Contraintes isotopiques sur l’interprétation de l’enregistrement en nitrate dans la carotte de glace de Vostok
Joseph Erbland

To cite this version:

HAL Id: tel-00638761
https://tel.archives-ouvertes.fr/tel-00638761
Submitted on 6 Jun 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Sciences de la Terre, de l’Univers et de l’Environnement
Arrêté ministériel : 7 août 2006

Présentée par
Joseph ERBLAND

Thèse dirigée par Joël SAVARINO
et codirigée par Samuel MORIN

préparée au sein du
Laboratoire de Glaciologie et Géophysique de l’Environnement
et de l’École doctorale Terre, Univers, Environnement

Contraintes isotopiques sur l’interprétation de l’enregistrement en nitrate dans la carotte de glace de Vostok
Isotopic constrains on the interpretation of the nitrate record in the Vostok ice core

Thèse soutenue publiquement le 21 octobre 2011,
devant le jury composé de :

M. Bernard MARTY
Professeur à l’ENSG, chercheur au CRPG, Président

Mme. Amaëlle LANDAIS
Chargée de Recherche CNRS, LSCE, Rapporteur

M. Slimane BEKKI
Directeur de Recherche CNRS, LATMOS, Rapporteur

M. Michel LEGRAND
Directeur de Recherche CNRS, LGGE, Examinateur

M. Joël SAVARINO
Chargé de Recherche CNRS, LGGE, Directeur de thèse

M. Samuel MORIN
Ingénieur des PEF, Météo-France CNRM-GAME/CEN, Co-Directeur de thèse
Table des matières

Résumé .. iv
Abstract .. v
Remerciements .. vi

1 Introduction : état de l’art, outils et contexte de l’étude 1
 1.1 Introduction générale .. 1
 1.1.1 Les enregistrements glaciaires 1
 1.1.2 Variations climatiques et gaz à effet de serre 3
 1.1.3 Utilisation climatique du contenu en impuretés des carottes 5
 1.1.4 Informations sur la chimie atmosphérique 5
 1.2 Le nitrate dans les carottes de glace 6
 1.2.1 Concentrations .. 6
 1.2.2 δ^{15}N dans le nitrate 9
 1.3 Cycle du nitrate sur le plateau Antarctique 11
 1.3.1 Climat et particularités du plateau Antarctique 11
 1.3.2 Sources primaires et puits 18
 1.3.3 Perte de nitrate et recyclage à la surface du manteau neigeux 25
 1.4 Questions scientifiques 34
 1.5 Approche choisie dans ce travail 35
 1.5.1 Collecte d’échantillons 35
 1.5.2 Fonction de transfert à l’interface air/neige et développement du modèle TRANSITS 40
 1.5.3 Interprétations qualitatives et quantitatives du profil de nitrate dans la carotte de glace de Vostok 41

2 Méthodes analytiques .. 43
 2.1 Introduction : principes généraux de la spectrométrie de masse à rapports isotopiques (IRMS) 43
 2.2 La méthode d’analyse des nitrates, le choix des bactéries et ses contraintes 44
 2.2.1 Méthodes alternatives 45
 2.2.2 Méthode bactérienne et analyse de N_2O 46
 2.2.3 Calibration des résultats isotopiques 50
 2.3 Contraintes et améliorations dans le cadre de cette thèse 54
 2.3.1 Optimisation des méthodes 54
2.3.2 Préconcentration du nitrate avant la mesure isotopique 59
2.4 Mesure des concentrations ioniques . 65
2.4.1 Mesure des concentrations par chromatographie ionique 65
2.4.2 Méthode colorimétrique pour la mesure de la concentration en nitrate . . 66
2.5 Méthodes spécifiques et données complémentaires 67
2.5.1 Nitrate atmosphérique . 67
2.5.2 Givre de surface . 68
2.5.3 Puits de neige . 68
2.5.4 Carotte de glace de Vostok . 69
2.6 Conclusions . 76

3 Résultats : δ^{15}N, Δ^{17}O et δ^{18}O du nitrate dans la carotte de glace de Vostok 77
3.1 Enregistrements chimiques et isotopiques à l’échelle glaciaire 77
3.2 Tendances générales observées . 78
3.2.1 δ^{15}N . 78
3.2.2 Δ^{17}O . 78
3.2.3 δ^{18}O . 80
3.3 Stratégie mise en œuvre pour l’interprétation de ces données 80

4 TRANSITS model – TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow 83
4.1 Motivation and context . 83
4.1.1 Introduction . 83
4.1.2 UV-photolysis, an important driver of nitrate loss from the snowpack . . 85
4.1.3 Implications for the interpretation of the ice-core record 89
4.2 Description of the model . 91
4.2.1 Disclaimer . 91
4.2.2 Overview . 91
4.2.3 General framework . 91
4.2.4 Equations . 93
4.2.5 Optical and physical properties of the snowpack and snow accumulation . 96
4.2.6 Nitrate photolysis and snowpack production of NO_2 97
4.2.7 Local oxidation of NO_2 to form HNO_3 . 100
4.2.8 Atmospheric box . 102
4.2.9 Nitrate adsorption to the snow . 103
4.2.10 Model outputs . 106
4.3 Driving and evaluation data . 107
4.3.1 Driving data for a realistic simulation . 107
4.3.2 Driving data for a reference simulation . 110
4.3.3 Evaluation data . 110
4.4 Comparison of the realistic simulation to observed data 117
4.4.1 Results . 117
4.4.2 Discussion and evaluation of the model . 122
4.5 Sensitivity tests . 129
4.5.1 Tests and results .. 129
4.5.2 Discussion .. 129
4.5.3 Controls on δ^{15}N, Δ^{17}O and FA ... 136
4.6 Reproduction of the spatial variability along the D10–Dome C–Vostok route ... 142
4.6.1 Modified Rayleigh plot ... 144
4.6.2 δ^{15}N$_{FA}$ versus $1/A$... 144
4.6.3 Δ^{17}O$_{FA}$ versus δ^{15}N$_{FA}$... 145
4.7 Conclusions ... 145

5 Interprétations qualitative et quantitative du profil de nitrate archivé dans la
carotte de glace de Vostok .. 147
5.1 Ubiquité et persistence de la perte de nitrate à la surface des calottes glaciaires ... 148
5.1.1 Persistence de la perte de nitrate sur les 150 000 dernières années à Vostok ... 148
5.1.2 Implications pour l’interprétation des enregistrements glaciaires au Groenland ... 149
5.1.3 Impact de la forme chimique sur la perte de nitrate ... 150
5.2 Estimation du flux primaire de nitrate reçu à Vostok ... 151
5.2.1 Observations en période d’extrêmes glaciaires ... 151
5.2.2 Reconstruction du flux primaire de nitrate reçu à Vostok au cours des
150 000 dernières années ... 153
5.2.3 Tendances sur le cycle climatique ... 161
5.2.4 Comparaison des formes chimiques du nitrate dans les flux primaire et
archivé .. 163
5.3 Reconstruction de l’intensité du recyclage sur la base des taux d’accumulation
mesurés .. 165
5.3.1 Méthode .. 165
5.3.2 Résultats .. 166
5.3.3 Discussion .. 167
5.4 Interprétation des variations de Δ^{17}O ... 172
5.4.1 Méthode .. 172
5.4.2 Résultats .. 173
5.4.3 Discussion .. 174
5.5 Implications concernant le cycle de l’azote réactif en Antarctique ... 180

6 Conclusions et perspectives ... 185

Références bibliographiques ... 196

A Protocole de préconcentration du nitrate ... 211

B Résumé des activités au cours de cette thèse ... 213

C Tableaux récapitulatifs des données acquises pour la carotte de glace de Vostok ... 217
Résumé

L’ion nitrate (NO_3^-) présent dans les neiges Antarctiques est issu de l’oxydation des oxydes d’azote ($\text{NO}_x = \text{NO} + \text{NO}_2$) dans l’atmosphère. Aux sites de faible accumulation de neige tels que Vostok et Dôme C sur le plateau de l’Est de l’Antarctique, le nitrate n’est pas piégé de manière ultime dans la neige, ce qui limite fortement l’interprétation des enregistrements en nitrate dans les carottes de glace. Des mesures récentes de la composition isotopique en azote du nitrate ($\delta^{15}\text{N}$) montrent des valeurs extrêmement élevées (+339‰) dans les premiers décimètres de la neige de Dôme C. Ces valeurs ont été attribuées à la photolyse du nitrate et au recyclage important qui en résulte. Le nitrate possède, par ailleurs, une anomalie isotopique en oxygène ($\Delta^{17}\text{O}$) qui permet de tracer l’activité de l’ozone (O_3) au cours de sa formation.

Ce travail de thèse présente le premier enregistrement de la composition isotopique complète du nitrate ($\delta^{15}\text{N}$, $\Delta^{17}\text{O}$ et $\delta^{18}\text{O}$) dans une carotte de glace : la carotte de glace de Vostok dont les 64 échantillons analysés couvrant une période de 150 000 ans. Ce jeu de données a été complété par 313 échantillons collectés entre 2007 et 2010 dans le continuum atmosphère/givre/neige au Dôme C ainsi que dans 21 puits de neige prélevés dans une zone couvrant l´essentiel de l’Est de l’Antarctique. L’analyse isotopique de ces échantillons modernes a permis de contraindre le modèle conceptuel TRANSITS développé au cours de cette thèse et dont le but est de représenter le recyclage du nitrate à l’interface entre l’atmosphère et la neige ainsi que son impact sur la composition isotopique du nitrate archivé.

Les valeurs positives et élevées du $\delta^{15}\text{N}$ du nitrate piégé dans la carotte de glace de Vostok montrent que le recyclage du nitrate a toujours eu lieu sur le plateau Antarctique au cours de la période étudiée. Les variations du flux primaire de nitrate reçu au site de Vostok estimées à l’aide du modèle TRANSITS montrent, en périodes glaciaires, un flux primaire plus important qui pourrait être lié à une dénitrification stratosphérique plus conséquente. Les valeurs de $\Delta^{17}\text{O}$ du nitrate montrent que l’incursion d’ozone stratosphérique dans la troposphère était plus fréquente en périodes glaciaires. Nous proposons enfin que les résultats acquis dans le cadre de cette thèse pourraient permettre de mieux contraindre le cycle de l’azote sur la côte Antarctique et d’apporter des éléments d’interprétation des enregistrements en nitrate dans les carottes de glace de sites de plus forte accumulation de neige (au Groenland par exemple).

Mots clés : Antarctique, nitrate atmosphérique, isotopes stables, carottes de glace, ozone, stratosphère.
Abstract

Nitrate ions (NO_3^-) found in Antarctic snows stem from the degradation of nitrogen oxides ($\text{NO}_x = \text{NO} + \text{NO}_2$) in the atmosphere. At sites with low snow accumulation rates such as Vostok or Dome C (East Antarctic plateau), nitrate deposition to the snow is not irreversible and this strongly hampers the interpretation of nitrate concentration records in ice cores. Nitrogen stable isotopic ratios ($\delta^{15}N$) as high as $+339 \%_e$ were measured in nitrate in the upper firn at Dome C and have been attributed to nitrate photolysis initiating a strong recycling at the snow surface. The oxygen isotopic anomaly ($\Delta^{17}O$) reflects the activity of ozone (O_3) in nitrate formation.

We present the first comprehensive isotopic analysis of nitrate ($\delta^{15}N$, $\Delta^{17}O$ and $\delta^{18}O$) in a deep ice core. 64 samples of nitrate from the Vostok ice core have been analyzed and cover the last 150,000 years. This dataset has been completed with 313 samples recently collected in the atmosphere/surface hoar/snow continuum at Dome C as well as in several snowpits from various sites covering most of the East Antarctica. Those present-day samples are used to evaluate a conceptual model (named TRANSITS) developed during this PhD and which aims at representing nitrate recycling at the snow/atmosphere interface and at modelling its impact on the isotopic composition of the archived nitrate.

High positive $\delta^{15}N(\text{NO}_3^-)$ values measured in the Vostok ice core reveal that nitrate recycling has always occurred at the surface of the Antarctic plateau over this period. Past variations of the primary flux of nitrate to the Vostok site have been estimated using the TRANSITS model. They show that glacial periods were characterized by higher inputs which may have been linked to a greater stratospheric denitrification. The $\Delta^{17}O$ values indicate that intrusions of stratospheric air masses to the troposphere may have been more frequent in glacial periods thus incorporating significant amounts of stratospheric ozone to the lower atmosphere. Last, we suggest that this study may have some relevance to the coastal nitrogen budget in Antarctica and to the interpretation of ice cores retrieved from high accumulation sites (e.g. in Greenland).

Keywords: Antarctica, atmospheric nitrate, stable isotopes, ice cores, ozone, stratosphere.
Remerciements

Tout d’abord, merci à Amaëlle Landais et Slimane Bekki d’avoir accepté d’évaluer mon manuscrit ainsi qu’à Bernard Marty et Michel Legrand pour avoir participé au jury.

Merci, Joël et Samuel, pour la paire de directeurs de thèse géniaux et complémentaires que vous constituez ! Travailler à vos côtés depuis mes balbutiements dans le monde de la recherche et de la géochimie isotopique aura été une expérience d’une infinie richesse et les amitiés qui en sont nées auront été un soutien précieux dans les moments difficiles qui ont jalonnés cet effort de longue haleine !

Merci à l’équipe Savarino élargie, ce creuset où la diversité des parcours et des origines donne naissance à une chouette émulation scientifique ! Merci donc à Will, Tes, Alyson, Bhatta et Carl ! Au cours de ma thèse, j’ai également eu le plaisir d’encadrer le stage de master de Francis Graniec qui a en partie contribué à l’obtention des données présentées dans ce document. Merci Francis !

Merci à la team Martins (Jean, Erwann, Aurélien et Aline) du côté du LTHE pour les nombreuses préparations de milieux nutritifs sans lesquels la mesure de la composition isotopique du nitrate serait beaucoup plus délicate à mettre en œuvre !

Merci aux collègues du LGGE et notamment à ceux des équipes chimie et gaz, avec une pensée émue pour Jean-Marc qui a toujours montré un grand intérêt pour nos questionnements isotopiques. Merci à l’équipe technique du labo (Romain, Philippo, Olivier et Éric sans oublier Jean-Philippe) pour leurs bons conseils et leur disponibilité. Merci aussi aux équipes d’administration et de direction du LGGE (Aurore, Elisabeth, Michèle, Emmanuelle, Maud, Michel, Paolo, Jean-Luc, Gerhard) et de l’ED TUE (Christine, Etienne, Jean-Luc, Jean) sans qui tous ces travaux auraient été beaucoup plus difficiles à mettre en œuvre. Un merci très spécial à Patrick Ginot grâce à qui les données chromatographiques ont pu être obtenues pour les échantillons de la carotte de glace de Vostok.

Ce projet a comporté une composante de terrain importante et j’aimerais saluer le travail des personnels techniques des instituts polaires français (IPEV) et italiens (PNRA) qui mettent en œuvre le soutien logistique essentiel aux activités de recherche scientifique dans les difficiles conditions polaires. Merci également aux hivernants glacio qui se sont succédés à la base hivernale Concordia (Caro, Sylvain et Ilann) et qui ont permis de collecter une grande partie des échantillons exceptionnels présentés ici. J’aimerais enfin, et surtout, que le document que vous tenez entre les mains participe à entretenir le souvenir des collègues qui auront laissé leur vie dans le grand blanc.

Merci aux actuels et anciens thésards du LGGE et ceux des labos environnant (et dont je n’arriverai jamais à retenir le sigle) pour la bonne ambiance, les sorties pleine lune, les capots-coINCHEs, les midi-passerelle et les sessions de slack à toute heure du jour ! Une mention spéciale aux boosters de moral, les amis du « on est pas bien ! » : Malika, Lau, Marie, Tiben, Tomial et aux co-bureaux de l’extension est du bocal : Macha, Anne-So, Nico « Papa » Maruszczak et Katherine… qui auront enduré pendant de nombreux mois/années mes allers/retours bureau-labo incessants et mes sauts d’humeurs réguliers !

Pendant cette thèse, j’ai également eu la chance d’enseigner dans les écoles ENSE³ et PA-GORA de Grenoble INP. Cette expérience a été très riche et je suis heureux de remercier mes collègues enseignants de ces écoles, tous les amis doctorants-moniteurs ainsi que l’équipe de
l’administration du CIES de Grenoble et notamment Didier Retour qui est parti bien trop tôt.
Ils ont tous, à leurs mesure et manière, participé à créer cet espace de relâchement et de prise de recul qu’a été pour moi l’enseignement.

Merci aussi aux collaborateurs géniaux qui auront bien voulu documenter, critiquer, questionner mes travaux et partager les leurs. Je pense notamment à Anthony Darrouzet-Nardi, Matt Patey, James France et Markus Frey. Mon séjour de deux mois à l’Université de Washington (Seattle) a été une expérience unique et déterminante qui a permis de confirmer mon aise dans le domaine de la géochimie isotopique. Merci donc aux collègues de Seattle (Becky Alexander, Andy Schauer, Eric Steig, Eric Sofen, Lei Geng et Ben Johnson) pour l’accueil qu’ils m’ont réservé et pour la facilité avec laquelle ils ont mis à ma disposition leurs équipements. Un merci très spécial à Mike et Shelley qui ont ouvert en grand les portes de leurs maisons et leurs cœurs pendant cette période et, grâce à qui, Seattle est devenue une partie de moi ! Merci aussi aux agents de l’immigration américaine à Toronto. Ils m’auront appris que les boulets ne sont pas les bienvenus aux US !

Ce travail n’aurait jamais abouti sans le soutien indéfectible des cellules psychologiques alsacienne (Maman, Papa, Serge, Yolande, la frangine, le beauf et leurs petits), grenobloise-par-extension (Mo, Gwi, Virginie, Marin, Belette, Flo, Maë et Jean-Gouze, Tangouze, les grands et ptits Gays et d’autres déjà cités plus haut mais qui méritent d’avoir deux fois leurs noms ici - Tiben, Malika et Lau), purement-parisienne (JM) et villadéenne (Brad Pitt, la famille Arnaud et leurs bons pinard et autres produits). Je dois également beaucoup à Zazu pour qui cette thèse n’aura pas été une partie de plaisir. L’aboutissement de ce travail est aussi, finalement, le sien. Et merci à celle qui n’aura rien vu de tout cela mais qui porte si bien son nom.
Chapitre 1

Introduction : état de l’art, outils et contexte de l’étude

1.1 Introduction générale

1.1.1 Les enregistrements glaciaires

Dans le contexte actuel du changement climatique (IPCC, 2007), il est plus que jamais nécessaire de tenter de comprendre le système climatique terrestre. Avant de pouvoir appréhender son évolution future, il est primordial de savoir quels mécanismes sont à l’œuvre en conditions naturelles, c’est-à-dire en dehors de tout impact anthropique. Les informations contenues dans les archives paléoclimatiques peuvent y contribuer.

Les archives paléoclimatiques peuvent être d’origine continentale (sédiments lacustres, pollens, cernes des arbres, spéléothèmes . . .) ou océanique (sédiments marins, fossiles, coraux, . . .). Les archives glaciaires (plus communément appelées « carottes de glace ») sont essentiellement prélevées dans les calottes polaires et ont permis d’obtenir des enregistrements continus de l’environnement passé couvrant plusieurs cycles climatiques (Dansgaard et al., 1969; Petit et al., 1997). De faibles taux d’accumulation de neige ainsi qu’une épaisseur de calotte importante caractérisent le plateau Antarctique (Siegert, 2003). Le forage de la glace permet donc d’obte-
nir des enregistrements suffisamment longs pour couvrir plusieurs cycles climatiques : le forage EPICA \(^1\)-DC réalisé au Dôme C (DC, 75\(^\circ\)06'S, 123\(^\circ\)20'E, altitude 3233 m, température moyenne \(-53 \, ^\circ\)C) sur le plateau Antarctique a ainsi permis de remonter jusqu'à 800 000 ans avant notre ère (EPICA community members, 2004). Les forages dans la calotte groenlandaise ont permis de remonter à près de 123 000 ans (Greenland Ice Core Project members, 2004).

À la base russe de Vostok (78\(^\circ\)27'S, 106\(^\circ\)50'E, altitude 3488 m, température moyenne \(-55 \, ^\circ\)C), les forages de grande profondeur ont été initiés en 1970 par le Leningrad Mining Institute (appelé à partir de 1991, le St Petersbourg State Mining Institute). Cinq carottes de glace profondes ont été obtenues (figure 1.1) et parmi celles-ci la carotte issue du trou No. 5 (5G\(^2\)), qui a atteint en janvier 1998 la profondeur de 3623 mètres, quelques 120 m au-dessus du lac sous-glaciaire de Vostok (Petit et al., 1999). Via sa participation à ce projet, la France a obtenu une banque de carotte dont la carotte 3G-1 nommée ici « 3G ». Il s’agit de la première carotte extraite du trou No. 3, dont la profondeur maximale est 2082 mètres et qui est actuellement stockée dans l’agglomération grenobloise. Le prélèvement de cette archive s’est achevé en 1982 et elle a été intensivement étudiée depuis (Legrand et al., 1999; Petit et al., 1999; Alexander et al., 2002; Landais et al., 2008).

Figure 1.1 – Morceaux de la carotte de glace de Vostok.

\(^1\) European Project for Ice Coring in Antarctica

\(^2\) G est la première lettre du mot russe « глубокая » (glubokaya en alphabet français) qui signifie « profond » (Vasiliev et al., 2007)
Les carottes de glace contiennent des gaz piégés dans des bulles d’air ainsi que des impuretés solubles et insolubles (Wolff et al., 2010). La mesure de ces gaz et impuretés ainsi que celle de la composition isotopique de l’eau formant la glace permettent d’obtenir une série d’informations sur la composition atmosphérique passée ou de certains paramètres d’intérêt climatique. Les impuretés contenues dans la neige Antarctique sont essentiellement importées sur le continent sous la forme d’aérosols (Wolff et al., 2010).

1.1.2 Variations climatiques et gaz à effet de serre

Le Quaternaire (qui a débuté entre il y a \(-2.4\) et \(-1.5\) millions d’années), et plus particulièrement le dernier million d’années, est caractérisé par une succession de périodes glaciaires, « froides » d’une durée de l’ordre de 90 000 ans, et de périodes interglaciaires, « chaudes » d’une durée de l’ordre de 10 000 ans (Mayewski et al., 2009). Ces cycles trouvent leur origine dans la variation de certains paramètres orbitaux qui déterminent la distribution saisonnière et géographique ainsi que la quantité d’énergie solaire reçue du Soleil (Berger, 1978; Imbrie et al., 1992). Le forçage radiatif solaire ne gouverne pas seul le climat de la Terre car une série de rétroactions rend cette dynamique complexe. On peut évoquer parmi celles-ci les variations de l’albédo de la Terre (fortement influencées par l’extension spatiale des régions englacées et enneigées), ou encore les variations des teneurs en gaz à effet de serre. On appelle « effet de serre », l’absorption du rayonnement infra-rouge réémis par la surface de la Terre. Les principaux gaz à effet de serre d’origine naturelle sont la vapeur d’eau (H\(_2\)O), le méthane (CH\(_4\)), le dioxyde de carbone (CO\(_2\)), l’ozone (O\(_3\)) troposphérique et le protoxyde d’azote (N\(_2\)O).

L’étude des carottes de glace a d’ores-et-déjà permis d’acquérir de bonnes informations sur certaines variables climatiques. Il a ainsi été possible de lier la composition de l’atmosphère ancienne et les fluctuations climatiques en étudiant la teneur de certains gaz à effet de serre dans les bulles d’air emprisonnées dans la glace. La variabilité climatique est représentée en un site donné par les changements de température de surface locale. Dans le cas des archives glaciaires, les marqueurs de la température locale généralement utilisés sont les isotopes lourds de
l’hydrogène et de l’oxygène dans l’eau : le deutérium (D) et l’oxygène-18 (18O) respectivement. Lors de la formation de la précipitation neigeuse, des processus de fractionnement isotopiques ont lieu. Il résulte de ceux-ci une relation linéaire entre les enrichissements isotopiques en D et 18O (notés respectivement δD ou δ18O) et la température de surface du site où a lieu la précipitation neigeuse (Petit et al., 1999).

La figure 1.2 montre la corrélation significative entre les variations de température et les concentrations en CO2 et en CH4 mesurées dans la carotte de glace de Vostok (Petit et al., 1999). Cette découverte a confirmé le rôle important joué par les gaz à effet de serre dans l’amplification du forçage orbital. Les carottes de glace de Vostok ainsi que le forage EPICA, plus récent, ont donc déjà été utilisés pour déterminer la sensibilité empirique du climat mondial à l’augmentation future des teneurs en gaz à effet de serre dues aux activités humaines.

Figure 1.2 – (a) Le profil des teneurs en CO2, (b) le profil de la variation de la température locale ∆T et (c) le profil des teneurs en CH4 dans la carotte de glace de Vostok (adapté de Petit et al., 1999).
1.1.3 Utilisation climatique du contenu en impuretés des carottes

On mesure dans la glace des impuretés dont les teneurs ou concentrations sont généralement exprimées en concentrations massiques : ng.g$^{-1}$ (rapports des masses d’impuretés et de glace). Le flux de ces impuretés est exprimé en ng.m$^{-2}$.a$^{-1}$. Il représente la masse d’impureté reçue par mètre carré et par an et est calculé comme la concentration en ng.g$^{-1}$ multipliée par le taux d’accumulation lors du dépôt, en kg.m$^{-2}$.a$^{-1}$. Parmi ces impuretés se trouve du matériel terrestre, originaire des continents entourant l’Antarctique et principalement de l’Amérique du Sud (Delmonte et al., 2008). En périodes glaciaires, l’enregistrement des teneurs en poussières dans la carotte de glace de Vostok indique que les continents étaient plus arides, les poussières plus mobiles et le transport atmosphérique plus efficace (Petit et al., 1990, 1999; Wolff et al., 2010). Au dernier maximum glaciaire, il y a environ 20 000 ans, les particules archivées dans la glace étaient plus grosses, ce qui indique une circulation atmosphérique plus turbulente aux hautes latitudes de l’hémisphère sud à cette époque (Petit et al., 1990).

Les teneurs en calcium non-marin (c’est-à-dire les teneurs en ion calcium, corrigées de la contribution marine) notées nssCa$^{2+}$ (non-sea salt calcium), servent de traceur de l’apport de matériaux terrestres (Röthlisberger et al., 2002). Même si le nssCa$^{2+}$ soluble ne représente que 5 % de la masse totale de poussière, il est considéré au premier ordre comme un bon traceur des variations des teneurs en poussières (Basile et al., 1997; Lambert et al., 2008). Le profil de nssCa$^{2+}$ a des variations opposées aux variations climatiques (figure 1.3). Les concentrations de nssCa$^{2+}$ sont de un à deux ordres de grandeur supérieures au plus fort des périodes glaciaires qu’elles ne le sont en périodes interglaciaires.

1.1.4 Informations sur la chimie atmosphérique

Les carottes de glace ont permis d’obtenir de bonnes informations sur des variables d’intérêt climatique (teneurs en CO$_2$ et CH$_4$, températures locales, poussières). On manque cependant d’informations sur le comportement chimique de l’atmosphère, caractérisé par l’activité du radical hydroxyle (OH) (Alexander et al., 2004). OH est le principal oxydant atmosphérique, dont
les teneurs définissent en première approximation la capacité oxydante de l’atmosphère (COA) (Prinn, 2003). Ce radical est le principal puits chimique du méthane ; il contrôle donc son temps de vie et ses teneurs atmosphériques. Il est donc possible que la capacité oxydante de l’atmosphère joue un rôle dans la dynamique climatique.

Le radical OH est lui-même issu de la photolyse de l’ozone (O_3) (Delmas et al., 2005, chap. 7). La conservation de ces deux espèces réactives dans les bulles d’air piégées dans la glace est impossible compte-tenu de leur courte durée de vie (un mois environ en atmosphère non polluée, Seinfeld and Pandis, 1998). Les carottes de glace ne permettent donc pas d’obtenir des informations directes sur les teneurs en radical OH ou en ozone dans le passé, pourtant essentielles à la compréhension du système climatique terrestre.

1.2 Le nitrate dans les carottes de glace

1.2.1 Concentrations

Le nitrate est un des anions majeurs présents dans les neiges et glaces d’Antarctique (Wolff, 1995). Principal puits des oxydes d’azote ($\text{NO}_x = \text{NO} + \text{NO}_2$) dans l’atmosphère, le nitrate a été étudié dans le but de documenter leurs variations au cours des âges glaciaires. En effet, les oxydes d’azote jouent un rôle fondamental dans la chimie atmosphérique en contrôlant les teneurs en ozone, espèce-clé précurseur du radical hydroxyl OH. La reconstruction des variations passées des NO_x permettrait donc d’apporter d’importantes contraintes sur la composition chimique de la troposphère et sur la capacité oxydante des atmosphères passées (Dibb et al., 1998).

Les profils de nitrate dans les enregistrements glaciaires sur le plateau Antarctique (Dôme C et Vostok) montrent des variations opposées aux températures à l’échelle climatique (figure 1.3). Legrand et al. (1988) ont observé une faible concentration (20 ng.g$^{-1}$) en nitrate en période interglaciaire (lorsque la température est importante) et une forte concentration en fin de période glaciaire. Ces auteurs ont observé également une forte corrélation entre ces pics de nitrate et les pics des teneurs en calcium non-marin, suggérant un lien avec les teneurs en nitrate archivées.
1.2. Le nitrate dans les carottes de glace

dans la glace. Le nitrate se trouverait donc préférentiellement sous la forme acide en périodes interglaciaires et sous forme saline (nitrate de calcium, Ca(NO$_3$)$_2$) en périodes glaciaires (Legrand et al., 1988; Röthlisberger et al., 2000a; Wolff et al., 2010). L'étude de Legrand et al. (1988) suggère que les importantes concentrations mesurées en période glaciaire doivent refléter une récupération plus efficace de l'acide nitrique (HNO$_3$) par les poussières atmosphériques à ces époques.

La stabilité du nitrate après son dépôt à la surface du manteau neigeux a été remise en cause (Neubauer and Heumann, 1988; Mayewski and Legrand, 1990) et il est aujourd’hui admis que son dépôt n’est pas irréversible (Röthlisberger et al., 2000a; Blunier et al., 2005). Ces observations suggèrent qu’une majeure partie du nitrate est initialement déposée sous une forme volatile telle que HNO$_3$ qui serait ensuite réémise vers l’atmosphère via des processus que nous décririons dans la prochaine section. Il a été proposé que la forme chimique du nitrate observée en période glaciaire à Vostok limite la réémission de HNO$_3$. Cette suggestion permet de proposer une explication alternative aux importantes concentrations de nitrate mesurées en périodes glaciaires qui résulteraient d’une réémission limitée de HNO$_3$ en présence de poussières en comparaison de la situation interglaciaire actuelle (Wolff, 1995; Röthlisberger et al., 2000a).

Röthlisberger et al. (2002) ont montré une anti-corrélation similaire entre la température et les concentrations de nitrate mesurées au Groenland au cours de la période interglaciaire actuelle (l’Holocène). Une tendance similaire est observée entre les concentrations en nitrate et les taux d’accumulation de neige qui sont directement liés à la température. Il a été avancé que le taux d’accumulation de neige est un paramètre important gouvernant la stabilité du nitrate à la surface du manteau neigeux (Röthlisberger et al., 2000a). La récente étude de Wolff et al. (2010) sur la carotte EPICA couvrant 8 cycles glaciaires en Antarctique confirme que les concentrations en nitrate sont très corrélées avec le taux d'accumulation de neige au cours des périodes interglaciaires.

Sur de très courtes échelles de temps (de l’ordre de l’année), il a été avancé que des événements de vent solaire (Solar Proton Events, SPE) peuvent expliquer des pics de concentration de nitrate
Figure 1.3 – De haut en bas : température locale relative (Petit et al., 1999), concentrations en calcium non-marin et nitrat (adapté de Legrand et al., 1999, avec les définitions de Röthlisberger et al. (2000a)) dans la carotte de glace de Vostok en fonction de la profondeur et de l’âge de la glace. La relation profondeur/âge de la glace de Suwa and Bender (2008) est utilisée.
1.2. Le nitrate dans les carottes de glace

d’un facteur 2 dans la neige Antarctique. Cette hypothèse fait encore débat même si les récents travaux de Wolff et al. (2008) réfutent cette idée étant donné que les processus de perte subis par le nitrate après son dépôt dans la neige conduisent à réduire la signature de leur processus de dépôt.

1.2.2 $\delta^{15}N$ dans le nitrate

1.2.2.1 Définition et intérêt

L’ion nitrate (NO_3^-) est composé de trois atomes d’oxygène (O) et d’un atome d’azote (N). Ces espèces possèdent respectivement trois (^{16}O, ^{17}O, ^{18}O) et deux (^{14}N, ^{15}N) isotopes stables, m représentant le nombre de nucléons de l’isotope mX. Les variations d’abondances des isotopes stables au sein d’un même composé sont exprimées de manière relative. L’azote possède un rapport isotopique : $R^{15} = \frac{^{15}N}{^{14}N}$ qui permet de calculer l’enrichissement isotopique $\delta^{15}N$ exprimé comme suit :

$$\delta^{15}N = \frac{^{15}N}{^{14}N}_{\text{échantillon}} - 1$$

N_2–AIR est le matériau de référence de l’échelle $\delta^{15}N$ (Mariotti, 1984). Il découle donc de cette définition : $\delta^{15}N(N_2$–AIR) = 0 %e (pour mille), c’est-à-dire que N_2–AIR représente l’origine de la notation δ pour l’azote.

L’enrichissement isotopique $\delta^{15}N$ du nitrate est utilisé depuis longtemps pour étudier les mécanismes de formation et de transformation de cette espèce dans l’atmosphère (exemple de l’eau de pluie, Hoering, 1957). En effet, lors de la formation du nitrate à partir des oxydes d’azote, l’atome d’azote est conservé. Sa composition isotopique (en azote) reflète donc, au premier ordre, celle des NO$_x$ dont il est issu, au fractionnement isotopique se produisant lors de cette conversion près. En moyenne annuelle et à l’échelle mondiale, $\delta^{15}N(NO_3^-)$ est ainsi compris entre −10 et +10 %e (Morin et al., 2009; Hastings et al., 2009).
1.2.2.2 En Antarctique

L’interprétation difficile des profils de concentration en nitrate dans les archives glaciaires a mené à l’analyse de δ_{15}N, dans l’espoir d’obtenir des informations supplémentaires des isotopes stables au sein du nitrate. L’étude pionnière de Freyer et al. (1996) est la seule étude consacrée à l’analyse de la composition isotopique du nitrate (en azote uniquement) dans une archive glaciaire en Antarctique. Ces auteurs ont observé des valeurs exceptionnellement élevées (+90 à +180 ‰) de δ_{15}N dans sept échantillons de glace prélevés au Dôme C couvrant les 20 000 dernières années. Ne disposant pas de tous les éléments d’interprétation, ces auteurs ne pouvaient déterminer avec exactitude le processus à l’œuvre pour créer de telles valeurs. Leur étude comparative des données accumulées à Dôme C, Pôle Sud et Summit au Groenland leur a toutefois permis d’observer une forte anti-corrélation entre les taux d’accumulation et les valeurs de δ_{15}N enregistrées dans la glace. Il semble donc que des processus physiques sensibles à l’accumulation et modifiant les concentrations et la composition isotopique initiales du nitrate auraient lieu dans la neige.

1.2.2.3 Au Groenland

Hastings et al. (2005) ont mesuré le δ_{15}N dans le nitrate piégé dans une carotte de glace de Summit (Groenland) couvrant plus de 35 000 années. En période Holocène (15 000 dernières années), le δ_{15}N moyen est de 9.7 ‰ contre 28.4 ‰ en période glaciaire. Comme dans l’étude de Freyer et al. (1996), δ_{15}N et taux d’accumulation de neige sont anti-corrélos. D’après Hastings et al. (2005), les effets postérieurs au dépôt du nitrate dans la neige ne peuvent expliquer les différentes valeurs de δ_{15}N observées compte-tenu de la forme chimique sous laquelle se trouverait le nitrate en période glaciaire (nitrate de calcium). Au contraire, ce seraient des changements dans les sources de NO_x qui expliqueraient les variations de δ_{15}N.

Ce même type de mesure a été répétée sur une carotte de glace prélevée au même site et représentant 300 ans par Hastings et al. (2009). La période pré-industrielle (avant 1850) est marquée par des concentrations en nitrate et valeurs de δ_{15}N de 80 ng.g^{-1} et 12 ‰ respecti-
1.3.1 Climat et particularités du plateau Antarctique

1.3.1.1 Situation géographique, topographie

La figure 1.4 montre la topographie de l’Antarctique. Ce continent, dont la taille équivaut à celle de l’Europe, est couvert d’une épaisseur de glace de 1.6 km en moyenne. Cette calotte glaciaire, qui représente plus de 90 % du stock d’eau douce terrestre, n’a pas toujours existé mais il est admis qu’elle se trouve depuis près de 14 millions d’années dans les conditions d’épaisseur et de température que nous connaissons de nos jours (Mayewski et al., 2009, et les références associées).

Le plateau Antarctique est situé au centre-est du continent et représente la zone de la calotte glaciaire où l’altitude est supérieure à 2500 mètres. Cette zone est caractérisée par des pentes très douces (de l’ordre de 1 × 10^{-3} m.m^{-1}, Marks, 2002). Le paysage est ainsi très monotone (figure 1.5).

L’altitude moyenne y est de 3000 mètres mais elle peut dépasser les 4000 mètres par endroits (notamment au Dôme A, 80°22’S, 77°21’E, altitude 4093 m, température moyenne −59 °C).
L’épaisseur de la calotte glaciaire est, au niveau du plateau, comprise entre 1500 et plus de 3000 mètres. Le plateau inclut les régions du Pôle Sud ainsi que les stations permanentes de Vostok (Russie) et Concordia (Dôme C, base franco-italienne).

Figure 1.4 – Topographie du continent Antarctique obtenue de de l’*Atlas of the Cryosphere*, National Snow and Ice Data Center, http://nsidc.org/. La zone pointillée noire indique le plateau Antarctique définissant la zone de la calotte où l’altitude est supérieure à 2500 mètres. Les points oranges représentent les bases scientifiques et techniques. La zone bleue claire indique l’extension moyenne de la banquise au mois de juin pour la période 1979–2007.

1.3.1.2 Température et structure thermique de l’atmosphère

Des températures très froides règnent sur le plateau Antarctique avec des moyennes annuelles inférieures à -45 °C (*King and Turner*, 1997) et des températures estivales et hivernales
1.3. Cycle du nitrate sur le plateau Antarctique

Figure 1.5 – Surface du plateau Antarctique autour de la base Concordia au Dôme C. Les irrégularités de surface formées par le vent sont appelées « sastrugi ». Leur hauteur caractéristique est de l’ordre de 10 centimètres sur ce site.

moyennes respectivement inférieures à -25 et -55 °C (données moyennes des températures de surface (1.5 m) pour les mois de décembre/janvier/février et juin/juillet/août sur la période 1979–2001, ECMWF ERA-40). Le cycle annuel des températures suit un profil typique avec un bref maximum en été (-30 °C à Vostok par exemple), et un long minimum avec peu de variations en hiver (-65 °C à Vostok). La localisation du plateau Antarctique à l’intérieur du cercle polaire explique les fortes variations de l’irradiance solaire en début et fin de la nuit polaire, qui dure 3 mois à Vostok (King and Turner, 1997).

Le profil vertical de température au-dessus du plateau Antarctique est très différent selon la saison. La figure 1.6 montre les profils de température observés au-dessus du Dôme C pour les mois de juillet (hiver austral) et décembre (été). La forte différence de température de la stratosphère entre l’hiver (-90 °C) et l’été (≈ -40 °C) est en partie liée aux variations de teneurs en ozone stratosphérique qui absorbe le rayonnement ultraviolet (UV) en période estivale. Il résulte de ceci que la tropopause (frontière entre la troposphère et la stratosphère, définie sur la base de l’inversion thermique) est très faiblement marquée en hiver.

En conditions hivernales, la température de surface montre une importante inversion liée au
refroidissement radiatif de la surface et de la basse atmosphère (King and Turner, 1997). Cette inversion de surface est généralement observée sur l’ensemble du plateau.

Formation du vortex polaire Durant l’hiver Antarctique, l’air se refroidit et descend sous l’effet gravitaire créant un « vortex polaire » qui se matérialise par un tube gigantesque d’air très froid en rotation. Ce vortex est très stable tout au long de l’hiver jusqu’au début du printemps limitant fortement tout échange d’air avec l’extérieur. À la réapparition du soleil à la fin septembre, l’air se réchauffe et le vortex s’affaiblit avant de disparaître en novembre (Seinfeld and Pandis, 1998).

Vents Le haut du plateau connaît des vents modérés (3 m.s\(^{-1}\) en moyenne annuelle au Dôme C). Les masses d’air froides s’écoulant le long de ces pentes ne tardent pas à prendre des vitesses
1.3. Cycle du nitrate sur le plateau Antarctique

très élevées à l’approche de la côte. Ceci donne naissance aux « vents catabatiques » qui peuvent par exemple atteindre plus de 250 km.h\(^{-1}\) à la base côtière française de Dumont d’Urville (DDU, Terre Adélie, 66°40’S, 140°01’E, altitude 40 m, température moyenne \(-11^\circ C\)).

1.3.1.3 Humidité et accumulation

Les faibles températures rencontrées sur le plateau Antarctique induisent des conditions atmosphériques très sèches et donc de très faibles taux d’accumulation de neige (figure 1.7). Par exemple, les taux d’accumulation mesurés à Vostok sur la période 1945–1995 ont varié entre 15 et 25 kg.m\(^{-2}.a\(^{-1}\) (Ekaykin et al., 2004). Ces mêmes auteurs estiment également qu’un quart seulement de l’accumulation de neige est directement dû à des précipitations tandis que les trois quarts restant apparaissent en conditions de ciel dégagé et sont causés par la formation de givre.

![Carte topographique de l’Antarctique](image1.png)

Figure 1.7 – À gauche, carte topographique de l’Antarctique obtenue de l’Atlas of the Cryosphere, National Snow and Ice Data Center, http://nsidc.org/. L’extension moyenne de la banquise au mois de juin est représentée pour la période 1979–2007. À droite, taux d’accumulation de neige en Antarctique dans les conditions actuelles (figure adaptée de Mayewski et al., 2009).
1.3.1.4 Formation de nuages stratosphériques polaires et dynamique de l’ozone stratosphérique

La stratosphère est très sèche et les températures atteignent −90 °C (183 K) à des altitudes comprises entre 15 et 20 km après la longue nuit polaire (figure 1.6). Ces températures participent alors à la condensation de la vapeur d’eau présente en faible quantité pour former des « nuages stratosphériques polaires » (polar stratospheric clouds ou PSCs en anglais). L’extrême stabilité du vortex Antarctique en fin d’hiver rend ce mécanisme beaucoup plus productif qu’en Arctique (Seinfeld and Pandis, 1998). On distingue les PSCs de type I, composés d’acide nitrique et d’eau, des PSCs de type II, composés d’eau uniquement.

La formation des PSCs est initiée à une température de l’ordre de 190–195 K. Les aérosols hydratés d’acide sulfurique (H$_2$SO$_4$) sont responsables de la nuccléation de ces nuages qui incorporent ensuite petit à petit de l’eau et de l’acide nitrique (HNO$_3$) pour former des particules.

(a) Trou d’ozone le plus large observé au-dessus de l’Antarctique le 24 septembre 2006. Figure obtenue sur l’Ozone Hole Watch web site, NASA, http://ozonewatch.gsfc.nasa.gov/

Figure 1.8 – Manifestation du trou d’ozone en Antarctique
dont la taille varie avec la température et qui deviennent essentiellement composés de HNO₃ et H₂O. Dans un premier temps, les PSCs descendent sous l’effet de la température, en suivant la propagation de l’onde froide qui prend naissance à 40 km d’altitude environ. Le passage dans la troposphère des plus grosses particules pourrait se faire par gravité (Santacesaria et al., 2001). Ces mécanismes conduisent à la déshydratation et la dénitrification de la stratosphère (Wayne, 1991).

On observe un « trou » dans la couche d’ozone stratosphérique au printemps, au-dessus de l’Antarctique. L’ozone stratosphérique représente la majeure partie de l’ozone atmosphérique dont on mesure la quantité intégrée sur une colonne en unités Dobson (DU, Dobson Units). Ce trou se matérialise par une diminution de la colonne d’ozone et il est lié à la présence des PSCs et d’espèces chlorées d’origine humaine (Seinfeld and Pandis, 1998; Solomon, 2005). La présence du vortex Antarctique encourage également la destruction d’ozone jusqu’à sa disparition en novembre. La figure 1.3.1.4 montre le trou d’ozone le plus large jamais observé au-dessus de l’Antarctique, en 2006. La figure 1.3.1.4 montre l’apparition du trou dans la couche d’ozone au-dessus du Pôle Sud au printemps 2010.

L’ozone absorbe la lumière dans l’ultraviolet et sa présence dans la stratosphère affecte l’irradiance solaire reçue en surface. La figure 1.9 montre le spectre d’absorption de l’ozone dans le gamme de longueurs d’onde 250–360 nm ainsi que les spectres solaires reçus en surface au Dôme C dans le cas d’une colonne d’ozone de 300 DU et en l’absence de colonne d’ozone (0 DU). La présence de la couche d’ozone dans la stratosphère absorbe une partie du rayonnement ultraviolet de sorte que l’irradiance reçue s’étend à 300 nm (contre 280 nm en absence d’ozone). L’irradiance reçue à la surface d’un site donné est aussi fonction de l’angle solaire zénithal, de la présence d’aérosols et d’autres absorbateurs (nuages).

Le rayonnement ultraviolet troposphérique est le moteur des réactions photochimiques troposphériques. En effet, les photons dans les longueurs d’onde UV disposent de l’énergie nécessaire pour transformer des molécules stables en espèces réactives (photolyse). Les variations de flux (quantité totale de photons reçus) et de qualité (répartition spectrale ce flux) du rayonnement
Figure 1.9 – Spectre d’absorption de l’ozone à la température de 243 K (Malicet et al., 1995) et impact sur le spectre ultraviolet solaire reçu en surface. Les spectres rouge et jaune sont calculés par le modèle TUV (Lee-Taylor and Madronich, 2002) pour le site du Dôme C (−75.1°S, 123.2°E), le 21 décembre (angle zénithal solaire minimum, le soleil est au plus haut dans le ciel), sans aérosols, sans nuages et pour deux conditions de colonnes d’ozone : 300 DU (spectre jaune) et 0 DU (absence d’ozone, spectre rouge).

UV déterminent donc les constantes (notées J) des réactions photochimiques.

1.3.2 Sources primaires et puits

1.3.2.1 Sources primaires et concentrations de nitrate atmosphérique

Aux hautes latitudes, le nitrate provient essentiellement et originellement de la dénitrification de la stratosphère ou du transport horizontal et à longue distance de nitrate produit aux moyennes latitudes (Legrand and Delmas, 1986; Legrand and Kirchner, 1990). De nombreuses études ont suggéré que le nitrate atmosphérique en Antarctique était lié à la dénitrification et la déshydratation de la stratosphère en hiver par la sédimentation de PSCs (Legrand and Kirchner, 1990; Mayewski and Legrand, 1990; Mulvaney and Wolff, 1993). Les concentrations de nitrate mesurées dans l’atmosphère de la côte Antarctique montrent un pic saisonnier primaire en fin de printemps/début d’été et un pic saisonnier secondaire en fin d’hiver, ce dernier apparaî-
1.3. Cycle du nitrate sur le plateau Antarctique

sant régulièrement aux sites de Mawson (67°36’S, 62°52’E, altitude 32 m, température moyenne −11 °C), Neumayer (70°39’S, 8°15’O, altitude 43 m, température moyenne −16 °C) et Dumont d’Urville (Wagenbach et al., 1998).

1.3.2.2 Anomalie isotopique (Δ^{17}O) du nitrate et source stratosphérique

Définition L’oxygène possède trois isotopes stables. On définit donc deux enrichissements isotopiques : δ^{17}O et δ^{18}O, de la même manière qu’est défini δ^{15}N (équation 1.1). Dans le cas de δ^{17}O et δ^{18}O, le matériau de référence est le VSMOW (Vienna Standard Mean Ocean Water) (Baertschi, 1976; Li et al., 1988). On appelle « fractionnement isotopique », tout processus qui redistribue les isotopes, modifiant ainsi la valeur des enrichissements isotopiques. La mesure des enrichissements isotopiques des principaux réservoirs oxygénés terrestres montre la relation δ^{17}O ≃ 0.5 · δ^{18}O, au premier ordre et ceci indique que l’effet des processus de formation ou de transformation au sein de ces réservoirs produit des effets doubles sur δ^{18}O comparativement à ceux se produisant sur δ^{17}O. Ceci s’explique par la différence de masse entre ^{18}O et ^{16}O qui est le double de celle entre ^{17}O et ^{16}O. De tels fractionnements isotopiques sont dits « dépendants de la masse ». La supposée universalité de ces processus sur Terre a mené, pendant de nombreuses années, à la mesure unique de l’enrichissement isotopique δ^{18}O puisque ^{18}O est plus facile à
mesurer car plus abondant et moins sujet à des interférences isobariques (Coplen et al., 2002).

