M. Humbert, O. Sitbon, and G. Simonneau, Treatment of Pulmonary Arterial Hypertension, New England Journal of Medicine, vol.351, issue.14, pp.1425-1436, 2004.
DOI : 10.1056/NEJMra040291

URL : https://hal.archives-ouvertes.fr/hal-01455600

G. Pietra, F. Capron, S. Stewart, O. Leone, M. Humbert et al., Pathologic assessment of vasculopathies in pulmonary hypertension, Journal of the American College of Cardiology, vol.43, issue.12, pp.25-32, 2004.
DOI : 10.1016/j.jacc.2004.02.033

M. Humbert, N. Morrell, S. Archer, K. Stenmark, M. Maclean et al., Cellular and molecular pathobiology of pulmonary arterial hypertension, Journal of the American College of Cardiology, vol.43, issue.12, pp.13-24, 2004.
DOI : 10.1016/j.jacc.2004.02.029

M. Ogawa, Y. Matsuzaki, S. Nishikawa, S. Hayashi, T. Kunisada et al., Expression and function of c-kit in hemopoietic progenitor cells, Journal of Experimental Medicine, vol.174, issue.1, pp.63-71, 1991.
DOI : 10.1084/jem.174.1.63

M. Miettinen and J. Lasota, KIT (CD117): A Review on Expression in Normal and Neoplastic Tissues, and Mutations and Their Clinicopathologic Correlation, Applied Immunohistochemistry & Molecular Morphology, vol.13, issue.3, pp.205-220, 2005.
DOI : 10.1097/01.pai.0000173054.83414.22

L. Ashman, H. Buhring, G. Aylett, V. Broudy, and C. Muller, receptor tyrosine kinase, YB5.B8, 17F11, and SR-1, Journal of Cellular Physiology, vol.63, issue.3, pp.545-554, 1994.
DOI : 10.1002/jcp.1041580321

N. Lerner, K. Nocka, S. Cole, F. Qiu, A. Strife et al., Monoclonal antibody yb5.B8 identifies the human c-kit protein product, Blood, vol.77, pp.1876-1883, 1991.

J. Wypych, L. Bennett, M. Schwartz, C. Clogston, H. Lu et al., Soluble kit receptor in human serum, Blood, vol.85, pp.66-73, 1995.

Y. Yarden, W. Kuang, T. Yang-feng, L. Coussens, S. Munemitsu et al., Human protooncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand, EMBO J, vol.6, pp.3341-3351, 1987.

M. Sata, A. Saiura, A. Kunisato, A. Tojo, S. Okada et al., Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis, Nature Medicine, vol.8, issue.4, pp.403-409, 2002.
DOI : 10.1038/nm0402-403

D. Orlic, J. Kajstura, S. Chimenti, F. Limana, I. Jakoniuk et al., Mobilized bone marrow cells repair the infarcted heart, improving function and survival, Proceedings of the National Academy of Sciences, vol.98, issue.18, pp.10344-10349, 2001.
DOI : 10.1073/pnas.181177898

N. Davie, J. Crossno, . Jr, M. Frid, S. Hofmeister et al., Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells, AJP: Lung Cellular and Molecular Physiology, vol.286, issue.4, pp.668-678, 2004.
DOI : 10.1152/ajplung.00108.2003

J. Crossno, . Jr, C. Garat, J. Reusch, K. Morris et al., Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling, AJP: Lung Cellular and Molecular Physiology, vol.292, issue.4, pp.885-897, 2007.
DOI : 10.1152/ajplung.00258.2006

Y. Mitani, M. Ueda, K. Maruyama, H. Shimpo, A. Kojima et al., Mast cell chymase in pulmonary hypertension, Thorax, vol.54, issue.1, pp.88-90, 1999.
DOI : 10.1136/thx.54.1.88

D. Heath and M. Yacoub, Lung mast cells in plexogenic pulmonary arteriopathy., Journal of Clinical Pathology, vol.44, issue.12, pp.1003-1006, 1991.
DOI : 10.1136/jcp.44.12.1003

M. Metz, M. Grimbaldeston, S. Nakae, A. Piliponsky, M. Tsai et al., Mast cells in the promotion and limitation of chronic inflammation, Immunological Reviews, vol.66, issue.1, pp.304-328, 2007.
DOI : 10.1084/jem.20032082

Y. Okayama, C. Ra, and H. Saito, Role of mast cells in airway remodeling, Current Opinion in Immunology, vol.19, issue.6, pp.687-693, 2007.
DOI : 10.1016/j.coi.2007.07.018

J. Janicki, G. Brower, J. Gardner, M. Forman, J. Stewart et al., Cardiac mast cell regulation of matrix metalloproteinase-related ventricular remodeling in chronic pressure or volume overload, Cardiovascular Research, vol.69, issue.3, pp.657-665, 2006.
DOI : 10.1016/j.cardiores.2005.10.020

D. Montani, F. Perros, N. Gambaryan, P. Dorfmuller, B. Girerd et al., Bone marrow derived c-kit positive cells in pulmonary arterial hypertension [abstract], Am J Respir Crit Care Med, vol.96, p.1668, 2010.

F. Perros, D. Montani, P. Dorfmü-ller, I. Durand-gasselin, C. Tcherakian et al., Platelet-derived Growth Factor Expression and Function in Idiopathic Pulmonary Arterial Hypertension, American Journal of Respiratory and Critical Care Medicine, vol.178, issue.1, pp.81-88, 2008.
DOI : 10.1164/rccm.200707-1037OC

M. Humbert, O. Sitbon, A. Chaouat, M. Bertocchi, G. Habib et al., Pulmonary Arterial Hypertension in France, American Journal of Respiratory and Critical Care Medicine, vol.173, issue.9, pp.1023-1030, 2006.
DOI : 10.1164/rccm.200510-1668OC

N. Gambaryan, F. Perros, D. Montani, S. Cohen-kaminsky, M. Mazmanian et al., Targeting of ckit 1 hematopoietic progenitor cells prevents hypoxic pulmonary hypertension, Eur Respir J, 2010.

A. Banasova, H. Maxova, V. Hampl, M. Vizek, V. Povysilova et al., Prevention of mast cell degranulation by disodium cromoglycate attenuates the development of hypoxic pulmonary hypertension in rats exposed to chronic hypoxia, Respiration, vol.76, pp.102-107, 2008.

