N. Woychik and M. Hampsey, The RNA Polymerase II Machinery, Cell, vol.108, issue.4, pp.453-463, 2002.
DOI : 10.1016/S0092-8674(02)00646-3

J. E. Butler and J. T. Kadonaga, Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs, Genes & Development, vol.15, issue.19, pp.2515-2519, 2001.
DOI : 10.1101/gad.924301

G. Stormo, DNA binding sites: representation and discovery, Bioinformatics, vol.16, issue.1, pp.16-23, 2000.
DOI : 10.1093/bioinformatics/16.1.16

D. , G. And, and . Schmitz, DNAse footprinting : a simple method for the detection of protein-DNA binding specificity, Nucleic Acids Research, vol.5, issue.9, pp.3157-3170, 1978.

A. Gilbert, A new method for sequencing DNA, Proceedings of the National Academy of Sciences of the United States of America, vol.74, issue.2, pp.560-564, 1977.

R. Stoltenburg, C. Reinemann, and A. B. Strehlitz, SELEX???A (r)evolutionary method to generate high-affinity nucleic acid ligands, Biomolecular Engineering, vol.24, issue.4, pp.381-403, 2003.
DOI : 10.1016/j.bioeng.2007.06.001

J. Wang, J. Lu, G. Gu, and A. Y. Liu, In vitro DNA-binding profile of transcription factors: methods and new insights, Journal of Endocrinology, vol.210, issue.1, pp.15-27, 2005.
DOI : 10.1530/JOE-11-0010

X. Meng, M. H. Brodsky, A. A. Scot, and . Wolfe, A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors, Nature Biotechnology, vol.18, issue.8, pp.988-994, 2005.
DOI : 10.1007/BF00291041

X. Meng, . A. Scot, and . Wolfe, Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system, Nature Protocols, vol.14, issue.1, pp.30-45, 2005.
DOI : 10.1038/nprot.2006.6

M. L. Bulyk, Discovering DNA regulatory elements with bacteria, Nature Biotechnology, vol.270, issue.8, pp.942-944, 2005.
DOI : 10.1101/gr.2584104

M. J. Buck and J. D. Lieb, ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments, Genomics, vol.83, issue.3, pp.349-360, 2004.
DOI : 10.1016/j.ygeno.2003.11.004

D. ?tanojevi´c?tanojevi´-?tanojevi´c, T. Hoey, M. And, and . Levine, Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Kr??ppel in Drosophila, Nature, vol.341, issue.6240, pp.331-335, 1989.
DOI : 10.1038/341331a0

P. Bucher and B. Bryan, Signal search analysis: a new method to localize and characterize functionally important DNA sequences, Nucleic Acids Research, vol.12, issue.1Part1, pp.287-305, 1984.
DOI : 10.1093/nar/12.1Part1.287

R. Staden, Computer methods to locate signals in nucleic acid sequences, Nucleic Acids Research, vol.12, issue.1Part2, 1984.
DOI : 10.1093/nar/12.1Part2.505

G. B. Ehret, P. Reichenbach, U. Schindler, C. M. Horvath, S. Fritz et al., DNA Binding Specificity of Different STAT Proteins. COMPARISON OF IN VITRO SPECIFICITY WITH NATURAL TARGET SITES, Journal of Biological Chemistry, vol.276, issue.9, pp.6675-88, 2001.
DOI : 10.1074/jbc.M001748200

W. Mcmorris, Critical comparison of consensus methods for molecular sequences, Nucleic Acids Research, vol.20, issue.6, pp.1093-1099, 1992.

G. E. Crooks, G. Hon, J. Chandonia, A. Ste-ven-e, and . Brenner, WebLogo: A Sequence Logo Generator, Genome Research, vol.14, issue.6, pp.1188-1190, 2004.
DOI : 10.1101/gr.849004

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC419797

T. Stephens, Sequence logos : a new way to display consensus sequences, Nucleic Acids Research, vol.18, issue.20, pp.6097-6100, 1990.

G. Stormo, Identifying DNA and protein patterns with statistically significant alignments of multiple sequences, Bioinformatics, vol.15, issue.78, pp.563-577, 1999.

T. L. Bailey, M. Boden, F. A. Buske, M. Frith, C. E. Grant et al., MEME SUITE: tools for motif discovery and searching, Nucleic Acids Research, vol.37, issue.Web Server, pp.202-208, 2009.
DOI : 10.1093/nar/gkp335

G. Hertz, G. W. Hartzell, and A. G. Stormo, Identification of consensus patterns in unaligned DNA sequences known to be functionally related, Bioinformatics, vol.6, issue.2, pp.81-92, 1990.
DOI : 10.1093/bioinformatics/6.2.81

M. Defrance, A. J. Van, and . Helden, info-gibbs: a motif discovery algorithm that directly optimizes information content during sampling, Bioinformatics, vol.25, issue.20, pp.2715-2722, 2009.
DOI : 10.1093/bioinformatics/btp490

G. Thijs, K. Marchal, M. Lescot, S. R. , B. De-moor et al., A Gibbs Sampling Method to Detect Overrepresented Motifs in the Upstream Regions of Coexpressed Genes, Journal of Computational Biology, vol.9, issue.2, pp.447-464, 2002.
DOI : 10.1089/10665270252935566

J. Turatsinze, M. Thomas-chollier, M. Defrance, A. Jacques, and . Van-helden, Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules, Nature Protocols, vol.281, issue.10, pp.1578-88, 2008.
DOI : 10.1038/nprot.2008.97

J. Valery-turatsinze, Développement et évaluation de méthodes bioinformatiques pour la détection de s ´ quences cis-régulatrices impliquées dans le développement de la drosophile. Catalogue des theses electroniques de l ULB, p.19, 2009.

