. [. Bibliographie, R. J. Apkarian, and . Adams, Advanced gain-scheduling techniques for uncertain systems, IEEE Trans. Control Sys. Tech, vol.6, pp.21-32, 1998.

J. [. Apkarian, P. Biannic, and . Gahinet, Self-scheduled H-infinity control of missile via linear matrix inequalities, Journal of Guidance, Control, and Dynamics, vol.18, issue.3, pp.532-538, 1995.
DOI : 10.2514/3.21419

P. [. Apkarian and . Gahinet, A convex characterization of gain-scheduled H/sub ???/ controllers, IEEE Transactions on Automatic Control, vol.40, issue.5, pp.853-864, 1995.
DOI : 10.1109/9.384219

P. [. Apkarian, G. Gahinet, and . Becker, Self-scheduled H ? control of linear parameter-varying systems, IEEE Proc. American Control Conf, pp.856-860, 1994.

P. [. Apkarian, G. Gahinet, and . Becker, Self-scheduled H??? control of linear parameter-varying systems: a design example, Automatica, vol.31, issue.9, pp.311251-1261, 1995.
DOI : 10.1016/0005-1098(95)00038-X

S. [. Asai and . Hara, Some Conditions which Make the Constantly Scaled H ? Control Synthesis Problems Convex, Proc. American Control Conf, pp.3492-3496, 1998.

E. [. Aggarwal and . Infante, Some remarks on the stability of time-varying systems, IEEE Transactions on Automatic Control, vol.13, issue.6, pp.722-723, 1968.
DOI : 10.1109/TAC.1968.1099067

A. [. Andersson, C. L. Rantzer, and . Beck, Model comparison and simplification, International Journal of Robust and Nonlinear Control, vol.13, issue.3, pp.157-181, 1999.
DOI : 10.1002/(SICI)1099-1239(199903)9:3<157::AID-RNC398>3.0.CO;2-8

G. [. Saggaf and . Franklin, Model reduction via balanced realizations: an extension and frequency weighting techniques, IEEE Transactions on Automatic Control, vol.33, issue.7, pp.687-691, 1988.
DOI : 10.1109/9.1280

P. [. Biannic and . Apkarian, Missile autopilot design via a modified LPV synthesis technique, Aerospace Science and Technology, vol.3, issue.3, pp.153-160, 1999.
DOI : 10.1016/S1270-9638(99)80039-X

S. Boyd, V. Balakrishnan, E. Feron, and L. Ghaoui, Control system analysis and synthesis via linear matrix inequalities, Proc. American Control Conf, pp.2147-2154, 1993.

F. D. Barb, A. Ben-tal, and A. Nemirovski, Robust Dissipativity of Interval Uncertain Linear Systems, SIAM Journal on Control and Optimization, vol.41, issue.6, pp.1661-1695, 2003.
DOI : 10.1137/S0363012901398174

J. [. Beck, K. Doyle, and . Glover, Model reduction of multidimensional and uncertain systems, IEEE Transactions on Automatic Control, vol.41, issue.10, pp.1466-1476, 1996.
DOI : 10.1109/9.539427

]. G. Bec95 and . Becker, Parameter-dependent control of an under-actuated m echanical system

]. C. Bec06 and . Beck, Coprime factors reduction methods for linear parameter varying and uncertain systems, Systems and Control Letters, vol.55, pp.199-213, 2006.

]. H. Bla34 and . Black, Stabilized feedback amplifiers, Bell Syst. Tech. J, vol.13, pp.1-18, 1934.

]. Bli03 and . Bliman, Stabilization of LPV systems, Proc. IEEE Conf. on Decision and Control, pp.6103-6108, 2003.

R. [. Balas, A. Lind, and . Packard, Optimally scaled H-infinity full information control synthesis with real uncertainty, Journal of Guidance, Control, and Dynamics, vol.19, issue.4, pp.854-862, 1996.
DOI : 10.2514/3.21710

]. H. Bod45 and . Bode, Network Analysis and Feedback Amplifier Design, 1945.

G. Becker, A. Packard, D. Philbrick, and G. Balas, Control of parametrically dependent linear systems : a single quadratic Lyapunov approach, American Control Conference, vol.3, pp.2795-2799, 1993.

]. R. Bro83 and . Brockett, Asymptotic stability and feedback stabilization. Differential Geometric Control Theory, pp.181-191, 1983.

