T. Memoire and M. , 89 3.1. Introduction, ., p.93

.. Intégration-des-jonctions-au-sein-d-'une-architecture-microélectronique, Qualification des empilements avec une barrière thermique supérieure, ., p.125

.. Complexe-cutcnq, 135 1.3. Vers l'intégration du complexe CuTCNQ dans des éléments mémoires, p.140

.. Mise-en-Évidence-d-'une-couche-d-'oxyde-interfaciale, 158 3.1.1. Nanocristaux de CuTCNQ recouverts d'une électrode d'aluminium 158 3.1.2. Films denses de CuTCNQ recouverts d'une électrode d'aluminium, p.161

U. Böttger and S. R. Summerfelt, « Ferroelectric random access memories », Nanoelectronics and Information Technology, p.565, 2003.

C. Chappert, A. Fert, L. «-spintronique-courtade, C. Turquat, C. Muller et al., le spin s'invite en électronique », Images de la Physique, Edition du CNRS, Microstructure and resistance switching in NiO binary oxide films obtained from Ni oxidation », IEEE Proc. of Non-Volatile Memory Technology Symposium, pp.192-94, 2005.

L. Courtade, C. Turquat, C. Muller, J. G. Lisoni, L. Goux et al., Improvement of resistance switching characteristics in NiO films obtained from controlled Ni oxidation, 2007 Non-Volatile Memory Technology Symposium, p.1, 2007.
DOI : 10.1109/NVMT.2007.4389934

L. Courtade, C. Turquat, J. G. Lisoni, L. Goux, D. J. Wouters et al., Integration of resistive switching NiO in small via structures from localized oxidation of nickel metallic layer, ESSDERC 2008, 38th European Solid-State Device Research Conference, p.218, 2008.
DOI : 10.1109/ESSDERC.2008.4681737

K. Kim and J. Choi, Future Outlook of NAND Flash Technology for 40nm Node and Beyond, 2006 21st IEEE Non-Volatile Semiconductor Memory Workshop, p.9, 2006.
DOI : 10.1109/.2006.1629474

M. N. Kozicki, M. Park, and M. Mitkova, Nanoscale Memory Elements Based on Solid-State Electrolytes, IEEE Transactions On Nanotechnology, vol.4, issue.3, p.331, 2005.
DOI : 10.1109/TNANO.2005.846936

C. Muller, Technologies mémoires émergentes : panorama et perspectives », L'actualité Composants du CNES, 2008.

J. P. Nozières and . Magnetic, A truly universal memory ?, spintec.fr/Magnetic-Random-Access-Memories-M.html [Ovs68] Ovshinsky S.R., « Reversible Electrical Switching Phenomena in Disordered Structures, p.1450, 1968.

R. S. Potember, T. O. Poehler, and D. O. Cowan, Electrical switching and memory phenomena in Cu???TCNQ thin films, Applied Physics Letters, vol.34, issue.6, p.405, 1979.
DOI : 10.1063/1.90814

I. L. Prejbeanu, W. Kula, K. Ounadjela, R. C. Sousa, O. Redon et al., Thermally Assisted Switching in Exchange-Biased Storage Layer Magnetic Tunnel Junctions, IEEE Transactions on Magnetics, vol.40, issue.4, p.2625, 2004.
DOI : 10.1109/TMAG.2004.830395

S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y. C. Chen et al., Phase-change random access memory: A scalable technology, IBM Journal of Research and Development, vol.52, issue.4.5, p.465, 2008.
DOI : 10.1147/rd.524.0465

R. C. Sousa, M. Kerekes, I. L. Prejbeanu, O. Redon, B. Dieny et al., Crossover in heating regimes of thermally assisted magnetic memories, Journal of Applied Physics, vol.99, issue.8, pp.8-904, 2006.
DOI : 10.1063/1.2165581

M. Thomas, D. Deleruyelle, T. Kever, A. Demolliens, C. Turquat et al., From micrometric to nanometric scale switching of CuTCNQ-based non-volatile memory structures, 2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS), p.1, 2008.
DOI : 10.1109/NVMT.2008.4731190

C. Turquat, A. Demolliens, J. Razafindramora, A. Merlen, J. C. Valmalette et al., Resistance switching of CuTCNQ nanowires developed for high-density memory devices, 2007 Non-Volatile Memory Technology Symposium, p.45, 2007.
DOI : 10.1109/NVMT.2007.4389943

G. Bossu, P. Mazoyer, P. Masson, and . Sqeram, une mémoire embarquée quasi-non-volatile à faible tension d'alimentation, 2008.

