ}+08] 1 high * manual
(Combine
two atomic
operations)

Generic Aspect-Oriented manual medium 1 manual

Modeling Framework

[MBJ+07]

DUALLy [MMP +10] manual medium 1 manual

(State Machines)

Table 1.9 — Comparison of existing generic model composition frameworks (GCFs)

Chapitre 2

A Theoretical Framework for Model
Composition

This chapter presents the formalization of main contribution of the thesis, that is a
theoretical framework for model composition. Section 2.1motivates the decomposition
of the de nition of model composition into a pair of a mapping and a set of interpreta-
tions using parallels with structures in mathematical logic and with signs in linguistics.
These parallels allows characterizing the relations that exist between a mapping and
an interpretation. Section 2.2 proposes mathematical de nitions for each kind of map-
ping and each kind of interpretation proposed in Section 1.2 Section2.3discusses how
the theoretical framework for model composition allows building model composition
frameworks that target speci ¢ model composition purposes.

2.1 Decomposing Model Composition

As we observed in the systematic literature review (see Chapter 1), most of the
model composition techniques use (i)correspondences between models or model ele-
ments and (i) a speci ¢ interpretation of these correspondences to ful Il the ultimate
goal of the model composition operator. The nature of correspondences and their
interpretations is still to be discussed and formalized.

We propose to shift from a monolithic de nition of model composition (a single
de nition for a single use — whatever large the spectrum of composable models could
be) to a modular de nition of model composition (a customizable de nition and a
choice of existing operators to achieve a possibly large range of goals).

The big picture of the proposition is shown in Figure 2.1 Sections2.1.1and 2.1.2
draw parallels with structures in mathematical logic and with signs in linguistics
respectively to (i)motivate the separation of correspondences from their interpreta-
tion and to (ii)de ne the relationships that exist between a correspondence and its
interpretation .

67

68 A Theoretical Framework for Model Composition

Figure 2.1 — Model composition : Moving from monolithic techniques to techniques
on-demand

2.1.1 Model Composition is a Structure

Towards demonstrating that model composition is a pair of correspondences and
interpretations, we draw a parallel with Structures in mathematical logic.

A Structure in mathematical logic is a triple of a domain, a signature and an
interpretation [BS81, 8V.1, p.217]. To avoid any misunderstanding in this section, we
use the term “goal” to refer to an interpretation in the context of mathematical logic
structures.

Let Sbe a mathematical structure, jS be the domain of the structure, be asignature,
and G be a goal such that :

S=hjsj; ; Gi 2.1)

The domain of Sis an arbitrary set called the underlying set of the structure, its
carrier or its universe. Signature of Sis a set of function symbols and relation symbols
along with a function that ascribes to each symbol sa natural number (n = ar(s)) which
is called the arity of sbecause itis the arity of the “goal” of s. A *“goal” function Gof S
assigns functions and relations to the symbols of the signature. Each function symbol
f of arity n is assigned an n—ary function fS = G(f) on the domain.

From the de nition of a structure in mathematical logic, we propose to decompose
model composition as a correspondence language and a speci ¢ set of interpreta-
tions. The in nite variability of model composition purposes is an obstacle to the
extensive formalization of the “goal” part. Thus we voluntarily discard this part from

Decomposing Model Composition 69

our de nition of model composition while we still take into account the in uence that
the purpose has on the de nition of a new model composition operator.

We use mappingin the following explanations to refer to “a correspondence lan-
guage”. A mapping relates model elements — from a single or multiple models — with
one another and interpretations provide semantics to the mapping regarding a speci ¢
model composition goal.

Let MC be the de nition of a model composition operator as a mathematical oper-
ation, with MM a mapping over one or more models and | a set of interpretations such
that :

MC = hMM;I i (2.2)

Categories proposed in Sections1.2.1and 1.2.2provide background for the formal-
ization of mapping and interpretation. Formal de nitions of mapping and interpreta-
tion are detailed respectively in Section 2.2.2and in Section 2.2.3

2.1.2 Model Composition is a Linguistic Sign

This section draws a parallel between the key concepts in model composition and
both linguistics and semiotics (i)to strengthen the proposed decomposition of model
composition as a pair of a mapping and of an interpretation, and (ii)to explore the
relationship that exists between a mapping and its interpretation.

Linguistics is a branch of the general science of semiotics that “...investigates the
nature of signs and the laws governing them” [Cha08, Introduction, p.9]. In other
words, semiotics is the scienti ¢ study of human language and includes the work
of philosophers, theorists, anthropologists, psychoanalysts, etc., which participate in
“...seeking to explore the use of signs in speci ¢ social situations” [Cha08, Introduction,
p.9].

The de nitionof a signis closely related with the de nition of a linguistic structure :
“Linguistic structures are pairing of a meaning and a form. Any particular pairing of
meaning and form is a Saussurean sign.” L.

A “Saussurean sign” is de ned as follows :

[Ferdinand de] Saussure o ered a 'dyadic’ or two-part model of the
sign. He de ned a sign as being composed of :

— a'signi er' (signi ant) - the formwhich the sign takes ; and

— the 'signi ed' (signi é) - the concepit represents.
[Cha08, Signs, p.19]

Similarly to Equation 2.2, our thesis is that a model composition operation (i.e, a
sign) can be de ned as a pairing of a mapping (i.e, a signi er) and an interpretation
(i.e a signi ed). In other words, a mapping is the de nition of the model composition
operation and the interpretation gives a precise meaning to the mapping relationships
in a speci ¢ context.

1. http ://en.wikipedia.org /wiki /Linguistics#Divisions_based_on_linguistic_structures_studied

70 A Theoretical Framework for Model Composition

2.1.2.1 Variability of a Sign

We observed that mapping and interpretation are multiple, depending on the
context and the problem that a speci c model composition operator handles. The
following statement on the de nition of a sign in semiotics applies equally on the
de nition of a model composition operator :

A sign is a recognizable combination of a signi er with a particular signi-
ed. The same signi er ... could stand for a di erent signi ed (and thus
be a di erent sign).... Similarly, many signi ers could stand for the [sig-
ni ed]... — again, with each unique pairing constituting a di erent sign.
[Cha08, Signs, p.19]

This allows the de nition of model composition operators that are exible, meaning
that (i)with a given mapping, we can build multiple model composition operators and
(ii)we can build multiple model composition operators that tackle the same purpose
using various mappings. The choice of a speci c set of interpretations depends on
human-related or problem—related criteria, similarly to what Chandler tells us about
the choice of a signi er :

The use of one signi er rather than another from the same paradigm is
based onfactors such as technical constraints, codeé.g, genre), convention,
connotation, style, rhetorical purpose and the limitations of the individual's
own repertoire. [Cha08, Paradigmatic Analysis, p.72]

Quoting that, the general feeling when we observe existing model composition
techniques is that mapping and interpretation are rarely distinguished : model com-
position approaches propose solutions to speci ¢ problems, and seldom formalize the
underlying purpose of the model composition operator.

Chandler tells us that in semiotics, the signi er and the signi ed are highly cou-
pled, however, “...the signi er and the signi ed can be distinguish for analytical pur-
poses.” [Cha08, Signs, p.21].

This statement closely matches our reasoning approach : we want to separate
mapping from its interpretation to enhance the inherent reusability of these two
concepts.

2.1.2.2 Mapping and Interpretation Coupling

Identifying the relationship between a mapping and its interpretation is necessary
to identify highly reusable model composition techniques and to propose pairs of
mapping /interpretation that are adequate and relevant.

Since interpretation is the meaning of a mapping, we propose that defaultmeaning
is such that mapped elements are in relation with one another. This de nition is not
su cientto capture the goal of a speci ¢ model composition technique. Thus, we need
to use concepts of denotation and connotation to further characterize the goal of the
model composition operator.

In semiotics, “...denotation and connotation are terms describing the relationship
between the signi er and its signi ed...” [Cha08, Denotation, Connotation and Myth,

Decomposing Model Composition 71

p.90] (see Figure2.2). A signi ed is bound to a meaning that “...includes both denotation
and connotation.” [Cha08, Denotation, Connotation and Myth, p.90].

RN
N

Figure 2.2 — A simpli ed representation of a sign and the relationships between the
signi er and the signi ed.

Chandler gives a more precise de nition of denotation and connotation that is :

'Denotation’ tends to be described as the de nitional, 'literal’, 'obvious'
or 'commonsense' meaning of a sign. In the case of linguistic signs, the
denotative meaning is what the dictionary attempts to provide....

The term 'connotation’ is used to refer to the socio-cultural and ‘personal’
associations (ideological, emotional etc.) of the sign.

Connotations are not purely '‘personal’' meanings - they are determined by
the [cultural] codes to which the interpreter has access. [Cha08, Denotation,
Connotation and Myth, p.90]

Denotation and connotation in uence the de nition of a model composition op-
erator. Selecting a speci ¢ mapping and speci c interpretations to build a new model
composition operator is not enough. The goal of the model composition operator is
still to be captured since “[c]hanging the form of the signi er while keeping the same
signi ed can generate di erent connotations” [Cha08, Denotation, Connotation and
Myth, p.92] and “...connotation is very much a question of how [the] language [that
includes the signs] is used.” [Cha08, Denotation, Connotation and Myth, p.93].

The meaning of a pair of a mapping and an interpretation is given by a specic
connotation which represents the concept of goal in the de nition of a structure in
mathematical logic. De nition of connotation and denotation is still too extensive to
propose a formal de nition of the goal. However the variability of denotation /conno-
tation illustrates how the goal of a model composition operation may vary.

In the scope of the formalization of a model composition operator, we propose to
derive the de nitions of connotation and denotation such that :

De nition 1 Denotation

Denotation is the generic meaning of a pairing of a mapping representation and an
interpretation of this representation : model elements from one model relate with
model elements from another model.

72 A Theoretical Framework for Model Compaosition

De nition 2 Connotation
Connotationre nesthe relate meaning into a meaning that takes into account a speci ¢
context and a given goal to achieve.

Since the de nition of connotations involves capturing a context that depends on
the designers using the model composition operator and depends on the model com-
position expectations (see Figure 2.3), we propose to use a General Purpose Language
(GPL) to realize the purpose of a model composition operator de ned by a given
mapping and a given interpretation for a speci ¢ intention.

—)-
——
|

Figure 2.3 — The goal of a speci c model composition operator in uences the relation-
ship between a mapping between two meta—modeling languages and the interpreta-
tion of the mapping.

2.1.2.3 From Linguistics to Model-Driven Engineering

Barthes tells us that "language is a pure abstract entity, ..., a set of basic types that
speech makes concrete in in nite variable ways” [Bar64, 81.1.4, p.22]. This de nition
is sound regarding the de nition of a meta—modeling language : a meta—modeling
language de nes a set of basic types that are captured into a meta—model; models
that conform to this meta—model instantiate the meta—model types in in nite variable
ways.

This statement reinforces even further the relevance of the parallel between model
composition and semiotics (see Section2.1.2) in supporting the formal de nition of a
model composition operator in the context of MDE.

The de nition of the form of a signi er and of a signi ed proposed by Chan-
dler makes a smooth transition between semiotics and the concepts of mapping and
interpretation since :

— Signi ers :...[are expressed as a] language, formal syntactic structure...

— Signi eds :...[can take the form of a] 'semantic structure' (Baggaley &
Duck[Dynamics of Television, 1976]))...

[Cha08, Signs, p.39]

Towards a Uni ed Theory for Model Composition 73

We may conclude that a mapping MM is a “formal syntactic structure” (i.e, a
modeling language) and an interpretation of MM is the intended meaning of MM .
Section 2.2 proposes a formalization of MM and I.

2.2 Towards a Uni ed Theory for Model Composition

This section presents the formal de nition of a model composition operator and the
basic constructs of the theoretical framework. We propose a formalization of the key
concepts observed in the systematic literature review (see Sectionl.4) and we discuss
their usage to build new model composition operators from the reuse of existing
techniques. The intent of this section is to propose an interpretive lens for analyzing
model composition techniques not covered in the systematic literature review and to
provide a framework for building new model composition operators.

De nitions from this section are based on the following assumptions :

1. A mapping exists between a set of meta—modeling languages.

2. A model composition operator based on this mapping allows composing the
meta—modeling languages.

3. Execution of the model composition operator is allowed on the models that
conform to these meta—modeling languages.

For the sake of simplicity, de nitions for mapping, interpretation, and model com-
position involve only two meta—modeling languages. Nevertheless, the uni ed frame-
work for model composition is applicable to an arbitrary number of meta—modeling
languages.

Section2.2.1presents the mathematical symbols and de nitions that we use in the
formalization. Section 2.2.2proposes a formalization for each kind of mapping and Sec-
tion 2.2.3proposes a formalization of each kind of interpretation. Section 2.2.4revisits
the de nition of model composition in the context of domain—speci ¢ languages.

2.2.1 Mathematical Symbols and De nitions

This section lists the concepts, sets, function and symbols that we use to propose
formal de nition of model composition, mapping and interpretation.

2.2.1.1 Domain-Speci c Modeling Language

Let DSML represents a meta—modeling language.
Let ASy represents the abstract syntax of DSLMy, (i.e, the set of types that DSMLy
de nes).
Let CSy represents the concrete syntax of DSLMy (i.e, the textual or graphical repre-
sentation of concepts from DSMLy).
Let Mas,! cs, represents the mapping from the abstract syntax to the concrete syntax.
Let SDy represents the semantic domain of DSLMy,.

74 A Theoretical Framework for Model Compaosition

Let Mas,! sp, represents the mapping from the abstract syntax to the semantic do-
main [HRO4].

A meta—modeling language M is a ve—part tuple such that :

DSMLy = hASw;CSv;Masy! csy:SDwv;Mas,! spy | (2.3)

2.2.1.2 Sets

Let Boolearn= fTRUE; FALSEgthe set of boolean values.
Let E represents the set of all possible model elements.
Let M represents the set of meta—types (.e, the types of the meta-classes) of all possible
model elements.
LetEm E be the set of model elements of a model M.
LetMy M be the set of meta—types ofE .
Let Py X represents the set of all properties of a meta—type MX.
Let C a set of constraint expressions.
LetE,, Emwm be the set of model elements of a model M labeled to be added.
Let E,, Em be the set of model elements of a model M labeled to be removed.
LetE,, Ewm be the set of model elements of a model M labeled to be modi ed.
Let Type M be a meta—type.
Let DSML¢ be the model that results from the execution of the model composition
operation.
Let A Ea be asetof model elements from DSMLA such that : A = fx1;X2;::1;Xi0
Let B Eg be a set of model elements from DSMLg such that : B = fy;;y2;:::;y;9
Let C Ec be a set of model elements from DSML¢ such that: C = fzy;2;::: ;200
Let D E be a set of model elements such that :D = fwq;wo;:::;wrg

2.2.1.3 Functions and Relations

Let< : Em;Em be arelation of mappings between two set of model elements.
Leteval: C;Type Type! Boolearbe the function that evaluates a given constraint on
a pair of model elements.

Let occ: TypeEnm ! Enm be the function that retrieves an occurrence of a model
element of type Typein a set of model elements.

Let super: Type! M, [; be afunction which returns the set of super types for the

type X.

Letref: Em ! Em be afunction that captures a reference between two sets of model
elements.

Let containment Eyy ! Epy be a function that captures the container of a set of model
elements. A container owns a containmentreference that targets contents.

Let match: Em;Epm ! Boolearbe a function that detects whether two sets of model

elements overlaps (see Sectiorl.2.2.

Let joinpoint: Epm;Em ! Boolearbe arelation that detects if two sets of model elements
are cross—cutting (see Sectionl.2.2.

Towards a Uni ed Theory for Model Composition 75

Let invoke: Ey be a procedure that executes the behavior a set of behavioral model
elements (see Sectiori.2.2).

Letalign: Ey;PuX ! Ewm beafunctionthat modi esaproperty X onamodel element
of type M.

Letprop: Em ! PmX be afunction that retrieves the properties of a model element X
of type M.

2.2.1.4 Symbols

Let the precedence operator from partial ordering that means in this context “is
invoked before”.
Let‘ x be the time at which the execution of a model element X starts.
Let” x be the time at which the execution of a model element X ends.

2.2.2 Mapping De nition

A mapping MM is a DSML that captures the key concepts of relationships over the
elements of others DSML. MM is formally de ned by its abstract syntax (ASwuwm), its
semantic domain (SDywm) and the mapping from the abstract syntax to the semantic
domain (Mas,,,! spbuy) Such that:

MM = hASuwm ; SDvm ; Masyy! SDyw | (2.4)

We voluntarily discard the representation of the concrete syntax (CSywm) and the map-
ping from the abstract syntax to the concrete syntax (Mas,,,! cs.) Since the choice
of a concrete syntax has ultimately no impact on the de nition of relations over the
elements of several DSML.

SinceMM s a set of n—ary relationships over the elements of the abstract syntaxes

X
MM 2 < (ASpsmi,;:::;ASpsmL,) > Ra(DSML;; DSMLj+1); st:n 1 (2.5)
i=1

The de nition of an alignment rule varies in function of (1) the concrete representation
of ASuym and (2) the concrete mapping formalism. For instance, if a DSML is a graph-
structure, an alignment rule would be a n-ary relationship between graph patterns
(i.e, a graph morphism).

From Section 1.2.1, we proposed six kinds of mapping representation. These rep-
resentations are concrete examples for the de nition of n—ary alignment relationships
that work on the abstract syntaxes of the DSML that we want to map with one another.
The following equations formalize the various kinds of mappings proposed in the
category in Section1.2.1

76 A Theoretical Framework for Model Composition

2.2.2.1 Operator-based Mapping

An operator-based mapping < is an application between the abstract syntaxes of
the two DSML. Since the behavior of the operator cannot be de ned extensively, we
de ne < using the f and g applications that respectively produce the image of the
elements from DSML, and DSMLg, such that :

< f,g:Typ€' Typé€
A< 4B, (fA)! B~ (2.6)
(aB)! A)

2.2.2.2 Pattern- or Rule- based Mapping

A pattern— or rule— based mapping < isthe identi cation of elements with similar
characteristics such that :

< occ: Type' Typé'
A<gocB, |X2A;y2Bst: 2.7)
ocgy;A), ; ocex;B), ;

2.2.2.3 Constraint-based Mapping

A constraint-based mapping < rely on the evaluation of a constraint cto detect the
presence of a model element such that :

<¢:Type Typ€e
A<:B, [c2C;x2A;y2Bst: (2.8)
evalc;x;y) = TRUE

2.2.2.4 Model-based Mapping

A model-based mapping < isitself a DSML whose abstract syntax (ASy) includes
model elements from the abstract syntaxes of the two DSML (ASpsm , ; ASpswmLg) Such
that :

< :DSMLwm = hASy; SDv;Mas,! sp, | St:

2.9
ASy , ASpsmi, [ASpsmig 29)

The new DSML built from the abstract syntaxes of the DSML is a language that ma-
nipulates and relates model elements with one another, providing enough information
for identifying equivalent, similar or di erent model elements.

2.2.2.5 Delta-based Mapping

A delta-based mapping < provides information about at least the two situations
as follows :

Towards a Uni ed Theory for Model Composition 77

— Asetof model elements is found in one of the DSML but not in the other. If model
elements are found in DSMLA but not in DSMLg, we consider these elements
as added (E,). If model elements are found in DSMLg but not in DSMLA we
consider them as deleted(E ,).

— A set of model elements is found in both DSML but the characteristics of these
model elements are not identical. We consider them as modi ed (E,).

< :Type Typ€

A< B, Xx2A;y2Bst:
E,=E, [fxg) x2(An(A\ B)) (2.10)
En=Enlfyg) y2(Bn(A\ B)
E,=E,[fXxg) x2(A\ B) " x, vy

2.2.3 Interpretation De nition

The interpretation of a mapping participates in providing the semantics (SDywv) of
the mapping language. However, keeping mapping and interpretation loosely coupled
implies that an interpretation | participates in the de nition of SDym butis notsu -
cient for expressing the whole semantics of the mapping language regarding the nal
purpose of the mapping. Formalizing “human content” (the substance of the signi ed
[Chandler, 2008, p.39]) or expectations is di cult and is out the scope of this work.
However, we propose to build a DSML to capture some of these “expectations” such
that :

| = hAS|;SDi;Mas,! sp, | (2.11)

where AS is the set of interpretations that we propose in the category in Section 1.2.2
and SD; and Mas,1 cs being the set of de nitions for each interpretation that we
propose in Section 1.3.5.2

Sections2.2.3.1to 2.2.3.5present a formal de nition of each category of interpreta-
tions.

2.2.3.1 *“Add” Interpretation

A Add interpretation allows us to add a set of model elements into another model
such that :
+:Type' Typ€e

A+B, |C=C[(A[B) (2.12)

2.2.3.2 “Delete” Interpretation

A Deleteinterpretation allows us to remove a set of model elements from another
model such that :
:Type Typ€e

A B, |C=C[(An(A\ B) (2.13)

78 A Theoretical Framework for Model Composition

2.2.3.3 Overlapping

“Equivalence” Interpretation An Equivalencénterpretation allows us to identify two
sets of model elements from two DSML that we consider to have the same semantics.
Let, the operator meaning is equal by de nitionsuch that :

, . Type' Typ€e
A, B, |x2A;y2Bst: (2.14)
x=y) C=(C[fxg _ (C[fyd

“Similarity” Interpretation A Similarity interpretation allows us to identify two sets
of model elements from two DSML that have a close but di erent structure. Similarity
means that we need to align the two structures with each other such that :

:Type' Typée
A B, |x2A;y2B;p2propx);p°2 prop(y) st:
x y) (@lign(x;p)=p%) * (C=C[fxg)_
((align(y;p) = p) ~ (C=CI[f yg)

This interpretation often requires additional inputs to correctly handle changes and to
produce the expected result. Additional inputs are encompassed in the align function.

(2.15)

“Generalization” Interpretation A Generalizatiointerpretation is applicable on meta—
models only since it modi es the inherent structure of the target modeling language.
Generalizatiorallows us to transform one set of model elements into a specialization of
another set of model elements such that :

_:Type'" Type
A_ B, |[x2A;y2Bst: (2.16)
supe(x) [f yg

“Aggregation” Interpretation An Aggregationinterpretation is applicable on meta—
models only since it modi es the inherent structure of the target modeling language.
Aggregationallows us to create a containmentrelationship between two sets of model
elements such that :

q:Type Typé
AgB, |x2A;y2Bst: (2.17)
C=CJ[fxg ™ C=C[fyg " containmen{x) = y

“Overriding” Interpretation An Overriding interpretation allows us to replace an
existing set of model elements with another set of model elements at places provided
by the function matchsuch that :

B:Type' Typ€e
AB B, |[x2A;y2Bst: (2.18)
match(x;y)) (C=(Cnfxg » (C=CJ[f yg)

Towards a Uni ed Theory for Model Composition 79

“Information—Gap” Interpretation An Information—Gapinterpretation allows us to
de ne a speci ¢ structure (i.e, a set of model elements) to relate the sets of model
elements that originate from the two DSML. Let gand r be two properties owned by a
speci ¢ structure D that helps binding the two sets of model elements such that :

I Type Typ€e

Al B, X2Ay2Byw;2D;wj2Dst:

9q 2 prop(w;); 9r 2 prop(w;j) sit:

C=C[A~MC=C[B~ (2.19)
(ref(x)=q ™ ref(y)=r) _

(ref(o) = x * ref(r)=y)"

C=C[D

“Ad Hoc” Interpretation An Ad Hocinterpretation allows us to de ne an arbitrary-
complex computation on one set of model elements of the DSML or the other. Let opl
and op2 be two operations that de nes this computation such that :

opl : Type' ! Typée |oR :Type' ! Type (2.20)
opA)=B opB) = A '

2.2.3.4 Cross—Cutting

“Replace” Interpretation A Replacenterpretation allows us to switch one set of
model elements from one DSML with another set of model elements from another
DSML. Places to change are identi ed by the joinpoint function which is provided by
users. We de ne Replacesuch that :

B:Typd' Typd
AB B, |[x2A;y2Bst: (2.21)
joinpoint(x;y)) (C=(Cnfxg (C=C[f yg)

“Augment” Interpretation An Augmentinterpretation allows us to mix two sets of
elements together such that :

+=:Typd Typ€
A+=B, [x2A;y2B;z2Cst: (2.22)
(C=C[fz9) propz) = prop(x)[propy)

“Remove” Interpretation A Removenterpretation allows us to remove parts of two
sets of elements that these sets have in common e, a mathematical projection) such
that :

n:Typd Typ€e

AnB, |x2A;y2B;z2Cst: (2.23)
(C=C[fz9) propz) = prop(x) npropy)

80 A Theoretical Framework for Model Composition

2.2.3.5 Interaction

“Sequence” Interpretation A Sequencmterpretation allows us to sequence the com-
munication of two sets of model elements from two DSML such that :

; 1 Type' Typé€
A:B, |invokgA) invokeB) (2.24)
“Parallel” Interpretation A Parallelinterpretation allows us to invoke the commu-
nication of two sets of model elements from two DSML at the same time. Let k the
parallel operator such that :

==:Type Typ€
A==B, |invokeA) kinvokeB) (2.25)
“Codependency” Interpretation A Codependendgterpretation is a set of causal rela-
tionships between sets of model elementsfromDSML.Let , , and thekinds
of causal relationships respectively meaning start-to-start start-to- nish, nish-to-start
and nish-to- nish such that :

—:Type' Typ€
X2 A;y2Bst:

X y ’ X Y

X y, |7 x ' v

X y ’ ? X ? Y

2.2.4 Model Composition is a DSML

The de nition of a model composition operator as a pair of a mapping MM and
interpretations of MM given in Equation 2.2 allows the de nition of operators which
semantics is given by both | and the global purpose of the model composition process.
Going one step further, we propose to de ne a specic DSML to formalize model
composition such that :

MC = hASyc; SDmc; Masyc! SDyc | (2.27)

ASyic is de ned on top of the abstract syntax (ASuwm) of the mapping DSML MM
(see Equation 2.4) and consequently contains all the concepts of the abstract syntax
of the mapping modeling language. The semantic domain SDyc of the modeling
language for model composition MC is de ned on top of the abstract syntax of the
interpretation DSML (AS)) (see Equation2.11). Taking into account ASym and AS; in
the de nition of the modeling language for model composition, we ultimately rewrite
the mapping Mas,.! spye With Mas,,,1 As, such that :

MC = hASum ;ASi; Masyy! As, | (2.28)

Conclusion 81

This allows us to bind speci c interpretations to a speci c mapping that sub-
sequently allows us to build a speci ¢ model composition operator. This binding
(Masyw! As) holds information about the context and the purpose of the model com-
position operator.