W. W. Wasserman and A. Sandelin, Applied bioinformatics for the identification of regulatory elements, Nature Reviews Genetics, vol.14, issue.4, pp.276-87, 2004.
DOI : 10.1093/bioinformatics/18.9.1272

G. G. Loots, I. Ovcharenko, L. Pachter, I. Dubchak, A. Bradley et al., rVista for Comparative Sequence-Based Discovery of Functional Transcription Factor Binding Sites, Genome Research, vol.12, issue.5, pp.832-839, 2002.
DOI : 10.1101/gr.225502

M. C. Frith and M. C. Li, Cluster-Buster: finding dense clusters of motifs in DNA sequences, Nucleic Acids Research, vol.31, issue.13, pp.313666-3668, 2003.
DOI : 10.1093/nar/gkg540

B. P. Berman, B. D. Pfeiffer, T. R. Laverty, S. Salzberg, G. M. Rubin et al., Computational identification of developmental enhancers : conservation and function of transcription factor bindingsite clusters in Drosophila melanogaster and Drosophila pseudoobscura, Genome Biology, vol.5, issue.9, pp.61-95, 2004.
DOI : 10.1186/gb-2004-5-9-r61

A. A. Philippakis, F. Sherry-he, A. L. Martha, and . Bulyk, REGULATORY MODULES, Biocomputing 2005, pp.519-549, 2005.
DOI : 10.1142/9789812702456_0049

A. Sosinsky, Target Explorer: an automated tool for the identification of new target genes for a specified set of transcription factors, Nucleic Acids Research, vol.31, issue.13, pp.3589-3592, 2003.
DOI : 10.1093/nar/gkg544

I. John-donaldson, M. Chapman, and A. Berthold-gött-gens, TFBScluster: a resource for the characterization of transcriptional regulatory networks, Bioinformatics, vol.21, issue.13, pp.3058-3067, 2005.
DOI : 10.1093/bioinformatics/bti461

B. P. Berman, Y. Nibu, B. D. Pfeiffer, P. Tomancak, S. E. Celniker et al., Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome, Proceedings of the National Academy of Sciences, vol.99, issue.2, pp.757-62, 2002.
DOI : 10.1073/pnas.231608898

P. Van, L. And, and P. Marynen, Computational methods for the detection of cis-regulatory modules, Briefings in Bioinformatics, vol.10, issue.5, pp.509-533, 2009.
DOI : 10.1093/bib/bbp025

Y. Fu and Z. Weng, Improvement of TRANSFAC matrices using multiple local alignment of transcription factor binding site sequences, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.68-72, 1920.
DOI : 10.1109/IEMBS.2004.1403814

E. Portales-casamar, S. Thongjuea, A. T. Kwon, D. Arenillas, X. Zhao et al., JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles, Nucleic Acids Research, vol.38, issue.Database, pp.105-115, 1920.
DOI : 10.1093/nar/gkp950

V. Lapointe, S. Sinha, S. A. Wolfe, A. Michael, and . Brodsky, FlyFactorSurvey : a database of Drosophila transcription factor binding specificities determined using the bacterial one-hybrid system, Nucleic acids research, vol.39, issue.66, pp.111-118, 1920.

I. V. Kulakovskiy, A. V. Favorov, A. Vsevolod, . Makeev, H. Socorro-gama-castro et al., Motif discovery and motif finding from genome-mapped DNase footprint data Nucleic acids research, Bioinformatics, issue.18, pp.252318-252343, 1920.

E. Portales-casamar, S. Kirov, J. Lim, S. Lithwick, M. I. Swanson et al., PAZAR: a framework for collection and dissemination of cis-regulatory sequence annotation, Genome Biology, vol.8, issue.10, p.207, 1921.
DOI : 10.1186/gb-2007-8-10-r207

E. Portales-casamar, D. Arenillas, J. Lim, M. I. Swanson, S. Jiang et al., The PAZAR database of gene regulatory information coupled to the ORCA toolkit for the study of regulatory sequences, Nucleic Acids Research, vol.37, issue.Database, pp.54-60, 1921.
DOI : 10.1093/nar/gkn783

C. M. Bergman, J. W. Carlson, A. E. Susan, and . Celniker, Drosophila DNase I footprint database: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster, Bioinformatics, vol.21, issue.8, pp.1747-1749, 2004.
DOI : 10.1093/bioinformatics/bti173

T. A. Down, C. M. Bergman, J. Su, and A. , Large-Scale Discovery of Promoter Motifs in Drosophila melanogaster, PLoS Computational Biology, vol.13, issue.1, pp.7-82, 2007.
DOI : 10.1371/journal.pcbi.0030007.st001

M. S. Halfon, S. M. Gallo, A. Casey, and . Bergman, REDfly 2.0: an integrated database of cis-regulatory modules and transcription factor binding sites in Drosophila, Nucleic Acids Research, vol.36, issue.Database, pp.594-602, 1921.
DOI : 10.1093/nar/gkm876

M. B. Noyes, R. G. Christensen, A. Wakabayashi, G. D. Stormo, M. H. Brodsky et al., Analysis of Homeodomain Specificities Allows the Family-wide Prediction of Preferred Recognition Sites, Cell, vol.133, issue.7, pp.1277-89, 2008.
DOI : 10.1016/j.cell.2008.05.023

M. B. Noyes, X. Meng, A. Wakabayashi, S. Sinha, M. H. Brodsky et al., A systematic characterization of factors that regulate Drosophila segmentation via a bacterial one-hybrid system, Nucleic Acids Research, vol.36, issue.8, pp.2547-60, 2008.
DOI : 10.1093/nar/gkn048

A. M. , M. , D. A. Pollard, D. A. Nix, V. N. Iyer et al., Largescale turnover of functional transcription factor binding sites in Drosophila, PLoS computational biology, vol.2, issue.10, p.130, 1921.