M. Frid, M. Li, and M. Gnanasekharan, Sustained hypoxia leads to the emergence of cells with enhanced growth, migratory, and promitogenic potentials within the distal pulmonary artery wall, AJP: Lung Cellular and Molecular Physiology, vol.297, issue.6
DOI : 10.1152/ajplung.90611.2008

G. Fadini, A. Avogaro, and G. Ferraccioli, Endothelial progenitors in pulmonary hypertension: new pathophysiology and therapeutic implications, European Respiratory Journal, vol.35, issue.2, pp.418-425, 2010.
DOI : 10.1183/09031936.00112809

D. Simper, P. Stalboerger, and C. Panetta, Smooth Muscle Progenitor Cells in Human Blood, Circulation, vol.106, issue.10, pp.1199-1204, 2002.
DOI : 10.1161/01.CIR.0000031525.61826.A8

R. Abe, S. Donnelly, and T. Peng, Peripheral Blood Fibrocytes: Differentiation Pathway and Migration to Wound Sites, The Journal of Immunology, vol.166, issue.12, pp.7556-7562, 2001.
DOI : 10.4049/jimmunol.166.12.7556

M. Ogawa, Y. Matsuzaki, and S. Nishikawa, Expression and function of c-kit in hemopoietic progenitor cells, Journal of Experimental Medicine, vol.174, issue.1, pp.63-71, 1991.
DOI : 10.1084/jem.174.1.63

M. Sata, A. Saiura, and A. Kunisato, Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis, Nature Medicine, vol.8, issue.4, pp.403-409, 2002.
DOI : 10.1038/nm0402-403

D. Orlic, J. Kajstura, and S. Chimenti, Mobilized bone marrow cells repair the infarcted heart, improving function and survival, Proceedings of the National Academy of Sciences, vol.98, issue.18, pp.10344-10349, 2001.
DOI : 10.1073/pnas.181177898

M. Toshner, R. Voswinckel, and M. Southwood, Evidence of Dysfunction of Endothelial Progenitors in Pulmonary Arterial Hypertension, American Journal of Respiratory and Critical Care Medicine, vol.180, issue.8, pp.780-787, 2009.
DOI : 10.1164/rccm.200810-1662OC

A. Muller, B. Homey, and H. Soto, Involvement of chemokine receptors in breast cancer metastasis, Nature, vol.410, issue.6824, pp.50-56, 2001.
DOI : 10.1038/35065016

O. Yoshie, Role of chemokines in trafficking of lymphocytes and dendritic cells, Int J Hematol, vol.72, pp.399-407, 2000.

D. Jin, K. Shido, and H. Kopp, Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes, Nature Medicine, vol.121, issue.5, pp.557-567, 2006.
DOI : 10.1038/nm1400

P. Joost and A. Methner, Phylogenetic analysis of 277 human G-proteincoupled receptors as a tool for the prediction of orphan receptor ligands, Genome Biol, vol.3, p.63, 2002.

F. Libert, M. Parmentier, and A. Lefort, Complete nucleotide sequence of a putative G protein coupled receptor: RDC1, Nucleic Acids Res, vol.18, 1917.

F. Sierro, C. Biben, and L. Martinez-munoz, Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7, Proceedings of the National Academy of Sciences, vol.104, issue.37, pp.14759-14764, 2007.
DOI : 10.1073/pnas.0702229104

J. Burns, B. Summers, and Y. Wang, A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development, The Journal of Experimental Medicine, vol.62, issue.9, pp.2201-2213, 2006.
DOI : 10.1084/jem.188.10.1917

D. Ceradini, A. Kulkarni, and M. Callaghan, Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1, Nature Medicine, vol.103, issue.8, pp.858-864, 2004.
DOI : 10.1172/JCI200113152

T. Schioppa, B. Uranchimeg, and A. Saccani, Regulation of the Chemokine Receptor CXCR4 by Hypoxia, The Journal of Experimental Medicine, vol.63, issue.9, pp.1391-1402, 2003.
DOI : 10.1016/S1044-579X(02)00103-7

D. Burke, M. Frid, and C. Kunrath, Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment, AJP: Lung Cellular and Molecular Physiology, vol.297, issue.2, pp.238-250, 2009.
DOI : 10.1152/ajplung.90591.2008

F. Perros, D. Montani, and P. Dorfmuller, Platelet-derived Growth Factor Expression and Function in Idiopathic Pulmonary Arterial Hypertension, American Journal of Respiratory and Critical Care Medicine, vol.178, issue.1, pp.81-88, 2008.
DOI : 10.1164/rccm.200707-1037OC

M. 20-rabinovitch, W. Gamble, and A. Nadas, Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features, Am J Physiol, vol.236, pp.818-827, 1979.

S. Gupta, P. Lysko, and K. Pillarisetti, Chemokine Receptors in Human Endothelial Cells. FUNCTIONAL EXPRESSION OF CXCR4 AND ITS TRANSCRIPTIONAL REGULATION BY INFLAMMATORY CYTOKINES, Journal of Biological Chemistry, vol.273, issue.7, pp.4282-4287, 1998.
DOI : 10.1074/jbc.273.7.4282

I. Kryczek, A. Lange, and P. Mottram, CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers, Cancer Res, vol.65, pp.465-472, 2005.

N. Davie, J. Crossno, . Jr, and M. Frid, Hypoxia-induced pulmonary artery adventitial remodeling and neovascularization: contribution of progenitor cells, AJP: Lung Cellular and Molecular Physiology, vol.286, issue.4, pp.668-678, 2004.
DOI : 10.1152/ajplung.00108.2003

K. Young, E. Torres, and K. Hatzistergos, Inhibition of the SDF-1/CXCR4 Axis Attenuates Neonatal Hypoxia-Induced Pulmonary Hypertension, Circulation Research, vol.104, issue.11, pp.1293-1301, 2009.
DOI : 10.1161/CIRCRESAHA.109.197533

. The-charlesworth-group and +. Wakefield, 369598 -Rev 7, EUROPEAN RESPIRATORY JOURNAL, vol.37, issue.0 6, 1924.

R. 1. Stenmark, K. Frid, M. Yeager, and M. , Fibrocytes: potential new therapeutic targets for pulmonary hypertension?, European Respiratory Journal, vol.36, issue.6, pp.1232-1235, 2010.
DOI : 10.1183/09031936.00137410

V. Nikam, R. Schermuly, R. Dumitrascu, N. Weissmann, G. Kwapiszewska et al., Treprostinil inhibits the recruitment of bone marrow-derived circulating fibrocytes in chronic hypoxic pulmonary hypertension, European Respiratory Journal, vol.36, issue.6, pp.1302-1314, 2010.
DOI : 10.1183/09031936.00028009

H. Hammad, B. Lambrecht, G. Simonneau, J. Launay, S. Cohen-kaminsky et al., C-Kit Positive Cells Accumulate in Remodeled Vessels of Idiopathic Pulmonary Arterial Hypertension, Am J Respir Crit Care Med, 2011.

G. Simonneau, A. Lombet, and M. Humbert, Targeting of c-kit+ hematopoietic progenitor cells prevents hypoxic pulmonary hypertension, Eur Respir J, 2010.

M. Frid, J. Brunetti, D. Burke, T. Carpenter, N. Davie et al., Hypoxia-Induced Pulmonary Vascular Remodeling Requires Recruitment of Circulating Mesenchymal Precursors of a Monocyte/Macrophage Lineage, The American Journal of Pathology, vol.168, issue.2, pp.659-669, 2006.
DOI : 10.2353/ajpath.2006.050599

R. Bucala, L. Spiegel, J. Chesney, M. Hogan, and A. Cerami, Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair, Mol Med, vol.1, pp.71-81, 1994.