La formation de l’ozone en laboratoire ne suit pas cette loi (Thiemens and Heidenreich III, 1983). Cette découverte a constitué la première mise en évidence d’un processus non-dépendant de la masse sur Terre et a ouvert un nouveau champ d’investigations isotopiques. La formation de l’ozone induit un enrichissement équivalent en 17O et 18O, c’est-à-dire qu’il mène à une déviation à la loi de proportionnalité δ^{17}O \simeq 0.5 \cdot δ^{18}O. Cette déviation est appelée « anomalie isotopique » ou encore « excès de 17O » et notée Δ^{17}O. Un consensus est sur le point d’être trouvé quant à l’expression mathématique à préférer pour le calcul de Δ^{17}O (Kaiser et al., in prep.). Nous nous limitons ici à la formulation linéaire de Δ^{17}O, largement utilisée pour les isotopes de l’oxygène du nitrate (Michalski et al., 2002; Alexander et al., 2004; McCabe et al., 2007; Morin et al., 2007a):

$$\Delta^{17}$O = δ^{17}O $-$ 0.52 \cdot δ^{18}O \hspace{1cm} (1.2)

Transfert de l’anomalie isotopique de l’ozone à NO₂. Comme l’ont initié Michalski et al. (2003), l’interprétation des variations de l’anomalie isotopique du nitrate, ∆¹⁷O(NO₃⁻), se fonde sur l’analyse de l’importance de deux cycles imbriqués de formation du nitrate atmosphérique. Dans un premier temps, le dioxyde d’azote NO₂ hérite d’une composition isotopique partiellement issue de celle de l’ozone au cours de leur interaction dans le cycle photochimique de Leighton (1961). Dans un modèle simplifié de ce cycle (voir figure 1.10), les principaux protagonistes sont la lumière, l’ozone et les oxydes d’azote (NOₓ = NO + NO₂). La forte réactivité de NO et NO₂ (Delmas et al., 2005) engendre une succession très rapide des réactions de photodissociation de NO₂ et d’oxydation de NO par O₃. De cette manière, le NO₂ produit ne comporte plus que des atomes d’oxygène provenant de l’ozone (Morin et al., 2007a).

Figure 1.10 – Modèle simplifié représentant la formation du nitrate atmosphérique.

En réalité, d’autres espèces tels que des radicaux peroxydes (HOₓ–ROₓ) interviennent dans le cycle de Leighton (1961) et tendent à le perturber (Morin et al., 2011). Ces radicaux apportent un atome d’oxygène dont l’anomalie isotopique est proche de 0 (Michalski et al., 2003) ce qui tend à diluer l’anomalie isotopique transmise par l’ozone dans la réaction de formation de NO₂. À l’équilibre photochimique, NO₂ possède ainsi une anomalie isotopique égale à celle transférée par l’ozone modulée par un terme représentant les cinétiques comparées des différentes voies d’oxydation (O₃ ou HOₓ–ROₓ) : ∆¹⁷O(NO₂) = α· Δ¹⁷O(O₃*) (0 ≤ α ≤ 1, α = 1 dans le cas où la totalité de NO₂ est formé par l’oxydation de NO par O₃). La molécule d’ozone a la particularité de comporter deux atomes d’oxygène terminaux et un atome central et ∆¹⁷O(O₃) représente l’anomalie isotopique transférée avec l’atome d’oxygène terminal de O₃ (Morin et al., 2011), ce qui est quasiment le cas de la réaction NO + O₃ (Savarino et al., 2008). Notre connaissance de la
distribution intramoléculaire de l’ozone est limitée mais les données expérimentales disponibles à ce jour mènent à la relation suivante : \(\Delta^{17}O(O_3^+) = 3/2 \Delta^{17}O(O_3) \) pour des valeurs de \(\Delta^{17}O(O_3) \) dans la gamme 20–40 \(\% \), ce qui signifie que l’intégralité de l’anomalie isotopique de l’ozone serait portée par ses deux atomes terminaux.

Les radicaux peroxyls ne perturbent que marginalement le cycle de Leighton (Michalski et al., 2003). Ainsi, le paramètre \(\alpha \) est souvent supérieur à 0.9. La modélisation chimique permet d’accéder aux variations de la valeur d’\(\alpha \) en fonction des conditions de l’atmosphère étudiée (Michalski et al., 2003; Savarino et al., 2007; Kunasek et al., 2008; Alexander et al., 2009; Morin et al., 2011). Dans le cas troposphérique (\(\Delta^{17}O(\text{tropo. } O_3) = 25 \% \)), et pour \(\alpha = 0.9 \), on obtient : \(\Delta^{17}O(NO_2) = 32.5 \% \).

\(\Delta^{17}O(NO_3^-) \), signature isotopique des mécanismes de formation du nitrate Connaître et prédire la valeur de \(\Delta^{17}O(NO_2) \) est un premier pas pour l’étude des variations de \(\Delta^{17}O \) dans le nitrate atmosphérique, car NO2 est l’espèce à partir de laquelle le nitrate atmosphérique est formé, via plusieurs mécanismes de conversion. Ces mécanismes induisent l’incorporation d’un atome d’oxygène supplémentaire \(O_{\text{sup.}} \), dont l’anomalie isotopique \(\Delta^{17}O (O_{\text{sup.}})_i \) est dictée par la nature du chemin réactionnel terminal \(i \). Dans tous les cas, l’anomalie du nitrate résultant \(\Delta^{17}O(NO_3^-)_i \) est calculée par l’équation 1.3 :

\[
\Delta^{17}O(NO_3^-)_i = \frac{2}{3} \cdot \Delta^{17}O(NO_2) + \frac{1}{3} \cdot \Delta^{17}O (O_{\text{sup.}})_i
\]

(1.3)

L’atome d’oxygène supplémentaire peut provenir de différents mécanismes terminaux diurnes ou nocturnes (Warneck, 1999). Le cas simple présenté dans la figure 1.10 montre l’oxydation diurne par OH et l’oxydation nocturne par \(O_3 \).

Pour illustrer le transfert de l’anomalie isotopique de NO2 à HNO3, nous nous plaçons dans le cas simple de la réaction diurne NO2 + OH \(\rightarrow \) HNO3. L’anomalie isotopique du radical OH est très faible ou nulle (Morin, 2008) et on considère ici \(\Delta^{17}O(OH) = 0 \% \). Ainsi, la formation de HNO3 par la réaction NO2 + OH mène à \(\Delta^{17}O(NO_3^-) = 2/3 \Delta^{17}O(NO_2) \), soit
1.3. Cycle du nitrate sur le plateau Antarctique

\[\Delta^{17}\text{O}(\text{NO}_3^-)_{\text{NO}_2+\text{OH}} = 21.6 \% \] dans le cas troposphérique \((\Delta^{17}\text{O}(\text{tropo. O}_3) = 25 \%)\), et pour \(\alpha = 0.9\). Dans le cas de la formation de nitrate par la voie nocturne \(\text{NO}_2 + \text{O}_3\) et la formation du radical nitrate intermédiaire \((\text{NO}_3, \text{qui réagit ensuite avec une chaîne carbonée RH pour former HNO}_3)\), on obtient \(\Delta^{17}\text{O}(\text{NO}_3^-)_{\text{NO}_2+\text{O}_3} = 33.6 \%\) \((\text{Morin, 2008})\). L’anomalie isotopique du nitrate permet ainsi de tracer qualitativement la nature des mécanismes d’oxydation menant à la formation du nitrate \((\text{Michalski et al., 2004; Morin, 2008; Morin et al., 2007a,b, 2008, 2009; Kunasek et al., 2008; Alexander et al., 2009})\).

Anomalie isotopique portée par le nitrate sur la côte Antarctique
Dans leur étude à DDU, Savarino et al. (2007) ont mesuré l’anomalie isotopique du nitrate. Ces auteurs distinguent différentes périodes en fonction des teneurs en nitrate atmosphérique mesurées dont les deux périodes les plus importantes sont identifiées sur la figure. La figure 1.11 montre que le pic saisonnier secondaire observé dans l’enregistrement des concentrations atmosphérique en fin d’hiver/début du printemps (période 1) est associé à de fortes valeurs de \(\Delta^{17}\text{O}(\text{NO}_3^-)\) (40.2 \% en moyenne). Ces fortes valeurs ne peuvent être expliquées que par un nitrate d’origine stratosphérique car de l’ozone avec une forte anomalie isotopique est nécessaire pour produire ce nitrate. Cette observation est corroborée par les mesures de tritium dans les échantillons atmosphériques prélevés à la station côtière allemande de Neumayer \((\text{Wagenbach et al., 1998})\). Savarino et al. (2007) suggèrent que l’existence du vortex polaire ainsi que des faibles températures troposphériques et stratosphériques favorisent la descente de nuages stratosphériques polaires en fin d’hiver, incorporant ainsi un nitrate d’origine stratosphérique dont la signature serait bien spécifique \((\Delta^{17}\text{O} \approx 40 \%)\).

1.3.2.3 Puits de nitrate

Le nitrate atmosphérique sur le plateau Antarctique peut être déposé dans la neige ou exporté vers la côte par le mouvement des masses d’air. On distingue deux formes de dépôt du nitrate dans la neige : le « dépôt sec » et le « dépôt humide » \((\text{Fischer et al., 1998})\). Le dépôt sec a lieu lorsque le nitrate sous forme d’acide nitrique gazeux s’adsorbe sur la neige présente au sol ou
Figure 1.11 – δ\(^{15}\)N et Δ\(^{17}\)O du nitrate atmosphérique à DDU en 2001 (adapté de Savarino et al., 2007). a. teneurs en nitrate atmosphérique (points noirs) et durée du jour (en jaune). b. δ\(^{15}\)N du nitrate atmosphérique à DDU (points verts) et les données mensuelles de δ\(^{15}\)N mesurées dans le nitrate atmosphérique à Neumayer sur la période 1986–1992 (Wagenbach et al., 1998). c. Δ\(^{17}\)O du nitrate atmosphérique à DDU.

lorsque des particules atmosphériques incluant du nitrate adsorbé ou emprisonné sédimentent naturellement pour atteindre le manteau neigeux. Le dépôt humide a lieu lorsque le nitrate sous forme de gaz ou lié à des particules se retrouve emprisonné lors de la formation de la précipitation neigeuse. HNO\(_3\) peut aussi co-condenser avec H\(_2\)O lors de la formation de givre de surface (Röthlisberger et al., 2002).
1.3.3 Perte de nitrate et recyclage à la surface du manteau neigeux

1.3.3.1 Observations sur la base des concentrations

Dans les premiers décimètres de neige du plateau Antarctique, les concentrations en nitrate suivent un profil caractéristique décroissant avec des valeurs très élevées en surface. Dans un puits de neige de Dôme C, Röthlisberger et al. (2000a) ont ainsi observé des teneurs proches de 1000 ng.g\(^{-1}\) en surface décroissant rapidement pour atteindre de faibles valeurs de l’ordre de 20 ng.g\(^{-1}\) à 10–20 centimètres de profondeur. Dès 1988, Neubauer and Heumann ont invoqué la ré-émission de HNO\(_3\) après son dépôt par évaporation ou décomposition photochimique pour expliquer leurs mesures de nitrate sur la côte Antarctique, une hypothèse reprise dans l’étude de Dibb and Whitlow (1996) au Pôle Sud. Mayewski and Legrand (1990) ont supposé une augmentation des concentrations de nitrate archivées au printemps dans la neige du Pôle Sud et proposent qu’elle reflète une dénitrification stratosphérique liée au trou dans la couche d’ozone apparaissant à cette saison.

Plus récemment, l’observation de la décroissance d’un facteur 1 à 2 des concentrations de nitrate dans les premiers décimètres de neige a été reproduite et confirmée au Dôme C (Blunier et al., 2005) et à Vostok (Gladysheva et al., 2003). Wagon et al. (1999) ont observé cet effet à Vostok mais sur près de deux mètres de profondeur plutôt que sur quelques décimètres. La figure 1.12 représente la compilation des profils de concentration en nitrate mesurés dans les premiers 50 cm de neige sur le plateau Antarctique et pour les études précédemment citées. Il est aujourd’hui admis que la dénitrification observée dans les premières couches de neige est la conséquence de « processus de perte » qui ont lieu après le dépôt du nitrate dans la neige (post-depositional processes). L’interprétation des enregistrements glaciaires du nitrate nécessite l’étude de ces processus de perte dans les conditions de neige actuelles mais aussi dans les conditions passées.

Dans les années 1980, une augmentation des concentrations de nitrate dans la glace du Groenland a été observée et attribuée à l’émission industrielle de NO\(_x\) dans l’hémisphère nord (Mayewski et al., 1986, 1990). Une augmentation de ce type n’a pas été observée en Antarctique,
26 Chapitre 1. Introduction : état de l’art, outils et contexte de l’étude

Figure 1.12 – Compilation des profils de concentrations en nitrate mesurés en trois sites du plateau Antarctique (Pôle Sud, Dôme et Vostok) dans les 50 premiers centimètres de neige, en été austral. Les échelles sont proportionnelles à la largeur des fenêtres.

ce qui suggère que le nitrate dans cette région est toujours dominé par des sources naturelles (Wolff, 1995).

1.3.3.2 Mécanismes de perte de nitrate dans la neige

Deux mécanismes peuvent être responsables de la perte de nitrate observée : la photolyse de l’ion nitrate (NO$_3^-$) et la désorption/évaporation de HNO$_3$ adsorbé sur la glace. Dans ce travail, la terminologie « désorption/évaporation de HNO$_3$ » sera préférée aux termes génériques « évaporation de HNO$_3$ », « réévaporation de HNO$_3$ », « réémission de HNO$_3$ » ou « volatilisation de HNO$_3$ » qui peuvent être trouvés dans la littérature. Dans ce document, ces deux types de perte sont respectivement associés aux adjectifs « photochimique » et « physique ».

Photolyse de NO$_3^-$ Des études de terrain ont mis en évidence la production de flux de NO$_x$ significatifs au-dessus de surfaces enneigées en Arctique (Honrath et al., 1999, 2002) et
en Antarctique (Jones et al., 2000; Davis et al., 2001, 2004). Des études de laboratoire (Cotter et al., 2003, par exemple) ont confirmé le rôle de la photolyse de NO_3^- dans la neige dans la production de ces flux. Cette photolyse se produit sous l’effet du rayonnement ultraviolet pour des longueurs d’onde (λ) inférieures à 345 nm. Le schéma réactionnel suivant résume l’état des connaissances de la photolyse de NO_3^- dans la neige (Grannas et al., 2007) :

\begin{align}
\text{NO}_3^- + h\nu & \rightarrow \text{NO}_2 + \text{O}^- \quad (1.4a) \\
\text{NO}_3^- + h\nu & \rightarrow \text{NO}_2^- + (\text{O}^3\text{P}) \quad (1.4b)
\end{align}

Aux longueurs d’onde d’intérêt à la surface du plateau Antarctique ($\lambda \approx 290$ nm, figure 1.9), NO_3^- est photolysé dans une bande d’absorption centrée autour de 302 nm (Chu and Anastasio, 2003) pour former NO_2 (réaction 1.4a) ou NO_2^- (réaction 1.4b). Le nitrite ainsi produit peut ensuite être photolysé à son tour (réaction 1.5a, avec des absorptions maximales dans l’UV à 318 et 354 nm) pour former NO ou réagir avec le radical OH pour former NO_2 (réaction 1.5b) :

\begin{align}
\text{NO}_2^- + h\nu & \rightarrow \text{NO} + \text{O}^- \quad (1.5a) \\
\text{NO}_2^- + \text{OH} & \rightarrow \text{NO}_2 + \text{OH}^- \quad (1.5b)
\end{align}

L’ion radical oxyde (O^-) formé par les réactions 1.4a et 1.5a subit une protonation immédiate, contribuant ainsi à la formation de OH (réaction 1.6a). À pH ≈ 7, l’acide nitreux (HONO) peut être formé via la réaction 1.6b.

\begin{align}
\text{O}^- + \text{H}^+ & \rightarrow \text{OH} \quad (1.6a) \\
\text{NO}_2^- + \text{H}^+ & \rightarrow \text{HONO} \quad (1.6b)
\end{align}

La vitesse de la réaction 1.4a est représentée par sa constante de photolyse qui s’exprime :

$$J = \int \Phi(\lambda, T) \sigma(\lambda, T) I(\lambda, \theta, z) d\lambda \quad (1.7)$$
avec Φ, le rendement quantique exprimé en molécules photon$^{-1}$, σ, le spectre d’absorption du nitrate en M$^{-1}$cm$^{-1}$, λ, la longueur d’onde en nanomètres, T, la température en Kelvins, z, la profondeur dans le manteau neigeux en mètres, θ, l’angle solaire zénithal en degrés et I, le « flux actinique » exprimé en photons m$^{-2}$nm$^{-1}$s$^{-1}$ et représentant l’intégration de la radiance dans toute les directions.

La réaction 1.4a est 8 à 9 fois plus importante que celle de la réaction 1.4b. Le principal produit de la photolyse de NO$_3^-$ est donc NO$_2$, suivi de NO et enfin HONO (Grannas et al., 2007). La production des espèces réactives NO et NO$_2$ peut perturber la chimie atmosphérique en participant à la formation ou à la destruction d’ozone (Jones and Wolff, 2003; Cotter et al., 2003; Grannas et al., 2007). Ils peuvent ensuite être réoxydés pour reformer HNO$_3$. La perte de nitrate est donc à l’origine du cycle perte/reformation de HNO$_3$/dépôt qui est regroupé sous le terme « recyclage du nitrate » (Davis et al., 2008).

Désorption/évaporation de HNO$_3$ et mobilité du nitrate à l’échelle du grain de neige
La désorption/évaporation de HNO$_3$ à l’échelle macroscopique est le résultat de mécanismes de désorption ou d’évaporation de HNO$_3$ à l’échelle du grain de neige. À cette échelle, HNO$_3$ peut en effet être contenu dans la phase gazeuse, adsorbé en surface ou dissous dans le grain. HNO$_3$ peut se déplacer dans ces différents compartiments par adsorption en surface (passage de la phase gazeuse à l’état adsorbé en surface), par désorption (processus inverse de l’adsorption) ou encore par diffusion dans le grain (Domine et al., 2007), et par diffusion en surface ou diffusion dans le grain après dissociation sous forme de NO$_3^-$. Le nitrate peut également être contenu dans des aérosols en surface du grain. La figure 1.13 synthétise les différentes localisations possibles du nitrate dans et autour du grain de neige. La mobilité de la vapeur d’eau dans le manteau neigeux, est à l’origine du métamorphisme de la neige. Ce métamorphisme peut également changer la localisation du nitrate et affecter sa disponibilité vis-à-vis de la photolyse ou de la désorption (Domine and Shepson, 2002). La mobilité de H$_2$O peut enfin entraîner celle de HNO$_3$ par des processus de co-condensation ou de sublimation/évaporation. Ces processus peuvent mener à la redistribution du nitrate en profondeur, lissant les profils de concentration dans la neige (Wolff,
Ces différentes localisations du nitrate le rendent donc plus ou moins disponible pour les processus de perte. La désorption/évaporation de HNO₃ par exemple a préférentiellement lieu à la surface du grain. De la même manière, la photolyse de NO₃⁻ à la surface du grain (après dissociation de HNO₃) semble plus efficace que celle de NO₃⁻ à l'intérieur du grain en raison de l'importante probabilité que les produits de la photolyse subissent une recombinaison dans le crystal de glace (Chu and Anastasio, 2003). L'efficacité de la photolyse est modélisée par le terme Φ dans l'équation 1.7.

Importance relative de chaque processus L’importance relative des deux processus de perte de nitrate fait toujours l’objet de débats (voir la revue de Grannas et al., 2007). Wolff et al. (2002) ont modélisé la photolyse du nitrate et montrent que seuls 40 % de la perte observée
Chapitre 1. Introduction : état de l’art, outils et contexte de l’étude

peut être expliquée par la photolyse. Une récente étude de Blunier et al. (2005) a permis de comparer les constantes de fractionnement des isotopes stables en azote du nitrate obtenues sur le terrain et au laboratoire. Cette étude a conclu que la photolyse du nitrate n’est pas le processus dominant la perte de nitrate à la surface de la neige.

Variables et paramètres de contrôle de la perte De nombreuses variables contrôlent les processus de perte photochimique ou physique de nitrate dans la neige. L’accumulation de neige est une variable de contrôle commune aux deux processus. Elle contrôle en effet le temps d’exposition de NO$_3^-$ ou de HNO$_3$ aux conditions proches de la surface.

Dans le cas de la photolyse de NO$_3^-$, la profondeur caractéristique du processus est définie par la grandeur appelée *e-folding*, symbolisée par $\eta(\lambda)$ pour la longueur d’onde λ et qui représente la profondeur à laquelle l’intensité lumineuse est diminuée du facteur $1/e$. Nous définissons la « zone photique » comme la zone qui s’étend de la surface jusqu’à une profondeur égale à 3 $\eta(\lambda)$, c’est-à-dire la profondeur à laquelle l’intensité lumineuse est diminuée de 95 % (e^{-3}) par rapport à la surface. $\eta(\lambda)$ est de l’ordre de 5–25 cm pour les radiations dans l’UV-B (290 λ 320 nm) jusqu’au visible (Grannas et al., 2007). Une profondeur de pénétration de 10 cm conduit donc une zone photique de 30 cm de profondeur. Dans le cas d’un taux d’accumulation de neige de 10 cm, comme c’est le cas au Dôme C sur le plateau Antarctique, le temps d’exposition du nitrate vis-à-vis de la photolyse serait alors de l’ordre de trois années. Outre la pénétration de la lumière dans la neige, les variations du flux actinique reçu en surface contrôlent également la vitesse de la photolyse (équation 1.4a). Cette variable est aussi grandement modulée par la couche d’ozone qui filtre les UV avant leur arrivée en surface ainsi que l’angle solaire zénithal qui varie au cours d’une saison. Il a ainsi été démontré que la production de NO$_2$ par le manteau neigeux en novembre a augmenté de 43 % entre la fin des années 1960 et la fin des années 1990 au Pôle Sud (Jones and Wolff, 2003). Ce phénomène est associé au développement du trou d’ozone au cours de cette période. Le spectre d’absorption du nitrate est, quant à lui, légèrement dépendent de la température (Chu and Anastasio, 2003).

La variable critique de contrôle de la désorption/évaporation de HNO$_3$ est la température.
Celle-ci contrôle en effet le métamorphisme de la neige et donc les échanges de vapeur d'eau qui peuvent entraîner la désorption/évaporation de HNO$_3$ en cas de sublimation de la neige notamment (Grannas et al., 2007). Il a été proposé que seule la forme acide du nitrate puisse subir des processus de désorption/évaporation (Rothlisberger et al., 2002). D’après ces auteurs, l’ion NO$_3^-$ accompagné du contre-ion Ca$^{2+}$ serait stable et ne subirait pas ces processus.

1.3.3.3 Signature isotopique des processus postérieurs au dépôt du nitrate en Antarctique

δ^{15}N(NO$_3^-$), traceur de la perte de nitrate dans la neige
Blunier et al. (2005) ont mesuré le nitrate dans un puits de neige de 50 cm collecté à Dôme C au cours de l’été austral 2003. La concentration en nitrate chute spectaculairement de la surface de la neige à 15 centimètres de profondeur, passant de 350 à 50 ng·g$^{-1}$ comme ceci est habituellement observé (figure 1.12). Cette chute s’accompagne d’un enrichissement brutal en 15N, avec des valeurs de δ^{15}N qui varient de 0 en surface à +180 %$_{\delta}$ en profondeur. L’enrichissement en 15N observé par Blunier et al. (2005) dans le nitrate en profondeur est tel que toute information isotopique concernant l’origine de ses précurseurs (section 1.2.2.1) est perdue, effacée par la puissante empreinte des processus de dénitrification à la surface du manteau neigeux.

δ^{15}N(0), traceur de la perte de nitrate dans la neige
Blunier et al. (2005) ont mesuré le nitrate dans un puits de neige de 50 cm collecté à Dôme C au cours de l’été austral 2003. La concentration en nitrate chute spectaculairement de la surface de la neige à 15 centimètres de profondeur, passant de 350 à 50 ng·g$^{-1}$ comme ceci est habituellement observé (figure 1.12). Cette chute s’accompagne d’un enrichissement brutal en 15N, avec des valeurs de δ^{15}N qui varient de 0 en surface à +180 %$_{\delta}$ en profondeur. L’enrichissement en 15N observé par Blunier et al. (2005) dans le nitrate en profondeur est tel que toute information isotopique concernant l’origine de ses précurseurs (section 1.2.2.1) est perdue, effacée par la puissante empreinte des processus de dénitrification à la surface du manteau neigeux.

Blunier et al. (2005) ont calculé un fractionnement isotopique « apparent » (15\(\epsilon_a\)) de $−54 \pm 10 \%_{\delta}$, sous hypothèse que la perte de nitrate obéit à la loi de Rayleigh (Rayleigh, 1902). Le fractionnement isotopique de type Rayleigh (Rayleigh, 1902) s’écrit comme suit :

\[
\delta^{15}N_{\text{emitted}} = (1 + \delta^{15}N_0) \cdot \frac{1 - f^{15}\epsilon_a+1}{1 - f} - 1 \tag{1.8a}
\]
\[
\delta^{15}N_{\text{remaining}} = (1 + \delta^{15}N_0) \cdot f^{15}\epsilon_a - 1 \tag{1.8b}
\]

$\delta^{15}N_0$ est le δ^{15}N initial du nitrate dans la neige et f est la fraction de nitrate restant dans la neige. La valeur négative de $^{15}\epsilon_a$ traduit le fait que les composés produits par la perte de nitrate dans le manteau neigeux sont appauvris en 15N par rapport au nitrate initial.
Figure 1.14 – Impact chimique et isotopique des processus postérieurs au dépôt du nitrate dans la neige. Chute de la concentration en nitrate et augmentation de δ15N dans le nitrate restant, dans un puits peu profond à Dôme C (adapté de Blunier et al., 2005).

$^{15}\varepsilon_a$ correspond à la signature isotopique de la combinaison des processus subis par le nitrate à la surface du manteau neigeux : les processus de perte mais également la réinjection éventuelle de nitrate dans la neige. La seule connaissance de $^{15}\varepsilon_a$ ne suffit donc pas à distinguer le mécanisme (photolyse ou désorption/évaporation) dominant la perte de nitrate dans le manteau neigeux. Néanmoins Blunier et al. (2005) ont également réalisé une expérience de photolyse en conditions contrôlées. Le fractionnement isotopique calculé est de $-11.7 \pm 1.4 \%$ pour ce processus isolé, très différent du fractionnement apparent (-54%) mesuré sur le terrain. Ces auteurs ont donc conclu ainsi que la photolyse seule ne suffit pas à expliquer les profils isotopiques mesurés, en accord avec les résultats de modélisation de Wolff et al. (2002).

Source secondaire de nitrate Savarino et al. (2007) ont mesuré le δ15N du nitrate atmosphérique à DDU, reproduisant ainsi la démarche pionnière de Wagenbach et al. (1998) à
Neumayer. La figure 1.11 reprend les données de ces deux travaux. Nous observons que le $\delta^{15}N$ du nitrate suit la même tendance aux sites de DDU et de Neumayer avec des valeurs qui deviennent très négatives au cours de l’été (période 2). Au contraire de Wagenbach et al. (1998), Savarino et al. (2007) imputent ces valeurs fortement négatives ($\delta^{15}N \approx -40 \%$) à la ré-émission de NO$_x$ du manteau neigeux par la photolyse du nitrate dont l’intensité devient maximale en période estivale. Ce mécanisme produit ainsi une source secondaire de nitrate atmosphérique issus du manteau neigeux en été.

Ces observations sont également cohérentes avec l’étude de Morin et al. (2009) qui reporte la composition isotopique du nitrate dans la basse atmosphère marine en été dans la mer de Weddell (Antarctique). La signature isotopique en azote du nitrate présente des valeurs exceptionnellement faibles ($\delta^{15}N \approx -40 \%$) lorsque les masses d’air ont passé un temps long aux-dessus de surfaces enneigées (la banquise dans la mer de Weddell notamment). Toutes ces observations sont enfin cohérentes avec des mesures réalisées en Arctique (Morin et al., 2008, 2009).

Au cours de la seconde période (octobre à décembre) à DDU, $\Delta^{17}O$(NO$_3^{-}$) atteint ses valeurs minimales après l’hiver alors que les teneurs en nitrate atmosphérique atteignent leur maximum. En cette période estivale, l’activité photochimique est maximale, ce qui engendre des émissions de NO$_x$ du manteau neigeux autour de DDU mais aussi plus en amont sur le plateau Antarctique, comme l’ont montré les mesures de $\delta^{15}N$. Ces NO$_x$ produits localement sont ensuite oxydés pour reformer du nitrate. La voie diurne de formation du nitrate, NO$_2$ + OH, est privilégiée. Elle a tendance à incorporer un atome d’oxygène dont l’anomalie isotopique est faible voire nulle, expliquant ainsi la décroissance des valeurs de $\Delta^{17}O$ dans le nitrate. L’été précédent (2001) montre également de faibles valeurs de $\Delta^{17}O$(NO$_3^{-}$) et confirme ce mécanisme.

Des mesures atmosphériques similaires au Pôle Sud montrent des variations similaires (McCabe et al., 2007) à celles observées à DDU. Ces mêmes auteurs ont également mesuré le nitrate contenu dans la neige en surface du manteau neigeux. La comparaison de $\Delta^{17}O$(NO$_3^{-}$) dans l’atmosphère et dans la neige montre des tendances similaires dans les deux enregistrements, bien que la neige semble se comporter comme un intégrateur des fluctuations rapides possibles.
Impact de la photolyse du nitrate sur $\Delta^{17}O$
$\Delta^{17}O$ permet de tracer les voies de formation du nitrate atmosphérique. Avant ce travail de thèse, il n’existait qu’une seule étude reportant des valeurs de $\Delta^{17}O$ dans la neige Antarctique. Sur la base de mesures dans un puits de neige de 6 mètres au Pôle Sud, McCabe et al. (2007) ont montré que la photolyse ne préserve pas entièrement l’anomalie isotopique de la source primaire stratosphérique de nitrate. Par ailleurs, ces auteurs ont observé des cycles à 2.7 années dans l’enregistrement de $\Delta^{17}O(NO_3^{-})$, dont la période rappelle celle des cycles mesurés dans la colonne d’oxygène totale au-dessus du Pôle Sud aux mois d’octobre, novembre et décembre. Ils concluent que la colonne d’oxygène totale (et donc essentiellement l’oxygène stratosphérique), qui module fortement le rayonnement UV reçu à la surface du manteau neigeux, est un contrôle important du $\Delta^{17}O$ du nitrate archivé.

1.4 Questions scientifiques

Nous avons vu que les carottes de glace ont permis d’obtenir à ce jour des informations importantes sur l’évolution de certains paramètres d’intérêt climatique (température, teneurs en CO$_2$ et CH$_4$, etc.). Le nitrate archivé dans les carottes de glace prélevée sur le plateau Antarctique (Vostok, Dôme C) a été pressenti pour apporter des informations en termes de teneurs atmosphériques passées en NO$_x$. D’importants processus physiques ou photochimiques altèrent cependant les concentrations en nitrate après son dépôt dans la neige et empêchent donc toute interprétation directe du point de vue climatique des variations des teneurs en nitrate.

Sur le plateau Antarctique, les processus de perte de nitrate dans la neige ont une signature isotopique caractéristique menant à des enrichissements en ^{15}N de plus de 180 000. Toute information isotopique concernant les sources de NO$_x$, précurseurs du nitrate atmosphérique, est ainsi perdue au profit d’une information concernant l’intensité des processus physiques et photochimiques à l’œuvre à l’interface air/neige. Le nitrate possède une anomalie isotopique qui permet de tracer son origine stratosphérique primaire au printemps Antarctique par exemple.
La photolyse du nitrate affecte en partie ce signal mais pas entièrement, si bien qu’une partie de la signature stratosphérique est encore observée en profondeur.

Dans le cadre de cette thèse, nous nous proposons d’appliquer l’outil isotopique à la mesure de la composition isotopique du nitrate piégé dans la carotte de glace de Vostok sur plus d’un cycle glaciaire. Le choix de cette carotte de glace a été gouverné par les contraintes analytiques de la mesure de la composition isotopique du nitrate, la disponibilité de cette archive au LGGE mais aussi parce que ce matériau a fait l’objet de nombreuses études et que le site de Vostok est bien connu.

Les questions posées au début de ce travail sont les suivantes :

1. la perte de nitrate à la surface du manteau neigeux du plateau Antarctique a-t-elle toujours eu lieu à l’échelle climatique ? Si tel est le cas,
 – quels sont les mécanismes et les conditions environnementales qui les contrôlent ?
 – peut-on déduire une information climatique ou chimiques à partir des isotopes stables au sein du nitrate ?
 – que représente la concentration de nitrate dans la glace ?

2. la mesure de l’anomalie isotopique en oxygène $\Delta^{17}O$ du nitrate permet-elle de contraindre les voies de formation du nitrate dans les atmosphères passées ? Peut-on également contraindre l’origine primaire du nitrate ?

1.5 Approche choisie dans ce travail

1.5.1 Collecte d’échantillons

1.5.1.1 Échantillonnage de la carotte de glace de Vostok

Forages retenus Les récentes améliorations des techniques de mesure de la composition isotopique du nitrate nécessitent une faible quantité de matière de nitrate par échantillon (100 nmol, Kaiser et al., 2007). Celle-ci reste cependant conséquente au regard des faibles quantités disponibles dans des échantillons de glace d’Antarctique. Pas moins de 1 à 2 kg de glace sont
ainsi nécessaires pour recueillir 300 nmol et donc garantir la mesure de triplicats (séries de trois mesures permettant de pallier à un défaut éventuel de la chaîne analytique). Pour réaliser cette étude, il était donc essentiel de disposer de suffisamment de glace, donc de pouvoir utiliser des sections entières de carottes de glace. Il est également primordial de pouvoir avoir accès à des sections continues atteignant parfois plus de 50 centimètres afin de pouvoir recueillir la masse ciblée. La carotte de glace qui en est issue a un diamètre de 11 cm pour des tronçons de 1 m de longueur. Cette glace est disponible dans les archives du LGGE.

L’archive 3G commence seulement à partir de 140 mètres de profondeur. L’enregistrement a été complété en prélevant des échantillons dans le carotte de néeve BH-1, forée lors de l’été 1991–92. Les sections entières stockées dans les archives du LGGE ont un diamètre de 12.5 cm pour des tronçons d’un mètre de longueur. Les tronçons constituant 3G et BH-1 sont stockés sous gaines plastiques scellées depuis leur prélèvement en Antarctique, réduisant ainsi les risques de contamination et d’échanges avec l’atmosphère extérieure.

Choix des échantillons Au total, 64 échantillons de néeve et de glace ont été utilisés :

- 61 échantillons proviennent du forage de glace 3G de Vostok, prélevés entre 172 et 2036 mètres de profondeur et dont la longueur est comprise entre 19 et 70 cm, ce qui couvre une période de 10 à 50 années (voir la section 2.5.4.3 pour le calcul de ces périodes),
- 4 échantillons proviennent du forage de néeve BH-1 de Vostok, prélevés entre 30 et 130 mètres et dont la longueur est comprise entre 23 et 25 cm, ce qui couvre une période de 23 à 25 années, selon la profondeur.

Afin d’observer les différences entre les périodes glaciaires et interglaciaires, les échantillons ont été prélevés comme suit :

- 11 échantillons dans l’Holocène, période interglaciaire s’étalant de −16 000 ans à nos jours,
- 37 échantillons dans le Würm, dernière période glaciaire de −115 000 à −16 000 ans,

4. La carotte de glace de Vostok se présente généralement sous la forme de cylindres (également appelés *tronçons*) de un mètre de longueur. Une fois extraits, les tronçons présentent des *sections* entières et peuvent être débités en lamelles (i.e. dans le sens de la longueur) afin de pouvoir satisfaire la forte demande en échantillons de la part de différentes équipes de recherche.
1.5. Approche choisie dans ce travail

- 7 échantillons dans l’Émien, période interglaciaire séparant le Riss et le Würm (−135 000 à −115 000 ans),
- 8 échantillons dans le Riss, période glaciaire (−195 000 à −135 000 ans),

La période échantillonnée s’étale ainsi de 700 à 147 000 années avant notre ère, soit un cycle glaciaire et demi. Dans ce qui suit, échantillons de glace et de névé (provenant du forage BH-1) ne seront plus distingués et le terme « carotte de glace de Vostok » désignera la carotte 3G complétée du forage BH-1.

1.5.1.2 Échantillonnage à la base Concordia de Dôme C

Le site du Dôme C a été choisi pour le prélèvement d’échantillons de nitrate dans l’atmosphère et dans la neige. Ce site est similaire à celui de Vostok car il est également situé sur le plateau Antarctique et parce que les taux d’accumulation de neige et les températures mesurées y sont très comparables. On y trouve la base franco-italienne Concordia qui fonctionne tout au long de l’année, permettant ainsi la collecte d’échantillons en hiver ainsi qu’en été.

37 échantillons de nitrate atmosphérique ont ainsi été collectés en continu de janvier 2009 à janvier 2010 à une résolution moyenne hebdomadaire l’été et bi-hebdomadaire l’hiver. 137 échantillons de givre de surface ont été collectés tous les 3 jours en moyenne et sur la même période de temps que les échantillons atmosphériques. À l’heure où ce manuscript est finalisé, 57 de ces 137 échantillons de givre de surface ont été analysés isotopiquement.

1.5.1.3 Puits de neige prélevés de la côte au Dôme C puis à Vostok

Afin de documenter la variabilité spatiale de la composition isotopique du nitrate dans la neige actuelle, de nombreux puits de neige ont été prélevés sur une vaste zone couvrant l’essentiel de l’Antarctique de l’Est (figure 1.15). Une première série de puits a été prélevée par M. M. Frey lors de la campagne d’été austral 2007–08, tout au long du trajet emprunté par le convoi logistique terrestre reliant la base côtière de Dumont d’Urville à la base Concordia, au Dôme C. Le premier puits a été prélevé au point D10, sur le continent, à quelques kilomètres de Dumont d’Ur-
ville. À l’occasion de ce convoi logistique, douze puits d’un mètre environ ont été échantillonnés. Lors de la même campagne d’été, trois puits de 50 cm de profondeur supplémentaires ont été collectés au Dôme C. Deux puits de 50 cm de profondeur ont été prélevés à Vostok par Volodia Lipenkov lors de la campagne d’été 2008–09. Lors de la campagne d’été suivante, quatre puits de 50 cm de profondeur ont été prélevés entre Dôme C et Vostok.

![Diagramme des sites de prélèvement des puits de neige](image)

Figure 1.15 – Sites de prélèvement des puits de neige. Les contours sont espacés de 100 mètres. Les symboles rouges indiquent les sites prélevés lors du convoi logistique terrestre de l’été austral 2007–08 et les symboles bleus, les sites de collecte visités lors de la campagne sismologique de l’été 2009–10. Les carrés marquent les sites où plusieurs collectes ont été réalisées : au Dôme C (4 collectes au total) et à Vostok (3 collectes au total).
1.5.1.4 Résumé de l’échantillonnage

La figure 1.16 récapitule schématiquement les échantillons acquis et analysés dans le cadre de cette thèse. Les récentes campagnes de collecte au Dôme C ont permis d’acquérir des cycles annuels complets dans les compartiments atmosphériques et de givre de surface. 21 puits de neige ont été collectés et analysés sur l’ensemble de l’Antarctique de l’Est, permettant ainsi une étude spatiale. À ces échantillons s’ajoutent ceux de la carotte de glace de Vostok. Au total, 485 échantillons ont été analysés dans le cadre de cette thèse.
1.5.2 Fonction de transfert à l’interface air/neige et développement du modèle TRANSITS

L’analyse isotopique du nitrate dans la carotte de glace de Vostok est le point de départ de ce travail et constitue un apport scientifique significatif. Le résultat de cette analyse est donné dans le chapitre 3.

L’ensemble des autres échantillons dans le continuum atmosphère/givre/neige sont cependant essentiels pour déterminer la fonction de transfert de la composition isotopique du nitrate et des concentrations de l’atmosphère à la glace par la compréhension des processus qui sont à l’œuvre à la surface du manteau neigeux en fonction des conditions environnementales de surface. Néanmoins, compte-tenu de la complexité des processus affectant le nitrate déposé dans la neige et de leurs interactions croisées, aucune interprétation robuste ne peut être effectuée à partir des seules données isotopiques et de concentration. Cette limitation du message direct transmis par les concentrations et la signature isotopique du nitrate justifient le recours à la modélisation numérique pour faire progresser l’interprétation de ces profils.

De nombreux modèles ont été développés pour étudier les processus physiques et chimiques impliquant le nitrate dans la neige et leur impact sur la chimie atmosphérique en Antarctique (Wang et al., 2007; Liao and Tan, 2008) et au Groenland (Thomas et al., 2011). Ces modèles sont adaptés à des périodes d’étude assez courtes et se focalisent sur les processus à l’œuvre dans l’atmosphère et le manteau neigeux superficiel. Dans le but de contribuer à l’interprétation de l’enregistrement isotopique et des teneurs en nitrate dans la carotte de Vostok, le modèle numérique TRANSITS (“TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow”) a été développé au cours de cette thèse. TRANSITS partage certaines hypothèses avec les travaux de Wolff et al. (2002). Outre une représentation plus réaliste de certains processus sa particularité essentielle est le traitement détaillé des rapports isotopiques stables du nitrate (δ^{15}N et Δ^{17}O). Dans ce modèle, la chimie atmosphérique est représentée conceptuellement au contraire des modèles précédemment cités. Cette approche permet de travailler à une échelle annuelle, plus adaptée aux longues durées de simulation alors que le modèle de Thomas et al. (2011) fonctionne
par exemple à l’échelle journalière.

Le chapitre 4 développe en détail le principe de fonctionnement et les hypothèses qui sous-tendent ce modèle. Celui-ci est dans un premier temps évalué dans sa capacité à reproduire les teneurs en nitrate et sa composition isotopique dans l’atmosphère, le givre de surface et les premiers décimètres de neige. La sensibilité du modèle est ensuite étudiée afin de déterminer les paramètres et variables contrôlant les teneurs en nitrate ainsi que les rapports isotopiques dans le flux archivé en profondeur. Enfin, le modèle est utilisé pour reproduire la variabilité spatiale du nitrate mesurée le long entre DDU, Dôme C et Vostok.

1.5.3 Interprétations qualitatives et quantitatives du profil de nitrate dans la carotte de glace de Vostok

La troisième et dernière contribution significative de ce travail est l’interprétation du profil de nitrate dans la carotte de glace de Vostok (chapitre 5). Une interprétation qualitative est obtenue à partir des gammes isotopiques mesurées dans la glace et par comparaison des données de puits de neige. En combinant les données isotopiques et le modèle, nous proposons une interprétation quantitative du profil de nitrate, telle que le flux primaire de nitrate déposé et les changements des conditions environnementales à Vostok et au cours des âges glaciaires.
Chapitre 1. Introduction : état de l’art, outils et contexte de l’étude
Chapitre 2

Méthodes analytiques

Ce chapitre introduit les principes généraux de la spectrométrie de masse à rapports isotopiques ainsi que la méthode bactérienne retenue pour l’analyse de la composition isotopique du nitrate dans le cadre de ce travail. De nombreuses améliorations à cette méthode ont été effectuées au cours de cette thèse. Une étape de préconcentration du nitrate a également été adoptée pour pouvoir garantir la compatibilité de la méthode bactérienne avec l’analyse d’échantillons de neige et glace dans lesquels le nitrate se trouve en très faibles concentrations. En plus des échantillons de la carotte de Vostok, une série d’échantillons couvrant le continuum atmosphère/givre/neige a été analysée. La fin de ce chapitre est consacrée au traitement des échantillons de la carotte de glace de Vostok et des échantillons prélevés dans le continuum atmosphère/givre/neige.

2.1 Introduction : principes généraux de la spectrométrie de masse à rapports isotopiques (IRMS)

La spectrométrie de masse à rapport isotopique (IRMS1) pour l’analyse des gaz a été mise au point dans les années 1940–1950 par (Nier, 1940, 1947; McKinney et al., 1950). Elle repose

1 Isotopic Ratio Mass Spectrometry
sur l’ionisation du gaz analysé dans une chambre sous vide, sur l’accélération du faisceau d’ions formé sous l’effet d’un champ électrique à haute tension et sur la déviation de ce faisceau sous l’effet d’un champ magnétique perpendiculaire qui permet de séparer les espèces ionisées selon leurs masses. Le LGGE dispose d’un spectromètre de masse à rapports isotopiques pour l’analyse des gaz, le Finnigan™MAT 253 (Thermo).

L’introduction du gaz dans la chambre d’ionisation du spectromètre de masse peut se faire via le dual inlet ou en flux continu. Le dual inlet permet l’introduction d’échantillons discrets et offre avantageusement une double entrée qui permet de comparer directement cet échantillon à un gaz standard dont on connaît la valeurs des enrichissements isotopiques par rapport aux références internationales (VSMOW ou N$_2$–AIR). Ce procédé offre la meilleure précision de mesure mais nécessite une quantité conséquente d’échantillons.

Pour cette étude, l’introduction du gaz dans le spectromètre de masse a été réalisée en flux continu via l’interface Finnigan™Gas Bench II (Thermo). Le gaz issu de l’échantillon (ici, un mélange de O$_2$ et N$_2$ dans notre cas) est d’abord séparé par chromatographie en phase gazeuse avant que les pics de O$_2$ et N$_2$ ne soient comparés quasi-simultanément à une référence de même composition, injectée immédiatement avant ou après. Les références oxygène et azote sont calibrées par rapport aux standards internationaux (respectivement VSMOW et N$_2$–AIR). Cette méthode d’introduction ne permet pas la comparaison directe de l’échantillon au gaz standard mais offre cependant d’analyser les échantillons par série de manière automatisée, ce qui représente un gain de temps considérable.

2.2 La méthode d’analyse des nitrates, le choix des bactéries et ses contraintes

Les ions nitrates en solution ne peuvent pas être introduits directement dans le spectromètre de masse. Ils doivent être, au préalable, convertis en une espèce gazeuse qui conserve au moins partiellement l’intégrité isotopique du nitrate initial. Pour ce faire, il existe différentes méthodes
qui sont présentées brièvement ici. La méthode bactérienne retenue pour ce travail est finalement décrite plus en détails.

2.2.1 Méthodes alternatives

2.2.1.1 Méthode azide

La méthode « azide » repose sur la conversion chimique de NO$_2^-$ en N$_2$O par de l’azide de sodium (NaN$_3$) en conditions acides (McIlvin and Altabet, 2005). Une conversion préalable des ions NO$_3^-$ en NO$_2^-$ à l’aide de cadmium est nécessaire. Les conditions optimales de pH ont été fixées à 4–5 afin de minimiser l’échange isotopique d’oxygène avec l’eau observé au stade NO$_2^-$ et de garantir la conversion NO$_2^-$ \rightarrow N$_2$O dans un temps raisonnable.

Cette méthode offre les avantages suivants : mesure de δ^{17}O, δ^{18}O et δ^{15}N, robustesse d’une réaction abiotique donc plus facile à contrôler, mesure du nitrate ou du nitrite quelle que soit la toxicité de la matrice dans laquelle ils se trouvent, faible quantité (\sim 30 nmol) nécessaire. L’utilisation de produits chimiques toxiques (azide et cadmium) implique de sérieuses mesures de précaution dans la manipulation et dans l’élimination de ces produits. Un autre inconvénient est la dilution d’un facteur 2 de δ^{15}N et l’échange isotopique affectant l’oxygène au stade NO$_2^-$.

2.2.1.2 Méthodes de combustion de sels de nitrate

D’autres méthodes inorganiques reposent sur la combustion de sels de nitrate (KNO$_3$, AgNO$_3$). On ne présente ici, pour l’exemple, que la méthode de décomposition du nitrate d’argent (Michalski et al., 2002) dont l’étape-clé de cette méthode est la purification de l’échantillon (extraction de composés organiques dissous) et la séparation du nitrate des autres anions majeurs. Les ions nitrates sont ensuite convertis sous forme acide (HNO$_3$) puis sous forme de saline (nitrate d’argent, AgNO$_3$) insoluble, via une série d’étapes nécessitant des résines et membranes échangeuses d’ions. La solution de AgNO$_3$ est par la suite évaporée pour récuperer ce sel dans une petite capsule en argent. AgNO$_3$ est ensuite pyrolysé à 550 °C produisant ainsi O$_2$ et des NO$_x$. O$_2$ est séparé et piégé dans un piège cryogénique puis analysé par spectrométrie de masse.
en *dual inlet*.

Les avantages de la méthode inorganique de combustion de AgNO$_3$ sont la possibilité d’analyse de δ17O et δ18O et sa bonne précision de mesure. Cette méthode est généralement employée pour déterminer la composition isotopique des standards isotopiques nitrate. Elle comporte cependant des inconvénients majeurs car elle est fastidieuse à mettre en œuvre, difficilement automatisable et nécessite de grandes quantités de nitrate (entre 3 et 5 µmol), ce qui la rend inadaptée pour l’analyse de la composition isotopique du nitrate dans des échantillons faiblement concentrés. Enfin, la mesure de δ15N par cette méthode est difficile.