A. [. Ben-tal and . Nemirovski, Lectures on Modern Convex Optimization : Analysis, Algorithms, and Engineering Applications. Series on Optimization, MPS/SIAM, 1993.
DOI : 10.1137/1.9780898718829

]. B. Cle01 and . Clement, Synthèse multiobjectifs et séquencement de gains : Application au pilotage d'un lanceur spatial, 2001.

W. [. Cruz and . Perkins, A new approach to the sensitivity problem in multivariable feedback system design, IEEE Transactions on Automatic Control, vol.9, issue.3, pp.216-223, 1964.
DOI : 10.1109/TAC.1964.1105720

S. [. Duc and . Font, Commande H ? et µ-analyse : des outils pour la robustesse. Hermès, 1999.

J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, State-space solutions to standard H 2 and H ? control problems, Proc. American Control Conf, pp.1691-1696, 1988.

J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, State-space solutions to standard H/sub 2/ and H/sub infinity / control problems, IEEE Transactions on Automatic Control, vol.34, issue.8, pp.831-847, 1989.
DOI : 10.1109/9.29425

]. M. Din05 and . Dinh, Synthèse dépendant de paramètres par optimisation LMI de dimension finie, 2005.

A. [. Doyle, K. Packard, and . Zhou, Review of LFT's, LMI's and µ, Proc. IEEE Conf. on Decision and Control, pp.1227-1232, 1991.

C. [. Dettori and . Scherer, Robust stability analysis for parameter dependent systems using full block S-procedure, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), pp.2798-2799, 1998.
DOI : 10.1109/CDC.1998.757879

M. Dinh, G. Scorletti, V. Fromion, and E. Magarotto, PARAMETER DEPENDENT H??? CONTROLLER DESIGN BY FINITE DIMENSIONAL LMI OPTIMIZATION: APPLICATION TO TRADE-OFF DEPENDENT CONTROL, IFAC Proceedings Volumes, vol.38, issue.1, pp.383-406, 2005.
DOI : 10.3182/20050703-6-CZ-1902.01003

Y. [. Desoer and . Wang, Foundations of feedback theory for nonlinear dynamical systems, IEEE Transactions on Circuits and Systems, vol.27, issue.2, pp.104-123, 1980.
DOI : 10.1109/TCS.1980.1084787

]. D. Enn84 and . Enns, An error bound anda frequency weighted generalization, Proc. IEEE Conf. on Decision and Control, pp.127-132, 1984.

P. [. Feron, P. Apkarian, and . Gahinet, Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions, IEEE Transactions on Automatic Control, vol.41, issue.7, pp.411041-1046, 1996.
DOI : 10.1109/9.508913

J. [. Francis and . Doyle, Linear Control Theory with an ${\bf H}_\infty $ Optimality Criterion, SIAM Journal on Control and Optimization, vol.25, issue.4, pp.815-844, 1987.
DOI : 10.1137/0325046

]. G. Fer95 and . Ferreres, De l'utilisation des outils de robustesse pour la commande adaptative, 1995.

G. Ferreres, V. Fromion, G. Duc, and M. M. Saad, Application of real/mixed ?? computational techniques to an H missile autopilot, International Journal of Robust and Nonlinear Control, vol.6, issue.8, pp.743-769, 1996.
DOI : 10.1002/(SICI)1099-1239(199610)6:8<743::AID-RNC187>3.3.CO;2-F

S. [. Fromion, D. Monaco, and . Normand-cyrot, Asymptotic properties of incrementally stable systems, IEEE Transactions on Automatic Control, vol.41, issue.5, pp.1466-1476, 1996.
DOI : 10.1109/9.489210

S. [. Fromion, D. Monaco, and . Normand-cyrot, The weighted incremental norm approach: from linear to nonlinear H??? control, Automatica, vol.37, issue.10, pp.1585-1592, 2001.
DOI : 10.1016/S0005-1098(01)00106-6

]. S. Fon95 and . Font, Méthodologie pour prendre en compte la robustesse des systèmes asservis : optimisation H ? et approche symbolique de la forme standard, 1995.

]. D. For75 and . Forney, Minimal basis of rational vector spaces, with applications to multivariable linear systems, pp.493-520, 1975.

]. E. Fre73 and . Freund, Decoupling and pole assignment in nonlinear systems, Electronic Letters, vol.9, issue.16, pp.373-374, 1973.