R. Strieter, E. Keeley, M. Hughes, M. Burdick, and B. Mehrad, The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis, Journal of Leukocyte Biology, vol.86, issue.5, pp.1111-1118, 2009.
DOI : 10.1189/jlb.0309132

D. Pilling, V. Vakil, and R. Gomer, Improved serum-free culture conditions for the differentiation of human and murine fibrocytes, Journal of Immunological Methods, vol.351, issue.1-2, pp.62-70, 2009.
DOI : 10.1016/j.jim.2009.09.011

C. Heeschen, R. Lehmann, J. Honold, B. Assmus, A. Aicher et al., Profoundly reduced neovascularization capacity of bone marrow lines) Flow cytometry data acquisition was performed on a MACSQuant analyzer (Miltenyi, Paris, France) and data were analyzed using FlowJo software (Tree Star (E) Differentiated fibrocytes in culture, haematoxylin and erythrosin staining. (F) Immunofluorescent staining for CD45 (green) and vimentin (red). (G) Quantification of fibrocyte differentiation in vitro, using antibodies against vimentin (Abcam) and CD45 (BD Pharmingen). Fibrocytes from duplicate wells defined as double positive, adherent, spindleshaped cells with an oval nucleus were counted in five different fields per well

?. Mann and U. Whitney, *: p<0.05; **: p<0.001. vasculopathies in pulmonary hypertension, J Am Coll Cardiol, vol.43, pp.25-32, 2004.

P. Dorfmuller, F. Perros, and K. Balabanian, Inflammation in pulmonary arterial hypertension, European Respiratory Journal, vol.22, issue.2, pp.358-363, 2003.
DOI : 10.1183/09031936.03.00038903

P. Dorfmuller, M. Humbert, and F. Perros, Fibrous remodeling of the pulmonary venous system in pulmonary arterial hypertension associated with connective tissue diseases, Human Pathology, vol.38, issue.6, pp.893-902, 2007.
DOI : 10.1016/j.humpath.2006.11.022

P. Dorfmuller, V. Zarka, and I. Durand-gasselin, Chemokine RANTES in Severe Pulmonary Arterial Hypertension, American Journal of Respiratory and Critical Care Medicine, vol.165, issue.4, pp.534-539, 2002.
DOI : 10.1164/ajrccm.165.4.2012112

O. Sanchez, M. E. Perros, and F. , Role of Endothelium-derived CC Chemokine Ligand 2 in Idiopathic Pulmonary Arterial Hypertension, American Journal of Respiratory and Critical Care Medicine, vol.176, issue.10, pp.1041-1047, 2007.
DOI : 10.1164/rccm.200610-1559OC

K. Balabanian, A. Foussat, and P. Dorfmuller, C Chemokine Fractalkine in Pulmonary Arterial Hypertension, American Journal of Respiratory and Critical Care Medicine, vol.165, issue.10, pp.1419-1425, 2002.
DOI : 10.1164/rccm.2106007

M. Humbert, G. Monti, and F. Brenot, Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension., American Journal of Respiratory and Critical Care Medicine, vol.151, issue.5, pp.1628-1631, 1995.
DOI : 10.1164/ajrccm.151.5.7735624

A. Bhargava, A. Kumar, and N. Yuan, Monocrotaline induces interleukin-6 mRNA expression in rat lungs, Heart Dis, vol.1, pp.126-132, 1999.

M. Gillespie, S. Goldblum, and D. Cohen, Interleukin 1 Bioactivity in the Lungs of Rats with Monocrotaline-Induced Pulmonary Hypertension, Experimental Biology and Medicine, vol.187, issue.1, pp.26-32, 1988.
DOI : 10.3181/00379727-187-42632

L. Mouthon, L. Guillevin, and H. M. , Pulmonary arterial hypertension: an autoimmune disease?, European Respiratory Journal, vol.26, issue.6, pp.986-988, 2005.
DOI : 10.1183/09031936.05.00112105

M. Nicolls, L. Taraseviciene-stewart, and P. Rai, Autoimmunity and pulmonary hypertension: a perspective, European Respiratory Journal, vol.26, issue.6, pp.1110-1118, 2005.
DOI : 10.1183/09031936.05.00045705

P. Jouve, M. Humbert, and M. Chauveheid, POEMS syndrome-related pulmonary hypertension is steroid-responsive, Respiratory Medicine, vol.101, issue.2, pp.353-355, 2007.
DOI : 10.1016/j.rmed.2006.04.026

D. Montani, L. Achouh, and A. Marcelin, Reversibility of pulmonary arterial hypertension in HIV/HHV8-associated Castleman's disease, European Respiratory Journal, vol.26, issue.5, pp.969-972, 2005.
DOI : 10.1183/09031936.05.00133904

O. Sanchez, O. Sitbon, and X. Jais, Immunosuppressive Therapy in Connective Tissue Diseases-Associated Pulmonary Arterial Hypertension, Chest, vol.130, issue.1, pp.182-189, 2006.
DOI : 10.1378/chest.130.1.182

X. Jais, D. Launay, and A. Yaici, Immunosuppressive therapy in lupus- and mixed connective tissue disease???associated pulmonary arterial hypertension: A retrospective analysis of twenty-three cases, Arthritis & Rheumatism, vol.132, issue.2, pp.521-531, 2008.
DOI : 10.1002/art.23303

T. Nishimura, J. Faul, and G. Berry, -(2-Hydroxyethyl)-rapamycin Attenuates Pulmonary Arterial Hypertension and Neointimal Formation in Rats, American Journal of Respiratory and Critical Care Medicine, vol.163, issue.2, pp.498-502, 2001.
DOI : 10.1164/ajrccm.163.2.2006093

S. Bonnet, G. Rochefort, and G. Sutendra, The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted, Proceedings of the National Academy of Sciences, vol.104, issue.27, pp.11418-11423, 2007.
DOI : 10.1073/pnas.0610467104

D. 19-langleben and L. Reid, Effect of methylprednisolone on monocrotaline-induced pulmonary vascular disease and right ventricular hypertrophy, Lab Invest, vol.52, pp.298-303, 1985.

T. Tanabe, H. Furuya, and N. Kanemoto, Experimental study on monocrotaline induced pulmonary hypertensive rats. (1) Effect of long-term injection of immunosuppressant, Tokai J Exp Clin Med, vol.6, pp.41-48, 1981.

K. Hilliker and R. Roth, Alteration of monocrotaline pyrrole-induced cardiopulmonary effects in rats by hydralazine, dexamethasone or sulphinpyrazone, British Journal of Pharmacology, vol.15, issue.2, pp.375-380, 1984.
DOI : 10.1111/j.1476-5381.1984.tb10772.x

K. Lane, R. Machado, and M. Pauciulo, Heterozygous germline mutations in BMPR2, encoding a TGF-b receptor, cause familial primary pulmonary hypertension. The International PPH Consortium, Nat Genet, vol.26, pp.81-84, 2000.