X. Li, S. Macarthur, R. Bourgon, D. Nix, D. A. Pollard et al., Transcription Factors Bind Thousands of Active and Inactive Regions in the Drosophila Blastoderm, PLoS Biology, vol.22, issue.2, pp.27-34, 2008.
DOI : 10.1371/journal.pbio.0060027.st004

R. Kelleher, P. M. Flanagan, and A. R. Kornberg, A novel mediator between activator proteins and the RNA polymerase II transcription apparatus, Cell, vol.61, issue.7, pp.611209-611224, 1920.
DOI : 10.1016/0092-8674(90)90685-8

A. Casamassimi and C. Napoli, Mediator complexes and eukaryotic transcription regulation: An overview, Biochimie, vol.89, issue.12, pp.1439-1485, 1922.
DOI : 10.1016/j.biochi.2007.08.002

F. Bosveld, S. Van-hoek, A. Ody-c-m, and . Sibon, Establishment of cell fate during early Drosophila embryogenesis requires transcriptional Mediator subunit dMED31, Developmental Biology, vol.313, issue.2, pp.802-815, 1922.
DOI : 10.1016/j.ydbio.2007.11.019

K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, and A. T. Richmond, Crystal structure of the nucleosome core particle at 2.8 A resolution, Nature, issue.6648, pp.389251-60, 1922.

S. Hirose, Crucial Roles for Chromatin Dynamics in Cellular Memory, Journal of Biochemistry, vol.141, issue.5, pp.615-624, 1922.
DOI : 10.1093/jb/mvm092

E. B. Lewis, A gene complex controlling segmentation in Drosophila, Nature, vol.58, issue.5688, pp.565-570, 1923.
DOI : 10.1038/265211a0

C. Nüsslein-volhard, E. And, and . Wieschaus, Mutations affecting segment number and polarity in Drosophila, Nature, vol.52, issue.5785, pp.795-801, 1923.
DOI : 10.1038/287795a0

W. Tadros, . Howard, and . Lipshitz, The maternal-to-zygotic transition: a play in two acts, Development, vol.136, issue.18, pp.3033-3075, 2009.
DOI : 10.1242/dev.033183

J. Crest, N. Oxnard, J. Ji, and A. Gerold-schu-biger, Onset of the DNA Replication Checkpoint in the Early Drosophila Embryo, Genetics, vol.175, issue.2, pp.567-84, 2007.
DOI : 10.1534/genetics.106.065219

B. Benoit, C. Hua-he, F. Zhang, S. M. Vo-truba, W. Tadros et al., An essential role for the RNA-binding protein Smaug during the Drosophila maternal-to-zygotic transition, Development, vol.136, issue.6, pp.923-955, 1924.
DOI : 10.1242/dev.031815

URL : https://hal.archives-ouvertes.fr/hal-00363874

C. Smibert, J. E. Wilson, K. Kerr, and A. P. Macdonald, smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo., Genes & Development, vol.10, issue.20, pp.2600-2609, 1926.
DOI : 10.1101/gad.10.20.2600

R. Xi, J. R. Mcgregor, A. Douglas, and . Harri-son, A Gradient of JAK Pathway Activity Patterns the Anterior-Posterior Axis of the Follicular Epithelium, Developmental Cell, vol.4, issue.2, pp.167-77, 1928.
DOI : 10.1016/S1534-5807(02)00412-4

J. Januschke, L. Gervais, L. Gillet, G. Keryer, M. Bornens et al., The centrosome-nucleus complex and microtubule organization in the Drosophila oocyte, Development, vol.133, issue.1, pp.129-168, 1928.
DOI : 10.1242/dev.02179

URL : https://hal.archives-ouvertes.fr/hal-00015465

N. Denef and T. Schüpbach, Patterning: JAK-STAT Signalling in the Drosophila Follicular Epithelium, Current Biology, vol.13, issue.10, pp.388-90, 1928.
DOI : 10.1016/S0960-9822(03)00317-8

D. Niessing, S. Blanke, H. And, and . Jäckle, Bicoid associates with the 5'-cap-bound complex of caudal mRNA and represses translation, Genes & Development, vol.16, issue.19, pp.2576-82, 2002.
DOI : 10.1101/gad.240002

S. G. Developmental, S. Sinauer, F. Mass, J. Pilot, C. Philippe et al., Developmental control of nuclear morphogenesis and anchoring by charleston, identified in a functional genomic screen of Drosophila cellularisation, Development, vol.67, issue.45, pp.30711-30734, 1929.

S. De-renzis, O. Elemento, S. Tavazoie, A. F. Eric, and . Wieschaus, Unmasking Activation of the Zygotic Genome Using Chromosomal Deletions in the Drosophila Embryo, PLoS Biology, vol.3, issue.5, pp.117-152, 2007.
DOI : 10.1371/journal.pbio.0050117.st009

S. D. Hooper, S. Boué, R. Krause, L. J. Jen-sen, C. E. Mason et al., Identification of tightly regulated groups of genes during Drosophila melanogaster embryogenesis, Molecular Systems Biology, vol.298, issue.3, pp.72-101, 2007.
DOI : 10.1038/msb4100112

E. Lécuyer, H. Yoshida, N. Parthasarathy, C. Alm, T. Babak et al., Global Analysis of mRNA Localization Reveals a Prominent Role in Organizing Cellular Architecture and Function, Cell, vol.131, issue.1, pp.174-187, 2007.
DOI : 10.1016/j.cell.2007.08.003