Since ASyw is the union of the elements of interest in the abstract syntaxes of the
n DSML that are part of the mapping DSML (see Equation 2.9), we rewrite MC such
that :

[n
MC =h ASpswm, ASpswmL;;AS;Masyy! as i (2.29)
j=1

A model composition DSML is thus capable of (i)providing mapping explicitly
for a set of DSML, of (ii) proposing a set of interpretations to capture the semantics of
the mapping , and of (iii) considering the ultimate purpose of the model composition
operation.

Note that the global purpose of the model composition language needs additional
input (connotation) to properly capture the purpose and context of the execution of
the model composition operation.

2.3 Conclusion

Building a model composition operator that addresses a new model composition
situation is a di cult and time-consuming task. The development of such e ective
model composition operators implies the de nition of mappings or the adaptation of
existing ones, and the development of the tool that supports such model composition
operator.

Our contribution focuses on the activity of designing model composition oper-
ators. With the help of the categorization of mappings and interpretations and the
formalization (see Section 2.2), we propose a two—step process to build speci ¢ model
composition operators :

1. Designers select a kind of mapping that ts their needs and a set of interpre-
tations that are in adequateness with the purpose of the model composition
operator. This pair of mapping and interpretations is the speci cation of a model
composition framework that supports a speci ¢ model composition operation.

2. The model composition framework should be customized to execute the speci ¢
model composition operation in a given context. The context refers both to the
kind of modeling languages that the model composition operation should sup-
port and speci ¢ characteristics of the model composition process that are not
captured by the set of interpretations.

We illustrate this two—step process of building a speci ¢ model composition oper-
ator on model merging in Figure 2.4. A given pair of mappings and interpretations is
selected to support the very general purpose of model merging. Designhers customize
the general purpose of the model merging operator by proposing speci ¢ connotations

82 A Theoretical Framework for Model Compaosition

(algorithms) to support merging models that conform to various formalisms. For in-
stance, Figure?2.4illustrates the customization process for proposing a model merging
operator that supports merging UML and ECore models. The customization process
allows the de nition of homogeneous or heterogeneous model merging operators,
according to the designers expectations.

Figure 2.4 — A given pair of a mapping and an interpretation that supports model
merging is re ned into speci ¢ model compaosition operators

Proposing this two-step process, we limit the e ort in designing a new model
composition operation to the customization of the model composition process. We
expect that proposing pairs of mapping and interpretations should become a sporadic
activity over time as more and more genericframeworks would be available.

In Chapter 3, we leverage the formalization of model composition as a pair of a
mapping and a set of correspondences to propose a framework for (i)unifying the
de nition of model composition activities and for (i) for building concrete model com-
position operators. The proposition of the framework is described using the running
example of building a model composition operator for model merging homogeneous
models.

Chapitre 3

ModMap : A Framework for
Unifying Model Composition
Activities

According to the formalization of model composition proposed in Chapter 2, we
present in this chapter a tool called MODel MAPping (ModMap) that supports the
de nition of a mapping and its interpretation for producing an e ective model com-
position language and concrete model composition operators (see Section3.2.29.

Section 3.1 presents an intuitive process for the de nition of a model composition
framework that supports model merging. The intuitive process is generalized at the
end of Section 3.1for the de nition of new model composition frameworks. Section 3.2
presents the ModMap framework that supports the de nition of mappings and that
proposes default semantics for interpretations.

3.1 AnIntuitive Process for Building Model Composition Frame-
works

3.1.1 A Running Example

The Bank model (see Figure 3.1) illustrates a simple bank data model. The BLP
model (see Figure 3.2) describes a Bell-LaPadula (BLP) access control feature [BL73]
where users and objects under access control are each associated with a security level.
User access control is driven by the domination relationship that ensures for instance
that a bank user can access his account only if the user's security level dominates the
security level of the account. The expected composed model should merge the two
models into a consistent model that allows a Controllerto call operations on BankUser
or Account with respect to the security levels de ned.

Intuitively, designers identify that Accountand BankUserfrom the Bank model are
equivalent to Accountand BankUserfrom the BLP model, respectively. The identi ca-
tion of overlapping model elements is thus based on names : if a model element from

83

84 ModMap : A Framework for Unifying Model Composition Activities

B
il Y
g B
@
& <
@
@ ®

Figure 3.1 — The Bank model.

B #$% , o« ()B # ()

s ! @& () T T@a,)#)) %%+

@ () @ % t+

% T2 "’A'.

2l % ()
B
- o %) /0! %) /o
- v
>

3), g) /0 1<

) 2% LW v
<37>. W *y

@1 %

Figure 3.2 — The BLP model.

the Bank model has a name that equals the name of a model element in the BLP model,
designers would like to create a single model element from these two concepts.

Using a graphical representation to ease the speci cation of overlapping elements
between two models, designers relate Accountand BankUserelements from the Bank
model with Account and BankUserelements from the BLP model. Figure 3.3 is an
example of graphical representation of overlapping relationships between the Bank
model and the BLP model : dotted lines are mappings that state which elements overlap
and equalsndicates the semantics of the mapping.

g o1 H $ 01
=
6 @ $ 01 (@
emmmmmm—— @ $ 01 @
, A @
. T o1
] A :
= s '
= 1T H8% & (rof 23
g ‘E =AY Cgs 2(v3 o
@ < 5 <
4 v 23
@ \ @ = : .) 8
R - /
\\ //
\\\ 6 -

-
S — - --

Figure 3.3 — Intuitive relationships of overlap between the Bank and BLP models

An Intuitive Process for Building Model Composition Frameworks 85

3.1.2 A Framework for Model Merging

This section presents the intuitive process of building a model composition frame-
work for model merging on the running example and illustrated on Figure 3.4 A
designer who had an objective of merging models selects a pair of a mapping and a
set of interpretations. This selection is the de nition of a generic model composition
framework for model merging. The model merging operation executes in a speci c
context and for a speci c purpose : this information is provided by designers that
parameterize the framework for model merging to ultimately build a speci ¢ model
composition operator.

®
O
-
I
I
I
I
I
I
I
/
-
I
I
I
I
I
I
I
/

-

I

Figure 3.4 — Intuitive process for building a model composition framework for model
merging.

3.1.2.1 Selection of a pair of Mapping and a set of Interpretations

On the example of merging the Bank model with the BLP model, designers intu-
itively use an equivalence interpretation (see Section 2.2.3 that allows them to identify
a set of equivalent model elements. In the de nition of a model composition operation,
the choice of a kind of mappings is equally important. Designers choose to use a model
representation of mappings. This means that they use a modeling language to create a
model of correspondences between the Bank model and the BLP model.

3.1.2.2 Customization of the Framework

The selection of a pair of a mapping and a set of interpretations captures the
scope of the model composition operation. The model composition framework for
model merging is based on a model representation of mappings and an equivalence
interpretation. Thus, the framework allows designers to identify overlapping model
elements. Towards building a tool that supports merging two overlapping models,
designers should capture the context in which the model merging operation runs.
It means that designers should propose speci ¢ processing to take into account the

86 ModMap : A Framework for Unifying Model Composition Activities

nature of the models to merge and the speci ¢ characteristics of the merge operation
that are not captured by the interpretations.

We illustrate the process of providing a speci ¢ processing for model merging
as amerge()function presented in Listing 3.1 The merge()function takes two model
elements as parameters and performs the union of their properties to create a single
model element that is the union of the two originating model elements.

function merge(A : Object, B : Object) : Object is
pre type(A) = type(B)
/I creates a new object
C = new object from type(A)
// union of the properties
foreach property pl from A
foreach property p2 from B
if pl equals p2 then
/I merge values and resolve conflicts if any
new_value = resolveConflicts (value (pl),value2(p2))
end
// add property to C
end foreach
end foreach
end

Listing 3.1 — A simpli ed algorithm for model merging.

The execution of the merge(¥unction within the model composition framework for
model merging produces a new model that contains elements from the Bank model and
the BLP model (see Figure3.5). Model elements that designersidenti ed as overlapping
are “combined” into a single element that contains all the properties of the originating
model elements.

B #3%% , (B # ()

2 %0
& O) % @&,)#) %%+
.

@ .
. !) *+ @ % *4
%Az 8. .

H &

" A% ()

@ % *+
. jf)) %) o
= ¥ % ! % I
- g) N V)
= S 8B) /0 1<
B o) o o
12 [*+
® : @1 %
v 2 M
B

Figure 3.5 — Result of merging Bank and BLP. Grayed elements were owned by Bank
and have been merged within the set of model elements from BLP.

3.1.3 Generalization of the Intuitive Process

Based on the intuitive process of building a model composition framework for
model merging, we propose to generalize the approach to support the de nition of

The ModMap Framework 87

model composition frameworks that target various purposes.

We presented categories of mappings and interpretations in Chapter 1and we pro-
posed a formalization of these categories in Chapter 2. Towards the de nition of model
composition frameworks, the ModMap tool supports every kind of interpretations to
ease the de nition of the meaning of a speci ¢ mapping relationship. Among the kinds
of mappings, we consider that operators, patterns, rules, constraints and deltas prop-
erly support detection and /or expression of mappings at the model level. As stated in
Section1.2.1.5 these kinds of mappings are often part of a (semi—) automatic process
that builds model-based representations. Subsequently, we choose to use a model of
mapping to successfully represent a wider range of mapping de nitions and to address
a wider range of model composition activities.

Since a model of mapping is speci ¢ to a given context and for a speci ¢ purpose,
we propose a modular model-alignment modeling language that designers customize
for their own purpose. The model-alignment modeling language supports the de -
nition of mappings between models or model elements and allows the selection of
interpretations for these mappings.

Customization of the model composition framework is capitalized in the selection
of interpretations for a set of mappings. However this set of interpretations is not
enough to capture the specic characteristics of the model composition operation.
Context—speci ¢ and purpose-speci ¢ data has to be provided by the designers.

3.2 The ModMap Framework

The ModMap framework proposes a model-alignment modeling language and
customization capabilities to build speci ¢ model composition frameworks in a given
context and for a given purpose. A speci ¢ model composition framework supports the
de nition of a model-alignment modeling language that results from the de nition
of mappings between models or sets of models elements and from the selection of
adequate interpretations for these mappings.

3.2.1 Architecture Overview

This section presents the global architecture of the ModMap framework and the
process of customization for building speci ¢ model composition frameworks (see
Figure 3.6).

The model-alignment language (see Section3.2.2 is decomposed into four con-
cerns :

— The Mapping concern deals with the representation of mappings between model

elements (see Sectior8.2.2.).
— TheFilter concern allows designers to propose ltering capabilities to mappings
(see Section3.2.2.).

— The Strategyconcern is the representation of the categories of interpretations
formalized in Chapter 2 (see Section3.2.2.9 and allows designers to associate a
speci ¢ interpretation to a mapping.

88 ModMap : A Framework for Unifying Model Composition Activities

Figure 3.6 —Overview of the process of building a problem—speci ¢ model compaosition
framework.

— The Directivesconcern represents a set of atomic operations that are applicable
on model elements (see Section3.2.2.9. Directives are parameters for strategies
that allow designers to customize the model composition operation for their own
needs.

These concerns contribute to the de nition of the model-alignment modeling lan-
guage as shown in Figure 3.6. We consider the Mapping concern and the Directives
concern generic enough to be included in a model compaosition framework with no
changes. Mappings between sets of model elements and parameters for interpretations
are ready to use for any model composition framework.

Since every model composition expectations vary depending on the objective of
the model composition operation, the model-alignment language proposed in Sec-
tion 3.2.2requires customization. Figure 3.6 illustrates the process of customization
that building a speci ¢ model composition framework requires. Building a model
alignment language is the rst step of the de nition of a new model composition
framework. Customization allows designers to compose models within the context of
a speci ¢ model composition intent. Since global intention is di cult to capture, we
consider that designers should provide a purpose—speci ¢ processing (i.e, algorithm).

The ModMap framework proposes operational semantics for every concept of the
four concerns. Proposed operational semantics allows us to provide a default imple-
mentation of the various concepts. In the context of the Strategy concern, semantics
provide interpretations with a default implementation that corresponds to the formal-
ization proposed in Chapter 2. Each concern is weaved with its operational semantics
(see Section3.2.3 using the Kermeta language. Section3.2.4presents the abstract syn-

The ModMap Framework 89

tax of the model-alignment language. Section 3.2.2details the constructs of the four
concerns of the model-alignment modeling language and Section 3.2.3 presents the
operational semantics that are weaved to the various kinds of strategies.

3.2.2 A Language for (meta—)Model Alignment

This section details the constructs of the four concerns of the model alignment lan-
guage and propose a concrete syntax to ease the de nition of mappings between mod-
els or model elements. Figure 3.7 illustrates the ModMap meta—model. The ModMap
meta—model describes a modeling language for the alignment of (meta—)models that
is decomposed of the two main concepts of Mappingand Strategy . More details about
these two concepts are provided in Section 3.2.2.1and Section 3.2.2.2respectively.

Figure 3.7 — The ModMap meta—model is composed of aMapperroot and the two main

concepts of Mapping for creating relationships between model elements and Strategy
for giving semantics to these relationships.

3.2.2.1 Mapping Concern

The mapping concern (see Figure 3.8) of the model composition language includes
the concepts of Mapping, Role and Filter

Mappings and Role
We propose four types of explicit mappings. Each type of mapping depends on the
multiplicity of sources and targets model elements that we map with one another :
— One20neMapping is a relationship between one source model element and one
target element.
— One2ManyMapping is a relationship between one source model element and at
least two target model elements.
— Many20neMapping is a relationship between at least two source model ele-
ments and one target model elements.
— Many2ManyMapping is a relationship between at least two source model ele-
ments and at least two target model elements.

90 ModMap : A Framework for Unifying Model Composition Activities

Figure 3.8 — Mapping Concern of the ModMap language. Dark—grayed element is a
shortcut to the ECore meta—model and the light—grayed model element is the Iter
concern.

Mappings own relationships with model elements. Using the de-facto standard to
design meta—models called Eclipse Modeling Framework (EMF) 1, mapping relation-
ships are bound to the ECore modeling language. In ECore, the most general model
element in the hierarchy of model elements is EModelElement It allows to de ne a
mapping between every model element from a ECore model.

The concept of Role acts as a proxy that references EModelElement and avoid
binding a mapping to a EModelElementdirectly. This allows to reuse Roles fordi erent
mappings.

A mapping has a re exive relationship which allows for declaring sub mappings
that specialize the behavior of a parent mapping : this means that the semantics of the
sub mapping encompasses the semantics of its parent mapping. When we traverse a
mapping model for generating code or for analysis purposes, we visit the tree-based
structure using for instance, a Visitor Design Pattern [GHJ +95]. Visiting a structure is
decomposed into two passes, each one dealing with a speci ¢ concern. The rst passis
dedicated to create the structure of the expected result and the second pass is invoked
to correctly set non-containment references between objects. Thepassattribute of a
mapping indicates which pass a mapping refers to.

Default navigation strategy for the Visitor implementation is depth- rst : we tra-
verse the model by following the containment relationships. Each model element is

1. http ://www.eclipse.org /modeling /femf

The ModMap Framework 91

responsible of calling the visit() method for its own children.

Filter Concern

In Figure 3.8, we propose the concept of Filter related to a Role. The Filter concept
is abstract and allows the designer to propose Itering capabilities on the selection
of model elements to consider in the mapping relation. In other words, although the
de nition of mappings between meta—types encompasses all instances of any meta—
types involved, we allow experts to select instances of interest for a given situation
and respectively discard instances that should not participate in a given mapping
relationship. Experts may extend the Filter abstract concept to provide additional
Itering capabilities.

3.2.2.2 Strategy Concern

Representing interpretations for mappings is decomposed in two sets of model
elements : strategies and directives adapted from [FBF08].

Strategies and Parameter

The strategy concern is the rst set of model elements that deal with representing
the interpretation of the mapping (see Figure 3.9). A strategy is the speci cation of a
speci ¢ and prede ned algorithm that corresponds to common model manipulation.
Regarding the classi cation of interpretations presented in Chapter 1, we propose a
strategy for each kind of interpretation. Some of the strategies need more details to
capture a consistent de nition of the interpretation. Additional details are provided

by a Parameter which is linked to a set of directives that customize the application
of the interpretation. The parameter of the InfoGapStrategy and of the AdHocStrat-
egy is represented as aModelingUnit element from Kermeta. A ModelingUnit is the
root element of a Kermeta model. This means that a binding a ModelingUnit with a
InfoGapStrategy or AdHocStrategy, we can provide respectively structural data and
behavioral data as parameter to the interpretation.

Most strategies are applicable to any kind of elements at both the model and the
meta—model levels of abstraction. The GenStrategy and the AggrStrategy involve
changes on the hierarchy of types or on the hierarchy of containers respectively. These
changes are only applicable on meta—models since they would break the conformance
relationship that a model has with its meta—model.

The meaning of parameters for each strategy is such that :

— GenStrategy is about including an generalization relationship between a set
of model elements. Each model element of the set identi ed by the parameter
becomes a parent of each model element of the other set of models elements.

— AggrStrategy is about creating a containmentrelationship between model ele-
ments. Similarly to generalization, the parameter provides information about
which model element becomes the container of the other set of model elements.

— SimStrategy means that we need to rename one set of elements to allow aligning
models with one another. The parameter provide renaming directives.

92 ModMap : A Framework for Unifying Model Composition Activities

Figure 3.9 — The strategy concern contains interpretations proposed in Chapter 1. Most
interpretations need additional parameters or structures to allow designers to capture
the initial intention of the mapping. Dark—grayed concepts are shortcuts to Kermeta
or concepts from the Mapping and Directives concerns.

— ReplaceStrategy indicates that one set of model elements is kept whereas other
sets of model elements are discarded. The parameter indicates which set of model
elements should be kept.

— AugmentStrategy is about keeping a set of model elements and adding data
from other sets of model elements. The parameter identify which set of model
elements should be considered as thebasen the terminology of AOM.

— SequenceStrategy is intended to order the execution of a set of model elements.
The parameters indicates how to order this execution.

— CodependencyStrategy is about ordering the execution of a set of model ele-
ments regarding to precise and somehow complex relationships. The parameter
indicates which type of co-dependency should be implemented.

About including a well-formed structure, we consider the two following cases :

— InfoGapStrategy means that a partial structure is needed to relate the sets of

The ModMap Framework 93

model elements. This structure is provided by a relationship to a ModelingUnit.

— AdHocStrategy provides an escape mechanism using a Turing-complete lan-
guage to handle speci c complex computations or transformations. The binding
with a ModelingUnit allows for providing a speci ¢ algorithm provided by users.
This algorithm is encompassed into a ModelingUnit that contains both structure
and behavior.

Directives

Directives are a set of model elements that correspond to atomic operations on models
(see Figure3.10. The set of directives is voluntarily kept small to increase understand-
ing and reusing.

Figure 3.10 — Extension of Reddyet al's directives [RGF+06]. The Destroy and Concat
concepts have been added to the original implementation. The Parameter conceptis a
shortcut to the Strategy concern.

Adapted from the directives [FBF +08; RGF+06] of the Kompose Tool 2, we reuse
the following concepts with no changes :

2. http ://www.kermeta.org /mdk /kompose

94 ModMap : A Framework for Unifying Model Composition Activities

— ElementDirective isthe top-most model element from the directive concern. This
abstract concepts encompasses thexecute() methods which allows running a
given directive.

— Create allows for creating new model elements with an identifier (i.e, name
of the variable to access to the model element) and aclassName(i.e, the type of
the new model element).

— Change is the abstract concept for any directives that induce modifying a model

element. The propertyName property represents the name of the model ele-

ment property to change. value owns the new value to set to the property
propertyName. target indicates which model element the propertyName refers
to.

— Remove allows removing a property /value.

— Add allows adding a property /value.

— Setallows modifying an existing property /value.

ElementRef is the abstract concept for referring to model elements or value.

NameRef allows referring to a model element by its quali ed name (gnamé.

Literal allows referring to a literal value.

— StringLiteral is a string value.

— BooleanLiteral is a boolean value.

— IntegerLiteral is an integer value.

— VoidLiteral is the void value.

— IDRef allows referring to a speci c identi er.

In addition to the original set of concepts, we propose two new concepts as follows :

— Destroy allows removing a model element from a model.

— Concat allows concatenating multiple strings and /or model elements properties
of type String. propertyNames contains the list of strings to concatenate. value
and target have the same semantics thanvalue and target from the Change
concept.

We added a new inheritance link between ElementDirective and ElementRef to allow
reference a given model element within a larger scope.

3.2.3 A Tool for Building Model Composition Frameworks

This section proposes operational semantics for each construct of the concerns pre-
sented in Section3.2.2 Operational semantics allow us to provide additional meaning
for the constructs of the model-alignment modeling language and propose a default
implementation for the set of interpretations.

Section 3.2.3.1is a remainder on the methodology and techniques that we use to
propose the operational semantics to the ModMap concerns. Following this method-
ology, Sections 3.2.3.2to 3.2.3.4proposes operational semantics for each ModMap
concern.

The ModMap Framework 95

3.2.3.1 Methodology and Techniques in Kermeta for Providing Operational Se-
mantics

Operational semantics for the ModMap modeling language are provided using the
Kermeta [MFJO5 ; JBF10] language. This section is a reminder about the implementation
of the Visitor Design Pattern with aspects in Kermeta to “weave” operational semantics
within the ModMap meta—model.

Aspects and Static Introduction

The ModMap concerns are embedded in an independent modeling language. We use
Kermeta's open class mechanism to statically introduce new properties or new opera-
tions within the model elements of the meta—model of modeling language. This means
that new properties and operations are statically type—checked against the complete
underlying Kermeta model. We provide operational semantics for every ModMap
model element using the static introduction supported by Kermeta, as illustrated in
Listing 3.2

/I Reopening an existing class A
aspect class A{
/1 Introducing new properties
attribute name : String
reference b : B
/!l Introducing new operations

operation myOperation (...) is do
end
/1 Overriding an existing operation
method oldMethod (...) is do

super
end

Listing 3.2 — Static Introduction in Kermeta

The aspect keyword allows reopening an existing Kermeta class. In the scope of
the aspect, attributes, references and operations are easily added using the Kermeta
standard concrete syntax.

Visitor Design Pattern in Kermeta

As any GPL-like programming language, Kermeta allows implementing the Visitor
Design Pattern [GHJ+95] to scan a tree—based representation such as a model. Using
aspects and static introduction, developers de ne their abstract and concrete visitors
with no changes to the (meta—)model on which it applies.

The implementation of the Visitor Design Pattern is however cumbersome : it re-
quires to create anaccept() method in every model element ; it requires an Abstract-
Visitor todeclarevisit() methods for every model element; it requires to implement
visit() methods for any concrete Visitor

96 ModMap : A Framework for Unifying Model Composition Activities

Inspired from David Lorenz approach [Lor98] for using aspects for the imple-
mentation of the the Visitor Design Pattern, we use aspects to capture traceability
information. Listing 3.3shows an example of Visitor using aspects.

// Integrating Visitor into an existing class
aspect class A {
I/« Adding a reference for the purpose of traceability
» and references the result of the Visitor
*/
reference output: Object
I/l The visit operation
operation visit (...): Void is do

end

}

/l Using the Visitor to scan a structure
class Visitor{
operation main{...}: Void is do
var a : A init A.new

/I starts visiting
a.visit()
/] retrieves result
a.output

end

}
Listing 3.3 — Implementation of a Visitor using aspects in Kermeta

Using aspects, we reopen an existing class in which we add a new reference and a
new operation 3. The operation performs a speci ¢ computation and stores the result
into the reference. In any Kermeta class, we can start visiting a structure using the
visit method and access the result by a call to the output reference of an object.
output plays two roles : the reference stores the result of the visit() operation, and
the reference is a traceability link between the current object and the result object.

Inthe following sections, we propose default operational semantics for the ModMap
model elements using aspects and the Visitor Design Pattern. The purpose of propos-
ing default operational semantics is to provide behavior to the structural concepts
of the ModMap meta—model. Providing behavior allows us to capitalize part of the
purpose of various model composition operators. Semantics allow designers to focus
0N proposing purpose—speci ¢ processing that covers what remains to build a speci ¢
model composition operation.