J. Thomson, R. Machado, and M. Pauciulo, Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-II, a receptor member of the TGF-beta family, Journal of Medical Genetics, vol.37, issue.10, pp.741-745, 2000.
DOI : 10.1136/jmg.37.10.741

L. Du, C. Sullivan, and D. Chu, Signaling Molecules in Nonfamilial Pulmonary Hypertension, New England Journal of Medicine, vol.348, issue.6, pp.500-509, 2003.
DOI : 10.1056/NEJMoa021650

C. Atkinson, S. Stewart, and P. Upton, Primary Pulmonary Hypertension Is Associated With Reduced Pulmonary Vascular Expression of Type II Bone Morphogenetic Protein Receptor, Circulation, vol.105, issue.14, pp.1672-1678, 2002.
DOI : 10.1161/01.CIR.0000012754.72951.3D

M. Southwood, T. Jeffery, and X. Yang, Regulation of bone morphogenetic protein signalling in human pulmonary vascular development, The Journal of Pathology, vol.349, issue.1, pp.85-95, 2008.
DOI : 10.1002/path.2261

R. Morty, B. Nejman, and G. Kwapiszewska, Dysregulated Bone Morphogenetic Protein Signaling in Monocrotaline-Induced Pulmonary Arterial Hypertension, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.5, pp.1072-1078, 2007.
DOI : 10.1161/ATVBAHA.107.141200

L. Long, A. Crosby, and X. Yang, Altered Bone Morphogenetic Protein and Transforming Growth Factor-?? Signaling in Rat Models of Pulmonary Hypertension: Potential for Activin Receptor-Like Kinase-5 Inhibition in Prevention and Progression of Disease, Circulation, vol.119, issue.4, pp.566-576, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.821504

A. Nishihara, T. Watabe, and T. Imamura, Functional Heterogeneity of Bone Morphogenetic Protein Receptor-II Mutants Found in Patients with Primary Pulmonary Hypertension, Molecular Biology of the Cell, vol.13, issue.9, pp.3055-3063, 2002.
DOI : 10.1091/mbc.E02-02-0063

N. Rudarakanchana, J. Flanagan, and H. Chen, Functional analysis of bone morphogenetic protein type II receptor mutations underlying primary pulmonary hypertension, Human Molecular Genetics, vol.11, issue.13, pp.1517-1525, 2002.
DOI : 10.1093/hmg/11.13.1517

X. Yang, L. Long, and M. Southwood, Dysfunctional Smad Signaling Contributes to Abnormal Smooth Muscle Cell Proliferation in Familial Pulmonary Arterial Hypertension, Circulation Research, vol.96, issue.10, pp.1053-1063, 2005.
DOI : 10.1161/01.RES.0000166926.54293.68

Y. Song, J. Jones, and H. Beppu, Increased Susceptibility to Pulmonary Hypertension in Heterozygous BMPR2-Mutant Mice, Circulation, vol.112, issue.4, pp.553-562, 2005.
DOI : 10.1161/CIRCULATIONAHA.104.492488

Y. Tada, S. Majka, and M. Carr, Molecular effects of loss of BMPR2 signaling in smooth muscle in a transgenic mouse model of PAH, AJP: Lung Cellular and Molecular Physiology, vol.292, issue.6
DOI : 10.1152/ajplung.00305.2006

M. Hagen, K. Fagan, and W. Steudel, Interaction of interleukin-6 and the BMP pathway in pulmonary smooth muscle, AJP: Lung Cellular and Molecular Physiology, vol.292, issue.6, pp.1473-1479, 2007.
DOI : 10.1152/ajplung.00197.2006

R. Stinger, V. Iacopino, and I. Alter, Catheterization of the pulmonary artery in the closed-chest rat, J Appl Physiol, vol.51, pp.1047-1050, 1981.

S. Eddahibi, V. Fabre, and C. Boni, Induction of Serotonin Transporter by Hypoxia in Pulmonary Vascular Smooth Muscle Cells : Relationship With the Mitogenic Action of Serotonin, Circulation Research, vol.84, issue.3, pp.329-336, 1999.
DOI : 10.1161/01.RES.84.3.329

S. Eddahibi, M. Humbert, and E. Fadel, Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension, Journal of Clinical Investigation, vol.108, issue.8, pp.1141-1150, 2001.
DOI : 10.1172/JCI200112805

B. Meyrick, W. Gamble, and L. Reid, Development of Crotalaria pulmonary hypertension: hemodynamic and structural study

D. Wilson, H. Segall, and L. Pan, Progressive inflammatory and structural changes in the pulmonary vasculature of monocrotaline-treated rats, Microvascular Research, vol.38, issue.1, pp.57-80, 1989.
DOI : 10.1016/0026-2862(89)90017-4

C. Suzuki, M. Takahashi, and H. Morimoto, Mycophenolate mofetil attenuates pulmonary arterial hypertension in rats, Biochemical and Biophysical Research Communications, vol.349, issue.2, pp.781-788, 2006.
DOI : 10.1016/j.bbrc.2006.08.109

J. Lu, H. Shimpo, and A. Shimamoto, Specific inhibition of p38 mitogen-activated protein kinase with FR167653 attenuates vascular proliferation in monocrotaline-induced pulmonary hypertension in rats, The Journal of Thoracic and Cardiovascular Surgery, vol.128, issue.6, pp.850-589, 2004.
DOI : 10.1016/j.jtcvs.2004.03.003

N. Voelkel, R. Tuder, and J. Bridges, Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline., American Journal of Respiratory Cell and Molecular Biology, vol.11, issue.6, pp.664-675, 1994.
DOI : 10.1165/ajrcmb.11.6.7946395

H. Kimura, Y. Kasahara, and K. Kurosu, Alleviation of monocrotaline-induced pulmonary hypertension by antibodies to monocyte chemotactic and activating factor/monocyte chemoattractant protein-1, Lab Invest, vol.78, pp.571-581, 1998.

O. Sanchez, M. Humbert, and O. Sitbon, Treatment of pulmonary hypertension secondary to connective tissue diseases, Thorax, vol.54, issue.3, pp.273-277, 1999.
DOI : 10.1136/thx.54.3.273

M. Karmochkine, B. Wechsler, and P. Godeau, Improvement of severe pulmonary hypertension in a patient with SLE., Annals of the Rheumatic Diseases, vol.55, issue.8, pp.561-592, 1996.
DOI : 10.1136/ard.55.8.561

T. Reil, R. Sarkar, and V. Kashyap, Dexamethasone Suppresses Vascular Smooth Muscle Cell Proliferation, Journal of Surgical Research, vol.85, issue.1, pp.109-114, 1999.
DOI : 10.1006/jsre.1999.5665

A. Ogawa, K. Nakamura, and H. Matsubara, Prednisolone Inhibits Proliferation of Cultured Pulmonary Artery Smooth Muscle Cells of Patients With Idiopathic Pulmonary Arterial Hypertension, Circulation, vol.112, issue.12, pp.1806-1812, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.536169

A. Nohe, S. Hassel, and M. Ehrlich, The Mode of Bone Morphogenetic Protein (BMP) Receptor Oligomerization Determines Different BMP-2 Signaling Pathways, Journal of Biological Chemistry, vol.277, issue.7, pp.5330-5338, 2002.
DOI : 10.1074/jbc.M102750200

S. Hall, P. Brogan, and S. Haworth, Contribution of inflammation to the pathology of idiopathic pulmonary arterial hypertension in children, Thorax, vol.64, issue.9, pp.778-783, 2009.
DOI : 10.1136/thx.2008.106435

U. Ikeda, M. Ikeda, and T. Oohara, Interleukin 6 stimulates growth of vascular smooth muscle cells in a PDGF-dependent manner, Am J Physiol, vol.260, pp.1713-1717, 1991.