]. V. Fro95 and . Fromion, Une approche incrémentale de la robustesse non linéaire Application au domaine de l'aéronautique, 1995.

G. [. Fromion and . Scorletti, A theoretical framework for gain scheduling, International Journal of Robust and Nonlinear Control, vol.4, issue.10, pp.951-982, 2003.
DOI : 10.1002/rnc.748

G. [. Fromion, G. Scorletti, and . Ferreres, Nonlinear performance of a PI controlled missile: an explanation, Proceedings of the 36th IEEE Conference on Decision and Control, pp.485-518, 1999.
DOI : 10.1109/CDC.1997.649492

P. [. Gahinet and . Apkarian, A linear matrix inequality approach toH??? control, International Journal of Robust and Nonlinear Control, vol.29, issue.4, pp.421-448, 1994.
DOI : 10.1002/rnc.4590040403

P. [. Gahinet, M. Apkarian, and . Chilali, Affine parameter-dependent Lyapunov functions and real parametric uncertainty, IEEE Transactions on Automatic Control, vol.41, issue.3, pp.436-442, 1996.
DOI : 10.1109/9.486646

]. P. Gah96 and . Gahinet, Explicit Controller Formulas for lmi-based H ? Synthesis, Automatica, vol.32, issue.7, pp.1007-1014, 1996.

]. K. Gld-+-91, D. J. Glover, J. C. Limebeer, E. M. Doyle, M. G. Kasenally et al., A characterisation of all solutions to the four block general distance problem, SIAM Journal on Control, vol.29, issue.2, pp.283-324, 1991.

]. K. Glo84 and . Glover, All optimal Hankel-norm approximations of linear multivariable systems and their L ? -error bounds, International Journal of Control, vol.39, issue.6, pp.1115-1193, 1984.

A. [. Ganet-schoeller and . St, Modèle de lanceur astrium st, 2008.

M. [. Ganet-schoeller and . Ducamp, LPV Control for Flexible Launcher, Proceedings of the AIAA GNC Conference, 2010.

]. A. Hel95a and . Helmersson, Methods for Robust Gain scheduling, 1995.

]. A. Hel95b and . Helmersson, µ synthesis and LFT gain scheduling with mixed uncertainties, Proc. European Control Conf, pp.153-158, 1995.

]. A. Hel99 and . Helmersson, Parameter dependent Lyapunov functions based on linear fractional transformation, pp.537-542, 1999.

K. [. Hyde and . Glover, The application of scheduled H/sub infinity / controllers to a VSTOL aircraft, IEEE Transactions on Automatic Control, vol.38, issue.7, pp.1021-1039, 1993.
DOI : 10.1109/9.231458

C. [. Horn and . Johnson, Matrix Analysis, 1985.

]. I. Hor81 and . Horowitz, Improvement in quantitative nonlinear feedback design by cancellation, International Journal of Control, vol.34, pp.547-560, 1981.

S. [. Hauser, P. Sastry, and . Kokotovi?, Nonlinear control via approximate inputoutput linearization : The ball and beam example, IEEE Trans. Automatic Control, vol.37, issue.3, 1992.

]. Y. Hun89a and . Hung, H ? optimal control -Part I : model matching, International Journal of Control, vol.49, issue.4, pp.1291-1331, 1989.

]. Y. Hun89b and . Hung, H ? optimal control -Part II : solutions for controllers, International Journal of Control, vol.49, issue.4, pp.1331-1359, 1989.

[. Hong, J. Wu, and K. Lee, New conditions for the exponential stability of evolution equations, [1992] Proceedings of the 31st IEEE Conference on Decision and Control, pp.1432-1436, 1994.
DOI : 10.1109/CDC.1992.371715

A. [. Isidori, C. Krener, S. Gori-giorgi, and . Monaco, Nonlinear decoupling via feedback: A differential geometric approach, IEEE Transactions on Automatic Control, vol.26, issue.2, pp.331-345, 1981.
DOI : 10.1109/TAC.1981.1102604

A. Ilchmann, D. H. Owens, and D. Prätzel-wolters, Sufficient conditions for stability of linear time-varying systems, Systems & Control Letters, vol.9, issue.2, pp.157-163, 1987.
DOI : 10.1016/0167-6911(87)90022-3

R. [. Iwasaki and . Skelton, All controllers for the general H??? control problem: LMI existence conditions and state space formulas, Automatica, vol.30, issue.8, pp.1307-1317, 1994.
DOI : 10.1016/0005-1098(94)90110-4

G. [. Iwasaki and . Shibata, LPV system analysis via quadratic separator for uncertain implicit systems, IEEE Transactions on Automatic Control, vol.46, issue.8, pp.1195-1208, 2001.
DOI : 10.1109/9.940924

]. A. Isi89 and . Isidori, Nonlinear Control Systems : An Introduction. Communications and Control Engineering Series, 1989.