2.2.2 Méthode bactérienne et analyse de N$_2$O

2.2.2.1 Conversion de NO$_3^-$ en N$_2$O

Les bactéries dénitrifiantes se servent du nitrate pour respirer et le déchet généralement produit est N$_2$. La bactérie *Pseudomonas Aureofaciens* est une bactérie dénitrifiante qui ne possède pas l’enzyme capable de catalyser la transformation finale du protoxyde d’azote N$_2$O en N$_2$ (*Casciotti et al.*, 2002; *Kaiser et al.*, 2007). Le N$_2$O ainsi produit par *Pseudomonas Aureofaciens* conserve au moins un atome d’oxygène et d’azote initialement présents dans le nitrate. Ces bactéries ne font pas de différences entre NO$_3^-$ et NO$_2^-$ et convertissent ces deux
ions présents dans l’échantillon pour former N\textsubscript{2}O. Dans le cas de l’analyse de neiges et de glaces d’Antarctique, ce problème est mineur compte-tenu des faibles teneurs en nitrite mesurées (Legrand et al., 1999).

Ces bactéries sont élevées 5 jours dans un milieu nutritif riche en azote (nitrate et ammonium) et en phosphore (phosphate), deux des éléments essentiels à la croissance bactérienne (les détails de toutes ces étapes se trouvent dans Morin, 2008, chapitre 5). L’absence de nitrites, l’aspect (couleur, turbidité) et l’odeur de la culture au bout de 5 jours permettent de contrôler le bon déroulement de la croissance bactérienne. La présence de nitrites révélerait en effet une croissance incomplète ou interrompue au stade nitrite. Les bactéries sont concentrées 8 fois puis dégazées par un flux d’hélium pendant 3 heures. Cette étape a pour but de retirer le N\textsubscript{2}O dissous résiduel et de garantir des conditions anaérobiques forçant les bactéries à utiliser le nitrate comme source d’oxygène pour leur respiration. L’injection de l’échantillon de nitrate et de la matrice associée permet d’atteindre des conditions identiques souhaitées (quantité de nitrate, volume total = matrice + échantillon, type et concentration de la matrice) pour les standards et les échantillons. Cette étape initialement réalisée manuellement est automatisée depuis janvier 2011 par un automate Gilson 215 équipé de deux seringues de 250 μl et 10 ml ainsi que de deux agitateurs orbitaux. Le temps nécessaire à la transformation complète du nitrate en N\textsubscript{2}O est de l’ordre de quelques heures, celle-ci est cependant assurée par l’incubation durant toute une nuit. Les bactéries sont enfin sacrifiées par injection de 0,5 ml de soude Na\textsubscript{OH} à 1 mol.l$^{-1}$.

2.2.2.2 Préparation du N\textsubscript{2}O

qui permettent de retirer H₂O, CO₂ et des composés organiques volatils (VOC), le N₂O étant quant à lui piégé à la température du diazote liquide. À ce stade, il ne reste plus que du N₂O qui est envoyé dans un tube en or chauffé à 900 °C (Kaiser et al., 2007) ce qui permet de décomposer ce gaz en N₂ et O₂. Une colonne chromatographique en phase gazeuse sépare enfin ces deux gaz ce qui permet de les envoyer successivement vers le spectromètre de masse pour la mesure des compositions isotopiques. La fonction peak jump du MAT 253 permet de passer de la configuration oxygène à azote en quelques secondes et donc de mesurer successivement δ¹⁷O et δ¹⁸O puis δ¹⁵N sur le même échantillon. La figure 2.1 montre le chromatogramme typique que l’on obtient.

![Chromatogramme typique](image.png)

Figure 2.1 – Spectrogramme typique obtenu lors de l’analyse d’un échantillon de N₂O. Les 3 premiers pics sont ceux du standard O₂ interne et les 3 derniers, les standards N₂ internes. Le dernier pic de O₂ et le premier pic de N₂ sont utilisés pour la calibration interne du spectromètre de masse et ne sont pas à confondre avec les standards externes (qui sont des standards nitrate dont on connaît la composition isotopique) que l’on utilise pour la calibration de l’ensemble de la chaîne d’analyse.

2.2.2.3 Avantages et inconvénients de la méthode bactérienne

La méthode bactérienne permet :

– l’analyse d’une faible quantité de nitrate (de l’ordre de 100 nmol),
– la mesure simultanée des trois compositions isotopiques stables du nitrate : δ¹⁷O, δ¹⁸O (et donc le calcul de Δ¹⁷O) et δ¹⁵N,
2.2. La méthode d’analyse des nitrates, le choix des bactéries et ses contraintes

– une analyse automatisée rapide (22 minutes et 30 secondes par échantillon),
– de travailler sur des échantillons préparés dans une matrice saline (tels que pour les échantillons de neige et de glace d’Antarctique).

Un des inconvénients de la méthode est la sensibilité des bactéries à la toxicité du milieu dans lequel se trouve le nitrate. Ceci n’a cependant que peu d’impact dans le cas de l’analyse du nitrate dans des échantillons naturels. Un autre inconvénient est la nécessité de préparer les standards isotopiques dans une matrice dont la composition isotopique de l’eau est identique à celle des échantillons. Ceci concerne notamment les échantillons de neige préparés (préconcentrés, voir section 2.3.2) au Dôme C après leur collecte (voir section 2.5). En effet, l’eau de Dôme C utilisée pour préparer les échantillons est issue de la fonte de neige de surface qui possède un $\delta^{18}O$ compris entre -40 et $-50 \%_o$ (Lorius et al., 1979; Toum et al., 2008), i.e. une signature isotopique très différente de celle attendue pour l’eau de Grenoble : entre -5 et $-10 \%_o$ (Rozanski et al., 1993). Cette différence au stade intermédiaire NO_2^- dans la conversion $\text{NO}_3^- \rightarrow \text{NO}_2^- \rightarrow \text{N}_2\text{O}$ par Pseudomonas Aureofaciens car il peu se produire un petit échange isotopique avec l’eau dans la matrice. Cet échange n’affecte que la mesure de $\delta^{18}O$ car dans les deux cas de l’Antarctique et de Grenoble, l’eau possède $\Delta^{17}O = 0 \%o$. Pour finir, bien que Pseudomonas Aureofaciens soit facile à cultiver, il arrive régulièrement que la croissance échoue pour des raisons non déterminées.

2.2.2.4 Régénération et entretien du système

Régénération et entretien hebdomadaires Chaque semaine, il est nécessaire d’entretenir le système et de régénérer certains éléments de celui-ci. Le four en or est reconditionné à 800 °C par injection d’oxygène pur à 45 ml.min$^{-1}$ environ pendant 16 heures environ. Ceci permet de brûler toutes les impuretés accumulées dans le tube au cours des analyses de la semaine. Sans cette opération, les pics d’oxygène se trouveraient petit à petit consommés lors de la combustion de ces impuretés dans le four et les rapports de tailles de pics N_2/O_2 (égal à 2 pour N_2O) augmenteraient. La colonne de chromatographie en phase gazeuse est régénérée en la chauffant
à 200 °C et en maintenant un balayage à l’hélium, afin d’extraire toutes les impuretés qui entravent, dans le temps, la bonne séparation des pics de O₂ et N₂ (généralement espacés de 65 secondes). Le dernier élément régénéré chaque semaine est le piège à VOCs que l’on chauffe à 180 °C pendant une heure, sous flux d’huium inversé. Sans cette opération, le piègeage des VOCs serait rendu petit à petit inefficace et il pourrait se produire une consommation d’une fraction du pic d’O₂ (et donc, une diminution du rapport des tailles de pics N₂/O₂) ou un échange isotopique avec O₂ au niveau du four.

Le système d’analyse du N₂O est testé en routine avant toute série d’analyse d’échantillons de N₂O produits par les bactéries. Un standard interne de N₂O de forte anomalie isotopique (Δ^{17}O = −45 %) a en effet été préparé au LGGE. Les valeurs brutes obtenues pour ce standard permettent de déterminer si le système a été correctement régénéré.

Régénération et entretien à plus long terme A plus long terme (tous les 3-4 mois), il est nécessaire de remplacer le piège à VOCs lorsque l’étape de régénération ne suffit plus. De même, il est nécessaire de remplacer les produits chimiques permettant de piéger le CO₂ (ascarite) et la vapeur d’eau (perchlorate). La détérioration de ce double piège se manifeste par une diminution des valeurs brutes obtenues pour l’oxygène sans qu’une régénération du four en or ou du piège à VOCs n’apporte d’améliorations.

2.2.3 Calibration des résultats isotopiques

Notion de traitement identique Les différentes étapes de l’analyse de N₂O par cette méthode induisent un certain nombre de fractionnements isotopiques (par les bactéries mais aussi à cause des microfuites sur le système ou encore lors de l’ionisation dans le spectromètre). Pour s’affranchir de ces fractionnements, le système est calibré en utilisant quatre standards isotopiques externes sous forme de nitrate dissous dont la composition isotopique est certifiée (voir tableau 2.1). Le principe de traitement identique, notion fondamentale en spectrométrie de masse de rapport isotopique (*Brand*, 1996), est appliqué en traitant les standards et les
échantillons de manière identique. Ceux-ci sont notamment préparés dans la même matrice (ici, NaCl 1 mol.l$^{-1}$) et contiennent la même quantité initiale de nitrate (100 nmol).

Calibration et incertitudes de mesure La répétabilité du système est évaluée en analysant quatre fois chaque standard externe. Pour chaque série, l’ensemble de la chaîne analytique est calibrée. La calibration est obtenue par simple régression linéaire entre les données brutes en $\delta^{17}O$, $\delta^{18}O$, $\Delta^{17}O$ et $\delta^{15}N$ du spectromètre de masse et les valeurs connues (voir tableau 2.1) des quatre standards externes utilisés (pour la méthode détaillée, se référer à Morin, 2008). Cette calibration est alors appliquée aux données brutes des échantillons mesurés.

Les incertitudes sur les mesures de $\delta^{17}O$, $\delta^{18}O$, $\Delta^{17}O$ et $\delta^{15}N$ sont ainsi directement liées aux incertitudes sur la mesure des standards externes. L’incertitude sur $\Delta^{17}O$ (par exemple) est définie comme l’écart-type des résidus à la calibration des standards : $\sigma = (\Delta^{17}O_{calibré} - \Delta^{17}O_{standards})$. $\Delta^{17}O$ est mesurée avec une meilleure reproductibilité que les valeurs d’enrichissements isotopiques ($\delta^{17}O$, $\delta^{18}O$). En effet, la plupart des fractionnements subis par l’oxygène dans la ligne de préparation sont dépendants de la masse, c’est-à-dire qu’ils n’affectent pas $\Delta^{17}O$ (contrairement à $\delta^{17}O$ et $\delta^{18}O$). Par conséquent, $\Delta^{17}O$ est entaché d’une incertitude plus faible que $\delta^{17}O$ et $\delta^{18}O$ (Morin, 2008). $\Delta^{17}O$ étant issue du calcul à partir de $\delta^{17}O$ et $\delta^{18}O$, cette nouvelle grandeur se substitue à l’une des deux valeurs. Par la suite, nous ne reportons donc plus les valeurs de $\delta^{17}O$ au profit de l’anomalie isotopique ($\Delta^{17}O$).

La figure 2.2 montre un exemple de calibration de $\delta^{18}O$, $\Delta^{17}O$ et $\delta^{15}N$. Les paramètres de cette calibration sont reportés dans le tableau 2.2.

Incertitudes sur les valeurs isotopiques reportées pour les échantillons de Vostok Les échantillons de la carotte de glace de Vostok ont été analysés au cours de plusieurs séries d’analyse s’étalant sur près de 3 années. Au cours de cette longue période, l’ensemble de la chaîne d’analyse (bactéries, ligne d’analyse du N$_2$O, spectromètre de masse) a présenté des états de fonctionnement variables. Ceux-ci impactent évidemment les mesures isotopiques et les incertitudes calculées lors de la calibration de l’ensemble de la chaîne analytique. Pour cette
Chapitre 2. Méthodes analytiques

Tableau 2.1 – Standards isotopiques externes utilisés et leurs compositions isotopiques.

<table>
<thead>
<tr>
<th>Code</th>
<th>Standard name</th>
<th>δ^{18}O</th>
<th>δ^{17}O</th>
<th>Δ^{17}O</th>
<th>δ^{15}N</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>USGS–35</td>
<td>51.5%</td>
<td>57.5%</td>
<td>21.6%</td>
<td>2.7%</td>
</tr>
<tr>
<td>C</td>
<td>50% USGS–35 / 50% USGS–34</td>
<td>16.5%</td>
<td>12.5%</td>
<td>10.9%</td>
<td>0.3%</td>
</tr>
<tr>
<td>F</td>
<td>50% USGS–34 / 50% USGS–32</td>
<td>-0.8%</td>
<td>-1.1%</td>
<td>0.2%</td>
<td>89.3%</td>
</tr>
<tr>
<td>Z</td>
<td>USGS–32</td>
<td>13.4%</td>
<td>25.7%</td>
<td>0%</td>
<td>180%</td>
</tr>
</tbody>
</table>

b. Michalski et al. (2002); Böhke et al. (2003)
c. Morin (2008)

Figure 2.2 – Calibration obtenue le 13/01/2011 pour δ^{18}O, Δ^{17}O et δ^{15}N mesurés par la méthode bactérienne (matrice d’eau ultrapure Millipore, cible = 100 nmol). Les rectangles gris représentent les zones comprises dans l’intervalle $[-1\sigma, +1\sigma]$. Les paramètres des calibrations sont données dans le tableau 2.2.

Tableau 2.2 – Valeurs des coefficients de calibration (valeurs de a et b, pente et ordonnée à l’origine) et écarts-types (1σ) sur les résidus pour l’analyse du 13/01/2011.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ^{18}O</td>
<td>1.32</td>
<td>-21.97</td>
<td>1.67</td>
</tr>
<tr>
<td>Δ^{17}O</td>
<td>1.27</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>δ^{15}N</td>
<td>1.02</td>
<td>3.52</td>
<td>0.16</td>
</tr>
</tbody>
</table>
raison, les valeurs isotopiques mesurées ainsi que les incertitudes calculées (pour \(\delta^{18}O \), \(\Delta^{17}O \) et \(\delta^{15}N \)) sont reportées pour chaque échantillon en fonction de la série analytique dont ils ont fait partie.

<table>
<thead>
<tr>
<th>(\sigma(\delta^{18}O))</th>
<th>(\sigma(\Delta^{17}O))</th>
<th>(\sigma(\delta^{15}N))</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>0.83</td>
<td>0.18</td>
</tr>
<tr>
<td>max</td>
<td>5.20</td>
<td>2.10</td>
</tr>
<tr>
<td>mean</td>
<td>2.35</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Table 2.3 – Incertitudes minimales, maximales et moyennes sur \(\delta^{18}O \), \(\Delta^{17}O \) et \(\delta^{15}N \) pour les 64 échantillons de la carotte de glace de Vostok.

Le tableau 2.3 présente les valeurs des barres d’erreurs représentées sur la figure 3.1 (page 79). Certains des échantillons n’ont pu être analysés qu’une seule fois car ils contenaient une quantité plus faible de nitrate que les \(3 \times 100 \) nmol attendus. Une correction des valeurs isotopiques brutes de l’effet de taille des échantillons a parfois été nécessaire pour permettre leur calibration normale ; il en résulte une incertitude plus importante prise en compte en doublant les incertitudes isotopiques initiales. Certaines séries analytiques ont en outre été réalisées avec une cible à 50 nmol au lieu de 100 pour des échantillons à réanalyser.

Une perte de répétabilité générale de la méthode bactérienne a enfin été observée au cours des 2 dernières années de ce travail. Celle-ci affecte également le standard interne de \(N_2O \) décrit précédemment, ce qui prouve que le problème se situe au niveau de la ligne de préparation du \(N_2O \). Malgré tous nos efforts (changement complet de la ligne d’analyse incluant le tube en or), la source de cette perte n’a pas pu être déterminée avec certitude. Elle pourrait cependant provenir d’une contamination de la ligne lors d’une mauvaise opération durant la régénération du piège VOC et se manifeste par un échange isotopique en oxygène plus important qu’auparavant. Celui-ci aurait lieu avec \(N_2O \) ou \(O_2 \) lors de la conversion de \(N_2O \) en \(O_2 \) et \(N_2 \) au niveau du tube en or chauffé à 900 °C. Cet échange isotopique plus important sur l’oxygène pourrait expliquer les incertitudes légèrement plus importantes sur \(\delta^{18}O \) et \(\Delta^{17}O \) que celles reportées par Morin (2008).
2.3 Contraintes et améliorations dans le cadre de cette thèse

2.3.1 Optimisation des méthodes

Les améliorations apportées au cours de cette thèse concernent la croissance des bactéries et le système d’analyse du N$_2$O. Celui-ci a été rendu plus simple, plus robuste et plus rapide qu’auparavant. La figure 2.3.1 montre l’état actuel du système d’analyse du N$_2$O et l’injection de ce gaz dans le spectromètre de masse. Les performances de l’ensemble de la chaîne analytique avant et après l’implémentation de ces améliorations sont similaires.

Améliorations de l’étape de croissance bactérienne Les conditions anaérobies sont critiques à la garantie de la bonne croissance bactérienne. En effet, une présence trop abondante d’oxygène dans le milieu lors de la conversion du nitrate en N$_2$O provoquerait l’inactivation de l’enzyme nitrite reductase et donc l’arrêt de la conversion au stade nitrite NO$_2^-$ dont l’augmentation des teneurs rendrait rapidement les conditions du milieu toxiques (communication personnelle de Kritee K., Department of Environmental Sciences, Rutgers University, NJ, Etats-Unis). On observe alors une importante mortalité bactérienne en plus de teneurs importantes en nitrite qui empêche toute utilisation de la série de culture. Pour éviter toute fuite et l’incorporation d’oxygène de l’air, tous les bouchons des flacons de culture bactériennes (Schott 250 ml) ont été remplacés par des bouchons à sceptum qui permettent une fermeture plus hermétique ainsi que le prélèvement de milieu (pour le test des teneurs en nitrite) sans introduction d’oxygène de l’air.

Un autre point critique est le rapport entre le volume de liquide et le volume total du flacon. Ce rapport n’est jamais de 1 car il semble que les bactéries ont besoin d’un apport initial d’oxygène pour démarrer leur croissance (communication personnelle de Kritee K., Department of Environmental Sciences, Rutgers University, NJ, Etats-Unis). Le volume ne doit cependant pas être trop important pour éviter d’atteindre des conditions toxiques par l’accumulation de nitrites. Avant modification, les flacons étaient remplis à 50 %, ce qui causait fréquemment l’atteinte des conditions toxiques et donc la perte des cultures. Le volume dans les flacons de
2.3. Contraintes et améliorations dans le cadre de cette thèse

Figure 2.3 – Ancien et nouveau schémas de fonctionnement du dispositif d’analyse de mesure en ligne de la composition isotopique du N₂O produit par Pseudomonas Aureofaciens. Le système est à chaque fois représenté en mode LOAD, c’est-à-dire que le N₂O est en cours de collecte, purification et concentration par condensation dans un piège cryogénique. Lors de la bascule en mode INJECT (par permutation de la vanne 8 voies), le N₂O est envoyé vers le tube en or chauffé à 900 °C pour y être décomposé.
culture a donc été augmenté pour atteindre plus de 80 %. Dès lors, un bien meilleur succès au stade de la croissance bactérienne a été obtenu.

Un système plus simple La comparaison du système actuel à celui décrit dans Morin (2008) (figure 2.3) montre qu’un certain nombre d’éléments ont été retirés. Le piège à vapeur d’eau (membrane Nafion) a été retiré et aucune différence n’a été observée, ce qui suggère que le premier piège à eau (perchlorate) rend obsolète la présence de la membrane Nafion. La boucle de concentration (cryofocus) du mélange O₂–N₂ après le four en or a également été retirée, de même que le système de purification de l’hélium (piège à tamis moléculaire plongé dans l’azote liquide) servant à la collecte du N₂O dans le piège principal pour l’envoyer dans le four en or. Toutes ces éléments retirés permettent d’obtenir un système plus simple et donc plus robuste car moins de connections sont nécessaires, diminuant d’autant le risque de fuites.

Un système plus robuste La double aiguille de prélèvement de l’échantillon a été remplacée afin de pouvoir balayer le volume de gaz du flacon (head space) avec de l’hélium plutôt que de venir buller dans la phase liquide. Cette procédure a déjà été mise en place dans le cas de la mesure de δ¹⁵N dans le nitrate par la méthode bactérienne (Mørkved et al., 2007). Elle permet notamment d’éliminer tout risque de formation de projections qui viennent boucher le second trou de prélèvement de l’aiguille qui peut mener à la perte de précieux échantillons.

Un système plus rapide La durée d’analyse pour chaque échantillon a été réduite à 22 minutes et 30 secondes en diminuant la durée de la collecte du N₂O de 15 à 10 minutes. Sur la base de la mesure de la taille des pics de O₂ et N₂ issus de l’échantillon, il a été vérifié que le changement de ce paramètre n’a aucun impact sur le taux de collecte (proche de 100 %).

Stockage des flacons contenant du N₂O Il arrive parfois que le système d’analyse du N₂O ne soit pas disponible alors que la conversion de NO₃⁻ en N₂O a déjà été réalisée dans les flacons de 20 ml. Les flacons sont donc stockés en attendant leur prochaine analyse isotopique. Trois scénarios de stockage ont été testés : des séries identiques de flacons ayant contenu des
standards isotopiques de nitrate ont été placées dans le noir pour une durée de 3 mois et dans trois conditions de températures : à température ambiante (25 °C), au réfrigérateur (4 °C) et au congélateur (−18 °C). Avant analyse, 0.5 ml supplémentaires de NaOH à 1 mol.l\(^{-1}\) sont injectés dans chaque flacon pour garantir le piégeage de tout CO\(_2\) parasite. Le tableau 2.4 récapitule les valeurs moyennes et écarts-types des tailles de pics obtenues pour les standards ainsi que des blancs dans les trois conditions de température de stockage. Ce tableau montre des tailles de pics moyennes équivalentes parmi les trois conditions de stockage. Ces tailles sont comparables à celles attendues lorsque le N\(_2\)O produit par les bactéries est directement analysé. Une petite fraction (6 % en comparaison au stockage dans le congélateur, pris comme référence) des standards stockés à température ambiante semble être perdue sur cette période de trois mois. Les tailles des blancs sont très faibles, comme c’est le cas habituellement. Elles suggèrent que rien ne rentre dans les flacons pendant ces trois mois.

La figure 2.4 montre les calibrations obtenues pour ces trois tests et le tableau 2.5 donne les coefficients (pente, ordonnées à l’origine, écart-type sur les résidus de calibration) de ces calibrations. Les calibrations sont équivalentes pour l’azote ainsi que l’oxygène et seuls de très faibles effets sont observés avec la température. D’après les tableaux 2.4 et 2.5 et la figure 2.4, il semble que le meilleur compromis soit le stockage au réfrigérateur qui conserve bien le N\(_2\)O et qui montre peu de déviations dans les calibrations isotopiques. Par ailleurs, ce mode de stockage limite les contraintes thermiques sur le bouchon-sceptum tout en garantissant une température basse ralentissant l’altération chimique du N\(_2\)O.

Suivi du système Au cours de cette thèse, 4 outils de suivi du système de mesure de la composition isotopique du nitrate ont été mis en place :

1. suivi des paramètres généraux du spectromètre de masse : voltage, intensités, pressions des réservoirs d’hélium, bruits de fond, etc.,
2. suivi des paramètres de la croissance bactériennes : durée de croissance, résultat du test nitrite, apparence, etc.,
Table 2.4 – Test du stockage de flacons contenant des standards isotopiques de nitrate convertis en N₂O par les bactéries. Les flacons ont été placés dans le noir, dans trois conditions de températures et pour une durée de trois mois.

<table>
<thead>
<tr>
<th>Storage</th>
<th>Temp.</th>
<th>100 nmol peak size (Vs) ± 1 σ</th>
<th>blank peak size (Vs) ± 1 σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freezer</td>
<td>−18 °C</td>
<td>13.32 ± 1.26 (n = 18)</td>
<td>0.28 ± 0.00 (n = 2)</td>
</tr>
<tr>
<td>Fridge</td>
<td>4 °C</td>
<td>13.22 ± 0.67 (n = 20)</td>
<td>0.28 ± 0.02 (n = 2)</td>
</tr>
<tr>
<td>Room temp.</td>
<td>25 °C</td>
<td>12.50 ± 0.78 (n = 19)</td>
<td>0.21 ± 0.03 (n = 2)</td>
</tr>
</tbody>
</table>

Figure 2.4 – Calibration de δ¹⁸O, Δ¹⁷O et δ¹⁵N mesurés par la méthode bactérienne pour les tests de stockage dans trois conditions de températures différentes. Les lignes de couleur représentent les régressions linéaires trois groupes de données pour δ¹⁸O, Δ¹⁷O et δ¹⁵N (les paramètres sont donnés dans le tableau 2.5).

Table 2.5 – Valeurs des coefficients de calibration (valeurs de a et b, pente et ordonnée à l’origine) et écarts-types (1σ) sur les résidus pour les trois séries du test de stockage.

<table>
<thead>
<tr>
<th>Storage</th>
<th>Temp.</th>
<th>δ¹⁸O a b 1σ</th>
<th>Δ¹⁷O a b 1σ</th>
<th>δ¹⁵N a b 1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freezer</td>
<td>−18 °C</td>
<td>1.14 -25.62 1.18</td>
<td>1.24 0.16 0.38</td>
<td>1.06 -1.35 0.79</td>
</tr>
<tr>
<td>Fridge</td>
<td>4 °C</td>
<td>1.17 -26.50 1.07</td>
<td>1.24 0.06 0.44</td>
<td>1.06 -1.57 0.82</td>
</tr>
<tr>
<td>Room temp.</td>
<td>25 °C</td>
<td>1.17 -26.70 1.09</td>
<td>1.27 -0.14 0.42</td>
<td>1.06 -1.73 0.98</td>
</tr>
</tbody>
</table>
3. suivi des standards et références internes : tailles des pics, rapports N₂/O₂, valeurs isotopiques brutes, etc.,

4. suivi des standards isotopiques nitrate et des calibrations : quantité de nitrate (nmol) ciblée, volume total (échantillon + matrice), type de matrice, pourcentage de standards rejétés, tailles moyennes des pics, rapports N₂/O₂ moyens, taille des blancs, pentes et ordonnées à l’origine des calibrations, écart-types des résidus obtenus, etc.

Ces outils de suivi sont utilisés en routine et permettent de détecter très rapidement tout signe de déviation au fonctionnement normal de la chaîne analytique et donc d’adapter le programme de régénération/entretien correspondant. Cette démarche est d’autant plus primordiale qu’elle s’inscrit dans un contexte où de nombreux nouveaux arrivants ont été accueillis dans l’équipe de J. Savarino. Ces outils permettent en outre de transmettre efficacement l’expérience accumulée au cours de cette thèse et de celle de S. Morin.

2.3.2 Préconcentration du nitrate avant la mesure isotopique

2.3.2.1 Principe

Afin de garantir une bonne répétabilité des mesures de la composition isotopique, il est nécessaire d’injecter 100 nmol de nitrate (Kaiser et al., 2007). Sur les deux derniers cycles glaciaires par exemple, la concentration de nitrate dans la glace de Vostok varie entre 4 et 190 ng.g⁻¹ soit entre 0.07 et 3.07 µmol.l⁻¹ (Legrand et al., 1999). Par conséquent, il faudrait injecter entre 32 et 1540 ml d’échantillon ce qui surpasse largement le volume maximal de 10 ml autorisé par notre version de la méthode analytique employée. Il est ainsi primordial de préconcentrer les échantillons avant l’analyse isotopique. Pour ce faire, une approche similaire au travail analytique pionnier réalisé par Bordat et al. (1992) a été choisie. Elle requiert l’utilisation de colonnes de préconcentration. Cette étape concerne les échantillons de neige et de glace et n’est par exemple pas nécessaire dans le cas d’échantillons atmosphériques car la concentration du nitrate collectée est généralement satisfaisante.

La figure 2.5 montre le dispositif de préconcentration. L’échantillon passe par la résine AG
1-X8 (Bio-Rad 200-400 mesh chloride form, Part No : 140-1441) où le nitrate (ainsi que d’autres anions) est piégé (Chang et al., 1999). La résine utilisée a une sélectivité (l’ion hydroxyde servant de référence) pour l’ion nitrate (65) bien supérieure à celle pour l’ion chlorure (22). Ainsi, à concentrations identiques, les ions nitrate sont préférentiellement retenus par la résine comparativement aux ions chlorures. Les ions nitrates (et les autres ions piégés) sont élus par 10 ml d’une solution de chlorure de sodium NaCl à 1 mol.l$^{-1}$. La forte concentration des ions chlorures l’emporte sur la faible sélectivité de la résine pour ces ions. Le protocole complet de l’étape de préconcentration est donné en annexe A.

2.3.2.2 Validation de l’étape de préconcentration

Des tests ont montré que l’extraction par une série de 4×2 ml de NaCl à 1 mol.l$^{-1}$ suffit à récupérer plus de 98.5 % des 300 nmol de nitrate piégés sur 0.3 ml de résine. La capacité de la résine est de 1.2 meq.ml$^{-1}$, c’est-à-dire 1.2 mmol.ml$^{-1}$ pour NO$_3^-$ ce qui représente une capacité
totale de 360 µmol pour 0.3 ml de résine soit 1200 fois la quantité de nitrate ciblée. Pour assurer le rendement de récupération, les échantillons de Vostok ont tous été élus par une série de 5×2 ml de NaCl à 1 mol.l$^{-1}$. À un tel niveau d’efficacité, les fractionnements isotopiques induits par la faible quantité de nitrate perdue sont négligés.

L’impact de l’étape de préconcentration sur la mesure isotopique a été testé en faisant passer 500 nmol de chaque standard isotopique de nitrate (USGS–35, USGS–32, mélange 50–50 % USGS–35 et USGS–34 et mélange mélange 50–50 % USGS–34 et USGS–32) par la résine. 3×100 nmol de chaque standard ont été analysés, de même que 3×100 nmol de chaque standard préparés normalement, constituant ainsi deux séries identiques de standards à ceci près que l’une d’elle a été préconcentrée sur la résine. Le tableau 2.6 montre le résultat de ce test. Les tailles moyennes des pics sont comparables bien que ceux passés par la résine sont légèrement plus importants. Les calibrations isotopiques montrent des corrections identiques pour δ15N et une correction légèrement plus importante dans le cas de l’analyse normale sur l’oxygène. Ceci pourrait s’expliquer par les tailles de pics plus importantes que observées pour la série « préconcentrée » par rapport à la série normale. Il est courant d’observer des valeurs brutes en oxygène plus importantes (et donc des corrections plus faibles) lorsque les tailles de pics sont plus importantes. Les écarts-types dans le cas de la calibration de standards passés par la résine sont supérieurs à ceux analysés normalement ce qui montre que l’étape de préconcentration apporte une incertitude supplémentaire mais faible. Cette conclusion est cohérente avec la récente étude réalisée par Templer and Weathers (2011).

L’effet de la quantité de nitrate chargée sur la résine a également été testé en préconcentrant

<table>
<thead>
<tr>
<th>Standards set</th>
<th>Mean peak size ($\pm 1\sigma$)</th>
<th>δ^{18}O</th>
<th>Δ^{17}O</th>
<th>δ^{15}N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal set</td>
<td>14.29 ± 0.30 (n = 12)</td>
<td>a 1.56</td>
<td>1.56</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b -6.69</td>
<td>-0.09</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1σ 0.99</td>
<td>0.26</td>
<td>0.27</td>
</tr>
<tr>
<td>500 nmol loaded</td>
<td>14.79 ± 0.50 (n = 12)</td>
<td>a 1.51</td>
<td>1.50</td>
<td>1.03</td>
</tr>
<tr>
<td>on the resin</td>
<td></td>
<td>b -7.55</td>
<td>0.01</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1σ 1.92</td>
<td>0.31</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Table 2.6 – Test de l’effet de l’étape de préconcentration sur les valeurs isotopiques.
300, 500, 1000 et 3000 nmol de deux standards isotopiques différents (USGS–35 et USGS–32). 3 × 100 nmol de chaque standard extrait des résines ont été analysés et les valeurs brutes ont été comparées aux valeurs brutes minimales et maximales obtenues pour ces mêmes standards analysés en conditions normales (paragraphe précédent). La figure 2.6 montre les résultats de ce test avec les valeurs brutes obtenues pour USGS–35 et USGS–32 en fonction de la charge préconcentrée sur la résine. La référence pour ce test est constituée des standards dont 500 nmol ont été chargés sur la résine car il s’agit de la série comparée au cas normal au paragraphe précédent. Les données isotopiques brutes en oxygène des autres séries (charges de 300, 1000 et 3000 nmol) montrent un très bon accord (inférieur à 1 et 0.5 ‰ sur δ¹⁸O et Δ¹⁷O respectivement) avec celles de la série de référence. Dans le cas du standard isotopique présentent des valeurs élevées de δ¹⁵N (USGS–32), on remarque que les valeurs brutes montrent une tendance avec la charge de nitrate préconcentrée sur la résine. Cet effet n’apparaît pas pour le standard USGS–35 dont le δ¹⁵N est faible. Cet effet, inférieur à 3 ‰ en comparaison d’un signal à 175 ‰, est minime et pourrait être dû à une faible contamination. Ce test révèle que, dans la gamme allant de 300 à 3000 nmol de nitrate préconcentrés sur la résine, la charge a un impact très faible sur les valeurs isotopiques.

2.3.2.3 Contrôle de la qualité des données de Vostok

L’étape la plus critique lors de la préconcentration est le nettoyage de la résine de tout nitrate initialement présent ou accumulé pendant son stockage. Ce nitrate viendrait en effet contaminer le nitrate originaire de l’échantillon. L’extraction du nitrate parasite est réalisée en faisant passer une solution de NaCl à 1 mol.l⁻¹ à plusieurs reprises au travers de la résine. Le bon nettoyage de la résine a été contrôlé par la mesure de blancs pour lesquels aucune solution à préconcentrer n’est injectée. La mesure de la concentration en nitrate du produit de l’élation montre de très faibles quantités de nitrate (inférieures à 25 nmol) dans l’extrait total. La mesure de la concentration du nitrate dans la solution de NaCl à 1 mol.l⁻¹ montre des concentrations inférieures à 2 ng.g⁻¹, i.e. 0.3 nmol pour un volume de 10 ml. Ces faibles concentrations prouvent
2.3. Contraintes et améliorations dans le cadre de cette thèse

Figure 2.6 – Test de l’impact de la quantité de nitrate chargée sur la résine sur les valeurs isotopiques brutes. Les ronds et triangles représentent respectivement les standards isotopiques USGS–35 et USGS–32. Les zones grisées représentent les valeurs brutes minimales et maximales mesurées pour ces mêmes standards dans la série analysée normalement.

que la contamination ne provient pas de la solution de NaCl utilisée pour l’extraction du nitrate des résines.

Le développement de la méthode de préconcentration a mené à l’amélioration du protocole de rinçage jusqu’à obtenir ce niveau satisfaisant. Il se peut cependant que les premières séries d’analyses aient été entachées d’une contamination. Les échantillons d’une même série (habituellement entre 4 et 12) sont préparés exactement de la même manière. Ainsi, un mauvais rinçage des résines induit donc la contamination de la série complète en introduisant un blanc de nitrate
de masse constante. La contamination affecte naturellement plus les échantillons dont la masse de nitrate est faible (proche ou en-deçà des 3×100 nmol ciblés) que ceux dont la masse est importante (près de 2μmol pour les plus chargés).

La composition isotopique du blanc de nitrate dans la résine a été mesuré. $\delta^{15}\text{N} = -5\, \%\text{e}$ et $\Delta^{17}\text{O} = 0\, \%\text{e}$, ce qui suggère que le nitrate parasite est d’origine industrielle. Ainsi, toute contamination par ce nitrate originellement présent dans la résine résulte en la dilution isotopique de l’échantillon et donc des valeurs isotopiques dans un graphe $\Delta^{17}\text{O}$ vs $\delta^{15}\text{N}$ qui tendent vers le point $(0, -5)\, \%\text{e}$.

Un contrôle de qualité des données isotopiques obtenues pour la carotte de glace de Vostok a été réalisé. Chaque série d’échantillons a été placée dans le double graphe isotopique $\Delta^{17}\text{O}$ vs $\delta^{15}\text{N}$. Toute série montrant une tendance à la déviation vers le point $(0, -5)\, \%\text{e}$ est suspectée d’être contaminée. Si $\Delta^{17}\text{O}$ et $\delta^{15}\text{N}$ montrent également une forte tendance décroissante avec l’inverse de la concentration en nitrate dans l’échantillon préconcentré, la contamination est confirmée et l’ensemble des données isotopiques de la série sont écartées. La figure 2.7 montre le protocole de contrôle de qualité ainsi que les trois séries d’échantillons rejetées. Sur un total de 85 échantillons prélevés dans la carotte de glace de Vostok, 21 ont été écartés à cause d’une contamination et 64 ont été conservés.

2.3.2.4 Conclusion

Nous venons de voir que l’étape de préconcentration du nitrate ajoute une incertitude sur la mesure isotopique mais que son impact est globalement négligeable. Nous avons également vu que la charge de nitrate préconcentrée sur résine a un effet minime sur les valeurs isotopiques brutes dans la gamme allant de 300 à 3000 nmol. Certaines séries d’échantillons de la carotte de Vostok ont été contaminées mais ces séries ont pu être identifiées et écartées. La méthode de préconcentration du nitrate sur résine échangeuse d’ions a enfin l’avantage d’être facile à mettre en œuvre sur le terrain (en Antarctique par exemple) où les éluats de 10 ml des échantillons préconcentrés sur site sont envoyés en Europe pour analyse, au lieu de rapatrier des échantillons
2.4 Mesure des concentrations ioniques

Les concentrations ioniques mesurées dans l’échantillon ont été obtenues par chromatographie ionique ou par colorimétrie en flux continu.

2.4.1 Mesure des concentrations par chromatographie ionique

La chromatographie ionique Dionex ICS3000 est utilisé pour mesurer les concentrations en ions sodium (Na⁺), chlorure (Cl⁻), ammonium (NH₄⁺), magnésium (Mg²⁺), potassium (K⁺), calcium (Ca²⁺), nitrate (NO₃⁻), sulfate (SO₄²⁻), aux précisions respectives de 0.4, 0.4, 0.8, 0.5, 0.8, 0.4, 0.4 et 0.4 % sur 300 μl d’échantillon. Cations et anions sont mesurées simultanément sur deux système en série. Cette technique est courante au LGGE (voir Moreno Rivadeneira, 2011, par exemple) et généralement utilisée pour l’analyse des ions trace de l’eau. Elle est cependant...
2.4.2 Méthode colorimétrique pour la mesure de la concentration en nitrate

La chromatographie ionique permet la mesure simultanée de nombreux ions mais les temps d’analyse sont longs (plus de 15 minutes) et la mesure d’échantillons dans une matrice saline (très fortes concentrations en ions sodium et chlorures) limite fortement sa sensibilité. La méthode colorimétrique (Röthlisberger et al., 2000b; Patey et al., 2008) de mesure de la concentration en nitrate a été mise en place au LGGE ainsi que sur le terrain au Dôme C. Cette méthode spécifique à la mesure de l’ion nitrate est plus rapide que la chromatographie ionique. Ce système à basse pression est également moins onéreux et plus facile à modifier. Enfin, l’effet de matrice disparaît si celle-ci absorbe peu à la longueur d’onde de travail.

Le principe de la méthode colorimétrique repose sur la conversion du nitrate (NO$_3^-$) en nitrite (NO$_2^-$) sur une colonne constituée d’un alliage spécial (cadmium-cuivre) puis la diazotisation du nitrite en milieu acide et en présence de N-(1-naphtyl)éthylénediamine (NED). Ceci produit un complexe coloré rose-violet dont l’absorbance à $\lambda = 550$ nm est détectée par spectrophotométrie. La méthode est calibrée grâce à une série de standards et la précision obtenue est généralement meilleure que 3 % (Frey et al., 2009). En réalité, la somme des concentrations en ions nitrates et nitrites est mesurée par cette technique. Les concentrations en nitrites sont cependant très faibles dans la neige en région polaire (Legrand and De Angelis, 1995). Les teneurs en nitrite dans le givre de surface sont par exemple inférieures à 0.5 ng.g$^{-1}$ à Dôme C (mesures de J. Savarino pendant la campagne d’été 2010–2011). Celles-ci peuvent donc être considérées minoritaires en comparaison aux teneurs en ions nitrates. De ce fait, les mesures d’absorbances obtenues ne sont pas corrigées de l’effet de ions nitrites. Cette hypothèse est corroborée par les mesures de neige de surface à Dôme C ainsi que les dernières séries d’analyse par chromatographie ionique (dont le protocole a été amélioré pour permettre la mesure d’espèces ioniques supplémentaires) dans les échantillons de la carotte de glace de Vostok.
2.5 Méthodes spécifiques et données complémentaires

Dans cette section, nous présentons les méthodes spécifiques de traitement de chaque type d’échantillons : nitrate dans les compartiments atmosphériques, de givre de surface, de neige et de glace. Le protocole de prélèvement de chaque compartiment est ainsi présenté et complété de la description et d’informations concernant l’origine des données complémentaires à ce travail.

2.5.1 Nitrate atmosphérique

2.5.1.1 Méthode de prélèvement et traitement

Les échantillons atmosphériques de Dôme C ont été prélevés par le personnel hivernant de la base Concordia. La technique de collecte à haut volume (1 m3.min$^{-1}$ en conditions standard de température et pression) sur filtres en fibre de verre (20.3 cm × 25.4 cm) a été utilisée. Elle permet de collecter la somme du nitrate atmosphérique particulaire (p-NO$_3^-$) et de l’acide nitrique gazeux (HNO$_3$). HNO$_3$ dans la phase gazeuse semble s’adsorber sur les aérosols recueillis sur les filtres. L’analyse du contenu de filtres Whatman 41 (connus pour piéger quantitativement HNO$_3$, Morin et al., 2007a) placés à l’aval des filtres en fibre de verre montre en effet des concentrations de nitrate très faibles voire nulles, ce qui corrobore cette idée. Les échantillons ont été envoyés congelés en France où le nitrate contenu a été intégralement transféré en solution après centrifugation des filtres dans 40 ml d’eau ultrapure Millipore. Leur analyse isotopique a été réalisée de manière conjointe avec W. C. Vicars, en thèse au LGGE.

2.5.1.2 Données complémentaires

Pour cette série d’échantillons, des données météorologiques classiques sont disponibles (température et pression de l’air, vitesse et direction du vent, humidité relative, etc.). On dispose également de données concernant la colonne d’ozone au-dessus du site ainsi que le flux actinique mesuré en surface.
2.5.2 Givre de surface

2.5.2.1 Méthode de prélèvement

Le givre de surface représente généralement les 5 premiers millimètres de neige non cohésive à la surface du manteau neigeux. Il a été collecté par le personnel hivernant de la base Concordia. Le prélèvement de 200 à 300 grammes de ce givre a permis de recueillir une quantité de nitrate suffisante pour la mesure isotopique. Les étapes de détermination de la concentration en nitrate ainsi que de préconcentration (voir section 2.3.2) ont été réalisées sur le terrain quelques jours après la collecte des échantillons prélevés en été. Les échantillons prélevés le reste de l’année sont stockés avant d’être analysés et préconcentrés au cours de l’été suivant. L’analyse isotopique des échantillons a été réalisée de manière conjointe avec W. C. Vicars.

2.5.2.2 Données complémentaires

Depuis 2008, les concentrations de nitrate dans le givre de surface au Dôme C sont mesurées par l’équipe de J. Savarino ou par des collègues italiens.

2.5.3 Puits de neige

2.5.3.1 Méthode de prélèvement et traitement

Les puits de neige que nous présentons dans ce travail ont été prélevés au cours de trois saisons par différentes personnes. Le protocole d’échantillonnage n’a donc pas été rigoureusement le même ce qui fait que certains puits sont continus et d’autres non et que la résolution d’échantillonnage varie suivant la profondeur. Ainsi, les 12 puits prélevés par M. M. Frey lors de la campagne d’été austral 2007–08 entre D10 et Dôme C sont profonds d’un mètre environ et ont été échantillonnés de manière discontinue (tous les 2 cm sur les 20 à 30 premiers puis un échantillon entre 60 cm et 1 m). Les 3 puits collectés à Dôme C lors de la même campagne d’été par M. M. Frey et J. Savarino sont profonds de 50 cm et ont été échantillonnés de manière continue par couches de 2 cm. Il en est de même pour les 2 puits de 50 cm prélevés à Vostok par
Volodia Lipenkov en 2008–2009. Enfin, les 4 puits que j’ai prélevés lors de la campagne d’été 2009–10 entre Dôme C et Vostok sont continus. Le givre de surface a été prélevé dans un premier temps puis la résolution d’échantillonnage est respectivement de 1, 2 puis 5 cm sur les tranches 0–10, 10–30 et 30–50 cm de profondeur.

L’ensemble de ces puits ont été traités (mesures chimiques dans une fraction du volume et préconcentration) sur le terrain exceptés les 2 puits prélevés à Vostok en 2008–09 qui ont été doublement scellés sous gaine plastique puis envoyés au LGGE. Les étapes préalables à la mesure isotopique ont donc été réalisées aussi rapidement que possible après la collecte des échantillons minimisant ainsi au maximum les risques de contamination.

2.5.3.2 Données complémentaires

Au cours de la campagne d’été 2008–2009, des données complémentaires ont été obtenues dans des puits de neige de un mètre de profondeur au Dôme C. Il s’agit des données concernant le type de grain de neige, la densité et la surface spécifique de la neige (SSA).

Les taux d’accumulation correspondant à chaque site de prélèvement ont été obtenus à partir du modèle de circulation atmosphérique général LMDZ4 (Krinner et al., 2007). Les données extraites de simulations couvrant la période 1980–2007 ont été interpolées spatialement aux points de prélèvements décrits sur en figure 1.15 (page 38). L’altitude de chaque site a été obtenue par mesure GPS.

2.5.4 Carotte de glace de Vostok

2.5.4.1 Choix de la résolution d’échantillonnage

Le prélèvement des échantillons dans la carotte de glace de Vostok est discontinu et son analyse isotopique s’est déroulée par séries sur près de trois années. Initialement, l’objectif pour chaque échantillon prélevé était de recueillir au moins 3 × 100 nmol de nitrate (en tenant compte de l’étape préalable de décontamination qui fait perdre près de la moitié de l’échantillon). Les concentrations de nitrate étant très variables dans la carotte (Legrand et al., 1999), les longueurs
prélevées pouvaient aller de 5 à près de 70 cm. La résolution est le nombre d’années accumulées dans l’échantillon. Celle-ci est calculée comme la différence des âges de ses deux extrémités, à partir de la relation profondeur/âge obtenue par Suwa and Bender (2008). Ainsi, certains échantillons peuvent représenter des résolutions de 5 à 60 années.

La figure 2.8 montre la composition isotopique du nitrate mesurée dans un puits de 6 mètres de profondeur prélevé par J. Savarino et J. McCabe en 2004 au Dôme C. Son analyse a été réalisée de manière conjointe avec S. Morin et M. M. Frey. Ces données ont été rééchantillonnées de sorte à visualiser l’enregistrement qui aurait été obtenu si la résolution de l’échantillonnage avait été plus faible, de 5 et 30 années respectivement. Le tableau 2.7 montre les gammes (valeurs minimales et maximales) des concentrations en nitrate et données isotopiques obtenues pour les données originales et les données rééchantillonnées. On remarque que les valeurs isotopiques sont sensiblement affectées par le choix de la résolution d’échantillonnage. Une résolution d’échantillonnage fixe de l’ordre de 30 années a donc été ciblée. Cette résolution fixe permet de garantir une quantité de nitrate recueillie suffisante dans les périodes interglaciaires où les concentrations mesurées sont les plus faibles et donne une cohérence à l’échantillonnage avec des valeurs moyennes comparables.

La figure 2.9 montre la distribution statistique du nombre d’années échantillonnées (i.e. de la résolution) pour l’ensemble des échantillons de Vostok. On remarque que la valeur moyenne est cohérente avec la cible de 30 années et que la dispersion autour de celle-ci est faible ($\sigma = 7.5$ années). Le choix de la résolution fixe de 30 années a été fait après qu’une vingtaine d’échantillons ont été analysés et ceci explique la dispersion observée.

2.5.4.2 Décontamination

Le forage de grande profondeur ne serait pas possible sans fluide de forage dont la présence assure l’équilibre des pressions importantes à l’œuvre dans le trou de forage et l’empêche donc de se refermer. Dans le cas du forage 3G, du carburant pour l’aviation (kérosène) de type TS-1 a été utilisé. Celui-ci offre un point de congélation suffisamment bas au regard des températures
2.5. Méthodes spécifiques et données complémentaires

Figure 2.8 – Concentration, δ\(^{15}\)N, \(\Delta^{17}\)O et δ\(^{18}\)O du nitrate dans un puits de 6 mètres (recouvrant 100 années) prélevés au Dôme C en 2004. Seules les données de la période 1910–1970 sont montrées. Chaque mesure représente une période de l’ordre de 1–2 selon la profondeur. Les lignes continues fines et épaisses représentent le rééchantillonnage des données avec une période 5 et 30 ans respectivement.