M. Miyata, F. Sakuma, and A. Yoshimura, Pulmonary Hypertension in Rats 2., International Archives of Allergy and Immunology, vol.108, issue.3, pp.287-291, 1995.
DOI : 10.1159/000237166

M. Steiner, O. Syrkina, and N. Kolliputi, Interleukin-6 Overexpression Induces Pulmonary Hypertension, Circulation Research, vol.104, issue.2, pp.236-244, 2009.
DOI : 10.1161/CIRCRESAHA.108.182014

C. Parravicini, M. Corbellino, and M. Paulli, Expression of a virusderived cytokine, KSHV vIL-6, in HIV-seronegative Castleman's disease, Am J Pathol, vol.151, pp.1517-1522, 1997.

R. Mathew, J. Huang, and M. Shah, Disruption of Endothelial-Cell Caveolin-1??/Raft Scaffolding During Development of Monocrotaline-Induced Pulmonary Hypertension, Circulation, vol.110, issue.11, pp.1499-1506, 2004.
DOI : 10.1161/01.CIR.0000141576.39579.23

M. Brock, M. Trenkmann, and R. Gay, Interleukin-6 Modulates the Expression of the Bone Morphogenic Protein Receptor Type II Through a Novel STAT3-microRNA Cluster 17/92 Pathway, Circulation Research, vol.104, issue.10, pp.1184-1191, 2009.
DOI : 10.1161/CIRCRESAHA.109.197491

R. Donn, A. Berry, and A. Stevens, Use of gene expression profiling to identify a novel glucocorticoid sensitivity determining gene, BMPRII, The FASEB Journal, vol.21, issue.2, pp.402-414, 2007.
DOI : 10.1096/fj.06-7236com

P. Vascular and D. L. Price, NUMBER 4 EUROPEAN RESPIRATORY JOURNAL Inhibition of ABCC4 (MRP4) prevents and reverses pulmonary hypertension in mice

. Sud, C. Inserm-u999, L. Chirurgical-marie-lannelongue, and . Plessis-robinson, AP-HP, Service de Pneumologie et Réanimation Respiratoire, Centre National de Référence de l'Hypertension Pulmonaire Sévère, Hôpital Antoine Béclère These authors equally participated to the study Conflict of interest: The authors have declared that no conflict of interest exists Correspondence

L. J. Rubin, Primary Pulmonary Hypertension, New England Journal of Medicine, vol.336, issue.2, pp.111-117, 1997.
DOI : 10.1056/NEJM199701093360207

M. Humbert, O. Sitbon, A. Chaouat, M. Bertocchi, G. Habib et al., Survival in Patients With Idiopathic, Familial, and Anorexigen-Associated Pulmonary Arterial Hypertension in the Modern Management Era, Circulation, vol.122, issue.2, pp.156-163, 2010.
DOI : 10.1161/CIRCULATIONAHA.109.911818

M. Humbert, N. W. Morrell, S. L. Archer, K. R. Stenmark, M. R. Maclean et al., Cellular and molecular pathobiology of pulmonary arterial hypertension, Journal of the American College of Cardiology, vol.43, issue.12, pp.13-24, 2004.
DOI : 10.1016/j.jacc.2004.02.029

O. Pak, A. Aldashev, D. Welsh, and A. Peacock, The effects of hypoxia on the cells of the pulmonary vasculature, European Respiratory Journal, vol.30, issue.2, pp.364-372, 2007.
DOI : 10.1183/09031936.00128706

M. Rabinovitch, Molecular pathogenesis of pulmonary arterial hypertension, Journal of Clinical Investigation, vol.118, issue.7, pp.2372-2379, 2008.
DOI : 10.1172/JCI33452

J. Wharton, J. W. Strange, G. M. Moller, E. J. Growcott, X. Ren et al., Antiproliferative Effects of Phosphodiesterase Type 5 Inhibition in Human Pulmonary Artery Cells, American Journal of Respiratory and Critical Care Medicine, vol.172, issue.1, pp.105-113, 2005.
DOI : 10.1164/rccm.200411-1587OC

L. Zhao, N. A. Mason, N. W. Morrell, B. Kojonazarov, A. Sadykov et al., Sildenafil Inhibits Hypoxia-Induced Pulmonary Hypertension, Circulation, vol.104, issue.4, pp.424-428, 2001.
DOI : 10.1161/hc2901.093117

N. Galie, H. A. Ghofrani, A. Torbicki, R. J. Barst, L. J. Rubin et al., Sildenafil Citrate Therapy for Pulmonary Arterial Hypertension, New England Journal of Medicine, vol.353, issue.20, pp.2148-2157, 2005.
DOI : 10.1056/NEJMoa050010

N. Galie, B. H. Brundage, H. A. Ghofrani, R. J. Oudiz, G. Simonneau et al., Tadalafil Therapy for Pulmonary Arterial Hypertension, Circulation, vol.119, issue.22, pp.2894-2903, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.839274

M. Humbert, O. Sitbon, and G. Simonneau, Treatment of Pulmonary Arterial Hypertension, New England Journal of Medicine, vol.351, issue.14, pp.1425-1436, 2004.
DOI : 10.1056/NEJMra040291

URL : https://hal.archives-ouvertes.fr/hal-01455600

N. Galie, M. M. Hoeper, M. Humbert, A. Torbicki, J. L. Vachiery et al., Guidelines for the diagnosis and treatment of pulmonary hypertension, ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT), pp.2493-2537, 2009.
DOI : 10.1016/j.repce.2011.10.006

A. Sebkhi, J. W. Strange, S. C. Phillips, J. Wharton, and M. R. Wilkins, Phosphodiesterase Type 5 as a Target for the Treatment of Hypoxia-Induced Pulmonary Hypertension, Circulation, vol.107, issue.25, pp.3230-3235, 2003.
DOI : 10.1161/01.CIR.0000074226.20466.B1

R. T. Schermuly, S. S. Pullamsetti, G. Kwapiszewska, R. Dumitrascu, X. Tian et al., Phosphodiesterase 1 Upregulation in Pulmonary Arterial Hypertension: Target for Reverse-Remodeling Therapy, Circulation, vol.115, issue.17, pp.2331-2339, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.676809

F. Murray, H. H. Patel, R. Y. Suda, S. Zhang, P. A. Thistlethwaite et al., Expression and activity of cAMP phosphodiesterase isoforms in pulmonary artery smooth muscle cells from patients with pulmonary hypertension: role for PDE1, AJP: Lung Cellular and Molecular Physiology, vol.292, issue.1, pp.294-303, 2007.
DOI : 10.1152/ajplung.00190.2006

