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Chapter 1

Introduction

Many years later after the primary discussions on magnetism, Orsted in the nine-

teenth century did the first serious progress toward the understanding of mag-

netism where he discovered that an electric current generates a magnetic field

(Fowler [1997]). Since then, the phenomenon of magnetism was intensively tack-

led from the theoretical side by different scientists like Gauss, Maxwell, Faraday.

However, the proper description of magnetism arrived later on in the twentieth

century with the work of Curie, Weiss, Bloch, Landau, Stoner, Néel, Brown ......

A description that opened the way for the application of magnetism in modern

technology.

The physical origin of magnetism is related to the angular momentum as it is

deduced from the famous Einstein-De Haas experiment ”rotation by magneti-

zation”(Einstein and De Haas [1915a,b]; Frenkel [1979]), and its inverse effect

”magnetization by rotation”(Barnett [1915]).

It is evident that in magnetic materials, there exit two major sources of the

angular moment :

• the orbiting electrons around the nucleus ⇒ orbital angular momentum.

• the magnetic moments or the spins ⇒ intrinsic angular momentum.
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1. Introduction

1.1 Types of Magnetic Materials

According to the alignment of the magnetic moments, the magnetic materials can

be classified into different groups as illustrated on the following figure :

Figure 1.1: The major classifications of magnetic properties of media.(Stancil and

Prabhakar [2009])
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1. Introduction

1.1.1 Diamagnetic Materials

Virtually, all the magnetic materials have a diamagnetic behavior, so it is be-

lieved that diamagnetism is a universal effect. The diamagnetic atoms do not

have permanent magnetic moments because the electrons are paired, thus their

magnetization arises only from the orbital angular momentum.

In an external applied magnetic field, the diamagnetic materials are magnetized

in an opposite direction to the field. Such behavior is well described by the mi-

croscopic application of Lenz’s law (Schmitt [2002]). Examples of diamagnetic

materials are the noble metals: Copper, Gold, Silver.

1.1.2 Paramagnetic Materials

Paramagnetic materials’ atoms have permanent magnetic moments. In an exter-

nal magnetic field, these materials are magnetized in the direction of the field.

However, as soon as the field is switched off the magnetic moments loose their

alinement and become randomly oriented so that they produce a zero net total

magnetization at thermal equilibrium. Supposing that all the magnetic moments

are aligned, then the magnetization of the paramagnetic substance is given by

the langevin function (Kittel [1986]) :

M = NgµBJ · L(x) (1.1)

• N is the number of atoms per unit volume.

• total angular momentum.

• g the landé −factor.

• µB the Bohr magneton.

• L(x) is the langevin function

L(x) = coth(x)− 1

x

3



1. Introduction

• x is the ratio of the Zeeman energy of the magnetic moment in the external

field to the thermal energy KBT :

x =
gµBJB

KBT

At high temperatures, the paramagnetic magnetization is given by the Curie law

M =
C

T
H (1.2)

where C =
Ng2J(J+1)µ2

B

3KB
is the curie constant.

Examples of paramagnetic materials are : Magnesium, Lithium, Tungsten, Sodium.

1.1.3 Ferromagnetic Materials

Even in a zero applied magnetic field, a ferromagnetic material possesses a certain

magnetization. This is well understood in terms of the concepts of the molecular

field and the magnetic domains introduced by Weiss (Weiss [1907]).

The molecular field aligns the magnetic moments against the thermal fluctuations,

so that they keep their directions and thus the materials remain magnetized. In

the absence of an applied magnetic field, a ferromagnet is constituted of magnetic

domains. Inside each domain, the magnetic moment are aligned parallel, so that

the domain acts like a tiny magnet. As soon as an external magnetic field is

applied, the magnetic domains align parallel to the field directions.

However, a ferromagnetic material will loose its magnetization above a critical

temperature called the curie temperature Tc and therefore behaves as a paramag-

net. Above Tc, the magnetization is given by the curie−weiss law (Kittel [1986])

:

M =
C

T − Tc
H. (1.3)

where C = gµBMs(J+1)
3KB

and Tc = µB
KB
Ms with Ms being the saturation magnetiza-

tion.