<table>
<thead>
<tr>
<th>Period</th>
<th>NO(_3) (ng.g(^{-1}))</th>
<th>δ(^{15})N (%)</th>
<th>(\Delta^{17})O (%)</th>
<th>δ(^{18})O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original data</td>
<td>6.4–48.0</td>
<td>156.6–278.7</td>
<td>12.9–30.8</td>
<td>34.5–73.0</td>
</tr>
<tr>
<td>5–years period</td>
<td>10.4–23.7</td>
<td>165.3–258.4</td>
<td>21.2–29.7</td>
<td>46.5–70.2</td>
</tr>
<tr>
<td>30–years period</td>
<td>13.8–18.0</td>
<td>192.8–208.5</td>
<td>25.9–28.6</td>
<td>62.4–64.2</td>
</tr>
</tbody>
</table>

La surface d’une carotte de glace ou de névé peut aussi être contaminée lors de sa manipulation sur le terrain, son stockage dans les gaines plastiques, son transport et enfin sa manipulation au laboratoire, avant analyse. Une procédure de décontamination classique telle que celle décrite par Legrand et al. (1988) (et plus récemment utilisée par Alexander et al. (2002) pour la carotte de Vostok) a été adoptée. Celle-ci consiste à retirer les 2 premiers centimètres de surface de la carotte par fonte sous un jet d’eau ultrapure Millipore (conductivité ≤ 18 MΩ, COT ≤ 10 ng.g\(^{-1}\)) dans le cas de la glace et par découpe au scalpel dans le cas du névé. Ceci représente une ablation de plus de 35 % du volume (dans le cas de la carotte 3G dont le diamètre est de 10 centimètres), nécessaire à élimination de la contamination pour les espèces ioniques (Legrand, 1985). Cette technique de décontamination ne permet toutefois pas d’éliminer l’intégralité du kérosène qui pénètre parfois jusqu’au coeur de la carotte grâce aux micro-fissures (Alekhina et al., 2007). La décontamination achevée, les carottes sont placées dans des gaines plastiques scellées puis mises à fondre pendant la nuit.

Afin de vérifier qu’aucune contamination n’est introduite par la décontamination et la fonte de la carotte, des carottes synthétiques d’eau Millipore ont été préparées dans de la gaine plastique placée en chambre froide à −20 °C. Ces échantillons factices ont été traités de la même manière que les carottes de glace pour l’étape de décontamination puis de fonte. Le tableau 2.8
montre les concentrations en ions majeurs mesurées dans une carotte factice comparativement aux valeurs moyennes mesurées dans 8 blancs et aux valeurs minimales obtenues pour la série de 64 échantillons. Pour l’ensemble des espèces (sauf Ca$^{2+}$), la concentration mesurée dans la carotte factice est plus faible que la concentration minimale mesurée dans l’enregistrement glaciaire. Dans le cas de Ca$^{2+}$, la concentration mesurée dans la carotte factice (1.94 ng.g$^{-1}$) peut être expliquée par la concentration moyenne mesurée dans les blancs (1.83 ng.g$^{-1}$). L’échantillon le plus faiblement concentré en Ca$^{2+}$ dans la carotte de glace de Vostok est proche de ces valeurs (1.93 ng.g$^{-1}$). Les valeurs les plus faible des concentrations en ions calcium devront être considérées avec précaution.

<table>
<thead>
<tr>
<th>Ion</th>
<th>Concentration in 8 blanks mean ±1σ (undetected)</th>
<th>Concentration in fake core</th>
<th>Lowest concentration measured in profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl$^-$</td>
<td>0.18 ± 0.13 (1)</td>
<td>2.03</td>
<td>5.99</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>0.04 ± 0.00 (6)</td>
<td>0.10</td>
<td>0.65</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>0.02 ± 0.02 (3)</td>
<td>0.10</td>
<td>84.43</td>
</tr>
<tr>
<td>Na$^+$</td>
<td>0.19 ± 0.19 (0)</td>
<td>0.64</td>
<td>6.91</td>
</tr>
<tr>
<td>NH$_4^+$</td>
<td>0.09 ± 0.05 (0)</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>K$^+$</td>
<td>0.02 ± 0.02 (5)</td>
<td>0.12</td>
<td>0.35</td>
</tr>
<tr>
<td>Mg$^{2+}$</td>
<td>0.12 ± 0.10 (0)</td>
<td>0.07</td>
<td>0.76</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
<td>1.83 ± 0.32 (0)</td>
<td>1.94</td>
<td>1.93</td>
</tr>
</tbody>
</table>

Table 2.8 – Tableau comparatif des concentrations mesurées dans huit blancs d’eau ultrapure Millipore, dans une carotte factice et les concentrations minimales mesurées dans les 64 échantillons de la carotte de Vostok. Les concentrations moyennes ainsi que les écart-types à la moyenne sont donnés pour les blancs (entre parenthèse, on reporte le nombre de pics non détectés).

La figure 2.10 montre les concentrations ioniques mesurées dans les 64 échantillons de la carotte de glace de Vostok. Les mesures chimiques obtenues dans cette étude reproduisent bien la variabilité et les valeurs minimum et maximum du profil des teneurs en nitrate et en calcium mesurées par Legrand et al. (1999) à de rares points différents près (échantillons à 16.7 et 27.0 milliers d’années pour NO$_3^-$, échantillons à 16.7 et 109.1 milliers d’années pour nssCa$^{2+}$). Il en est de même pour les autres espèces ioniques mesurées à l’exception de l’ammonium. Ces observations confirment que l’étape de décontamination des carottes de glace est efficace et que le matériau est stable même 30 ans après le prélèvement de la carotte de glace.
Figure 2.10 – De haut en bas : température locale relative (*Petit et al.*, 1999) puis : concentration en ions chlorures (Cl\(^-\)), nitrates (NO\(_3^-\)), sulfate (SO\(_4^{2-}\)), sodium (Na\(^+\)), ammonium (NH\(_4^+\)), potassium (K\(^+\)), magnésium (Mg\(^{2+}\)), calcium (Ca\(^{2+}\)). Les points noirs représentent les mesures réalisées par *Legrand et al.* (1999) tandis que les points jaunes représentent les données obtenues au cours de cette thèse.
2.5.4.3 Données complémentaires

Âge de la glace L’âge de la glace donné par *Suwa and Bender* (2008) s’exprime en années avant le début du forage (1981 pour le forage 3G). Ces données sont converties de sorte à obtenir un âge de la glace exprimé en milliers d’années avant 1950. L’âge rapporté pour chaque échantillon correspond à l’âge obtenu à la profondeur moyenne de celui-ci.

Résolution de l’échantillon La résolution de l’échantillon est le nombre d’années d’accumulation qu’il représente. Cette grandeur est calculée comme la différence des âges de ses deux extrémités, et ce, à partir de la relation profondeur/âge obtenue par *Suwa and Bender* (2008).

Calcium non-marin et sodium marin Les concentrations en calcium non-marin (nssCa²⁺, appelé également calcium d’origine terrestre) et sodium marin (ssNa⁺, appelé également sodium d’origine marine) ont été calculées comme suit :

\[
\text{[nssCa}^2^+] = [\text{Ca}^2^+] - 0.038 \cdot [\text{ssNa}^+] \\
\text{[ssNa}^+] = [\text{Na}^+] - \frac{[\text{nssCa}^2^+]}{1.78}
\]

2.6 Conclusions

La méthode bactérienne permet de mesurer la composition isotopique totale en oxygène et azote dans 100 nmol de nitrate dissous. Dans le présent cas de l'étude de la neige et de la glace originaires du plateau antarctique, il est nécessaire de collecter un volume d'échantillon de l'ordre du litre pour atteindre la quantité de matière ciblée. Le passage par une étape de préconcentration du nitrate permet d'éliminer (moyennant la possibilité de recueillir une quantité de nitrate suffisante) le problème lié aux importants volumes d'échantillon à manipuler et de se replacer dans des conditions qui rendent possible la mesure isotopique par la méthode bactérienne.

Le nitrate a été prélevé dans l'atmosphère, le givre de surface et la neige, complétant ainsi le nitrate dans les échantillons de glace de Vostok. Ces échantillons ont été collectés sur une zone s'étendant de la côte (près de la base Dumont d'Urville) à la station russe de Vostok en passant par Dôme C, représentant ainsi l'ensemble de l'Antarctique de l'Est en terme de taux d'accumulation de neige.

Les échantillons atmosphériques (37 échantillons au total) collectés à Dôme C représentent une année complète, tout comme la collecte de givre de profondeur (57 échantillons analysés sur 137). Les puits de 50 centimètres à 1 mètre de pronfondeur (327 échantillons au total) représentent quant à eux de une à 20 années de neige cumulée selon leur site de prélèvement, ce qui permet d'étudier l'archivage du signal atmosphérique. La carotte de glace de Vostok (64 échantillons au total) couvrant la période de 700 à 147 000 années avant notre ère permet d'étudier cet archivage sur un cycle glaciaire et demi.
Chapitre 3

Résultats : $\delta^{15}\text{N}$, $\Delta^{17}\text{O}$ et $\delta^{18}\text{O}$ du nitrate dans la carotte de glace de Vostok

Dans cette courte partie, nous présentons les données isotopiques validées et acceptées obtenues pour le nitrate archivé dans la carotte de glace de Vostok. Les grandes tendances observées sont décrites ainsi que les tendances aux transitions de périodes glaciaires/interglaciaires. Nous présentons enfin la stratégie mise en œuvre pour interpréter cet enregistrement.

3.1 Enregistrements chimiques et isotopiques à l'échelle glaciaire

La figure 3.1 montre l'ensemble des données isotopiques ($\delta^{15}\text{N}$, $\Delta^{17}\text{O}$ et $\delta^{18}\text{O}$) et reprend une partie des données chimiques (teneurs en NO_3^- et nssCa$^{2+}$) acquises sur la carotte de Vostok dans le cadre de cette thèse. Ces données représentent des valeurs intégrées sur des intervalles moyens de 30 ans. Les teneurs en NO_3^- et nssCa$^{2+}$ sont superposées aux mesures de Legrand et al. (1999) tandis que les reconstructions des températures relatives locales (Petit et al., 1999)
et des taux d’accumulation de neige (Suwa and Bender, 2008) sont reportées pour comparaison. Les données isotopiques et chimiques sont récapitulées dans les tableaux C.1 et C.2 de l’annexe C, respectivement.

3.2 Tendances générales observées

3.2.1 δ¹⁵N

Les valeurs de δ¹⁵N s’étalent sur une vaste gamme de 88.6 à 316.5 ‰. Au cours des dernières 150 000 années, le δ¹⁵N du nitrate archivé est très variable en période glaciaire alors qu’il l’est moins en période interglaciaire. La figure 3.2.2 montre le δ¹⁵N du nitrate en fonction des variations de température relative locale de surface et des teneurs en nitrate. δ¹⁵N est très peu corrélé à la température (\(r = 0.18, n = 64 \)).

La figure 3.2 montre la comparaison de l’enregistrement de Vostok à celui de Dôme C (Freyer et al., 1996) sur leur période commune (6 000 à 20 000 ans). Ces deux jeux de données isotopiques sont cohérents. En effet, Freyer et al. (1996) ont mesuré une valeur moyenne de 145 ‰ tandis que nous mesurons 160 ‰ en moyenne sur cette période.

3.2.2 ∆¹⁷O

Le ∆¹⁷O mesuré dans le nitrate piégé dans la carotte de glace de Vostok est compris entre 22.9 et 36.4 ‰. La figure 3.2.2 montre le ∆¹⁷O du nitrate en fonction de la température locale relative et des teneurs en nitrate. ∆¹⁷O montre une forte anti-corrélation avec la température (\(r = 0.72, n = 64 \)). Les valeurs les plus importantes de ∆¹⁷O (36 ‰) sont par ailleurs atteintes au plus fort des périodes glaciaires, correspondant aux périodes où les concentrations en nitrate archivées sont les plus élevées. ∆¹⁷O chute brutalement au cours des transitions glaciaires/interglaciaires. Ainsi, lors de la dernière transition ∆¹⁷O passe en moyenne de 34 à 25 ‰ contre de 35 à 28 ‰ lors de la précédente transition.
3.2. Tendances générales observées

Figure 3.1 – Composition isotopique du nitrate dans la carotte de glace de Vostok. a. température locale relative (Petit et al., 1999) et taux d’accumulation (Suwa and Bender, 2008). b. concentration en nitrate (points noirs (Legrand et al., 1999), en jaune, cette étude). c. concentration en calcium non-marin (points noirs (Legrand et al., 1999), en rouge, cette étude). d. δ^{15}N du nitrate. e. Δ^{17}O du nitrate. f. δ^{18}O du nitrate. Les zones bleue clair et rouge clair représentent les périodes Holocène et de l’Éémien respectivement.
Chapitre 3. Résultats : $\delta^{15}\text{N}$, $\Delta^{17}\text{O}$ et $\delta^{18}\text{O}$ du nitrate dans la carotte de glace de Vostok

Figure 3.2 – Comparaison des valeurs de $\delta^{15}\text{N}$ mesurées par Freyer et al. (1996) et celles de cette étude sur la période 0–20 milliers d’années.

3.2.3 $\delta^{18}\text{O}$

Sur le dernier cycle glaciaire et demi, $\delta^{18}\text{O}$ montre une variation de 28.0 à 73.2 ‰. La figure 3.4 montre que les enregistrements de $\delta^{18}\text{O}$ et $\delta^{15}\text{N}$ sont anti-corrélés ($r = 0.80$, $n = 64$), quelles que soient les teneurs en nitrate.

3.3 Stratégie mise en œuvre pour l’interprétation de ces données

Ce court chapitre a permis de présenter les données qui sont la base du travail d’interprétation. Nous avons vu que les variations de $\delta^{15}\text{N}$ ne suivent pas celles du climat, à l’inverse de $\Delta^{17}\text{O}$ qui montre ses valeurs maximales lorsque les teneurs en nitrate archivées dans la glace sont élevées. Enfin, $\delta^{18}\text{O}$ montre des variations anti-corrélées à $\delta^{15}\text{N}$.

$\delta^{15}\text{N}$ varie dans la gamme 88.6–316.5 ‰. Le nitrate préservé dans la carotte de glace est ainsi enrichi en ^{15}N et ceci rappelle les observations de Blunier et al. (2005) dans un puits de 50 centimètres à Dôme C. Blunier et al. (2005) ont attribué aux processus de perte de nitrate
3.3. Stratégie mise en œuvre pour l’interprétation de ces données

(a) $\delta^{15}N$

(b) $\Delta^{17}O$

Figure 3.3 – $\delta^{15}N$ et $\Delta^{17}O$ en fonction de la température locale relative. La taille des cercles représente les teneurs en nitrate mesurées dans l’échantillon. La ligne pointillée noire représente l’ajustement linéaire à l’ensemble des données.

Figure 3.4 – $\delta^{18}O$ en fonction de $\delta^{15}N$ et des teneurs en nitrate. La taille des cercles est fonction des teneurs en nitrate. La ligne pointillée noire est un ajustement linéaire à l’ensemble des données.
(photolyse de NO_3^- et/ou désorption/évaporation de HNO_3) la responsabilité des valeurs d’enrichissement mesurées. Nos mesures dans la carotte de glace de Vostok semblent donc montrer que les processus de perte de nitrate après son dépôt à la surface du manteau neigeux ont toujours eu lieu à Vostok au cours de ces 150 000 années.

Pour obtenir une interprétation quantitative (en terme de perte de nitrate et de variabilité des paramètres qui la contrôlent) des enregistrements isotopiques présentés dans ce chapitre, nous construisons ci-après un modèle conceptuel représentant le continuum atmosphère/givre/neige. Les nombreuses données acquises sur le plateau Antarctique et dans les différents compartiments permettent de valider le modèle, notamment les concentrations et la composition isotopique du nitrate archivé après les premiers décimètres de neige. La sensibilité du modèle validé peut ainsi être testée afin d’évaluer l’impact de la variabilité des différents paramètres contrôlant la perte de nitrate dans la neige et donc leur impact sur les concentrations et la composition isotopique du nitrate archivé. Nous disposons alors d’un cadre d’interprétation pour l’enregistrement glaciaire brièvement présenté dans ce chapitre.
Chapitre 4

TRANSITS model – TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow

This chapter is intended to be soon submitted for publication: Erbland, J., J. Savarino, S. Morin, J. L. France and M. M. Frey (in prep.), Transfer of Atmospheric Nitrate Stable Isotopes To the Snow: a framework for the interpretation of the deep Vostok core, to be submitted to Atmos. Chem. Phys. Disc.

4.1 Motivation and context

4.1.1 Introduction

Ice cores from the East Antarctic plateau provide long term archives of the composition of the atmosphere. The deep Vostok core spans 420 kyrs (4 climatic cycles) and records climatic signals such as past local temperatures and global atmospheric CO$_2$ levels (Petit et al., 1999). Because nitrate (NO$_3^-$) is the end product of the oxidation of nitrogen oxides (NO$_x$ = NO + NO$_2$) in the atmosphere, its concentrations in ice cores were first thought to record information of
past levels of atmospheric reactive nitrogen (Wolff, 1995; Legrand et al., 1999). However, nitrate deposition to the surface of the snow is not irreversible, especially at low accumulation sites on the Antarctic plateau such as Vostok or Dome C. Nitrate undergoes strong post-depositional loss processes which leads to a concentration decrease by an order of magnitude across the top 10s of cm of surface snow as observed in Antarctic inland sites (Mayewski and Legrand, 1990; Röthlisberger et al., 2000a). A quantitative understanding of the nitrate ice-core record requires the investigation of nitrate loss processes at present and in the past.

The desorption or evaporation of HNO$_3$ and the UV-photolysis of NO$_3^-$ are believed to explain nitrate post-depositional effects observed in surface snow. These processes are hereafter called “loss” when we refer to nitrate removal from the snowpack. The occurrence of nitrate photolysis in snow is supported by NO$_x$ fluxes observations at various snow-covered sites (Honrath et al., 1999; Jones et al., 2000; Davis et al., 2001; Honrath et al., 2002). The relative importance of photolysis and physical release at low accumulation sites is still under debate (see Grannas et al., 2007, for a review). Radiation transfer in the snowpack is a key control on the depth at which photochemical processes occur (Domine et al., 2007). Based on a simple mass loss model coupled to radiative transfer models, Wolff et al. (2002) showed that 40 % of nitrate surface mass loss at South Pole could be explained by UV-photolysis.

Isotopic ratios of nitrogen in nitrate are expressed as $\delta^{15}N$, defined as $\delta^{15}N = R_{\text{spl}}/R_{\text{ref}} - 1$, with R denoting the isotopic ratio $^{15}N/^{14}N$ and the reference being N$_2$-AIR. $\delta^{15}N$(NO$_3^-$) provides an additional parameter to constrain nitrate post-depositional loss from snow (Blunier et al., 2005). In non-polar atmospheres, $\delta^{15}N$ in particulate nitrate ranges from -10 to 10 %e (Morin et al., 2009; Hastings et al., 2009). Extraordinary high positive $\delta^{15}N$(NO$_3^-$) values up to 180 %e have been observed in the upper snowpack at Dome C and are attributed to nitrate loss at the snow surface (Blunier et al., 2005). With such a strong $\delta^{15}N$ signature, post-depositional isotopic fractionation erases the atmospheric source signature in polar regions. Blunier et al. (2005) have assumed a Rayleigh-type distillation model to estimate atmosphere-snow fractionation constants $^{15}\varepsilon$ (equation 1.8b, page 31) This model assumes an irreversible NO$_3^-$ loss from snow and the
immediate removal of the emitted mass fraction. This oversimplification may hide the complex combination of processes at play in the snowpack and the obtained fractionation constant is therefore named "apparent fractionation constant" and denoted $^{15}\varepsilon_a$. Blunier et al. (2005) have calculated an $^{15}\varepsilon_a$ value of $-53.9\%_o$ from their measurements in the upper snowpack which does not compare well to that obtained by the same authors for a nitrate photolysis experiment in the lab: $^{15}\varepsilon = -11.7 \pm 1.4\%_o$. They have therefore ruled out photolysis in the surface snow for being the main process leading to the dramatic nitrate mass loss in the top centimeters of snow.

4.1.2 UV-photolysis, an important driver of nitrate loss from the snowpack

Here we provide a short overview of recent progress made in this field, in particular results from two publications to which I contributed during my PhD time.

4.1.2.1 Highlights from the recent study by Frey et al. (2009)

Frey et al. (2009) have reproduced the measurements of Blunier et al. (2005) in two snow pits (50 and 70 cm depth) at Dome C, Antarctica, and observed even higher enrichments with values up to $339\%_o$ in the top decimeters. Small differences in the shape of the absorption cross sections of species $^{14}\text{NO}_3^-$ (σ) and $^{15}\text{NO}_3^-$ (σ') in the UV were shown to result in uniquely negative fractionation constants for photolysis when using summer solar spectra from Dome C (an example is given in figure 4.1). Indeed, nitrate UV absorption happens at the edge of the solar spectrum (figure 4.1), which cuts off at about 300 nm because shorter wavelengths are absorbed by the ozone column. $^{15}\varepsilon$ is therefore found to be highly sensitive to the spectrum of actinic flux (also termed "spectral spheradiance" (IUPAC, 1997), i.e. the total light reaching a molecule from all directions, in snow or in the atmosphere) which is strongly modulated by the
ozone column and the solar zenith angle. In the example in figure 4.1, the actinic flux at Earth surface has been computed for a 300 DU ozone column and the mean summertime solar zenith angle of 68° at Dome C, using the TUV radiative transfer model. The calculated $^{15}\varepsilon$ value is -50%, given the absorption cross sections of $^{14}\text{NO}_3^-$ and $^{15}\text{NO}_3^-$ in Frey et al. (2009). Note that ε is related to the commonly used fractionation factor α by $\varepsilon = \alpha - 1$ (Criss, 1999).

Using the approach of Blunier et al. (2005) to derive apparent fractionation constants, we have obtained $^{15}\varepsilon_a$ values of -49.8 and -71.0% from the two snow pits presented by Frey et al. (2009), close to the $^{15}\varepsilon$ value calculated for the actinic flux received at Earth surface in Summer at Dome C (-50%).

We acknowledged that a temperature-dependent adsorption and desorption of HNO$_3$ is conceivable in contributing to nitrate mass loss in snow at a site like Dome C. However, theoretical calculations show that the evaporative loss of nitrate should deplete the heavy nitrogen isotopes (i.e. this process has a positive $^{15}\varepsilon$) which is opposite to what is observed in the field, therefore indicating that evaporation should play a secondary role in post-depositional loss.

In Frey et al. (2009), we also showed that the previous experimental measurement of a fractionation constant of $^{15}\varepsilon = -11.7 \pm 1.4 \%$ by Blunier et al. (2005) does not apply for the Earth’s surface but only to the UV lamp used in this experiment (Blunier et al., 2005; Jacobi et al., 2006). Indeed, the fractionation constant calculated for this UV lamp spectrum given the absorption cross sections of $^{14}\text{NO}_3^-$ and $^{15}\text{NO}_3^-$ gives a value of -5%, close to the lab results (Blunier et al., 2005). The conclusion of Blunier et al. (2005) must be reconsidered. Last, oxygen stable isotopic ratios (\(\Delta^{17}\text{O}\) and $\delta^{18}\text{O}$) in nitrate from the two snow pits were measured and both showed a depletion at depth. This depletion was attributed to nitrate photolysis followed by the isotopic exchange inbetween the photofragment OH and water (McCabe et al., 2006). This all put together lead to the main conclusion of the paper that photolysis is an important process driving NO$_3^-$ away from surface snow and the most important process in driving the isotopic signal archived at depth. This conclusion is consistent with the decrease observed in $\delta^{15}\text{N}$ in atmospheric nitrate at Dome C in Spring.
4.1. Motivation and context

Figure 4.1 – a. UV absorption spectra of aqueous $^{14}\text{NO}_3^-$ (Chu and Anastasio, 2003) and $^{15}\text{NO}_3^-$ estimated with the ZPE-shift model (Frey et al., 2009) as well as the actinic flux as modelled with the TUV-model for a mean summertime solar zenith angle of 68° and a 300 DU ozone column. b. photolytic fractionation constant $^{15}\varepsilon(\lambda)$ calculated from J and J' and shown as a function of wavelength.

4.1.2.2 Highlights from the recent study by France et al. (2011)

The earlier study of Wolff et al. (2002) presented the results of a crude calculation where
photolysis was assumed to be the only mechanism removing nitrate from snow. They used a radiative transfer model to compute the actinic fluxes at ground level at different dates and latitudes and using appropriate ozone and aerosols profiles. They also used a radiative transfer model for snow to calculate actinic fluxes at depth and to estimate photolytic rate constants in the production of NO$_2$ by the photolysis of NO$_3^-$.

Using irradiance calculations for South Pole and snow accumulation rates for Dome C, Wolff et al. (2002) estimated that a maximum of 40% of the nitrate mass loss observed could be explained by nitrate photolysis in snow.

In a recent paper (France et al., 2011), we measured the optical properties of the Dome C snowpack and run a simple model similar to Wolff et al. (2002). An important difference is the use of the TUV–snow radiative transfer model (Lee-Taylor and Madronich, 2002) to compute directly actinic fluxes at ground level as well as at depth. Indeed, solar radiation penetration in snow is modulated by light scattering (σ_{scatt}) and absorption (σ_{abs}^+) and depends on the solar zenith angle (θ) (Warren, 1982). The TUV-snow model requires the snowpack to be optically parameterised in terms of scattering and absorption coefficients which was done in the basis of field measurements which were performed during the 2009–2010 summer season at Dome C.

Light penetration in snow is complex (Simpson et al., 2002; Domine et al., 2008) and leads to a layer of a few centimeters at the top where the direct solar radiation is converted into diffuse radiation. Below this layer, in the so-called “asymptotic zone”, the solar radiation is diffuse and the intensity of the radiation decays exponentially (Warren, 1982; Lee-Taylor and Madronich, 2002). In this zone, the actinic flux decreases with depth following the exponential function $I_z = I_{z'} \cdot e^{-\frac{z-z'}{\eta(\lambda)}}$ where $\eta(\lambda)$ is the e-folding attenuation depth (i.e. the depth at which incident diffuse irradiance is reduced by a factor 1/e), I_z and $I_{z'}$ are the intensities at depth z and z', the initial depth into the snowpack ($z \leq z'$).

Our measurements at Dome C give an e-folding attenuation depth of ca. 10 centimeters in the 350–400 nm range and for the most common snow layer found at the top of the snowpack, the so-called "windpack" snow (France et al., 2011). This value is 2 to 4 times larger than previous model estimates at South Pole and about 3 times higher than the value used by Wolff...
et al. (2002) (3.7 cm). Using the temperature-dependant quantum yield of the reactions 1.4a and 1.4b from Chu and Anastasio (2003), we conclude that up to 80 % of the nitrate mass loss can be attributed to \(\text{NO}_3^- \) photolysis on a multi-annual scale, confirming our independent isotopic evidence (Frey et al., 2009). This result supports the idea that the photolysis is an important driver of nitrate mass loss from snow on the Antarctic plateau.

4.1.3 Implications for the interpretation of the ice-core record

Nitrate photolysis has been confirmed to be an important mechanism for nitrate mass loss in the snow on the Antarctic plateau (Frey et al., 2009; France et al., 2011). The release of nitrogen oxides through this process leads to a complex recycling of nitrate at the snow surface/low atmosphere interface (Davis et al., 2008). By ”nitrate recycling”, we mean nitrate photolytis in snow and the production of \(\text{NO}_x \), the subsequent atmospheric gas-phase chemistry to form atmospheric nitrate, the dry or wet deposition of a fraction of this compound and the export of the remaining.

Davis et al. (2008), Morin (2008) and Frey et al. (2009) suggested the following conceptual model for nitrate recycling in the atmosphere-snow system for Dome C and the entire Antarctic plateau where annual snow accumulates rates are low. Stratospheric nitrate is deposited to the surface in late Winter in a shallow surface snow layer of approximately uniform concentration and \(\delta^{15}\text{N} \). The increase in surface UV radiation in Spring should initiate a photolysis-driven redistribution process of \(\text{NO}_3^- \), which continues throughout the sunlit season resulting in the almost complete depletion of the bulk snow reservoir. This results in Summer to a strongly asymmetric distribution of total \(\text{NO}_3^- \) within the atmosphere-snow column as noted previously (Wolff et al., 2002), with the bulk residing in a ”skin layer” (the top 5 mm of snow, mostly found under form of surface hoar) and only a small fraction in the atmospheric column above it.

In this chapter, we test this theory and evaluate it in light of new field measurements of the nitrate stable isotopic composition in the atmosphere and the surface hoar at Dome C as
well as several shallow snow pits collected at this site and on the whole Antarctic plateau. The complexity of the theory to be tested requires the building of a numerical model describing the evolution of the nitrogen and oxygen stable isotopic composition of nitrate at the air-snow interface with various constraints from key environmental variables like the solar zenith angle and the overlying UV column. This new model is called TRANSITS which stands for "TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow".

The important novelty brought by the TRANSITS model is the incorporation of the stable isotopic ratios (Δ^{17}O and δ^{15}N) in nitrate as a diagnostic and evaluation tool in the ideal case where nitrate is assumed to be entirely lost by UV-photolysis (we neglect HNO$_3$ desorption/evaporation). The goal of the model is to reproduce at best the sensitivity of nitrate and its stable isotopic composition to the key environmental variables at play at the snow/atmosphere interface on the Antarctic plateau. The model is then used to provide an interpretation framework for the nitrate isotopic records of the Vostok ice-core.

The key questions addressed in this work are:

1. is the theory behind the model TRANSITS valid in light of the available field measurements?

2. what controls the nitrogen and oxygen isotopic composition and the mass flux in the archived nitrate? Are δ^{15}N and Δ^{17}O modulated by changes in the primary source of nitrate on the Antarctic plateau?

In the coming sections, we describe in details the model and the assumptions behind it. The model is then evaluated through the comparison of the simulations obtained for a set of simple scenarios to the field measurements.
4.2 Description of the model

4.2.1 Disclaimer

TRANSITS is a multi-layer 1D model which represents a snow and atmosphere column with an arbitrary surface area taken sufficiently large to neglect local lateral air mass movement (i.e. at the scale of the East Antarctic plateau). The time step of the model is set to one week. The atmosphere is represented by one box while the snow is divided into multiple layers. The aim of the model is to conceptually represent nitrate recycling at the snow/atmosphere interface and to model the impact on nitrogen and oxygen stable isotopic ratios in nitrate.

TRANSITS is NOT a snow chemistry model and does not aim at representing all the mechanisms responsible for nitrate mobility neither at the snowpack scale nor at the snow grain scale. The gas-phase chemistry undergone by the photolytically produced NO$_x$ is only conceptually represented.

4.2.2 Overview

Figure 4.2 provides an overview of the mechanisms included in the model and the associated notation. A full description of the notations and mechanisms is given below. It is recommended to keep this figure easily accessible during the reading of this chapter.

4.2.3 General framework

Nitrate photolysis is assumed to be the only process responsible for nitrate mass loss from the snowpack: we neglect the desorption/evaporation of HNO$_3$. Nitrate is purely treated under the HNO$_3$ form and its location in the snow grain is described by the quantum yield (denoted ϕ) of the photolytic reaction.

The modelled snowpack is an idealized typical Dome C snowpack in terms of its physical and optical properties. The snow layers do not undergo densification, sublimation, wind redistribution, melt or flow. The surface of the snowpack is assumed to be flat and insensitive to
Figure 4.2 – Overview of the coupling between the TRANSITS and the TUV-snow models and the mechanisms in the latter. Fixed and calculated variables in ovals and squares are written in black and blue respectively. The other variables and parameters in black are of interest in the calculation of the main processes in the TRANSITS model.
4.2.4 Equations

4.2.4.1 The general "mass-balance" equations

In each box, the model solves the general "mass-balance" equation which describes the temporal evolution of the mass \(m \), in kgN, of the reactive nitrogen species (NO\(_3^-\) or NO\(_2\)):

\[
\frac{d}{dt} m = \sum_i P_i - \sum_j L_j
\]

(4.1)

The mass-balance equations also apply to the products \(m \times \delta^{15}N \) and \(m \times \Delta^{17}O \) and describe their evolution:

\[
\frac{d}{dt} (m \times \delta^{15}N) = \sum_i (P_i \times \delta^{15}N_i) - \sum_j (L_j \times \delta^{15}N_j) \\
\frac{d}{dt} (m \times \Delta^{17}O) = \sum_i (P_i \times \Delta^{17}O_i) - \sum_j (L_j \times \Delta^{17}O_j)
\]

(4.2)

(4.3)

where \(P_i \) and \(L_j \) respectively represent sources and sinks rates (in kgN.s\(^{-1}\)) and \(\delta^{15}N_i, \delta^{15}N_j, \Delta^{17}O_i \) and \(\Delta^{17}O_j \) the associated isotopic compositions. Within each compartment, incoming fluxes are positive and outgoing fluxes are negative.

4.2.4.2 Nitrate mass and isotope balance in the atmosphere

Primary nitrogen inputs to the system Primary nitrogen inputs to the system occur in the atmospheric box as HNO\(_3\). The inputs are stratospheric denitrification (described by the FS flux) and long distance transport (FT flux). The primary input flux (FPI) defines the sum of the stratospheric flux and the long distance transport: FPI = FS + FT.

Secondary nitrogen inputs to the system Secondary nitrogen sources are the oxidation of locally produced NO\(_2\) (FP flux) occurring after nitrate photolysis in the snow. The chosen
time step of one week is long enough to assume that 100 % of the NO\textsubscript{2} produced is oxidized and converted to HNO\textsubscript{3} within each time step (Bauguitte et al., 2009).

Nitrogen removal from the atmosphere Two processes lead to nitrogen removal as nitrate from the atmospheric box. Largescale horizontal air masses movement can lead to a loss of nitrate, hereafter named "horizontal export flux" (FE). Nitrate can also be lost via deposition (FD) to the snow.

Evolution of nitrate mass The mass continuity equation applied to the atmospheric compartment gives the following differential equation:

\[
\frac{d}{dt} m_{\text{AT}} = (FP + FS + FT - FD - FE) \times S
\] (4.4)

where \(m_{\text{AT}} \) represents the nitrate mass (in kgN) in the atmospheric box.

Evolution of \(\delta^{15}\text{N} \) and \(\Delta^{17}\text{O} \) in nitrate The evolution of \(\delta^{15}\text{N} \) and \(\Delta^{17}\text{O} \) in nitrate (in %) in the atmospheric compartment is given by the following equations:

\[
\frac{d}{dt} (m_{\text{AT}} \times \delta^{15}\text{N}_{\text{AT}}) = (FP \times \delta^{15}\text{N}_{\text{FP}} + FS \times \delta^{15}\text{N}_{\text{FS}} + FT \times \delta^{15}\text{N}_{\text{FT}}) \times S
\]

\[-(FD \times \delta^{15}\text{N}_{\text{FD}} + FE \times \delta^{15}\text{N}_{\text{FE}}) \times S \] (4.5)

\[
\frac{d}{dt} (m_{\text{AT}} \times \Delta^{17}\text{O}_{\text{AT}}) = (FP \times \Delta^{17}\text{O}_{\text{FP}} + FS \times \Delta^{17}\text{O}_{\text{FS}} + FT \times \Delta^{17}\text{O}_{\text{FT}}) \times S
\]

\[-(FD \times \Delta^{17}\text{O}_{\text{FD}} + FE \times \Delta^{17}\text{O}_{\text{FE}}) \times S \] (4.6)

4.2.4.3 Nitrate mass and isotope balance in the snow

Nitrogen source Solving equation 4.4 provides the deposited flux (FD). This is the only nitrogen source to the snowpack.
4.2. Description of the model

Nitrogen sink We assume that nitrate photolysis is the only nitrate removal process from the snowpack so that it is the only sink of nitrogen from each snow layer.

Evolution of nitrate mass The mass continuity equation applied to each snow layer n gives the following differential equation:

$$\frac{d}{dt} m_n = (FD_n - FP_n) \times S \quad (4.7)$$

Figure 4.3 summarizes the nitrogen mass balance applied to the atmospheric box and to each snow layer.

\[\text{Figure 4.3} – \text{Nitrate mass balance in the atmospheric compartment (left) and in snow layer } n \text{ (right).}\]

Evolution of $\delta^{15}N$ and $\Delta^{17}O$ in nitrate The evolution of $\delta^{15}N$ and $\Delta^{17}O$ in nitrate in each snow layer n is given by the following differential equations:

$$\frac{d}{dt} (m_n \times \delta^{15}N_n) = (FD_n \times \delta^{15}N_{FD,n} - FP_n \times \delta^{15}N_{FP,n}) \times S \quad (4.8)$$

$$\frac{d}{dt} (m_n \times \Delta^{17}O_n) = (FD_n \times \Delta^{17}O_{FD,n} - FP_n \times \Delta^{17}O_{FP,n}) \times S \quad (4.9)$$
4.2.5 Optical and physical properties of the snowpack and snow accumulation

Optically speaking, the modelled snowpack is a typical Dome C snowpack i.e. it is composed of 11 and 21 cm of soft and hard windpack snow at the top and hoar-like snow below. The layers are defined as in France et al. (2011) and their respective density, scattering and absorption coefficients at 350 nm are summarized in table 4.1. Note that the snow densities given in table 4.1 are only used for the determination of the snowpack optical parameters. At Dome C, e-folding attenuation depths (denoted η) for the three snow layers are fairly constant in the range 350–400 nm (France et al., 2011) and the values are 10, 10 and 20 cm respectively. This observation can be extended to the 320–350 nm range (James France, personal communication, 2011) and we assume that the snow optical properties taken at 350 nm are appropriate for the whole 280–350 nm range of interest for nitrate photolysis. This hypothesis is supported by e-folding attenuation depths measurements at Alert, Nunavut, which showed no significant sensitivity to wavelengths in the 310–350 nm range (King and Simpson, 2001). The optical partitioning of the snowpack in three layers is further assumed to be constant throughout the year and the whole simulation. Under Dome C conditions, nitrate absorption by impurities is very small and the depth attenuation of UV light is mostly driven by light scattering (table 4.1) so that η is assumed to be independent on the impurities content in the snow, in our case, nitrate itself.

<table>
<thead>
<tr>
<th>Snow/Description</th>
<th>σ_{scatt}(350 nm)/m2.kg$^{-1}$</th>
<th>$\sigma_{\text{abs}}^+(350$ nm)/cm2.kg$^{-1}$</th>
<th>Density/103 kg.m$^{-3}$</th>
<th>E-folding att. depth/cm</th>
<th>Layer thickness/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft windpack</td>
<td>20</td>
<td>1.7</td>
<td>0.3</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Hard windpack</td>
<td>19</td>
<td>1.7</td>
<td>0.38</td>
<td>10</td>
<td>21</td>
</tr>
<tr>
<td>Hoar like layer</td>
<td>10</td>
<td>1.2</td>
<td>0.28</td>
<td>20</td>
<td>68+</td>
</tr>
</tbody>
</table>

Table 4.1 – Optical properties for the typical Dome C snowpack used in the offline runs of the TUV-snow model. This table is adapted from France et al. (2011). Note the different units for σ_{scatt}(350 nm) and $\sigma_{\text{abs}}^+(350$ nm).

In the model, the snow accumulation rate (A) is expressed in kg.m$^{-2}$.a$^{-1}$. The accumulation of a new snow layer at the top of the existing snowpack leads to push down older layers; the nitrate mass and isotopic composition in the layers below are not altered by this process. The newly accumulated layer is considered to be composed of pure snow. Its thickness depends on
the accumulated snow mass as well as the snow density (ρ) which is set to a constant value of 300 kg.m$^{-3}$, i.e. the average value found for top snow layers at Dome C (France et al., 2007). While optical calculations are based on a realistic snowpack, nitrate mass and isotopic predictions are performed assuming a constant ρ value which simplifies the computation. This simplification has no impact on the optical behaviour of the snowpack since we have showed that it is independent on the nitrate concentrations. Our choice of snow density for the nitrate mass and isotopic calculations is consistent with that used for the optical calculations in the soft windpack layer at the surface, where much of the action occurs.

4.2.6 Nitrate photolysis and snowpack production of NO$_2$

In the model, NO$_3^-$ photolysis is assumed to produce NO$_2$ only. This is reasonable since reaction 1.4a is a factor 8 to 9 times faster than reaction 1.4b (Grannas et al., 2007). Atmospheric HNO$_3$ deposits to the snow by being adsorbed at the surface of snow grains. Nitrate diffusion in the snow grain can occur. Indeed, in snow at -35 °C (summer maximum at Dome C), the diffusion coefficient of NO$_3^-$ is $D = 1.48 \times 10^{-11}$ cm2.s$^{-1}$ (Thibert and Domine, 1998) which means that the migration distance of the nitrate ion in the snow grain is ca. 30 μm for a one week period. A fraction of the adsorbed nitrate can thus reside in the snow grain.

4.2.6.1 Nitrate photolytic mass loss

Nitrate photolytic rate constant, J The photolyzed nitrate mass is proportional to a photolytic rate constant J (in s$^{-1}$) and to the nitrate mass m : $J \times \Delta t \times m$. The photolysis rate constant of NO$_3^-$ is expressed as in equation 1.7 (page 27) and its calculation requires the knowledge of the absorption cross section (σ in M$^{-1}$.cm$^{-1}$), the actinic flux (I in photons.m$^{-2}$.nm$^{-1}$.s$^{-1}$) and the quantum yield (Φ in molecules.photon$^{-1}$).

As reported in Frey et al. (2009), the two isotopologues 14NO$_3^-$ and 15NO$_3^-$ feature slightly different photolytic rate constants. We hereafter define J and J' the respective photolytic rate constant of 14NO$_3^-$ and 15NO$_3^-$. The difference between the two originates from slightly different
absorption cross sections which are denoted σ and σ' respectively.

The changes in J and J' with varying solar zenith angles are non-linear. J and J' values are computed for each time step as a weighted average function taking into account the solar zenith angle variation within each week.

Quantum yield, Φ The quantum yield (Φ) reflects the efficiency of nitrate photolysis. It reflects the availability of nitrate ions for photolysis which is impacted by the location of nitrate ions in the snow grain. The partitioning is assumed to be constant through the year and with depth. A constant value of Φ is therefore used for each model run.

Actinic flux (I) and UV light penetration in the snowpack The actinic flux at ground level is determined by the solar zenith angle, scattering and absorption by stratospheric ozone, clouds and aerosols and by reflection from ground (IUPAC, 1997). The optical properties (scattering and absorption coefficients) of snow determine the actinic flux at depth. UV actinic fluxes in the atmospheric box and in the snow layers are computed using offline runs of the TUV–snow radiative-transfer model for various dates (θ) provided the latitude and elevation and using appropriate ozone profiles with resolutions of 25 and 250 DU from 25 to 500 and 500 to 1000 DU respectively. The TUV–snow model is run assuming a clear sky, no aerosols and using the extraterrestrial irradiance from Chance and Kurucz (2010)\(^1\) a constant Earth–Sun distance as that of Dec. the 27th 2010. The snowpack optical parameters used in TUV–snow are those described above.

Absorption cross sections The same approach as in Frey et al. (2009) is used concerning the absorption cross sections of 14NO$_3^-$ (σ) and 15NO$_3^-$ (σ'). The absorption cross section of the main isotopologue is taken from Chu and Anastasio (2003) at 278 K. This measurement in dissolved nitrate at 278 K is assumed to be applicable to nitrate in snow independently of the snow temperature. Since experimental spectral data on the heavy isotopologues are not yet

\(^1\) Downloaded by S. Madronich on 2 December 2010, from http://www.cfa.harvard.edu/atmosphere
available, the zero point energy shift model (ΔZPE-shift model, Yung and Miller, 1997; Miller and Yung, 2000) is employed (Frey et al., 2009). This consists in applying a uniform blue shift to the measured spectral absorptivity (σ). This shift equals the difference in ZPE between the respective isotopologues (Yung and Miller, 1997) and equals −44.8 cm⁻¹, which is equivalent to an average blueshift of 0.5 nm in the 280–360 nm region as calculated by Frey et al. (2009).

4.2.6.2 Photolysis effect on δ¹⁵N in nitrate

Photolysis fractionation constant, ¹⁵ε The photolytic fractionation constant for the isotopologue pair ¹⁴NO₃⁻/¹⁵NO₃⁻ is given by the ratio of the respective photolysis rates:

\[¹⁵ε = \frac{J'}{J} - 1 \]

(4.10)

Nitrate photolysis does not preserve the nitrogen isotopic composition of the initial nitrate and the strongly negative apparent fractionation constant measured in the field at Dome C is mainly attributed to this process (Frey et al., 2009). The photolytic rate constants J and J' are strongly influenced by changes in the actinic flux. In the TRANSITS model, ¹⁵ε is explicitly calculated at each time step and in each snow layer using equation 4.10. This allows to account for changes due to different solar zenith angles as well as changes in the overlying ozone column. We recall that light penetration in the snowpack is assumed to be independent of the wavelength, so that ¹⁵ε does not depend on depth.

Rayleigh distillation model Since the photolyzed nitrate is lost from the snow as NO₂, the snow itself can be seen as an open system. In this respect, the Rayleigh distillation model applied to an open system allows to calculate the δ¹⁵N in the photolytically produced NO₂ and in the remaining nitrate fraction according to equations 1.8a and 1.8b (page 31).
4.2.6.3 Photolysis effect on $\Delta^{17}O$ in nitrate and cage effect

NO_3^- photolysis is assumed to be a mass dependent process so that $\Delta^{17}O$ should in theory be preserved through photolysis itself. However, nitrate photolysis is also assumed to follow the reaction channel 1.4a followed by the reaction 1.6a (page 27) to produce NO$_2$ + OH. A fraction of the photofragment NO$_2$ can however undergo cage recombination and react back with OH to form HNO$_3$ (McCabe et al., 2005). In this process, OH is assumed to undergo an isotopic exchange with the water molecules of the ice lattice so that the recombined HNO$_3$ contains an oxygen atom replaced by one originating from H$_2$O and featuring $\Delta^{17}O$(H$_2$O) = 0 $\%_e$. In the model, a constant fraction (f_{cage}) of the photolyzed nitrate ions are assumed to lead to cage effect and remain under the nitrate form. The parameter $f_{\text{cage}}' = \frac{f_{\text{cage}}}{3}$ represents the fraction of all O–atoms in the photolyzed nitrate ions that undergo the isotopic exchange with water.

4.2.6.4 Extraction of NO$_2$ from the snowpack

The photolytic loss flux FP represents the sum of the loss fluxes of NO$_2$ in each snow layer and is expressed in kgN.s$^{-1}$. A simple isotopic mass balance is applied to calculate the $\delta^{15}N$ and $\Delta^{17}O$ of the photolytic loss flux FP. The extraction of NO$_2$ from the snowpack is assumed to preserve its chemical and isotopical integrity, i.e. it does not undergo any chemical reaction (a similar approach than in Wolff et al., 2002; France et al., 2011) or any isotopic fractionation. Last, we assume that no snowpack ventilation occur which could encourage or disfavour NO$_2$ extraction from the snowpack.

4.2.7 Local oxidation of NO$_2$ to form HNO$_3$

4.2.7.1 Formation of HNO$_3$

The photolytically produced NO$_2$ released to the atmosphere is assumed to form atmospheric HNO$_3$ within the same time step NO$_2$ was produced.
4.2.7.2 Impact on $\delta^{15}\text{N}$

The formation of HNO$_3$ from NO$_2$ preserves the nitrogen atom so that $\delta^{15}\text{N}$ is not affected.

4.2.7.3 Impact on $\Delta^{17}\text{O}$

Photochemical steady-state (PSS, Morin et al., 2011) is assumed throughout the whole season so that the oxygen atoms of NO$_2$ mostly originate from the transferred oxygen atoms from ozone. This is modelled by the following equation: $\Delta^{17}\text{O(NO}_2) = \alpha \cdot \Delta^{17}\text{O(O}_3)$ (see section 1.3.2.2) with α being a term which accounts for the perturbation of the simplified Leighton cycle (figure 1.10, page 21) by HO$_x$ or RO$_x$ radicals. The one week time step resolution of the TRANSITS model is too high and not suitable to properly treat α. We therefore set this parameter to a constant value throughout the year.

NO$_2$ is directly converted to HNO$_3$ by incorporating an additional oxygen atom and this is a reasonable assumption given the short lifetime of NO$_x$ in the order of hours (to be compared to a time step of one week in TRANSITS) on the Antarctic plateau in Summer (Saiz-Lopez et al., 2007; Bauguitte et al., 2009). The incorporation of the local additional O–atom to form HNO$_3$ gives:

$$\Delta^{17}\text{O(HNO}_3) = \frac{2}{3} \cdot \Delta^{17}\text{O(NO}_2) + \frac{1}{3} \cdot \Delta^{17}\text{O(add. O)}$$

(4.11)

At this stage, atmospheric chemistry is not modelled but only conceptually represented. Indeed, the pure daytime channel in the formation of HNO$_3$ is assumed to be the reaction of NO$_2$ and OH which leads to the incorporation of an oxygen atom originating from OH. We therefore use $\Delta^{17}\text{O(add. O)} = \Delta^{17}\text{O(OH)}$ during the day. At night or through heterogeneous reaction, we use $\Delta^{17}\text{O(add. O)} = \Delta^{17}\text{O(O}_3)$.

The partitioning between the daytime and the nighttime channels in the production of atmospheric HNO$_3$ is set to be proportional to the photolytic rate constant in the production of OH radicals by the photolysis of ozone molecules in the 200–310 nm range (J_{O^1D}) with the pure daytime chemistry (i.e. $\Delta^{17}\text{O(add. O)} = \Delta^{17}\text{O(OH)}$) occurring when J_{O^1D} reaches a threshold.
value ($J_{O1D}^{\text{threshold}}$):

$$
\Delta^{17}O(\text{add. O}) = \Delta^{17}O(O_3^*) - \frac{J_{O1D}(t)}{J_{O1D}^{\text{threshold}}} \cdot (\Delta^{17}O(O_3^*) - \Delta^{17}O(OH)) \quad (4.12)
$$

when $J_{O1D}(t) \leq J_{O1D}^{\text{threshold}}$. In the case where $J_{O1D}(t) > J_{O1D}^{\text{threshold}}$, the oxidation of NO$_2$ is assumed to occur through OH only. The photolysis of ozone is indeed a major production of OH and J_{O1D} is therefore linked to the atmospheric mixing ratio of this radical which determines the kinetic rate constant of the daytime production channel of HNO$_3$. J_{O1D} is calculated in the model using the absorption cross section of ozone measured at 243 K by Malicet et al. (1995) and the actinic flux computed by the TUV-snow model at the surface of the snowpack given the appropriate θ and ozone column. J_{O1D} is further assumed to be independent on the air temperature and only driven by the date (θ) and the ozone column.