M. M. Hoeper, M. Schwarze, S. Ehlerding, A. Adler-schuermeyer, E. Spiekerkoetter et al., Long-Term Treatment of Primary Pulmonary Hypertension with Aerosolized Iloprost, a Prostacyclin Analogue, New England Journal of Medicine, vol.342, issue.25, pp.1866-1870, 2000.
DOI : 10.1056/NEJM200006223422503

P. R. Wielinga, I. Van-der-heijden, G. Reid, J. H. Beijnen, J. Wijnholds et al., Characterization of the MRP4- and MRP5-mediated Transport of Cyclic Nucleotides from Intact Cells, Journal of Biological Chemistry, vol.278, issue.20, pp.17664-17671595, 2002.
DOI : 10.1074/jbc.M212723200

Y. Sassi, L. Lipskaia, G. Vandecasteele, V. O. Nikolaev, S. N. Hatem et al., Multidrug resistance-associated protein 4 regulates cAMP-dependent signaling pathways and controls human and rat SMC proliferation, Journal of Clinical Investigation, vol.118, issue.8, pp.2747-2757, 2008.
DOI : 10.1172/JCI35067DS1

Y. Sassi, Y. Hara, A. M. Lompre, and J. S. Hulot, Multi-drug Resistance Protein 4 (MRP4/ABCC4) and cyclic nucleotides signaling pathways, Cell Cycle, vol.8, issue.7, pp.962-963, 2009.
DOI : 10.4161/cc.8.7.8094

G. Reid, P. Wielinga, N. Zelcer, D. Haas, M. Van-deemter et al., Characterization of the Transport of Nucleoside Analog Drugs by the Human Multidrug Resistance Proteins MRP4 and MRP5, Molecular Pharmacology, vol.63, issue.5, pp.1094-1103, 2003.
DOI : 10.1124/mol.63.5.1094

P. Borst, R. Evers, M. Kool, and J. Wijnholds, A Family of Drug Transporters: the Multidrug Resistance-Associated Proteins, JNCI Journal of the National Cancer Institute, vol.92, issue.16, pp.1295-1302, 2000.
DOI : 10.1093/jnci/92.16.1295

G. Reid, P. Wielinga, N. Zelcer, I. Van-der-heijden, A. Kuil et al., The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs, Proceedings of the National Academy of Sciences, vol.100, issue.16, pp.9244-9249, 2003.
DOI : 10.1073/pnas.1033060100

H. A. Ghofrani, R. J. Barst, R. L. Benza, H. C. Champion, K. A. Fagan et al., Future Perspectives for the Treatment of Pulmonary Arterial Hypertension, Journal of the American College of Cardiology, vol.54, issue.1, pp.108-117159, 2004.
DOI : 10.1016/j.jacc.2009.04.014

N. W. Morrell, X. Yang, P. D. Upton, K. B. Jourdan, N. Morgan et al., Altered Growth Responses of Pulmonary Artery Smooth Muscle Cells From Patients With Primary Pulmonary Hypertension to Transforming Growth Factor-??1 and Bone Morphogenetic Proteins, Circulation, vol.104, issue.7, pp.790-795, 2001.
DOI : 10.1161/hc3201.094152

S. Zhang, I. Fantozzi, D. D. Tigno, E. S. Yi, O. Platoshyn et al., Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells, American Journal of Physiology - Lung Cellular and Molecular Physiology, vol.285, issue.3, pp.740-754, 2003.
DOI : 10.1152/ajplung.00284.2002

G. Loirand, P. Guerin, and P. Pacaud, Rho Kinases in Cardiovascular Physiology and Pathophysiology, Circulation Research, vol.98, issue.3, pp.322-334, 2006.
DOI : 10.1161/01.RES.0000201960.04223.3c

J. M. Maher, M. Z. Dieter, L. M. Aleksunes, A. L. Slitt, G. Guo et al., Oxidative and electrophilic stress induces multidrug resistance-associated protein transporters via the nuclear factor-E2-related factor-2 transcriptional pathway, Hepatology, vol.63, issue.Pt 1, pp.1597-1610, 2007.
DOI : 10.1002/hep.21831

C. Indolfi, E. V. Avvedimento, D. Lorenzo, E. Esposito, G. Rapacciuolo et al., Activation of cAMP???PKA signaling in vivo inhibits smooth muscle cell proliferation induced by vascular injury, Nature Medicine, vol.96, issue.7, pp.775-779, 1997.
DOI : 10.1016/0002-9149(84)90752-5

P. Sinnaeve, J. D. Chiche, H. Gillijns, N. Van-pelt, D. Wirthlin et al., Overexpression of a Constitutively Active Protein Kinase G Mutant Reduces Neointima Formation and In-Stent Restenosis, Circulation, vol.105, issue.24, pp.2911-2916, 2002.
DOI : 10.1161/01.CIR.0000018169.59205.CA

R. S. Baliga, L. Zhao, M. Madhani, B. Lopez-torondel, C. Visintin et al., Synergy between Natriuretic Peptides and Phosphodiesterase 5 Inhibitors Ameliorates Pulmonary Arterial Hypertension, American Journal of Respiratory and Critical Care Medicine, vol.178, issue.8, pp.861-869, 2008.
DOI : 10.1164/rccm.200801-121OC

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643218

H. A. Ghofrani and M. M. Hoeper, Medikament??se Kombinationstherapie der pulmonal-arteriellen Hypertonie, DMW - Deutsche Medizinische Wochenschrift, vol.131, issue.S 9, pp.330-333, 2006.
DOI : 10.1055/s-2006-957205

H. A. Ghofrani, J. Pepke-zaba, J. A. Barbera, R. Channick, A. M. Keogh et al., Nitric oxide pathway and phosphodiesterase inhibitors in pulmonary arterial hypertension, Journal of the American College of Cardiology, vol.43, issue.12, pp.68-72, 2004.
DOI : 10.1016/j.jacc.2004.02.031

H. A. Ghofrani, F. Rose, R. T. Schermuly, H. Olschewski, R. Wiedemann et al., Oral sildenafil as long-term adjunct therapy to inhaled iloprost in severe pulmonary arterial hypertension, Journal of the American College of Cardiology, vol.42, issue.1, pp.158-164, 2003.
DOI : 10.1016/S0735-1097(03)00555-2

G. Simonneau, L. J. Rubin, N. Galie, R. J. Barst, T. R. Fleming et al., Addition of Sildenafil to Long-Term Intravenous Epoprostenol Therapy in Patients with Pulmonary Arterial Hypertension, Annals of Internal Medicine, vol.149, issue.8, pp.521-530, 2008.
DOI : 10.7326/0003-4819-149-8-200810210-00004

L. Zhao, A. Sebkhi, O. Ali, B. Wojciak-stothard, L. Mamanova et al., Simvastatin and sildenafil combine to attenuate pulmonary hypertension, European Respiratory Journal, vol.34, issue.4, pp.948-957, 2009.
DOI : 10.1183/09031936.00143508

P. Dorfmuller, V. Zarka, I. Durand-gasselin, G. Monti, K. Balabanian et al., Chemokine RANTES in Severe Pulmonary Arterial Hypertension, American Journal of Respiratory and Critical Care Medicine, vol.165, issue.4, pp.534-539, 2002.
DOI : 10.1164/ajrccm.165.4.2012112

P. M. Hassoun, L. Mouthon, J. A. Barbera, S. Eddahibi, S. C. Flores et al., Inflammation, Growth Factors, and Pulmonary Vascular Remodeling, Journal of the American College of Cardiology, vol.54, issue.1, pp.10-19, 2009.
DOI : 10.1016/j.jacc.2009.04.006

R. M. Tuder, B. Groves, D. B. Badesch, and N. F. Voelkel, Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension, Am J Pathol, vol.144, pp.275-285, 1994.