X. Lu, J. M. Li, O. Elemento, S. Tavazoie, A. F. Eric et al., Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition, Development, vol.136, issue.12, pp.2101-2111, 1929.
DOI : 10.1242/dev.034421

W. Tadros, A. L. Goldman, T. Babak, F. Men-zies, L. Vardy et al., SMAUG Is a Major Regulator of Maternal mRNA Destabilization in Drosophila and Its Translation Is Activated by the PAN GU Kinase, Developmental Cell, vol.12, issue.1, pp.143-155, 2007.
DOI : 10.1016/j.devcel.2006.10.005

S. Thomsen, S. A. , S. Chandra-janga, W. Huber, A. R. Claudio et al., Genome-wide analysis of mRNA decay patterns during early Drosophila development, Genome Biology, vol.11, issue.9, pp.93-125, 2010.
DOI : 10.1186/gb-2010-11-9-r93

N. Bushati, A. Stark, J. Brennecke, A. Stephen, and . Cohen, Temporal Reciprocity of miRNAs and Their Targets during the Maternal-to-Zygotic Transition in Drosophila, Current Biology, vol.18, issue.7, pp.501-507, 2008.
DOI : 10.1016/j.cub.2008.02.081

A. Gerber, S. Luschnig, M. A. Krasnow, P. Brown, D. And et al., Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster, Proceedings of the National Academy of Sciences, vol.103, issue.12, pp.4487-92, 2006.
DOI : 10.1073/pnas.0509260103

B. Datar, Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila's early cell cycle program

B. Farrell, Genetic control of cell division patterns in the Drosophila embryo, Cell, vol.57, issue.32, pp.177-87, 1989.

D. Schubiger, Activation of transcription in Drosophila embryos is a gradual process mediated by the nucleocytoplasmic ratio, Genes & development, vol.10, issue.67, pp.1131-1173, 1932.

O. Sibon, V. A. Stevenson, A. W. , T. Nishigaki, and A. J. Manley, DNAreplication checkpoint control at the Drosophila midblastula transition The Drosophila evenskipped promoter is transcribed in a stage-specific manner in vitro and contains multiple, overlapping factor-binding sites, Nature Molecular and cellular biology, vol.388, issue.66378, pp.93-100, 1990.

G. T. , R. And, and A. Stathopoulos, Graded dorsal and differential gene regulation in the Drosophila embryo, Cold Spring Harbor perspectives in biology, vol.1, issue.4, pp.836-870, 2009.

J. R. , T. Bosch, J. A. Benavides, A. Thomas, and . Cline, The TAGteam DNA motif controls the timing of Drosophila pre-blastoderm transcription, Development, vol.133, issue.34, pp.1967-77, 2006.

H. Liang, C. Nien, H. Liu, M. M. Metzstein, N. Kirov et al., The zincfinger protein Zelda is a key activator of the early zygotic genome in Drosophila, Nature, vol.34, issue.7220, pp.456400-456403, 2008.

A. Tsurumi, F. Xia, J. Li, K. Larson, R. Lafrance et al., STAT Is an Essential Activator of the Zygotic Genome in the Early Drosophila Embryo, PLoS Genetics, vol.110, issue.5, p.1002086, 1934.
DOI : 10.1371/journal.pgen.1002086.s013

E. Hubbell, W. Liu, and A. R. Mei, Robust estimators for expression analysis, Bioinformatics, vol.18, issue.12, pp.1585-1592, 2002.
DOI : 10.1093/bioinformatics/18.12.1585

R. A. Irizarry, B. M. Bolstad, F. C. , L. M. Cope, B. Hobbs et al., Summaries of Affymetrix GeneChip probe level data, Nucleic Acids Research, vol.31, issue.4, pp.15-40, 2003.
DOI : 10.1093/nar/gng015

S. D. Pepper, E. K. Saunders, L. E. Edwards, C. L. Wilson, A. Crispin et al., The utility of MAS5 expression summary and detection call algorithms, BMC Bioinformatics, vol.8, issue.1, pp.273-313, 2007.
DOI : 10.1186/1471-2105-8-273

R. A. Irizarry, B. Hobbs, F. Collin, Y. , K. J. Antonellis et al., Exploration, normalization, and summaries of high density oligonucleotide array probe level data, Biostatistics, vol.4, issue.2, pp.249-64, 2003.
DOI : 10.1093/biostatistics/4.2.249

Z. Wu and R. A. Irizarry, Stochastic models inspired by hybridization theory for short oligonucleotide arrays, Proceedings of the eighth annual international conference on Computational molecular biology , RECOMB '04, pp.882-93, 2005.
DOI : 10.1145/974614.974628

B. Harr and C. Schlötterer, Comparison of algorithms for the analysis of Affymetrix microarray data as evaluated by co-expression of genes in known operons, Nucleic Acids Research, vol.34, issue.2, pp.8-40, 2006.
DOI : 10.1093/nar/gnj010

R. Development and C. Team, R : A language and environment for statistical computing, pp.3-900051, 2008.

E. Howe, K. Holton, S. Nair, D. Schlauch, R. Sinha et al., MeV: MultiExperiment Viewer, Biomedical Informatics for Cancer Research, pp.267-277, 2010.
DOI : 10.1007/978-1-4419-5714-6_15

S. Brohée, K. Faust, G. Lima-mendez, G. Vanderstocken, J. And et al., Network Analysis Tools: from biological networks to clusters and pathways, Nature Protocols, vol.28, issue.10, pp.1616-1645, 2008.
DOI : 10.1038/nprot.2008.100