3.2.3.2 Operational Semantics for the Mapping Concern

Operational semantics for the mapping concern refers to the way the mapping
model structure is to be scanned. The default method of scanning is naive : we scan
every mapping one by one, in the order of creation. Since scanning may have an

3. The reference name and the operation name have no impact on the execution of the visitor.

The ModMap Framework 97

impact on the ultimate purpose of the model composition, the naive method may be

specialized if necessary. Scan is available through the implementation of the Visitor
Design Pattern (see Listing 3.4and Listing 3.5), using the methodology that we detailed
in Section 3.2.3.1

/+ Mapper is the root object of the ModMap model
» Method visit scans mappings in the
x» order of their creation.
x» Output is a ModelingUnit
*/
aspect class Mapper {
reference output : ModelingUnit

operation visit() is do
output := ModelingUnit.new
I/l scans mappings and calls Visitor on each
self .mappings. each{ m |
m. visit ()
// missing output assignment
}

end
}
Listing 3.4 — Operational Semantics for the Mapper model element from the mapping
concern.

The operational semantics of the Mappemrmodel element creates a KermetaModeling-
Unit that represent the model of composition. The visit() = method scans mappings
and subsequently modify the ModelingUnit .

Scanning mappings is a three steps process (see Listings3.5and 3.6) : (i))we
scan nested mappings using the subMappingsproperty of a Mapping; (i) we scan roles
associated to a mapping ; (iii) we build an algorithm from the operational semantics of
associated strategies.

About roles, we expect to build a speci ¢ Kermeta Class for each role to represent
the related EModelElement This Kermeta class is used to de ne a speci ¢ composition
method. The creation of a class puildClassFromEModelElement method) manipulates
Kermeta concepts and uses a lter if any to allow selecting relevant model elements
only. Inputs about Itering are provided by end-users.

98 ModMap : A Framework for Unifying Model Composition Activities

Listing 3.5 — Operational Semantics for the Mapping model elements from the mapping
concern.

Listing 3.6 — Operational Semantics for the Role model element from the mapping
concern.

The ModMap Framework 99

3.2.3.3 Operational Semantics for the Strategies Concern

This section presents the operational semantics of the strategy concern of the
ModMap meta—model. These operational semantics relies on the directives concern
that is presented in Section 3.2.3.4

Listing 3.7 illustrates the de nition of the visit() method for strategies. Every
model element that inherits from Strategy provides an implementation of the visit()
method.

The default semantics of the visit() method calls an operation called compose()
thatembeds the speci c processing of the model composition operation. The compose()
operation produces a set of statements that achieve the speci ¢ model composition op-
eration on the objects A and B. This set of statements is encapsulated into a Kermeta
Block of statements.

aspect class Strategy {

reference output : Set<Block>

operation visit(A : Set<Object>, B : SekObject>) is do
[/« compose() is an operation that includes the process specific to the

purpose of the model composition «/

var b : Block init compose(A,B)
output.add(b)

end

}

Listing 3.7 — Operational Semantics for the Strategy model element from the strategy
concern.

The Parameter model element allows providing parameters for a strategy if nec-
essary. These parameters are written using directives. Scanning a parameter thus sub-
sequently scans the set of directives associated with the parameter (see Listing3.8).

aspect class Parameter {
reference output : Set<Object>
operation visit(A : Set<Object>, B : SekObject>) is do
directive . each{d|
d.visit(A,B)
output.add(d. output)
}

end

}

Listing 3.8 — Operational Semantics for the Parameter model element from the strategy
concern.

Add and Delete Strategies

Add Strategy Thevisit() method of the Add strategy (see Listing 3.9) calls the
visit() method of its parameter. If a parameter has been provided, we create a new
relation (Property objectin Kermeta) and add this new relation to the set of properties
of the object A before calling the super operation from Strategy.

100 ModMap : A Framework for Unifying Model Composition Activities

aspect class AddStrategy {

method visit (A : Set<Object>, B : SekObject>) is do
self .relation . visit (A,B)
var p : Property init self.relation.output
if p!= void then

A.ownedAttribute . add (p)

end
super

end

}

Listing 3.9 — Operational Semantics for the Add Strategy model element from the
strategy concern.

Delete Strategy ~ The Delete Strategy (see Listing3.10 has no additional param-
eter. It calls the remove() operation on the collection of objects from A with objects
from B as a parameter before calling the super operation from Strategy.

aspect class DeleteStrategy {
method visit (A : Set<Object>, B : SekObject>) is do
A.removeAll (B)
super
end
}
Listing 3.10 — Operational Semantics for the Delete Strategy model element from the

strategy concern.

Overlapping Strategies

Equivalence Strategy The Equivalence Strategy (see Listing 3.11) relies on a
set of parameters (propertie$. The visit() method calls the Visitor on the properties
parameter and then call the equals() operation. The equals() operation stores which
properties proposed by the user should be considered as equivalent for each model
element. This information supports the composition process to identify equivalent
model elements.

aspect class EquStrategy {
method visit(A : Set<Object>, B : SekObject>) is do
self . properties. visit (A,B)
equals (A,B,self . properties . output)
super
end

}

Listing 3.11 — Operational Semantics for the Equivalence Strategy model element from
the strategy concern.

The ModMap Framework 101

Similarity Strategy The Similarity Strategy (see Listing 3.12) relies on a set of
parameters (renameproperty). The visit() method calls the Visitor on its parameter
and then call the align() operation. The align() operation align objects A and B with
regard to the set of directives provided by the user.

aspect class SimStrategy {
method visit (A : Set<Object>, B : SekObject>) is do
self .rename. visit (A, B)
align (A,B, self .rename. output)
super
end

}
Listing 3.12 — Operational Semantics for the Similarity Strategy model element from
the strategy concern.

Generalization Strategy The Generalization Strategy (see Listing 3.13 only
applies on the meta—level of abstraction (i.e, the meta—model) of a model, since it
modi es the tree of hierarchy of a set of model elements. The parent parameter
indicates which set of model elements should become the parent of the other. If A or B
are equals to the parameter, the set of supertypes of A or B is respectively augmented
with B or A.

aspect class GenStrategy {
method visit (A : Set<Object>, B : SekObject>) is do
self .parent.visit (A,B)
if A.equals(self.parent.output) then
B.superType .add(A)
else
A.superType.add(B)
end
super
end

}
Listing 3.13 — Operational Semantics for the Generalization Strategy model element
from the strategy concern.

Aggregration Strategy ~ The Aggregation Strategy (see Listing 3.14) only applies
on meta—models since it modi es the inherent structure of a model by adding a con-
tainment relationship. The container parameterindicates which set of model elements
should become the container of the other set. From this information, we create a new
relationship with its containmentproperty equals to true. This new property is then
added to object A or B, depending on the container parameter.

102 ModMap : A Framework for Unifying Model Composition Activities

aspect class AggrStrategy {
method visit (A : Set<Object>, B : SekObject>) is do
self .container. visit (A,B)
var p : Property init self.container.output
if A.equals(self.container.target) then
A.ownedAttribute . add (p)
else
B.ownedAttribute .add (p)
end
super
end

}
Listing 3.14 — Operational Semantics for the Aggregation Strategy model element from
the strategy concern.

Override Strategy =~ The Override Strategy (see Listing 3.15) traverse the structure
of A to detect model elements to override. Detected model elements are added to a
new set of objectsnew_athat contains the original model elements of A without those
replaced by the objects from B.

aspect class OverrideStrategy {
method visit (A : Set<Object>, B : SekObject>) is do
var new_ A : Set<Object> init Set<Object>.new
A. each{o]|
if not B.contains (o) then
new_A.add(o)
else
new_A.add(B.get(0))
end

}

A.clear
A. addAll (new_A)
super

end

}
Listing 3.15 — Operational Semantics for the Override Strategy model element from the
strategy concern.

Information Gap Strategy The Information Gap Strategy (see Listing 3.16
expects to get a set of relationships from the parameter. Visiting the parameter produces
a set of properties identi ed by their expected containing model element. We browse
this map of properties and subsequently add them to either A or B, depending on
the parameters. The reason why we do not manipulate the structure relationship and
consequently the ModelingUnit attached to it is that we expect the refs parameter to
provide relationships that already point to the structure to include.

Ad Hoc Strategy The Ad Hoc Strategy (see Listing 3.17) propose an escape
mechanism that allows arbitrary complex computation on the model elements that are
mapped with one another. We propose to encapsulate this complex computation in a
Kermeta ModelingUnit which represent the algorithm of the process. This algorithmis

The ModMap Framework 103

aspect class InfoGapStrategy {
method visit (A : Set<Object>, B : SekObject>) is do
var m : ModelingUnit init self.structure
self .refs.visit(A,B)
var properties : Hashtable<Object, Property> init self.refs.output
properties . keySet.each{o|
if o.equals(A) then
A.add(properties.get(0))
else
if o.equals(B) then
B.ownedAttribute .add(properties.get(0))
else
o.ownedAttribute .add(properties.get(o))
end
end
}
super
end

}
Listing 3.16 — Operational Semantics for the Information Gap Strategy model element
from the strategy concern.

added to the current Block of statements of the strategy as preliminary process before
the execution of the compose() operation.

aspect class AdHocStrategy {
method visit (A : Set<Object>, B : SexkObject>) is do
// complex user defined computation
var m : ModelingUnit init self.algorithm
output.add(ModelingUnit)
super
end

}
Listing 3.17 — Operational Semantics for the Ad Hoc Strategy model element from the
strategy concern.

Cross—Cutting Strategies

Replace Strategy =~ The Replace Strategy (see Listing3.18 replaces all model
models from one set with model elements from another set. Accordingtothe direction
parameter that states which set of model elements should be replaced, we traverse the
sets of model elements and create a new set which contains replaced model elements.

104 ModMap : A Framework for Unifying Model Composition Activities

aspect class ReplaceStrategy {
method visit (A : Set<Object>, B : SekObject>) is do
var new_set : SekObject> init Set<Object>.new
self . direction . visit (A,B)
if self.direction.output.equals(A) then
A. each{o]|
if not B.contains (o) then
new_set.add (o)
else
new_set.add(B.get(0))
end
}
A.clear ()
A.addAll (new_set)
else
B.each{o|
if not A.contains (o) then
new_set.add (o)

else
new_set.add(A. get(0))

end
}
B.clear ()
B.addAll(new_set)

end

super

end

}
Listing 3.18 — Operational Semantics for the Replace Strategy model element from the

strategy concern.

Augment Strategy =~ The Augment Strategy (see Listing 3.19 rely on a baseset of
model elements which is identi ed by the base parameter. For each model element
of the base, if two elements are found equal, we make the union of the sets of their
properties to ultimately add it to the model elements of the base.

Remove Strategy =~ The Remove Strategy (see Listing3.20 is the opposite of the
augment strategy. For each pair of equal model elements, we check if they own a
common property. If found, we remove the common property.

The ModMap Framework 105

Listing 3.19 — Operational Semantics for the Augment Strategy model element from
the strategy concern.

Listing 3.20 — Operational Semantics for the Remove Strategy model element from the
strategy concern.

Interaction Strategies

Sequence Strategy The Sequence Strategy (see Listing.21) orders the execution
of A and B. The call of the visit() operation on the order parameter identi es
which model element should be executed rst. The execute() operation is then called
depending on this order parameter.

106 ModMap : A Framework for Unifying Model Composition Activities

aspect class SequenceStrategy {
method visit (A : Set<Object>, B : SekObject>) is do
self .order. visit (A,B)
if self.order.output.equals(A) then
execute (A)
execute (B)
else
execute (B)
execute (A)
end
super
end

}
Listing 3.21 — Operational Semantics for the Sequence Strategy model element from
the strategy concern.

Parallel Strategy =~ The Parallel Strategy (see Listing3.22 rely onthe concurr_exec()
operation which implements the concurrent execution of the model elements.

aspect class ParallelStrategy {
method visit (A : Set<Object>, B : SekObject>) is do
concurr_exec (A, B)
super
end

}
Listing 3.22 — Operational Semantics for the Parallel Strategy model element from the
strategy concern.

Codependency Strategy The Codependency Strategy (see Listing3.23 proposes
a naive implementation of the start—to—start start—to— nish, nish—to—start, and nish—to—
nish codependency relationships. According to the type parameter which indicates
which kind of codependency relationships to take into account, we use a couple of
boolean values to indicate if the execution of a model element is started or finished
and to allow an execution to start or to end with respectively allowedToStart and
allowedToEnd boolean values.

The ModMap Framework 107

aspect class CodependencyStrategy {
method visit (A : Set<Object>, B : SekObject>) is do
self .type.visit (A,B)
// Start to Start
if self.type.output.equals(s2s) then
if A.started then B.allowedToStart := true end
else
/l Start to Finish
if self.type.output.equals(s2f) then
if A.started then B.allowedToEnd := true end
else
// Finish to Start
if self.type.output.equals(f2s) then

if A.ended then B.allowedToStart := true end
else
/! Finish to Finish
if A.ended then B.allowedToEnd := true end
end
end
end
super

end

}
Listing 3.23 — Operational Semantics for the Codependency Strategy model element
from the strategy concern.

3.2.3.4 Operational Semantics for Directives

In this section, we distinguish operation directives and reference directives. We
presents the operational semantics for ElementDirective and its specializations that
expect changes ElementDirective)and detail ElementRef directives that allow refer-
encing existing model elements or literals.

Directives Operational semantics of the ElementDirective directive declare an
abstract method visit() ~ which is overridden by the ElementDirective children. List-
ing 3.24 shows the operational semantics for the ElementDirective object and for
Change one of its children. The visit() method of Change looks for the target model
element provided by the propertyNameproperty and the target valueproperty in both
A and B. Both objects are added to the directive output.

References to Model Elements References to model elements are provided by
the abstract conceptElementRef. Listing 3.25illustrates the operational semantics for
the NameRetoncept and the Literal concept which respectively references an object
or a constant value. The quali ed name of the objectto nd (gnameproperty) is looked
up in both A and B and added to the output if found. If the referenced element is a
constant value, output is assigned to its value.

108 ModMap : A Framework for Unifying Model Composition Activities

aspect class ElementDirective {
operation visit(A : Set<Object>, B : SekObject>) is abstract

}

aspect class Change {

method visit (A : Set<Object>, B : Se&Object>) is do
var o : Object init lookupObject(self .propertyName ,A)
if o == void then

0 := lookupObject(self . propertyName ,B)

end
self .value . visit (A,B)
output.add(o)
output.add(self .value . output)

end

}

Listing 3.24 — Operational Semantics for ElementDirective and its children from direc-
tives.

aspect class NameRef {
method visit (A : Set<Object>, B : SekObject>) is do
var o : Object init lookupObject(self .gname,A)

if o == void then
0 := lookupObject(self .gname,B)
end
output.add(o)
end

}

aspect class Literal {
method visit (A : Set<Object>, B : SekObject>) is do
output := self.value
end

}
Listing 3.25 — Operational Semantics for ElementRef and its children from directives.

3.2.4 ModMap Concrete Syntax

Providing a framework for building model composition operators may be di -
cult to manipulate for designers. To this purpose, we propose a concrete syntax for
ModMap to ease the de nition of mapping speci cations, providing designers with a
graphical language. The constructs of the concrete syntax re ect the constructs of the
model-alignment modeling language presented in Section 3.2.2 The graphical repre-
sentation is an adaptation and an extension of the formalism proposed by Hausmann
et al.[HKO03]. Hausmann et al's formalism includes elements to express “consistency
between models” or in other words “conditions under which two models are compat-
ible”.

We kept the following de nition as a basis for the concrete syntax :

— A white diamond indicates a mapping de nition and has a name.

— A given model element or a set of model elements is linked to a mapping de ni-

tion with a dotted line.

Conclusion 109

— If a mapping de nition involves multiple sources or multiple targets, a black
circle is put between the mapping description and the sets of model elements
involved.

We propose to extend Hausmann et al.'s formalism as follows :

— We explicitly separated mapping descriptions into four types. Each type depends
on the multiplicity of sources models elements and targets model elements that
we want to map with one another.

— We allow the creation of a mapping description between any model element such
as classes, attributes, and associations between model elements.

— We propose that each mapping description is bound to a set of strategies (see
Section3.2.2.9.

— Each strategy is represented by a colored circle and included into the white
diamond of a mapping description.

— If necessary, parameters for strategies are provided in orange boxes and linked
to their strategy by a straight gray line.

— For Ad Hocand Information Gap strategies, a red box contains respectively
the user—provided structure or algorithm necessary for the model composition
processing.

Figure 3.11illustrates the concrete syntax of the model-alignment language on the
running example. We use a One20neMappingo de ne an equivalence relationship
between Account from the Bank model and Account from the BLP model. The other
One20neMappinde nes an equivalence relationship between BankUserfrom the Bank
model and BankUserfrom the BLP model.

Figure 3.11 — Model of mappings between the Bank model and the BLP model

Additional examples of the concrete syntax in action can be found in Chapter 4.

3.3 Conclusion

We have presented in this chapter the ModMap framework that allows designers to
build model composition frameworks that are speci c to a given purpose. We proposed
a model-alignment language that covers the de nition of mappings between a set of
models or a set of models elements. This model-alignment language can be customized
for a given purpose by selecting a set of interpretation that are relevant for a speci c
purpose. Additional purpose— or domain—speci ¢ characteristics should be proposed

110 ModMap : A Framework for Unifying Model Composition Activities

by designers to nalize the de nition of a model composition framework for a speci ¢

operation on models.
In the next chapter, we demonstrate the application of the ModMap framework on

three case studies that target three di erent operations on a set of models.

Chapitre 4

Validation and Application

This section presents three use cases that act as a validation of the theoretical
framework for unifying model composition approaches, presented in Chapter 2, and
of the ModMap language presented in Chapter 3.

Section4.1demonstrates the use of the theoretical framework to unify four existing
model merging techniques. With this experiment, we expect to validate the adequate-
ness of the theoretical framework (i)to compareexisting model composition approaches
and (ii)to propose a unique kernel for model composition that is independent from
the context.

Section 4.2 demonstrates the use of the theoretical framework on an industrial
case study from the MOPCOM-I project to integrate legacy APIs. We collaborate with
industrial partners from Technicolor ! to automate the integration of legacy API for
the con guration and management of heterogeneous video and broadcasting equip-
ments. This validates both the applicability of the theoretical framework to other
management activities andthe e ciency of using the ModMap framework in action.

Section 4.3 extends the use of ModMap and the uni ed theoretical framework
to the challenges of model synchronization in a context of Service—Oriented Archi-
tecture (SOA). This allows extending the scope of the theoretical framework
to encompass various model management activities beyond model merging and
model integration.

4.1 Generalizing Model Merging

Model merging is used to compose di erent concerns in a large model. Even
though the purpose of model merging usually remains constant, most model merging
operators are custom-built for speci ¢ languages. In this case study, we propose a
uni ed framework of model merging that distills the body of knowledge embedded in
four existing model merging operations. The uni ed framework helps both comparing
existing operations on a common basis and improving code reuse to build new model
merging operations.

1. http ://www.technicolor.com /en/hi/technology/research-and-innovation-centers/rennes

111

112 Validation and Application

4.1.1 Existing Tools for Model Merging

We choose four model merging techniques that handle a pair of homogeneous
models to illustrate the current approach. We brie y recap the main concepts for each
technique in Sections4.1.1.1to 4.1.1.4

Description of the four techniques is organized as follows :

Inputs details if a technique is model or meta—model speci c and how many
models are involved in a model merging operation.

Match presents the implicit or explicit matching mechanism proposed by a tech-
nique to detect model elements to merge.

Merge gives information about the merging process for elements that match and
element that do not.

Outputs gives details about the output model, its type and any speci ¢ charac-
teristic.

— Other lists any other speci ¢ processing that supports or enhances the merging

process to produce a model that meets the user expectations.

Using this structure, we capture the internal mechanisms of each technique and
expect to identify commonalties that would ease the de nition of a generic unied
core for model merging.

4.1.1.1 UML Package Merge

The Uni ed Modeling Language (UML) is a standard proposed by the Object Man-
agement Group (OMG). The UML2 modeling language supports modular construction
of models through the notions of package and ppackage merge. As a tool for improv-
ing modularity, UML2 supports a new directed relationship between packages named
“Package Merge” [OMG10b, 811.9.3]. Package Merge allows for extending an existing
package by merging the contents of another package.

— Inputs are two UML Class Diagrams that are either physically independent
or de ned under two di erent namespaces. The technique is applicable to the
whole UML meta—model if adequate extensions are provided to handle the
various kinds of UML types.

— Match is an implicit mechanism that checks names and types (i.e, instance of the
same element in the meta-model).

— Merge applies on a prede ned set of types and recursively among packages and
their nested children. The set of prede ned types may be extended for supporting
merging among speci ¢ types.

— Matchings elements are merged w.r.t. a set of transformation rules [OMG10b,
811.9.3, p.165-168] that details the navigation across the structure of elements
and constraints to satisfy.

— Non matching elements are deep copied.

— Outputs is a new UML Class Diagram that contains the output of the merge
operation : matching elements are merged with one another and non matching
elements are copied from the source UML models.

Generalizing Model Merging 113

Fig. 4.1lillustrates an example of UML PackageMerge in which the contents of the
package BasicEmployeeshould be merged with the content of package Employeeloca-
tion. On this speci ¢ example, only one match is found : The UML class Employeén
BasicEmployedsas a hame that equals the name of the UML classEmployeén Employ-
eelLocationThe resulting UML class diagram thus contains a UML class Employedhat
contains the properties (i.e, attributes and references) of both source classes. No other
match is detected between these packages, thus other UML classes are just copied into
the resulting UML class diagram.

Figure 4.1 — A package merge example adapted from [ZDDO06]

4.1.1.2 Kompose : A Generic Model Composition Tool

A detailed description of Kompose is available in Section 1.1.4.1 As a reminder,
Kompose? is a merging tool for multi-view design [FFR +07] (related to Aspect—
Oriented Modeling). Kompose merges homogeneous pairs of models that conform
to various kinds of meta—models.

— Inputs are two homogeneous models that conform to the same meta—model that
itself conforms to the Meta Object Facility (MOF) meta—model. One of the two
models is considered as the base model and the other as an aspect, similarly to
what exists in Aspect-Oriented Modeling.

— Match is an explicit mechanism based on signatures. Signhatures de ne a set
of properties which are used to detect the equivalence between pairs of model

2. http ://www.kermeta.org /mdk /kompose

114 Validation and Application

elements that have the same type .9, pairs of classes or pairs of operations).
Default signature checks name.

— Merge applies on all types and recursively among containers and their nested
children. Using re exivity and introspection to access properties allows de ning
a generic merge algorithm to support merging of di erent models. The model
elements to merge are all referenced in a global set of model elements which is
sequentially browsed to detect matches and merge model elements that match.
— Model elements which signatures match are merged into a single model ele-

ment
— Model elements with no match are deep copied in the resulting model

— Outputs is the modi cation of the base model that contains the output of the
merge operation as described above.

— Other facilities are proposed by Kompose to change input and output models
prior to and post to the match and the merge mechanisms. In addition, a con ict
resolver is provided to meet speci c user expectations regarding the merge of
values.

Fig. 4.2 and Fig. 4.3 are respectively the base model (BLP) and the aspect model
(Bank) from [FFR+07]. In this example, the considered models are class diagrams
that conform to the UML meta-model. Listing 4.1 presents the pseudocode of the
default signature. Using the default signature, we detect that the classes BankUserand
Account from the Bank model matches classesBankUserand Account from the BLP
model respectively. Fig. 4.4 shows the new version of the BLP model after merging.
Matching classes have been merged into a single class and properties from these classes
have been merged into a single property. Non matching classes and properties from
the input models have been deep copied. As described in [FFR+07], the two operations
transfer()and withdraw() from the Controllerclass of theBankmodel have been removed
from the merged model with post—directives to meet users requirements.

B #$% , (B # ()

! @ & () T @,)#)) %%t
® 1 () ® % r+
% A2 . '/\'*+
=] 2l % ()
- (i %) /0! %) I
- 3 8) /01

V2 o
) 2% % v
3 B
@1 N %

Figure 4.2 — An example of the blp model adapted from [FFR +07]

4.1.1.3 Match and Merge of Statechart Speci cations

Nejati et al.[NSC+07] have de ned a merge operator for statecharts. This merge
operator produces a new statechart that contains states, transitions, actions, events and
guards of the input statecharts. The merge operator preserves the behavioral properties

Generalizing Model Merging 115

@
@

aae m

Figure 4.3 — An example of the bank model adapted from [FFR +07]

function equals(objl: Object,obj2 : Object) : Booleanis
return objl.name == obj2.name
end

Listing 4.1 — Pseudo code of the Kompose default signature.

B #$% , o« (B # '()

S e () T Y@ &,) %%
% @ () <+ @ %- *+
. | 2 % /\2 @ . ,/_+I
C gea 1 4% ()
@ % v+

1l
a8
w X
>
Ny
N
w| X
vV
sae
H::
*
+ o+
X

Figure 4.4 — Result of the composition of the Bank model and the BLP model from
[FFR+07]

of the input models, distinguishes between shared and non-shared behaviors of the
input models, and respects the hierarchical structure and parallelism of the input
models.

— Inputs are two statecharts, for instance that conform to the UML State Machine
meta-model.

— Match is an explicit mechanism that uses heuristics to propose correspondence
relationships between states from the two statecharts. Correspondence relation-
ships should be reviewed by domain experts to add missing correspondences
and to remove false positives. The match mechanism is hybrid and combines
both static matching and behavioral matching.

— Static matching combines similarity degrees between states. Similarity degrees
are computed from typographic and linguistic data (i.e. state names) and the
position of a state in the hierarchical structure of both statecharts.

— Behavioral matching generates similarity degrees between states based on
their behavioral semantics, computing values of forward- and backward-
bisimilarity.

116

Validation and Application

Each matching is de ned as a function assigning a normalized value to every
pair of states. The closer a degree is to 1, the more similar two states are. Ag-
gregating the static and behavioral heuristics to generate the overall similarity
degrees between states and given a similarity threshold, they can determine a
correspondence relation over the states of the input models.