OH radicals undergo isotopic exchange with H$_2$O (which features $\Delta^{17}O(H_2O) = 0 \, ^{\circ}$e). The efficiency of this isotopic exchange mostly depends on the atmospheric water vapor content (Michalski et al., 2003; Morin, 2008) and the OH chemical sinks. Based on measured H$_2$O, CO and CH$_4$ mixing ratios at Dome C, an upper limit of 14 \%e is estimated for $\Delta^{17}O(H_2O)$ (Morin et al., 2007a; Kunasek et al., 2008).

4.2.8 Atmospheric box

The resolution of the nitrate mass balance in the atmospheric box is forced by an ideal nitrate concentration time series derived from our year-round observations at Dome C in 2009–10 and expressed in ngNO$_3^-$m$^{-3}$. The atmospheric box is given a fixed height that reflects the atmospheric boundary layer (ABL) thickness. This layer is assumed to be well mixed so that our 2–meter above ground measurements can be considered representative in there.

4.2.8.1 Inputs

Primary inputs to the atmospheric box are the stratospheric denitrification flux and the long distance transport flux from distant regions. The two primary inputs are characterized by an
annual mean nitrate mass flux and a mass repartition throughout the year. Isotopically speaking, the two primary origins of nitrate are defined by specific $\Delta^{17}O$ and $\delta^{15}N$ signatures which are considered constant throughout the year: $\Delta^{17}O_{FS}$, $\Delta^{17}O_{FT}$, $\delta^{15}N_{FS}$ and $\delta^{15}N_{FT}$.

4.2.8.2 Outputs

Horizontal export flux The horizontal export flux (FE) represents the nitrate mass loss from the atmospheric box through horizontal advection. FE is modelled to be a fraction (f_{exp}) of all incoming nitrate fluxes to the atmosphere (stratospheric denitrification, long distance transport, photolytical origin): $FE = f_{exp} \cdot (FP + FS + FT)$. This nitrate removal process preserves both $\Delta^{17}O$ and $\delta^{15}N$.

Deposition flux This flux represents nitrate deposition to the snow surface. The atmospheric nitrate mass is imposed, thus solving the mass continuity equation in this box (equation 4.4) leads to the determination of the deposited flux FD. The isotopic mass balance equation in the atmosphere further allows the calculation of $\Delta^{17}O$ and $\delta^{15}N$ in the deposited HNO$_3$. The deposition process itself is assumed to preserve $\Delta^{17}O$ and $\delta^{15}N$.

4.2.9 Nitrate adsorption to the snow

The nitrate mass in the atmospheric box is imposed and the deposition flux has to be distributed at depth in the snow. The TRANSITS model does not attempt to model the equilibrium between the top snow layers and the above atmosphere in terms of HNO$_3$ partial pressures which is beyond the scope of this study. The deposition of nitrate is modelled to occur under the HNO$_3$ form which adsorbs at the surface of the snow grains. As for the extraction of NO$_2$ from the snowpack, we assume that no snowpack ventilation occur which could encourage or disfavour the penetration of HNO$_3$ to the snow.

Chemical diffusion in snow is an important process affecting the movement of contaminants between the snowpack and the atmosphere. It is driven by both concentration and temperature gradients and characterized by a diffusion coefficient D, also called *diffusivity* and expressed in
$m^2.s^{-1}$. D_{air} is the diffusivity of a given gas in air. In a porous medium like snow, diffusing gases have to travel a longer distance around the ice crystals. This is described by the tortuosity (τ) \cite{Pinzer2010}. The interaction of the diffusing gas with snow leads to the partitioning between the gas phase and the surface of snow grains. The diffusion through snow has therefore to be represented by an effective diffusivity (D_{eff}) which takes into account the sorption of the chemical from the interstitial pore space air to the surface of the snow grains \cite{Herbert2006}.

4.2.9.1 Diffusion equation

The distribution of the deposited flux with depth is modelled by the diffusion of HNO$_3$ in the snowpack and its interaction with it which is characterized by an effective diffusivity coefficient, D_{eff}. The resolution of the Fick’s second law in the semi-infinite, one-dimensional case describes the time and depth (z) evolution of the HNO$_3$ concentration (C). After the duration Δt, the ”extra” concentration at depth z is given by the following:

$$C = C_0 \cdot \text{erfc}(\frac{z}{2\sqrt{D_{eff} \cdot \Delta t}})$$ (4.13)

with C_0, the concentration at the top of the snowpack. This represents the concentration profile which superimposes on top of the existing nitrate concentration profile before the deposition and we hypothesize here that the snow layers are never saturated with respect to HNO$_3$. For each layer, the deposited fraction received is calculated as the integral of the normalized above equation between the extreme bounds of the layer (top and low depths). In the case of a fresh snow layer, the modelled deposition leads to nitrate uptake in the layer, equivalent to a ”fake wet deposition” of nitrate.
4.2. Description of the model

4.2.9.2 HNO$_3$ diffusivity in snow

D_{eff} depends on the physical properties of the snow, i.e. its "specific surface area" (SSA) and density (ρ), and is calculated as follows (Herbert et al., 2006):

$$D_{\text{eff}} = \frac{1}{1 + \frac{\rho_{\text{ice}}}{\rho} - \psi K_{\text{linC}}} D_{\text{th}}$$ \hspace{1cm} (4.14)

where ψ is the porosity of snow : $\psi = 1 - \frac{\rho}{\rho_{\text{ice}}}$ ($\rho_{\text{ice}} = 917$ kg.m$^{-3}$ at $0 \degree$C). D_{th} accounts for nitrate diffusivity in the snowpack when considering no interaction with it, therefore, D_{th} is smaller than nitrate diffusivity in the air (D_{air}) because of the snow tortuosity (τ). The ratio between the two is the length of the straight line between two arbitrary points and the actual travelled distance (Pinzer et al., 2010):

$$D_{\text{th}} = \frac{\psi}{\tau^2} D_{\text{air}}$$ \hspace{1cm} (4.15)

The diffusivity of HNO$_3$ in the single-phase (D_{air}) actually depends on the temperature (in K) and pressure (in mbar) of the interstitial air (Massmann, 1998):

$$D_{\text{air}}(T_{IA}, P) = D_{\text{air}}^0 \times \frac{1013.25}{P} \times \left(\frac{T_{IA}}{298.15} \right)^{1.81}$$ \hspace{1cm} (4.16)

with $D_{\text{air}}^0 = 0.118 \times 10^{-4}$ m2.s$^{-1}$ (Durham et al., 1987). For HNO$_3$, K_{linC} can be estimated from the temperature (in K) of the snow, according to following equation (Crowley et al., 2010):

$$K_{\text{linC}}(T) = 7.5 \times 10^{-7} \times e^{\frac{4585.0}{T}}$$ \hspace{1cm} (4.17)

The snow and the interstitial air in its vicinity are assumed at equilibrium so that $T_S = T_{IA}$. We use monthly averaged air temperature data as a surrogate for surface snow temperature. The impact of this simplification is evaluated below.

For example, for Dome C summertime conditions : $T_{\text{air}} = 243$ K ($\approx -30 \degree$C), $P = 650$
mbar, \(\rho = 300 \, \text{kg.m}^{-3} \), SSA = 38 m\(^2\).kg\(^{-1} \), \(\tau = 0.67 \), we obtain \(D_{\text{eff}} = 7.5 \times 10^{-12} \, \text{m}^2\cdot\text{s}^{-1} \). The parameter \(2\sqrt{D_{\text{eff}} \cdot \Delta t} \) in equation 4.13 equals 4.8 mm, which is the depth where the deposited concentration is reduced by 84% after one week time. This value is even smaller for wintertime conditions (0.3 mm for \(T_{\text{air}} = 193 \, \text{K} \)). In other words, the deposition of HNO\(_3\) is confined to the top few millimeters of the snowpack.

4.2.10 Model outputs

The model generates a significant amount of data at the weekly time step which includes the nitrate mass and isotopic composition in each compartment. Raw data are processed to obtain time series of variables which can directly be compared to observations such as:

- the time series of concentration, \(\delta^{15}\text{N} \) and \(\Delta^{17}\text{O} \) in nitrate in the atmosphere and in the skin layer (the top 5 mm of snow),
- the profiles of concentration, \(\delta^{15}\text{N} \) and \(\Delta^{17}\text{O} \) in nitrate with depth,
- the time series of the apparent fractionation constant (\(^{15}\varepsilon_a \)) measured in the top meter of the snowpack (for this we resample the snow profiles every 0.1 m) and
- the NO\(_2\) flux from the snow to the atmosphere.

For each run, the output data are reduced to integrated variables which are used to intercompare simulations. The integrated output variables for the net export flux are the mass flux (FE), \(\delta^{15}\text{N} \) (\(\delta^{15}\text{N}_{\text{FE}} \)) and \(\Delta^{17}\text{O} \) (\(\Delta^{17}\text{O}_{\text{FE}} \)) in the exported nitrate. The archived flux (denoted FA) is calculated below one meter depth (i.e. the lowermost depth reached by the actinic flux) and represents the vertical integration of layers corresponding to one year of snow accumulation. In this way, we compute the concentration ([NO\(_3^-\)]\(_{\text{FA}}\), in ngNO\(_3^-\).g\(^{-1}\)), the mass flux (FA = [NO\(_3^-\)]\(_{\text{FA}} \times A\)), the \(\delta^{15}\text{N} \) (\(\delta^{15}\text{N}_{\text{FA}} \)) and \(\Delta^{17}\text{O} \) (\(\Delta^{17}\text{O}_{\text{FA}} \)) in the archived nitrate. We also compute \(R_{\text{FA}/\text{FPI}} \) which is the mass ratio between the archived and the primary input flux (\(R_{\text{FA}/\text{FPI}} = \text{FA}/\text{FPI} \)) and which is termed the ”magnitude of the recycling” in the following. FA, [NO\(_3^-\)]\(_{\text{FA}}\), \(\delta^{15}\text{N}_{\text{FA}} \), \(\Delta^{17}\text{O}_{\text{FA}} \) are values which can directly be compared to values archived in ice cores.
4.3 Driving and evaluation data

Here we describe the driving data used to compute a realistic simulation (section 4.3.1) and a reference simulation (section 4.3.2). The data we use for the evaluation of the model are given in section 4.3.3.

4.3.1 Driving data for a realistic simulation

The realistic simulation is intended to represent at best the conditions found at Dome C.

Atmospheric nitrate concentration The atmospheric box is forced with a nitrate concentration cycle which is an idealized cycle from our measurements at Dome C in 2007 (Frey et al., 2009).

Stratospheric flux FS The recent estimate by Wolff et al. (2008) suggests that the whole Antarctic continent receives a flux of $9 \pm 2 \times 10^7$ kgNO$_3^-$ a$^{-1}$ from the stratosphere, a similar value than previously reported in Muscari et al. (1998). This gives a flux of $1.45 \pm 0.32 \times 10^{-6}$ kgN.m$^{-2}$.a$^{-1}$ for a surface area of Antarctica of 14×10^6 km2. This stratospheric flux originates from the sedimentation of PSCs so that it occurs from the early Winter to the early Spring (Seinfeld and Pandis, 1998; Jacob, 1999). We split this flux in 10 weeks from mid/end of July to the end of September.

Moore (1974) have measured the δ^{15}N in stratospheric nitrate over Australia and Alaska at altitudes ranging 21.3 to 27.4 km and obtain a value of $1.9 \pm 0.9 \%$. To the best of our knowledge, this is the only measurement of δ^{15}N in stratospheric nitrate and we must assume it applies for the stratosphere above Antarctica. Based on computations from chemical mechanisms and fractionation factors, Savarino et al. (2007) have estimated that δ^{15}N in stratospheric nitrate is $19 \pm 3 \%$. We take the mean of these two values and set δ^{15}N$_{FS} = 10 \%$.

No direct measurement of Δ^{17}O in stratospheric nitrate exist. Savarino et al. (2007) have however estimated that Δ^{17}O is higher than 40 \%. We set Δ^{17}O$_{FS}$ to 42 \%.
Long distance transport flux FT To the best of our knowledge, there is no estimate of the nitrogen mass flux received by long distance transport on the Antarctic continent. We therefore use a mass flux equal to that estimated for the stratospheric flux, i.e. 1.45×10^{-6} kgN.m$^{-2}$.a$^{-1}$. This flux is assumed to be equally shared throughout a year.

As for the flux, the δ^{15}N and Δ^{17}O in this nitrate is not known. However, we assume that it features δ^{15}N$_{FT} = 0$ %, which is an average value of δ^{15}N usually found in the atmosphere (Morin et al., 2009). Δ^{17}O$_{FT}$ is also set to an average value of 30 %.

Export flux FE The mass flux of the horizontal net export is represented by the variable f_{exp}. We set it to 0.2 all year long. This means that at each time step 20 % of the incoming mass flux to the atmospheric box is lost by horizontal export.

ABL thickness The atmospheric boundary layer thickness is set to a constant value of 50 meters throughout the whole year. This value is close to the median wintertime value for Dome C (ca. 30 m) modelled by Swain and Gallée (2006). The larger value chosen accounts for the thicker boundary layer thickness found during Summer.

Snow accumulation rate The snow accumulation rate is set to a value of 30 kg.m$^{-2}$.a$^{-1}$ which is representative of the Dome C site (Frezzotti et al., 2004). On the East Antarctic plateau, snow accumulation rates seem to show a minimum in Summer (Laeppele et al., 2011). We use the monthly average snow accumulation repartition obtained in the Laeppele et al. (2011) study for East Antarctic plateau sites (mostly Vostok) over the 1958–2007 period. These data are shown on figure 4.4.

Ozone column In the realistic simulation, weekly ozone column averages are used for Dome C over the 2000–2009 period. Ozone column data over the period 2000–2005 were derived from the measurements made by the Earth Probe Total Ozone Mapping Spectrometer (EP/TOMS), processed by the National Aeronautics and Space Administration (NASA) and obtained online.

For the 2007–2009 period, the data were obtained from the “Système d’Analyse par Observation Zénithale” (SAOZ) observation network at ground\(^3\). In order to fit the ozone column resolution of the offline runs of the TUV–snow model, the calculated weekly averages of the ozone column data were processed to obtain the same resolution (figure 4.4).

Photolysis parameters and variables The quantum yield in the photolytical reaction of \(\text{NO}_3^-\) to form \(\text{NO}_2\) is set to 0.05 molecules.photon\(^{-1}\) and this parameter can be varied in the model. The cage effect parameter is set to a constant value of 0.1, which means that 3.3\% of all O–atom in photolyzed nitrate undergo cage recombination and isotopic exchange with water. \(f_{\text{cage}}\) can also be adjusted.

\(\text{NO}_2\) oxidation parameters and variables The \(\alpha\) parameter is set to 0.9 which is a lower limit for this parameter and translates the fact that the peroxy radicals perturbate only a little the Leighton cycle (Röckmann et al., 2001; Michalski et al., 2003; Morin, 2008). Another parameter describing the local oxidation of \(\text{NO}_2\) is \(\Delta^{17}\text{O}(\text{O}_3^\bullet)\) which is derived from \(\Delta^{17}\text{O}(\text{O}_3)\) as in section 1.3.2.2. A \(\Delta^{17}\text{O}\) value of 25\% is used for tropospheric ozone (Morin et al., 2008) which sets \(\Delta^{17}\text{O}(\text{O}_3^\bullet)\) to a value of 37.5\%.

We use the upper limit of \(\Delta^{17}\text{O}(\text{OH})\) as calculated previously in the case of a mean summertime temperature of \(-40\) °C. This gives \(\Delta^{17}\text{O}(\text{OH}) = 14\%\) and this value is applied all year long. It is however only relevant in Summer when OH exists in the lower atmosphere. The \(J_{\text{O}^1\text{D}}^{\text{threshold}}\) is set to a value of \(2 \times 10^{-10}\) \(\text{s}^{-1}\).

Deposition parameters and variables Atmospheric air temperatures are used in the calculation of the diffusivity of \(\text{HNO}_3\) in snow (\(D_{\text{eff}}\), see equations 4.14, 4.15, 4.16 and 4.17 and the approximations concerning the temperatures). Monthly averaged air temperatures obtained from the Atmospheric Weather Station (AWS) at Dome C over the 2006–2010 period are used. The same applies for the atmospheric air pressure.

\(^3\) Data obtained from http://saoz.obs.uevsq.fr/index.html
The SSA is set to 38 m2.kg$^{-1}$ which is the mean value measured in the top 1 cm of snow at Dome C (Gallet et al., 2011). We have earlier showed that the deposited nitrate is confined in the top few mm of snow. It is therefore reasonable to affect this SSA value to the entire snowpack since it does not play a role below the top few mm zone.

The snow density is set to a constant value of $\rho = 300$ kg.m$^{-3}$.

4.3.2 Driving data for a reference simulation

Here we introduce a reference simulation used to assess the model’s sensitivity.

The sensitivity of the model is tested by varying some parameters and the results for each are compared to a reference simulation. For simplicity, it differs from the realistic simulation by the snow accumulation rate and the ozone columns scenarios.

Snow accumulation rate The snow accumulation rate is set to a yearly value of 30 kg.m$^{-2}$.a$^{-1}$ as in the realistic simulation. In the reference simulation, this accumulation is assumed to be equally spread throughout the year (i.e. the accumulation time series is flat, figure 4.4).

Ozone column The ozone column is set to a value of 300 DU which is not far from the yearly averaged values measured at Dome C over the 2000–2009 period without taking the ozone hole into account (figure 4.4).

Summary Table 4.2 summarizes the driving data for the realistic and the reference simulations.

4.3.3 Evaluation data

In this short section, we present the data used to evaluate the model. The main observations are only briefly given and discussed.
4.3. Driving and evaluation data

![Diagram showing air temperature, accumulation mass repartition, ozone column, and photolytic fractionation constant.]

Figure 4.4 – Driving data for the realistic and the reference simulations through the year. a. air temperature. b. accumulation mass repartition. c. ozone column. The ozone column scenarios are given with the annual cycles measured at a daily time resolution over the period 2000–2009. d. the photolytic fractionation constant ($^{15}\varepsilon$). During the Winter, $^{15}\varepsilon$ is not defined.

4.3.3.1 Atmospheric and skin layer nitrate at Dome C

We use concentration and isotopic measurements in nitrate in the atmosphere and the skin layer obtained at Dome C during the year 2009–2010. The data collection and analysis has been detailed earlier in this manuscript. This material is about to be published separately: Vicars, W. C., J. Erbland and J. Savarino (in prep.), Atmosphere to snow transfer of nitrate stable isotopes on the Antarctic plateau: evidence for intense nitrate recycling at the snow surface, to be submitted to *Atmos. Chem. Phys. Disc.*.

Figure 4.5 shows the concentrations and $\delta^{15}\text{N}$ and $\Delta^{17}\text{O}$ in the nitrate measured in the atmosphere and in the skin layer at Dome C from January 2009 to February 2010. The general
features observed in the atmosphere are in close agreement to observations in 2007 (Frey et al., 2009) and we describe them briefly here. The atmospheric nitrate concentrations start to peak at the beginning of October, when the solar radiation becomes significant. They peak by the end of November with concentrations reaching ca. 120 ng.m\(^{-3}\). The \(\delta^{15}N\) in nitrate shows rather stable values in Winter (from \(-5\) to 5 \%\(e\)) and decrease down to values of around \(-30\ \%\(e\) at the beginning of the summer season and then rises back to values in the range \(-5\) to 5 \%\(e\). This decrease in Spring has been attributed to the beginning of the nitrate photolytic loss from snow. The fractionation constant of this process has been evaluated to be around \(-50\ \%\(e\) (Frey

Table 4.2 – Driving data for the TRANSITS realistic and reference simulations. For each variable, the year repartition is indicated in the brackets.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Realistic simulation</th>
<th>Reference simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric concentration</td>
<td>(realistic idealized cycle)</td>
<td>idem</td>
</tr>
<tr>
<td>FS</td>
<td>(1.45 \times 10^{-6} \text{kgN.m}^{-2}.\text{a}^{-1}) (mid/end July to end of Sept.)</td>
<td>idem</td>
</tr>
<tr>
<td>(\delta^{15}N_{FS})</td>
<td>10 %(e) (flat cycle)</td>
<td>idem</td>
</tr>
<tr>
<td>(\Delta^{17}O_{FS})</td>
<td>42 %(e) (flat cycle)</td>
<td>idem</td>
</tr>
<tr>
<td>FT</td>
<td>(1.45 \times 10^{-6} \text{kgN.m}^{-2}.\text{a}^{-1}) (flat cycle)</td>
<td>idem</td>
</tr>
<tr>
<td>(\delta^{15}N_{FT})</td>
<td>0 %(e) (flat cycle)</td>
<td>idem</td>
</tr>
<tr>
<td>(\Delta^{17}O_{FT})</td>
<td>30 %(e) (flat cycle)</td>
<td>idem</td>
</tr>
<tr>
<td>(f_{exp})</td>
<td>0.2 (flat cycle)</td>
<td>idem</td>
</tr>
<tr>
<td>ABL thickness</td>
<td>50 meters (flat cycle)</td>
<td>idem</td>
</tr>
<tr>
<td>(A)</td>
<td>30 kg.m(^{-2}).a(^{-1}) (monthly averaged cycle, Laepple et al. (2011))</td>
<td>30 kg.m(^{-2}).a(^{-1}) (flat)</td>
</tr>
<tr>
<td>(\Phi)</td>
<td>0.05 molecules.photon(^{-1})</td>
<td>idem</td>
</tr>
<tr>
<td>(f_{cage})</td>
<td>0.10</td>
<td>idem</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.9 (flat cycle)</td>
<td>idem</td>
</tr>
<tr>
<td>(\Delta^{17}O(O_3^+))</td>
<td>37.5 %(e) (flat cycle)</td>
<td>idem</td>
</tr>
<tr>
<td>(\Delta^{17}O(OH))</td>
<td>14 %(e) (flat cycle)</td>
<td>idem</td>
</tr>
<tr>
<td>(J_{O1D}^{\text{Threshold}})</td>
<td>(2 \times 10^{-11} \text{s}^{-1})</td>
<td>idem</td>
</tr>
<tr>
<td>(\rho)</td>
<td>300 kg.m(^{-3})</td>
<td>idem</td>
</tr>
<tr>
<td>SSA</td>
<td>38 m(^2).kg(^{-1})</td>
<td>idem</td>
</tr>
<tr>
<td>(T_{IA})</td>
<td>(monthly averaged cycle)</td>
<td>idem</td>
</tr>
<tr>
<td>(P)</td>
<td>(monthly averaged cycle)</td>
<td>idem</td>
</tr>
</tbody>
</table>
et al., 2009) which leads to the extraction of 15N–depleted NO$_x$. During the Spring and the Summer, the top of the snowpack slowly becomes enriched in 15N which at some point leads to the extraction of NO$_x$ that have a positive δ^{15}N. In July and August, the Δ^{17}O in nitrate shows values above 40 $\%$ which are attributed to the stratospheric denitrification (Savarino et al., 2007; Frey et al., 2009). Δ^{17}O then gradually decreases to reach a plateau of around 29 $\%$ in Summer 2009–2010 somewhat slightly higher than that of the previous Summer (ca. 26 $\%$). The summertime decrease of Δ^{17}O has been attributed to the local oxidation of the photolytically produced NO$_x$.

The main novelty in this dataset is the measurement of concentrations, δ^{15}N and Δ^{17}O in nitrate in the skin layer. Nitrate concentrations show low values in Winter with an average of 200 ng.g$^{-1}$ and start to increase in mid-october to reach a maximum of more than 1400 ng.g$^{-1}$ in the beginning of January, just a few days after the summer solstice. The nitrate concentration in the skin layer never recovers and returns back to its usual wintertime averaged value in February/March.

The wintertime δ^{15}N average value in the skin layer is about 20 $\%$, around 15 $\%$ higher than that in the atmospheric nitrate. The springtime skin layer enrichment in nitrate is associated with a depletion in 15N of more than 30 $\%$ with a lag of about one month when compared to the atmospheric data. The δ^{15}N then gradually increases throughout the Summer to reach values of around 35 $\%$ by the end of January 2010. The return to wintertime values occurs by the end of February / beginning of March.

Δ^{17}O in skin layer nitrate shows a good agreement with the isotopic data in the atmosphere. The high (δ^{15}N, 40 $\%$) values are observed at least for a month and a half and the summertime values reach a plateau with values around 30–31 $\%$. The concentration and isotopic profiles are generally smoother for the skin layer than for the atmosphere and this is attributed to the integrating ability of the surface snow compartment. Indeed, the nitrate mass is more than 200 and 1000 times higher in the surface snow compartment than in the atmosphere in Summer and Winter respectively (when assuming $\rho = 300$ kg.m$^{-3}$ and an ABL thickness of 100 and 30 meters
in Summer and Winter respectively). This reservoir effect also explains the lag observed in the \(\delta^{15}N \) records as the redistribution of mass and \(\delta^{15}N \) in nitrate first affects the small reservoir that is the atmospheric nitrate.
4.3. Driving and evaluation data

4.3.3.2 Snow pits at Dome C

Figure 4.6 shows the concentration and isotopic composition in nitrate from three snowpits collected at Dome C during the austral Summer 2007–2008. Pit DC#1 has been previously published in Frey et al. (2009).

The three pits show the features generally observed in nitrate concentration and δ¹⁵N at Dome C. Nitrate concentrations decrease by one or two orders of magnitude in the top 10 cm and at a slower rate below. In the meantime, δ¹⁵N reaches values above 100 ‰ in the top 10 cm and an asymptotic value between 200 and 300 ‰ at depth. Δ¹⁷O shows a decreasing trend of 3–4 ‰ on 50 cm and marked cycles with typical amplitudes of about 5 ‰. The period of the cycles in Δ¹⁷O is around 2–3 years when considering a snow accumulation rate of 30 kg.m⁻².a⁻¹ and ρ = 300 kg.m⁻³.

![Figure 4.6](image-url)

Figure 4.6 – Nitrate concentration (panel a.) and isotopic composition (b. δ¹⁵N and c. Δ¹⁷O) in three 50 cm depth snowpits collected at Dome C during the Summer 2006–2008.

The increase in δ¹⁵N with depth is the result of nitrate photolysis in snow (Frey et al., 2009). The 2–3 years period observed in Δ¹⁷O has been previously observed in a snowpit from South
Pole and has been attributed to the variability in stratospheric ozone (McCabe et al., 2007).

4.3.3.3 Snow pits along the route from the coast to Dome C and Vostok

The evaluation of the spatial variability of the isotopic composition of nitrate in present snow is possible using concentration and isotopic measurements in nitrate in the numerous snow pits sampled on a wide zone covering most of the East Antarctica, from D10 on the coast to Dome C (figure 1.15, page 38). The data collection and analysis has been detailed earlier in this manuscript.

The important amount of data obtained in this set has been reduced by calculating asymptotic values at depth, i.e. values which represent the archived nitrate and which can therefore be compared to the archived nitrate simulated with TRANSITS. We obtain the following asymptotic values: the concentration, $\delta^{15}N$ and $\Delta^{17}O$ in nitrate. We use the same notation as for TRANSITS simulations, i.e. $[\text{NO}_3^-]_{\text{FA}}$, $\delta^{15}N_{\text{FA}}$ and $\Delta^{17}O_{\text{FA}}$.

Snow accumulation rates (A) for each of the 16 sites have been obtained based on interpolated 1980–2007 simulations of the atmospheric circulation model LMDZ4 (Krinner et al., 2007). The nitrate asymptotic flux is denoted FA as in the TRANSITS model and calculated as follows: $FA = [\text{NO}_3^-]_{\text{FA}} \times A$.

Figure 4.7 shows the $\delta^{15}N_{\text{FA}}$ and FA estimated for the 16 locations and plotted as a function of the inverse of the snow accumulation rate (A). The elevation of each site is given for comparison. The variation of $\delta^{15}N_{\text{FA}}$ with $1/A$ is almost linear. It shows that, at sites with low snow accumulation rates ($1/A \geq 0.025$ kg$^{-1}$m2.a, i.e. A ≤ 40 kg.m$^{-2}$.a$^{-1}$), the $\delta^{15}N$ in nitrate is strongly imprinted with the photolytical signature. FA shows the opposite trend suggesting that less nitrate is archived with decreasing snow accumulation rates (A) which is consistent with a greater photochemical mass loss. $\Delta^{17}O_{\text{FA}}$ and $\delta^{15}N_{\text{FA}}$ are anti-correlated and the higher $\Delta^{17}O_{\text{FA}}$ are found in nitrate at high accumulation sites, at low elevation, closer to the coast.
4.4 Comparison of the realistic simulation to observed data

Figure 4.7 – Post-processed data obtained from 21 snowpits collected at 16 different locations from D10 to DC and Vostok in East Antarctica. a. the elevation of each site versus the inverse of the snow accumulation rate (A). b. δ^{15}N and the archived nitrate (δ^{15}N$_{FA}$) and the archived nitrate mass flux (FA) versus $1/A$. c. Δ^{17}O(NO$_3^-$) as a function of δ^{15}N(NO$_3^-$).

4.4 Comparison of the realistic simulation to observed data

In this section, we compare the results of the realistic simulation to the observed data and evaluate the model. In the first place, we describe the results of the TRANSITS simulation. We recall that the schematic view of the TRANSITS model provided in figure 4.2 should be kept easily accessible to the reader. Indeed, this figure summarizes the variables which are set or imposed (in black) and those which are calculated by the model (in blue).

4.4.1 Results

4.4.1.1 Atmospheric and skin layer nitrate

The panels d. to i. in figure 4.8 shows the simulated nitrate concentrations and δ^{15}N and Δ^{17}O in the atmospheric and skin layer nitrate. The panels a. to c. in the same figure show the
fluxes incoming or outgoing the atmospheric box as well as $\delta^{15}\text{N}$ and $\Delta^{17}\text{O}$ for each of them.

The model shows an increase in the skin layer nitrate concentrations in Spring which is due to the stratospheric mass input to the system. In the Summer, the skin layer (the top 5 mm of the modelled snowpack) concentrations reach a maximum value of more than 4000 ng.g$^{-1}$ before returning to their wintertime value in April/May when the only primary nitrogen input to the system is the long distance transport and when the photolytic secondary flux stops with missing solar radiation.

$\delta^{15}\text{N}$ has also a seasonal variation with the lowest values in the atmospheric nitrate observed in October when the stratospheric input has stopped and when the UV radiation becomes significant. $\delta^{15}\text{N}$ then starts to rise again to reach positive values in January. Then $\delta^{15}\text{N}$ decreases until it has reached its wintertime values back by the end of April/beginning of May when the nitrate photolysis stops. $\delta^{15}\text{N}$ in the skin layer shows the same behaviour than the atmosphere but is slightly shifted to more positive values in Summer.

$\Delta^{17}\text{O}$ in the atmospheric and in the skin layer nitrate show a good agreement with higher values (40 %) found during the stratospheric denitrification. When the photolytical season starts, $\Delta^{17}\text{O}$ decreases to reach plateau values on the order of 30–31 % in Summer. A higher interseason background of 33–34 % is temporarily reached until the wintertime background is found when UV radiation stops.

4.4.1.2 Nitrate in snow after the summer solstice

Figure 4.9 shows the concentration, $\delta^{15}\text{N}$ and $\Delta^{17}\text{O}$ in nitrate in the top 50 cm of the snowpack modelled for 24 December in the case of the realistic simulation. Nitrate concentrations decrease by an order of magnitude higher than 2 in the top 10–15 cm to reach a mean background value of about 16 ng.g$^{-1}$. $\delta^{15}\text{N}$ starts at 0 % at the surface to reach a mean background value of 232 % at around 20–30 cm depth. $\Delta^{17}\text{O}$ starts at 30 % and decreases with depth in the top 20–30 cm to reach the mean background value of 27 %. Nitrate concentrations, $\delta^{15}\text{N}$ and $\Delta^{17}\text{O}$ in nitrate show a strong seasonality at depth which range from 0.9 to 65.2 ng.g$^{-1}$, from
4.4. Comparison of the realistic simulation to observed data

Figure 4.8 – TRANSITS realistic simulation time series plot and comparison to observations at Dome C in 2009–2010. Panels a., b. and c.: simulated fluxes and δ^{15}N and Δ^{17}O in the fluxes as well as the Δ^{17}O in the additionnal O atom (panel c.). The yellow filled curve in panel a. represents the day length at Dome C. Note that δ^{15}N and Δ^{17}O in FE and FD are equal. Panels d., e. and f.: simulated and observed concentrations, δ^{15}N and Δ^{17}O in atmospheric nitrate. Panels g., h. and i.: simulated and observed concentrations, δ^{15}N and Δ^{17}O in skin layer atmospheric.
192.8 to 345.9 % and from 24.4 to 32.4 % respectively. Peaks in δ^{15}N correspond to low nitrate concentrations (i.e. winter snow layers) and vice versa.

![Figure 4.9 – TRANSITS realistic simulation for nitrate in the 50 top cm of the snowpack on 24 December and comparison to the three observed profiles at Dome C in Summer 2007–2008. a. simulated nitrate concentrations. b. simulated δ^{15}N in nitrate. c. simulated Δ^{17}O in nitrate.](image)

4.4.1.3 Nitrate in snow throughout the year

Figure 4.10 shows the concentration, δ^{15}N and Δ^{17}O in nitrate in a the top 50 cm of the modelled snowpack throughout a whole year. The nitrate concentration profile shows the burial of the highly concentrated surface snow layer at the end of the Summer. After a year, this layer is buried below a 10 cm thick snow layer but a significant fraction of it is lost in Summer, which happens as the same time as the increase in the surface concentrations. The same is observed for Δ^{17}O that shows the burial of the layer where nitrate is mostly of stratospheric origin (Δ^{17}O < 40 %). The Δ^{17}O in this layer is slightly reduced at depth but still found. By the end of the Winter, the 10 top cm of the snowpack are depleted in 15N and become enriched throughout the Summer.
4.4. Comparison of the realistic simulation to observed data

Figure 4.10 – TRANSITS realistic simulation: yearly time series of the simulated concentration, $\delta^{15}N$ and $\Delta^{17}O$ in nitrate in the 50 top cm of the snowpack. From top to bottom: photolytic rate constant (J) of $^{14}NO_3^-$ at the top of the snowpack and the NO_3^- lifetime versus photolysis in the 30 first cm of the snowpack. Second panel: fractionation constant $^{15}\epsilon$ at ground and depth and the apparent fractionation constant ($^{15}\epsilon_a$) measured in the top meter of snow resampled at every 10 cm. Three last panels: concentration, $\delta^{15}N$ and $\Delta^{17}O$ in nitrate of the 50 top cm of the modelled snowpack.
Figure 4.10 shows the apparent fractionation constant \((^{15}\varepsilon_{a})\) calculated for the resampled modelled snowpack at every 10 cm. The yearly average value is \(-49.1 \%_e\), which is in the range of variation of \(^{15}\varepsilon\) (from \(-47\) to \(-60 \%_e\), figure 4.8).

4.4.2 Discussion and evaluation of the model

Figure 4.8 provides a comparison of the TRANSITS realistic simulation results and the observed data for the atmospheric and skin layer nitrate. We here focus on the comparison between the simulated and observed data.

4.4.2.1 Meaning of \(\Phi\)

We recall that \(\Phi\) is the quantum yield in the photolysis of \(\text{NO}_3^-\). This parameter has been set to a value of 0.05 molecule.photons\(^{-1}\) in the realistic simulation. This high \(\Phi\) value is necessary to compute a consistent variation range of \(\delta^{15}\text{N}\) in nitrate archived at depth. Indeed, if we use the same quantum yield than in France et al. (2011) \((2.1 \times 10^{-3} \text{ at 246 K})\), we obtain \(R_{\text{FA/FPI}} = 76.4 \%\), i.e. a 23.6 \% mass loss which is small when compared to the 70–80 \% mass loss calculated by France et al. (2011). In this case, a very small \(\delta^{15}\text{N}_{\text{FA}}\) values would be obtained \((7.4 \%_e)\), which would be consistent with an inefficient photolysis. The big difference observed between our computation and that of France et al. (2011) is that the model here is more sophisticated and realistic in representing nitrate recycling through the redeposition of locally oxidized \(\text{NO}_2\) produced by photolysis. Our chosen quantum yield \((0.05 \text{ molecule.photons}^{-1})\) lies between the Chu and Anastasio (2003)’s value and the Zhu et al. (2010)’s \((0.92 \text{ for the photolysis of purely adsorbed nitrate on ice films at 308 nm})\). This means that the averaged nitrate availability for photolysis in Dome C snowpacks is somewhere between that of Chu and Anastasio (2003)’s and that of Zhu et al. (2010) (purely adsorbed HNO\(_3\), almost 100 \% available).
4.4.2.2 Photolytic flux

In the TRANSITS realistic simulation, the maximum value of the photolytic flux (FP) in
the year is 290 nmol.m\(^{-2}\).h\(^{-1}\), a value around 15 times higher than that obtained by France
et al. (2011). This difference is not surprising since we are using a quantum yield 25 times
higher than France et al. (2011). The different scaling may be explained by the differences in
the complexities of the two models, ours including recycling and net export.

NO\(_2\) and NO\(_x\) fluxes have been measured during the summer season 2009–2010 at Dome
C. The observed NO\(_2\) flux is 6.0 \(\times 10^{11}\) molecules.m\(^{-2}\).s\(^{-1}\) (the observed NO\(_x\) flux is 8.5 \(\times 10^{11}\) molecules.m\(^{-2}\).s\(^{-1}\)) for a solar zenith angle of 68 ° (Markus Frey, personal communication,
2011). Our modelled NO\(_2\) flux for \(\theta = 68\) ° is 4.9 \(\times 10^{13}\) molecules.m\(^{-2}\).s\(^{-1}\), i.e. 81 times higher
than the observation. It should however be borne in mind that we use strong hypotheses in our
calculation (100% NO\(_2\), 100 % released to the atmosphere) and that the reality is certainly more
complex. For instance, the photolytically produced NO\(_2\) could be oxidized in the top layers of
the snowpack thus reforming nitrate. This would lead to the almost same concentration and
\(\delta^{15}\)N depth profiles while the NO\(_2\) flux would be severely reduced.

For now, we cannot rule out that nitrate absorption cross sections in the Antarctic plateau
snow is different than that of aqueous NO\(_3^-\). Zhu et al. (2010) have measured that the absorption
cross section of adsorbed HNO\(_3\) on ice films at 308 nm and 253 K (1.21 \(\times 10^{-18}\) cm\(^{-2}\)molecule\(^{-1}\))
is about 100 times larger than that of aqueous NO\(_3^-\) at the same wavelength. If this trend is
real and identical for the whole 280–350 nm range, the reproduction of our calculations would
require a quantum yield 100 times lower but the computed NO\(_2\) flux would remain the same.

A more accurate representation of the nitrate photolysis impact on \(\delta^{15}\)N in the archived
nitrate requires the aforementioned updated values of the absorption cross sections of nitrate
in Antarctic plateau snow and especially the cross section of \(^{15}\)NO\(_3^-\) that partially controls the
photolytic fractionation constant \(^{15}\varepsilon\). Although the measurements are not available hitherto, we
do believe that the main conclusions presented in this work will remain valid.
4.4.2.3 Export flux

In the realistic simulation, the choice of a constant 0.2 export flux parameter leads to a net export of 96.3 % of the nitrate of primary origin ($R_{FA/FPI} = 3.7 \%$). This net export flux is high. To the best of our knowledge, there is no observation to validate this value. The $\delta^{15}N$ in the exported nitrate features negative values until the middle of the summer season (figure 4.8), the yearly average value being slightly negative (-2.7%).

We point out that the export flux is necessary to reproduce realistic $\delta^{15}N(NO_{3}^-)$ in the atmosphere and skin layer. Indeed, when f_{exp} is set to 0, $\delta^{15}N$ in those compartments become highly negative (-120%) which is clearly not realistic when compared to the observations (figure 4.9).

4.4.2.4 Atmospheric and skin layer nitrate

Concentrations We recall that the realistic simulation atmospheric nitrate concentrations are set to the idealized time series measured in 2009–2010 at Dome C.

Simulated skin layer nitrate concentrations show values 2–3 times higher than observed. A scaled primary input flux could well explain that since the Wolff et al. (2008) estimate is not so precise. This would however imply that the archived nitrate concentration are scaled as well. They would then become too low, compared to the observations. Another explanation is that the ZPE–shift model which is used to estimate the absorption cross section of $^{15}NO_{3}^-$ underestimates the shift to the absorption cross section of $^{14}NO_{3}^-$. This would result in more negative $^{15}\varepsilon$ values and so a lower recycling magnitude would be necessary to reproduce the depth profiles and the atmospheric and skin layer time series. In this case, the skin layer nitrate concentrations would be reduced. Last, we cannot exclude that a fraction of the skin layer is eroded by the wind and this should be tested in a future version of the model.

The simulated variation of the skin layer nitrate concentrations generally agrees well with the measurements although the period when the nitrate concentrations in the skin layer are high above background is longer (September to April) for the simulation than in the observations.
4.4. Comparison of the realistic simulation to observed data

(October/February). This could be explained by nitrate photolysis starting too early in Spring. Indeed, the model does not account for higher snow albedos when the sun is low above the horizon (θ close to 90°). A parametrization like in Kuipers Munneke et al. (2011) could be used in a future version of the model to account for this effect and improve the model’s timing representation.

$\delta^{15}N(\text{NO}_3^-)$ Both the simulated variations and timing of the $\delta^{15}N$ in atmospheric and skin layer nitrate records are consistent with observations. However, for $\delta^{15}N$ in the atmospheric nitrate the decrease is greater and the summertime recovery is faster in the observations than in the simulations. This would be consistent with underestimated $^{15}\varepsilon$ values as discussed above. Indeed, the photolytically produced NO$_2$ would have more negative $\delta^{15}N$ values when the UV radiation starts to increase. Another possible explanation is that the average ozone column profile does not well represent that observed in Spring/Summer 2009.

Figure 4.8 shows the recovery of the $\delta^{15}N$ in both compartments in Spring/early Summer. This return of $\delta^{15}N(\text{NO}_3^-)$ to positive values in Summer is faster at Dome C than at DDU and has been attributed to longer exposure time of nitrate at the snow surface at Dome C, i.e. more important snowpack emissions of reactive nitrogen and so a snowpack enriched in ^{15}N and the extraction of NO$_2$ featuring higher $\delta^{15}N$ values (Savarino et al., 2007; Frey et al., 2009). The model has confirmed this hypothesis when run with higher snow accumulation rates which characterize DDU (data not shown). At Dome C, shortly after the decrease, $\delta^{15}N$ starts to rise again because the snowpack becomes more enriched in ^{15}N and so the extracted NO$_2$ has $\delta^{15}N$ values which becomes close to zero and eventually positive in January. With low sun in the end of the Summer, the apparent ozone column crossed by the UV rays is more important and the photolytical fractionation constant ($^{15}\varepsilon$) becomes more negative (panel d. in figure 4.4). This leads to decreasing $\delta^{15}N$ values extracted from the snowpack even if the enrichment does not stop there. Finally, wintertime values of $\delta^{15}N$ are reached back by the end of April/beginning of May when the nitrate photolysis stops. $\delta^{15}N$ in the skin layer nitrate shows the same behaviour than the atmosphere but is slightly shifted to more positive values in Summer which shows that
the skin layer also contributes to the photolytical flux.

Last, the simulated δ^{15}N in skin layer nitrate is on average 20 \% lower the measured. We have observed that nitrate is mostly found in the condensed phase and its greater affinity leads to the almost 100 \% deposition of the atmospheric nitrate. If this process even had a positive fractionation constant of a few \%, this would lead to a similar enrichment in 15N of the nitrate as observed in the condensed phase. This should be tested in future work but is however secondary given the strong signature imprinted by photolysis to δ^{15}N in the archived nitrate.

Δ^{17}O(NO$_3^-$) Δ^{17}O in the atmospheric and skin layer nitrate are very close in the measurements and the model can reproduce that (figures 4.5 and 4.8). This suggests that the atmosphere and the skin layer are in isotopic equilibrium in terms of Δ^{17}O in nitrate. From August to January, the model reproduces well the variations and the absolute values of Δ^{17}O in both compartments. Before that, the simulation underestimates Δ^{17}O in both compartments which suggests that the stratospheric denitrification already occurs in most of July. This could be consistent with the measurements of cosmogenic δ^{35}S in atmospheric SO$_4^{2-}$ at Dome C which have shown that stratospheric injections could start so early in the season (Priyadarshi et al., 2011).

After January, the observations show Δ^{17}O values almost 5 \% lower than the values observed in December or January in the atmosphere and the skin layer. It should be borne in mind that the observed datasets have been arranged to obtain a full seasonal record from June to June. Therefore, measurements before 28 January correspond to the Summer 2009–2010 while the measurements after this date correspond to the Summer 2008–2009. When the photolytical season starts, Δ^{17}O in the atmosphere starts to imprint a local oxidation signature driven by the lower Δ^{17}O values in the additional O atom that is inherited by NO$_2$. The important shift between the simulated and observed data in Summer 2008–2009 therefore strongly suggest that a greater oxidation through the daytime channel occured when compared to the Summer 2009–2010, which leads to lower Δ^{17}O values. This could be possible with a generally lower ozone column, i.e. higher J_{O+D} values, which seems likely given the lower ozone column measured in
Summer 2008–2009 than in Summer 2009–2010 (data not shown). In future work, more accurate simulations could be obtained using year-to-year times series of the ozone columns for example.

4.4.2.5 Depth profiles

The realistic simulation reproduces well the variation range of the concentration, $\delta^{15}N$ and $\Delta^{17}O$ in nitrate at depth. The simulated depth profiles however show a high variability for the three variables.

The nitrate concentration profile shows the burial of the highly concentrated surface snow layer at the end of the Summer (figure 4.10). After a year, this layer is buried below a 10 cm thick snow layer and at this depth, UV light is still important enough to photolyse this nitrate which redeposits on top of the snowpack to build a new highly concentrated surface layer. A fraction of the summertime highly concentrated layer is therefore archived leading to the simulated rebounds in the nitrate concentration record at depth. The same layering is observe in the $\delta^{15}N$ and $\Delta^{17}O$ records at depth so that the simulated profiles show the alternance of Summer (high concentration, lower $\delta^{15}N$, lower $\Delta^{17}O$) and Winter (opposite trends) layers.

Such a simulated variability at depth is not realistic when compared to the smooth profiles observed (figure 4.9). It should be born in mind that the model and the observations have different "sampling" resolutions : on the order of 2 mm for the realistic simulation (10 cm of snow accumulated in 52 weeks) and from 0.5 to 5 cm in the observations. We have run some test to "resample" the simulated snowpack at the resolution of the observations and we have concluded that this effect only plays a very minor role in explaining this discrepancy (data not shown). We however here suggest that nitrate diffusion processes in snow driven by temperature gradients may be responsible for the redistribution of HNO$_3$ at depth. Indeed, the mobility of H$_2$O in the snowpack can lead to that of HNO$_3$ through co-condensation or sublimation/evaporation processes (Wolff, 1995) which are not accounted for in TRANSITS. HNO$_3$ diffusion may therefore lead to smoother concentration and isotopic depth profiles. Alternatively or addtionnaly, the skin layer may be blown off the system by the end of the Summer as this was observed in the
Summer 2009–2010 at Dome C (around 15 January 2009 on figure 4.8). Future work is needed to test the scenarios of the thermodynamical redistribution of HNO$_3$ and the skin layer erosion.

Note that the unrealistic representation of the depth profiles variability in the current version of the TRANSITS will not alter the conclusions of this chapter. Indeed, our main goal is that TRANSITS reproduces well the measured concentrations, δ^{15}N and Δ^{17}O in the archived nitrate. For the realistic simulation, the archived values are 14.3 ng.g$^{-1}$, 227 % and 27 % for [NO$_3^-$]$_{FA}$, δ^{15}N$_{FA}$ and Δ^{17}O$_{FA}$ respectively, which are consistent with the range of asymptotic values in three measured snow pits (figure 4.9).

We eventually note that the 2–3 years period cycles observed in the measurements of Δ^{17}O at depth are not reproduced by our realistic simulation. McCabe et al. (2007) attributed these cycles to variability in the stratospheric ozone column which has not been modelled in the realistic simulation. Future work should investigate the impact of the variations in the ozone column on the Δ^{17}O in the archived nitrate.

4.4.2.6 Apparent fractionation constant

Figure 4.10 shows the apparent fractionation constant ($^{15}\varepsilon_a$) which has been calculated for the first meter of the snowpack and for each date in the year. The simulated $^{15}\varepsilon_a$ shows weak variations throughout the year (from -47 to -50 %) which fall well in the range of the measured apparent fractionation constants calculated (from -40.0 to -72.7 % for the three Dome C pits).