M. M. Harrison, X. Li, T. Kaplan, M. Botchan, and M. B. Eisen, Zelda Binding in the Early Drosophila melanogaster Embryo Marks Regions Subsequently Activated at the Maternal-to-Zygotic Transition, PLoS Genetics, vol.40, issue.10, pp.1002266-114, 2011.
DOI : 10.1371/journal.pgen.1002266.s008

A. Vaquero, M. B. , M. Lluïsa-espinás, J. And, and . Bernués, Activation properties of GAGA transcription factor, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1779, issue.5, pp.312-319, 2008.
DOI : 10.1016/j.bbagrm.2008.02.005

H. Granok, B. A. Leibovitch, C. D. Shaffer, A. S. , C. Elgin et al., Chromatin: Ga-ga over GAGA factor, Current Biology, vol.5, issue.3, pp.238-279, 1995.
DOI : 10.1016/S0960-9822(95)00048-0

T. Shimojima, M. Okada, T. Nakayama, H. Ueda, K. Okawa et al., Drosophila FACT contributes to Hox gene expression through physical and functional interactions with GAGA factor, Genes & Development, vol.17, issue.13, pp.1605-1621, 2003.
DOI : 10.1101/gad.1086803

M. Lehmann, Anything else but GAGA : a nonhistone protein complex reshapes chromatin structure. Trends in genetics : TIG, pp.15-22, 2004.

W. M. Gelbart and D. B. Emmert, FlyBase High Throughput Expression Pattern Data Beta Version, p.114, 2010.

S. Pagans, M. Ortiz-lombardía, M. Lluïsa-espinás, J. Bernués, F. And et al., The Drosophila transcription factor tramtrack (TTK) interacts with Trithorax-like (GAGA) and represses GAGA-mediated activation, Nucleic Acids Research, vol.30, issue.20, pp.4406-4419, 2002.
DOI : 10.1093/nar/gkf570

F. Hirose, M. Yamaguchi, K. Kuroda, A. Omori, T. Hachiya et al., Isolation and characterization of cDNA for DREF, a promoter-activating factor for Drosophila DNA replication-related genes, The Journal of biological chemistry, issue.7, pp.2713930-2713937, 1996.

C. M. Hart, O. Cuvier, U. K. And, and . Laemmli, Evidence for an antagonistic relationship between the boundary element-associated factor BEAF and the transcription factor DREF, Chromosoma, vol.108, issue.6, pp.375-383, 1999.
DOI : 10.1007/s004120050389

D. The and . Gene, Functional Classification Tool : a novel biological module-centric algorithm to functionally analyze large gene lists, Genome biology, vol.8, issue.9, pp.183-69, 2007.

D. Wei, H. , B. T. Sherman, A. Richard, and . Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nature protocols, vol.4, issue.1, pp.44-57, 2009.

D. Martin, C. Brun, E. R. , P. Mou-ren, D. Thieffry et al., GOToolBox : functional analysis of gene datasets based on Gene Ontology Identifying biological themes within lists of genes with EASE, Genome Biology, vol.5, issue.12, pp.101-70, 2003.
DOI : 10.1186/gb-2004-5-12-r101

S. Aerts, X. Quan, A. Claeys, M. Sanchez, P. Tate et al., Robust Target Gene Discovery through Transcriptome Perturbations and Genome-Wide Enhancer Predictions in Drosophila Uncovers a Regulatory Basis for Sensory Specification, PLoS Biology, vol.102, issue.7, pp.1000435-73, 2010.
DOI : 10.1371/journal.pbio.1000435.s024

L. Li, Q. Zhu, X. He, S. Sinha, A. Marc et al., Large-scale analysis of transcriptional cis-regulatory modules reveals both common features and distinct subclasses, Genome Biology, vol.8, issue.6, pp.101-73, 2007.
DOI : 10.1186/gb-2007-8-6-r101

V. Morel and F. Schweisguth, Repression by suppressor of hairless and activation by Notch are required to define a single row of singleminded expressing cells in the Drosophila embryo, Genes & development, vol.14, issue.76, pp.377-88, 2000.

O. Sand, M. Thomas-chollier, A. Jacques, and . Van-helden, Retrieve-ensembl-seq: user-friendly and large-scale retrieval of single or multi-genome sequences from Ensembl, Bioinformatics, vol.25, issue.20, pp.252739-252779, 2009.
DOI : 10.1093/bioinformatics/btp519

M. Defrance, . Rekin-'s, O. Janky, . Sand, J. And et al., Using RSAT oligo-analysis and dyad-analysis tools to discover regulatory signals in nucleic sequences, Nature Protocols, vol.3, issue.10, pp.1589-603, 2008.
DOI : 10.1038/nprot.2008.98

S. T. Smith, S. Petruk, Y. Sedkov, E. Cho, S. Tillib et al., Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex, Nature Cell Biology, vol.19, issue.2, pp.162-169, 2004.
DOI : 10.1038/35020506

M. Mannervik, Transcriptional Coregulators in Development, Science, vol.284, issue.5414, pp.606-609, 1985.
DOI : 10.1126/science.284.5414.606

T. Lilja, H. Aihara, M. Stabell, Y. Nibu, M. And et al., The acetyltransferase activity of Drosophila CBP is dispensable for regulation of the Dpp pathway in the early embryo, Developmental Biology, vol.305, issue.2, pp.650-658, 1985.
DOI : 10.1016/j.ydbio.2007.01.036

H. Akimaru, Y. Chen, P. Dai, D. X. Hou, M. No-naka et al., Drosophila CBP is a co-activator of cubitus interruptus in hedgehog signalling, Nature, vol.386, issue.6626, pp.386735-386743, 1997.
DOI : 10.1038/386735a0

H. Akimaru, D. X. Hou, and A. S. Ishii, Drosophila CBP is required for dorsal???dependent twist gene expression, Nature Genetics, vol.82, issue.2, pp.211-215, 1997.
DOI : 10.1016/0378-1119(88)90177-1

L. Waltzer and M. Bienz, Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling, Nature, vol.395, issue.6701, pp.521-526, 1998.