G. Bossu, Architectures innovantes de mémoires non volatiles embarquées, Thèse de l, 2009.

C. Woo-oh, S. H. Kim, N. Y. Kim, Y. L. Choi, Y. S. Lee et al., Byung-Il Ryu, « A Novel Multi-Functional Silicon-On-ONO (SOONO) MOSFETs for SoC Applications: Electrical Characterization for High Performance Transistor and Embedded Memory Applications, IEEE Proc. of VLSI Technology, p.48, 2006.

R. Ranica, A. Villaret, P. Mazoyer, S. Monfray, D. Chanemougame et al., A New 40-nm SONOS Structure Based on Backside Trapping for Nanoscale Memories, A new 40nm SONOS Structure Based on Back side trapping for Nanoscale Memories, p.581, 2005.
DOI : 10.1109/TNANO.2005.851416

J. Y. Wu, M. Kuo, T. Hsu, K. Chen, Y. Chen et al., « A NAND type Flash memory using impact ionization generated substrata hot electron programming (>20Mb/s) and hot hole erasing, IEEE Proc. of Int. Electron Devices Meeting, 2007.

W. H. Butler, X. Zhang, T. C. Schulthess, and J. M. Maclaren, sandwiches, Physical Review B, vol.63, issue.5, p.54416, 2001.
DOI : 10.1103/PhysRevB.63.054416

S. Cardoso, R. Ferreira, F. Silva, P. P. Freitas, L. V. Melo et al., Double-barrier magnetic tunnel junctions with GeSbTe thermal barriers for improved thermally assisted magnetoresistive random access memory cells, Journal of Applied Physics, vol.99, issue.8, pp.8-901, 2006.
DOI : 10.1063/1.2162813

C. Chappert, A. Fert, and . Spintronique, le spin s'invite en électronique », Images de la Physique, Edition du CNRS « Transmission electron microscopy study on the polycrystalline CoFeB/MgO/CoFeB based magnetic tunnel junction showing a high tunneling magnetoresistance, predicted in single crystal magnetic tunnel junction, www.cnrs.fr/publications, p.13907, 2004.

Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula et al., Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory, Journal of Physics: Condensed Matter, vol.19, issue.16, p.165209, 2007.
DOI : 10.1088/0953-8984/19/16/165209

N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, « 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions, Appl. Phys. Lett, vol.86, p.92502, 2005.

J. Hayakawa, S. Ikeda, F. Matsukura, H. Takahashi, and H. Ohno, Dependence of Giant Tunnel Magnetoresistance of Sputtered CoFeB/MgO/CoFeB Magnetic Tunnel Junctions on MgO Barrier Thickness and Annealing Temperature, Japanese Journal of Applied Physics, vol.44, issue.No. 19, p.587, 2005.
DOI : 10.1143/JJAP.44.L587

M. Jullière, Tunneling between ferromagnetic films, Physics Letters A, vol.54, issue.3, p.225, 1975.
DOI : 10.1016/0375-9601(75)90174-7

K. S. Kim, B. K. Cho, and T. W. Kim, Switching and reliability issues of magnetic tunnel junctions for high-density memory device, Current Applied Physics, vol.6, issue.1, p.86, 2006.
DOI : 10.1016/j.cap.2006.01.018

J. Mathon and A. Umerski, Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction, Physical Review B, vol.63, issue.22, p.220403, 2001.
DOI : 10.1103/PhysRevB.63.220403