The yearly range of the simulated $^{15}\varepsilon_a$ moreover falls in the range of the fractionation constant ($^{15}\varepsilon$) calculated at ground for the realistic simulation (figure 4.4, page 111). The short summer lifetime of nitrate in Antarctic plateau snowpacks (3–4 weeks at the summer solstice) leads to a recycling which is composed of multiple loss/oxidation/deposition cycles. Our modelled $^{15}\varepsilon_a$ value shows that there is no isotopic amplification linked with the multiple recycling loops undergone by nitrate. Indeed, in the case where an isotopic amplification would occure, one would expect that $^{15}\varepsilon_a$ would be a function of n, the number of cycles undergone by nitrate:

$$^{15}\varepsilon_a = n \times ^{15}\varepsilon.$$
4.5 Sensitivity tests

4.5.1 Tests and results

The sensitivity of the model is tested in simple cases where single variables are changed. We identified 18 variables to test and the scenarios tested for each of them are given in table 4.3. Two simulations were performed for each variable on average and in addition to the reference simulation. Each variable was varied in a realistic range. For each simulation, the model was run for 35 years to allow it to converge.

The results are given in table 4.3. For each variable, we provide the reduced data outputs ($R_{FA/FPI}$, $\delta^{15}N_{FA}$ and $\Delta^{17}O_{FA}$). For each simulation, the difference to the reference simulation is expressed in absolute difference for each reduced output. Other physical variables (SSA, T_{IA}) have a very weak impact on the archived mass and isotopic signal and the data are not reported in table 4.3.

4.5.2 Discussion

In the following, ”photolysis intensity” defines higher photolytic rate constants (J and J'). A more intense photolysis therefore means smaller nitrate mass fractions remaining in the snow (f) when considering this only single process. Translated in isotopic terms, this means higher $\delta^{15}N$ values in the nitrate fraction remaining in the snow.

4.5.2.1 Changes in the mass and isotopic composition of the primary inputs

Changes in the primary flux mass ($FPI = FS + FT$) lead to an equivalent change in the archived mass flux ($R_{FA/FPI}$ is conserved) and preserves the archived isotopic signal. The preservation of the archived nitrate isotopic composition is consistent with light penetration in snow which has been assumed to be insensitive to the impurities content (i.e. nitrate concentrations).

Changes in the relative contribution of the FS and FT fluxes in the primary input flux (expressed by $R_{FS/FPI} = FS/FPI$) lead to changes in the $\delta^{15}N$ and $\Delta^{17}O$ in this primary flux...
(δ¹⁵N_{FPI} and Δ¹⁷O_{FPI}) as well as changes in the timing of the input to the system. The higher contribution of the stratospheric flux (R_{FS/FPI} = 90 %) in the primary nitrogen input leads to a lower archived flux and a higher δ¹⁵N in the archived nitrate. Changes in R_{FS/FPI} also changes the isotopic composition of the primary input (e.g. Δ¹⁷O_{FPI} equals 31.2 and 40.8 %). Table 4.3 – Overview of the TRANSITS sensitivity tests and results.

<table>
<thead>
<tr>
<th>Tested variable (reference value)</th>
<th>Tested values</th>
<th>R<sub>FPA/FPI</sub> in % (abs. difference)</th>
<th>δ¹⁵N<sub>PA</sub> in % (abs. difference)</th>
<th>Δ¹⁷O<sub>PA</sub> in % (abs. variation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPI (2.90 × 10<sup>−6</sup> kgN.m<sup>−2</sup>a<sup>−1</sup>)</td>
<td>2.90 × 10<sup>−7</sup></td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>27.0 (=)</td>
</tr>
<tr>
<td></td>
<td>2.90 × 10<sup>−5</sup></td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>27.0 (=)</td>
</tr>
<tr>
<td>R<sub>FPI</sub> (50 %)</td>
<td>10 %</td>
<td>4.08 (+0.34)</td>
<td>222.7 (−9.2)</td>
<td>26.8 (−0.2)</td>
</tr>
<tr>
<td></td>
<td>90 %</td>
<td>3.41 (−0.33)</td>
<td>243.0 (+11.1)</td>
<td>27.3 (+0.2)</td>
</tr>
<tr>
<td>δ¹⁵N<sub>FS</sub> (0 %)</td>
<td>−10 %</td>
<td>3.74 (=)</td>
<td>225.1 (−6.8)</td>
<td>26.8 (−0.2)</td>
</tr>
<tr>
<td></td>
<td>+10 %</td>
<td>3.74 (=)</td>
<td>238.7 (+6.8)</td>
<td>27.3 (+0.3)</td>
</tr>
<tr>
<td>Δ¹⁷O<sub>FS</sub> (30 %)</td>
<td>25 %</td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>26.6 (+0.4)</td>
</tr>
<tr>
<td></td>
<td>35 %</td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>27.5 (+0.5)</td>
</tr>
<tr>
<td>δ¹⁵N<sub>FS</sub> (10 %)</td>
<td>0 %</td>
<td>3.74 (=)</td>
<td>226.4 (−5.5)</td>
<td>27.0 (=)</td>
</tr>
<tr>
<td></td>
<td>20 %</td>
<td>3.74 (=)</td>
<td>237.4 (+5.5)</td>
<td>27.0 (=)</td>
</tr>
<tr>
<td>Δ¹⁷O<sub>FS</sub> (42 %)</td>
<td>37 %</td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>26.9 (−0.1)</td>
</tr>
<tr>
<td></td>
<td>47 %</td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>27.2 (+0.2)</td>
</tr>
<tr>
<td>α (0.9)</td>
<td>0.8</td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>25.2 (−1.8)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>28.9 (+1.9)</td>
</tr>
<tr>
<td>Δ¹⁷O(O<sub>2</sub>) (37.5 %)</td>
<td>30</td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>22.7 (−4.3)</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>31.4 (+4.4)</td>
</tr>
<tr>
<td>Δ¹⁷O(OH) (14 %)</td>
<td>0</td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>25.7 (−1.3)</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>26.4 (−0.6)</td>
</tr>
<tr>
<td>J<sub>Input</sub>(O<sub>3</sub>) O<sub>D</sub>−16 s<sup>−1</sup></td>
<td>2 × 10<sup>−14</sup></td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>23.8 (−3.2)</td>
</tr>
<tr>
<td></td>
<td>2 × 10<sup>−9</sup></td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>29.1 (−2.1)</td>
</tr>
<tr>
<td>l<sub>age</sub> (0.01)</td>
<td>0.00</td>
<td>2.27 (−1.07)</td>
<td>265.6 (+33.7)</td>
<td>31.9 (−4.9)</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>6.09 (+2.35)</td>
<td>197.9 (−34)</td>
<td>22.9 (+4.1)</td>
</tr>
<tr>
<td>l<sub>exp</sub> (0.2)</td>
<td>0.1</td>
<td>8.84 (+5.10)</td>
<td>211.1 (−20.8)</td>
<td>27.1 (+0.1)</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>2.02 (−1.72)</td>
<td>243.1 (+11.2)</td>
<td>27.0 (=)</td>
</tr>
<tr>
<td>accumulation mass (30 kg.m<sup>−2</sup>a<sup>−1</sup>)</td>
<td>25</td>
<td>1.47 (−1.37)</td>
<td>198.5 (+64.6)</td>
<td>26.0 (−1.0)</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>7.12 (+3.38)</td>
<td>185.7 (−46.2)</td>
<td>27.8 (+0.8)</td>
</tr>
<tr>
<td>accumulation repartition (flat) real ideal cycle</td>
<td>4.14 (+0.40)</td>
<td>219.8 (−12.1)</td>
<td>27.3 (+3.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>real ideal reversed cycle</td>
<td>3.51 (−0.23)</td>
<td>238.2 (+6.3)</td>
<td>26.8 (−0.2)</td>
</tr>
<tr>
<td></td>
<td>Φ (0.05 molecule/photon−1)</td>
<td>0.03</td>
<td>19.6 (+15.9)</td>
<td>113.3 (−18.6)</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>8.90 (+5.16)</td>
<td>172.9 (−59.0)</td>
<td>28.0 (+1.0)</td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>1.52 (−2.22)</td>
<td>288.4 (+56.5)</td>
<td>26.2 (−0.8)</td>
</tr>
<tr>
<td>O<sub>3</sub> column (300 DU flat)</td>
<td>100 DU flat</td>
<td>0.10 (−3.64)</td>
<td>344.1 (+102.2)</td>
<td>21.6 (−5.4)</td>
</tr>
<tr>
<td></td>
<td>300 DU + hole 100 DU</td>
<td>1.19 (−2.55)</td>
<td>273.7 (+41.8)</td>
<td>25.4 (−1.6)</td>
</tr>
<tr>
<td></td>
<td>500 DU flat</td>
<td>12.95 (+9.21)</td>
<td>162.1 (−69.8)</td>
<td>29.3 (−2.3)</td>
</tr>
<tr>
<td>AT concentration (real ideal cycle)</td>
<td>flat same mean</td>
<td>3.71 (−0.03)</td>
<td>232.6 (+0.7)</td>
<td>27.0 (=)</td>
</tr>
<tr>
<td></td>
<td>real ideal cycle × 10</td>
<td>3.66 (−0.08)</td>
<td>233.4 (+1.5)</td>
<td>27.0 (=)</td>
</tr>
<tr>
<td>ABL thickness (50 m)</td>
<td>25 m</td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>27.0 (=)</td>
</tr>
<tr>
<td></td>
<td>100 m</td>
<td>3.74 (=)</td>
<td>231.9 (=)</td>
<td>27.0 (=)</td>
</tr>
</tbody>
</table>
when $R_{FS/FPI}$ is 10 and 90 % respectively). Interestingly, such a change (9.6 %) has a very weak impact on the archived $\Delta^{17}O$ value (0.5 %), suggesting that this variable is not very sensitive to the initial $\Delta^{17}O$ in the primary input. This is confirmed by the sensitivity tests where $\delta^{15}N_{FT}$, $\Delta^{17}O_{FT}$, $\delta^{15}N_{FS}$ and $\Delta^{17}O_{FS}$ are changed as well as those where the relative importance of the two primary fluxes are varied. Indeed, a 10 % change in $\Delta^{17}O_{FS}$ and $\Delta^{17}O_{FT}$ only induces a 0.3 and 0.9 % respective changes in $\Delta^{17}O_{FA}$. While it should be borne in mind that a 10 % change in $\Delta^{17}O_{FS}$ or $\Delta^{17}O_{FT}$ actually means a 5 % change in $\Delta^{17}O_{FPI}$, this results still shows that $\Delta^{17}O_{FS}$ and $\Delta^{17}O_{FT}$ poorly control $\Delta^{17}O_{FA}$. To sum this up, in the conditions tested (i.e. high magnitude of the recycling which characterize the Antarctic plateau), $\Delta^{17}O_{FA}$ is poorly controlled by $\Delta^{17}O_{FS}$ and $\Delta^{17}O_{FT}$. At lower magnitudes of the recycling, one would however expect that $\Delta^{17}O_{FS}$ and $\Delta^{17}O_{FT}$ would have a greater influence on $\Delta^{17}O_{FA}$.

On the other hand, a 20 % change in $\delta^{15}N_{FS}$ and $\delta^{15}N_{FT}$ (i.e. a 10 % change in $\delta^{15}N_{FPI}$) leads to a 11.0 and 13.6 % respective changes in $\delta^{15}N_{FA}$. The extra change in $\delta^{15}N_{FA}$ is probably due to non-linearities in the system and this has been confirmed with a run were $\delta^{15}N_{FS}$ and $\delta^{15}N_{FT}$ were both enhanced by 10 %. Changes in the relative importance of FS and FT lead to small changes in the FA flux archived at depth as observed from the $R_{FA/FPI}$ ratio. The opposite variation is observed in $\delta^{15}N_{FA}$ and suggests that changes in the timing of the primary inputs slightly impact the efficiency of the photolysis, i.e. higher $\delta^{15}N_{FA}$ and lower archived flux FA in the case where $R_{FS/FPI}$.

4.5.2.2 Changes in the local NO$_2$ oxidation conditions

α, $\Delta^{17}O(O_3)$, $\Delta^{17}O(OH)$ and $J_{\text{threshold}}^{D}$ are the variables driving the local cycling/oxidation of the photolytically produced NO$_2$. Each variable shows a strong impact on $\Delta^{17}O_{FA}$ and no impact on FA and $\delta^{15}N_{FA}$. Indeed, increases in the α, $\Delta^{17}O(O_3)$ and $\Delta^{17}O(OH)$ lead to greater $\Delta^{17}O$ in the archived nitrate suggesting that the local cycling/oxidation of NO$_2$ is the main parameter driving $\Delta^{17}O_{FA}$. Decreasing values of $J_{\text{threshold}}^{D}$ lead to smaller $\Delta^{17}O_{FA}$ values. In this case, the daytime oxidation of NO$_2$ by OH is favoured and leads to the simulated decreasing
\[\Delta^{17}O_{FA} \] values. We conclude that \[J^{\text{threshold}}_{O_{1D}} \] also has a high impact on \[\Delta^{17}O_{FA} \], like \[\alpha, \Delta^{17}O(O_3) \], \[\Delta^{17}O(OH) \]. Last, \[\Delta^{17}O(OH) \] could have a greater impact in conditions where \[J_{O1D} \] is closer to the threshold value which could be found in the case of a lower ozone column, i.e. more radiation received below 320 nm. In this case, the daytime oxidation by OH would be favoured and the chance to transfer low \[\Delta^{17}O \] values would be greater.

4.5.2.3 Cage effect

The cage effect has a strong impact on \[\Delta^{17}O \] in the archived nitrate : when \[f_{\text{cage}} \] increases, \[\Delta^{17}O_{FA} \] decreases significantly. In the case where the cage effect is turned off (\[f_{\text{cage}} = 0.0 \]), \[\Delta^{17}O_{FA} \] is very close to the mean \[\Delta^{17}O \] value modelled in atmospheric nitrate (32.1 \(^\delta\)) and the \[\Delta^{17}O \] profile represents the \[\Delta^{17}O \] in the atmospheric nitrate (see figure 4.8). This means that the archived \[\Delta^{17}O \] profile would exactly reflect that in the skinlayer in the case where no cage effect occurs This is possible because the deposition flux does only penetrate a few mm at depth (section 4.2.9.2).

Figure 4.11 represents the depth profiles simulated for the three above scenarios. This figure clearly shows that a non-zero \[f_{\text{cage}} \] value is necessary to reproduce the \[\Delta^{17}O \] profiles as they are observed at Dome C : \[\Delta^{17}O \] decreases at depth, i.e. cage effect must occur (figure 4.11). Increasing \[f_{\text{cage}} \] also produces smoother \[\Delta^{17}O \] profile at depth because nitrate photolysis is more intense in the layers where nitrate is of stratospheric origin because it deposits just before the Summer. Therefore, the highest \[\Delta^{17}O \] values (\(\gtrsim 40 \%\)) are mixed with oxygen atoms originating from water (\[\Delta^{17}O(H_2O) = 0 \%\]) and the profile is smoother.

Last, increases in \[f_{\text{cage}} \] imply an increase in FA and a decrease in \[\delta^{15}N_{FA} \]. Indeed, a greater cage effect leads to less photolytically produced NO\(_2\) since a more significant part undergoes cage recombination of the OH photo-fragment. This means a smaller mass fraction lost and thus a less intense photolysis, i.e. greater nitrate flux archived at depth and lower \[\delta^{15}N_{FA} \] values. This goes in the same direction as decreasing \[\Phi \] values which are discussed below.
4.5. Sensitivity tests

4.5.2.4 Changes in the horizontal export

The increase in f_{exp} leads to a lower archived flux (i.e. lower $R_{\text{FA}}/F_{\text{PI}}$ values) and this is the result of an increasing export flux (data not shown in table 4.3). The increase in f_{exp} also leads to higher $\delta^{15}N_{\text{FA}}$ and $\delta^{15}N_{\text{FE}}$ values. In the three simulations tested, $\delta^{15}N_{\text{FE}}$ is always smaller than $\delta^{15}N_{\text{FPI}}$ (= 5 \% in the reference scenario), which means that the significant extraction of nitrate featuring $\delta^{15}N_{\text{FE}}$ by $\delta^{15}N_{\text{FPI}}$ is compensated by the increase of $\delta^{15}N$ in the archived nitrate. This increase in $\delta^{15}N_{\text{FA}}$ is therefore not due to an increased photolysis intensity but to the isotopic mass balance. Note that $\Delta^{17}O_{\text{FA}}$ is not significantly affected by changes in f_{exp}.

4.5.2.5 Changes in snow accumulation

A decreasing yearly snow accumulated mass leads to an increase in the archived $\delta^{15}N$, and a decrease in the $R_{\text{FA}}/F_{\text{PI}}$ ratio and in the archived $\Delta^{17}O$. This means that nitrate photolysis is more intense when snow accumulation rates are low and this is well explained by the thinner deposited snow layer and so the higher exposure time of nitrate to the actinic flux. With a more
intense photolysis, FA decreases and δ^{15}N_{FA} increases. Consequently, Δ^{17}O_{FA} decreases because of the incorporation of daytime O atoms is greater.

The same applies for changes in the snow accumulation repartition through the year: lower snow accumulation rates in Winter (i.e. in the case of the real idealized reversed cycle), the photolysis is more intense. Again, this is explained by the greater exposure time of the wintertime deposited nitrate which is the more likely to escape the fastest from the photic zone.

We here suggest that variable snow accumulation rates may explain the δ^{15}N in nitrate measured in the three snowpits at Dome C (figure 4.9). Indeed, snow accumulation rates at Dome C are very variable on a few meters spatial resolution and this is mostly explained by the non-homogeneous snow surface observed around Dome C. This could easily lead to snow accumulation rates in the 25 to 35 kg.m^{-2}.a^{-1} range and so to δ^{15}N_{FA} values ranging from 186 to 296 % as observed from the snow accumulation sensitivity test. Future work should investigate the impact of local heterogeneity in the snow accumulation rates using TRANSITS.

The sensitivity to the snow density (ρ) has not been tested. Indeed, in the current version of TRANSITS, an increasing ρ is equivalent to an increasing snow accumulation rate: the two generate thicker snow layers and so the exposure time of nitrate to the UV radiation is shorter.

4.5.2.6 Changes in the quantum yield

Increasing Φ values lead to lower R_{FA/FPI} ratios and higher δ^{15}N_{FA} meaning that the photolysis is more intense. This is not surprising since Φ is a key variable in equation 1.7 (page 27). Δ^{17}O_{FA} is found to be slightly reduced by increases in Φ because the photolysis becomes more intense and thus Δ^{17}O in the archived nitrate incorporates more of the summer local NO_{2} oxidation signal (mostly driven by Δ^{17}O(OH)).

4.5.2.7 Ozone column

Decreasing ozone columns have a strong impact on FA and δ^{15}N_{FA}: FA is reduced while δ^{15}N_{FA} is higher. The first effect is explained by the greater UV radiations which reach the
4.5. Sensitivity tests

ground and so the greater photolytic constant, i.e. the more intense photolysis and thus the higher mass loss. The second is not straightforward. Indeed, decreasing ozone columns lead to an increase in the fractionation constant (figure 4.12). The reason for this is that a lower ozone column allows UV radiations of shorter wavelengths in the 280–350 nm range to reach the ground, i.e. a shift to the blue of the UV spectra. As we have earlier seen on figure 4.1, this results in higher (less negative) $^{15}\varepsilon$ values. Last, a lower ozone column reduces $\Delta^{17}O_{FA}$ and this is because the J_{OD} value is more often close to the threshold value, i.e. the summertime oxidation by OH is more likely more often. In the case of the ozone hole type test, similar features are observed but they are less pronounced when compared to the 100 DU simulation. Indeed, the 100 DU ozone column is simulated for a shorter time in the year but its occurrence early in Spring still impacts nitrate photochemistry.

Figure 4.12 – Sensitivity to the O$_3$ column of the spectrally integrated photolytic fractionation constant $^{15}\varepsilon$ for the mean summertime solar zenith angle of 68°.

4.5.2.8 Changes in the atmospheric conditions

The atmospheric nitrate concentration and the atmospheric boundary layer thickness both control the nitrate mass in the atmospheric box. The results in table 4.3 show that the choice of the atmospheric nitrate concentration scenario has a very weak impact on the flux, $\delta^{15}N$ and
\(\Delta^{17}O \) in the archived nitrate. The same applies for the ABL thickness. These two experiments show that the nitrate mass in the atmosphere has a very weak influence on the whole system variations. Indeed, in the reference simulation, the nitrate mass in the atmospheric box never exceeds 0.2 \% of that of the skin layer (figure 4.13) and explains the above observation.

![Figure 4.13 – TRANSITS reference simulation: ratio of the nitrate mass in the atmospheric box and that in the skin layer.](image)

Figure 4.13 – TRANSITS reference simulation: ratio of the nitrate mass in the atmospheric box and that in the skin layer.

4.5.3 Controls on \(\delta^{15}N, \Delta^{17}O \) and FA

4.5.3.1 Variables controlling FA and \(\delta^{15}N_{FA} \)

Modified Rayleigh plot In this section, we use a data representation which we term "modified Rayleigh plot" where \(\ln(\delta^{15}N_{FA} + 1) \) is plotted against \(\ln(FA) \) (and not against \(\ln([NO_3^-]) \) which would make it a normal Rayleigh plot). Indeed, FA is a more conservative quantity than \([NO_3^-]\). For example, if we consider increasing accumulation rates, these will tend to dilute the archived \([NO_3^-]\) while the FA is conserved in the case where the photolysis intensity does not change.

Figure 4.14 summarizes the results obtained for the sensitivity tests which impact \(R_{FA/FPI} \), FA and \(\delta^{15}N_{FA} \), i.e. tests where the following variables are changed: FPI, \(R_{FS/FPI} \), \(O_3 \) column, \(\Phi \), \(f_{cage} \), \(f_{exp} \), accumulation mass and repartition in the year. Most of the simulation outputs fall on the thick black dashed line which represents a line of slope \(-0.062\) passing through the "starting point" whose coordinates are \((\ln(FPI), \ln(\delta^{15}N_{FPI} +1))\). For instance, this means that
4.5. Sensitivity tests

a decrease in the archived flux (FA, i.e. $R_{FA/FPI}$ changes) leads to a decrease in $\delta^{15}N_{FA}$. We also observe from figure 4.14 that some simulations fall on lines that have different slopes or lines that have the same slope but different starting points. The variables are therefore sorted in 3 groups:

- these that control the slope in the modified Rayleigh plot: O_3 column,
- these that control the x and y distance from the starting point: Φ, accu mass, accu mass repartition, $R_{FS/FPI}$, f_{cage}, O_3 column, ρ, f_{exp},
- these that control the starting point: FPI, f_{exp}.

Controls on the slope in the modified Rayleigh plot The slope in the modified Rayleigh plot is only controlled by the ozone column, i.e. by the quality of the actinic flux which defines its spectral distribution. Indeed, the quality of the actinic flux determines the fractionation constant ($^{15}\varepsilon$) of the photolytical mass loss (figure 4.1). In the case of the reference simulation, we have calculated a yearly mean apparent fractionation constant $^{15}\varepsilon_a = -51.1$ % for $^{15}\varepsilon$ ranging from -47 to -60 %e. The slope of the thick dashed lines in the modified Rayleigh plots is slightly more negative ($-0.062 = -62$ %e) than the $^{15}\varepsilon_a$. These two quantities can however not directly be compared since the simulation with varying photolysis intensities do not fall on a purely straight line in the modified Rayleigh plot but shows slightly varying local slopes. These are probably the result of non-linearities in the model.

Controls on the x and y distance from the starting point We have earlier defined the "magnitude of the recycling" by the $R_{FA/FPI}$ ratio. In the modified Rayleigh plot, the x distance from the starting point is $\ln(R_{FA/FPI}) = \ln(FA) - \ln(FPI)$, i.e. the x distance is linked with the magnitude of the recycling. This quantity is therefore equivalent to the f term used in equation 1.8b (page 31). The recycling’s magnitude and the intensity of the photolysis are linked because a more intense photolysis is necessary to lead to a recycling of a higher magnitude.

In the modified Rayleigh plot, the y distance from the starting point is $\ln(\delta^{15}N_{FA} + 1) - \ln(\delta^{15}N_{FPI} + 1)$. Figure 4.14 shows that, at first order, the y and x distance from the starting
Figure 4.14 – Modified Rayleigh plots of the sensitivity tests to the TRANSITS model. The only test that imply changes in FA and $\delta^{15}N_{FA}$ are shown. The green star represents the starting point whose coordinates are $(\ln(FPI), \ln(\delta^{15}N_{FA} + 1))$ and thick dashed lines represent lines with a -0.062 slope passing through this point. The other dashed lines are lines with different slopes or parallels to the thick dashed line (i.e. with different starting points indicated by the square and the triangle in the top left panel).

point are linked by the slope. This means that at a given slope in the modified Rayleigh plot, i.e. at a given quality of the actinic flux, $\ln(\delta^{15}N_{FA} + 1)$ is linearly linked with $\ln(R_{FA/FPI})$, i.e. $\delta^{15}N_{FA}$ is linked with the magnitude of the recycling.

Our sensitivity tests have shown that the magnitude of the recycling is mostly controlled
by Φ, the accumulation mass in the year, f_{cage} and the O_3 column. Indeed, the Φ, f_{cage} and O_3 column variables are key in controlling the photolytic mass loss while the accumulation mass determines nitrate exposure time to the actinic flux. A decreasing O_3 column leads to a higher quantity of actinic flux received at ground thus to higher J’s. It is interesting to note that in the case of a decreasing O_3 column, the changes in the UV quantity overweight the changes in the UV quality (which varies the slope in the modified Rayleigh plot) and this leads to a higher $\delta^{15}N_{\text{FA}}$.

In the case of changes in R_{FS}/FPI and the accumulation mass repartition, the impact on the recycling magnitude is small. In the case of increasing f_{exp}, the increasing change in $\delta^{15}N_{\text{FA}}$ is probably an artifact resulting from a greater export and the enrichment in $\delta^{15}N$ in the archived flux to counterbalance the export flux. Indeed, f_{exp} cannot change $\delta^{15}N$ through the photolysis since it does not impact the photolytic rate constant nor does it control the exposure time of nitrate to the actinic flux.

Controls on the starting point Figure 4.14 shows that the starting point in the modified Rayleigh plot is determined by FPI and f_{exp}. Indeed, changes in the latter result in more or less of the primary input flux lost through the net export. In the case of increasing f_{exp}, the “apparent” FPI is therefore shifted to lower FPI values. Changes in FPI or f_{exp} therefore lead to the horizontal shifting of the line in the modified Rayleigh plot.

4.5.3.2 Variables controlling $\Delta^{17}O_{\text{FA}}$

In conditions close to those of the reference simulation (i.e. high recycling magnitudes), we have observed that $\Delta^{17}O_{\text{FA}}$ is poorly controlled by $\Delta^{17}O$ in the primary flux ($\Delta^{17}O_{FS}$ and $\Delta^{17}O_{FT}$) However, $\Delta^{17}O_{\text{FA}}$ has been observed to be strongly driven by the summertime local cycling/oxidation of NO_2 and by the cage effect in the snowpack.

To separate the effects of the summertime local cycling/oxidation of NO_2 to those of the cage effect, we run and compare the TRANSITS model in two scenarios: one with the reference scenario ($f_{\text{cage}} = 0.1$) and one in the case where $f_{\text{cage}} = 0.0$, i.e. the cage effect is turned off.
Additionnaly and for each case, the snow accumulation rate is varied in the range 20 to 200 kg.m$^{-2}$.a$^{-1}$ to simulate varying magnitude of the recycling. The results of this test are given in figure 4.15. Note that the points corresponding to the same snow accumulation rates in the two case lead to different $R_{FA/FPI}$ ratios because f_{cage} impacts the magnitude of the recycling. In the case where the cage effect is turned off, $\Delta^{17}O_{FA}$ reaches a plateau at 32 % for $\ln(R_{FA/FPI}) \leq -2$ (i.e. $R_{FA/FPI} \leq 13.5$ %). Note that the $\ln(R_{FA/FPI}) \leq -2$ condition is satisfied by all the simulations in this chapter. This means that below this $R_{FA/FPI}$ threshold value, the recycling is so intense that $\Delta^{17}O_{FA}$ is fully imprinted with the $\Delta^{17}O$ signature of the summertime local cycling/oxidation of NO$_2$ which is denoted $\Delta^{17}O_{LO}$ in what follows.

Figure 4.15 – TRANSITS sensitivity of $\Delta^{17}O_{FA}$ to the cage effect and the magnitude of the recycling (determined by ln($R_{FA/FPI}$)). a. two scenarios tested with the TRANSITS model : the black dots represent the reference scenario ($f_{cage} = 0.1$, cage effect is on) and the red triangles represent $f_{cage} = 0.0$ (cage effect is off). The snow accumulation rates are varied in the range 20 to 200 kg.m$^{-2}$.a$^{-1}$ in order to compute different magnitudes of the recycling. b. $\Delta^{17}O_{CE}$, the $\Delta^{17}O$ difference between $\Delta^{17}O_{FA}$ and $\Delta^{17}O_{LO}$ (the plateau value of $\Delta^{17}O_{FA}$ for $\ln(R_{FA/FPI}) \leq -2$ and $f_{cage} = 0.0$), plotted as a function of the magnitude of magnitude of the recycling.
When the cage effect is turned on, $\Delta^{17}O_{FA}$ does not reach a plateau. Indeed, with the increasing magnitude of the recycling (i.e. decreasing $R_{FA/FPI}$ ratios), $\Delta^{17}O_{FA}$ is increasingly impacted by the cage effect, i.e. the exchange of O atoms originating from H_2O is increased. We denote $\Delta^{17}O_{CE}$ the difference between the two cases. $\Delta^{17}O_{CE}$ represents the reduction of $\Delta^{17}O$ which is caused by the cage effect. The panel b. in figure 4.15 shows a plot of $\Delta^{17}O_{LO}$ versus $\ln(R_{FA/FPI})$. $\Delta^{17}O_{CE}$ and $\ln(R_{FA/FPI})$ show a linear relationship for ratios below the threshold value of -2. We have previously seen that below this threshold value, the local cycling/oxidation signature is constant (i.e. the local cycling/oxidation signature is already fully imprinted in $\Delta^{17}O_{FA}$). The remaining variability in $\Delta^{17}O_{FA}$ is therefore due to the $\Delta^{17}O_{CE}$ reduction of the cage effect which linearly increases when $\ln(R_{FA/FPI})$ decreases (for cases where $f_{cage} \neq 0$). The magnitude of the recycling (represented by $R_{FA/FPI}$) being determined by the number of loss/oxidation/deposition cycles undergone by nitrate, the greater the number of cycles and the greater the alteration of $\Delta^{17}O_{FA}$ by the cage effect.

We recall that we have previously shown that $R_{FA/FPI}$ can be retrieved from $\delta^{15}N_{FA}$ provided that we know the quality of the actinic flux, i.e. the slope in the modified Rayleigh plot. In this case, $\ln(\delta^{15}N_{FA} + 1)$ and $\ln(R_{FA/FPI})$ are linearly linked and the $\Delta^{17}O_{CE}$ value can be directly derived from $\delta^{15}N_{FA}$ for $\ln(R_{FA/FPI})$ below the threshold value. Knowing $\Delta^{17}O_{CE}$, $\Delta^{17}O_{FA}$ values can be corrected to obtain $\Delta^{17}O_{LO}$, the $\Delta^{17}O$ value imprinted by the summertime local cycling/oxidation of NO$_2$ in conditions where $\ln(R_{FA/FPI})$ is below the threshold value.

4.5.3.3 Summary

Table 4.4 gives an overview of the controls on FA, $\delta^{15}N_{FA}$ and $\Delta^{17}O_{FA}$. To sum up, the archived flux (FA) is controlled by the primary input flux (FPI) and the magnitude of the recycling ($\ln(R_{FA/FPI})$) at the first place. At a second order, the export flux (represented by f_{exp}) has a minor impact on FA.

$\delta^{15}N_{FA}$ is mostly controlled by the quality of the UV radiation (its spectral repartition) as well as the magnitude of the recycling ($\ln(R_{FA/FPI})$). It therefore appears that (FA, $\delta^{15}N_{FA}$)
couples in the modified Rayleigh plot are good candidates to track modern or past changes in the quality of the UV received at ground, i.e. changes in the ozone column but also changes in the solar UV spectra.

In the conditions tested (high recycling magnitudes), $\Delta^{17}O_{FA}$ is mostly controlled by the summertime local cycling/oxidation of NO$_2$ and the cage effect. In the same conditions, the local cycling/oxidation signature has been shown to be constant ($\Delta^{17}O_{LO}$). The calculation of the $\Delta^{17}O_{CE}$ value based on $R_{FA/FPI}$ therefore allows to estimate of $\Delta^{17}O_{LO}$ from $\Delta^{17}O_{FA}$.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Controlled by</th>
<th>Modulated by</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>primary input mass flux</td>
<td>FPI</td>
</tr>
<tr>
<td></td>
<td>recycling’s magnitude</td>
<td>$R_{FA/FPI}$ (Φ, A, f_{cage}, O$_3$ column)</td>
</tr>
<tr>
<td>$\delta^{15}N_{FA}$</td>
<td>quality of the actinic flux</td>
<td>O$_3$ column, solar UV spectra</td>
</tr>
<tr>
<td></td>
<td>recycling’s magnitude</td>
<td>Φ, A, f_{cage}, O$_3$ column</td>
</tr>
<tr>
<td>$\Delta^{17}O_{FA}$</td>
<td>local NO$_2$ oxidation</td>
<td>α, $\Delta^{17}O$(O$_2^{*}$), $\Delta^{17}O$(OH), $J^{threshold}$, O$_3$ column</td>
</tr>
<tr>
<td></td>
<td>cage effect</td>
<td>f_{cage}</td>
</tr>
<tr>
<td></td>
<td>recycling’s magnitude</td>
<td>$R_{FA/FPI}$ (Φ, A, f_{cage}, O$_3$ column)</td>
</tr>
</tbody>
</table>

Table 4.4 – Overview of the major controls on FA, $\delta^{15}N_{FA}$ and $\Delta^{17}O_{FA}$.

4.6 Reproduction of the spatial variability along the D10–Dome C–Vostok route

We here test the model’s ability to reproduce changes induced by snow accumulation rates as those observed along the D10–Dome C–Vostok route where snow pits have been sampled in 16 different locations from 2007 to 2010. We here assume that the snow accumulation rate is the only variable which varies and run the TRANSITS model in its "realistic" configuration (average snow accumulation rate repartition and 2000–2009 average ozone column). When varying the snow accumulation rate we actually represent a different location along the D10-DC-Vostok route. It should however be borne in mind that each simulation is a instantaneous state of a location, i.e. in each simulation, we do not consider the higher latitudes sites whose exported nitrate may contribute tp the budget of locations closer to the coast. Figure 4.16 shows the
4.6. Reproduction of the spatial variability along the D10–Dome C–Vostok route results of the observations and the simulations.

\[
\ln(\delta_{15}^{\text{NFA}} + 1) = \text{Slope} \times \ln(\text{FA}) + \text{Intercept}
\]

\[
\text{Slope} = -0.061
\]

\[
\text{Slope} = -0.059
\]

Figure 4.16 – TRANSITS realistic simulation (black dots) with varying snow accumulation rates versus observations along the D10–Dome C–Vostok route (blue dots).

a. modified Rayleigh plot. The two lines are linear fit to the data and the slopes are given in the respective colors.

b. \(\delta_{15}^{\text{NFA}} \) versus the inverse of the snow accumulation rates.

c. \(\Delta^{17}O_{\text{FA}} \) versus \(\delta_{15}^{\text{NFA}} \).
4.6.1 Modified Rayleigh plot

The modified Rayleigh plot of the data shows that the two datasets fall on parallel lines. Indeed the slopes of the linear fits to the observed and simulated data are -0.061 and -0.059 respectively. This clearly means that the quality of the actinic flux used in TRANSITS agrees with the observations, i.e. the model behaves well in dealing with the ozone column.

Another observation is that the linear fit to the observations is horizontally shifted by about +1 compared to the simulated fit. This means that the primary input mass flux used in the model underestimates the real one by a factor 2.7 ($\ln(2.7) \approx 1$). In other words, a good match between the model and the observations would correspond to a primary mass flux of 7.8×10^{-6} kgN.m$^{-2}$.a$^{-1}$ for the whole continent. At a first order, this primary flux is constant from the coast to the high plateau. Otherwise, we would observe FA values increasing faster than the trend for the high accumulation sites close to the coast.

4.6.2 $\delta^{15}\text{N}_{\text{FA}}$ versus $1/A$

Figure 4.16 shows that the model reproduces satisfyingly the observed variation in $\delta^{15}\text{N}_{\text{FA}}$ when assuming that changes in snow accumulation rates only control the magnitude of the recycling. Some discrepancy exist but it should be borne in mind that the snow accumulation rates at the sampled sites were obtained from a model and not from in-situ measurements. At low snow accumulation rates ($1/A < 0.03$ kg$^{-1}$.m2.a), $\delta^{15}\text{N}$ in the observed archived nitrate seems to reach a plateau which is not reproduced by the model. This may show that nitrate is partitioned into two reservoirs: an easily photolyzable reservoir with $\Phi = 0.05$ and a reservoir which is much less prone to be photolyzed and which has a much lower quantum yield. At sites with very low snow accumulation rates, the easily photolyzable nitrate therefore seems to be completely photolyzed. Future work on TRANSITS could investigate the effect of nitrate featuring different availabilities (i.e. different Φ) for photolysis.

Last, we observe that the model underestimates $\delta^{15}\text{N}_{\text{FA}}$ at sites with medium/high snow accumulation rates. We suggest that this could be the result of the varying site latitudes which
are not accounted for in this set of simulations. Indeed, snow accumulation rates decrease with
the site elevation, i.e. with the site latitude in this part of Antarctica. Therefore the closer we
sample to the coast and the lower the latitude, which means a lower solar zenith angle \(\theta \) at
the summer solstice. The lower \(\theta \) would result in greater photolytic rate constants, i.e. higher
\(\delta^{15}\text{N}_{\text{FA}} \) for a given \(^{15}\varepsilon \). Future work on TRANSITS would better account for this by adding a
new variable which would be the site’s latitude.

4.6.3 \(\Delta^{17}\text{O}_{\text{FA}} \) versus \(\delta^{15}\text{N}_{\text{FA}} \)

At a first order, observed data have been shown to fall on a straight line in the modified
Rayleigh plot which means that \(\delta^{15}\text{N}_{\text{FA}} \) can be used to translate the magnitude of the recycling.
In order to investigate the meaning of \(\Delta^{17}\text{O} \) in the archived nitrate, we plot this variables versus
\(\delta^{15}\text{N}_{\text{FA}} \) (figure 4.16). \(\Delta^{17}\text{O} \) and \(\delta^{15}\text{N}_{\text{FA}} \) show an anti-correlation which is reproduced by the
model. It is the result of the greater incorporation of the summer oxidation signal and the more
important cage effect when the magnitude of the recycling is high (\(\delta^{15}\text{N}_{\text{FA}} \) is high for a constant
\(^{15}\varepsilon \)).

4.7 Conclusions

We have built a multi-layer isotopic model which represents nitrate recycling at the surface
of Antarctic plateau snowpacks where nitrate photolysis has been proposed to strongly impact
the nitrogen stable isotopic composition of nitrate. When using a realistic scenarii, the model
reproduces well the atmospheric and skinlayer concentrations and isotopic time series which
supports the theory of Morin (2008) and Frey et al. (2009), at the basis of the TRANSITS model.

The simulated nitrate concentration and isotopic profiles show a higher variability than the
observations and this discrepancy has been attributed to oversimplifications in the model which
does not represented nitrate diffusion in snow. The simulated archived values however agree well
with the observations.
The sensitivity of the model to its main driving variables and parameters has been tested and we have proposed the use of a modified Rayleigh plot to determine the signature of the quality of the actinic flux, the primary input mass flux as well as the magnitude of the recycling. We have shown that $\delta^{15}N$ in the archived nitrate is controlled by the magnitude of the recycling, given a constant UV quality of the actinic flux. The primary input flux of nitrate can be retrieved based on the archived flux and the estimate of the recycling’s magnitude from $\delta^{15}N_{FA}$. $\Delta^{17}O_{FA}$ has been shown to be mostly driven by the summertime local cycling/oxidation of NO$_2$ when the magnitude of recycling is important (i.e. which prevails on the Antarctic plateau). The impact of the cage effect on $\Delta^{17}O_{FA}$ can be estimated from the magnitude of recycling ($R_{FA/FPI}$) to reconstruct $\Delta^{17}O_{LO}$ which is the $\Delta^{17}O$ value imprinted by summertime local oxidation of NO$_2$.

In present-day conditions, we have shown that the only changes in snow accumulation rates are enough to explain the first order variations in the recycling’s magnitude from the coast to the high Antarctic plateau.

We have proposed some improvements and guidelines for future work on the TRANSITS model. Some processes could be further better modelled as it is the case for the isotopic effect of nitrate deposition from the atmosphere to the snow. This has however been shown to have a weak impact on the mass and isotopic composition of the archived nitrate which are our main interest in this work. Therefore, the tool developed in this chapter is robust and can be used as a framework for the interpretation of the nitrate mass and isotopic record in the Vostok ice core, in the following chapter.
Chapitre 5

Interprétations qualitative et quantitative du profil de nitrate archivé dans la carotte de glace de Vostok

Le modèle TRANSITS développé et évalué au chapitre précédent permet une interprétation quantitative de l’enregistrement. Dans la partie 5.2, nous proposons une estimation du flux primaire de nitrate reçu à Vostok au cours des 150 000 dernières années. L’intensité du recyclage du nitrate est ensuite reconstruite sur la base des taux d’accumulation mesurés dans l’enregistre-
ment glaciaire (partie 5.3). Dans la partie 5.4, nous interprétons les variations de Δ^{17}O. En fin de chapitre (partie 5.5), nous discutons des conséquences de ces résultats sur notre compréhension du cycle de l’azote réactif en Antarctique.

5.1 Ubiquité et persistence de la perte de nitrate à la surface des calottes glaciaires

5.1.1 Persistence de la perte de nitrate sur les 150 000 dernières années à Vostok

Le tableau 5.1 compare les gammes de δ^{15}N mesurées dans le nitrate atmosphérique en 2009 et dans les 50 premiers centimètres de neige en 2007 et 2009 au Dôme C et à Vostok ainsi que dans la carotte de glace de Vostok sur le dernier cycle glaciaire et demi. Les mesures de δ^{15}N obtenues au cours de cette thèse dans des puits de 50 cm de profondeur à Dôme C et Vostok montrent des valeurs de δ^{15}N supérieures à 150 % obtenues dans les premiers décimètres de neige. Ces fortes valeurs sont le résultat d’une importante perte de nitrate à la surface du manteau neigeux aux sites de faible accumulation de neige (Blunier et al., 2005; Frey et al., 2009). Cette perte efface toute signature atmosphérique comme le montre la gamme atmosphérique mesurée à Dôme C en 2009 (−30.8 à 12.8 %, tableau 5.1).

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Time period</th>
<th>δ^{15}N(NO$_3^-$) (%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dôme C</td>
<td>Aerosols</td>
<td>2009</td>
<td>−30.8</td>
<td>This study</td>
</tr>
<tr>
<td>Dôme C</td>
<td>Snowpit</td>
<td>2007</td>
<td>62.5</td>
<td>Frey et al. (2009)</td>
</tr>
<tr>
<td>Vostok</td>
<td>Snowpit</td>
<td>2009</td>
<td>59.7</td>
<td>This study</td>
</tr>
<tr>
<td>Vostok</td>
<td>Ice core</td>
<td>700–147 000 years BP</td>
<td>88.6</td>
<td>This study</td>
</tr>
</tbody>
</table>

Table 5.1 – Tableau comparatif des gammes de δ^{15}N mesurées dans le nitrate atmosphérique à Dôme C en 2009, dans les 50 premiers centimètres de neige en 2007 et 2009 à Dôme C et Vostok et dans la carotte de glace de Vostok de 700 à 147 000 années avant notre ère.

La gamme des valeurs de δ^{15}N mesurées pour la carotte de glace de Vostok s’étend de 88.6 à 316.5 %, c’est-à-dire que les valeurs mesurées sont encore plus élevées que celles des puits à
5.1. Ubiquité et persistence de la perte de nitrate à la surface des calottes glaciaires

Dôme C et Vostok. De telles valeurs ne peuvent être expliquées que par des processus de perte de nitrate à la surface du manteau neigeux à Vostok ayant persisté au cours des 150 000 dernières années. À la différence de mesures dans des puits de neige où la perte de nitrate est encore à l’œuvre, les échantillons de carotte de glace représentent des valeurs archivées et doivent donc être comparés aux valeurs asymptotiques obtenues en profondeur dans les puits. Nous avons auparavant montré que la photolyse du nitrate est un processus important de perte de nitrate sur la plateforme Antarctique et que celui-ci est à l’origine de la signature bien spécifique observée dans les enrichissements isotopiques en 15N (Frey et al., 2009). La profondeur caractéristique de la photolyse étant de l’ordre de 10 cm au Dôme C (France et al., 2011), les valeurs asymptotiques de δ^{15}N doivent être cherchées à des profondeurs situées au-delà de la zone photique (30 cm). Dans le cas des puits prélevés à Dôme C et Vostok, la valeur asymptotique de δ^{15}N est de l’ordre de 270 ‰, c’est-à-dire dans la partie supérieure de la gamme mesurée dans la carotte de glace de Vostok. Ceci suggère que l’intensité de la photolyse et donc l’intensité du recyclage (the magnitude of the recycling, comme définie au chapitre précédent) a varié au cours de la période étudiée.

5.1.2 Implications pour l’interprétation des enregistrements glaciaires au Groenland

Sur une période couvrant 40 000 ans, Hastings et al. (2005) ont mesuré des valeurs moyennes de δ^{15}N du nitrate de 28.4 et 9.7 ‰ en périodes glaciaire et interglaciaire respectivement. En période glaciaire, le nitrate archivé dans la glace est associé à du calcium non-marin, comme en Antarctique, et il a été avancé que cette association le rendrait moins sensible aux processus de perte (Wolff, 1995; Legrand et al., 1999; Röthlisberger et al., 2000a), malgré les taux d’accumulation de neige plus faibles à cette période. Hastings et al. (2005) ont ainsi proposé que leurs mesures du δ^{15}N du nitrate en période glaciaire reflétaient des changements de sources de NO$_x$ plutôt qu’un effet des processus de perte.

Dans ce travail, nous avons montré que la photolyse était un processus de perte important aux
Chapitre 5. Interprétations qualitatives et quantitatives du profil de nitrate

sites de faible accumulation de neige. Nous avons également montré que ce processus imprimait une forte signature isotopique dans les isotopes stables d’azote du nitrate. Dans la partie 4.6, nous avons montré que le $\delta^{15}N$ dans le nitrate dans la neige de la côte au plateau de l’Antarctique de l’Est était fortement corrélé à l’inverse du taux d’accumulation $(1/A)$. Les simulations du modèle TRANSITS dans les conditions d’accumulation des sites étudiés nous ont permis de reproduire ces observations. En période glaciaire, le taux d’accumulation de neige était de l’ordre de 100 kg.m$^{-2}$.a$^{-1}$ à Summit (Hastings et al., 2005). Pour de tels taux d’accumulation, TRANSITS simule des valeurs de $\delta^{15}N$ de l’ordre de 30 % dans le nitrate archivé (figure 4.16), très proche de la valeur moyenne obtenue par Hastings et al. (2005) au cours de cette période glaciaire (28.4 %). Cette observation suggère donc que le recyclage du nitrate devrait avoir eu un impact significatif sur $\delta^{15}N$ dans le nitrate archivé dans les conditions d’accumulation de neige rencontrés à Summit en période glaciaire. Il est donc nécessaire de revoir l’interprétation des enregistrements isotopiques mesurés par Hastings et al. (2005).

5.1.3 Impact de la forme chimique sur la perte de nitrate

Röthlisberger et al. (2000a) considéraient que l’évaporation/désorption de HNO$_3$ était le processus dominant la perte de nitrate. La stabilité de Ca(NO$_3$)$_2$ vis-à-vis de ce processus leur semblait donc légitime pour expliquer les profils de concentration de nitrate plus élevés et plus variables obtenus au cours des périodes glaciaires comparativement aux périodes interglaciaires.

Nos observations isotopiques montrent cependant que la photolyse du nitrate était à l’œuvre à la surface du manteau neigeux à Vostok au cours du dernier cycle glaciaire et demi. Cette persistence de la perte de nitrate par photolyse va donc à l’encontre de l’interprétation des enregistrements de nitrate proposée par Röthlisberger et al. (2000a). Elle suggère par ailleurs que la photolyse du nitrate est active quelque soit la forme chimique du nitrate. Cette proposition est renforcée par le fait que certaines expériences de laboratoire voulant reproduire les émissions de NO$_2$ par photolyse du nitrate utilisent du nitrate de sodium (NaNO$_3$) congelé et soumis à un flux actinique (e.g. Chu and Anastasio, 2003; Blunier et al., 2005). Ceci montre que la forme
5.2. Estimation du flux primaire de nitrate reçu à Vostok

saline du nitrate n’empêche pas sa photolyse.

Nos observations à Vostok et nos estimations à Summit indiquent donc qu’il n’est pas suffisant de regarder la forme chimique du nitrate archivé dans les enregistrements glaciaires pour savoir si les processus de perte ont eu lieu dans le passé. En outre, la forme chimique du nitrate archivé ne semble pas retranscrire sa composition chimique originelle. Il est donc essentiel de considérer les processus de perte de nitrate pour pouvoir proposer une interprétation robuste des profils de concentration de cette espèce en périodes interglaciaires et glaciaires, que ce soit en Antarctique ou au Groenland.