]. A. Isi94 and . Isidori, H ? control via measurement feedback for affine nonlinear systems, International Journal of Robust and Nonlinear Control, vol.4, issue.4, pp.553-574, 1994.

]. M. Jam93 and . James, A partial differential inequality for dissipative nonlinear systems, Systems and Control Letters, vol.21, pp.315-320, 1993.

N. [. James, R. Nichols, and . Philips, Theory of Servomechanisms, 1947.

A. [. Jönsson and . Rantzer, Systems with uncertain parameters-time-variations with bounded derivatives, International Journal of Robust and Nonlinear Control, vol.6, pp.969-982, 1996.

]. T. Kai80 and . Kailath, Linear Systems, 1980.

R. [. Kalman and . Bucy, New Results in Linear Filtering and Prediction Theory, Journal of Basic Engineering, vol.83, issue.1
DOI : 10.1115/1.3658902

J. [. Kelly and . Evers, An interpolation strategy for scheduling dynamic compensators, Guidance, Navigation, and Control Conference, pp.1682-1690, 1997.
DOI : 10.2514/6.1997-3764

]. H. Kha92 and . Khalil, Nonlinear Systems, 1992.

]. H. Kha02 and . Khalil, Nonlinear Systems, 2002.

F. [. Köse, W. E. Jabbari, and . Schmitendorf, A direct characterization of L/sub 2/-gain controllers for LPV systems, IEEE Transactions on Automatic Control, vol.43, issue.9, pp.1302-1307, 1998.
DOI : 10.1109/9.718622

]. A. Kre84 and . Krener, Approximate linearization by state feedback and coordinate change, Systems and Control Letters, vol.5, pp.181-185, 1984.

]. L. Lee97 and . Lee, Reduced-order solutions to H ? and LPV control problems involving partial-state feedback, Proc. American Control Conf, pp.1762-1765, 1997.

W. [. Leith and . Leithead, Survey of gain-scheduling analysis and design, International Journal of Control, vol.73, issue.11, pp.1001-1025, 2000.
DOI : 10.1080/002071700411304

W. [. Lawrence and . Rugh, Gain scheduling dynamic linear controllers for a nonlinear plant, Automatica, vol.31, issue.3, pp.381-390, 1995.
DOI : 10.1016/0005-1098(94)00113-W

]. A. Lya47 and . Lyapunov, Problème général de la stabilité du mouvement, Annals of Mathematics Studies, vol.17, 1947.

K. [. Lu, J. C. Zhou, and . Doyle, Stabilization of LFT systems, [1991] Proceedings of the 30th IEEE Conference on Decision and Control
DOI : 10.1109/CDC.1991.261575

]. Mag05 and . Magni, User manual of the linear fractional representation toolbox, 2005.

F. [. Mauffrey and . Chabert, Non-Stationary h ? Control Law for Launcher with Bending Modes, IFAC on Automatic Control in Aerospace, vol.13, 1998.

]. A. Meg93 and . Megretski, Necessary and sufficient conditions of stability : A multiloop genneralization of the circle criterion, IEEE Trans. Automatic Control, vol.38, pp.753-756, 1993.

]. A. Meg95 and . Megretski, Frequency-domain criteria of robust stability for slowly time-varying systems, IEEE Trans. Automatic Control, vol.40, pp.153-155, 1995.

N. [. Macfarlane and . Karcanias, Poles and zeros of linear multivariable systems : a survey of the algebraic, geometric and complex-variable theory, International Journal of Control, vol.11, issue.1, pp.33-74, 1976.
DOI : 10.1109/TAC.1973.1100379

]. B. Moo81 and . Moore, Principal component analysis in linear systems : Controllability, observability , and model reduction, IEEE Trans. Automatic Control, vol.26, issue.1, pp.17-32, 1981.