M. K. Steiner, O. L. Syrkina, N. Kolliputi, E. J. Mark, C. A. Hales et al., Interleukin-6 Overexpression Induces Pulmonary Hypertension, Circulation Research, vol.104, issue.2, pp.236-244, 2009.
DOI : 10.1161/CIRCRESAHA.108.182014

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.561.7740

M. Humbert, G. Monti, F. Brenot, O. Sitbon, A. Portier et al., Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension., American Journal of Respiratory and Critical Care Medicine, vol.151, issue.5, pp.1628-1631, 1995.
DOI : 10.1164/ajrccm.151.5.7735624

L. Oevermann, J. Scheitz, K. Starke, K. Kock, T. Kiefer et al., Hematopoietic stem cell differentiation affects expression and function of MRP4 (ABCC4), a transport protein for signaling molecules and drugs, International Journal of Cancer, vol.89, issue.Part 2, pp.2303-2311, 2009.
DOI : 10.1002/ijc.24207

J. Nagendran, S. L. Archer, D. Soliman, V. Gurtu, R. Moudgil et al., Phosphodiesterase Type 5 Is Highly Expressed in the Hypertrophied Human Right Ventricle, and Acute Inhibition of Phosphodiesterase Type 5 Improves Contractility, Circulation, vol.116, issue.3, pp.238-248, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.655266

S. L. Archer and E. D. Michelakis, Phosphodiesterase Type 5 Inhibitors for Pulmonary Arterial Hypertension, New England Journal of Medicine, vol.361, issue.19, pp.1864-1871, 2009.
DOI : 10.1056/NEJMct0904473

C. F. Mueller, K. Wassmann, J. D. Widder, S. Wassmann, C. H. Chen et al., Multidrug Resistance Protein-1 Affects Oxidative Stress, Endothelial Dysfunction, and Atherogenesis via Leukotriene C4 Export, Circulation, vol.117, issue.22, pp.2912-2918, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.747667

R. A. Panettieri, E. M. Tan, V. Ciocca, M. A. Luttmann, T. B. Leonard et al., : Differential Sensitivity to Cysteinyl Leukotriene Receptor Antagonists, American Journal of Respiratory Cell and Molecular Biology, vol.19, issue.3, pp.453-461, 1998.
DOI : 10.1165/ajrcmb.19.3.2999

Z. S. Chen, K. Lee, and G. D. Kruh, Transport of Cyclic Nucleotides and Estradiol 17-??-D-Glucuronide by Multidrug Resistance Protein 4: RESISTANCE TO 6-MERCAPTOPURINE AND 6-THIOGUANINE, Journal of Biological Chemistry, vol.276, issue.36, pp.33747-33754, 2001.
DOI : 10.1074/jbc.M104833200

R. G. Deeley, C. Westlake, C. , and S. P. , Transmembrane Transport of Endo- and Xenobiotics by Mammalian ATP-Binding Cassette Multidrug Resistance Proteins, Physiological Reviews, vol.86, issue.3, pp.849-899, 2006.
DOI : 10.1152/physrev.00035.2005

C. Li, P. C. Krishnamurthy, H. Penmatsa, K. L. Marrs, X. Q. Wang et al., Spatiotemporal Coupling of cAMP Transporter to CFTR Chloride Channel Function in the Gut Epithelia, Cell, vol.131, issue.5, pp.940-951, 2007.
DOI : 10.1016/j.cell.2007.09.037

J. B. Huang, Y. L. Liu, P. W. Sun, X. D. Lv, K. Bo et al., Novel Strategy for Treatment of Pulmonary Arterial Hypertension: Enhancement of Apoptosis, Lung, vol.14, issue.16, pp.179-189
DOI : 10.1007/s00408-010-9233-8

M. S. Mcmurtry, S. L. Archer, D. C. Altieri, S. Bonnet, A. Haromy et al., Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension, 52. Stenmark, K.R., and Rabinovitch, M. Emerging therapies for the treatment of pulmonary hypertension, pp.1479-1491, 2005.
DOI : 10.1172/JCI23203

R. T. Schermuly, E. Dony, H. A. Ghofrani, S. Pullamsetti, R. Savai et al., Reversal of experimental pulmonary hypertension by PDGF inhibition, Journal of Clinical Investigation, vol.115, issue.10, pp.2811-28211640, 2003.
DOI : 10.1172/JCI24838

J. D. Chiche, S. M. Schlutsmeyer, D. B. Bloch, S. M. De-la-monte, J. D. Roberts et al., Adenovirus-mediated Gene Transfer of cGMP-dependent Protein Kinase Increases the Sensitivity of Cultured Vascular Smooth Muscle Cells to the Antiproliferative and Pro-apoptotic Effects of Nitric Oxide/cGMP, Journal of Biological Chemistry, vol.273, issue.51, pp.34263-34271, 1998.
DOI : 10.1074/jbc.273.51.34263

S. N. Orlov, N. Thorin-trescases, N. O. Dulin, T. V. Dam, M. A. Fortuno et al., Activation of cAMP signaling transiently inhibits apoptosis in vascular smooth muscle cells in a site upstream of caspase-3, Cell Death and Differentiation, vol.6, issue.7, pp.661-672, 1999.
DOI : 10.1038/sj.cdd.4400539

E. Delannoy, A. Courtois, V. Freund-michel, V. Leblais, R. Marthan et al., Hypoxia-induced hyperreactivity of pulmonary arteries: role of cyclooxygenase-2, isoprostanes, and thromboxane receptors, Cardiovascular Research, vol.85, issue.3, pp.582-592
DOI : 10.1093/cvr/cvp292

L. Rodat, J. P. Savineau, R. Marthan, and C. Guibert, Effect of chronic hypoxia on voltage-independent calcium influx activated by 5-HT in rat intrapulmonary arteries, Pfl??gers Archiv - European Journal of Physiology, vol.272, issue.Pt 3, pp.41-51, 2007.
DOI : 10.1007/s00424-006-0178-y

S. Eddahibi, M. Humbert, E. Fadel, B. Raffestin, M. Darmon et al., Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension, Journal of Clinical Investigation, vol.108, issue.8, pp.1141-1150, 2001.
DOI : 10.1172/JCI200112805