J. S. Moodera, L. R. Kinder, T. M. Wong, R. Meservey, and . Large, Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions, Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions Junctions, p.3273, 1995.
DOI : 10.1103/PhysRevLett.74.3273

J. Nogués, I. K. Schuller, J. Magn, and . Exchange, Exchange bias, Journal of Magnetism and Magnetic Materials, vol.192, issue.2, p.203, 1999.
DOI : 10.1016/S0304-8853(98)00266-2

T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, and H. Hashimoto, Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase, Crystal structure of GeTe and Ge 2 Sb 2 Te 5 meta-stable phase, p.258, 2000.
DOI : 10.1016/S0040-6090(99)01090-1

J. P. Nozières, C. Park, Y. H. Wang, D. E. Laughlin, J. G. Zhu et al., A truly universal memory ? « Effect of Adjacent Layers on Crystallization and Magnetoresistance in CoFeB/MgO/CoFeB Magnetic Tunnel Junction, Magnetic Random Access Memoriesspintec.fr/Magnetic-Random-Access-Memories-M.html [Par06] Annealing effects on structural and transport properties of RF-sputtered CoFeB/MgO/CoFeB magnetic tunnel junctions, pp.8-901, 2005.

D. A. Porter and K. E. Easterling, « Phase Transformations in Metals and Alloys, 1992.
DOI : 10.1007/978-1-4899-3051-4

I. L. Prejbeanu, W. Kula, K. Ounadjela, R. C. Sousa, O. Redon et al., Thermally Assisted Switching in Exchange-Biased Storage Layer Magnetic Tunnel Junctions, Thermally Assisted Switching in Exchange-Biased Storage Layer Magnetic Tunnel Junctions, p.2625, 2004.
DOI : 10.1109/TMAG.2004.830395

W. Shen, D. Mazumdar, X. Zou, X. Liu, B. D. Schrag et al., Effect of film roughness in MgO-based magnetic tunnel junctions, Applied Physics Letters, vol.88, issue.18, p.182508, 2006.
DOI : 10.1063/1.2201547

E. Snoeck, P. Baules, G. Benassayag, C. Tiusan, F. Greullet et al., Modulation of interlayer exchange coupling by ion irradiation in magnetic tunnel junctions, Journal of Physics: Condensed Matter, vol.20, issue.5, p.55219, 2008.
DOI : 10.1088/0953-8984/20/5/055219

R. C. Sousa and I. L. Prejbeanu, Non-volatile magnetic random access memories (MRAM), Comptes Rendus Physique, vol.6, issue.9, p.1013, 2005.
DOI : 10.1016/j.crhy.2005.10.007

R. C. Sousa, M. Kerekes, I. L. Prejbeanu, O. Redon, B. Dieny et al., Crossover in heating regimes of thermally assisted magnetic memories, Journal of Applied Physics, vol.99, issue.8, pp.8-904, 2006.
DOI : 10.1063/1.2165581

T. Takeuchi, K. Tsunekawa, Y. S. Choi, Y. Nagamine, D. D. Djayaprawira et al., Crystallization of Amorphous CoFeB Ferromagnetic Layers in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions, Crystallization of Amorphous CoFeB Ferromagnetic Layers in CoFeB/MgO/CoFeB Magnetic Tunnel Junctions, p.623, 2007.
DOI : 10.1143/JJAP.46.L623

A. Thomas, V. Drewello, M. Schäfers, A. Weddemann, G. Reiss et al., Direct imaging of the structural change generated by dielectric breakdown in MgO based magnetic tunnel junctions, Direct imaging of the structural change generated by dielectric breakdown in MgO based magnetic tunnel junctions, p.152508, 2008.
DOI : 10.1063/1.3001934

D. C. Worledge and P. L. Trouilloud, Magnetoresistance measurement of unpatterned magnetic tunnel junction wafers by current-in-plane tunneling, Applied Physics Letters, vol.83, issue.1
DOI : 10.1063/1.1590740

S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nature Materials, vol.34, issue.12, p.868, 2004.
DOI : 10.1126/science.1071300