Due to their interesting magnetic properties such as the hysteresis behavior M(H),

the ferromagnetic materials are widely used in the data storage industry. Exam-
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ples of ferromagnetic materials are the transition metals: Nickel, Iron, Cobalt.

1.1.4 Why is it interesting to Study the Magnetization

Dynamics ?

The magnetic materials are strongly present in our daily life due their wide ap-

plications in modern technology. They are everywhere and at different sizes from

big magnets to nano−sized materials. As an astonishing example of big magnets

is the maglev train put on rails by the Japanese in 1997 (see figure 1.2). This

train is very fast, moving at 480 Km/hr.

Figure 1.2: The Maglev train.(http://news.bbc.co.uk)

The magnetic nanostructures are used in many domains shown on figure 1.3,

for example : in medicine for magnetic therapy, magnetic sensors, credit cards,

most importantly in data storage. Especially, the magnetic nanoparticles have

been receiving a remarkably increasing interest not only due to their significant

application in modern nanotechnology but also for fundamental research.
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Figure 1.3: Scheme showing the different domains of applications of magnetic nanos-

tructures.(http://www.deakin.edu.au)

In magnetic storage, a magnetic field is used to read or to write a magnetic

data bit. The bit is a tiny magnetized region on the recording medium, conven-

tionally labeled ”1” or ”0” depending on the direction of its magnetization. To

write a bit, a strong local magnetic field is generated using an electric current

traversing the coil (see figure 1.4) of the write head (Kleemann [2009]). This field

modifies the patterns of the bit; more precisely it switches the direction of the

magnetization from ”1” to ”0” and vice−versa. These modifications are detected
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through the read head.

Figure 1.4: The read/write process.(Computer Desktop Encyclopedia), c© 2006 The

Computer Language Center Inc

However, it is reported that the frequency of the generated field pulse is lim-

ited to GHz (Acremann et al. [2000]; Devolder et al. [2006]; Gerrits et al. [2002])

corresponding to ∼ 1 ns reading time. Thus, future improvements of the speed of

these processes (reading/writing) rely on the possibility to generate shorter and

stronger magnetic fields.
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Figure 1.5: Nanoparticles−based data storage disc.(https://www1.hitachigst.com)

Concerning the the storing media, the use of magnetic nanoparticles promises

to increase the data storage density to several petabits per square centimeter much

more than the most advanced computer hard discs. Generally, the idea bases

on the use of very small size magnetic nanoparticles (down to 1 nm diameter).

However, with the continuous miniaturization in the size of the nanoparticles, the

system is arriving at the limit where the stability of the magnetic information

against the thermal effects becomes questionable. In other words, the particles

will show a paramagnetic behaviour a phenomenon known as superparamgnetism

(Brown [1963]; Néel [1949]).

Therefore, a detailed study of the ultrafast induced magnetization dynamics in

magnetic nanoparticles is necessary. In fact, this a basic goal of the present

work. Basically, what we call ultrafast induced magnetization dynamics includes

all the changes in the magnetization of a given material induced with an intense

femtosecond laser pulse taking place at very short time scales (1 fs − 1 ns ).

The characteristic time of these changes depends on the type of excitation, the

material parameters as well as the spatial dimensions of the magnetic system.
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Figure 1.6: Different magnetic phenomena taking place at short time and space

constants.

1.1.5 Femtosecond Spectroscopy

Since the famous experiment of 1996 performed in our team (Beaurepaire et al.

[1996]), the Time Resolved Magneto−Optical Kerr Effect (TR−MOKE) in pump

probe configuration or simply femtosecond spectroscopy continues to prove itself

as an ultimate tool to study the magnetization dynamics in magnetic nanostruc-

tures. The femtosecond spectroscopy has the following advantages :

• Spatial resolution : for example, the confocal microscope developed in our

group (Laraoui et al. [2007]), provides a spatial resolution of ∼ 300 nm

giving the possibility to study individual magnetic nanoparticles.