Merge constructs a model that contains shared behaviors of the input models

as normal behaviors and non—shared behaviors as variabilities. Variabilities are

represented using parametrization : non—shared transitions are guarded by con-
ditions denoting the transitions' origins. Non-shared states are included in the
output model without any provisions.

— Shared states and transitions are identi ed as follows :

— A state is shared if it is related to some state by a correspondence relation
and is non—shared otherwise.

— A transition t is shared : if the transition source x and target y states are
shared (i.e, a correspondence relation relatesx with an x°and y with y9); if
there exists a transition t° between x° and y° whose event, whose condition
and whose priority equals those of the transition t; if the action of t° either
equals action of t or if the two actions are independent. A pair of actions is
independent if the execution order results in the same system behavior. A
transition is non—shared otherwise.

— Shared states are merged into a single state in the output model with their
names concatenated.

— Non-shared states are copied in the output model

— Shared transitions are copied in the output model States names are and a new
state is added to the resulting statechart speci cation

— Shared transitions are copied to the resulting statechart speci cation with their
event, their condition,their action and their priority unchanged.

— Non-shared transitions are copied to the resulting statechart speci cation with
their event, their action and their priority unchanged and with the condition
concatenated with the name of the original UML statechart that the transition
comes from.

— Output is a new structurally sound statechart. The output statechart contains

both shared and non -shared behaviors.

— Other merging rules are available for computing with the hierarchical structure

for parallel states and super states.

Fig. 4.5 shows the two input statecharts and the merged statechart as presented

in [NSC+07]. The following equation 4.1is the set of correspondence relations after
revision by domain experts :

(So; to); (Sa;ta); (S2; t1); (Ss; ts); (S3: t2); (S6;) 4.1)
(Ss:t3); (s7;t7) '

Among the states of the Call Logger Basiand Call Logger Voicemailonly s; and sg are
non—shared and thus copied to sy;tg with no changes. Every other state has its name
concatenated with the states it corresponds to. Boldface conditions capture the origins

Generalizing Model Merging 117

of the respective transitions. For instance, the transition from (s,,t2) to (ss,t4) annotated
with the condition [ID =basic] indicates a variable behavior that is applicable only for
clients subscribing to basic. The de nition of shared transitions is conservative in the
sens that it requires such transitions to have identical events, conditions and priorities
in both input models. While this is sound to ensure that behavior is preserved, it may
results in redundant transitions. For example, the transitions from (s,,t1) to (s3,t2) and to
(s3,t3) re actions callee= subscribeand callee= participantrespectively. Since the value
of calledn state (s3,t3) equals participantand equals subscribein (s3,t2), we can replace
calleeby subscribepor participanton transitions and merge redundant transitions.

Figure 4.5 — Statecharts of the call logger feature variants from [NSC+07]. Conditions
shown in boldface capture the origins of the respective transitions.

4.1.1.4 Composition of Orchestration of Services with ADORE

ADORE 3 is meant to modularize service orchestrations [MBFF10]. ADORE allows
merging a set of partial orchestrations (i.e.,fragments) within a main orchestration and

3. http ://http : //rainbow.i3s.unice.fr /adore/wiki /doku.php

118

Validation and Application

provides checking capabilities for detecting inconsistencies in the merged orchestra-

tions.

Inputs are a main ADORE orchestration and a set of ADORE fragments.

Match is an explicit mechanism that determines where a fragment is statically
inserted into the main orchestration. Fragments declare a hookactivity, a predeces-
soractivity and a successactivity. The hookactivity indicates where the fragment
will be connected in the main orchestration. Predecess@nd successoactivities
are used for inconsistencies and behavior checking. An expert of the domain
proposes a composition unitthat is a set of bindings for the Hook activity with
activities in the main orchestration.

Merge is an algorithm that computes a set of actions (e.g, add an activity, create
an order relation, create a variable.) for each binding and executes this set of
actions to merge fragments into the main orchestration.

Output is the main ADORE orchestration augmented with the set of fragments
unless no binding is provided.

Other algorithms perform a preliminary merge of the set of fragments using
logical uni cation and substitution in the case when multiple fragments must be
woven into the main orchestration using the same Hookactivity.

Fig. 4.6is the main orchestration for the CaptureWitnessReport scenario of the Car
Crash Crisis Management System (CCCMS)as presented in [MBFF10], and related to
a common case study for assessing Aspect-Oriented Modeling approaches [KGM10].
Fig. 4.7 and Fig. 4.8 are two fragments, dealing respectively with “requesting video
display” and "detecting fake crises” scenarios. Using the composition unit proposed by
experts and illustrated in Listing 4.2, ADORE performs the merge of the two fragments
into the main orchestration (see Fig. 4.9).

v
(] |
/ \
[] | [s § !
[9] # |
* A\
(4 = O# &|[s %" #
v /
/] & | # "
\
L] : 4]
= !

Figure 4.6 — The CaptureWithessRecord work ow from [MBFF10]

Generalizing Model Merging 119

Figure 4.7 — The RequestVideo fragment from [MBFF10]

Figure 4.8 — The FakeCrisis fragment from [MBFF10]

composition cms:: captureWitnessReport {
apply requestVideo (user: 'coord') => a3;
apply fakeCrisisDetected = a4;
}

Listing 4.2 — Composition Unit for the CCCMS case study.

[# %
[3] =» O % ' "
[1] &’ \m‘%z %)
[) .
v
[A) 0
[sD % ,0 1) |

) * v e [h %]

Figure 4.9 — The CaptureWitnessRecord work ow augmented with the RequestVideo
and the FakeCerisis fragments from [MBFF10]. Grayed activities, guards and wait rela-
tionships comes from the fragments.

120 Validation and Application

4.1.2 Capitalization on the Match and Merge Processes

The four operations presented previously seem radicallydi erentat rstsight: each
technique manipulates models that conformtodi erent formalisms ; merge operations
are implemented in di erent programming languages and are meant to be used for
di erent purposes in software development such as global design, meta—modeling,
feature interaction analysis and service orchestration modeling. However the central
purpose is similar : given a pair of models, each technique builds a new model that
contains no more and no less information than the initial models. In the resulting
model, each pair of equivalent elements is modeled as a unique element and elements
that are not equivalent are included with no changes.

In the following sections, we discuss the implementation of this core behavior of the
merge operator in order to re—implement the four merge operators on the basis of a
unique framework. We rigorously engineer a core framework that can be systematically
reused to build new merge operators for di erent formalisms. The core framework
satis es the following properties for model merging that were proposed in [BCE +06;
CNM11]:

— Completeness : Ensure that no datais lost along the merging process : each model

element from the input models should be represented in the merged model.

— Non-Redundancy : no duplicate element exists in the merged model. Duplicate
elements originating from the input models must lead to the creation of a single
element in the merged model.

— Minimality : The merged model contains information that originates solely from
the input models.

— Singularity : Any pair of matched model elements leads to the creation of a
single element in the merged model.

— ldempotency : Guaranteeing completeness, non redundancy and minimality
ensures that merging a model with itself should produce a model that is an exact
copy of the original model.

Whilst some merging operators are dedicated to a given formalism (statecharts,
class diagrams and service orchestrations) and Kompose is formalism independent,
all these formalisms are described thanks to meta-models that conform to the OMG
MOF [OMG10a]. In practice, the implementation of the MOF standard could be the
one proposed by the Eclipse Modeling Framework (EMF), namely ECore [SBP+08].

The MOF standard and subsequently its ECore implementation propose to describe
meta-models in an object-oriented manner. They provide the following language con-
structs for specifying a meta-model : package, classes, properties, multiple inheritance
and di erentkinds of associations between classes. The semantics of these core object-
oriented constructs that is shared by various languages (e.g., Java, C#).

Since all merging operators shared a decomposition into a match mechanism and
a merge mechanism, we propose to capitalize these two mechanisms at the ECore
level. Listing 4.3 is an optimized implementation of the capitalized merge operator
that traverse the input models once. The algorithm loads the two input models and
calls the sum() method. The sum() method is in charge of traversing the input models

Generalizing Model Merging 121

function merge(modell : Object, model2 : Object) : Object is
/Il Loads elements for both models
I/l Loading returns the root of the model
rootl = loadModel(modell)
root2 = loadModel(model2)
[/l Calls the sum method for merging the two models
merged_model = sum(rootl , root2)
/l Saves the merged model
saveModel (merged_model)
end

Listing 4.3 — Algorithm of the mergeoperation

from the top-most container elements and calls the match()method for each pair of
model elements. The output of the sum() method is a merged model.

Section 4.1.3.4details the proposed matchalgorithm and Section 4.1.3.5discusses
the proposed sumalgorithm.

4.1.3 Application of the Uni ed Framework

For the purpose of validating the uni ed theoretical framework proposed in Chap-
ter 2, we demonstrate that (i)a single model-alignment language successfully repre-
sents language—speci ¢ matchings and (ii) we successfully build a unique algorithm to
handle existing merge operations.

4.1.3.1 Overview of the Model Composition Framework Customization

The de nition of a new model composition framework for model merging follows
the process of customization illustrated on Figure 3.6 in Section 3.2.1 Figure 4.10
illustrates the de nition of a model composition framework for model merging.

Model merging relies on a match mechanism that detects equivalent model ele-
ments and a merge mechanism (see Sectiont.1.3.5 that produces a result from equiva-
lent model elements. We propose a model-alignment language for model merging (see
Section4.1.3.9 to describe mappings between meta—model elements. Mappings (see
Section4.1.3.3 are analyzed to automatically detect matches between model elements
using a generic match algorithm (see Section 4.1.3.4. This generic matching mecha-
nism may be customized to change the default equivalence behavior and to handle
speci ¢ pattern—matching mechanism. Customizations are bound to the isEqual()
method to reduce global customization e ort.

4.1.3.2 A Speci ¢ Model-Alignment Language for Model Merging

For the purpose of this merge operation, we build a speci ¢ model-alignment
language. This model-alignment language includes the concepts of Mappings and
Directives with no extension of Filter proposed and the EquStrategyselected to indicate

122 Validation and Application

Figure 4.10 — Customization of the generic process to build a model composition
framework for model merging.

equivalence between model elements. Figure4.11shows the speci ¢ model-alignment
language that we use in this experiment.

Figure 4.11 — Subset of the ModMap language for Model Merge

Since the focus of this approach is on homogeneous model merging (i.e, merging
models that conform to the same meta—model), mappings relates meta—classes with
the same name. The use of theEquStrategyallows restricting equivalence between
meta—classes to a set of properties of interest. Examples of mappings are proposed in
Section4.1.3.3for every existing model merging technique.

4.1.3.3 Mappings and Matches

This section presents the mappings for every model merging technique. This
mapping is the speci cation of a pattern—matching mechanism that allows detecting
matches at the level of the models to compose.

Generalizing Model Merging 123

UML Package Merge

Since UML Package Merge takes UML2 models as input and produce a UML model
as output, we propose a speci cation of mappings among UML models such that
every pair of NamedElement (i.e, model element with a name) which property name
are equal allows merging this pair of model elements into a single model element.
Figure 4.12 shows the mappings needed to simulate UML Package Merge with our
approach.

Figure 4.12 — Speci cation of the UML Package Merge mapping at the meta—class level

Kompose

Kompose is a generic composer on homogeneous models that works on any meta—
model implying that a specialization has been provided to handle such meta—model.
We illustrate the speci cation of mappings among ECore models which is one of the
specialization provided by the Kompose tool. The basic compaosition of ECore models
is de ned such that every pair of ENamedElement (i.e, a model element with a name)
which property nameare equal allows merging this pair of model elements into a single
model element. In addition, we consider two EOperation equal if they have the same
return type and identical operation parameters such that EParameters are of the same
type. Figure 4.13shows how we specify mappings for ECore models.

Figure 4.13 — Speci cation of the Kompose mappings at the meta—class level

124 Validation and Application

Statecharts Merge

Matching and Merging Statecharts takes two statecharts as input and produce a new
statechart. We choose to use the statechart diagrams from UML2 to represent the input
and output models. For the statecharts to be properly merged, we consider that the
property nameof two Package, two ExecutionEvent, two Port or two Region must be
equal. About Transition, the effect , guard and trigger properties must be equal. The
specification property of two Constraint must be equal and the body property of
two OpaqueBehavior must be equal. Figure 4.14shows how we specify mappings for
Statecharts models.

Bo.
[V

Figure 4.14 — Speci cation of the Statecharts Merge mappings at the meta—class level

ADORE Merge

ADORE weaves fragments of orchestration into a main orchestration. Both orchestra-
tions conform to the ADORE meta—model that contains concepts of Relation, Activity
and Variable. The equivalence of two Activity implies that the properties inputs are
equal and the equivalence of two Variable implies that the properties type are equal.
Figure 4.15shows how we specify mappings for ADORE models.

4.1.3.4 A Unique Algorithm for Matching using Mappings

We propose a unique algorithm (see Listing 4.4) for matching model elements.
The matching algorithm detects equivalence of a pair of model elements within an
isEqual() method which default behavior is to compare values of properties and to
return a boolean value.

Generalizing Model Merging 125

Figure 4.15 — Speci cation of the ADORE Merge mappings at the meta—class level

The default behavior of the isEqual() method is not enough to properly detect
matches in various situations. The matching mechanism should be precise enough to
avoid merging objects that are not expected to be merged. Since the matching mecha-
nism is domain-speci c (i.e, matches are detected among elements that conform to a
speci ¢ meta-model), we allow extending the pattern—matching mechanism to include
speci ¢ heuristics and /or complex matching computations. The extension mechanism
is limited to the rede nition of the isEqual()method to isolate domain-speci ¢ parts
and to limit the e ort of extension as low as possible.

From the examples of the four existing techniques, the isEqual()method thus may
contain speci c UML Package—Merge detection rules, heuristics and similarity de-
grees computation for UML statecharts, or data provided by experts such as Kompose
signatures or activity matches for ADORE models.

We illustrate the rede nition of the isEqual()method for ADORE models in List-
ing 4.5w.r.t. the proposition of matches from experts (see Listing 4.2).

The result of the match function allows merging model elements that are identi ed
as equivalent.

126 Validation and Application

function match (objectl : Object, object2 : Object) : Boolea is
result := true
typel := objectl.getMetaClass
type2 := object2.getMetaClass
m := getMapping(typel, type2)

if m!= void then
boolean b := m.properties.forAll{p |

if p.isReference () then
match(get(p, objectl),get(p, object2))

else
I/l equals represents the specific method
I/l of testing the equivalence between
/!l objects. This method may be extended
/1 with domain specific processing
equals(get(p,objectl),get(p, object2))

end

result := b
end

Listing 4.4 — Algorithm of the match operation

operation isEqual(p:Property,o0l:Object,02:Object): Bomlean is
var a : adore:: Activity
var h : adore::Hook
result := false
a = ol
h ?= 02
/1l requestVideo
if a.name.equals("a3") then
I/ compare properties
result := (get(p,a).size() == get(p,h).size()) and
get(p,a).equals(get(p,h))
else
Il fakeCrisisDetected
if a.name.equals("a4") then
// compare properties
result := (get(p,a).size() == get(p,h).size()) and
get(p,a).equals(get(p,h))
end

end

Listing 4.5 — Implementation of the isEqual()method for ADORE models

4.1.3.5 A Generic Sum Algorithm

We propose a generic algorithm for deeply merging two model elements. This
algorithmis shownin Listing 4.6. Thesum()operation takes two elements as parameters
and creates a new element as a result. Thesum()function calls the match()function to
compute matches (see Sectiord.1.3.9.

Generalizing Model Merging 127

function sum(objectl : Object, object2 : Object) : Object is
pre type(objectl) = type(object2)
/Il creates a new object
result = new object from type(objectl)
if match(objectl, object2) then
/1 merging properties
foreach property pl from objectl
foreach property p2 from object2
if match(pl,p2) then
I/l if relations, creates a new property and calls
/1 sum() recursively
if (pl is a relation and p2 is a relation) then
new_value = new property p
set(new_value ,sum(get(pl, objectl),get(p2, object2)))
else
/1 merges values and resolve conflicts if any
new_value = resolveConflicts (value(pl),value2(p2))
end
// add property to result
add(result ,new_value)
end foreach
end foreach
end
end

Listing 4.6 — Algorithm of the sum() operation

4.1.4 Properties of the Merge Implementation

The concrete implementation of the merge operator satis es the following proper-

ties

— Completeness : The implementation of the merge operator allows creating a sin-
gle model element from two model elements identi ed as equivalent and allows
copy non matching model elements in the merged model with no changes. No
operation of Itering or destroying model elements appears in the implementa-
tion, thus satisfying the completeness property of the merge operator.

— Non-Redundancy : The merge operation is implemented in a single pass : both
input models are traversed once and model elements that match are merged
in single model elements. By construction, the merged model cannot contain
redundant data. This statement holds with the following assumptions :

— Mappings are one-to-one only : a single model element from one model is
related to a single model element from another model.

— Multiple mappings for a single model element are forbidden. Multiple map-
pings may end up in situations where the sum()algorithm produces di erent
model elements that should be merged with one another.

— Minimality : The implementation of the merge operator manipulates model
elements that comes from the two inputs models. Any new model element or
value originates from the two input models.

— Singularity : The sum()function calls the match()function for any pair of model
elements. The matchfunction calls the getMapping()function to retrieve a map-

128 Validation and Application

ping between two elements. We assume correct that the getMapping()function is
correct. Since we call thegetMapping()function for every pair of model elements,

we ensure that every mapping from the mapping speci cation is processed.

Thus, the correctness property holds.

— Idempotency : Assuming that mappings relate each construct of a model to
itself, the match()operation should detect matches for every construct. Since we
guarantee the completeness, non redundancy, and minimality properties for the
merging process, the sum() method produces a merged model that is an exact
copy of the input model.

4.1.4.1 Discussion

This approach provides signi cant results using the uni cation framework for
model composition activities. Starting with four existing model composition approaches
that were designed independently but still supporting the purpose of merging homo-
geneous models, we propose a unique algorithm that realizes the intention, a unique
matching mechanism that supports the equivalence interpretation of correspondences
and a unique representation of correspondences among MOF-like (meta—) models. As
we expect, variability of the four existing approaches is encapsulated in the de nition
of language—speci ¢ mappings that may be provided by experts of the domain or
automatically computed. This work properly illustrates how powerful our theoretical
framework may be in action and how subsequent model composition tools may be
adapted and reused in contexts that di er from the original work.

Objectively, we must keep in mind however that uni cation is possible to some
extent. The global purpose of the model composition approaches should be close
enough from one another and some minor characteristics may in uence the nal
computation of the merge operation. For instance, the pre— and post— alignment of
models provided by Kompose patrticipates in the model merging activity. Since this
capability is only available in Kompose and the boundaries of its action is a-priori
in nite, we voluntarily discard model pre— and post— processing from the current
proposition.

To conclude, we should consider the uni ed approach as the minimal set of mech-
anisms to support model merging for various languages, providing a highly reusable
independent module. Further extensions will only provide operations that are context—
or problem- speci c.

4.2 Interoperability and Heterogeneous Composition

The goal of this experiment is to automate the integration of existing legacy [CBJ10].
Model integration is another form of model composition. The intent is to produce
adapters between objects to allow data—sharing or transformation between them. The
generation of these adapters requires the de nition of mappings and the de nition
of a speci c processing to properly to generate meaningful adapters. The de nition
of mappings is thus provided by domain experts between models of the legacy API.

Interoperability and Heterogeneous Composition 129

The model composition framework for model integration based on these mappings is
executed at runtime to convert concepts from one API in concepts of the other API.

4.2.1 Context

This experiment was conducted in the context of the MOPCOM-I project which
focus on using MDE for software speci cation and software design on reliable model—
based processes. The MOPCOM-I project is funded by the competitiveness cluster of
Brittany called “Images et Réseaux”. The project regroups four industrial partners and
four academic partners as follows :

— Thales Systémes Aéroportés (Brest, France) from the Business Group Airbone

Systems (BGAS)

— Technicolor Rennes Research Center(Rennes, France)

— France Telecom Research Center (Lannion, France)

— Sodifrance (Rennes, France)

— Research Team CAMA (Components for Adaptable and Mobile Architecture)

from ENST Bretagne (Brest, France)

— DTN (Développement de Nouvelles Technologies) research laboratory from EN-

STA (Brest, France)
— Group ALCC (Architectures Logicielles et Composants de Con ance) from the
UBS-Valoria research laboratory (Vannes, France)

The goal of the MOPCOM-I project is two-fold : (i)propose formal model-driven
processes for software specication and design to support engineering activities;
(iluse model-based techniques to strengthen the safety of software developments
by supporting early design and post design veri cation techniques.

In the context of the MOPCOM-I project, the Triskell Team is in charge of two
work packages : (WP 2.1 Models veri cation and (ii)WP 2.4 Reliable models and
meta—models fusion. Our contribution in those work packages is validated against the
Technicolor case study on video and broadcasting equipments management.

4.2.2 Technicolor Distribution and Broadcasting Devices Management

Technicolor is a provider of technologies, systems and services for managing video
content from the content production activities to content broadcasting activities, in-
cluding networking. For instance, the Thomson Extensible Management System for
Digital TV deals with the intercommunication of heterogeneous legacy hardware de-
vices (i.e, Network Adapters, MPEG Multiplexers, Encoders, Decoders). Hardware
devices are designed by di erent manufacturers and from di erent technologies that
use speci ¢ API for control and management (see Figure 4.16). Tackling the heterogene-
ity, Thomson provides a distributed architecture with a set of remote user interfaces
and administration servers that communicate with one another through an interme-
diate API called XMS. Administration servers main responsibility is thus to convert
XMS orders into device—speci ¢ commands.

130 Validation and Application

Figure 4.16 — Global View of the Management Architecture with some examples of
managed physical devices

4.2.3 Legacy Systems and Translation Issues

Toward the purpose of integrating with various existing platforms and systems,
Technicolor develops API for an extensive set of protocols such as MTEP, SNSM, XMS,
TCP/IP, or RS232485. The evolution of legacy equipments induces the development
and the maintenance of several versions of APIs, both for the speci ¢ protocols and for
the intermediate language XMS. This situation leads to the combinatorial explosion of
the number of adapters to be developed.

In the context of the MOPCOM:-I project, Technicolor proposed the case study of
building adapters between the XMS API (the intermediate protocol for communication)
and the MTEP API (a device—speci c protocol for communication and control). The
purpose of the case study is to identify existing aws inthe process of building adapters
and propose techniques to increase its automation.

The state of practice in converting MTEP to XMS and conversely is based on infor-
mal textual descriptions which lead to ambiguous interpretations and subsequently
more e ort in designing, implementing and validating converters. Lack of formal
representation and semantics also hinders the automatic synthesis of the translation
process from the mapping speci cations.

4.2.4 A Semi—Automated Solution for Integrating Legacy Systems

Our contribution on the Technicolor case study is to propose a model—-driven ap-
proach to alleviate the implementation of multiple adapters. From a rst step of auto-
matic reverse—engineering relevant concepts from APIs to high—level models, we use
the ModMap framework to (i)support the de nition of mappings between concepts in
these API high—level models ; and to (ii) automatically generate adapters for converting
APIs using AOP techniques to avoid changes in legacy API.

Interoperability and Heterogeneous Composition 131

The global process of the approach is composed of four steps as illustrated in
Figure 4.17:

1. Model Abstraction From Legacy Code
We analyze the legacy code of the API to nd all relevant classes. We automati-
cally build an application model using reverse—engineering techniques.

2. High Level Mappings Description
Designers of converters propose mappings at the model level between classes
from the MTEP API and classes from the XMS API.

3. Translation Strategies
Designers select translation strategies to specify how data should be transfered
between model elements.

4. Generation of Bidirectional Adapters
Models and mappings provide enough data to automatically generate bidirec-
tional adapters as aspects. We propose a non invasive process to extend legacy
code with adaptation capabilities.

Figure 4.17 — The integration process is composed of four steps. We automatically ex-
tract models from the APIs. Users de ne mappings and select strategies for translating
model elements. We automatically generate adapters for each API.

4.2.5 Application of the Uni ed Framework

Among the four steps of the global process, the description of high level mappings
and the selection of translation strategies are the concrete application of the theoretical
framework.

Section 4.2.5.2presents the model-alignment language that we de ne for model
integration, Section 4.2.5.3illustrates how we use the model-alignment language to

132 Validation and Application

design converters between two speci ¢ APl and Section 4.2.5.4details how we auto-
matically generate bidirectional and non invasive adapters from the alignment of the
two models of API.

4.2.5.1 Overview of the Model Composition Framework Customization

The de nition of a new model composition framework for model integration fol-
lows the process of customization illustrated on Figure 3.6in Section 3.2.1 Figure 4.18
presents the de nition of a model composition framework for model integration.

Our de nition of model integration in the context of heterogeneous legacy API
is the ability to transfer objects that conform to a given structure into objects that
conform to another structure and vice—versa. Transfer is achieved through a set of
bidirectional transformations supported a mechanism of adaptation. From the spec-
i cation of mappings between the two structures, we produce a set of adapters that
are used at runtime to convertan object from an API into an object from another API.
We propose a model-alignment language for model integration (see Section 4.2.5.3 to
capture the speci cation of mappings proposed by experts of the domain. A specic
interpreter traverses the speci cation of mappings (see Section 4.2.5.3 to produce a
model of adaptation that de nes the expected set of converters between two API given
the set of translation strategies selected by experts.

Figure 4.18 — Customization of the generic process to build a model composition
framework for model integration.