X. G. Zhang and W. H. Butler, tunnel junctions, Physical Review B, vol.70, issue.17, p.172407, 2004.
DOI : 10.1103/PhysRevB.70.172407

J. Billen, S. Steudel, R. Müller, J. Genoe, and P. Heremans, A comprehensive model for bipolar electrical switching of CuTCNQ memories, Applied Physics Letters, vol.91, issue.26, pp.263507-263508, 2007.
DOI : 10.1063/1.2827590

G. Cao, C. Ye, F. Fang, X. Xing, H. Xu et al., Scanning electron microscopy investigation of Cu???TCNQ micro/nanostructures synthesized via vapor-induced reaction method, Micron, vol.36, issue.3, p.267, 2005.
DOI : 10.1016/j.micron.2004.12.006

Z. Fan, X. Mo, G. Chen, and J. Lu, « Synthesis morphology and electrical characterization of Ag-TCNQ -from thin films to nanowires », Rev, Adv. Mater. Sci, vol.5, p.72, 2003.

A. Hefczyc, L. Beckmann, E. Becker, H. Johannes, and W. Kowalsky, Contact effects in Cu(TCNQ) memory devices, Contact effects in Cu(TCNQ) memory devices, p.647, 2008.
DOI : 10.1002/pssa.200723418

R. A. Heintz, H. Zhao, X. Ouyang, G. Grandinetti, J. Cowen et al., New Insight into the Nature of Cu(TCNQ):?? Solution Routes to Two Distinct Polymorphs and Their Relationship to Crystalline Films That Display Bistable Switching Behavior, Inorganic Chemistry, vol.38, issue.1, p.144, 1999.
DOI : 10.1021/ic9812095

J. J. Hoagland, X. D. Wang, and K. W. Hipps, Characterization of Cu-CuTCNQ-M devices using scanning electron microscopy and scanning tunneling microscopy, Chemistry of Materials, vol.5, issue.1, p.54, 1993.
DOI : 10.1021/cm00025a013

E. I. Kamitsos, C. H. Tzinis, W. M. Risen, and . Raman, Raman study of the mechanism of electrical switching in Cu TCNQ films, Mechanism of Electrical Switching in CuTCNQ Films, p.561, 1982.
DOI : 10.1016/0038-1098(82)90608-1

T. Kever, C. Nauenheim, U. Böttger, and R. Waser, Preparation and characterisation of amorphous Cu:7,7,8,8-Tetracyanoquinodimethane thin films with low surface roughness via thermal co-deposition, Thin Solid Films, vol.515, issue.4, p.1893, 2006.
DOI : 10.1016/j.tsf.2006.07.028

T. Kever, U. Böttger, C. Schindler, and R. Waser, On the origin of bistable resistive switching in metal organic charge transfer complex memory cells, Applied Physics Letters, vol.91, issue.8
DOI : 10.1063/1.2772191

S. G. Liu, Y. Q. Liu, P. J. Wu, and D. B. Zhu, Multifaceted Study of CuTCNQ Thin-Film Materials. Fabrication, Morphology, and Spectral and Electrical Switching Properties, Chemistry of Materials, vol.8, issue.12, p.2779, 1996.
DOI : 10.1021/cm9602656

Y. Liu, Z. Ji, Q. Tang, L. Jiang, H. Li et al., Particle-Size Control and Patterning of a Charge-Transfer Complex for Nanoelectronics, Particle-Size Control and Patterning of a Charge-Transfer Complex for Nanoelectronics, p.2953, 2005.
DOI : 10.1002/adma.200500809

H. Liu, Q. Zhao, Y. Li, Y. Liu, F. Lu et al., Field Emission Properties of Large-Area Nanowires of Organic Charge-Transfer Complexes, Journal of the American Chemical Society, vol.127, issue.4, p.1120, 2005.
DOI : 10.1021/ja0438359

R. Müller, S. De-jonge, K. Myny, D. J. Wouters, J. Genoe et al., « Organic CuTCNQ non-volatile memories for integration in the CMOS backend-ofline: Preparation from gas/solid reaction and downscaling to an area of 0, Solid-State Electron, vol.25, issue.50 4, p.601, 2006.