• Temporal resolution : studying processes taking place at sub−100 fs time

scales up to ns.(Guidoni et al. [2002])

• Spectral resolution : one can study the dynamics of magnetic structures
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exciting and probing the materials as a function of wavelength, including

the X-ray spectral range (Boeglin et al. [2010]).

1.2 This Thesis−Synopsis

In this thesis, we focused on the dynamics of phenomena like superparamagnetism

and ferromagnetism in nanostructures. We also studied effects like annealing on

the magnetism of nanoparticles. On the theoretical side we addressed interactions

like the dipole−dipole interaction and the effect of anisotropy.

In the first part of the PHD, we performed Time Resolved Magneto-Optical Kerr

Effect (TR-MOKE) measurements with 150 fs laser pulses at 400 nm pump and

800 nm probe to study the magnetization dynamics of Cobalt Platinum (CoPt)

nanoparticles. The studied samples are 3D arrangements of ∼ 6.5 nm core/shell

CoPt nanoparticles assembled into pellets where ∼ 5 nm Co nanoparticles resides

at the core and is surrounded by ∼1.5 nm platinum shell. The samples are ob-

tained by transmetalation processes (Park and Cheon [2001]).

Using the TR−MOKE spectroscopy, we are able to study the magnetization dy-

namics as well as the charge dynamics.

The general observed magnetization dynamics constitutes of an ultrafast demag-

netization followed by a partial re−magnetization. Annealing the samples (heat-

ing up to 650 K), conducted a magnetic phase transition from superparamag-

netism with a blocking temperature of 66 K into ferromagnetism with a blocking

temperature above the room temperature (>350 K). On the annealed samples,

the dynamical processes such as spin thermalization and relaxation are observed

to be slower in comparison with the non annealed samples. On the long time

scales, on these samples it is possible to induce a precession of the magnetization

vector around the effective field. This precession did not exist on the non-annealed

samples. The physical interpretations of the obtained results could be in general

referred to the ferromagnetic nature of the annealed samples, or to the existence

of the CoPt3 particles or even to the enhanced dipolar interactions.

On the reflectivity measurements, both the non−annealed and the annealed sam-

ples showed an ”ordinary” electron dynamics. To summarize briefly, after the

laser excitation, the electrons are driven above the Fermi level, then they ther-
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malize into a hot distribution due to electron-electron scattering processes, then

they relax to the lattice via electron-phonon scattering processes, and finally the

hot lattice diffuses its heat into the environment. During the relaxation process,

we have reported ∼ 2 ps oscillation corresponding to the breathing mode of the

individual nanoparticles.

On the non−annealed samples, we characterized a collective oscillation of the

nanoparticles with a period of ∼ 146 ps interpreted as the supra−crystalline os-

cillations. We think that the supra−crystalline order is a local effect due to a

mild annealing induced by the intense laser pulses. The oscillations disappeared

when the samples were annealed indicating the existence of a disorder induced

by the large temperature increase of the assembly of nanoparticles.

We devoted the second part of the thesis to the numerical simulations of the

magnetization dynamics in superparamagnetic nanoparticles. In isolated single

domain nanoparticles, the magnetization reversal by thermal activation is well de-

scribed by the leading theoretical models of Stoner-Wohlfarth (Stoner and Wohl-

farth [1948]) and Néel−Brown (Brown [1963]; Néel [1949]). According to this

model, the magnetization of the nanoparticles spontaneously fluctuates from one

equilibrium direction to another with a characteristic time given by an Arrhenius

formula:
1

τ
=

1

τ0

exp
(
− KV

KBT

)
(1.4)

A question that we have addressed is to know what happens to the relaxation

time when the interparticle dipolar interactions are included.

Actually, the effect of the dipolar interactions on the magnetization reversal pro-

cesses in fine ferromagnetic nanoparticles (monodomains) is a debated question.

Therefore, we have studied their effects on the magnetization dynamics of the

nanoparticles. As our experimental results held significant signatures of a possi-

ble role of the dipolar interaction by suppressing the superparamagnetic effects.