A. [. Megretski and . Rantzer, System analysis via integral quadratic constraints, IEEE Transactions on Automatic Control, vol.42, issue.6
DOI : 10.1109/9.587335

M. [. Mauffrey, F. Schoeller, and . Chabert, h ? Method Applied to Launcher Control during Atmospheric Flight, 1996.

S. [. Megretsky and . Treil, Power distribution inequalities in optimization and robustness of uncertain systems, Journal of Mathematical Systems, Estimation, and Control, vol.3, issue.3, pp.301-319, 1993.

P. [. Nemiroskii and . Gahinet, The projective method for solving linear matrix inequalities, Proc. American Control Conf, 1994.

A. [. Nesterov and . Nemirovski, Interior point polynomial methods in convex programming : Theory and applications, SIAM, 1994.

R. [. Nichols, W. J. Reichert, and . Rugh, Gain scheduling for H-infinity controllers: a flight control example, IEEE Transactions on Control Systems Technology, vol.1, issue.2, pp.69-69, 1993.
DOI : 10.1109/87.238400

]. H. Nyq32 and . Nyquist, Regeneration theory, Bell Syst. Tech. J, vol.11, pp.126-147, 1932.

]. A. Pac94 and . Packard, Gain scheduling via linear fractional transformations, Systems and Control Letters, vol.22, issue.2, pp.79-92, 1994.

P. C. Pellanda, P. Apkarian, H. D. Tuan, and D. Alazard, Missile autopilot design via a multi-channel LFT/LPV control method. ijrnc, 2002.
DOI : 10.3182/20020721-6-es-1901.01571

]. L. Per78 and . Pernebo, Algebraic control theory for linear multivariable systems, 1978.

]. L. Per81 and . Pernebo, An algebraic theory for the design of controllers for linear multivariable systems? Part I : Structure matrices and feedforward design, IEEE Trans

. [. Pognant-gros, De la réduction de modèles vers la commande robuste. Application à la comma,de des canaux d'irrigation, 2002.

L. [. Pernebo and . Silverman, Model reduction via balanced state space representations, IEEE Transactions on Automatic Control, vol.27, issue.2, pp.382-387, 1982.
DOI : 10.1109/TAC.1982.1102945

]. R. Red59 and . Redheffer, Inequalities for a matrix Riccati equation, Journal of Mathematics and Mechanics, vol.8, issue.3, pp.349-367, 1959.

]. R. Rei92 and . Reichert, Dynamic scheduling of modern-robust-control autopilot design for missiles, IEEE Control Syst. Mag, pp.35-42, 1992.

]. J. [-rie07 and . Rieber, Control of uncertain systems with l 1 and quadratic performance objectives, 2007.

J. [. Rugh and . Shamma, Research on gain scheduling, Automatica, vol.36, issue.10, pp.1401-1425, 2000.
DOI : 10.1016/S0005-1098(00)00058-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.409.6064

]. W. Rug91 and . Rugh, Analytical framework for gain scheduling, IEEE Control Syst. Mag, vol.11, issue.1, pp.79-84, 1991.

M. [. Shamma and . Athans, Analysis of nonlinear gain scheduled control systems

M. [. Shamma and . Athans, Guaranteed properties of gain scheduled control for linear parameter-varying plants, Automatica, vol.27, issue.3, pp.559-564, 1991.
DOI : 10.1016/0005-1098(91)90116-J

M. [. Shamma and . Athans, Gain scheduling: potential hazards and possible remedies, IEEE Control Systems, vol.12, issue.3, pp.101-107, 1992.
DOI : 10.1109/37.165527

]. V. Sa95a, B. D. Sreeram, . Andersonsa95b-]-v, B. D. Sreeram, and . Anderson, Frequency weighted balanced reduction technique : A generalization and an error bound A Schur method for singlar perturbation approximation of balanced systems A robustness approach to linear control of mildly nonlinear processes, Proceedings of 34th Conference on Decision and Control Proceedings of 34th Conference on Decision and Control, pp.3576-3581, 1995.

]. M. Saf80 and . Safonov, Stability and Robustness of Multivariable Feedback Systems, Series in Signal Processing, Optimization, and Control, 1980.

]. I. San64 and . Sandberg, On the L 2 boundedness of solutions of non-linear integral equations

B. Syst, . J. Tech, . M. Sb92-]-s, S. Shahruz, and . Behtash, Design of controllers for linear parameter-varying systems by the gain scheduling technique Gain-scheduled missile autopilot design using Linear Parameter Varying transformation, Journal of Mathematical, Analysis and Applications AIAA J. Guidance, Control and Dynamics, vol.44, issue.162, pp.439-453195, 1965.