4.2.5.2 A Speci c Model-Alignment Language for Model Integration

For the purpose of model integration, we build a speci ¢ model-alignment lan-
guage. The model-alignment language includes the concepts of Mappingsand Direc-
tives with no extension of Filter proposed for this experiment. Strategies selected are

Interoperability and Heterogeneous Composition 133

the EquStrategy the SimStrategyand the AdHocStrategyto respectively de ne equiva-
lence between model elements, to de ne similarity between model elements and align
model elements given a set of atomic operations, and to propose an escape mechanism
to express complex computations to properly adapt model elements.

Figure 4.19 — Subset of the ModMap language for Model Integration

4.2.5.3 Design Converters for the Integration of MTEP and XMS

This section illustrates the de nition of mappings and the selection of translation
strategies between the MTEP API and the XMS API.

Step 1 from the global process extracts a model-based representation of the source
code of an API using JaMoPP*. The extracted model contains model elements from
the domain that we want to align with the model elements of another API. Figure 4.20
shows the model extracted from the MTEP API and Figure 4.21 shows the model
extracted from the XMS API.

In the global process of the approach, step 2 and step 3 are the de nition of map-
pings between sets of models elements and the selection of speci ¢ interpretations.
We use the speci ¢ model-alignment language for model integration proposed in Sec-
tion 4.2.5.2and shown in Figure 4.19 With this subset of the ModMap language, we
propose mappings for the integration of a subset of the MTEP API and a subset of the
XMS API as illustrated in Figure 4.22 This mapping speci cally illustrates mappings
between the elements of topologyand the elements of redundancy managemenf the
two protocols.

4. http ://lwww.jamopp.org /index.php /JaMoPP

134 Validation and Application

=] =]
:.E —\
B _ =]
L 5
- L
|
DQ

Figure 4.20 — Model of the MTEP API.

§6 s 77
- - &--3" & 3
- - &--3 4
66 77 - - &--3" # 5
="' - . & &
- N L - -$98% '/
- o#! 1" & & $ #$' 3 - B <
- &, 5 - +0 "
- &, & 8 ‘& ?: - $98 '/

- - &, %
- T
- - 0 -1 3
- -0 -1 .2 & .3 .88 4
- - 5
66 77

[N
©
N
©

Figure 4.21 — Model of the XMS API.

Interoperability and Heterogeneous Composition 135

Figure 4.22 — Model of mappings for the integration of the MTEP and XMS API.

136 Validation and Application

4.2.5.4 Generation of Bidirectional Non Invasive Adapters

The last step of the process is the automatic generation of adapters. Similarly to
model-to—code transformations, the code generator uses two input parameters : the
mapping model and the Kermeta code that supports the translation strategies. We
adapted code generation methods to use aspect—weaving techniques,i.e, we generate
adapters as aspect to avoid the invasion of the original code of API. The production of
non invasive adapters is composed of three stages.

1. Mappings are automatically converted to a model of adaptation. Each mapping
is converted into two Kermeta aspects : one for the source model elements of the
rst APl and one for the target model elements of the second API. These aspects
contain Kermeta operations that encapsulate the adaptation between the two
API. Strategies and additional alignment directives are translated into e ective
Kermeta transformation code.

2. One key concern of this approach is to be non—invasive regarding legacy API
code. The model of adaptation contains de nitions of both API classes and
adapters. The generation of code from the model of adaptation would build a
set of new classes that would overwrite legacy classes. We prevent this situation
by removing class de nitions that are equivalent between the model of the API
and the model of adaptation. We apply a ltering method that only keeps new
class members or additional utility classes. The Itering method checks names
of classes and their signature to identify equivalent class de nitions which are
subsequently removed from the adaptation model.

3. Using the Kermeta Compiler, we process the model of adaptation to produce
Scala aspect code. Classes that do not exist in the legacy code are created whereas
classes that already exist are augmented with inter-type declarations. Inter—
type declarations encapsulate the translation behavior between existing classes.
Adapters between the two API are composed with the original legacy code at
load—time using the Scala compiler. Load-time weaving is deferred until the
point that a class loader loads a class le and de nes the class to the Java Virtual
Machine (JVM). As a consequence, additional capabilities we brought through
the adapters production does not pollute existing code embedded in legacy API.

4.2.6 Evaluation

The evaluation of the approach is based on comparing e orts between classic de-
velopment techniques (followed by domain experts) and between our semi-automated
process. As a benchmark, we compare our solution to the Thomson Extensible Manage-
ment System evolution on the speci ¢ example of MTEP to XMS protocol translations.

4.2.6.1 Impact of Automation on Adapters Production

The case study is based on a subset of Thomson MTEP to XMS conversion. This
subset contains nine MTEP-related concepts and thirty XMS-related concepts de ned

Interoperability and Heterogeneous Composition 137

in their respective APIs.

From the correspondence speci cations provided by experts, Thomson developers
implemented twenty mappings to carry out the bijective translations between MTEP
and XMS (see Figure 4.23for details about mappings ratio). The application of our
process on the same case study involves only seven bidirectional mappings, whose
distribution is represented in Figure 4.24

We can draw two conclusions from these gures :

1. We reduce the number of mapping descriptions to handle the case study.

2. Mapping descriptions complexity is globally reduced since 74% of mapping
descriptions are One—to—one mappings and Many—-to—One and Many—to—many
mappings are scarcely used (13% for both kinds).

The rst point comes from the use of a more adequate DSL to express mappings
at the right level of abstraction. At the code level, developers implement complex
mappings as one-to-one mappings because the implementation language do not of-
fer higher-order mapping operators. The mapping language we propose 0 ers more
expressiveness to declare mappings so some of them, identi ed by experts, are not ex-
pressed anymore as single mappings but are encapsulated into higher-order mappings.
The second point is related to the expressiveness of the DSL versus the implementa-
tion practices in Java. We observed that when people use low-level correspondence
languages, they are more tempted to violate implementation practices of the Visitor
Pattern to access incidental information (information from multiple concepts that do
not take part in the original described mappings). Our approach limits this problem
since the mapping DSL o ers higher abstractions to retrieve datain a proper way : users
are able to describe relations between mappings, so concepts involved in a mapping
are con ned to the original inputs and outputs of the wrappers.

Figure 4.25is to be compared with Thomson implementation of adapters (100%
of strategies would be Ad Hoc strategies). This gure shows that most of strategies
(86%) used to handle the case study are semi-automatic. Of course, it is not possible to
automatically de ne all mapping implementations : that is why we provide a way to
use a more powerful language to implement the remaining mappings.

These results are a rst indication, on a relatively small example, that the use of a
high-level language for mapping descriptions helps reduce the number of adapters to
be implemented. It also gives additional evidence that the use of generative techniques
cuts down global complexity and e ort to produce adapters.

4.2.6.2 Comparison of E ort

The second stage of our evaluation deals with e ort estimation in terms of the
number of Lines of Code (LOC). Thomson global adapter size for the case study is
about 5350 LOCs to realize the bi-directional translation between MTEP and XMS
protocols. Our approach is implemented using only 510 Kermeta LOCs. The e ort
has been evaluated to 136 hours of person work for the manual implementation of a
new adapter, compared to 150 hours to handle the same example with our approach.

138 Validation and Application

BEOO

Figure 4.23 — Distribution of the twenty mappings identi ed by the experts of the
domain and implemented with Java.

BEO0

Figure 4.24 — Distribution of the eight mappings identi ed by experts of the domain
and implemented with the ModMap mapping language.

Figure 4.25 — Ratio of strategy types used to map the MTEP and the XMS API.

Considering up to 50 extra hours to take into account the introduction of a new
mapping language and a new language for strategies de nition for users, the e ort
needed to use our process is of 150 up to 200 hours (see Tablel.1) for the very rst
version of an adapter, which is slightly more than the manual approach.

However, the mean of the e ort to produce a new version of an adapter for both
approaches are 57 hours for a manual implementation versus 9 hours with the semi-
automatic process.

These results have several consequences : First, we are able to say that our ap-
proach needs less manual implementation from users. Second, thanks to generative
techniques, we were able to reduce the number of bugs in code and thus time spent
in debugging has been drastically reduced. These improvements allow users to save
some maintenance e ort on the code in further evolutions. Figure 4.26illustrates the

Interoperability and Heterogeneous Composition 139

Production of Manual Generative
a new adapter Approach Approach
vl | v2 (avg) vl v2 (avg)
Code length (LOC) | 5350 - 570 -
Total TDEV (Hours) | 136 +57 150-200 +9

Table 4.1 — E ort for manual and generative approaches for the production of a new
adapter. The production of a second version (v2) increases the e ort by an average
of 57 hours for the manual approach and by an average of 9 hours for the generative
approach.

Figure 4.26 — Cumulative e ort for the production of new versions of adapters using
manual or generative approach : e ort (time of development in month) is on the y-axis
and versions on the x-axis.

e ortreduction in the production of ten successive versions of this adapter. A manual
approach induces a constant e ort to develop and test new adapters versions. Our
semi-automatic approach is expensive on the very rst version (learning overhead
and complex mapping de nitions) but costs decrease with time as learning overhead
decreases in further evolution. Even though bene ts, in terms of e orts, observed on
Figure 4.26 are relatively small, we have to keep in mind that this process is to be
repeated, for instance, on the ve API de nitions presented on Figure 4.16with, let us
say 10 versions each. Since we want these APIs to be integrated with each other, it ends
in the production of (5 10)* adapters. A potential extrapolation of our results would
give an e ort reduction of up to 87% by using our approach.

4.2.7 Discussion

This case study presents a process to semi—automatically produce adapters for
existing legacy API. Mixing reverse—engineering, model-to—model transformation,

140 Validation and Application

code generation and aspect weaving techniques together, we alleviate tedious and
error—prone activities. This work on the Technicolor case study provides signi cant
bene ts in this speci ¢ context and also demonstrates that the de nition of model
composition goes beyond model merging and similar activities. Model integration is
an activity that ts in the de nition of model composition that we propose in the
uni ed theoretical framework : the de nition of mappings and the selection of speci ¢
strategies allow (i)describing mappings declaratively between legacy models, and
allows (ii)automating the process of building converters.

In hindsight, we discover that speci cs of a given model transformation is hard to
capture within the boundaries of a proposed set of semantics (i.e, strategies). Thus,
we provide an escape mechanism to the meta—language using Kermeta to allow the
de nition of arbitrary complex mappings.

With this application of the uni ed theoretical framework in mind, we should fur-
ther explore a set of software life—cycle activities such as those that we discussed on
Section 1.3.1.7 Further work on the relationship between software life—cycle activi-
ties and speci c model-alignment languages should help proposing and developing
generic model composition frameworks dedicated to speci ¢ model-related activities.

4.3 Bridging the Gap between Structure and Behavior in the
context of SOA

We illustrate model synchronization in the following case study. Synchronization is
another kind of model composition activity that requires to capture changes between
an arbitrary number of models and propagates changes if necessary to maintain global
consistency among the various software artifacts. This experiment is summarized
in [CMBF +11].

4.3.1 Service—Oriented Architecture Background

Developing a large—scale software system as a Service—oriented Architecture (SOA)
involves the creation and integration of a variety of services. Services must be coordi-
nated to adequately participate in the required behavior of the system. Model—-driven
development of such systems is highly likely to produce a variety of models capturing
the many diverse design concerns that arise during development. The management
of models in such multi-modeling environments is known to be challenging. In par-
ticular, activities related to checking and maintaining consistency among the multiple
views of a system can be complex.

There is a need for techniques that developers can use to detect con icts and di-
vergences across multi-models of systems developed using SOA. Two models diverge
when one model consists of elements that do not correspond to elements in the other
model.

Our work speci cally addresses the problem of synchronizing SOA business pro-
cess models with domain models. The approach described in this paper provides SOA

Bridging the Gap between Structure and Behavior in the context of SOA 141

designers with integrated generative and model composition techniques that can be
used to automatically propagate divergence resolution strategies across these models.
The core of the iterative synchronization approach consists of four major steps : (i)the
generation of a structural model based on the data extracted from the business process
model, (ii)the merge of the generated model with the initial domain model, (iii) the
identi cation of formal divergences between these two models and nally (iv)the au-
tomated propagation of resolution strategies provided by experts.

4.3.2 Design a Car Crash Crisis Management System
4.3.2.1 The Crisis Management System

We illustrate the approach using a case study problem described in a Transactions
on Aspect-Oriented Software Development (TAOSD) special issue on AOM [MBFF10].
The purpose of the special issue was to compare the application of existing AOM
approaches on a common system development problem, namely the development of
a Crisis Management System (CMS).

Inthe case study, a CMS is a system that facilitates the coordination of activities and
of information ow between all stakeholders and parties that need to work together
to handle a crisis.

4.3.2.2 The Car Crash Crisis Management

Among the multitude of crises handled by CMS, including terrorist attacks, epi-
demics, or accidents, we focus on car accidents. Car accidents are handled by the Car
Crash CMS (CCCMS) which “includes all the functionalities of general crisis manage-
ment systems, and some additional features speci c to car crashes such as facilitating
the rescuing of victims at the crisis scene and the use of tow trucks to remove damaged
vehicles” [KGM10, 82.4, p.5]. The original system includes ten use cases described
using textual scenarios. For ease of understanding, we illustrate our approach on the
Capture Witness Report (CWRJse case only.

The CWR case study (use case#2 in the original document) captures the set of
actions that a Coordinatortakes to create a newCrisisbased on the information reported
by the Witnessof a car accident. The main success scenario for this use case (extracted
from the requirements document) is described in Figure 4.27. The subject of the use case
is the CCCMS system represented by System Two actors are involved in the sequence
of activities needed to report a car crash : ()PhoneCompanys the role played by an
external partner that provides phone-related information, and (ii)Coordinatoris the
role played by the person who interacts with the CCCMS system through a graphical
user interface to enter information.

We focus on the contribution of two experts in the de nition of a solution to this
CWR use case : a domain model expert g;) designs the structural view of the system
and a business process expert §,) designs the behavioral view (i.e, the set of activities
and the ow of control between these activities) of the system.

142 Validation and Application

Coordinatorrequests Witnessto provide his identi cation.
1. Coordinatorprovides witness information to Systemas reported by the witness.

2. Coordinatorinforms Systemof location and type of crisis as reported by the
withess.
In parallel to steps 2 4

2a.1 Systemcontacts PhoneCompanto verify witness information.
2a.2 PhoneCompangends addresgphone information to System
2a.3 Systenvalidates information received from the PhoneCompany
3. Systemprovides Coordinatorwith a crisis-focused checklist.
4. Coordinatorprovides crisis information to Systemas reported by the witness.

5. Systemassigns an initial emergency level to the crisis and sets the crisis status
to active.

Use case ends in success.

Figure 4.27 — Textual Scenario of Use Case #2 : “Capture Witness Report”
4.3.2.3 Domain Model Design

Figure 4.28(a)is a class diagram that captures problem concepts identi ed from the
requirements and that are relevant to the CWR use case. This domain class diagram
(CDp) is designed by e; who formalizes his deep understanding of the various concepts
manipulated in the CCCMS system. The main concepts with respect to the CWR use
case are the following :

Crisis : isthe concept shared by any CMS system. ACrisis occurs at a given location
and at a given time, it has an emergency level, a status and possibly some
additional information. A Crisis may be reported by a Witness and may include
Mission s.

Witness : is a person who reports a Crisis .
Mission : is an action that should be taken when a Crisis is reported.
CheckList : is a list of things that should be checked with a Witness.

CMSEmployeeis a human resource who is quali ed and capable of performing Miss-
ion s in the context of a Crisis .

4.3.2.4 Business Model Design

The business process model (BPM) associated with the CWR use case is represented
in Figure 4.28(b) According to SOA principles, &, designs this business process model
with regard to his /her own understanding of the system. For better undestanding, we
provide correspondences (black clouds) between the BPM activities and the steps in
the textual scenario (see Fig.4.27). The business process starts by receiving a crisis
coordinator (coord) and a crisis identi er (id).

Bridging the Gap between Structure and Behavior in the context of SOA 143

It contains two branches, executed in parallel. The left branch of the business
process deals with the internal logic of the CWR scenario. The context of the current
crisis is built by retrieving information from the witness of the crisis : the process
requests preliminary information about the crisis and then re nes the information it
receives through subsequent exchanges between the system and the witness. In parallel
(the right branch), the system calls an external partner (PhoneCompanyo check the
information given by the witness of a crisis and prevent false or erroneous reports.
When the two branches join, that is, when the system considers the crisis report to
be genuine, the system assigns an emergency level to the crisis and updates the crisis
status to active .

4.3.3 Challenges and Synchronization Process

The complete CCCMS implementation contains thirteen business processes, de-
scribing hundreds of activities and thousands of relations between activities. Manual
synchronization of the various views of such a large system can be challenging, time—
consuming and error—prone. This section highlights situations in which checking and
maintaining consistency across models can bene t from the use of automatic synchro-
nization mechanisms.

Since CDp and BPM are de ned by independentexperts(g5, §&,), 0One canencounter
situations where types from the behavioral model (BPM) and types from the structural
model (CDp) diverge. We illustrate these divergences with examples from Section 4.3.2
below :

S;—Name Mismatch : The business expert misspells a concept that already exists in
CDp. In Figure 4.28(b) ey uses aCheckList type whereas g, uses aCrisis-
CheckList type. This situation illustrates naming con icts that often occur across
di erentviews of the same system. For instance, the PROMPT [NMOOQ] approach
for aligning ontologies addresses this kind of con icts among others.

S,—Concept Enforcing : The business expert uses data collected from an external part-
ner, which are unknown from the domain point of view. In Figure 4.28(b) g, uses
information collected from the external agency PhoneCompanthat is unkown
to g and thus not modeled in the CD p. This situation identi es the need to
introduce externally de ned artefacts (i.e, provided by partner services) to the
CDp.

Ss—Concept Usages : The business expert uses higher own data structure, i.e, uses
conceptsde nedin CD p inan unforeseenway. In Figure 4.28(b) g,uses aPrelim-
inarylnformation concept in Activity 2. Since the original scenario indicates
that the Coordinator should manipulate the location and type of the Crisis ,
we consider that g, aggregated several artifacts already de ned in CD p (namely
the location of the crisis and its type) in a single object for practical reasons. This
situation illustrates how speci ¢ usage of data in a BPM can improve the CD p.

Clearly, the synchronization of both CD p and BPM is not a trivial problem. We
identify two challenges related to these situations : (i)the automatic identi cation of

144 Validation and Application

= o —

(a) Domain model (CD p), extract.

|
\4

. i | [$% % % |

| VAN

‘ [R |

S [C) %)%) |

& "7
%

%

%% $% %

(b) Business process model (BPM), graphical representation
We use here the graphical representation de ned by ADORE [MBFF10] to represent business processes. Boxes
represent activities (e.g., message reception, service invocation), and arrows represent causality relations (i.e., the
associated partial order). A wait relatioa ([b) means thab will wait for the end ofa to start its own execution.
A guard relation @!" b) strengthens the wait semantics, and conditions the stalttofthe value of.. Relations
are combined using a conjunctive seman(its

Figure 4.28 — Initial model artifacts, proposed by experts.

such divergences (C,) and (ii)the capture of resolution strategies and their automated
propagation across models in the synchronization process (C,). Figure 4.29illustrates
our approach that tackles these two challenges.

Bridging the Gap between Structure and Behavior in the context of SOA 145

The rst step of the process extracts data from the set of available BPM to derive
a class diagram (CD;) which contains all the concepts manipulated by this set of
processes (1). Then, we use divergence detecti@lgorithm to identify occurrences of the
situations (S) that we discussed previously (2). The detection of divergences leads to a
phase of negotiation between experts from the domain and experts from the business
process. Experts should consent on identifying strategiedo resolve divergences (3) and
to ultimately perform an accurate synchronization of CD p and BPM. The last step
of the process (4) propagates the resolution strategies using a dedicated algorithm
(strategies propagatignwhich automatically applies changes in both CD p and BPM.

Figure 4.29 — SOA Models Synchronization : Process Overview

4.3.4 Identifying Model Divergences

This section presents the rst two steps of the model synchronization process and
the formalization of the divergence detection mechanism.

4.3.4.1 Naive Synchronization with Merge

The rst step of the process extracts data from the BPM to derive a class—diagram
(CD)). The generation procedure visits all available business processes and extracts the
types of all the declared variables.

Merging CD , with CD p using model composition techniques such as Kompose
[FFR+07], produces a naive alignment of both models (see Figure 4.30. Naive align-
ment relies on an element matching process based on names. Elements with equivalent
names are uni ed into a single element. For instance, the CMSEmployeglement has been
found in both CD p and CD, and therefore the merged model contains a single uni ed
CMSEmployeelement. Though simple, the naive alignment cannot align concepts that
have di erent names. The default behavior of Kompose when such name—mismatches
occur is to include the elements that do not match in the merged model. For instance,
Preliminarylnformation is a concept from CD, with no candidate match in CD p.

146 Validation and Application

Figure 4.30 — Merged model : CDp (white) CD, (gray)

We modi ed the default behavior of Kompose to record every operation used to
produce the merged model. This record is analyzed to (i)validate every element that is
automatically merged (e.g, CMSEmploygeand to (ii) detect divergences between CDy
and CD,.

4.3.4.2 Divergence Detection Mechanism

The analysis of the recorded operations leads to the detection of two kinds of
divergences :

Point-of-view divergences occur when a model element from CD | has no equivalent
counterpart in CD p (e.g, Phonelnformation).

Structural divergences occur when a model element from CD | has an equivalent
counterpart in CD p but the properties of the model element do not match with
the properties of the corresponding model elementin CD p (e.g, a “public” model
element in CD, is “private” in CD p).

The divergence detection mechanism uses a matching operator and a set of signa-
tures to compare a model element with another one. Let matchbe the predicate that
checks if a model element of CD, is equivalent to a model element of CD p. With this
match predicate, we formalize the kind of divergences as follows :

— Point-of-view Divergenceefers to a model element in CD, that has no equivalent

model elementin CDp : b2 CDst:@d; 2 CDp; matchb; d;).

— Structural Divergenceefers to a model element in CD, that has equivalent model

element in CDp but whose properties do not match.

We formalize structural divergences according to the de nitions provided by Barais
et al.[BKB+08]. We de ned two rules, used to reify the Class signature and the Property
signature.

Bridging the Gap between Structure and Behavior in the context of SOA 147

Class Signature. The signature of a Class encompasses itsidentifier, its modifier,
possible superclasss and its usage In the OO paradigm, the categoryand the visibility
of classes provide additional information on how we may use these classes in a given
OO program. A class is internal when it participates in calling internal services either
as a value or as the type of a parameter of a service. For all other usages, we consider
the class asmixed

Class$'9 = (Identifier, Modifier; SuperclasdUsage
Modifiers 2 fCategoryVisibility g Category2 fabstractconcretefinalg
Visibility 2 fprivate protectedpubliog Usage2 finternal; mixedy

CD, re ects the usage of the class de nitions at runtime and thus, classes are necessarily
concretepublicwith no Superclasss. In other words, we detect a divergence (c1) when
a class in CDy has an equivalent class in CDp that is not publicsuch that :

(c1) matcHCg; Cp) ” Visibility ¢, , public (4.2)

Usagerefers to the class usage in the business processes. This de nition has an impact
on the process of deriving CD : (i)classes that do not participate in calling an internal
service are not captured by the data structure extraction process since we cannot modify
the de nition of a class provided by an external partner for compatibility reasons;
(i) classes that are used both within internal and external services are mixed They can
only be enriched with additional information that cope with the initial de nition of
the class.

Regarding Usage we detect a divergence (c2) when the usage of a class in CD is
internal whereas an equivalent class is mixedin CD, such that :

(c2) matchCg; Cp) * Usage, = internal® Usage, = mixed (4.3)

Property Signature. The signature of a property encompasses itsldentifier, its scope
of use (Static), its Typethat is either a Classor a Datatypeand its Access

Property’'9 = (Identifier, Static, Type Accesy
Static 2 fstatic, nonstatigy Type2 Clasg Datatype
Acces2 fread write; rw; nog

The rstdivergence (pl) that we may detectis if the two properties that we matched
in CD, and in CDp have di erent types such that :

matchPg; Pp) * (p1) Typer, , Typep, (4.4)

A property is staticif it is common to all instances of this property and it is nonstatic
otherwise. Properties that are used in BPM are necessarily nonstaticand thus we may
detect the following divergence (p2) :

match(Pg; Pp) * (p2) Statig, = static (4.5)

148 Validation and Application

Among these usual OO characteristics, we propose an additional accessharacteristic
which determines how a property is accessed in BPM : readmeans that the property
is only read by a service ; write means that the property is only written by a service ;
rw means that the property is read and written by one or more services; nois used
in other cases. For instance, the property id of a Witness in Figure 4.28(b)is a read
property since the property is read in activity 2a.1 and never written in any other
activity. From this de nition, we may detect two divergences : (p3) a property inCD p
is never accessed o) or (p3% a property in CD p is not rw and an equivalent property
in CD, is accessed di erently such that :

(p3) Access, = no _ (p3% (Access, , rw” Accesg, , Access,) (4.6)

The formalization of the structural divergences allows propagating changes au-
tomatically in the CD p regarding the structure and data of the BPM. Resolution of
point—of-view divergences requires additional resolution strategies proposed by ex-
perts to solve the divergence situation presented in Section 4.3.3

4.3.5 Application of the Uni ed Framework
4.3.5.1 Overview of the Model Composition Framework Customization

The de nition of a new model composition framework for model synchroniza-
tion follows the process of customization illustrated on Figure 3.6in Section 3.2.1
Figure 4.31 illustrates the de nition of a model composition framework for model
merging.