In order to calculate the relaxation times of the magnetization reversal processes

in isolated and interacting nanoparticles, we have solved numerically the Brown

Fokker Planck equation (Brown [1963]) for magnetic nanoparticles with uniaxial

anisotropy.

For the isolated nanoparticles, we have found that at low temperatures, the relax-
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ation times are well described by the Arrhenius law provided by the Néel-Brown

Model. However, for the interacting particles, deviations from this law are ob-

served.

To account for the dipolar interactions, we have introduced a mean field approach

where it is considered that each particle feels the average dipolar field due to the

other nanoparticles. We have studied the effects of the interparticle distance and

the density of the particles on the reversal process. In general we have found that

the dipolar interactions tend to accelerate the reversal process in correspondence

with other numerical results (Mørup and Elisabeth [1994]). Moreover, the nu-

merical relaxation times are consistent with the experimentally measured values.

In summary, in this work our fundamental studies show that the core/shell CoPt

nanoparticles are an interesting system to be used potentially as a data storage

medium. We have shown that it is possible to suppress the effects of superpara-

magnetism on the spin dynamics in these systems simply by annealing them,

inducing a ferromagnetic behavior at temperatures above 300 K. Also, we have

shown that it is possible to order the nanoparticles in supra−crystalline assem-

blies using a mild laser annealing. These results stress out performing the time

resolved femtosecond MOKE measurements to study the dynamical processes in

magnetic nanostructures is a powerful technique.

For the numerical studies, we have introduced a simple and effective model to

account for the dipolar interactions. Our results are consistent with the observed

behaviour of interacting nanoparticles showing that the Brown-Néel stochastic

approach allows understanding the main aspects of the magnetization dynamics

for temporal scales when the spins are thermalized.

12



Chapter 2

Basic Facts

In this chapter, we present a general overview of the different physical models

and concepts that form the physical background of the thesis.

2.1 Energy in a Magnetic system

The exchange energy, the magnetic anisotropy energy, the dipolar interaction

energy , and the Zeeman energy are the main contributions in the total energy

of a magnetic system.

2.1.1 Exchange Energy

To explain the ferromagnetic ordering, Pierre Weiss (Weiss [1907]) introduced

the Molecular field or the Weiss field. However, the origin of the field remained

obscure until 1928 (Heisenberg [1928]), when Heisenberg explained it to be due

to the exchange of electrons among electronic levels. These interactions are of

quantum origin and are called the exchange interactions. They have no analogue

in classical mechanics .

It is well established in quantum mechanics that the total wave function of an

electron has two parts : space and spin. Following the Pauli exclusion principle,

the total wave function of an electron should be anti−symmetric. This shows

that there are two possibilities for the space and spin parts of the wave function:

13
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• A symmetric space wave function and an anti−symmetric spin one resulting

in bringing closer the electrons and an anti−parallel alignment of the spins

i.e. a singlet state.

| s,m〉 :| 0, 0〉 =
1√
2

(|↑↓〉− |↓↑〉

• An anti−symmetric space wave function and a symmetric spin one resulting

in a repulsion of the electrons and a parallel alignment of the spins i.e. a

triplet state.

| s,m〉 :


| 1, 1〉 =|↑↑〉

| 1, 0〉 =
1√
2

(|↑↓〉+ |↓↑〉

| 1,−1〉 =|↓↓〉

This splitting into singlets and triplets is due to the exchange interaction. For

a system of N spins, the energy of the interactions is given by the Heisenberg

Hamiltonian (Kittel [1986]):

Eex = −
N∑
i,j
i6=j

Jij
−→
S i ·
−→
S j (2.1)

The indices i,j stand for the nearest neighbors. The constant J or the exchange

integral, accounts for the magnitude of the splitting between the states. In other

words, it reflects the energy associated with a change of quantum states between

two electrons. J could be positive or negative. It can be shown that:

• J>0 : the spins are aligned parallel ⇒ ferromagnetic ordering.

• J<0 : the spins are aligned anti−parallel ⇒ anti−ferromagnetic ordering.