5.2 Estimation du flux primaire de nitrate reçu à Vostok

5.2.1 Observations en période d’extrêmes glaciaires

Dans ce chapitre, nous utilisons la même terminologie que pour le modèle TRANSITS (chapitre 4). Pour rappel, FA, $[\text{NO}_3^-]_{FA}$, $\delta^{15}N_{FA}$ et $\Delta^{17}O_{FA}$ représentent respectivement le flux, la concentration, le $\delta^{15}N$ et le $\Delta^{17}O$ du nitrate archivé. Nous rappelons également que, dans ce travail, les 64 échantillons de la carotte de glace de Vostok analysés dans le cadre de cette thèse représentent en moyenne 30 années cumulées.

La figure 5.1 montre les données isotopiques en azote de la carotte de Vostok représentées dans le graphe modifié de Rayleigh. Le flux archivé (FA) a été calculé à partir des taux d’accumulation estimés par Suwa and Bender (2008) et des concentrations en nitrate que nous avons mesurées. Les cercles noirs représentent ceux pour lesquels $\ln(\text{FA}) \geq 16.35$, c’est-à-dire ceux pour lesquels FA est supérieur à 7.9×10^{-8} kgN.m$^{-2}$.a$^{-1}$. Cette valeur limite du flux archivé équivaut à une concentration en nitrate de 17.6 ng.g$^{-1}$ pour un taux d’accumulation de 20 kg.m$^{-2}$.a$^{-1}$. Ces échantillons représentent par ailleurs des périodes où la température relative locale de surface était essentiellement inférieure à -6 °C, c’est-à-dire en conditions d’extrêmes glaciaires.

Ces derniers montrent une forte anti-corrélation ($r = 0.83$, $n = 64$) entre $\ln(\delta^{15}N_{FA} + 1)$
et ln(FA) dans le graphe modifié de Rayleigh. Ceci suggère que ces points correspondent à des conditions équivalentes, c'est-à-dire que la qualité du flux actinique reçu à la surface du manteau neigeux et le flux primaire de nitrate reçu au-dessus de Vostok auraient été constants. Si on suppose que le δ15N du flux primaire de nitrate (δ^{15}N$_{FPI}$) était constant et égal à 5 % au cours de ces périodes, la figure 5.1 permet d’estimer que le flux primaire de nitrate moyen reçu à Vostok était de l’ordre de 1.3×10^{-6} kgN.m$^{-2}$.a$^{-1}$.

![Figure 5.1 – Données de la carotte de glace de Vostok placées dans le graphe modifié de Rayleigh : ln(δ^{15}N$_{FA} + 1$) en fonction de ln(FA). Les cercles noirs représentent les données pour lesquelles ln(FA) ≤ -16.35 (i.e. FA $\leq 7.9 \times 10^{-6}$ kgN.m$^{-2}$.a$^{-1}$ ou encore $\Delta T \leq -6$ °C) et la droite pointillée noire représente l’ajustement linéaire à ces points. Les croix bleues représentent les données obtenues sur une zone géographique couvrant le transect D10–Dôme C–Vostok (données initialement présentées sur la figure 4.16).](image)

Dans le chapitre précédent, nous avons proposé une approche similaire pour l’interprétation des échantillons collectés sur le transect D10–Dôme C–Vostok. Nous avons ainsi estimé que le plateau Antarctique recevait un flux primaire de nitrate de 7.8×10^{-6} kgN.m$^{-2}$.a$^{-1}$ dans les
5.2. Estimation du flux primaire de nitrate reçu à Vostok

conditions modernes, i.e. les années 2000. Le flux primaire reçu en périodes d’extrêmes glaciaires est donc 5 fois plus faible que le flux primaire reçu dans les conditions actuelles.

La comparaison des données des périodes d’extrêmes glaciaires et les données modernes montre par ailleurs que chaque série s’aligne sur des pentes différentes dont les valeurs sont -0.091 et -0.061 respectivement (figure 5.1). Ceci suggère que la qualité du flux actinique a changé entre les périodes d’extrêmes glaciaires et la période actuelle caractérisée par la présence du trou d’ozone au printemps. Ce changement irait dans le sens d’une colonne d’ozone plus abondante en périodes d’extrêmes glaciaires comparativement aux années 2000. Ce résultat sera discuté plus loin dans ce chapitre.

5.2.2 Reconstruction du flux primaire de nitrate reçu à Vostok au cours des 150 000 dernières années

5.2.2.1 Variables d’entrée du modèle TRANSITS

Pour extraire une information quantitative de l’ensemble de l’enregistrement, nous utilisons le modèle TRANSITS. Cet outil numérique développé au chapitre précédent permet en effet de déconvoler l’impact de différentes variables sur la composition isotopique du nitrate archivé dans les neiges et glaces. Dans ce qui suit, nous décrivons les variables d’entrées utilisées dans ce chapitre et motivons leur choix. Toute information manquante concernant certaines variables d’entrée signifie que nous avons utilisé celles de la ”simulation réaliste” décrite au chapitre 4 (voir tableau 4.2, page 112).

Modulations extra-terrestres du flux actinique reçu en surface À l’échelle glaciaire, il est probable que le flux actinique reçu à la surface du manteau neigeux en Antarctique ait subi de nombreuses modulations. Ces modulations peuvent être d’origine extra-terrestre ou terrestre et sont schématisées sur la figure 5.2.

Les modulations extra-terrestres modifient le flux actinique reçu au sommet de l’atmosphère et la première d’entre elles est la modulation de la source même du rayonnement UV : le soleil.
À notre connaissance, les variations passées de l’irradiance solaire dans l’UV sont très mal contraintes. On peut s’attendre à ce que les variations d’activité solaire modulent à la fois la quantité du flux produit ainsi que sa qualité, c’est-à-dire sa répartition spectrale, comme ceci a été observé entre les minimum et maximum d’activité solaire (Föhlisch and Lean, 2004). Les travaux sur l’activité solaire montrent que, dans la gamme de longueurs d’onde qui nous intéresse (280–360 nm), les variations de l’irradiance sont faibles, de l’ordre du pourcent dans les mesures de ces dernières décennies (Föhlisch and Lean, 2004) et dans les modélisations couvrant les 400 dernières années (Shapiro et al., 2011). Dans ce qui suit, nous faisons donc l’hypothèse que l’irradiance produite par le soleil dans la gamme de longueurs d’onde 280–360 nm n’a pas changé au cours des 150 000 dernières années.

Une autre modulation extra-terrestre du flux actinique reçu au sommet de l’atmosphère implique la variation des paramètres orbitaux, également appelés paramètres de Milankovitch. Ces variations orbitales sont à l’origine de variations de l’irradiance reçue au sommet de l’atmosphère (Berger, 1978). Il est raisonnable de penser que toutes les longueurs d’onde sont favorisées ou défavorisées de la même manière sous l’effet de variations de ces paramètres de sorte à ce qu’ils ne modifient que la quantité de rayonnement UV reçu et non sa qualité. L’application de la modélisation de Berger (1978) au mois de décembre pour une latitude de −80°S montre que l’irradiance totale reçue en surface aurait varié d’environ ±10 % sur les 150 000 dernières années. Pour simplifier, nous négligeons donc, dans ce qui suit, les variations de quantité d’UV liées aux variations orbitales.

Modulations terrestres du flux actinique reçu en surface Le flux actinique reçu à la surface du manteau neigeux dépend du flux reçu au sommet de l’atmosphère, de la colonne d’ozone ainsi que de la présence d’aérosols et de nuages. Nous avons précédemment montré que la présence du filtre que constitue la couche d’ozone modifie les quantité et qualité du flux actinique reçu à la surface. Pour simplifier, nous considérons que l’atmosphère est dépourvue d’aérosols et de nuages (hypothèses identiques à celles du chapitre 4). L’ensemble de ces hypothèses implique que seule la variabilité de la couche d’ozone mène à des variations de qualité du flux actinique.
5.2. Estimation du flux primaire de nitrate reçu à Vostok

Figure 5.2 – Vue schématique des variables extra-terrestres (1, 2 et 3) et terrestres (4 et 5) pouvant causer des changements de qualité et de quantité du flux actinique reçu à la surface.

Colonne d’ozone À l’échelle climatique, nous supposons que la variation annuelle de la colonne d’ozone est nulle, i.e. la colonne d’ozone a une valeur constante tout au long de l’année. La série annuelle de colonne d’ozone est supposée constante à l’échelle glaciaire.

Température, SSA et épaisseur de la couche limite atmosphérique Les températures de l’air et la surface spécifique de la neige (SSA) sont prises identiques à celles de la simulation réelle. Il en est de même pour l’épaisseur de la couche limite atmosphérique. Ces choix sont motivés par la faible sensibilité du modèle TRANSITS aux changements de ces variables.

Flux primaire de nitrate (FPI) Les échantillons des périodes d’extrême glaciaire nous ont permis d’estimer un flux primaire de nitrate de l’ordre de $1.3 \times 10^{-6} \text{ kgN.m}^{-2}.\text{a}^{-1}$ pour ces époques (section 5.2.1). Nous rappelons que, dans le modèle TRANSITS, le flux de nitrate exporté (FE) est modélisé par le paramètre f_{exp} tel que : $FE = f_{\text{exp}} \times (FPI + FP)$. Dans les simulations de cette partie, le paramètre f_{exp} est fixé à 0.2 comme dans le cas de la simulation réaliste. Cela signifie que 20% du flux primaire de nitrate apporté au système sera perdu,
quelque soit l’intensité du recyclage. Pour tenir compte de cet effet, nous ajustons la valeur de FPI en entrée du modèle et la fixons à $1.6 \times 10^{-6} \text{kgN.m}^{-2}.\text{a}^{-1}$.

Accumulation et masse volumique de la neige Comme dans la simulation réaliste, le taux d’accumulation et la masse volumique de la neige sont supposés constants. La répartition annuelle de l’accumulation de neige est choisie comme indiqué sur la figure 4.4 (page 111). Dans ce qui suit, le modèle TRANSITS est utilisé pour simuler des intensités de recyclage variables. Pour ce faire, nous faisons varier le taux d’accumulation de neige d’une simulation à une autre.

5.2.2.2 Scénarios et résultats

La figure 5.1 suggère deux scénarios pour expliquer la répartition des données dans le graphe modifié de Rayleigh. En effet, les échantillons ne correspondant pas à des périodes d’extrêmes glaciaires (points noirs sur la figure 5.1) pourraient être issus du même flux primaire de nitrate que les points de périodes d’extrêmes glaciaires (cercles noirs). Ceci signifierait que le point de départ (FPI, $\delta^{15}N_{\text{FPI}}$) dans le graphe modifié de Rayleigh serait constant mais que la pente de la ligne pointillée serait variable (figure 5.1), i.e. la qualité du flux actinique serait variable. Dans ce chapitre, nous faisons l’hypothèse que les variations de la colonne d’ozone étaient responsables de la modulation de la qualité du flux actinique reçu en surface du manteau neigeux. Nous définissons ainsi le scénario V_k-O_3 où FPI est fixé à $1.6 \times 10^{-6} \text{kgN.m}^{-2}.\text{a}^{-1}$ et où la colonne d’ozone varie entre 25 et 1000 DU.

Un deuxième scénario est envisageable pour expliquer la répartition des données dans la figure 5.1. Dans ce scénario (nommé V_k-FPI), la colonne d’ozone est fixée à 350 DU et FPI est variable. La valeur de colonne d’ozone choisie (350 DU) correspond à une borne maximale puisqu’il s’agit d’une valeur proche de la valeur moyenne enregistrée à l’échelle annuelle au Pôle Sud avant le trou d’ozone, sur la période 1967–1971\(^1\). Dans un souci de simplicité, nous nous tenons à ces deux scénarios pour ce qui suit. Il faut toutefois garder à l’esprit qu’une

\(^1\) Données obtenues du Global Monitoring Division, Earth System Research Laboratory, NOAA, http://www.esrl.noaa.gov/gmd/index.html
5.2. Estimation du flux primaire de nitrate reçu à Vostok

Combinaison de ces deux scénarii ne peut être exclue, i.e. le flux primaire de nitrate et la qualité du flux actinique pourraient avoir varié en même temps au cours des 150 000 dernières années.

5.2.2.3 Résultats

La figure 5.3 montre les résultats du modèle TRANSITS obtenus pour les scénarios Vk-O$_3$ et Vk-FPI. Dans le cas du scénario Vk-O$_3$, nous observons qu’une colonne d’ozone de l’ordre de 1000 DU serait nécessaire pour reproduire les observations en période d’extrême glaciaire. Il faudrait également invoquer une colonne d’ozone variant entre 25 et 1000 DU pour reproduire l’ensemble des données isotopiques. Dans le cas du scénario Vk-FPI, la reproduction des données isotopiques mène à des flux primaires de nitrate variant sur près de deux ordres de grandeur.

Figure 5.3 – Graphes de Rayleigh modifiés des données isotopiques de Vostok et des simulations du modèle TRANSITS pour deux scénarios : a. scénario Vk-O$_3$: la colonne d’ozone varie de 25 à 1000 DU pour FPI = 1.63×10^{-6} kgN.m$^{-2}$.a$^{-1}$ et b. scénario Vk-FPI : le flux primaire de nitrate varie entre 10 et 1000 % de la valeur fixée (1.63×10^{-6} kgN.m$^{-2}$.a$^{-1}$) pour une colonne d’ozone constante et fixée à 350 DU. L’étoile verte représente le flux primaire de nitrate (FPI, δ^{15}N$_{FPI}$) dans le cas ”FPI × 1”.

\[\ln(\delta^{15}N_{FA} + 1) \]

\[\ln(FA) \]

\[\text{a. Scenario Vk-O}_3 \]

\[\text{b. Scenario Vk-FPI} \]
5.2.2.4 Discussion et reconstruction du flux primaire de nitrate

La valeur de colonne d’ozone obtenue pour le scénario Vk-O₃ pour reproduire les observations des périodes d’extrêmes glaciaires (1000 DU) est trois fois supérieure à la colonne d’ozone mesurée avant l’apparition du trou d’ozone au cours du siècle dernier². Cette valeur de 1000 DU paraît peu vraisemblable. Il faudrait en effet invoquer, dans le cas contraire, une production d’ozone stratosphérique beaucoup plus importante, i.e. des variations importantes du flux actinique extra-solaire qui contrôle la production d’ozone (Warneck, 1999). Il est important de noter que nous ne pouvons exclure des erreurs dans les taux d’accumulations reconstruits par Suwa and Bender (2008) et qui nous ont servis à calculer les flux archivés (FA) pour chacun de nos échantillons. Une dépendance à la température des erreurs de reconstruction de Suwa and Bender (2008) aurait pour effet de faire varier la pente de l’ajustement aux données isotopiques des périodes d’extrêmes glaciaires dans la figure 5.1. En effet, les valeurs de FA les plus importantes sont obtenues pour les taux d’accumulation les plus faibles, c’est-à-dire pour les températures les plus faibles. Dans le cas du scénario Vk-O₃, il résulterait de ce qui précède une estimation différente de la colonne d’ozone au cours de ces périodes et, en conséquence, une value qui pourrait être plus réaliste.

Pour ce même scénario (Vk-O₃), nous observons également qu’il faudrait que la colonne d’ozone ait varié dans une gamme au moins aussi large que de 25 à 1000 DU. Si nous supposons que les sources d’ozone sont inchangées à l’échelle glaciaire, des valeurs aussi faibles que 25 DU s’expliqueraient par une augmentation des puits d’ozone. Les conditions actuelles du ”trou” d’ozone nous montrent la dynamique de ce composé chimique lorsque ses teneurs sont imposées par un puits important : la chimie impliquant les PSCs. Il est important de remarquer que dans ces conditions, des colonnes d’ozone aussi faibles que 25 DU n’ont par exemple jamais été observées au Pôle Sud³. Une variation si importante des puits de l’ozone au cours des

150 000 dernières années nous paraît peu vraisemblable à ce stade. Compte-tenu du manque de contraintes actuelles sur les variations passées de la couche d’ozone, nous faisons l’hypothèse que la colonne d’ozone n’a pas varié au cours des 150 000 dernières années. Dans ce qui suit, nous nous plaçons donc dans le cas du scénario Vk-FPI avec la valeur de colonne d’ozone imposée : 350 DU. Nous rappelons que cette valeur correspond aux conditions du Pôle Sud avant l’apparition du trou d’ozone.

Dans ce cas, la répartition des données dans le graphe modifié de Rayleigh serait donc uniquement liée à des variations du flux primaire de nitrate. Dans la section 4.5.3.1, nous avons représenté l’intensité du recyclage par la grandeur $R_{FA/FPI}$. Nous avons également montré que les grandeurs $\ln(R_{FA/FPI})$ et $\ln(\delta^{15}N_{FA} + 1) - \ln(\delta^{15}N_{FPI} + 1)$ étaient liées dans le cas du scénario Vk-FPI que nous avons choisi ici. Estimer le flux primaire FPI revient donc à translater horizontalement la courbe simulée "FPI × 1" par le modèle TRANSITS (panneau b. dans la figure 5.3). Pour ce faire, il est nécessaire de fixer une valeur constante de $\delta^{15}N_{FPI}$ que nous supposons ici égale à 5 %, et qui signifie que la signature isotopique en azote du flux primaire est considérée constante. Cette hypothèse est raisonnable compte-tenu de l’étroite gamme de variations de $\delta^{15}N$ dans les sources modernes de nitrate (Morin et al., 2009; Hastings et al., 2009). Connaissant $\ln(FA)$ et $\ln(\delta^{15}N_{FA} + 1)$ pour chaque échantillon et ayant fixé la valeur de $\ln(\delta^{15}N_{FPI} + 1)$, nous obtenons la grandeur FPI correspondant à chaque couple ($\ln(FA)$, $\ln(\delta^{15}N_{FA} + 1)$).

La figure 5.4 montre le flux primaire de nitrate reconstruit au site de Vostok, pour l’ensemble des échantillons mesurés et dans le cas du scénario Vk-FPI. Le flux primaire de nitrate sur l’ensemble de l’enregistrement est compris entre 1.0×10^{-7} et 8.1×10^{-6} kgN.m$^{-2}$.a$^{-1}$ avec une valeur moyenne de 2.0×10^{-6} kgN.m$^{-2}$.a$^{-1}$. Le flux primaire est en moyenne 21 fois plus important que le flux archivé. Ses valeurs maximales sont atteintes en fin de périodes glaciaires et sont légèrement supérieures au flux estimé dans les conditions actuelles (pour rappel : 7.8×10^{-6} kgN.m$^{-2}$.a$^{-1}$, voir chapitre précédent). Le flux primaire montre ses valeurs minimales dans la première moitié de la période glaciaire (entre −110 et −75 milliers d’années avant notre ère).
Le rapport $R_{FA/FPI}$ est compris entre 1.2 et 24.7 % (7.9 % en moyenne), ce qui signifie qu’au maximum un tiers du flux primaire se retrouve archivé en profondeur. Nous en concluons qu’au cours des 150 000 dernières années, le plateau Antarctique a ré-exporté la majeure partie du nitrate originellement reçu.

![Figure 5.4](image_url)

Figure 5.4 – Reconstruction du flux primaire de nitrate au site de Vostok au cours des 150 000 dernières années et dans le cas du scénario Vk-FPI. a. température locale relative (*Petit et al.*, 1999) et taux d’accumulation (*Suwa and Bender*, 2008). b. flux primaire (FPI) reconstruit et flux archivé (FA) mesuré dans la carotte de glace de Vostok. c. δ^{15}N du nitrate. Les zones bleue clair et rouge clair représentent les périodes de l’Holocène et de l’Éémien respectivement.
5.2.3 Tendances sur le cycle climatique

La figure 5.5 montre le flux primaire de nitrate reconstruit confronté aux variations de la température relative locale de surface. Cette figure indique que le flux primaire de nitrate reçu à Vostok est généralement plus élevé en période glaciaire, lorsque la température relative est inférieure à −6 °C. La comparaison des deux périodes interglaciaires de l’enregistrement montre que les flux primaires étaient différents. En effet, le flux primaire moyen de nitrate reçu en période Holocène est de 0.47×10^{-6} kgN.m$^{-2}$.a$^{-1}$. Les flux primaires reconstruits pour l’Éémien sont par ailleurs beaucoup plus variables que pour l’Holocène.

![Diagram](image)

Figure 5.5 – Flux primaire de nitrate estimé en fonction de la température relative locale de surface. Les points noirs, triangles rouges et carrés bleus représentent respectivement les échantillons en périodes glaciaires, Holocène et Éémien.

Ces observations suggèrent que les conditions d’extrêmes glaciaires ($\Delta T \leq -6$ °C) favorisent un flux primaire de nitrate plus important. Nous rappelons que la dénitrification stratosphérique ainsi que le transport de nitrate à longue distance constituent le flux primaire de nitrate sur le plateau Antarctique. Au chapitre précédent, nous avons montré que, dans les conditions actuelles, la différenciation entre ces deux origines ne pouvait être faite sur la base des mesures de Δ^{17}O
dans le nitrate archivé. En effet, l’intensité importante du recyclage à l’œuvre à la surface du manteau neigeux efface l’information primaire contenue dans $\Delta^{17}O$ concernant les sources du nitrate au profit d’une information sur l’oxydation locale et l’effet de cage. Les conditions observées à Vostok au cours des 150 000 dernières années montrent également des intensités de recyclage très importantes : $R_{FA/FPI}$ est compris entre 1.2 et 24.7 % pour le scénario Vk-FPI choisi. Ceci implique que, dans le cas de notre enregistrement glaciaire, l’information concernant les sources primaires de nitrate, et originellement contenue par $\Delta^{17}O$, est perdue.

Une augmentation de l’apport primaire de nitrate par transport à longue distance semble cohérente avec les mesures de poussières dans les carottes de glace de Vostok et EPICA qui suggèrent un transport troposphérique plus efficace (Petit et al., 1990, 1999; Wolff et al., 2010). Du nitrate collé sur des particules transportées par le vent pourrait ainsi contribuer au flux primaire plus important observé. De même, les conditions de température plus froides en périodes glaciaires pourraient expliquer une augmentation de l’apport primaire de nitrate par dénitrification stratosphérique. En effet, la formation des PSCs dépend de la température (Seinfeld and Pandis, 1998) et est possible en hiver car les conditions de températures sont exceptionnelles et mènent à des profils verticaux de températures très froids comme nous le montre la figure 1.6 (page 14). Par analogie aux conditions observées aux cours des hivers modernes, nous proposons que les températures de surface plus basses observées en périodes d’extrêmes glaciaires pourraient mener à des températures plus basses en altitude. Ces plus faibles températures en altitude seraient ainsi à l’origine d’une production plus importante de PSCs. Ces conditions de température pourraient par ailleurs rendre la tropopause moins marquée pendant une plus grande partie de l’année, ce qui aurait pour conséquence d’augmenter la fréquence des événements de sédimentation de PSCs.
5.2.4 Comparaison des formes chimiques du nitrate dans les flux primaire et archivé

Pour estimer la forme chimique du nitrate primaire reçu à Vostok, nous faisons l’hypothèse que le flux de calcium non-marin n’a pas subi de pertes lors de son dépôt, i.e. que les flux primaire et archivé de calcium non-marin sont identiques. Nous introduisons la grandeur $R_{\text{NO}_3^-/\text{nssCa}^{2+}}$ qui exprime le rapport massique des flux de nitrate et de calcium non-marin. Le flux de NO$_3^-$ est ici exprimé en masse de nitrate et non en masse d’azote comme précédemment, ce qui signifie qu’un flux de nitrate de calcium pur présenterait un rapport $R_{\text{NO}_3^-/\text{nssCa}^{2+}} = 3.1$.

La figure 5.6 reporte les valeurs de $R_{\text{NO}_3^-/\text{nssCa}^{2+}}$ obtenues pour les flux primaire et archivé en fonction de la température relative locale de surface. Dans ce graphe, la ligne tiretée représente le rapport du nitrate de calcium pur (3.1). Tout rapport $R_{\text{NO}_3^-/\text{nssCa}^{2+}}$ supérieur à 3.1 signifie que les ions nssCa$^{2+}$ ne suffisent pas à neutraliser les ions NO$_3^-$ et qu’une partie du nitrate se trouve sous la forme d’acide nitrique, HNO$_3$. En revanche, tout rapport $R_{\text{NO}_3^-/\text{nssCa}^{2+}}$ inférieur à 3.1 signifie que les ions NO$_3^-$ sont neutralisés par les ions nssCa$^{2+}$ et qu’une partie de ceux-ci participe à la neutralisation d’autres anions.

La figure 5.6 montre que le flux primaire de nitrate est principalement constitué d’acide nitrique pour l’ensemble de l’enregistrement glaciaire. En effet, les valeurs moyennes de $R_{\text{NO}_3^-/\text{nssCa}^{2+}}$ sont de 35.3, 38.2 et 128.2 en périodes glaciaire, Holocène et au cours de l’Éémien respectivement (tableau 5.2). En période interglaciaire, la contribution acide dans le flux primaire est plus importante qu’en période glaciaire. Le flux primaire de nitrate reçu au cours de l’Éémien était plus acide qu’en période Holocène.

Pour ce qui concerne le flux archivé, nous observons qu’il est constitué de nitrate de calcium en période glaciaire et que nssCa$^{2+}$ est en excès pour neutraliser les ions NO$_3^-$ (tableau 5.2). Une petite contribution acide est observée au cours des périodes interglaciaires. Ces résultats sont cohérents avec l’observation de Legrand et al. (1999).

Ces observations confirment que les formes chimiques du nitrate dans les flux primaire et archivé sont de nature bien différentes. Au premier ordre, le nitrate primaire se dépose sous la
Chapitre 5. Interprétations qualitatives et quantitatives du profil de nitrate

Figure 5.6 – Rapports des flux de nitrate et de calcium non-marin, $R_{\text{NO}_3^-/nss\text{Ca}^{2+}}$ pour les flux primaires (points noirs, triangles rouges et carrés bleus représentant les périodes glaciaires, Holocène et Éémien) et archivés (cercles, triangles et carrés blancs représentant les périodes glaciaires, Holocène et Éémien), en fonction de la température relative locale de surface. La ligne pointillée représente le rapport massique du nitrate de calcium pur (3.1).

forme acide, ce qui serait compatible avec des variations de flux primaire liées à des variations de flux de nitrate d’origine stratosphérique. En effet, le nitrate se trouve sous la forme de HNO₃ dans les PSCs. Un nitrate primaire sous forme acide n’est toutefois pas incompatible avec des variations de flux primaire liées à des variations de flux de transport longue distance. En effet, HNO₃ pourrait se trouver collé sur les particules transportées (telles que des poussières) et la masse de nitrate transportée serait alors indépendante de la masse de calcium non-marin.

Nos observations montrent cependant que le nitrate archivé a généralement une composition chimique proche du nitrate de calcium. Nous proposons donc le mécanisme suivant : le flux primaire est essentiellement sous la forme acide et il n’est pas possible, à ce stade, de déterminer la source primaire de nitrate qui prédomine au cours du cycle glaciaire et demi. Après le dépôt de ce flux primaire, le recyclage a lieu en surface sous l’effet de la photolyse. Tant que la composante du nitrate est majoritairement acide, l’efficacité de la photolyse (représentée par le rendement
5.3 Reconstruction de l’intensité du recyclage sur la base des taux d’accumulation mesurés

<table>
<thead>
<tr>
<th>Flux</th>
<th>R_{\text{NO}_3}/\text{nssCa}^2+</th>
<th>Glacial</th>
<th>Holocene</th>
<th>Eemian</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPI</td>
<td>35.3</td>
<td>38.2</td>
<td>128.2</td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>1.8</td>
<td>4.2</td>
<td>4.3</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.2 – Tableau comparatif des valeurs moyennes de $R_{\text{NO}_3}/\text{nssCa}^2+$ obtenues pour les flux primaire et archivé de nitrate et les périodes glaciaire, Holocène et Éémien.

Quantique Φ) est importante. À mesure que du nitrate est exporté, la forme chimique du nitrate restant dans la neige se rapproche de la forme saline. Celle-ci limiterait alors l’efficacité de la photolyse, i.e. le rendement quantique (Φ) serait plus faible.

5.3 Reconstruction de l’intensité du recyclage sur la base des taux d’accumulation mesurés

5.3.1 Méthode

Dans la section 4.5.3.1, nous avons montré que l’intensité du recyclage était principalement contrôlée par le rendement quantique (Φ), le taux d’accumulation de neige (A), le paramètre d’effet de cage (f_{cage}) et le cycle annuel de colonne d’ozone, dans les conditions testées par le modèle TRANSITS. Dans les conditions actuelles et pour un cycle annuel moyen de colonne d’ozone, nous avons également démontré que le modèle était capable de reproduire la variabilité spatiale du $\delta^{15}\text{N}$ dans le nitrate archivé ($\delta^{15}\text{N}_{\text{FA}}$) en Antarctique de l’Est. Dans cette partie, nous poursuivons l’utilisation du modèle TRANSITS dans le cas du scénario Vk-FPI pour reproduire $\delta^{15}\text{N}_{\text{FA}}$ dans la carotte de glace de Vostok. Ceci est réalisé sous l’hypothèse que les taux d’accumulation estimés par Suwa and Bender (2008) sont robustes. Comme précédemment, les taux d’accumulation en entrée du modèle TRANSITS (9, 15, 20, 25, 30, 40, 50, 100 kg.m$^{-2}$.a$^{-1}$) sont choisis pour contenir la gamme de taux d’accumulation estimés à partir de Suwa and Bender (2008) pour nos 64 échantillons (entre 9.9 et 27.5 kg.m$^{-2}$.a$^{-1}$).
5.3.2 Résultats

La figure 5.7 montre les données de $\delta^{15}N_{FA}$ observées dans la carotte de glace de Vostok et celles simulées par le modèle TRANSITS. Comme précédemment, nous distinguons les échantillons de périodes glaciaires à ceux des périodes Holocène et de l’Éémien. Cette figure montre d’importantes différences entre les données observées et simulées. Le modèle surestime généralement $\delta^{15}N_{FA}$ sur l’ensemble de l’enregistrement glaciaire. Seule la période de l’Éémien semble bien reproduite.

![Diagramme](image)

Figure 5.7 – Comparaison des données de Vostok et des simulations du modèle TRANSITS dans le cas du scénario Vk-FPI. Le $\delta^{15}N$ dans le nitrate archivé ($\delta^{15}N_{FA}$) est comparé à l’inverse du taux d’accumulation (1/A). Les points noirs, triangles rouges et carrés bleus représentent respectivement les échantillons en périodes glaciaires, Holocène et Éémien. La flèche noire représente un exemple de calcul de la grandeur $\delta^{15}N_{FA}(\text{sim.} - \text{obs.}) = \delta^{15}N_{FA}(\text{sim.}) - \delta^{15}N_{FA}(\text{obs.})$.
5.3.3 Discussion

Nous avons vu précédemment que la température locale de surface et les taux d’accumulation sont bien corrélés (panneau a. de la figure 3.1, page 79). Nous avons également montré que δ\(^{15}\)N\(_{FA}\) était très faiblement corrélé avec ΔT (figure 3.2.2, page 81). Les résultats que nous présentons sur la figure 5.7 montrent que les variations passées du taux d’accumulation ne sont pas suffisantes pour expliquer celles de δ\(^{15}\)N\(_{FA}\). Il s’agit là d’une autre expression de la faible corrélation entre δ\(^{15}\)N\(_{FA}\) et ΔT (observée sur la figure 3.2.2, page 81).

Pour pouvoir discuter de l’origine de cette observation, nous définissons la grandeur δ\(^{15}\)N\(_{FA}\)(sim. − obs.) qui représente la différence entre les δ\(^{15}\)N\(_{FA}\) simulé et observé : δ\(^{15}\)N\(_{FA}\)(sim. − obs.) = δ\(^{15}\)N\(_{FA}\)(sim.) − δ\(^{15}\)N\(_{FA}\)(obs.). La grandeur δ\(^{15}\)N\(_{FA}\)(sim.) est calculée à partir du taux d’accumulation de chaque échantillon et des données simulées par TRANSITS. La figure 5.7 montre un exemple de calcul de δ\(^{15}\)N\(_{FA}\)(sim. − obs.).

La figure 5.8 représente les variations de δ\(^{15}\)N\(_{FA}\)(sim. − obs.) en fonction de la température relative locale de surface. δ\(^{15}\)N\(_{FA}\)(sim. − obs.) et ΔT sont fortement anti-corrélées (r = 0.92, n = 64). Par ailleurs, en période Éémien, la moyenne de δ\(^{15}\)N\(_{FA}\)(sim. − obs.) est de 48 \(\%\), ce qui signifie que le modèle reproduit généralement bien les valeurs de δ\(^{15}\)N\(_{FA}\) observées. Au contraire, la moyenne de δ\(^{15}\)N\(_{FA}\)(sim. − obs.) est de 251 \(\%\) au cours de l’Holocène.

L’observation de l’anti-corrélation entre δ\(^{15}\)N\(_{FA}\)(sim. − obs.) et ΔT suggère qu’un processus lié à la température limite l’intensité du recyclage du nitrate. En d’autres termes, à mesure que la température diminue, tout se passe comme si l’intensité du recyclage était modérée et inversément pour les températures plus chaudes de l’Éémien. Afin de mieux contraindre le processus à l’oeuvre dans la limitation de l’intensité du recyclage en période glaciaire, nous identifions les variables liées à la température ou aux conditions environnementales rencontrées en période glaciaire et qui pourraient avoir un impact sur l’intensité du recyclage :

- la masse volumique de la neige déposée,
- la pénétration de la lumière dans la neige,
- le rendement quantique (Φ),
Figure 5.8 – Différence entre les $\delta^{15}N$ du nitrate archivé simulé et observé ($\delta^{15}N_{FA}(\text{sim.} - \text{obs.})$) en fonction de la température relative locale de surface. Les points noirs, triangles rouges et carrés bleus représentent respectivement les échantillons en périodes glaciaires, Holocène et Éémien. La ligne tiretée représente l’ajustement linéaire à l’ensemble des données.

– les conditions d’export.

Pour explorer l’impact des variations de masse volumique de la neige sur $\delta^{15}N_{FA}$, nous estimons dans un premier temps les changements d’épaisseur de neige qui auraient été nécessaires pour reproduire les mesures de $\delta^{15}N_{FA}$ à l’aide du modèle TRANSITS. Pour ce faire, nous reprenons la figure 5.7 et estimons quelle devrait avoir été l’accumulation de neige pour que les $\delta^{15}N_{FA}$ observés et simulés concordent. Ceci revient à translater horizontalement les points modélisés. Dans ce paragraphe, nous ne donnons pas de résultats pour l’ensemble des données mais raisonnons uniquement en terme de variations extrêmes. Nous calculons ainsi des variations extrêmes de taux d’accumulation comprises entre -3 et $+271 \%$. En fait, nous supposons, comme précédemment, que les taux d’accumulation estimés par Suwa and Bender (2008) sont robustes. Ainsi, les variations d’épaisseurs annuelles de neige (entre -3 et $+271 \%$) seraient en réalité dûes à des variations de masse volumique de neige. La masse volumique aurait donc dû avoir
5.3. Reconstruction de l’intensité du recyclage sur la base des taux d’accumulation mesurés

varié entre −69 et +3 %. Si on prend l’exemple du dernier maximum glaciaire (LGM, ΔT ≈ -8 K), on obtient que la masse volumique a varié de −69 %, i.e. ρ était plutôt de l’ordre de 100 kg.m⁻³. Afin de déterminer si de tel changements sont réalisistes, nous employons la formulation simple utilisée par Ligtenberg et al. (2011) dans un modèle de densification du névé antarctique :

$$\rho_{surf} = a \times T_{surf} + b,$$

où ρ_{surf} est la masse volumique de la neige de surface (kg.m⁻³), T_{surf} est la température de surface (en Kelvin), a = 1.52 kg.m⁻³.K⁻¹ et b est un paramètre qui dépend de la vitesse du vent proche de la surface et de l’accumulation moyenne. Si on se place dans le cas du LGM (ΔT ≈ -8 K par rapport à la température actuelle, 218 K), une telle variation de température impliquerait une variation de la masse volumique de neige de −5.6 %.

Cette variation de masse volumique va dans le même sens des variations que nous cherchons à expliquer mais son amplitude est 20 fois trop faible. Nous concluons donc que la masse volumique de la neige ne peut pas, à elle seule, expliquer les variations d’intensité de recyclage observées.

Une autre explication de la différence importante observée entre les simulations et les observations en période glaciaire nécessiterait des changements dans la pénétration de la lumière dans la neige. Pour reproduire les δ¹⁵NFA plus faibles observés en périodes d’extrêmes glaciaires, il faudrait que la zone photique soit réduite, i.e. le paramètre d’atténuation (e-folding, η) devrait être plus faible. Pour ce faire, il faudrait une absorption et/ou une diffusion du flux actinique plus importantes. D’après Lee-Taylor and Madronich (2002), l’absorption est dominée par la présence de black carbon (BC). À notre connaissance, l’étude du BC couvrant la période la plus longue est celle de Chylek et al. (1992) à la station Byrd (80°01’S, 119°32’O, altitude 1553 m, température moyenne −19 °C) en Antarctique de l’Ouest. Elle couvre la période d’il y a 13 000 à 700 années et montre que les concentrations de BC comprises entre 0 et 0.2 ng.g⁻¹ entre il y a 11 et 13 milliers d’années et entre 0.2 et 0.8 ng.g⁻¹ d’il y a 11 milliers d’années. Bien que la période étudiée par Chylek et al. (1992) ne couvre pas le dernier maximum glaciaire, nous faisons l’hypothèse que les concentrations de BC devaient être faibles au cours du LGM comparativement à la période Holocène. Les variations de concentrations de BC ne seraient ainsi pas responsables de la diminution de l’absorption du flux actinique dans la neige en périodes
d’extrêmes glaciaires. Les variations de concentration de nitrate dans la neige pourraient aussi avoir eu un impact sur la pénétration du rayonnement UV dans la neige. Dans les conditions actuelles à Dôme C, le terme de diffusion de la lumière (σ_{scatt}) domine de 5 ordres de grandeur le terme d’absorption (σ_{abs}^+, composés des effets de l’absorption de l’UV par le nitrate ainsi que d’autres absorbeurs comme le BC) d’après le tableau 4.1 (page 96). En périodes d’extrêmes glaciaires, les concentrations de nitrate archivées dans la neige sont un ordre de grandeur plus importante en période glaciaire qu’en période interglaciaire. Dans ces conditions, le terme de diffusion dominerait toujours la pénétration de la lumière dans la neige et les variations de concentrations de nitrate dans la neige n’auraient pas d’impact significatif sur ce processus. De futures études devront donc plutôt se pencher sur les variations du terme de diffusion. Celui-ci est fonction de la taille des grains de neige (France et al., 2011) et il faudra tester la sensibilité de cette variable aux variations de températures observées sur le dernier cycle glaciaire et demi.

Le rendement quantique (Φ) de la photolyse du nitrate pourrait avoir changé au cours des âges glaciaires. Pour expliquer les différences observées entre les δ^{15}NFA simulés et observés en période glaciaire, il faudrait invoquer un rendement quantique plus faible à ces périodes. Ceci pourrait être vraisemblable compte-tenu de la sensibilité de Φ à la température telle que l’on observée Chu and Anastasio (2003) dans la gamme 239–318 K : Φ diminue lorsque la température diminue. Une possibilité complémentaire serait liée à la forme chimique du nitrate qui pourrait avoir un impact sur Φ. Pour étudier cela, nous représentons δ^{15}NFA(sim. – obs.) en fonction de la forme chimique du nitrate dans le flux primaire reçu à Vostok, telle que nous l’avons estimée dans la section 5.2.4 (figure 5.9). Cette figure montre une anti-corrélation entre δ^{15}NFA(sim. – obs.) et $R_{\text{NO}_3^-/nssCa^{2+}}$. Lorsque δ^{15}NFA(sim. – obs.) est positif, $R_{\text{NO}_3^-/nssCa^{2+}}$ se rapproche ou devient même plus faible que le rapport massique du nitrate de calcium pur (3.1). Ceci suggère que la forme chimique du nitrate limite en partie l’intensité du recyclage du nitrate. La présence de calcium semblerait donc jouer sur Φ qui serait ainsi plus faible en présence de nssCa$^{2+}$. Nous proposons que la photolyse du nitrate est active quelque soit la forme chimique du nitrate (comme conclu à la section 5.1.3) mais que la présence de quantités plus importantes
de nssCa\(^{2+}\) en période glaciaire pourrait avoir limité la mobilité du nitrate dans les grains de neige, i.e. elle pourrait avoir limité le transfert du nitrate d’un réservoir difficilement photolysable (au coeur des grains) vers un réservoir facilement photolysable (en surface des grains). Ceci est donc compatible avec les travaux de Wolff (1995), Legrand et al. (1999) et Röthlisberger et al. (2000a) qui suggéraient que le nitrate sous forme de nitrate de calcium était moins sensible aux processus de perte.

Figure 5.9 – Différence entre les \(\delta^{15}N_{FA}\) simulé et observé (\(\delta^{15}N_{FA}(\text{sim.} – \text{obs.}) = \delta^{15}N_{FA}(\text{sim.}) – \delta^{15}N_{FA}(\text{obs.})\)) en fonction du rapport \(R_{\text{NO}_3^-/nssCa^{2+}}\) dans le flux archivé. Les points noirs, triangles rouges et carrés bleus représentent respectivement les périodes glaciaires, Holocène et Éémien). Les lignes pointillées horizontale et verticale représentent respectivement \(\delta^{15}N_{FA}(\text{sim.} – \text{obs.}) = 0\) ‰ et le rapport massique du nitrate de calcium pur (3.1).

Dans cette partie, nous avons essayé de reconstruire l’intensité du recyclage (qui est représentée par \(\delta^{15}N_{FA}\) étant donné notre hypothèse sur une qualité constante du flux actinique) et avons montré que les variations de taux d’accumulation ne suffisent pas à expliquer les variations de \(\delta^{15}N_{FA}\) observées. Il semble qu’un processus lié à la température ait un fort impact limitant sur l’intensité du recyclage en période glaciaire. Nous avons donc discuté de l’impact des variations de la masse volumique de la neige, de la pénétration de la lumière dans la neige ainsi que du...
rendement quantique. Ceci nous a permis de borner l’impact de ces différentes variations et nous avons montré que la quantité de calcium non-marin pouvait avoir un impact important sur le rendement quantique de la photolyse et donc sur δ^{15}N$_{FA}$. Pour de futures études, il ne faut toutefois pas perdre de vue que l’impact de la combinaison des variables suivantes doit être testé : la quantité d’UV reçue en surface modulée par la variabilité solaire et les paramètres de Milankovitch, la présence d’aérosols et de nuages qui ont été négligés jusque-là, le vent et son impact sur l’export et la diffusion du rayonnement UV dans la neige en fonction de la taille des grains.

5.4 Interprétation des variations de Δ^{17}O

5.4.1 Méthode

Nous avons montré au chapitre précédent que Δ^{17}O$_{FA}$ reflète les conditions des cyclage et oxydation locaux et estivaux de NO$_2$ et l’effet de cage pour des intensités de recyclage importantes, i.e. $R_{FA/FPI} < 0.2$. Pour de telles intensités de recyclage, Δ^{17}O$_{FA}$ peut également être défini par la grandeur Δ^{17}O$_{LO+CE}$ qui signifie bien que le Δ^{17}O du nitrate archivé prend une valeur contrôlée par les cyclage et oxydation locaux et estivaux de NO$_2$ (Δ^{17}O$_{LO}$) ; cette valeur est ensuite modifiée par l’effet de cage qui a tendance à la diminuer en fonction de l’intensité du recyclage. Dans la partie précédente, nous sommes également parvenus à déconvoiler les effets du cyclage/oxydation de ceux de l’effet de cage afin d’extraire la grandeur Δ^{17}O$_{LO}$ qui est d’intérêt puisqu’elle permet de décrire les conditions locales et estivales du cyclage et de l’oxydation de NO$_2$.

Dans cette partie, Δ^{17}O$_{LO}$ est obtenue suivant une approche identique à celle de la section 4.5.3.2 où nous avons montré que l’impact de l’oxydation locale estivale (i.e. la valeur de Δ^{17}O$_{LO}$) atteint un plateau pour $R_{FA/FPI} < 0.2$. Sur la base du scénario V-K-FPI, nous utilisons donc le modèle TRANSITS sans effet de cage ($f_{cage} = 0.0$) et pour $A = 20$ kg.m$^{-2}$.a$^{-1}$. Ces conditions nous permettent d’obtenir $R_{FA/FPI} < 0.2$ et nous déterminons la valeur de Δ^{17}O$_{LO}$:
5.4. Interprétation des variations de Δ^{17}O

32.3 %$, la signature des cyclage et oxydation locaux et estivaux de NO$_2$. Nous notons que cette valeur est légèrement différente de celle obtenue dans l'exemple du chapitre précédent 32.0%).

Ceci s'explique par les différentes colonnes d'ozone (350 DU) dans le cas du scénario Vk-FPI comparativement au scénario référence du chapitre précédent (300 DU).

Dans ce qui suit, nous utilisons les résultats des simulations obtenues avec le scénario Vk-FPI dans lequel le paramètre f_{cage} est fixé à la valeur 0.1. Ceci signifie que nous prenons un paramètre d'effet de cage constant à travers les âges glaciaires, i.e. nous faisons l'hypothèse qu'il est indépendant de la température. Le modèle nous permet d'obtenir Δ^{17}O$_{FA}$ en fonction de $\ln(R_{FA/FPI})$ pour chaque simulation (pour rappel, nous avons fait varier l'accumulation de neige pour obtenir différentes intensités de recyclage dans le scénario Vk-FPI). Nous pouvons ainsi extraire Δ^{17}O$_{CE}$ pour $R_{FA/FPI} < 0.2$ (ces données ne sont pas montrées). Δ^{17}O$_{CE}$ représente la diminution du Δ^{17}O du nitrate archivé sous effet de cage.

Dans le cas de la carotte de glace de Vostok, nous utilisons les valeurs de $R_{FA/FPI}$ déterminées à l'aide du scénario Vk-FPI à la partie 5.2. 56 de nos 64 échantillons satisfont à la condition $R_{FA/FPI} < 0.2$. Pour ceux-ci, nous déterminons Δ^{17}O$_{CE}$ et corrigeons les valeurs de Δ^{17}O$_{FA}$ pour obtenir Δ^{17}O$_{LO}$: Δ^{17}O$_{LO} = \Delta^{17}$O$_{FA} - \Delta^{17}$O$_{CE}$.

5.4.2 Résultats

La figure 5.10 montre les valeurs de Δ^{17}O$_{LO}$ obtenues en fonction de l'âge de la glace. Les valeurs de Δ^{17}O$_{CE}$ que nous avons calculées sont comprises entre 2.9 et 6.3 % sur l'ensemble de l'enregistrement avec une valeur moyenne de 4.4 %. Il résulte de ceci des valeurs de Δ^{17}O$_{LO}$ supérieures à 40 % en période glaciaire tandis que les valeurs minimales sont obtenues en période Holocène (28 %). Nous observons par ailleurs que Δ^{17}O$_{LO}$ au cours de l'Éémien était plus élevé (33 %) qu'en période Holocène.
FIGURE 5.10 – $\Delta^{17}O_{LO}$, signature isotopique des cyclage et oxydation locaux et estivaux de NO$_2$ au site de Vostok et au cours des 150 000 dernières années, dans le cas du scénario Vk-FPI.
a. température locale relative (Petit et al., 1999) et taux d’accumulation (Suwa and Bender, 2008). b. flux primaire (FPI) reconstruit et flux archivé (FA) mesuré dans la carotte de glace de Vostok. c. $\Delta^{17}O_{LO}$ ($\Delta^{17}O_{FA}$ corrigé de l’effet de cage) et $\Delta^{17}O_{FA}$. Note : $\Delta^{17}O_{LO}$ est uniquement calculée pour les échantillons qui satisfont à la condition $R_{FA/FPI} \leq 0.2$.

5.4.3 Discussion

Afin d’observer les variations climatiques des cyclage et oxydation locaux et estivaux de NO$_2$ à Vostok, nous représentons la variable $\Delta^{17}O_{LO}$ en fonction de la température relative locale de surface (figure 5.11). Cette figure montre que $\Delta^{17}O_{LO}$ et ΔT sont anti-corrélées ($r = 0.69$, n =
5.4. Interprétation des variations de \(\Delta^{17}O \)

Pour pouvoir tirer une conclusion qualitative de ce résultat, nous étudions, dans un premier temps, l’impact de la température sur l’anomalie isotopique portée par l’ozone.

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>(\Delta^{17}O(\text{strato. } \text{O}_3)) (%)</th>
<th>(T_{\text{derived}}) (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22–26</td>
<td>32</td>
<td>220–230</td>
</tr>
<tr>
<td>≈ 28</td>
<td>35</td>
<td>235–240</td>
</tr>
<tr>
<td>30–34</td>
<td>37</td>
<td>245–260</td>
</tr>
<tr>
<td>Mean</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Table 5.3 – Compilation de l’anomalie isotopique portée par l’ozone stratosphérique (\(\Delta^{17}O(\text{strato. } \text{O}_3) \)) dans trois gammes d’altitudes (adapté de Mauersberger *et al.*, 2001).