R. Müller, S. De-jonge, K. Myny, D. J. Wouters, J. Genoe et al., Organic CuTCNQ integrated in complementary metal oxide semiconductor copper back end-of-line for nonvolatile memories, Applied Physics Letters, vol.89, issue.22, pp.223501-223502, 2006.
DOI : 10.1063/1.2388883

R. Müller, J. Genoe, P. Heremans, /. Cu, and . Cutcnq, Nonvolatile Cu???CuTCNQ???Al memory prepared by current controlled oxidation of a Cu anode in LiTCNQ saturated acetonitrile, Applied Physics Letters, vol.88, issue.24, pp.242105-242106, 2006.
DOI : 10.1063/1.2213971

R. Müller and J. Genoe, « Method and solution for growing a charge-_transfer complex salt onto a metal surface, 2008.

A. K. Neufeld, I. Madsen, A. M. Bond, and C. F. Hogan, Phase, Morphology, and Particle Size Changes Associated with the Solid???Solid Electrochemical Interconversion of TCNQ and Semiconducting CuTCNQ (TCNQ = Tetracyanoquinodimethane), Chemistry of Materials, vol.15, issue.19, p.3573, 2003.
DOI : 10.1021/cm0341336

T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe, and C. Adachi, Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition, Applied Physics Letters, vol.83, issue.6, p.1252, 2003.
DOI : 10.1063/1.1600848

R. S. Potember, T. O. Poehler, and D. O. Cowan, Electrical switching and memory phenomena in Cu???TCNQ thin films, Applied Physics Letters, vol.34, issue.6, p.405, 1979.
DOI : 10.1063/1.90814

C. Sato, S. Wakamatsu, K. Tadokoro, and K. Ishii, Polarized memory effect in the device including the organic charge???transfer complex, copper???tetracyanoquinodimethane, Journal of Applied Physics, vol.68, issue.12, p.6535, 1990.
DOI : 10.1063/1.346832

S. Sun, P. Wu, and D. Zhu, The preparation, characterization of amorphous Cu???TCNQ film with a low degree of charge-transfer (DCT) and its electric switching properties, Thin Solid Films, vol.301, issue.1-2, p.192, 1997.
DOI : 10.1016/S0040-6090(96)09571-5

S. Sun, X. Xu, P. Wu, and D. Zhu, « Characterization and electrical switching properties of Cu-tetracyanoquinodimethane films formed under different conditions, Journal of Materials Science Letters, vol.17, issue.9, p.719, 1998.
DOI : 10.1023/A:1006642307750

M. Tamada and H. Omichi, Direct formation of CuTCNQ complex salts with dual deposition, Thin Solid Films, vol.247, issue.2, p.148, 1994.
DOI : 10.1016/0040-6090(94)90791-9

M. Thomas, A. Demolliens, T. Ch, D. Deleruyelle, . Muller-ch et al., « From micrometric to nanometric scale switching of CuTCNQbased non-volatile memory structures, IEEE Proc. of Non-Volatile Memory Technology Symposium, p.1, 2008.

T. Ch, A. Demolliens, J. Razafindramora, A. Merlen, J. Valmalette et al., « Resistance switching of CuTCNQ nanowires developed for high-density memory devices, IEEE Proc. of Non-Volatile Memory Technology Symposium, p.1, 2007.