H. Lee, U. Park, E. Kim, A. Soo-jong, and . Um, MED25 is distinct from TRAP220/MED1 in cooperating with CBP for retinoid receptor activation, The EMBO Journal, vol.272, issue.15, pp.3545-57, 2007.
DOI : 10.1038/sj.emboj.7601797

N. Vo, R. Goodman, R. Tie, C. A. Banerjee, J. Stratton et al., CREB-binding protein and p300 in transcriptional regulation CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing, The Journal of biological chemistry Development, vol.276122, issue.8618, pp.13505-13513, 2001.

N. T. Crump, C. A. Hazzalin, E. M. Bowers, R. M. Alani, P. A. Cole et al., Dynamic acetylation of all lysine-4 trimethylated histone H3 is evolutionarily conserved and mediated by p300/CBP, Proceedings of the National Academy of Sciences of the United States of America, pp.7814-7823, 2011.
DOI : 10.1073/pnas.1100099108

L. B. , D. , M. Domanus, P. K. Shah, C. A. Morrison et al., A cis-regulatory map of the Drosophila genome, Nature, vol.86, issue.7339, pp.471527-471558, 2011.

M. Nekrasov, T. Klymenko, S. Fraterman, B. Papp, K. Oktaba et al., Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes, The EMBO Journal, vol.14, issue.18, pp.264078-88, 2007.
DOI : 10.1038/sj.emboj.7601837

S. Thomas, X. Li, P. J. Sabo, R. Sand-strom, R. E. Thurman et al., Dynamic reprogramming of chromatin accessibility during Drosophila embryo development, Genome Biology, vol.12, issue.5, pp.43-87, 2011.
DOI : 10.1093/nar/gkp335

X. Li, S. Thomas, P. J. Sabo, M. B. Eisen, J. A. Stamatoyannopoulos et al., The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding, Genome Biology, vol.12, issue.4, pp.34-86, 2011.
DOI : 10.1186/gb-2007-8-2-r24

Y. Zhang, T. Liu, C. A. Meyer, J. Eeck-houte, D. S. Johnson et al., Model-based Analysis of ChIP-Seq (MACS), Genome Biology, vol.9, issue.9, p.137, 2008.
DOI : 10.1186/gb-2008-9-9-r137

A. R. Quinlan and I. M. Hall, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, vol.26, issue.6, pp.841-843, 2010.
DOI : 10.1093/bioinformatics/btq033

P. A. Fujita, B. R. , A. S. Zweig, A. S. Hin-richs, D. Karolchik et al., The UCSC Genome Browser database: update 2011, Nucleic Acids Research, vol.39, issue.Database, pp.39-876, 2011.
DOI : 10.1093/nar/gkq963

S. M. Gallo, D. T. Gerrard, D. Miner, M. Si-mich, B. Des-soye et al., REDfly v3.0: toward a comprehensive database of transcriptional regulatory elements in Drosophila, Nucleic Acids Research, vol.39, issue.Database, pp.118-141, 2011.
DOI : 10.1093/nar/gkq999

T. Nakayama, K. Nishioka, Y. Dong, T. Shimojima, S. And et al., Drosophila GAGA factor directs histone H3.3 replacement that prevents the heterochromatin spreading, Genes & Development, vol.21, issue.5, pp.552-61, 2007.
DOI : 10.1101/gad.1503407

E. Szenker, D. Ray-gallet, and A. Almouzni, The double face of the histone variant H3.3, Cell Research, vol.10, issue.3, pp.421-455, 2011.
DOI : 10.1128/MCB.02019-06

URL : https://hal.archives-ouvertes.fr/hal-00742959

T. Tsukiyama and C. Wu, Purification and properties of an ATP-dependent nucleosome remodeling factor, Cell, vol.83, issue.6, pp.1011-1031, 1995.
DOI : 10.1016/0092-8674(95)90216-3

V. Sarojkumar, C. , A. Srinivasan, R. Kumar, K. Mishra et al., Transcriptional activation by GAGA factor is through its direct interaction with dmTAF3, Developmental biology, vol.317, issue.2, pp.660-70, 0114.

A. Bevilacqua, M. T. Fiorenza, and A. F. Mangia, A developmentally regulated GAGA box-binding factor and Sp1 are required for transcription of the hsp70.1 gene at the onset of mouse zygotic genome activation, Development, vol.127, issue.7, pp.1541-51, 2000.