F. Fresquet, F. Pourageaud, V. Leblais, R. P. Brandes, J. P. Savineau et al., Role of reactive oxygen species and gp91phox in endothelial dysfunction of pulmonary arteries induced by chronic hypoxia, British Journal of Pharmacology, vol.32, issue.5, pp.714-723, 2006.
DOI : 10.1038/sj.bjp.0706779

P. Campagnolo and M. M. Wong, Progenitor Cells in Arteriosclerosis: Good or Bad Guys?, Antioxidants & Redox Signaling, vol.15, issue.4, 2010.
DOI : 10.1089/ars.2010.3506

A. I. Caplan, The mesengenic process, Clin Plast Surg, vol.21, issue.3, pp.429-464, 1994.

D. J. Ceradini and A. R. Kulkarni, Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1, Nature Medicine, vol.103, issue.8, pp.858-64, 2004.
DOI : 10.1172/JCI200113152

A. Chaouat and E. Weitzenblum, The role of thrombosis in severe pulmonary hypertension, European Respiratory Journal, vol.9, issue.2, pp.356-63, 1996.
DOI : 10.1183/09031936.96.09020356

P. M. Chaudhary and E. B. Mechetner, Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes, Blood, vol.80, issue.11, pp.2735-2744, 1992.

M. H. Chen and R. Kerkela, Mechanisms of Cardiac Dysfunction Associated With Tyrosine Kinase Inhibitor Cancer Therapeutics, Circulation, vol.118, issue.1, pp.84-95, 2008.
DOI : 10.1161/CIRCULATIONAHA.108.776831

H. Maxova and M. Vasilkova, Prevention of Mast Cell Degranulation by Disodium Cromoglycate Delayed the Regression of Hypoxic Pulmonary Hypertension in Rats, Respiration, vol.80, issue.4, 2010.
DOI : 10.1159/000312403

R. Mazhari and J. M. Hare, Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche, Nature Clinical Practice Cardiovascular Medicine, vol.103, issue.1, pp.21-27, 2007.
DOI : 10.1038/ncpcardio0770

D. H. Mcdermott and Q. Yang, CCL2 Polymorphisms Are Associated With Serum Monocyte Chemoattractant Protein-1 Levels and Myocardial Infarction in the Framingham Heart Study, Circulation, vol.112, issue.8, pp.1113-1133, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.543579

R. Mckay, Stem Cells in the Central Nervous System, Science, vol.276, issue.5309, pp.66-71, 1997.
DOI : 10.1126/science.276.5309.66

A. Mclaren, Ethical and social considerations of stem cell research, Nature, vol.414, issue.6859, pp.129-160, 2001.
DOI : 10.1038/35102194

H. J. Medbury and S. L. Tarran, MONOCYTES CONTRIBUTE TO THE ATHEROSCLEROTIC CAP BY TRANSFORMATION INTO FIBROCYTES, Atherosclerosis Supplements, vol.9, issue.1, pp.114-137, 2008.
DOI : 10.1016/S1567-5688(08)70207-1

M. Mellado and J. M. Rodriguez-frade, Chemokine control of HIV-1 infection, Nature, vol.400, issue.6746, pp.723-727, 1999.
DOI : 10.1038/23382

M. Mellado and J. M. Rodriguez-frade, Chemokine receptor homo-or heterodimerization activates distinct signaling pathways modifying proteins in hypoxic rat lung, Embo J Am J Physiol Lung Cell Mol Physiol, vol.20, issue.2803, pp.2497-507, 2001.

F. P. Quismorio, O. Jr, and . Sharma, Immunopathologic and clinical studies in pulmonary hypertension associated with systemic lupus erythematosus, Seminars in Arthritis and Rheumatism, vol.13, issue.4, pp.349-59, 1984.
DOI : 10.1016/0049-0172(84)90015-5

M. Rabinovitch and W. Gamble, Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features, Am J Physiol, vol.236, issue.6, 1979.

D. L. Ramirez-bergeron and M. C. Simon, Hypoxia-Inducible Factor and the Development of Stem Cells of the Cardiovascular System, Stem Cells, vol.127, issue.8, pp.279-86, 2001.
DOI : 10.1634/stemcells.19-4-279

W. Raoul and O. Wagner-ballon, Effects of bone marrow-derived cells on monocrotaline- and hypoxia-induced pulmonary hypertension in mice, Respiratory Research, vol.286, issue.1, p.8, 2007.
DOI : 10.1152/ajplung.00108.2003

URL : https://hal.archives-ouvertes.fr/inserm-00130570

P. Ray and N. Krishnamoorthy, Emerging functions of c-kit and its ligand stem cell factor in dendritic cells, Cell Cycle, vol.7, issue.18, pp.2826-2858, 2008.
DOI : 10.4161/cc.7.18.6752

Y. Renaudineau and C. Dugue, Antiendothelial cell antibodies in systemic lupus erythematosus, Autoimmunity Reviews, vol.1, issue.6, pp.365-72, 2002.
DOI : 10.1016/S1568-9972(02)00063-0

C. J. Rhodes and A. Davidson, Therapeutic targets in pulmonary arterial hypertension, Pharmacology & Therapeutics, vol.121, issue.1, pp.69-88, 2009.
DOI : 10.1016/j.pharmthera.2008.10.002

D. Ribatti and F. Levi-schaffer, Inflammatory angiogenesis in atherogenesis???a double-edged sword, Annals of Medicine, vol.39, issue.8, pp.606-627, 2008.
DOI : 10.1016/j.jacc.2006.09.053

J. M. Rodriguez-frade and M. Mellado, Chemokine receptor stem cells, Eur J Cancer, vol.42, issue.9, pp.1243-1249, 2001.

Q. Shi and S. Rafii, Evidence for circulating bone marrowderived endothelial cells, Blood, vol.92, issue.2, pp.362-369, 1998.

F. Sierro and C. Biben, Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7, Proceedings of the National Academy of Sciences, vol.104, issue.37, pp.14759-64, 2007.
DOI : 10.1073/pnas.0702229104

G. Simonneau and I. M. Robbins, Updated Clinical Classification of Pulmonary Hypertension, Journal of the American College of Cardiology, vol.54, issue.1, pp.43-54, 2009.
DOI : 10.1016/j.jacc.2009.04.012

D. Simper and P. G. Stalboerger, Smooth Muscle Progenitor Cells in Human Blood, Circulation, vol.106, issue.10, pp.1199-204, 2002.
DOI : 10.1161/01.CIR.0000031525.61826.A8

A. A. Sirker and Z. M. Astroulakis, Vascular progenitor cells and translational research: the role of endothelial and smooth muscle progenitor cells in endogenous arterial remodelling in the adult, Clinical Science, vol.116, issue.4, pp.283-99, 2009.
DOI : 10.1042/CS20080001

D. M. Smadja and P. Gaussem, Circulating endothelial cells: a new candidate biomarker of irreversible pulmonary hypertension secondary to, 2009.