Synchronization is another kind of model composition activity that requires to
capture changes between an arbitrary number of models and propagates changes if
necessary to maintain global consistency among the various software artifacts. Model
synchronization is composed of two processes that synchronize structural divergences
and point—of—view divergences from a set of resolution strategies. Details are provided
in Section 4.3.6

We propose a model-alignment language for model synchronization (see Sec-
tion 4.3.5.3 to allow experts to propose resolution strategies between model elements.
Automatic propagation of resolution strategies (see Section 4.3.6 allows the synchro-
nization of both the domain model and the business model.

4.3.5.2 A Speci ¢ Model-Alignment Language for Model Synchronization

For the purpose of this synchronization operation, we build a speci ¢ model-
alignment language and include the following interpretations :
— ReplaceStrategy to tackle structural divergences. Automatic detection of struc-
tural divergences would provide input data to the joinpoint() function.
— SimStrategy to deal with Name—mismatch situations by renaming selected con-
cepts.

Bridging the Gap between Structure and Behavior in the context of SOA 149

Figure 4.31 — Customization of the generic process to build a model composition
framework for model synchronization.

— AddStrategy, DeleteStrategy, AggrStrategy and AugmentStrategy to handle con-
cept enforcing and concept usage situations, i.e, to replace existing structural
information with what experts nd more adequate.

Figure 4.32shows the speci ¢ model-alignment language that we use in this ex-

periment.

4.3.5.3 Proposing and Automating Resolution Strategies

In the global process of the approach, the negotiation step allow experts to propose
strategies to resolve divergences between the Cy and the BPM. This negotiation step
produces a de nition of mappings between model elements from BPM and model
elements from CDp and the selection of speci c interpretations for each mapping. We
use the speci c model-alignment language for model synchronization proposed in
Section4.3.5.2and shown in Figure 4.32 With this subset of the ModMap language,
we propose mappings for the synchronization of business process models with models
of the domain as illustrated in Figure 4.33

150 Validation and Application

Figure 4.32 — Subset of the ModMap language for Model Synchronization

Figure 4.33 — Model of mappings for the synchronization of the BPM and the CD p.

Bridging the Gap between Structure and Behavior in the context of SOA 151

4.3.6 Propagation of the Resolution Strategies

The negotiation phase is important for experts to come to an agreement about how
to deal with divergences in views. We capture their decisions in ModMap to allow
automatic propagation of resolution strategies across models.

The purpose—speci ¢ processing reads each resolution strategy captured in the
ModMap model and automatically produces a set of operations on both CD p and
BPM to synchronize the views.

In the following sections, we illustrate the interpretation of each resolution strategy
with examples from the case study.

4.3.6.1 Name—Mismatch Strategy

The resolution of name—mismatches is straight-forward. The propagation process
identi es every occurrences of a given name and replaces it with the name provided
by the experts. The details of the propagation are discussed in the next subsections for
both CDp and BPM.

Domain model synchronization. We use the language of directives provided by the
Kompose tool to rename model elements in CD . We adapted the Kompose tool to
execute directives on a single model. Listing 4.7 lists the directives that the Kompose
tool executes for modifying the name of CheckList in CDp.

Directives{
domainmodel :: CheckList.name := "CrisisCheckList"
}

Listing 4.7 — Kompose directives for renaming the CheckList class of the domain model
CDp

Business process synchronization. We use a formal representation of business pro-
cesses models, based on many-sorted rst order logic [Mos10]. Thus, one can use
logical substitution (= fx x% [Sti81]) to replace in a given model mall occurrences
of x by x% We denote am the model obtained after substitution. When several sub-

stitutions = f j1;:::; ngneed to be performed on the same model, we denote as
m their parallel application on m. In the context of name mismatch strategies, the
engine will generate the set of substitutions necessary to perform all the expected align-

ments : = fw:identification w:idg Denoting as fbpy;:::;bpgthe available business

4.3.6.2 Concept Enforcing and Concept Usage Strategies

The resolution of concept enforcing and concept usages situations may rely on a
large number of operations for propagating changes. The details of the propagation
are discussed in the next subsections for both CDp and BPM.

152 Validation and Application

Domain model synchronization Synchronization of CD p for concept enforcing and
concept usages relies on a set of Kompose directives to modify CDp. We adopt two
interpretations that are driven by the arity of the mapping relationship :

— When a mapping relationship relates only two model elements, the model ele-
ment from CD p is removed, the model element from CD | is added to CDp and a
UML relation is created from the container of the initial model elementfrom CD p
to the new model element in CD p. For instance, experts decided to discard the
phone property of the class Witness and use Phonelnformation instead. Prop-
erty phoneis removed from the class Withess and we create a new containment
relation between Witness and Phonelnformation . This relation is named against
the parameter of the replacement strategy.

— When a mapping relationship relates more than two model elements, the syn-
chronization process is almost the same except that the model element from CD,
is considered as the container of the model elements from CDp. Thus, we move
the model elements from CD p into the new model elementin CD p. For instance,
experts agreed on using Preliminarylnformation instead of the two properties
type and affectedArea from the class Crisis . Preliminarylnformation is thus
enriched with the two properties type and affectedArea andanew containment
relation is created between Crisis and Preliminarylnformation

Listing 4.8 lists the directives that are applied on CD p for replacing the phone

property of the class Witness with Phonelnformation .
Directives{

/* Creates a new Phonelnformation class
and removes existing phone attribute
in Witness */

create Class as $pi

$pi.name = "Phonelnformation”

destroy domainmodel :: Witness :: phone

/ICreates the phone relation

create Association as $phone

$phone .name = "phone"

create Property as $phone_src

$phone_src.aggregation =

domainmodel : : AggregationKind ::

#composite

$phone_src.upper = 1
$phone_src.type = domainmodel :: Witness

create Property as $phone_tgt
$phone_tgt.upper = 1
$phone_tgt.type = $pi

$phone . memberEnd + $phone_src

$phone . memberEnd + $phone_tgt

/*Adds the Phonelnformation class and
the phone relation */

domainmodel :: packagedElement + $pi

domainmodel :: packagedElement + $phone }

Listing 4.8 — Kompose directives for integrating Phonelnformation in the domain
model CDp

Bridging the Gap between Structure and Behavior in the context of SOA 153

Business process synchronization The propagation of strategies for the resolution
of concept enforcing and concept usage situations relies on logical substitution to
propagate the new accessesé.g, fpi wi:phongto replace the variable pi by an access
tothe attribute phonecontained in the variable wi). However, such replacements impose
that we retrieve the “container” variable (e.g, wi) that is necessary to access a speci ¢
property (e.g, phong. Synchronization of Phonelnformation and phoneillustrates the
situation where the “container” variable already exists. Thus we use this variable to
access to the phone information of a Witness and substitutions are propagated. When
the “container” variable is not already available, we ask the experts how to initialize
this “container” in BPM. After synchronization of Preliminarylnformation with type
and affectedArea , Preliminarylnformation is contained by a Crisis object. Since
no Crisis objectis available in the initial process, experts propose the invocation of the
getCrisis operation exposed by the CMService. This operation stores aCrisis object
in a variable c. This invocation is automatically inserted into the business process by
the ADORE engine (after the receive acitivity) and default substitutions are executed.

4.3.7 Discussion

This experiment proposes an approach for synchronizing business processes with
domain models developed by di erent teams working on the same system, in the con-
text of SOA. This approach leverages and integrates model compaosition and generative
techniques to automate signi cant aspects of the synchronization process. Model syn-
chronization is a second activity that ts in the de nition of model composition that
we propose in the uni ed theoretical framework : the de nition of mappings and the
selection of speci ¢ strategies help to (i)focus human intervention on the detection
of divergences that require human judgment and experience, and to (ii)automate the
process of propagating of the proposed resolution strategiego reduce the global e ort
of model synchronization.

This second application of the uni ed theoretical framework on model composi-
tion beyond model merging and model integration consolidates the intuitive claim
that model composition encompasses many operations on models and that the uni ed
theoretical framework is able to support these diverse operations. Further work on the
relationship between software life—cycle activities and speci ¢ model-alignment lan-
guages should help proposing and developing generic model composition frameworks
dedicated to speci c activities and operations on models.

154 Validation and Application

(a) Aligned Domain model

(b) Aligned Business process model

Figure 4.34 — Aligned models resulting from the propagation of the resolution strate-
gies.

Conclusion

The growing complexity of designing and building software has transformed the
state of practice in both industry and academy. Software development life—cycle in a
multi-modeling environment with multiple actors is a prevailing trend that involves
designing, analyzing and building multiple model-based artifacts. Academics interest
for these topics of composing models in the large de nition of model management
that encompasses a large range of operations on models is still both worthwhile and
challenging.

Adoption of the MDE practices in industry requires speci ¢ organizational, man-
agerial and social factors to be successful endeavors [HRW11]. Still, progressive adop-
tion brings new situations and new requirements that research is eager for nding
adequate solutions.

The multitude of model composition frameworks available is a proof of success
in the design of model composition frameworks that tackle specic situations and
context. While the development of model composition framework is valuable and
successful in a given number of situations, the development of techniques and tools
of industrial quality is hindered by the incapacity of these frameworks to be easily
adapted and reused over di erent situations and for di erent purposes.

I.1 A Decomposition of the De nition of Model Composition

Our contribution to this eld is to propose a novel de nition of model compaosition
both to enhance the global understanding of this operation and to broaden the scope
of application of model compaosition approaches in the MDE community.

Previous work about model composition that we discuss in Chapter 1, proposes
various operators that handle a large range of operations on model, claims that map-
ping (i.e, correspondences, relationships between model elements) is the real surplus
value in the de nition of meaningful model composition approaches, or combine both
mappings and operations in single modeling artifacts. From the observation of these
attempts to classify existing model composition approaches, we observe that mappings
and interpretations of these mappings have a strong in uence in the characterization
of model composition approaches.

The main contribution of this thesis is thus to propose a novel de nition of model

155

156 Conclusion

composition as a pair of a mapping and a set of interpretations. A mapping is a set of
explicit relationships between sets of models or sets of model elements. Interpretation
provides semantics to a mapping and participates to a speci ¢ model composition

purpose.

.1.1 Literature Review and Observations

The intuitive decomposition of model composition as pairs of mappings and in-
terpretations is supported by categories for mappings and categories for interpreta-
tions. The category of mappings includes operator—based, pattern—based, rule—based,
constraint—-based, model-based and delta—based representations of a mapping. The
category of interpretation includes fteen kinds of interpretations divided in three
categories which cover overlapping models, cross—cutting models and interacting
models. We evaluate the relevance and precision of the two categories by conduct-
ing a systematic literature review. The systematic literature review leads us to explore
proceedings of the major software engineering and MDE international and national
conferences or journals to capture the state of practice about model composition in
software engineering.

Research objectives, review protocol and results are presented in Chapter 1 follow-
ing guidelines proposed by Biolchini et al.[BMA +05].

Proposing categories for both mappings and interpretations, validated with an
empirical study by conducting a systematic literature review, we provide experts with
an interpretive lens for model composition techniques analysis. This interpretive lensis
anew apparatus in the early stages of software engineering and system development to
compare and to select or to adapt an adequate existing model composition frameworks
to cope with requirements, or to start designing and building a new model composition
framework if necessary.

[.1.2 Formal De nition of Mappings and Interpretations

The intuitive proposition of the novel de nition of model composition as a pair
of mapping and interpretations is based on analogies with structures in mathematical
logic and linguistics.

Structures in mathematical logic helps to bridge the gap between our vision and a
grounded theory that already separates these concepts and that de nes explicitly the
relationships between these concepts. The exact nature of the relationships between a
mapping and interpretations of this mapping is however dependent from a number
of parameters that are barely captured in the current state of practice. We use the
parallel with linguistics to explore how the purpose of a model composition and how
the human contribution to this purpose in uences both the nature of the relationships
between a mapping and interpretations and the global intention of a given model
composition framework.

In linguistics, a sign is composed of a signi er and a signi ed that respectively are
the form which a sign takes and the concept it represents. Considering a mapping as

A Decomposition of the De nition of Model Composition 157

the form of the model composition and interpretations as the concept it represents,
we use the concepts of denotation and connotation to explore further the relationship
between a mapping and its interpretations. Denotation is the generic meaning of a
pairing of a mapping and an interpretation of this mapping : model elements from one
model relate to model elements from another model. Connotation re nes the meaning
of relate to take into account the context and the purpose of the mapping for a speci c
model composition goal.

Supporting this intuitive de nition of mapping and interpretation, we propose
a uni ed theory for model composition in Chapter 2. The theory proposes a formal
de nition of the various kinds of mappings and the various kinds of interpretations
and leads to the de nition of a framework for unifying model composition activities
(see Chapter3).

1.1.3 A Framework for Unifying Model Composition Activities

Chapter 3 presents the MODel MAPping (ModMap) tool that supports the de ni-
tion of mappings and their interpretations for producing e ective model composition
languages and concrete model compaosition operators. The concrete implementation
of the ModMap tool proposes (i)a language for the design of mappings between mod-
els and meta—models; (i) the operational semantics for each kind of interpretations;
(iii) a concrete syntax to ease the speci cation of mappings and the selection of spe-
ci ¢ interpretations and (iv)the global process for building new model composition
operators. As an illustration, we present the process of building a speci ¢ model com-
position framework for model merging and the process of building a speci c model
composition framework for model integration.

I.1.4 Validation and Experiments

We evaluate the adequateness and relevance of the modeling framework for build-
ing model composition frameworks through three experiments : (i)we use the theoret-
ical framework to unify four existing model merging techniques and propose a unique
kernel for model composition; (ii)we demonstrate the applicability of the framework
on the integration of legacy API for the con guration and management of heteroge-
neous video and broadcasting equipments in collaboration with industrial partners
from Technicolor ?; (iii) we demonstrate the applicability of the framework on the syn-
chronization of heterogeneous models in the context of modeling service—oriented
architectures (SOA).

In the next section, we propose perspectives for both improving the current state
of the art about model composition and for further research.

1. http ://www.technicolor.com /en/hi/technology/research-and-innovation-centers/rennes

158 Conclusion

1.2 Perspectives

We provide a modeling framework that supports the de nition of mappings and
the de nition of interpretations for building speci c model composition operations.
Providing semantics for mappings and interpretations, the modeling framework is
a tool—kit that experts can customize to t speci c needs and to answer to specic
situations.

We strongly believe that the main contribution of this thesis is an important step
in ful lling our vision of shifting from model compaosition as an operator that targets
a speci ¢ purpose in a speci ¢ context to model composition as an operation that
allows controlled customization and variability of the model compaosition process. The
contribution of this thesis opens new tracks and elds or research that need additional
and in—depth exploration.

[1.2.1 Extension of the Systematic Literature Review

In the context of this thesis, we focus e ort on the characterization of the key
concepts of correspondence and interpretation in model composition. The systematic
literature review results presented in Chapter 1 re ect the variability of correspon-
dences and interpretations that existing model composition approaches put into action
to achieve a speci ¢ purpose in a speci ¢ context. Along with the evolution of corre-
spondence and interpretation categories, we envisage three further developments to
this piece of work.

[1.2.1.1 In uence of Software Development Activities

We are con dent that software development activities in uence the de nition and
the speci cation of both correspondences and interpretations. We consider worth-
while to extract further information both about the relation between correspondences
and software activities, and about the relation between interpretations and software
activities. Such information would help (i)characterizing which pair of a correspon-
dence and an interpretation is relevant for a speci ¢ software activity and eventually
(i) providing a list of model compaosition approaches that supports such software ac-
tivities. We presented preliminary data to achieve this goal but additional analysis is
actually required.

11.2.1.2 Existing Model Composition Approaches Adaptation

In the current presentation of the systematic literature reviews, several model com-
position approaches support several software development activities. In the process
of building new model composition operations, we believe that these techniques that
already tackle various model composition challenges are good candidates for reuse
and adaptation.

Perspectives 159

11.2.1.3 Classi cation Completeness

In the light of the presentation of the systematic literature review results in tables,
we observe that some pairs of correspondencéinterpretation and some pairs of corre-
spondence/software activity have no candidate article identi ed. Towards providing a
complete characterization of model compsition, additional research is needed to eval-
uate why such pairs have not been proposed yet and what scienti ¢ challenge may lie
beneath.

I1.2.2 Model Composition as a rst—class Entity in MDE

Model composition in multi-modeling environments for software engineering is

a key activity. Bézivin et al. believe that model composition techniques should be
given a rst—class status, similarly to what has be done with model transformation
techniques [BBDF06]. In the extension of UML with model compaosition semantics,
Siobhan Clarke proposes that a “... subject—oriented design model supports a new kind
of design construct, called a compaosition relationship that supports the speci cation
of how design models should be composed” [Cla02, 8§83, p.6]. We envisage also to
manipulate model composition as a rst—class entity and propose two perpectives in
this directions.

[1.2.2.1 About a “composable” relationship in the Meta—Object Facility (MOF)

Observing that model composition is a relevant technique for supporting a wide
range of activities on models, we may consider model composition as a key concept
in MDE. The next step in the de nition of model composition is to provide an abstract
representation that we promote a level of abstraction up so that designers can de ne
model composition as part of their model design. Model composition thus become a
rst-class entity at the meta-meta-level of MOF.

In other words, a new kind of relationship should be added to the Property Type of
MOF (see Figure1l.1) with the following semantics that mimics the semantics of MOF
properties [OMG10a, §12.5, p.45] :Property : :isComposition == true

— An object may be composedith multiple objects

— Cyclic composition is valid : order of composition is determined by the concrete

implementation of the property instance.

— Any composition property should be provided with speci ¢ semantics using an

action language such as Kermeta.

The semantics of the new compositionrelationship would include the mapping
and interpretation DSML semantics that are presented in Chapter 3. If available, such
a relationship would ease the de nition of model composition operation between
objects and would allow to take into account such operation in systems and languages
design.

160 Conclusion

Figure 1.1 — MOF core metamodel : EssentialMOF classes adapted from [OMG10a,
§12.2, p.40]

[1.2.2.2 High-Order Composition

A direct consequence of promoting model composition in the meta-meta-level
of abstraction is that it allows manipulating model composition as any other model
element. This is a requirement for a higher—order application of the model composition
operator. Thus, our proposition should support composition of model compositions or
in other words : higher—order model composition (HOC). Similarly to Higher—Order
Transformations (HOT) [TJF+09], an HOC takes a model composition as an input and
produces a model composition as an output. For instance, an HOC may de ne the
model composition of twvo DSML DSML; and DSML3 from the model composition
of the two DSML DSML; with DSML, and the model composition of the two DSML
DSML,with DSML3. This opens new paths for research and application in synthesizing
model composition frameworks from existing techniques.

11.2.3 Application and Future of ModMap

11.2.3.1 Extending the scope of application of ModMap

Preliminary results in generalizing model merging allow us to rede ne four ex-
isting techniques by proposing a unique match module and a unique merge module.
Further work is twofold : (i) propose additional experiments about various model com-

Perspectives 161

position techniques to assess scalability, relevance and limits in the application of the
theoretical framework for unifying model composition techniques; (ii)build a repos-
itory of libraries that support various purposes to provide reusable and extensible
on-the-shelf model management components.

Similarly, we presentin Chapter 3two case studies that deal with model integration
and model synchronization for which the ModMap framework is adequate. We think
about using ModMap for the speci cation of additional software life—cycle activities
such as model derivation, model orchestration, model consistency checking or even
model recon guration.

[1.2.3.2 Collaborations

In the light of the MOPCOM-I project and the successful application of ModMap
to the Technicolor case studies, we are exploring future collaborations with several
partners such as France Telecom and Thales Systemes Aéroportés on dierent model
mapping issues. We are currently carrying out preliminary discussions with France
Telecom about the de nition of mappings between WebServices and the functional-
ities of a given system to ease and automate the design of WebServices interfaces
with regard to the service that they provide. Thales Systémes Aéroportés interest in
proposing mappings is threefold : (i)provide mappings model-to—model to help spec-
ifying transformations between speci c DSML on “mission planning and debrie ng”
case study ; (i) provide mappings between semi-structured documents and a speci ¢
DSML to provide serialization capabilities; (iii) provide mappings between a specic
DSML and the representation of the environment to help improving the de nition of
software interfaces.

Besides the direct application of ModMap for these speci c case study, the ModMap
framework needs (i)maturation for being usable in a industrial context and needs
(if) metrics to evaluate how it ts in particular contexts.

Glossary

AMW ATLAS Model Weaver. vi, 64, 66

AOM Aspect-Oriented Modeling. 9, 33,40, 92, 141

AOP Aspect-Oriented Programming. 7, 130

APl Application Programming Interface. 3,111, 129-133136, 137139, 157
AST Abstract Syntax Tree. 45

DSL Domain-Speci c Language. 12, 32, 44, 137
DSML Domain-Speci ¢ Modeling Language. xi—xiii, 8, 30, 34, 37, 75-81 159-161

ECore EMFCore. 8, 90
EML Epsilon Merging Language. 49

GCFs Generic model composition frameworks. 2, 63, 65
GPL General-purpose Programmation Language. 17, 95

JVM Java Virtual Machine. 136
LOC Lines of Code. 137

MDE Model-Driven Engineering. 1,5, 7, 8 29, 72,129, 155, 156 159
ModMap MODel MAPping. 83
MOF Meta-Object Facility. xi, 8, 9, 128 159

OCL Object-Constraint Language. 32

OMG Object Management Group. 7

OO Object—Oriented. 6, 64, 147, 148

ORM Object—Relational Mapping. vi, 64, 66

QoS Quality of Service. 37
QVT Query/View /Transformation. 45

SaaS Software as a Service29

161

162 Glossary

SE Software Engineering. 21

SOA Service—Oriented Architecture. 111, 153
SoC Separation of Concerns.6, 43

SPL Software Product Line. 9, 29, 32—-34 40

TGG Triple Graph Grammar. 48

UML Uni ed Modeling Language. xi, 8, 33,112, 113159

Bibliography

[ACL +09] M. Acher, P. Collet , P. Lahire et al. « Composing Feature Models ».
Dans : Software Language Engineeringd. par M. van den Brand , D.
GasevicetJ. Qay . T. 5969. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2009, p. 62—-81doi : 10.1007/978-3-642-12107-
4 6. url :http://dx.doi.org/10.1007/978-3-642-12107-4_6

[ACL +10] M. Acher, P.Collet , P.Lahire etal. « Managing Variability in Work ow
with Feature Model Composition Operators ». Dans : Software Compo-
sition. Ed. par B. Baudry et E. Wohlstadter . T. 6144. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2010, p. 17-33.url
http://dx.doi.org/10.1007/978-3-642-14046-4 2

[AEC+07] A.Anwar , S. Bbersold , B. Coulette etal. « Vers une approche a base de
régles pour la composition de modéles. Application au pro | VUML. »
French. Dans :L'Objet, Ingénierie Dirigée par les Model#8.42007 (déc.
2007), p. 73-103url : ftp://ftp.irit.fr/IRIT/MACAO/Coulette-
etal-LObjet2007.pdf

[AJT+09] S. Apel, F. &nda, S. Trujillo et al. « Model Superimposition in Software
Product Lines ». Dans : Theory and Practice of Model TransformatioEsl.
par R. Paige. T. 5563. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2009, p. 4-19.doi : 10.1007/978-3-642-02408-

5 2 url :http://dx.doi.org/10.1007/978-3-642-02408-5 2

[ASM +10] M. Alf érez, J. a. @ntos, A. Moreira et al. « Multi-view Composition
Language for Software Product Line Requirements ». Dans : Software
Language Engineerinded. par M. van den Brand , D. Gasevic et J. Gay .
T. 5969. Lecture Notes in Computer Science. Springer Berlin/ Heidel-
berg, 2010, p. 103-122url : http://dx.doi.org/10.1007/978-3-
642-12107-4_8.

[AT98] M. A ksit et B. Tekinerdogan . Solving the Modeling Problems of Object-
Oriented Languages By Composing Multiple Aspects Using Composition
Filters. AOP'98 Workshop Position Paper. 1998.url : http://wwwtrese.
cs.utwente.nl/Docs/Tresepapers/FilterAspects.html

[Ass11] Association for Computing Machinery . ACM DL. online. Juin 2011.
url : http://portal.acm.org/

163

164

[BAOO]

[BBB+]

[BBDF+06]

[BBN+10]

[BCE+06]

[BCROS]

[BCR+07]

[BEO9]

[BHPOO]

BIBLIOGRAPHY

L. M. Bergmans et M. Aksit. « Composing Software from Multiple
Concerns : A Model and Composition Anomalies ». Dans : ICSE 2000
Workshop on Multi-Dimensional Separation of Concerns in Software Engi-
neering 2000.url : http://doc.utwente.nl/18812/

W. Bast, M. Belaunde, X. Blanc et al. MOF QVT nal adopted speci ca-
tion.

J. Bzivin, S. Bouzitouna , M. Del Fabro et al. « A Canonical Scheme for
Model Composition ». Dans : Model Driven Architecture - Foundations and
Applications Ed. par A. Rensink et J. Warmer . T. 4066. Lecture Notes in
Computer Science. Springer Berlin/ Heidelberg, 2006, p. 346—-360url :
http://dx.doi.org/10.1007/11787044 26

S. Bensalem, M. Bozga, T.-H. Nguyen et al. « Compositional veri cation
for component-based systems and application ». Dans : Software, IET4.3
(juin 2010), p. 181 —193issn : 1751-8806doi : 10.1049/iet-sen.2009.
0011

G. Brunet , M. Chechik, S. Easterbrook et al. « A manifesto for model
merging ». Dans : Proceedings of the 2006 international workshop on Global
integrated model manageme@aMMa '06. New York, NY, USA : ACM,
2006, p. 5-12doi : http://doi.acm.org/10.1145/1138304.1138307

url : http://doi.acm.org/10.1145/1138304.1138307

A.Boronat ,J. Garsi etl. Ramos « MOMENT : a formal MOdel manage-
MENT tool ». Dans : Summer School on Generative and Transformational
Techniques in Software Engineerifg005).url : http://moment.dsic.
upv.es/index.php?option=com_docman\&\#38;task=doc_download\
&\#38;0id=36 .