C. Lee, X. Li, A. Hechmer, M. Eisen, M. D. Biggin et al., NELF and GAGA Factor Are Linked to Promoter-Proximal Pausing at Many Genes in Drosophila, Molecular and Cellular Biology, vol.28, issue.10, pp.3290-300, 0115.
DOI : 10.1128/MCB.02224-07

D. A. Hendrix, J. Hong, J. Zeitlinger, D. Rokhsar, A. Michael et al., Promoter elements associated with RNA Pol II stalling in the Drosophila embryo, Proceedings of the National Academy of Sciences, vol.105, issue.22, pp.7762-7769, 2008.
DOI : 10.1073/pnas.0802406105

G. Robertson, M. Hirst, and M. Bainbridge, Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing, Nature Methods, vol.128, issue.8, p.651, 2007.
DOI : 10.1038/nmeth1068

D. S. Johnson, A. Mortazavi, and R. M. Myers, Genome-Wide Mapping of in Vivo Protein-DNA Interactions, Science, vol.316, issue.5830, p.1497, 2007.
DOI : 10.1126/science.1141319

J. D. Mcpherson, Next-generation gap, Nature Methods, vol.6, issue.11s, p.2, 2009.
DOI : 10.1101/gr.089532.108

S. Pepke, B. Wold, and A. Mortazavi, Computation for ChIP-seq and RNA-seq studies, Nature Methods, vol.18, issue.11s, p.22, 2009.
DOI : 10.1038/nmeth.1360

M. Salmon-divon, H. Dvinge, and K. Tammoja, PeakAnalyzer: Genome-wide annotation of chromatin binding and modification loci, BMC Bioinformatics, vol.11, issue.1, p.415, 2010.
DOI : 10.1186/1471-2105-11-415

E. Portales-casamar, S. Thongjuea, and A. T. Kwon, JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles, Nucleic Acids Research, vol.38, issue.Database, p.105, 2010.
DOI : 10.1093/nar/gkp950

E. Wingender, The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation, Briefings in Bioinformatics, vol.9, issue.4, p.326, 2008.
DOI : 10.1093/bib/bbn016

S. Gama-castro, H. Salgado, and M. Peralta-gil, RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units), Nucleic Acids Research, vol.39, issue.Database, p.98, 2011.
DOI : 10.1093/nar/gkq1110

A. Medina-rivera, C. Abreu-goodger, and M. Thomas-chollier, Theoretical and empirical quality assessment of transcription factor-binding motifs, Nucleic Acids Research, vol.39, issue.3, p.808, 2011.
DOI : 10.1093/nar/gkq710

X. Chen, H. Xu, and P. Yuan, Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells, Cell, vol.133, issue.6, p.1106, 2008.
DOI : 10.1016/j.cell.2008.04.043

P. A. Fujita, B. Rhead, and A. S. Zweig, The UCSC Genome Browser database: update 2011, Nucleic Acids Research, vol.39, issue.Database, p.876, 2011.
DOI : 10.1093/nar/gkq963

I. V. Kulakovskiy, V. A. Boeva, and A. V. Favorov, Deep and wide digging for binding motifs in ChIP-Seq data, Bioinformatics, vol.26, issue.20, p.2622, 2010.
DOI : 10.1093/bioinformatics/btq488

R. K. Bradley, X. Y. Li, and C. , Binding Site Turnover Produces Pervasive Quantitative Changes in Transcription Factor Binding between Closely Related Drosophila Species, PLoS Biology, vol.15, issue.8, p.1000343, 2010.
DOI : 10.1371/journal.pbio.1000343.s034

T. Barrett, D. B. Troup, and S. E. Wilhite, NCBI GEO: archive for functional genomics data sets--10 years on, Nucleic Acids Research, vol.39, issue.Database, p.1005, 2011.
DOI : 10.1093/nar/gkq1184

J. Goecks, A. Nekrutenko, and J. Taylor, Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences, Genome Biology, vol.11, issue.8, p.86, 2010.
DOI : 10.1186/gb-2010-11-8-r86

B. Langmead, C. Trapnell, and M. Pop, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology, vol.10, issue.3, p.25, 2009.
DOI : 10.1186/gb-2009-10-3-r25

Y. Zhang, T. Liu, and C. A. Meyer, Model-based Analysis of ChIP-Seq (MACS), Genome Biology, vol.9, issue.9, p.137, 2008.
DOI : 10.1186/gb-2008-9-9-r137

P. Flicek, M. R. Amode, and D. Barrell, Ensembl 2011, Nucleic Acids Research, vol.39, issue.Database, p.800, 2011.
DOI : 10.1093/nar/gkq1064

C. M. Bergman, J. W. Carlson, and S. E. Celniker, Drosophila DNase I footprint database: a systematic genome annotation of transcription factor binding sites in the fruitfly, Drosophila melanogaster, Bioinformatics, vol.21, issue.8, p.1747, 2005.
DOI : 10.1093/bioinformatics/bti173

J. Van-helden, B. Andre, and J. Collado-vides, Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies 1 1Edited by G. von Heijne, Journal of Molecular Biology, vol.281, issue.5, p.827, 1998.
DOI : 10.1006/jmbi.1998.1947

J. Van-helden, A. F. Rios, and J. Collado-vides, Discovering regulatory elements in non-coding sequences by analysis of spaced dyads, Nucleic Acids Research, vol.28, issue.8, p.1808, 2000.
DOI : 10.1093/nar/28.8.1808

J. Van-helden, M. Olmo, and J. E. Perez-ortin, Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals, Nucleic Acids Research, vol.28, issue.4, p.1000, 2000.
DOI : 10.1093/nar/28.4.1000

M. Defrance, R. Janky, and O. Sand, Using RSAT oligo-analysis and dyad-analysis tools to discover regulatory signals in nucleic sequences, Nature Protocols, vol.3, issue.10, p.1589, 2008.
DOI : 10.1038/nprot.2008.98

R. Altschul, S. Gish, W. Miller, W. Myers, E. Lipman et al., Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

T. Blomme, K. Vandepoele, D. Bodt, S. Simillion, C. Maere et al., The gain and loss of genes during 600 million years of vertebrate evolution, Genome Biology, vol.7, issue.5, p.43, 2006.
DOI : 10.1186/gb-2006-7-5-r43

L. Cui, P. Wall, and J. Leebens-mack, Widespread genome duplications throughout the history of flowering plants, Genome Research, vol.16, issue.6, pp.738-749, 2006.
DOI : 10.1101/gr.4825606

P. Dehal, J. Boore, R. Dawkins, C. Leelayuwat, S. Gaudieri et al., Two rounds of whole genome duplication in the ancestral vertebrate Genomics of the major histocompatibility complex: haplotypes, duplication, retroviruses and disease, PLoS Biol Immunol Rev, vol.3, issue.167, pp.275-304, 1999.