K. Xiao, I. Ivanov, A. Puretzky, Z. Liu, and D. Geohegan, Directed Integration of Tetracyanoquinodimethane-Cu Organic Nanowires into Prefabricated Device Architectures, Directed Integration of Tetracyanoquinodimethane-Cu Organic Nanowires into Prefabricated Device Architectures, p.2184, 2006.
DOI : 10.1002/adma.200600621

A. Demolliens, . Muller-ch, D. Deleruyelle, S. Spiga, E. Cianci et al., Reliability of NiO-Based Resistive Switching Memory (ReRAM) Elements with Pillar W Bottom Electrode, 2009 IEEE International Memory Workshop, pp.25-27, 2009.
DOI : 10.1109/IMW.2009.5090606

M. Thomas, D. Deleruyelle, T. Kever, A. Demolliens, T. Ch et al., From micrometric to nanometric scale switching of CuTCNQ-based non-volatile memory structures, 2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS), pp.1-4, 2008.
DOI : 10.1109/NVMT.2008.4731190

T. Ch, A. Demolliens, J. Razafindramora, A. Merlen, J. Valmalette et al., « Resistance switching of CuTCNQ nanowires developed for high-density memory devices, IEEE Proc. of Non-Volatile Memory Technology Symposium, pp.45-48, 2007.

C. Dumas, D. Deleruyelle, G. Micolau, A. Demolliens, . Muller-ch et al., « Performances of resistive switching NiO films deposited on top of W or Cu pillar bottom electrode, 10 th annual Non Volatile Memory Technology Symposium, 2009.

A. Demolliens, . Muller-ch, D. Deleruyelle, S. Spiga, E. Cianci et al., Reliability of NiO-Based Resistive Switching Memory (ReRAM) Elements with Pillar W Bottom Electrode, 2009 IEEE International Memory Workshop, 2009.
DOI : 10.1109/IMW.2009.5090606

S. Spiga, A. Lamperti, E. Cianci, G. Tallarida, F. Volpe et al., « Engineering of electrode materials for NiO resistive switching non volatile memories, Symposium H "Materials and Physics for Nonvolatile Memories, 2009.

M. Thomas, D. Deleruyelle, T. Kever, A. Demolliens, T. Ch et al., From micrometric to nanometric scale switching of CuTCNQ-based non-volatile memory structures, 2008 9th Annual Non-Volatile Memory Technology Symposium (NVMTS), 2008.
DOI : 10.1109/NVMT.2008.4731190

M. Thomas, D. Deleruyelle, T. Kever, A. Demolliens, T. Ch et al., « Resistive switching in CuTCNQ-based non-volatile memory structures, Innovative Mass-Storage Technologies, 2008.

L. Courtade, A. Demolliens, T. Ch, D. Goguenheim, C. Ducruet et al., Metrology and reliability of tunnel junctions developed for thermally assisted magnetic memories », 10 th technical and scientific meeting ARCSIS on "Yield and reliability: challenges and process improvements, 2007.

A. Demolliens, T. Ch, L. Fares, G. Haller, and M. Ch, « Ultra thin layers metrology by transmission electron microscopy », 10 th technical and scientific meeting ARCSIS on "Yield and reliability: challenges and process improvements, 2007.

L. Courtade, A. Demolliens, T. Ch, . Muller-ch, D. Goguenheim et al., « Reliability of tunnel junctions developed for thermally assisted magnetic memories, th annual Non Volatile Memory Technology Symposium, 2007.

T. Ch, A. Demolliens, A. Merlen, . J-ch, M. Valmalette et al., « Microstructure and switching characteristics of CuTCNQ nanowires developed for high-density memory devices, th annual Non Volatile Memory Technology Symposium, 2007.

T. Ch, A. Demolliens, R. Müller, L. Goux, D. J. Wouters et al., 8,8'-tetracyanoquinodimethane as memory material for resistive switching memories, 2007.

A. Demolliens, T. Ch, L. Fares, G. Haller, and M. Ch, Evaluation de techniques de microscopie électronique en transmission pour l'analyse de couches ultra-minces pour la microélectronique, Présentations par poster dans des conférences nationales JNRDM, Journées Nationales du Réseau Doctoral en Microélectronique, 2008.

A. Demolliens, L. Courtade, T. Ch, L. Farès, G. Haller et al., Analyse de défaillance de mémoires non volatiles : Influence de la préparation d'échantillons sur les observations en microscopie électronique en transmission, èmes Rencontres Technologiques Matériaux Innovants et Procédés Associés, 2006.