A.Boronat , J. A. Carsi, I. Ramoset al. « Formal Model Merging Applied

to Class Diagram Integration ». Dans : Electron. Notes Theor. Comput. Sci.
166 (jan. 2007), p. 5—26doi : 10.1016/j.entcs.2006.06.013 . url
http://portal.acm.org/citation.cfim?id=1223344.1223436

L. Bendix et P. Emanuelsson. « Requirements for Practical Model Merge

- An Industrial Perspective ». Dans : Model Driven Engineering Languages
and SystemsEd. par A. Schiirr et B. Slic. T. 5795. Lecture Notes in
Computer Science. Springer Berlin/ Heidelberg, 2009, p. 167-180doi :
10.1007/978-3-642-04425-0_13 . url : http://dx.doi.org/10.
1007/978-3-642-04425-0_13 .

P. A. Bernstein , A. Y. Halevy et R. A. Pottinger . « A vision for man-
agement of complex models ». Dans : SIGMOD Record (ACM Special
Interest Group on Management of Data®.4 (2000), p. 55-63ssn : 0163-
5808.doi : http://doi.acm.org/10.1145/369275.369289 .url :http:
/[citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.3340

BIBLIOGRAPHY 165

[BKB+08]

[BL73]

[BLTN10]

[BMA +05]

[BS81]

[BSM+07]

[BTFO5]

[BWH +08]

[BWH10]

O. Barais, J. Kein , B. Baudry et al. « Composing Multi-view Aspect
Models ». Dans : Composition-Based Software Systems, 2008. ICCBSS 2008.
Seventh International Conference.oR008, p. 43 -52doi : 10.1109/
ICCBSS.2008.12

D.E.Bell etL.J.LlaPadula .« Secure Computer Systems : Mathematical
Foundations and Model ». Dans : The MITRE Corporation Bedford MA
Technical Report M74244 May.M74-244 (1973), p. 42.

E. Brottier , Y. Le Traon et B. Nicolas . « Composing Models at
Two Modeling Levels to Capture Heterogeneous Concerns in Re-
quirements ». Dans : Software CompositionEd. par B. Baudry et E.
Wohlstadter . T. 6144. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2010, p. 1-16.doi : 10.1007/978-3-642-14046-

4 1. url :http://dx.doi.org/10.1007/978-3-642-14046-4 1

J. Bolchini , P. G. Mian, Ana et al. Systematic Review in Software Engi-
neering Rap. tech. Technical Report RT-ES 6785, Systems Engineering
et Computer Science Department, COPPEUFRJ, 2005.

S. Birris et H. Sankappanavar . A Course In Universal AlgebreSpringer-
Verlag, 1981, p. xvi, 276.

K. Balasubramanian , D. C. Schmidt, Z. Molnar et al. « Component-
Based System Integration via (Meta)Model Composition ». Dans : En-
gineering of Computer-Based Systems, 2007. ECBS '07. 14th Annual IEEE
International Conference and Workshops on. th@07, p. 93 —102doi :
10.1109/ECBS.2007.24.

I. Balaban , F. Tip et R. Fuhrer . « Refactoring support for class library
migration ». Dans : OOPSLA '05 : Proceedings of the 20th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages,
and applicationsSan Diego, CA, USA : ACM, 2005, p. 265-279isbn :
1-59593-031-0doi : http://doi.acm.org/10.1145/1094811.1094832

N. Boucké, D. Weyns, R. Hilliard et al. « Characterizing Relations
between Architectural Views ». Dans : Software ArchitectureEd. par R.
Morrison , D. Balasubramaniam et K. Falkner . T. 5292. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2008, p. 66-81url :
http://dx.doi.org/10.1007/978-3-540-88030-1_7

N. Boucké, D. Weyns et T. Holvoet . « Composition of architectural
models : Empirical analysis and language support ». Dans : J. Syst.
Softw.83 (11 2010), p. 2108-212i&sn : 0164-1212doi : http://dx.doi.
org/10.1016/j.jss.2010.06.011 .url : http://dx.doi.org/10.
1016/j.jss.2010.06.011

166

[Bar08]

[Bar64]

[Bel04]

[Ber03]

[CBJ10]

[CCS11]

[CDK +07]

[CDRPOS]

[CIC11]

BIBLIOGRAPHY

C. Bartelt . « Consistence preserving model merge in collaborative
development processes ». Dans :CVSM '08 : Proceedings of the 2008
international workshop on Comparison and versioning of software models
Leipzig, Germany : ACM, 2008, p. 13-18.isbn : 978-1-60558-045-Gl0i :
10.1145/1370152.1370157. url : http://dx.doi.org/10.1145/
1370152.1370157.

R. Barthes . « Eléments de sémiologie ». French. Dans Communications
4.1 (1964), p. 91-135ssn : 0588-8018doi : 10.3406/comm.1964.1029.
url : http://www.persee.fr/web/revues/home/prescript/article/
comm_0588-8018_1964 num_4_ 1 1029

A. Belapurkar . Use AOP to maintain legacy Java applicatioMar. 2004.
url : http://www.ibm.com/developerworks/java/library/j-
aopsc2.html .

P. A. Bernstein . « Applying Model Management to Classical Meta Data
Problems ». Dans :Proc. First Biennal Conference on Innovative Data Sys-
tems Research, 2003. CIDR'G®03.

M. Qavreul , O. Barais et J.-M. &zéquel. « Integrating Legacy Sys-
tems with MDE ». Dans : ICSE'10 : Proceedings of the 32nd AQKEE
International Conference on Software Engineering and ICSE Workshops
Cape Town, South Africa 2010, p. 69-78.url : http://www.irisa.fr/
triskell/publis/2010/CLAVREUL10a.pdf

CCSD-CNRS.HAL. online. Juin 2011.url : http://hal.archives-
ouvertes.fr/index.php

F. Qurbera, M. Duftler ,R.Khalaf etal. «Bite : Work ow Composition
for the Web ». Dans : Service-Oriented Computing - ICSOC 200FEd.
par B. Kramer, K.-J. Lin et P. Narasimhan . T. 4749. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2007, p. 94—106url
http://dx.doi.org/10.1007/978-3-540-74974-5_8

A. Cicchetti , D. Di Ruscio et A. Pierantonio .« Managing Model Con-
icts in Distributed Development ». Dans : Model Driven Engineering
Languages and Systenisd. par K. Czarnecki, |. Ober, J.-M. Bruel etal.
T. 5301. Lecture Notes in Computer Science. Springer Berlin/ Heidel-
berg, 2008, p. 311-325url : http://dx.doi.org/10.1007/978-3-
540-87875-9_23.

C. Qasen, F. buault et J. Gabot. « Virtual Composition of EMF Mod-

els ». Anglais. Dans :7emes Journées sur I'lngénierie Dirigée par les Modéles
(IDM 2011). Lille, France 2011.url : http://hal.inria.fr/inria-
00606374/PDF/VirtualModels_IDM2011.pdf

BIBLIOGRAPHY 167

[CMBF+11]

[CNM11]

[C@V02]

[CRE+08]

[CRR+07]

[CSNOS]

[CT90]

[Cha08]

[Cla02]

M. Clavreul , S. Mosser, M. Blay -Fornarino et al. « Service-Oriented
Architecture Modeling : Bridging the Gap Between Structure and Be-

havior ». Dans : MODELS'11 : Proceedings of the 14th ACMEE Interna-
tional Conference on Model Driven Engineering Languages and Systems. To
appear2011.

M. C hechik, S. Nejati etS. Mehrdad . « A Relationship-Based Approach
to Model integration ». Dans : Journal of Innovations in Systems and Soft-
ware Engineering2011).

K. Czarnecki , K. gsterbye et M. Volter . « Generative Programming ».
Dans : Object-Oriented Technology ECOOP 2002 Workshop Redgér
par J. Hernandez et A. Moreira . T. 2548. Lecture Notes in Computer
Science. Springer Berlin/ Heidelberg, 2002, p. 15-29url : http://dx.
doi.org/10.1007/3-540-36208-8_2

A. Cicchetti , D. D. Ruscio, R. BEamo et al. « Automating Co-evolution

in Model-Driven Engineering ». Dans: Enterprise Distributed Object Com-
puting Conference, IEEE Internation@ (2008), p. 222—-231issn : 1541-
7719.doi : http://doi.ieeecomputersociety.org/10.1109/EDOC.
2008.44.

R. Chitchyan , A. Rashid, P. Rayson et al. « Semantics-based composi-

tion for aspect-oriented requirements engineering ». Dans : Proceedings

of the 6th international conference on Aspect-oriented software development
AOSD '07. Vancouver, British Columbia, Canada : ACM, 2007, p. 36—48.

isbn : 1-59593-615-7doi : http://doi.acm.org/10.1145/1218563.

1218569 url : http://doi.acm.org/10.1145/1218563.1218569

K. Chen, J. Stipanovits et S. Neema « Compositional Speci cation of
Behavioral Semantics ». Dans Design, Automation, and Testin Européd.
par R. Lauwereins etJ. Madsen. Springer Netherlands, 2008, p. 253-265.
isbn : 978-1-4020-6488-3url : http://dx.doi.org/10.1007/978-1-
4020-6488-3_19.

K. M Chandy et S. Taylor . A Primer for Program Composition Notation
Technical Report 10. Pasadena, CA, USA : California Institute of Tech-
nology, 1990. url : http://www.ncstrl.org:8900/ncstrl/servlet/
search?formname=detail\&id=0ai%3Acaltechcstr%3A00000071 .

D. Chandler . Semiotics for BeginnersDaniel Chandler (University
of Wales, Aberystwyth), 2008. isbn : 9781874166559url : http://
dominicpetrillo.com/ed/Semiotics_for_Beginners.pdf

S. Qarke . « Extending standard UML with model composition seman-
tics ». Dans :Sci. Comput. Progrand4.1 (2002), p. 71-100ssn : 0167-6423.
doi : http://dx.doi.org/10.1016/S0167-6423(02)00030-8

168 BIBLIOGRAPHY

[Cur54] H. B. Curry . « The logic of program composition , in Applications Sci-
enti ques de la Logique Mathématique : Actes du 2 ». Dans : e Colloque
International de Logique Mathématique, Paris - 25-30 Aodt 1952, Institut
Henri Poincaré 1954, p. 97-102.

[DFB+05a] M. Didonet , D. Fabro, J BEzivin et al. « Applying Generic Model Man-
agement to Data Mapping ». Dans : Proceedings of BDA 2005aint-Malo,
France 2005, p. 343-355.

[DFB+05b] M. Didonet, D. Fabro, J. Bszivin et al. « AMW : a generic model
weaver ». Dans : Proceedings of the 1ére Journée sur I'lngénierie Dirigée
par les Modeles (IDM05)2005. url : http://www.sciences.univ-
nantes.fr/lina/atl/www/papers/IDM_2005 weaver.pdf

[DRMM +10] D. Di Ruscio, I. Malavolta , H. Muccini et al. « Developing next gen-
eration ADLs through MDE techniques ». Dans : Proceedings of the 32nd
ACMIEEE International Conference on Software Engineering - Volume 1
ICSE '10. New York, NY, USA : ACM, 2010, p. 85-94.doi : http:
/ldoi.acm.org/10.1145/1806799.1806816 . url : http://doi.acm.
0rg/10.1145/1806799.1806816 .

[Dij97] E. W. Dijkstra . A Discipline of Programming1st. Upper Saddle River,
NJ, USA : Prentice Hall PTR, 1997.isbn : 013215871X.
[EPKO6] K.-D. Engel, R. F. Rige et D. S. Kolovos . « Using a Model Merging

Language for Reconciling Model Versions ». Dans : ECMDA-FA. Ed. par
A. Rensink et J. Warmer . T. 4066. Lecture Notes in Computer Science.
Springer, 2006, p. 143-157isbn : 3-540-35909-5.

[ESO06] M. Emerson et J. Stipanovits . « Techniques for metamodel composi-
tion ». Dans : The 6th OOPSLA Workshop on Domain-Speci ¢ Modeling,
OOPSLA 2006 ACM, ACM Press, 2006, p. 123-139.

[Els11] Elsevier BV. SciVerse ScienceDireanline. Juin 2011.url : http://www.
hub.sciverse.com/action/nome

[FBB+07] F. Heurey, E. Breton , B. Baudry et al. « Model-Driven Engineering
for Software Migration in a Large Industrial Context ». Anglais. Dans :
MoDELS'07. Nashville, TN, USA Etats-Unis 2007. url : http://hal.
inria.fr/inria-00477566/PDF/fleurey07a.pdf

[FBF08] F. Heurey, B. Baudry, R. France et al. « A Generic Approach for Au-
tomatic Model Composition ». Dans : Models in Software Engineering
Ed. par H. Giese. T. 5002. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2008, p. 7-15.doi : 10.1007/978-3-540-69073-
3_2. url :http://dx.doi.org/10.1007/978-3-540-69073-3_2

BIBLIOGRAPHY 169

[FDVO7]

[FEBO6]

[FFR+07]

[FGF+08]

[GG10]

[GHJ+95]

[GJO5]

[GKR+08]

[GS03]

D. Fabro, M. Didonet et P. Valduriez . « Semi-automatic model inte-
gration using matching transformations and weaving models ». Dans :

SAC '07 : Proceedings of the 2007 ACM symposium on Applied comput-
ing. Seoul, Korea : ACM, 2007, p. 963-970isbn : 1-59593-480-4doi :
http://doi.acm.org/10.1145/1244002.1244215

J. M. Rvre, J. Btublier et M. Blay . L'ingénierie dirigée par les modéles :
au-dela du MDA French. Hermes-Lavoisier, 2006.

R. Fance, F. Heurey, R. Reddy et al. « Providing Support for Model
Composition in Metamodels ». Dans : Enterprise Distributed Object Com-
puting Conference, 2007. EDOC 2007. 11th IEEE Internatio28l07, p. 253.
doi : 10.1109/EDOC.2007.55

M. Fritzsche , W. Gilani , C. Fitzsche et al. « Towards Utilizing Model-
Driven Engineering of Composite Applications for Business Perfor-
mance Analysis ». Dans : Model Driven Architecture - Foundations and
Applications Ed. par I. Schieferdecker et A. Hartman . T. 5095. Lec-
ture Notes in Computer Science. Springer Berlin / Heidelberg, 2008,
p. 369-380.url : http://dx.doi.org/10.1007/978-3-540-69100-

6_26.

A. Goncalves et A. Goncalves . « Object-Relational Mapping ». Dans :
Beginning Java EE 6 Platform with GlassFishApress, 2010, p. 61-121.
isbn : 978-1-4302-2890-5url : http://dx.doi.org/10.1007/978-1-
4302-2890-5_3.

E. Gamma R. Helm, R. bhnson et al. Design patterns : elements of reusable
object-oriented softwar8oston, MA, USA : Addison-Wesley Longman
Publishing Co., Inc., 1995.isbn : 0-201-63361-2.

R. Goenmo et M. Jaeger. « Model-driven semantic Web service com-
position ». Dans : Software Engineering Conference, 2005. APSEC '05. 12th
Asia-Paci ¢. 2005.doi : 10.1109/APSEC.2005.81

H. Gronniger , H. Krahn , B. Rumpeet al. « MontiCore : a framework

for the development of textual domain speci c languages ». Dans :
Companion of the 30th international conference on Software engineering
ICSE Companion '08. New York, NY, USA : ACM, 2008, p. 925-926.

doi : http://doi.acm.org/10.1145/1370175.1370190 .url : http:
/ldoi.acm.org/10.1145/1370175.1370190

G. Gossler et J. Hakis . « Composition for Component-Based Model-
ing ». Dans : Formal Methods for Components and Objeds. par F. S.
de Boer, M. M. Bonsangue, S. Gaf et al. T. 2852. Lecture Notes in
Computer Science. Springer Berlin/ Heidelberg, 2003, p. 443—-466url :
http://dx.doi.org/10.1007/978-3-540-39656-7_19

170

[GWO06]

[GWO09]

[Gooll]

[HHJ+08]

[HKO3]

[HKG +10]

[HROA4]

[HRW11]

[IBM11]

[IEEO5]

[[EE11la]

BIBLIOGRAPHY

H. Giese et R. Wagner. « Incremental Model Synchronization with
Triple Graph Grammars ». Dans : Model Driven Engineering Languages
and SystemsEd. par O. Nierstrasz , J. Whittle , D. Harel etal. T. 4199.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2006,
p. 543-557url : http://dx.doi.org/10.1007/11880240 38

H. Giese et R. Wagner. « From model transformation to incremen-
tal bidirectional model synchronization ». Dans : Software and Systems
Modeling 8 (1 2009), p. 21-43issn : 1619-1366wurl : http://dx.doi.
org/10.1007/s10270-008-0089-9

Google . Google Scholaronline. Juin 2011. url
google.fr

. http://scholar.

J. Henriksson , F. Heidenreich , J. dhannes et al. « Extending grammars
and metamodels for reuse : the Reuseware approach ». Dans Software,
IET 2.3 (juin 2008), p. 165 —184.

J. H. Hausmann et S. Kent. « Visualizing model mappings in UML ».

Dans : SoftVis '03 : Proceedings of the 2003 ACM symposium on Software
visualization San Diego, California : ACM, 2003, p. 169-178.isbn : 1-
58113-642-0doi : http://doi.acm.org/10.1145/774833.774858

Z.Hemel, L. Kats, D. Groenewegen et al. « Code generation by model
transformation : a case study in transformation modularity ». Dans :
Software and Systems Modelirgg(3 2010), p. 375-402issn : 1619-1366.
url : http://dx.doi.org/10.1007/s10270-009-0136-1

D. Harel et B. Rumpe « Meaningful modeling : what's the semantics
of "semantics"? » Dans :Computer37.10 (oct. 2004), p. 64 —72ssn :
0018-9162doi :10.1109/MC.2004.172.

J. Hutchinson , M. Rouncefield et J. Whittle . « Model-driven engi-
neering practices in industry ». Dans : Proceeding of the 33rd interna-
tional conference on Software engineerif@SE '11. Waikiki Honolulu,
HI, USA : ACM, 2011, p. 633-642.isbn : 978-1-4503-0445-0oi : http:
/ldoi.acm.org/10.1145/1985793.1985882 . url : http://doi.acm.
0rg/10.1145/1985793.1985882 .

IBM. IBM Technical Journal online. Juin 2011. url
research.ibm.com/journal/

IEEE Computer Society . « IEEE Standard for Software Veri cation and
Validation ». Dans : IEEE Std 1012-2004 (Revision of IEEE Std 1012-1998)
(ao0t 2005), p. 0-110doi : 10.1109/IEEESTD.2005.96278.

IEEE (Ihstitute of Electrical and Electronics Engineers). Computer
Society Digital Library online. Juin 2011.url : http://www.computer.
org/portal/web/csdl/home

. http: //www .

BIBLIOGRAPHY 171

[IEE11D]

[1KO4]

[Ini11]
[JBF10]

[JFBO8]

[JKB+06]

[JWE+07]

[JZF+09]

[Jac90]

IEEE (Institute of Electrical and Electronics Engineers). IEEE
Xplore online. Juin 2011.url : http://ieeexplore.ieee.org/Xplore/
guesthome.jsp .

I. I vkovic et K. Kontogiannis . « Tracing evolution changes of software
artifacts through model synchronization ». Dans : Software Maintenance,
2004. Proceedings. 20th IEEE International Conferenc@004, p. 252 —261.
doi : 10.1109/ICSM.2004.1357809.

I nist -CNRS. Refdoconline. Juin 2011.url : http://www.refdoc.fr/

J.-M. 8Zéquel, O. Barais et F. Heurey . Model Driven Language Engineer-
ing with Kermeta English. Ed. par Joao M. Fernandes, Ralf Lammel, Joao
Saraiva etal. LNCS 6491, Springer, 2010url : http://hal.archives-
ouvertes.fr/inria-00538461/PDF/Jezequel10b.pdf

C. éanneret , R. France et B. Baudry . « A reference process for model
composition ». Dans : Proceedings of the 2008 AOSD workshop on Aspect-
oriented modelingAOM '08. New York, NY, USA : ACM, 2008, p. 1-6.

doi : http://doi.acm.org/10.1145/1404920.1404921 .url : http:
/ldoi.acm.org/10.1145/1404920.1404921

A. Jackson, J. Kein, B. Baudry et al. « Executable Aspect Oriented
Models for Improved Model Testing ». Dans : ECMDA workshop on
Integration of Model Driven Development and Model Driven TestiBgbao,
Spain Espagne 2006url : http://hal.inria.fr/inria-00512544/

en/.

P. &yaraman, J. Whittle , A. Elkhodary et al. « Model Composition
in Product Lines and Feature Interaction Detection Using Critical Pair
Analysis ». Dans : Model Driven Engineering Languages and Systeifd.
par G. Engels, B. Opdyke, D. Schmidt et al. T. 4735. Lecture Notes in
Computer Science. Springer Berlin/ Heidelberg, 2007, p. 151-165doi :
10.1007/978-3-540-75209-7_11 . url : http://dx.doi.org/10.
1007/978-3-540-75209-7_11 .

J. dhannes, S. Zschaler , M. Fern andez et al. « Abstracting Complex
Languages through Transformation and Composition ». Dans : Model
Driven Engineering Languages and Systerfid. par A. Schiirr et B. Slic .
T. 5795. Lecture Notes in Computer Science. Springer Berlin/ Heidel-
berg, 2009, p. 546-550doi : 10.1007/978-3-642-04425-0_41 . url
http://dx.doi.org/10.1007/978-3-642-04425-0_41

M. &ckson. « Some complexities in computerbased systems and their
implications for system development ». Dans : CompEuro '90. Proceed-
ings of the 1990 IEEE International Conference on Computer Systems and
Software Engineeringl1990, p. 344 —-351doi : 10.1109/CMPEUR.1990.
113645

172

[Jeal8]

[Jez08]

[KAAKO9]

[KEG11]

[KGM10]

[KHJO6]

[KIPO5]

[KLM +97]

[KM10]

[KPPO6]

BIBLIOGRAPHY

C. danneret. « An Analysis of Model Composition Approaches ».
Mém.de maitr. Ecole Polytechnique Fédérale de Lausanne, 2008.

J.-M. ézequel. « Model driven design and aspect weaving ». Dans :
Software and Systems Modelirg(2 2008), p. 209—218ssn : 1619-1366.
url : http://dx.doi.org/10.1007/s10270-008-0080-5

J.Kienzle , W. Al AbedetJ. Klein . « Aspect-oriented multi-view model-

ing ». Dans : Proceedings of the 8th ACM international conference on Aspect-
oriented software developme®OSD '09. New York, NY, USA : ACM,
2009, p. 87-98doi : http://doi.acm.org/10.1145/1509239.1509252

url : http://doi.acm.org/10.1145/1509239.1509252

KEG. Arnetminer. online. Juin 2011. url
index.jsp

. http://arnetminer.net/

J. Kienzle, N. Guelfi et S. Mustafiz . « Crisis Management Systems :
A Case Study for Aspect-Oriented Modeling ». Dans : Transactions on
Aspect-Oriented Software Development VAd. par S. Katz, M. M ezini
et J. Kenzle. T. 6210. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2010, p. 1-22.ishn : 978-3-642-16085-1url : http:
//dx.doi.org/10.1007/978-3-642-16086-8 1

J. Klein , L. Helouet et J.-M. ¥zéquel. « Semantic-based Weaving of
Scenarios ». Dans proceedings of the 5th International Conference on Aspect-
Oriented Software Development (AOSD'0@&onn, Germany : ACM, 2006.

J. Kein , J.-M. ¥zéquel et N. Plouzeau . « Weaving Behavioural Mod-
els ». Dans :In First Workshop on Models and Aspects, Handling Crosscut-
ting Concerns in MDSD at ECOOP 052005.

G. Kiczales, J. Lamping, A. Mendhekar et al. « Aspect-oriented pro-
gramming ». Dans : ECOOP'97 — Object-Oriented Programmingd. par
M. Aksit et S. Matsuoka . T. 1241. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 1997, p. 220-242isbn : 978-3-540-63089-0.
url : http://dx.doi.org/10.1007/BFb0053381

P. Kelsen et Q. Ma. « A Modular Model Composition Technique ».
Dans : Fundamental Approaches to Software Engineerifigl. par D.
Rosenblum et G. Taentzer . T. 6013. Lecture Notes in Computer Sci-
ence. Springer Berlin/ Heidelberg, 2010, p. 173-187url : http://dx.
doi.org/10.1007/978-3-642-12029-9 13

D. Kolovos , R. Raige et F. Polack . « Merging Models with the Epsilon
Merging Language (EML) ». Dans : Model Driven Engineering Languages
and SystemsEd. par O. Nierstrasz , J. Whittle , D. Harel etal. T. 4199.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2006,
p. 215-229url : http://dx.doi.org/10.1007/11880240 16

BIBLIOGRAPHY 173

[KUL +10]

[Kit04]

[LMV +07]

[LNK +01]

[LPO3]

[Let07]

[Loro8]

[MBFF10]

[MBJ+07]

F. Krause, J. Uhlendorf , T. Lubitz et al. « Annotation and merg-
ing of SBML models with semanticSBML ». Dans : Bioinformatics26.3
(2010), p. 421-422doi : 10.1093/bioinformatics/btp642 . eprint :
http://bioinformatics.oxfordjournals.org/content/26/3/421.
full.pdf+html . url :http://bioinformatics.oxfordjournals.org/
content/26/3/421.abstract

B. Kitchenham . « Procedures for Performing Systematic Reviews ».
Dans : Joint Technical Report NICTA Technical Report 0400013812004).
url : http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.122.3308&rep=repl&type=pdf .