Dans une étude de synthèse, Mauersberger *et al.* (2001) ont reporté et critiqué l’ensemble des données isotopiques mesurées dans l’ozone stratosphérique. Ces mesures sont compilées dans le tableau 5.3 où figurent les valeurs de \(\Delta^{17}O(\text{strato. } \text{O}_3) \) en fonction de l’altitude de collecte et des gammes de températures correspondantes. Le tableau 5.3 montre que \(\Delta^{17}O(\text{strato. } \text{O}_3) \) est en moyenne plus faible lorsque la température diminue. Ces valeurs et observations ont été confirmées par des essais en laboratoire dans des conditions similaires (*Morton et al.*, 1990). La température et la pression déterminent la valeur de \(\Delta^{17}O \) lors de la formation de l’ozone. En conditions de pressions stratosphériques, seule la température contrôle la composition isotopique de \(\text{O}_3 \) (*Mauersberger et al.*, 2001), ce qui explique l’effet observé avec l’altitude (tableau 5.3). L’effet de la température sur \(\Delta^{17}O(\text{O}_3) \) est par ailleurs utilisé pour générer de l’ozone avec différentes anomalies isotopiques (*e.g.* Savarino *et al.*, 2008). L’anomalie isotopique portée par le nitrate est héritée de l’ozone (*Thiemens*, 2006). Ainsi, toute variation de \(\Delta^{17}O(\text{O}_3) \) avec la température aurait un impact sur \(\Delta^{17}O(\text{NO}_3^-) \) (toutes autres conditions étant égales par ailleurs). L’effet de la température sur \(\Delta^{17}O(\text{O}_3) \) et donc sur \(\Delta^{17}O(\text{NO}_3^-) \) va dans le sens opposé à nos observations de la figure 5.11. L’anti-corrélation observée entre \(\Delta^{17}O_L \) et \(\Delta T \) est donc bien réelle et ne peut être expliquée par des changements de \(\Delta^{17}O(\text{O}_3) \) liés à la température. Des études sont en cours dans le cadre de la thèse de W. C. Vicars au LGGE pour déterminer le \(\Delta^{17}O \) de l’ozone troposphérique dans différentes conditions environnementales. Les résultats de ces travaux permettront sans doute d’affiner les observations de Mauersberger *et al.* (2001).
et de les étendre à l’ozone troposphérique.

Afin d’interpréter les données de la figure 5.10, nous calculons dans un premier temps les valeurs de $\Delta^{17}O_{LO}$ qui seraient obtenues selon l’origine de l’ozone impliqué dans les cyclage et oxydation locaux et estivaux de NO$_2$. Dans la section 1.3.2.2, nous avons montré que l’ozone dans la troposphère et la stratosphère possédaient les signatures isotopiques suivantes : $\Delta^{17}O$(tropo. O$_3$) = 25 %$ et $\Delta^{17}O$(strato. O$_3$) = 35 %. Le tableau 5.4 montre les valeurs $\Delta^{17}O_{LO}$ obtenues selon l’origine de l’ozone ainsi que selon le chemin réactionnel (chimie nocturne pure ou chimie diurne pure). Les valeurs pour chaque chemin réactionnel ont été calculées suivant l’approche développée dans la section 1.3.2.2. Dans le cas de la chimie diurne, nous avons utilisé l’approche de Morin (2008) pour le calcul de la valeur maximale de $\Delta^{17}O$(OH) selon que OH soit produit à partir d’ozone troposphérique ou stratosphérique.

<table>
<thead>
<tr>
<th>Origin</th>
<th>$\Delta^{17}O_{LO}$ (night)</th>
<th>$\Delta^{17}O_{LO}$ (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troposphere</td>
<td>35.0</td>
<td>27.2</td>
</tr>
<tr>
<td>Stratosphere</td>
<td>49.0</td>
<td>38.1</td>
</tr>
</tbody>
</table>

Table 5.4 – Tableau comparatif des valeurs de $\Delta^{17}O_{LO}$ obtenues selon l’origine de l’ozone et selon le chemin réactionnel (chimie nocturne pure ou chimie diurne pure).

En périodes d’extrêmes glaciaires ($\Delta T < -6 ^\circ C$), $\Delta^{17}O_{LO}$ sort de la gamme de $\Delta^{17}O$ obtenue lorsque le seul ozone troposphérique est impliqué dans les cyclage et oxydation locaux et estivaux de NO$_2$: $\Delta^{17}O_{LO}$ est généralement plus élevé que la limite haute imposée par l’ozone d’origine troposphérique (voir tableau 5.4). Il semble ainsi que la seule chimie troposphérique ne puisse pas expliquer les variations de $\Delta^{17}O_{LO}$ observées à Vostok au cours des 150 000 dernières années. Il est donc nécessaire d’invoquer l’implication d’ozone d’origine stratosphérique pour expliquer les variations de $\Delta^{17}O_{LO}$ observées. Cette implication se ferait de manière croissante avec la décroissance de la température comme l’indique l’anti-corrélation observée entre $\Delta^{17}O_{LO}$ et ΔT. Nous notons par ailleurs qu’en périodes d’extrêmes glaciaires ($\Delta T < -6 ^\circ C$), $\Delta^{17}O_{LO}$ atteint une valeur moyenne de 37.8 %, qui est très proche de la valeur de $\Delta^{17}O_{LO}$ estimée dans le cas d’une chimie diurne pure impliquant l’ozone stratosphérique. Ceci suggère que l’ozone impliqué
5.4. Interprétation des variations de Δ^{17}O dans les cyclage et oxydation locaux et estivaux de NO$_2$ en période d’extrêmes glaciaires est principalement d’origine stratosphérique.

La figure 5.11 montre Δ^{17}O$_{LO}$ en fonction de la température relative locale de surface. Les points noirs, triangles rouges et carrés bleus représentent respectivement les échantillons en périodes glaciaires, Holocène et Éémien. La ligne tiretée représente l’ajustement linéaire à l’ensemble des données. Les zones jaune et rouge représentent les gammes de Δ^{17}O$_{LO}$ obtenues dans le cas de l’implication respective de l’ozone troposphérique et stratosphérique. Note : seuls les échantillons pour lesquels $R_{FA/FPI} > 0.2$ sont représentés.

La figure 5.12 montre Δ^{17}O$_{LO}$ tracé en fonction du flux primaire de nitrate reçu à Vostok.
et calculé précédemment. Nous observons une forte anti-corrélation ($r = 0.74$, $n = 56$) entre $\Delta^{17}O_{LO}$ et FPI. Au chapitre précédent, nous n’avons pas su déterminer l’origine de l’augmentation de FPI observée au cours des périodes d’extrêmes glaciaires. Dans le paragraphe précédent, nous avons proposé que les valeurs de $\Delta^{17}O_{LO}$ que nous avons calculées plaident pour des échanges stratosphère/troposphère plus importants au cours des périodes d’extrêmes glaciaires. Si le transfert d’ozone est plus facile entre ces deux couches, il se peut également qu’il le soit pour les PSCs. C’est pourquoi nous proposons le scénario suivant : en périodes d’extrêmes glaciaires, les profils verticaux de températures atmosphériques sont moins marqués et plus froids, à l’instar de ce qui est observé en hiver au Dôme C par exemple (voir figure 1.6, page 14). Dans ces conditions, la subsidence de masses d’air stratosphérique dans la troposphère serait plus fréquente ce qui encouragerait l’incorporation d’ozone stratosphérique ainsi que de PSCs dans la troposphère. En outre, les conditions de températures seraient telles que ces derniers seraient plus stables à plus basses altitude.

Figure 5.12 – $\Delta^{17}O_{LO}$ en fonction du flux primaire de nitrate. Les points noirs, triangles rouges et carrés bleus représentent respectivement les échantillons en périodes glaciaires, Holocène et Éémien. La ligne tiretée représente l’ajustement linéaire à l’ensemble des données.

Pour finir, nous avons constamment observé des différences entre les conditions au cours
5.4. Interprétation des variations de $\Delta^{17}\text{O}_{\text{LO}}$

des deux périodes interglaciaires de notre enregistrement. Les figures 5.11 et 5.12 confirment ces observations et montrent que $\Delta^{17}\text{O}_{\text{LO}}$ de la période Éémien dévie significativement de la signature imposée par la chimie diurne pure et l’implication d’ozone troposphérique. Par ailleurs, les flux primaires estimés sont également plus importants pour cette période que pour l’Holocène. Ces observations suggèrent que les conditions de cyclage/oxydation de NO$_2$ étaient similaires aux périodes moyennes glaciaires ($-6 \leq \Delta T \leq -4 \degree \text{C}$) et au cours de l’Éémien, ce qui est contradictoire avec les conditions environnementales caractérisant cette période interglaciaire (encore plus chaude que l’Holocène). De futures études devront se pencher sur ces contradictions apparentes afin de comprendre les conditions environnementales différentes qui auraient caractérisé les périodes Holocène et Éémien.

Nous rappelons que les résultats obtenus dans cette partie l’ont été après avoir fait le choix du scénario Vk-FPI, i.e. où la colonne d’ozone a été prise constante et égale à 350 DU. Nous rappelons que cette valeur constituerait une limite haute si les variations du flux actinique extra-solaire n’ont pas varié au cours des 150 000 années. Nous notons ainsi que nos conclusions auraient été similaires, si ce n’est renforcées, par le choix du scénario Vk-O$_3$ avec une colonne d’ozone qui pourrait prendre des valeurs plus faibles. En effet, dans le cas de ce scénario, il aurait fallu une colonne d’ozone plus variable et plus faible pour reproduire les données isotopiques représentées dans le graphe modifié de Rayleigh. Ceci aurait mené à des rapports $R_{\text{FA/FPI}}$ encore plus importants, i.e. à un effet de cage plus important qui aurait mené à des valeurs de $\Delta^{17}\text{O}_{\text{LO}}$ également plus importantes. Nous rappelons également que l’hypothèse principale de cette dernière partie est l’indépendance de l’effet de cage vis-à-vis de la température. Dans de futurs travaux, il sera nécessaire de mieux contraindre ce paramètre pour pouvoir proposer la reconstruction de $\Delta^{17}\text{O}_{\text{LO}}$ la plus robuste. Toutefois, si l’effet de cage était nul, nous remarquons que $\Delta^{17}\text{O}_{\text{LO}}$ serait de l’ordre de 35 $\%$ au cours des périodes d’extrêmes glaciaires (figure 5.10). Cette valeur correspond à une chimie pure nocturne impliquant de l’ozone d’origine troposphérique (tableau 5.4). Ceci serait incompatible avec la nature même de la grandeur $\Delta^{17}\text{O}_{\text{LO}}$ qui représente la valeur de $\Delta^{17}\text{O}$ imprimée par les cyclage et oxydation locaux et estivaux de NO$_2$. Dans ce cas
extrêmes, il faudrait également invoquer la contribution de l’ozone stratosphérique pour expliquer nos observations.

Pour finir, nous faisons remarquer que nos conclusions soulèvent une contradiction. Pour rappel, nous avons montré que les données isotopiques de périodes d’extrêmes glaciaires s’alignaient sur une droite dont la pente représenterait une qualité de flux actinique imposée par une colonne d’ozone de l’ordre de 1000 DU. Nous avons jugé cette valeur peu vraisemblable compte-tenu de la colonne d’ozone mesurée avant l’apparition du trou d’ozone au siècle dernier (de l’ordre de 350 DU au Pôle Sud). Or, en cette fin de partie, nous avons montré que notre reconstruction des valeurs de $\Delta^{17}O_{LO}$ en périodes d’extrêmes glaciaires montrent une contribution importante de l’ozone stratosphérique au niveau du sol. Nous avons relié cela à des intrusions plus fréquentes d’air stratosphérique dans la troposphère à ces périodes. Ainsi, à ces époques, des intrusions plus fréquentes constituaient un puits plus important pour l’ozone stratosphérique. Nous nous attendrions donc à ce que ce mécanisme produse une diminution de la colonne d’ozone, ce qui serait incompatible avec nos observations d’une qualité du flux actinique reçue en surface liée à une colonne d’ozone de 1000 DU. À ce stade, nous sommes face à un raisonnement circulaire. Des travaux supplémentaires au laboratoire sont nécessaires pour caractériser avec précision les fractionnements isotopiques liés à la photolyse du nitrate et l’impact de la température sur ceux-ci. De même, le travail de modélisation développé au cours de cette thèse devra être combiné à des modèles de chimie de l’ozone stratosphérique et d’interactions stratosphère/troposphère.

5.5 Implications concernant le cycle de l’azote réactif en Antarctique

Dans cette dernière partie, nous discutons brièvement des conséquences de nos conclusions en ce qui concerne le cycle de l’azote réactif en Antarctique. En effet, dans des régions comme la région des vallées sèches de McMurdo (côte Antarctique, 77°28’S, 162°31’E), de faibles valeurs de $\delta^{15}N$ ont été observées dans le nitrate présent dans les sols. Michalski et al. (2005)
et Wada et al. (1981) ont ainsi mesuré des valeurs de δ^{15}N comprises entre -9.5 et -26.2 %.

Les explications avancées par ces auteurs pour expliquer des valeurs si négatives impliquaient le transport longue distance de nitrate (Wada et al., 1981) et l’influence de la stratosphère via sa dénitrification (Michalski et al., 2005). Ces deux possibilités ont été écartées sur la base de mesures atmosphériques (Savarino et al., 2007; Morin et al., 2009). Ces études ont en effet montré que le nitrate provenant du transport à longue distance ou de la stratosphère ne possède pas un δ^{15}N aussi faible.

Au chapitre précédent, nous avons montré que, dans les conditions modernes à Dôme C, le nitrate exporté possédait un δ^{15}N légèrement négatif (-2.7 %). Le modèle TRANSITS que nous avons développé et évalué nous a également permis de bien reproduire la variabilité spatiale du recyclage du nitrate observée à l’échelle de l’Antarctique de l’Est. Pour ce jeu de données, la variabilité spatiale des sites de la base Dumont d’Urville sur la côte à Vostok a été modélisée en faisant varier les taux d’accumulation. Pour chacun de ces ”sites” fictifs, nous avons extrait le flux exporté (FE) ainsi que δ^{15}N$_{FE}$ (δ^{15}N du flux de nitrate exporté annuellement) modélisés par TRANSITS. Ces données sont représentées sur la figure 5.13. Cette figure montre que δ^{15}N$_{FE}$ est minimal pour des sites à 700 km à l’intérieur du continent. Pour les sites plus proches de la côte (i.e. pour des taux d’accumulation croissants), δ^{15}N$_{FE}$ tend vers la valeur de -5 % qui a été fixée pour le flux primaire dans ce scénario réaliste. Ceci est dû au fait que le flux photolytique est faible et que l’essentiel du nitrate exporté provient directement du flux primaire (panneau b., figure 5.13. Nous rappelons en effet que $FE = f_{exp} \times (FPI + FP)$). La source de nitrate possédant δ^{15}N ≈ -20 % semble donc provenir du recyclage dans une zone distance de 700 km environ de la côte, c’est-à-dire sur le plateau (panneau c., figure 5.13). Cette observation est cohérente avec les propositions de Savarino et al. (2001) et Frey et al. (2009) qui proposaient que des sites aussi éloignés pouvaient contribuer au bilan du nitrate à DDU. Nous notons toutefois que les résultats présentés ici sont ceux de sites considérés indépendants. En effet, par simplicité, nous avons fait l’hypothèse que l’export de nitrate à chaque site était directement dirigé vers la côte sans qu’il n’impacte les sites intermédiaires. En réalité, l’export de nitrate depuis des sites
du plateau devrait contribuer à l’alimentation des sites plus proches de la côte avec un nitrate que l’on pourrait appeler “importé” lorsqu’on se place du point de vue du site proche de la côte. Une fraction du nitrate originellement déposé sur le plateau pourrait ainsi subir plusieurs cycles dépôt/photolyse/export à mesure qu’il se rapprocherait de la côte (Davis et al., 2008). Une étude future plus réaliste devra prendre cet effet en compte.

Figure 5.13 – Simulation du modèle TRANSITS de la côte (DDU) au plateau Antarctique pour le scénario réaliste et en conditions modernes. Seul l’accumulation de neige varie d’un ”site” à l’autre. Note : les sites simulés sont indépendants les uns des autres et le nitrate exporté l’est directement vers la côte. Panneau a. altitude de chaque site simulé. b. Flux exporté (FE) depuis chaque site. c. δ^{15}N du nitrate exporté (δ^{15}NFE).

Les conditions modernes prévalent également à l’échelle du cycle glaciaire et demi étudié dans ce travail. En effet, nous avons montré dans la partie 5.1, que la perte de nitrate par photolyse n’avait pas cessé au site de Vostok au cours des 150 000 années que recouvre l’enregistrement glaciaire étudié. Nous proposons que le recyclage avait également lieu à l’échelle du plateau Antarctique. Ainsi, un nitrate caractérisé par un δ^{15}N négatif pourrait avoir été exporté
5.5. Implications concernant le cycle de l’azote réactif en Antarctique

du plateau Antarctique vers la côte tout au long du dernier cycle glaciaire et demi. La côte Antarctique aurait ainsi été exposée à ce flux de nitrate à la signature bien spécifique.

Il est admis que la calotte glaciaire Antarctique se trouve dans les conditions d’épaisseur que nous connaissons de nos jours depuis près de 14 millions d’années (Mayewski et al., 2009, et les références associées). Dans leur étude du nitrate dans les sols des vallées sèches, Michalski et al. (2005) ont estimé l’âge de leurs échantillons à 7 millions d’années. Nous proposons donc que le recyclage observé à Vostok au cours des 150 000 dernières années peut être extrapolé à l’échelle du plateau Antarctique et sur une période de temps aussi longue que 7 millions d’années puisque la calotte glaciaire était proche des conditions d’épaisseurs actuelles. Pendant toute cette période de temps, le recyclage du nitrate à la surface du manteau neigeux sur les bords du plateau Antarctique aurait été à l’origine d’une source significative de nitrate pour les régions côtières. Une partie de ce nitrate à la signature isotopique en azote caractéristique (δ15N ≈ −20 %) se retrouverait dans les sols des régions côtières comme le montreraient les mesures de Michalski et al. (2005) et Wada et al. (1981). Le mécanisme décrit dans cette dernière partie est certainement trop simpliste à l’image de ce qui se passe en réalité. En effet, avant d’atteindre la côte, le nitrate exporté pourrait subir un ou plusieurs cycles dépôt/photolyse/export. Nous proposons toutefois que l’intérieur du continent Antarctique soit pris en compte dans le bilan de l’azote en Antarctique car une partie significative des flux primaires reçus sur le plateau Antarctique pourrait se retrouver exportée vers la côte où elle pourrait représenter une source d’azote additionnelle et précédemment ignorée, alimentant ainsi les écosystèmes marins et terrestres.
Chapitre 6

Conclusions et perspectives

Les archives glaciaires prélevées dans les calottes polaires ont permis d’obtenir des enregistrements continus des conditions environnementales passées couvrant plusieurs cycles climatiques (EPICA community members, 2004; Greenland Ice Core Project members, 2004). L’étude des carottes de glace a d’ores-et-déjà permis d’acquérir de bonnes informations sur les variables d’intérêt climatique telles que les teneurs en gaz à effet de serre ainsi que les fluctuations de température locale (Petit et al., 1999). En revanche, il existe à ce jour peu d’informations sur le comportement chimique de l’atmosphère impliquant l’activité de l’ozone.

Le nitrate est un des ions majeurs contenus dans les neiges et glaces d’Antarctique. Il est le produit de l’oxydation des NO$_x$ qui contrôlent la chimie de l’ozone. Les profils de nitrate dans les carottes de glaces ont donc été pressentis comme porteurs d’une information sur l’activité chimique de l’atmosphère dans le passé (Dibb et al., 1998). Malheureusement, le nitrate n’est pas piégé de manière irréversible dans la neige (Röthlisberger et al., 2000a). En effet, il subit des processus dont les natures peuvent être photochimique et physique altérant fortement les concentrations dans les premiers décimètres de neige aux sites de faibles accumulation de neige en Antarctique (Röthlisberger et al., 2000a). En période glaciaire, il a été avancé que le nitrate associé à des teneurs importantes de calcium non-marin limiterait sa ré-émission (Legrand et al., 1999). Cette mobilité du nitrate et de possibles facteurs limitant rendent l’interprétation de
l’enregistrement en nitrate dans les carottes de glace particulièrement délicate. À ce jour, le signal associé aux variations de la teneur en nitrate dans la glace antarctique n’a ainsi jamais pu faire l’objet d’une interprétation cohérente d’un point de vue climatique (Legrand et al., 1999).

La composition isotopique en oxygène du nitrate apporte des renseignements sur ses voies de formation dans l’atmosphère. En effet, le nitrate acquiert une anomalie isotopique ($\Delta^{17}O$) transmise par l’ozone au cours de ses différentes réactions de formation (Thiemens, 2006). $\Delta^{17}O(NO_3^{-})$ permet ainsi de tracer qualitativement la nature des mécanismes d’oxydation menant à la formation du nitrate (Michalski et al., 2004; Savarino et al., 2007; Morin, 2008; Morin et al., 2007a,b, 2008, 2009; Kunasek et al., 2008; Alexander et al., 2009). De récentes études isotopiques ont montré que la forte décroissance des concentrations de nitrate en surface était associée à un enrichissement exceptionnel en ^{15}N dans la fraction du nitrate restant dans la neige avec des valeurs de $\delta^{15}N$ pouvant atteindre 180 ‰ (Blunier et al., 2005).

Au cours de cette thèse, nous avons exploré pour la première fois les variations de la composition isotopique totale du nitrate (isotopes stables de l’oxygène et de l’azote), dans la carotte prélevée à Vostok sur le plateau Antarctique et couvrant plus d’un cycle glaciaire/interglaciaire. L’objectif de ce travail était d’apporter des éléments de réponse aux problématiques suivantes :

- La perte de nitrate à la surface du manteau neigeux du plateau Antarctique a-t-elle toujours eu lieu à l’échelle climatique ? Quels sont les mécanismes et les conditions environnementales qui les contrôlent ?
- La mesure de l’anomalie isotopique en oxygène $\Delta^{17}O$ du nitrate permet-elle de contraindre les voies de formation et/ou du nitrate dans les atmosphères passées ?
- Que représente la concentration de nitrate dans la glace ?
- Peut-on déduire une information climatique ou chimique à partir des isotopes stables au sein du nitrate ?

La réponse à ces questions a nécessité de mieux contraindre la fonction de transfert du nitrate à l’interface air/neige tant pour sa concentration que pour sa composition isotopique afin d’interpréter les données isotopiques de la carote de glace de Vostok. Pour ce faire, nous
avons collecté un total de 421 échantillons dans le continuum atmosphère/givre/neige et sur une zone géographique couvrant l’essentiel de l’Antarctique de l’Est. Le site du Dôme C, similaire à celui de Vostok, a été choisi pour le prélèvement de nitrate dans l’atmosphère, le givre de surface et la neige.

La méthode bactérienne a été choisie pour l’analyse de la composition isotopique du nitrate dans l’ensemble des échantillons. Même si cette méthode permet l’analyse de faibles quantités de nitrate (100 nmol), une étape de préconcentration est nécessaire pour les échantillons de neige et de glace d’Antarctique qui ont la particularité de contenir de faibles concentrations de nitrate (inférieures à 20 ng.g\(^{-1}\)). Nous avons donc dû requérir à une étape de préconcentration du nitrate, à l’aide d’une résine échangeuse d’ions. Dans le cas des échantillons de la carotte de glace de Vostok, une résolution d’échantillonnage de 30 années a été choisie afin de satisfaire aux contraintes liées à la quantité de matière nécessaire pour l’analyse isotopique et pour permettre de constituer un jeu de données cohérent en terme de représentation temporelle.

Développement d’un cadre pour l’interprétation quantitative du profil de nitrate dans la carotte de glace de Vostok : le modèle TRANSITS

Une présentation succincte des données isotopiques de la carotte de glace de Vostok nous a permis de montrer que les variations de \(\Delta^{17}\)O suivent celles du climat (représentées par les variations de la température relative locale de surface) alors qu’il n’en est pas le cas pour les variations \(\delta^{15}\)N. La gamme importante de variation de \(\delta^{15}\)N (88.6–316.5 \(^\circ\)) rappelle les valeursextraordinairement élevées mesurées par Blunier et al. (2005) et associées à la photolyse du nitrate par Frey et al. (2009). Elles nous ont permis de conclure que de tels processus ont toujours existé depuis 150 000 ans et que l’intensité de la photolyse (et donc l’intensité du recyclage) a varié au cours de cette période.

L’observation de la persistence du recyclage du nitrate à Vostok nous a encouragé à développer

TRANSITS a été confronté à des données isotopiques obtenues pour l’année 2009–2010 dans le nitrate dans l’atmosphère et le givre de surface à Dôme C. Nous avons montré que TRANSITS était capable de bien reproduire les données isotopiques mesurées à quelques différences près qui ont été attribuées à l’absence de représentation de certains mécanismes dans le modèle. TRANSITS est également capable de reproduire les valeurs extrêmes de la variabilité ainsi que les valeurs moyennes (archivées) des isotopes dans trois puits de neige collectés à Dôme C en 2007–2008. Il manque toutefois un mécanisme de diffusion du nitrate pour obtenir des profils aussi lisses que les observations. L’absence de ce mécanisme de diffusion n’empêche pourtant pas de reproduire les valeurs archivées qui sont directement comparables aux données issues de carottes de glace. Nous avons également montré que la tendance décroissante de Δ¹⁷O avec la profondeur était bien reproduite par le modèle et qu’elle était le résultat de la recombinaison de
NO2 et OH par effet de cage, confirmant ainsi les travaux de McCabe et al. (2007).

Dans ces conditions réalistes, le rendement quantique (Φ) a été fixé à la valeur de 0.05 molécules/photon−1 dans le modèle. Cette valeur se trouve entre les valeurs des expériences de Chu and Anastasio (2003) et de Zhu et al. (2010) (HNO3 adsorbé), ce qui semble indiquer que le nitrate dans la neige à Dôme C n’est pas entièrement adsorbé en surface et qu’une partie de celui-ci résiderait dans le grain où il serait plus difficile à photolyser. La comparaison des flux de NO2 simulés par TRANSITS et des flux mesurés au Dôme C au cours de l’été 2009–2010 montre une différence significative avec un flux simulé 81 fois plus important que le flux mesuré. Nous avons proposé que ceci était la conséquences des hypothèses fortes faites dans le modèle TRANSITS concernant l’oxydation de NO2. Une oxydation préférentielle dans les couches supérieures du manteau neigeux pourrait expliquer cette différence.

Nous nous sommes ensuite servis d’une simulation de référence pour tester la sensibilité du modèle à différents paramètres et variables. Afin d’extraire une information d’intérêt dans le cadre de l’interprétation de carottes de glace, nous avons défini des valeurs intégrées représentent la concentration, le flux, le δ15N et le Δ17O du nitrate archivé ([NO3−]FA, FA, δ15NFA et Δ17OFA). La sensibilité du modèle a été évaluée en comparant ces grandeurs intégrées. Nous avons proposé une représentation que nous avons appelée ”graphe modifié de Rayleigh” dans laquelle nous avons représenté ln(δ15NFA +1) en fonction de ln(FA). Cette représentation et les tests de sensibilité nous ont permis d’identifier les variables contrôlant FA, δ15NFA et Δ17OFA. Nous avons ainsi montré que le flux archivé de nitrate (FA) était contrôlé par le flux primaire de nitrate (FPI) ainsi que l’intensité du recyclage (ou efficacité de piégeage) décrite par la grandeur le rapport R_{FA/FPI} = FA / FPI, elle-même contrôlée par le rendement quantique, le taux d’accumulation de neige, le paramètre d’effet de cage ou encore la colonne d’ozone. Nous avons également montré que δ15NFA était contrôlé par la qualité du flux actinique ainsi que par l’intensité du recyclage. Une conclusion majeure de cette étude de sensibilité est la faible sensibilité de Δ17OFA aux signatures isotopiques des flux primaires pour les intensités de recyclage caractérisant le plateau Antarctique. En effet, nous avons montré que, dans de telles conditions, Δ17OFA était contrôlé
par les conditions des cyclage et oxidation locaux et estivaux de NO\textsubscript{2} et par l’effet de cage que nous sommes parvenus à déconvoler pour extraire Δ^{17}O\textsubscript{LO}, qui représente la signature isotopique des cyclage et oxidation locaux et estivaux de NO\textsubscript{2}. Cette grandeur est d’un intérêt majeur pour décrire les conditions locales et estivales du cyclage et de l’oxidation du NO\textsubscript{2}.

Pour finir, nous avons confronté TRANSITS à la reproduction de la variabilité spatial des flux, δ^{15}N et Δ^{17}O du nitrate archivés de la côte Antarctique (D10, près de DDU) au plateau (Dôme C jusqu’à Vostok) et obtenus à partir de 21 puits de neige prélevés entre 2007 et 2010. Le modèle a été utilisé avec différents taux d’accumulation de neige représentatifs de cette zone géographique couvrant l’essentiel de l’Antarctique de l’Est. Nous avons montré que, dans les conditions actuelles, la variation des taux d’accumulation est suffisante pour expliquer les variations du flux, de δ^{15}N et de Δ^{17}O dans le nitrate archivé. Nous avons également estimé un flux primaire de nitrate de 7.8×10^{-6} kgN.m-2.a-1 reçu à l’échelle de tout le continent Antarctique.

Interprétation quantitative du profil de nitrate dans la carotte de glace de Vostok

Dans les conditions des périodes d’extrêmes glaciaires, nous avons montré que la qualité du flux actinique reçu en surface du manteau neigeux était constante. L’utilisation du modèle TRANSITS pour reproduire cette observation nous a montré que la colonne d’ozone aurait dû être de 1000 DU à cette époque, sous l’hypothèse que cette variable était la seule variable de contrôle de la qualité du flux actinique reçu en surface. Nous avons ensuite identifié et testé deux scénarii pour expliquer les données isotopiques en azote obtenues pour la carotte de glace de Vostok. Le scénario Vk-O\textsubscript{3} impliquait que la colonne d’ozone ait varié mais pas le flux primaire de nitrate. Le scénario Vk-FPI impliquait l’inverse : la colonne d’ozone a été fixée à une valeur réaliste de 350 DU et le flux primaire a été varié. Dans le cas du scénario Vk-O\textsubscript{3} nous avons montré que la colonne d’ozone aurait dû varier dans la gamme 25 à 1000 DU. Une telle variation
nous a paru peu vraisemblable étant donné les variations importantes de sources et de puits d’ozone stratosphérique que ce résultat impliquerait. Si le scénario Vk-O₃ a été écarté, nous rappelons toutefois qu’une combinaison des scénarios Vk-O₃ et Vk-FPI ne peut être exclue.

Par simplicité, nous nous sommes basés sur le scénario Vk-FPI avec une colonne d’ozone de 350 DU pour reproduire le flux primaire de nitrate reçu à Vostok au cours des 150 000 dernières années. Nous avons ainsi pu calculer que le flux primaire de nitrate reçu sur cette période de temps aurait varié entre 1.0×10^{-7} et 8.1×10^{-6} kgN.m$^{-2}$.a$^{-1}$ avec une valeur moyenne de 2.0×10^{-6} kgN.m$^{-2}$.a$^{-1}$. Nous avons montré qu’une faible fraction (7.9 % en moyenne) du flux primaire de nitrate est archivé et avons conclu, qu’au cours des 150 000 dernières années, le plateau Antarctique a ré-exporté la majeure partie du nitrate originellement reçu. Nous avons également montré que ce flux primaire était sensiblement plus important aux périodes d’extrêmes glaciaires et nous avons discuté de son origine possible. Les conditions rencontrées dans l’atmosphère au-dessus de Vostok à ces époques auraient pu favoriser la dénitrification stratosphérique. Une augmentation de l’apport primaire de nitrate aurait été également possible grâce à un transport à longue distance de nitrate sous l’effet d’un transport troposphérique plus efficace (Petit et al., 1990, 1999; Wolff et al., 2010). Nous n’avons donc pas su différencier ces deux origines primaires de nitrate. Nos résultats ont par ailleurs montré que le nitrate se trouvait préférentiellement sous la forme acide lors de son dépôt primaire.

Nous avons utilisé le modèle TRANSITS pour reproduire les valeurs de δ^{15}N dans le nitrate archivé. Pour ce faire, nous avons fait varier les taux d’accumulation et utilisé le scénario Vk-FPI avec une colonne d’ozone de 350 DU. Nous avons montré que le modèle surestime le δ^{15}N dans le nitrate archivé en comparaison à ce que nous avons mesuré. Nous avons également observé que la différence entre les valeurs simulées et les valeurs observées montraient une forte anti-corrélation avec la température ce qui nous a permis de suggérer qu’un mécanisme lié à la température devait limiter la photolyse du nitrate. Pour expliquer cette différence il faudrait invoquer une masse volumique de la neige trois fois plus faible (100 kg.m$^{-3}$) que dans les conditions modernes au dernier maximum glaciaire, ce qui paraît peur vraisemblable. Nous proposons que les faibles
températures des périodes d’extrêmes glaciaires associées à la présence d’une quantité plus importante de calcium non-marin dans la neige a limité le rendement quantique de la photolyse du nitrate.

En fin de chapitre 5, nous avons proposé une interprétation de $\Delta^{17}O$ dans le nitrate archivé. Nous avons montré qu’avec les intensités de recyclage que nous avons obtenues à partir du scénario Vk-FPI, la signature isotopique du flux primaire de nitrate était perdue pour la quasi-intégralité des échantillons. Nous avons ensuite utilisé le modèle TRANSITS pour corriger les données isotopiques de l’effet de cage, sous hypothèse que celui-ci est indépendant de la température et uniquement pour les échantillons qui montrent une intensité de recyclage suffisante. Nous avons donc obtenu la grandeur $\Delta^{17}O_{LO}$ qui représente la valeur de $\Delta^{17}O$ imprimée par les cyclage et oxydation locaux et estivaux de NO$_2$. Nous avons montré que $\Delta^{17}O_{LO}$ était fortement anti-corrélé à la température. Cet effet ne peut être expliqué par un processus chimique car les données de $\Delta^{17}O$ de l’ozone stratosphérique diminuent lorsque la température diminue (Mauersberger et al., 2001). Nous avons cependant montré que la chimie troposphérique (i.e. impliquant de l’ozone troposphérique) ne pouvait pas expliquer les observations. Il nous a fallu invoquer la contribution croissante de l’ozone stratosphérique à mesure que la température diminue. Nous avons ainsi proposé que les faibles températures des périodes glaciaires favorisent l’apport d’ozone stratosphérique dans la troposphère par l’intermédiaire de l’intrusion de masses d’air stratosphériques dans la troposphère, en accord avec les travaux de Rind et al. (2009). En fin de chapitre 5 nous avons montré que nos conclusions soulevaient une contradiction. Pour lever cette contradiction, il est nécessaire de considérer que la colonne d’ozone ou une variable ayant un impact sur la qualité du flux actinique reçu en surface ait changé au cours des 150 000 dernières années.

Pour résumer :

– la perte de nitrate à Vostok a toujours au lieu, même en période glaciaire,
– les concentrations et flux archivés ne représentent donc pas les flux primaires et ce travail de thèse a montré que le flux archivé serait 20 fois plus faible que le flux primaire, en
moyenne,
- à l’échelle de 150 000 années, le modèle TRANSITS ne peut pas reproduire le δ¹⁵N du nitrate archivé car un processus lié à la température devrait avoir limité la photolyse du nitrate,
- le Δ¹⁷O du nitrate mesuré dans la carotte de glace de Vostok permet d’estimer le Δ¹⁷O imprimé par les cyclage et oxydation locaux et estivaux de NO₂. Ceci corrobore le fait que des intrusions de masses d’air stratosphériques dans la troposphère étaient plus fréquentes en période glaciaire.

Implications pour l’interprétation d’autres enregistrements glaciaires, au Groenland par exemple

Les résultats de ce travail ont une implication sur l’interprétation du profil de nitrate dans les enregistrements glaciaires du Groenland. En effet, notre étude sur la variabilité spatiale du nitrate archivé à l’échelle de l’Antarctique de l’Est a montré que, dans les conditions d’accumulation de neige de Summit en période glaciaire (100 kg.m⁻².a⁻¹), le δ¹⁵N du nitrate archivé aurait une valeur de l’ordre de 30 %o. Cette valeur est similaire à la mesure effectuée par Hastings et al. (2005) (28.4 %o) qui proposaient un changement dans la sources des NOₓ pour expliquer leurs mesures en période glaciaire. Nous proposons que le recyclage du nitrate dans les conditions de Summit en période glaciaire soit pris en compte dans l’interprétation des mesures d’Hastings et al. (2005). Leurs conclusions doivent donc être revisitées.

Implications pour le cycle de l’azote réactif en Antarctique

À l’aide du modèle TRANSITS, nous avons estimé que des régions situées à 700 kilomètres des côtes peuvent contribuer à exporter du nitrate dont le δ¹⁵N est proche de −20 %o. Compte-tenu de la persistence du recyclage du nitrate à l’échelle du dernier cycle glaciaire et demi, nous estimons que ces conditions prévalaient également à ces périodes. Nous proposons même que cette
observation puisse être étendue aux 14 derniers millions d’années étant donné que la calotte de glace Antarctique se serait trouvée, sur cette période de temps, dans les conditions d’épaisseur que nous connaissons aujourd’hui (Mayewski et al., 2009). Nous proposons donc que le recyclage du nitrate en Antarctique a persisté au cours des 14 derniers millions d’années et qu’il serait ainsi responsable des faibles valeurs de $\delta^{15}N$ mesurées dans les sols de la côte Antarctique par Wada et al. (1981); Michalski et al. (2005). Une part significative du flux primaire de nitrate reçu sur le continent Antarctique pourrait ainsi se retrouver exportée vers la côte où elle pourrait contribuer au bilan de l’azote en représentant une source d’azote additionnelle et précédemment ignorée, alimentant les écosystèmes marins et terrestres.

Perspectives de ce travail

Dans ce travail, nous avons développé le modèle TRANSITS qui pourrait être raffiné pour représenter encore plus fidèlement les processus à l’œuvre à l’interface air/neige. De futurs travaux doivent se pencher sur la représentation de la diffusion de HNO$_3$ dans la neige car c’est un mécanisme important qui nous semble être à l’origine des profils lisses observés au Dôme C et plus généralement en Antarctique de l’Est. Un autre chantier important est la différenciation du nitrate en deux ”pools” et pour chaque couche de neige : une fraction facilement photolysable et une autre moins, afin de mieux représenter le fait que la localisation du nitrate sur ou dans le grain de neige a un impact sur le rendement quantique de photolyse. Dans le cas où le modèle est utilisé pour différents sites en Antarctique, il pourrait être affiné en modélisation la contribution de l’export de nitrate de sites de plus haute latitude. De même, il faudrait prendre en compte les différentes latitudes de chaque site. Nous proposons également de revoir la modélisation de la pénétration de la lumière pour des angles solaires zénithaux proches de 90°. Pour finir, nous proposons d’utiliser le modèle TRANSITS pour tester la validité de certaines hypothèses. Par exemple, il a été avancé que des événements de vent solaire (Solar Proton Events) pouvaient expliquer des pics de concentration de nitrate d’un facteur 2 dans la neige Antarctique. Le modèle TRANSITS pourrait donc être testé dans ce cas simple. Par ailleurs, nous proposons
également de tester l’hypothèse de McCabe et al. (2007) qui ont associé la variabilité de Δ^{17}O du nitrate dans la neige de Pôle Sud à celle de l’ozone stratosphérique.

À l’échelle glaciaire, nous avons vu qu’il manque la représentation d’un phénomène pour pouvoir lever la contradiction que nous avons observée en fin de chapitre 5 et qui devrait être lié à la colonne d’ozone ou à une autre variable qui contrôle la qualité du flux actinique reçu en surface. De même, nous avons vu que la reproduction des valeurs de δ^{15}N dans le nitrate de la carotte de glace de Vostok n’était pas possible sur la seule base des taux d’accumulation mesurés. Pour faire sauter ces verrous, des études complémentaires sont nécessaires. Pour ce qui concerne δ^{15}N, la solution viendra peut-être d’expériences de laboratoire visant à caractériser les fractionnements isotopiques liés à la photolyse du nitrate. Ces travaux sont en cours dans les cadre des thèses de C. Meusinger (Université de Copenhague) et de T. A. Berhanu (LGGE). Ces expériences permettront de déterminer par exemple l’impact de la température sur le rendement quantique ainsi que sur les spectres d’absorption de 14NO$_3^-$ et 15NO$_3^-$ dans la neige. La connaissance précise des fractionnements isotopiques permettra d’identifier précisément si les changements observés dans la carotte de glace de Vostok sont dus à des variations de qualité ou de quantité de flux actinique. Pour ce qui concerne Δ^{17}O, il est primordial d’affiner notre connaissance du Δ^{17}O de l’ozone et du nitrate stratosphérique. Ces travaux sont en cours dans le cadre de la thèse de W. C. Vicars. La mesure de Δ^{17}O du nitrate stratosphérique pourrait être réalisée en collectant de l’air stratosphérique au niveau de typhons par exemple.

Les principes de conception du modèle TRANSITS sont compatibles avec les schémas de neige multicouches qui peuvent être couplés aux modèles climatiques. Moyennant l’intégration des spécificités de TRANSITS dans de tels modèles, il apparaît envisageable de s’affranchir de certaines des hypothèses utilisées dans ce travail en réalisant des simulations couplées à l’échelle du continent Antarctique incluant la représentation explicite du transport de masses d’air, tant horizontalement que concernant les échanges stratosphère/troposphère.
Bibliographie

Chylek, P., B. Johnson, and H. Wu (1992), Black carbon concentration in Byrd Station ice core - From 13 000 to 700 years before present, *Annales Geophysicae*, 10, 625–629.

France, J. L., M. D. King, and J. Lee-Taylor (2007), Hydroxyl (OH) radical production rates in snowpacks from photolysis of hydrogen peroxide (H₂O₂) and nitrate (NO₃⁻), *Atmos. Environ.*, 41, 5502 – 5509, doi:10.1016/j.atmosenv.2007.03.056.

Kaiser, J., W. Brand, B. Luz, S. Ono, T. Röckmann, and J. Savarino (in prep.), Terminology and definition of quantities related to the isotope distribution in elements with more than two stable isotopes, IUPAC.

Landais, A., E. Barkan, and B. Luz (2008), Record of $\delta^{18}O$ and $\delta^{17}O$-excess in ice from Vostok Antarctica during the last 150 000 years, Geophys. Res. Lett., 35, L02,709, doi :10.1029/2007GL032096.

Annexe A

Protocole de préconcentration du nitrate

The protocol to preconcentrate nitrate ions has 4 steps :
– estimate the sample volume to preconcentrate,
– the resin has to be thoroughly cleared of any residual nitrate (be aware that the resin is not nitrate-free when taken from its original bottle) after having been placed in the funnel,
– poor the sample in the funnel,
– elute nitrate with the NaCl 1 M solution.

Estimate the sample volume to preconcentrate

Estimate or measure the nitrate concentration in the sample in order to know the volume that has to be preconcentrated. We generally secure 300 nmol for the dual measurement of nitrate stable isotopic ratios (triplicates at 100 nmol). The sample volume to preconcentrate can then be estimated to reach at least 100 nmol (ideally 300).

Be aware that the resin as a limited capacity of 1.2 meq.ml⁻¹, i.e. 1.2 mmol.ml⁻¹ (see AG 1, AG MP-1 and AG 2 Strong Anion Exchange Resin - Instruction Manual, Bio-Rad). For a volume of 0.3 ml (as used here), the resin can hold 360 µmol of NO₃⁻ which is way enough given the fact that we are concerned in trapping nitrate amounts 2 to 3 orders of magnitude lower (note that we do not consider any other ion in this estimate).

Place and rinse the resin

– prepare a NaCl 1M solution,
– remove any residual resin of the previous preconcentration in each funnel (Bio-Rad Econo-Column 250 ml funnels, ref. 731-0003) and polyprep column (Bio-Rad Poly-Prep Chromatography Columns 0.8 × 4 cm, ref. 731-1550). Rinse them thoroughly (3 × MQ water) and label them,
– in a rinsed plastic tube, mix 50% (typically 10 ml) of anionic resin (Bio-Rad AG 1-X8 200-400 mesh chloride form, ref. 140-1441) and 50% of the NaCl 1 M solution,
– wait for the resin to sediment (5 to 10 minutes),
- remove the liquid on top of the resin,
- add 10 ml of the NaCl 1 M solution and mix well (resuspend the resin),
- repeat the 3 steps above 3 times.
- Mix well again and transfer 0.6 ml of this 50-50 mixture (i.e. 0.3 ml of resin) to the funnels. It is crucial to mix the 50-50 mixture inbetween 2 funnels to make sure that the same volume of resin is delivered (the resin tends to sediment),
- wait for the solution to come out (at this stage there might be some nitrate left in the resin since its production may not be nitrate free),
- push any residual nitrate out of the resin with 5×5 ml of NaCl 1M. Wait the solution to entirely come out between 2 injections,
- rinse the sides of the funnel (where there might be chloride ions) with 3×5 ml of MQ water,
- your resin is now ready (= there should be no nitrate there) to concentrate your sample. Check that by injecting 5×2 ml of NaCl 1M and by measuring the nitrate concentration (to compare, we need at least 100 nmol of nitrate for a nitrate isotopic analysis and we usually require 300 nmol).

Pour the sample in the funnel

- save an aliquot (20–30 ml) for the determination of the nitrate concentration in a rinsed (3 × water) plastic centrifuge tube,
- measure the volume that will be poored in funnel,
- poor it in the funnel (or any other container of a dedicated ’automated’ system like at Dome C, Antarctica),
- the nitrate mass trapped in the resin can be estimated (assuming a 100 % trapping) by simply multiplying the measured nitrate concentration and the volume.

Elute nitrate with the NaCl 1 M solution

- once completely drained, clean the inner part of the funnel (where there might be some nitrate ions left) with 10 ml MQ water,
- once completely drained, place a rinsed (3 × MQ water) and labelled plastic tube (V ≥ 12 ml) below the polyprep column,
- elute the resin content (nitrate + other anions) by injecting 5×2 ml NaCl 1M (wait inbetween 2 injections).
Annexe B

Résumé des activités au cours de cette thèse

Publications scientifiques

Au cours de ma thèse, j’ai participé à la rédaction de plusieurs articles scientifiques. Dans le cadre du fonctionnement du laboratoire d’analyses isotopiques sous l’égide de Joël Savarino au LGGE, j’ai participé à des études connexes à l’analyse de la carotte de glace de Vostok. Dans un soucis de cohérence, celles-ci n’ont pas été développées dans le présent manuscript mais je profite de cette annexe pour les citer.

Articles parus

Articles en cours de révision (à la date de finalisation du manuscript)

Annexe B. Résumé des activités au cours de cette thèse

Articles en cours de préparation

- **Erbland, J.,** Morin, S. and Savarino, J., Isotopic constrains on the interpretation of the nitrate record in the Vostok ice core.
- **Erbland, J.,** Savarino, J. and Alexander, B., Year-round measurement of Δ^{17}O of atmospheric sulfate on the Antarctic plateau and coast, to be submitted to *Geoph. Res. Lett.*
- Vicars, W. C., **J. Erbland** and J. Savarino (in prep.), Atmosphere to snow transfer of nitrate stable isotopes on the Antarctic plateau : evidence for intense nitrate recycling at the snow surface, to be submitted to *Atmos. Chem. Phys. Disc.*
- Vicars, W. C., Bhattacharya, S. K., **Erbland, J.,** Savarino, J., Measurement of the 17O excess (Δ^{17}O) of tropospheric ozone using a nitrite-coated filter, to be submitted to *Atmos. Meas. Tech. Disc.*

Congrès et conférences

J. Erbland, J. Savarino, S. Morin and M. M. Frey, The oxygen isotope anomaly (Δ^{17}O) of nitrate in the Vostok ice core : insights in possible changes in NO$_x$ oxidation pathways over the last 150 000 years, Geophysical Research Abstracts, Vol. 11, EGU-2009-975, 2009, présentation orale.
Enseignement-encadrement

En 2009, j’ai eu la chance d’encadrer le stage de Master-2 de Francis Grannec (UJF Grenoble) au LGGE. Ce stage a duré 5 mois et a consisté en l’analyse de la composition isotopique du nitrate atmosphérique sur l’Océan Atlantique.

École d’été

Au cours de cette thèse, j’ai participé à l’école d’été organisée par le programme international SOLAS (Surface Ocean/Lower Atmosphere Studies) à Cargèse, en Août 2009 (2 semaines).

Vulgarisation scientifique

Annexe B. Résumé des activités au cours de cette thèse
Annexe C

Tableaux récapitulatifs des données acquises pour la carotte de glace de Vostok

\begin{itemize}
 \item Voir section 2.5.4.3
 \item L’échantillon prélevé à 908 mètres a été découpé en 6 morceaux pour réaliser des tests à faible résolution temporelle. Les données isotopiques et chimiques acquises ont été calculées pour l’échantillon initial sur la base de bilans de masse.
\end{itemize}
Annexe C. Tableaux récapitulatifs des données acquises pour la carotte de glace de Vostok

<table>
<thead>
<tr>
<th>Code</th>
<th>Md depth (m)</th>
<th>Sample length (cm)</th>
<th>Ice age (kyr)</th>
<th>Years number</th>
<th>Calibrated values</th>
<th>Uncertainty (1 σ)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>δ¹⁸O (%)</td>
<td>δD (%)</td>
<td>δ¹⁵N (%)</td>
</tr>
</tbody>
</table>

Recomposée ²

Table C.1 – Carotte de glace de Vostok : récapitulatif des données isotopiques. Vostok ice core : summarization of all isotopic data.
Tableau C.2 – Carotte de glace de Vostok : récapitulatif des données chimiques.

Vostok ice core : summarization of all chemical data.