A. Force, M. Lynch, F. Bryan, M. Pickett, Y. Yan et al., Preservation of duplicate genes by complementary, degenerative mutations, Genetics, vol.151, pp.1531-1545, 1999.

M. Freeling and B. Thomas, Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity, Genome Research, vol.16, issue.7, pp.805-814, 2006.
DOI : 10.1101/gr.3681406

P. Gouret, V. Vitiello, N. Balandraud, A. Gilles, P. Pontarotti et al., FIGENIX: intelligent automation of genomic annotation: expertise integration in a new software platform, BMC Bioinformatics, vol.6, issue.1, p.198, 2005.
DOI : 10.1186/1471-2105-6-198

J. Henry, I. Mather, M. Mcdermott, and P. Pontarotti, B30.2-like domain proteins: update and new insights into a rapidly expanding family of proteins, Molecular Biology and Evolution, vol.15, issue.12, pp.1696-1705, 1998.
DOI : 10.1093/oxfordjournals.molbev.a025896

L. Hillier, W. Miller, and E. Birney, Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution, Nature, vol.194, issue.7018, pp.695-716, 2004.
DOI : 10.1101/gr.794803

R. Horton, L. Wilming, and R. V. , Gene map of the extended human MHC, Nature Reviews Genetics, vol.4, issue.12, pp.889-899, 2004.
DOI : 10.1006/jmbi.1995.0301

A. Hughes and M. Nei, Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection., Proceedings of the National Academy of Sciences, vol.86, issue.3, pp.958-962, 1989.
DOI : 10.1073/pnas.86.3.958

A. Hughes, M. Yeager, A. Elshof, and M. Chorney, A new taxonomy of mammalian MHC class I molecules, Immunology Today, vol.20, issue.1, pp.22-26, 1999.
DOI : 10.1016/S0167-5699(98)01377-2

Z. Jiang, H. Tang, M. Ventura, M. Cardone, T. Marques-bonet et al., Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution, Nature Genetics, vol.16, issue.11, pp.1361-1368, 2007.
DOI : 10.1038/ng.2007.9

M. Kellis, B. Birren, and E. Lander, Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae, Nature, vol.428, issue.6983, pp.617-624, 2004.
DOI : 10.1038/nature02424

Y. Kim and W. Stephan, Detecting a local signature of genetic hitchhiking along a recombining chromosome, Genetics, vol.160, pp.765-777, 2002.

D. Krautwurst, K. Yau, and R. Reed, Identification of Ligands for Olfactory Receptors by Functional Expression of a Receptor Library, Cell, vol.95, issue.7, pp.917-926, 1998.
DOI : 10.1016/S0092-8674(00)81716-X

S. Kumar and S. Hedges, A molecular timescale for vertebrate evolution, Nature, vol.392, pp.917-920, 1998.

L. Lundin, Evolution of the Vertebrate Genome as Reflected in Paralogous Chromosomal Regions in Man and the House Mouse, Genomics, vol.16, issue.1, pp.1-19, 1993.
DOI : 10.1006/geno.1993.1133

M. Lynch and J. Conery, The evolutionary demography of duplicate genes, J Struct Funct Genomics, vol.3, pp.35-44, 2003.
DOI : 10.1007/978-94-010-0263-9_4

M. Lynch, O. Hely, M. Walsh, B. Force, and A. , The probability of preservation of a newly arisen gene duplicate, Genetics, vol.159, pp.1789-1804, 2001.

H. Malik and S. Henikoff, Phylogenomics of the nucleosome, Nature Structural Biology, vol.10, issue.11, pp.882-891, 2003.
DOI : 10.1038/nsb996

A. Mclysaght, K. Hokamp, and K. Wolfe, Extensive genomic duplication during early chordate evolution, Nature Genetics, vol.31, issue.2, pp.204-205, 2002.
DOI : 10.1038/ng884

S. Otto and P. Yong, 16 The evolution of gene duplicates, Adv Genet, vol.46, pp.451-483, 2002.
DOI : 10.1016/S0065-2660(02)46017-8

B. Papp, C. Pal, and L. Hurst, Dosage sensitivity and the evolution of gene families in yeast, Nature, vol.424, issue.6945, pp.194-197, 2003.
DOI : 10.1038/nature01771

R. Reed, Regulating olfactory receptor expression: controlling globally, acting locally, Nat Neurosci, vol.7, pp.638-639, 2000.

G. Rubin, M. Yandell, and J. Wortman, Comparative Genomics of the Eukaryotes, Science, vol.287, issue.5461, pp.2204-2215, 2000.
DOI : 10.1126/science.287.5461.2204

R. Tazi-ahnini, J. Henry, C. Offer, C. Bouissou-bouchouata, I. Mather et al., Cloning, localization, and structure of new members of the butyrophilin gene family in the juxta-telomeric region of the major histocompatibility complex, Immunogenetics, vol.47, issue.1, pp.55-63, 1997.
DOI : 10.1007/s002510050326

M. Yap, S. Nisole, C. Lynch, and J. Stoye, Trim5?? protein restricts both HIV-1 and murine leukemia virus, Proceedings of the National Academy of Sciences, vol.101, issue.29, pp.10786-10791, 2004.
DOI : 10.1073/pnas.0402876101