]. G. Sco97, . Scorlettisco98-]-g, M. G. Scorletti, J. C. Safonov, and . Doyle, Approche unifiée de l'analyse et la commande des systèmes par formulation LMI A more praticle formulation for robustness analysis Optimal scaling for multivariable stability margin singular value computation, IFAC Conference on System Structure and Control Proceedings of MECO/EES 1983 Symposium, 1983.

L. [. Scorletti and . Ghaoui, Improved LMI conditions for gain scheduling and related control problems, International Journal of Robust and Nonlinear Control, vol.8, issue.10, pp.845-877, 1998.
DOI : 10.1002/(SICI)1099-1239(199808)8:10<845::AID-RNC350>3.0.CO;2-I

. Sf-]-g, V. Scorletti, and . Fromion, Automatique fréquentielle avancée

V. [. Scorletti and . Fromion, A new LMI approach to performance control of linear parameter-varying systems, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207), 1998.
DOI : 10.1109/ACC.1998.694727

]. G. Sf08a, V. Scorletti, and . Fromion, Analysis tools for complex space systems theory and concepts, 2008.

]. G. Sf08b, V. Scorletti, and . Fromion, LPV infrastructure and general framework for the management of complex space systems, 2008.

]. G. Sf08c, V. Scorletti, and . Fromion, Synthesis tools for complex space systems theory and concepts, 2008.

]. J. Sha88 and . Shamma, Analysis and design of gain scheduled control systems, Dept. of Mechanical Engineering, M.I.T, 1988.

C. [. Skoog and . Lau, Instability of slowly varying systems, IEEE Transactions on Automatic Control, vol.17, issue.1
DOI : 10.1109/TAC.1972.1099866

[. Slotine and W. Li, Applied nonlinear control, 1991.

I. [. Skogestad and . Postlethwaite, Multivariable feedback control analysis and design, 1996.

I. [. Skogestad and . Postlethwaite, Multivariable feedback control analysis and design, 2005.

W. [. Stilwell and . Rugh, Stability preserving interpolation methods for the synthesis of gain scheduled controllers, Automatica, vol.36, issue.5, pp.665-671, 2000.
DOI : 10.1016/S0005-1098(99)00193-4

A. [. Stoorvogel, B. M. Saberi, and . Chen, A reduced order observer based controller design for H/sub ???/-optimization, IEEE Transactions on Automatic Control, vol.39, issue.2, pp.355-360, 1994.
DOI : 10.1109/9.272333

]. A. Van and . Schaft, L 2 -gain analysis of nonlinear systems and nonlinear state feedback H ? control, IEEE Trans. Automatic Control, vol.37, issue.6, pp.770-784, 1992.

]. M. Vid92 and . Vidyasagar, Nonlinear Systems Analysis, 1992.

. I. Vk82-]-a, N. Vardulakis, and . Karcanias, On the stable exact model matching problem, Systems and Control Letters, vol.5, issue.4, pp.237-242, 1982.

K. [. Wu and . Dong, Gain-scheduling control of LFT systems using parameter-dependent Lyapunov functions, Automatica, vol.42, issue.1, pp.39-50, 2006.
DOI : 10.1016/j.automatica.2005.08.020

]. J. Wil70 and . Willems, The analysis of feedback systems, 1970.

]. J. Wil71 and . Willems, The generation of Lyapunov functions for input-output stable systems, SIAM Journal on Control, vol.9, issue.1, pp.105-134, 1971.

]. J. Bibliographie-[-wil72 and . Willems, Dissipative dynamical systems Part I/Part II. Archive for Rational Mechanics and Analysis, pp.321-341, 1972.

B. [. Wu and . Lu, On convexified robust control synthesis, Automatica, vol.40, issue.6, pp.1003-1010, 2004.
DOI : 10.1016/j.automatica.2004.01.010

A. [. Wonham and . Morse, Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach, SIAM Journal on Control, vol.8, issue.1, pp.1-18, 1970.
DOI : 10.1137/0308001

A. [. Wu, G. Packard, and . Balas, LPV control design for pitch-axis missile autopilots, Proc. IEEE Conf. on Decision and Control, pp.188-191, 1995.