P. Lahire, B. Morin , G. Vanwormhoudt et al. « Introducing Variabil-
ity into Aspect-Oriented Modeling Approaches ». Dans : Model Driven
Engineering Languages and Systerisl. par G. Engels, B. Opdyke, D.
Schmidt et al. T. 4735. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2007, p. 498-513url : http://dx.doi.org/10.
1007/978-3-540-75209-7_34 .

A. Ledeczi, G. Nordstrom , G. Karsai et al. « On metamodel compo-
sition ». Dans : Control Applications, 2001. (CCA '01). Proceedings of the
2001 IEEE International Conference.d001, p. 756 —760doi : 10.1109/
CCA.2001.973959

V.-C. Liang et C. Raredis. « A port ontology for automated model com-
position ». Dans : Simulation Conference, 2003. Proceedings of the 2003
Winter. T. 1. 2003, p. 613 —62210i : 10.1109/WSC.2003.1261476

K. Letkeman. Comparing and merging UML models in IBM Rational
Software Architect : Ad-hoc modeling - Fusing two models with diagrtams
English. IBM. 2007. url : http://www.ibm.com/developerworks/
rational/library/07/0410_letkeman/

D. Lorenz. « Visitor Beans : An Aspect—Oriented Pattern ». Dans :

Object—Oriented Technology : ECOOP'98 Workshop ReaBer par S.

Demeyer et J. Bbsch. T. 1543. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 1998, p. 579-579isbn : 978-3-540-65460-5.
url : http://dx.doi.org/10.1007/3-540-49255-0 130

S. Mosser, M. Blay -Fornarino et R. France . « Work ow Design Using
Fragment Composition ». Dans : Transactions on Aspect-Oriented Software
Development VIl Ed. par S. Katz, M. Mezini et J. Kienzle. T. 6210.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2010,

p. 200-233.doi : 10.1007/978-3-642-16086-8_6 . url : http://dx.
doi.org/10.1007/978-3-642-16086-8_6

B. Morin , O. Barais, J.-M. ¥zéquel et al. « Towards a Generic Aspect-
Oriented Modeling Framework ». Dans : Models and Aspects workshop,
at ECOOP 2007 Berlin, Germany Allemagne 2007. url : http://hal.
archives-ouvertes.fr/inria-00505222/PDF/morin07a.pdf

174

[MBJOS]

[MBN +09]

[MFJ05]

[MKB +08]

[MMP +10]

[MMWO02]

[MPL +09]

[Mos10]

[NBO4]

[NMOO]

BIBLIOGRAPHY

B. Morin , O. Barais et J.-M. ¥zéquel. « Weaving Aspect Con gurations
for Managing System Variability ». Dans : VaMo0S'08 : 2nd Int. Workshop
on Variability Modelling of Software-Intensive Systenz908.

B. Morin , O. Barais, G. Nain et al. « Taming Dynamically Adaptive
Systems using models and aspects ». Dans Proceedings of the 31st Inter-
national Conference on Software EngineerilgSE '09. Washington, DC,
USA : IEEE Computer Society, 2009, p. 122-132sbn : 978-1-4244-3453-
4. doi : http://dx.doi.org/10.1109/ICSE.2009.5070514 .url
http://dx.doi.org/10.1109/ICSE.2009.5070514

P.-A. Muller , F. Heurey et J.-M. ¥zéquel. « Weaving Executability
into Object-Oriented Meta-Languages ». Dans : Proceedings of MOD-
ELSUML'2005. Ed. par S. K. L. Briand . T. 3713. LNCS. Montego Bay;,
Jamaica : Springer, 2005, p. 264-278&irl : http://www.irisa.fr/
triskell/publis/2005/MullerO5a.pdf

B. Morin , J. Kein , O. Barais et al. « A Generic Weaver for Supporting
Product Lines ». Dans : EA '08 : Proceedings of the 13th international
workshop on Early Aspectseipzig, Germany : ACM, 2008, p. 11-18.isbn:
978-1-60558-032-6doi : http://doi.acm.org/10.1145/1370828.
1370832

I. Malavolta , H. Muccini, P. Pelliccione et al. « Providing Architec-
tural Languages and Tools Interoperability through Model Transfor-
mation Technologies ». Dans : Software Engineering, IEEE Transactions
on36.1 (jan. 2010), p. 119 —14@loi : 10.1109/TSE.2009.51 .

K. M ens, T. Menset M. Wermelinger . « Supporting unanticipated soft-
ware evolution through intentional software views ». Dans : ECOOP
2002 Workshop on Unanticipated Software Evolutiaf02.

B. Morin , G. Perrouin , P. Lahire et al. « Weaving Variability into Do-
main Metamodels ». Dans : Model Driven Engineering Languages and
SystemsEd. par A. Schirr et B. Slic . T. 5795. Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2009, p. 690-705.url
http://dx.doi.org/10.1007/978-3-642-04425-0_56

S. Mosser. « Behavioral Compositions in Service-Oriented Architec-
ture ». These de doct. Université de Nice-Sophia Antipolis, 2010.

K. Nahrstedt et W.-T. Balke. « A taxonomy for multimedia service
composition ». Dans : Proceedings of the 12th annual ACM international
conference on MultimedidNew York, NY, USA : ACM, 2004, p. 88-95.
doi : http://doi.acm.org/10.1145/1027527.1027544 .url : http:
/ldoi.acm.org/10.1145/1027527.1027544

N. F. N oy et M. A. M usen. « PROMPT : Algorithm and Tool for Auto-
mated Ontology Merging and Alignment». Dans : AAAIIAAIL. AAAI
Press/ The MIT Press, 2000, p. 450-455sbn : 0-262-51112-6.

BIBLIOGRAPHY 175

[NSC+07] S. Nejati , M. Sabetzadeh, M. Chechik et al. « Matching and Merging
of Statecharts Speci cations ». Dans :ICSE '07 : Proceedings of the 29th
international conference on Software Engineeril@SE'07. Washington,
DC, USA : IEEE Computer Society, 2007, p. 54—64isbn : 0-7695-2828-7.
doi : http://dx.doi.org/10.1109/ICSE.2007.50

[OMGO01] OMG. Model Driven Architecture (MDA) online. Juil. 2001.url : http:
/lwww.omg.org/cgi-bin/doc?ormsc/2001-07-01

[OMGO07] OMG. Meta Object Facility (MOF) 2.0 Queriiew/Transformation Speci -
cation online. Juil. 2007.url : http://www.omg.org/cgi-bin/doc?
ptc/2007-07-07 .

[OMG104] OMG. MOF Speci cation v.2.4 - Beta .2online. Déc. 2010.url : http:
/Iwww.omg.org/spec/MOF/2.4/Beta2 .

[OMG10Db] OMG. Uml Superstructure Speci cation v2.4 - Beta @nline. Nov. 2010.
url : http://www.omg.org/spec/UML/2.4/

[OMKO09] J. Oldevik , M. Menarini et |. Kriger. « Model Composition Con-
tracts ». Dans : Model Driven Engineering Languages and Systergsl.
par A. Schiirr et B. Slic . T. 5795. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2009, p. 531-545url : http://dx.doi.
0rg/10.1007/978-3-642-04425-0_40

[O007] K. Oliveira etT. de Oliveira . « A Guidance for Model Composition ».
Dans : Software Engineering Advances, 2007. ICSEA 2007. International
Conference ar2007, p. 27doi : 10.1109/ICSEA.2007.5 .

[Opd92] W. F. Opdyke « Refactoring Object-Oriented Frameworks ». Thése
de doct. Champaign, IL, USA : University of lllinois at Urbana-
Champaign, 1992.

[Ovell] Oversity Limited. CiteULike online. Juin 2011. url : http://www.
citeulike.org/home

[Oxf11] Oxford University Press. Oxford Journalsonline. Juin 2011.url : http:
/Ibioinformatics.oxfordjournals.org/

[PB0O9] R. RPottinger et P. Bernstein . « Associativity and Commutativity in
Generic Merge ». Dans : Conceptual Modeling : Foundations and Appli-
cations Ed. par A. Borgida , V. Chaudhri , P. Gorgini et al. T. 5600.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2009,
p. 254-272doi : 10.1007/978-3-642-02463-4_14 . url : http://dx.
doi.org/10.1007/978-3-642-02463-4_14

[PBB+09] G. Perrouin , E. Brottier , B. Baudry et al. « Composing Models for
Detecting Inconsistencies : A Requirements Engineering Perspective ».
Dans : Requirements Engineering : Foundation for Software Qualig. par
M. Glinz et P. Heymans T. 5512. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2009, p. 89-103doi : 10.1007/978-3-

176 BIBLIOGRAPHY

642-02050-6_8. url : http://dx.doi.org/10.1007/978-3-642-
02050-6_8,

[PBC+11] C. Farra , X. Blanc, A. Cleve et al. « Unifying Design and Runtime
Adaptations Using Aspect Models ». Anglais. Dans : Science of Computer
Programming(19 jan. 2011)doi : 10.1016/j.scico.2010.12.005 . url :
http://hal.inria.fr/inria-00564592/en/

[PDCS+01] C. Raredis, A. Diaz-Calderon , R. Snha et al. « Composable Models
for Simulation-Based Design ». Dans : Engineering with Computerd7
(2001), p. 112-128doi : 10.1007/PL0O0007197. url : http://dx.doi.
0rg/10.1007/PL0O0007197 .

[PGP+07] C. Pons, R. Giandini , G. Perez et al. « An Algebraic Approach for
Composing Model Transformations in QVT ». Dans : 4th International
Workshop on Software Language Engineering at the 10th International Con-
ference MoDELS 200°ATEM. Citeseer, 2007.

[PRO4] J. Rrk et S. Ram. « Information systems interoperability : What lies
beneath ? » Dans :ACM Trans. Inf. Syst.22 (4 2004), p. 595-634ssn :
1046-8188.doi : http://doi.acm.org/10.1145/1028099.1028103
url : http://doi.acm.org/10.1145/1028099.1028103

[PRB+09] L. Pedro, M. Risoldi , D. Buchs et al. « Composing Visual Syntax for Do-
main Speci c Languages ». Dans : Human-Computer Interaction. Novel In-
teraction Methods and Techniquésd. par J. &cko. T. 5611. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2009, p. 889-898.
doi : 10.1007/978-3-642-02577-8_97 . url : http://dx.doi.org/10.
1007/978-3-642-02577-8_97 .

[PVSG+08] J. von Rigrim , B. Vanhooff , I. Schulz -Gerlach et al. « Constructing
and Visualizing Transformation Chains ». Dans : Model Driven Archi-
tecture - Foundations and Application&d. par |. Schieferdecker et A.
Hartman . T. 5095. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2008, p. 17-32url : http://dx.doi.org/10.1007/978-
3-540-69100-6_2.

[Par72] D. L. Parnas. « On the criteria to be used in decomposing systems
into modules ». Dans : Commun. ACM15 (12 1972), p. 1053—-105&sn :
0001-0782doi : http://doi.acm.org/10.1145/361598.361623 . url
http://doi.acm.org/10.1145/361598.361623

[Penll] Penn State College of Informationand Technology . CiteSeerX Digital
Library and Search Enginenline. Juin 2011.url : http://citeseerx.
ist.psu.edu/

[RCEO08] J. Ribin, M. Chechik et S. M. Easterbrook . « Declarative approach for

model composition ». Dans : MiSE '08 : Proceedings of the 2008 inter-
national workshop on Models in software engineeribgipzig, Germany :

BIBLIOGRAPHY 177

[RGF+06]

[Resll1]
[SBP+08]

[SEO06]

[SFS-08]

[SJ07]

[SY10]

[Sprl1]

[Sti81]

[TIF+09]

ACM, 2008, p. 7-14.isbn : 978-1-60558-025-&loi : http://doi.acm.
0rg/10.1145/1370731.1370734 .

Y. Reddy, S. Ghosh, R. France et al. « Directives for Composing Aspect-
Oriented Design Class Models ». Dans : Transactions on Aspect-Oriented
Software Development Ed. par A. Rashid et M. Aksit. T. 3880. Lec-
ture Notes in Computer Science. Springer Berlin / Heidelberg, 2006,
p. 75-105.url : http://dx.doi.org/10.1007/11687061_3

Researchr . Researchronline. Juin 2011.url : http://researchr.org/

D. Seinberg , F. Budinsky, M. Paternostro et al. EMF : Eclipse Modeling
Framework (2nd Edition)2008.

M. Sabetzadeh et S. Easterbrook . « View merging in the presence of
incompleteness and inconsistency ». Dans :Requir. Eng.11.3 (2006),
p. 174-193.issn : 0947-3602.doi : http://dx.doi.org/10.1007/
s00766-006-0032-y .

P. Sinchez, L. Fuentes, D. Sein etal. « Aspect-Oriented Model Weaving
Beyond Model Composition and Model Transformation ». Dans: Model
Driven Engineering Languages and Systerfad. par K. Czarnecki , . Ober,
J.-M. Bruel etal. T. 5301. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2008, p. 766—781url : http://dx.doi.org/10.
1007/978-3-540-87875-9_53 .

J. el et J.-M. ¥Ezéquel. « On model typing ». Dans : Software and
Systems Modeling (4 2007), p. 401-413issn : 1619-1366url : http:
//dx.doi.org/10.1007/s10270-006-0036-6

M. Shonle et T. T. Yuen. « Compose & conquer : modularity for end-
users ». Dans :Proceedings of the 32nd AQMEE International Conference
on Software Engineering - Volume. 2CSE '10. New York, NY, USA :
ACM, 2010, p. 191-194doi : http://doi.acm.org/10.1145/1810295.
1810327 url : http://doi.acm.org/10.1145/1810295.1810327

Soringer -Verlag GmhkH. SpringerLink online. Juin 2011.url : http:
Ilwww.springerlink.com/

M. E. Stickel . « A Uni cation Algorithm for Associative-Commutative
Functions ». Dans :J. ACM 28 (3 1981), p. 423—434issn : 0004-5411.
doi : http://doi.acm.org/10.1145/322261.322262 .url :ohttp:
/ldoi.acm.org/10.1145/322261.322262

M. Tisi, F. buault , P. Fraternali et al. « On the Use of Higher-Order
Model Transformations ». Dans : Model Driven Architecture - Foundations
and Applications Ed. par R. Raige, A. Hartman et A. Rensink. T. 5562.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2009,
p. 18-33.url : http://dx.doi.org/10.1007/978-3-642-02674-4_3

178

[TTO8]

[Tae04]

[VAVB +07]

[VV95]

[WJ08]

[WS08]

[Wac07]

[Wag08]

BIBLIOGRAPHY

W. Tansey et E. Tilevich . « Annotation refactoring : inferring upgrade
transformations for legacy applications ». Dans : OOPSLA '08 : Proceed-
ings of the 23rd ACM SIGPLAN conference on Object-oriented programming
systems languages and applicatiodashville, TN, USA : ACM, 2008,

p. 295-312.isbn : 978-1-60558-215-3doi : http://doi.acm.org/10.
1145/1449764.1449788.

G. Taentzer . « AGG : A Graph Transformation Environment for Model-

ing and Validation of Software ». Dans : Applications of Graph Transforma-
tions with Industrial Relevance2004, p. 446—-453doi : 10.1007/b98116.
url : http://dx.doi.org/10.1007/b98116

B. Vanhooff , D. Ayed, S. Van Baelen et al. « UniTl : A Uni ed Trans-
formation Infrastructure ». Dans : Model Driven Engineering Languages
and SystemsEd. par G. Engels, B. Opdyke, D. Schmidt et al. T. 4735.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2007,
p. 31-45.url : http://dx.doi.org/10.1007/978-3-540-75209-7_3

MV argas-Vera. « Using Prolog Techniques to Guide Program Compo-
sition ». These de doct. University of Edinburgh, 1995.

J. Whittle et P. Ayaraman . « MATA : A Tool for Aspect-Oriented Mod-
eling Based on Graph Transformation ». Dans : Models in Software Engi-
neering Ed. par H. Giese T. 5002. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2008, p. 16—-27url : http://dx.doi.org/
10.1007/978-3-540-69073-3_3 .

I. Weisenbller et A. Schirr . « Formal De nition of MOF 2.0 Meta-
model Components and Composition ». Dans : Model Driven Engineer-
ing Languages and Systemi&d. par K. Czarnecki , I. Ober, J.-M. Bruel
etal. T. 5301. Lecture Notes in Computer Science. Springer Berlin/ Hei-
delberg, 2008, p. 386—400url : http://dx.doi.org/10.1007/978-3-
540-87875-9_28.

G. Wachsmuth. « Metamodel Adaptation and Model Co-adaptation ».
Dans : ECOOP 2007 - Object-Oriented Programmingd. par E. Ernst .
T. 4609. Lecture Notes in Computer Science. Springer Berlin/ Heidel-
berg, 2007, p. 600-624url : http://dx.doi.org/10.1007/978-3-
540-73589-2_28.

D. Wagelaar . « Composition Techniques for Rule-Based Model Trans-
formation Languages ». Dans : Proceedings of the 1st international confer-
ence on Theory and Practice of Model Transformations (ICMT'8&Ylin,
Heidelberg : Springer-Verlag, 2008, p. 152-167doi : http://dx.doi.
0rg/10.1007/978-3-540-69927-9_11 .url : http://dx.doi.org/10.
1007/978-3-540-69927-9_11 .

BIBLIOGRAPHY 179

[XLH +07]

[2C07]

[ZDDO6]

[ZLLO9]

Y. Xiong, D. Liu, Z. Hu et al. « Towards automatic model synchroniza-

tion from model transformations ». Dans : Proceedings of the twenty-
second IEEEACM international conference on Automated software engineer-
ing. ASE '07. Atlanta, Georgia, USA : ACM, 2007, p. 164-173isbn : 978-
1-59593-882-4doi : http://doi.acm.org/10.1145/1321631.1321657

url : http://doi.acm.org/10.1145/1321631.1321657

J. Zhang et B. Cheng. « Towards Re-engineering Legacy Systems for
Assured Dynamic Adaptation ». Dans : Modeling in Software Engineering,
2007. MISE '07 : ICSE Workshop 2007. International Workshop 2007,
p. 10.doi : 10.1109/MISE.2007.14 .

A.Z ito, Z. Diskin et J. Dingel . « Package Merge in UML 2 : Practice vs.
Theory ? » Dans :Model Driven Engineering Languages and Systef&d.
par O. Nierstrasz , J. Whittle , D. Harel etal. T. 4199. Lecture Notes in
Computer Science. Springer Berlin/ Heidelberg, 2006, p. 185-199url :
http://dx.doi.org/10.1007/11880240_14

D. Z hang, S. Li et X. Liu. « An Approach for Model Composition and
Veri cation». Dans: INC, IMSandIDC, 2009. NCM '09. Fifth International
Joint Conference 02009, p. 1102 —110#oi : 10.1109/NCM.2009.271

180 BIBLIOGRAPHY

List of gures

11
1.2
1.3
1.4
15
1.6

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

lllustration of the process followed in Chapter1
Levels of Abstraction in Model-Driven Engineering
Intuitive classi cation of correspondences
Intuitive classi cation of interpretations.
Template protocol proposed by Biolchini for systematic reviews.

Distribution of articles with respect to the type of correspondences.

Moving from monolithic techniques to techniques on-demand
A simpli ed representationofasign
In uence of the goal on a speci ¢ model composition operator
Re nement of a pair of a mapping and an interpretation

TheBankmodel. e
TheBLP model.
Intuitive relationships of overlap between the Bank and BLP models
Intuitive process for building a model composition framework for model
MErgiNG. . .« . ot e e e e e e
Result of merging the Bank model with the BLP model
Process of building a problem—speci ¢ model composition framework
ModMap meta—model
Mapping Concern of the ModMap language
Strategy Concern of the ModMap language
Directives Concern of the ModMap language
Model of mappings between the Bank model and the BLP model

A package merge example adapted from [ZDDO0O6]
An example of the blp model adapted from [FFR +07]
An example of the bank model adapted from [FFR+07]
Composition of the Bank model and the BLP model from [FFR +07] . . .
Statecharts of the call logger feature variants from [NSC+07]
The CaptureWitnessRecord work ow from [MBFF10]
The RequestVideo fragment from [MBFF10]
The FakeCrisis fragment from [MBFF10]
CaptureWitnessRecord work ow augmented with the RequestVideo
and the FakeCrisis fragments [MBFF10]

181

182

4.10
411
412
4.13
4.14
4.15
4.16
417
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34

LIST OF FIGURES

Customization of the Generic Process for Model Merging 122
Subset of the ModMap language for Model Merge 122
Speci cation of the UML Package Merge mapping at the meta—class level 123
Speci cation of the Kompose mappings at the meta—class level 123
Speci cation of the Statecharts Merge mappings at the meta—class level. 124
Speci cation of the ADORE Merge mappings at the meta—class level . . 125
Technicolor Management Architecture 130
Model Integration Process e 131
Customization of the generic process for model integration 132
Subset of the ModMap language for Model Integration 133
Model of the MTEP APL. e 134
Model ofthe XMS APIL. 134
Model of mappings for the integration of the MTEP and XMS API. . . . 135
Distribution of JavaMappings e 138
Distribution of ModMap Mappings 138
Ratio of strategy types used to map the MTEP and the XMS API. 138
Cumulative e ort for the production of new versions of adapters 139
Textual Scenario of Use Case #2 : “Capture Witness Report” 142
Initial model artifacts, proposed by experts. 144
SOA Models Synchronization : Process Overview 145
Merged model : CDp (white) CD;(gray) 146
Customization of the generic process for model synchronization. 149
Subset of the ModMap language for Model Synchronization 150
Model of mappings for the synchronization of the BPM and the CD p. . . 150

Aligned models resulting from the propagation of the resolution strategies. 154

1.1 MOF core metamodel 160

List of tables

11
1.2
13
1.4

15

1.6
1.7
1.8
1.9

4.1

Full list of selected articles 28
Precision of the correspondences 50
Accuracy of the categories of interpretations 52
Distribution of articles for correspondences and overlapping interpre-

tations e 55
Distribution of articles with regard to the type of correspondence and

the cross-cutting and interaction interpretations 57
Distribution of articles for correspondences and design activities 59
Distribution of articles for correspondences and veri cation activities . . 60
Ditribution of articles for correspondences and evolution activites . . . 60
Comparison of existing generic model composition frameworks (GCFs) 66
E ort for manual and generative production of a new adapter 139

183

VU : VU :

Le Directeur de Thése Le Responsable de L'Ecole Doctorale
(Nom et Prénom)

VU pour autorisation de soutenance
Rennes, le

Le Président de I'Université de Rennes 1

Guy CATHELINEAU

VU apres soutenance pour autorisation de publication :

Le Président de Jury,
(Nom et Prénom)

Résumé

L'Ingénierie Dirigée par les Modéles (IDM) est basée sur le principe d'abstraction
et de séparation des préoccupations pour gérer la complexité du développement de
logiciels. Les ingénieurs s'appuient sur des modéles dédiées a la résolution d'un prob-
léme particulier. Dans le cadre de I''DM, la composition de modéles est un domaine de
recherche trés actif qui vise a automatiser les taches de recomposition des modéles. La
gquasi-inexistence de consensus pour comparer les techniques existantes entraine une
explosion de I'e ort nécessaire pour produire de nouveaux outils spéci ques a partir
de techniques existantes.

La contribution principale de cette thése est de proposer une dé nition originale de
la composition de modéles comme étant une paire correspondance-interprétation. A
partir de cette dé nition, nous proposons un cadre théorique qui (1) uni e les représen-
tations des techniques de composition existantes et qui (2) automatise le développe-
ment d'outils de composition de modéles. La contribution principale s'appuie sur deux
sous-contributions supplémentaires :

— Nous proposons des catégories pour classer les techniques de correspondance et

les interprétations existantes.

— Nous proposons un langage de modélisation spéci que pour la dé nition de

correspondances génériques entre modeéles et la dé nition d'interprétations.

Un prototype logiciel a été développé et utilisé dans le cadre du projet MOPCOM-
| du pble de compétitivité Images & Réseaux de la région Bretagne. La validation
de la contribution a été démontrée sur un cas d'étude proposé par Technicolor pour
I'intégration de librairies existantes dédiées a la gestion d'équipements numériques de
di usion vidéo.

Abstract

Model-Driven Engineering (MDE) is a software development methodology that relies
on the Separation of Concerns (SoC) and Abstraction principles to deal with complex-
ity. Thinking in terms of higher levels of abstraction and building dedicated models
to address speci ¢ concerns allow decomposing a problem into more manageable
subproblems. Within the framework of MDE, model composition is an active eld
of research that focuses on automating the composition of model-based artifacts in a
multi-modeling environment. However the lack of a common formalism for compar-
ing existing approaches hinders their adaptation and reuse for building new model
composition techniques. The main contribution of this thesis is to propose a novel
de nition of model composition as a pair of a mapping and an interpretation. This
de nition paves the way to a theoretical framework that (1) uni es existing represen-
tations of model composition techniques and (2) automates the process of building
model composition tools. The main contribution is supported by two subsidiaries
propositions : - We propose categories to classify existing mapping techniques and
existing model composition interpretations. - We de ne a language that supports the
de nition of generic mappings among models and the de nition of interpretations. We
validate the contribution through two experiments : (1) a systematic literature review
validates the proposed categories for mappings and interpretations; (2) a prototype
that supports the model composition approach has been tested on an industrial case
study from Technicolor about the composition of legacy APIs for the management of
heterogeneous video and broadcasting equipments.

	Introduction