A. [. Wu, G. Packard, and . Balas, Systematic Gain-Scheduling Control Design: A Missile Autopilot Example, Asian Journal of Control, vol.6, issue.9/10, pp.341-347, 2002.
DOI : 10.1111/j.1934-6093.2002.tb00362.x

V. [. Wang, W. Q. Sreeram, and . Liu, A new frequency-weighted balanced truncation method and an error bound, IEEE Transactions on Automatic Control, vol.44, issue.9, pp.1734-1737, 1999.
DOI : 10.1109/9.788542

]. F. Wu96 and . Wu, Induced L 2 norm model reduction of polytopic uncertain linear systems

X. [. Wu, A. Yang, G. Packard, and . Becker, Induced L 2 norm control for LPV system with bounded parameter variation rates, Proc. American Control Conf, pp.2379-2383, 1995.

X. [. Wu, A. Yang, G. Packard, and . Becker, Induced L2-norm control for LPV systems with bounded parameter variation rates, International Journal of Robust and Nonlinear Control, vol.6, issue.9-10, pp.983-998, 1996.
DOI : 10.1002/(SICI)1099-1239(199611)6:9/10<983::AID-RNC263>3.0.CO;2-C

]. V. Yak71a and . Yakubovich, Absolute stability of non-linear control systems, ii. systems with nonstationary nonlinearities. the circle criterion. Automation and Remote Control, pp.876-884, 1971.

]. V. Yak71b and . Yakubovich, The S-procedure in nonlinear control theory, 1971.

]. V. Yak73 and . Yakubovich, A frequency theorem in control theory, Siberian Mathematical Journal, vol.14, issue.2, pp.265-289, 1973.

A. [. Yu and . Sideris, H??? control with parametric Lyapunov functions, Systems & Control Letters, vol.30, issue.2-3, pp.57-69, 1997.
DOI : 10.1016/S0167-6911(96)00075-8

]. G. Zam66a and . Zames, On the input-output stability of time-varying nonlinear feedback systems?Part I : Conditions derived using concepts of loop gain, conicity, and positivity, IEEE Trans. Automatic Control, vol.11, pp.228-238, 1966.

]. G. Zam66b and . Zames, On the input-output stability of time-varying nonlinear feedback systems?Part II : Conditions involving circles in the frequency plane and sector nonlinearities, IEEE Trans. Automatic Control, vol.11, pp.465-476, 1966.

]. G. Zam81 and . Zames, Feedback and optimal sensitivity : Model reference transformations, multiplicative seminorms, and approximate inverses, IEEE Trans. Automatic Control, vol.26, issue.2, pp.301-320, 1981.

J. [. Zhou, K. Doyle, and . Glover, Robust and Optimal Control, 1995.

]. K. Zho93a and . Zhou, Error bounds for frequency weighted balanced truncation and relative error model reduction, Proceedings of the 32nd Conference on Decision and Control, pp.3347-3352, 1993.

]. K. Zho93b and . Zhou, Frequency weighted model reduction with l ? error bounds, Systems and Control Letters, vol.21, pp.115-125, 1993.

]. K. Zho93c and . Zhou, Weighted optimal Hankel norm and model reduction, Proceedings of the 32nd Conference on Decision and Control, pp.3353-3358, 1993.

N. [. Ziegler and . Nichols, Optimum Settings for Automatic Controllers, Journal of Dynamic Systems, Measurement, and Control, vol.115, issue.2B, pp.759-768, 1942.
DOI : 10.1115/1.2899060

L. [. Zames and . Wang, Local?global double algebras for slow H ? adaptation : Part I ? inversion and stability, IEEE Trans. Automatic Control, vol.36, pp.143-151, 1991.

. Ce-lemme-est-très-intéressant, on peut transformer des problèmes d'optimisation sous contraintes LMI dépendant de paramètres en problèmes d'optimisation ne dépendant plus de paramètres Ce problème est traité en détails dans la thèse de M. Dinh [Din05], où se trouve aussi une démonstration du Lemme 8.5.1. Grâce à ce résultat, nous allons donc maintenant dériver une condition suffisante de la condition du problème d'analyse de la performance du lemme réel borné

C. Synthèse, Nous avons alors introduit des outils tels que le lemme de Schur et lemme d'élimination qui nous ont finalement permis de dériver des formulations de ces deux problèmes comme des problèmes d'optimisation sous contraintes LMI