The exchange interaction is isotropic and does not impose any privileged direction

of magnetization.
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2.1.2 Magnetic Anisotropy energy

The magnetic anisotropy energy describes the dependence of the internal energy

on the direction of spontaneous magnetization creating easy and hard axes. The

total magnetization of a system will prefer to lie along the easy axis. Thus, the

anisotropy energy could be defined as the energy it takes for a magnetization

rotation from the easy axis to the hard one. Anisotropy can arise from several

sources such as : electric field of the crystal, shape of the magnetic body, me-

chanical stress or strain, crystal symmetry....

Magneto−crystalline anisotropy favors magnetization along a particular crystal-

lographic direction due to the spin-orbit coupling. Shape anisotropy favors mag-

netization within the plane of a thin film due to the long range dipolar coupling

of magnetic moments.

The simplest forms of magnetic anisotropy are the uniaxial anisotropy and the

cubic anisotropy.

2.1.2.1 Uniaxial Anisotropy

Uniaxial anisotropy is the existence of only one easy direction of magnetization.

The corresponding energy is (Kittel [1986]):

Eani = K1V sin
2θ +K2V sin

4θ (2.2)

where K1 and K2 are the anisotropy constants and V is the volume. In the case

of a ferromagnet K2 is very small, then the energy reduces to:

Eani = KV sin2 θ (2.3)

N.B.: in the case of shape anisotropy K = 1
2
µ0M

2
s (Nx − Nz) where Nx and Nz

are the components of the demagnetization tensor, where Ms is the saturation

magnetization.
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2.1.2.2 Cubic Anisotropy

In crystals with cubic symmetry, it happens that privileged directions of the mag-

netization exist. The anisotropy in this case is called the cubic anisotropy. The

cubic anisotropy energy can be written in terms of the directions of the inter-

nal magnetization with respect to the three edges of the cubes in a ferromagnet

(Kittel [1986]):

Eani = KV (α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1) (2.4)

where α1 = sin θ cosφ,α2 = sin θ sinφ,α3 = cos θ,θ is the polar angle and φ the

azimuthal angle.

2.1.3 Dipole-Dipole interaction energy

Unlike the exchange interaction, the dipole-dipole interaction (or the dipolar in-

teraction) is anisotropic and has a long range behavior (Morrish [1966]). The

dipolar interaction energy is :

Ed =
1

2

N∑
i,j
i 6=j

(−→mi · −→mj

r3
ij

− 3(−→mi · −→r ij)(−→mj · −→r ij)
r5
ij

)
(2.5)

where −→r ij = |−→r i − −→r j| is the distance from the center of the i−th particle to

the center of the j−th particle.

2.1.4 Zeeman energy

It is the energy of interaction between the magnetic moments and the external

applied magnetic field :

Ez = −µ0
−→m · −→H 0 (2.6)

2.2 Single Domain nanoparticles

A ferromagnetic material in its demagnetized state is divided into a number of

small regions called domains (Weiss [1907]). The magnetization directions of

different domains need not be parallel. Domains are also present in other types
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of materials such as anti−ferromagnetics, ferro−electrics....In a strong applied

external magnetic field, the domain’s magnetization rotates toward the direction

of the field.(see figure 2.1)

Figure 2.1: Domains and Domain walls: in absence of (a) and presence (b) of applied

external magnetic field. For (b) the green arrow stands for the direction of the external

applied field.

The domain structure in a ferromagnetic material comes out as a natural

consequence of the various contributions to the energy: exchange energy and

anisotropy energy. Actually, the origin of domains lies in the possibility of low-

ering the energy of a system by going from a saturated configuration with high

magnetic energy to a domain configuration with a lower energy (Kittel [1986])

(figure 2.2).

Figure 2.2: The origin of domains.

The smaller the size of magnetic materials is made, the simplest the domain

structure is obtained so that below a critical size a particle of ferromagnetic

materials is expected to consist of a single domain. A single domain particle or

monodomain acts as a giant moment which depends on the volume, number of
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atoms and type of materials of the particles.

The critical radius rc below which a particle becomes a monodomain is estimated

to be (Chikazumi and Charap [1964]):

rc ≈
9
√
JKu

µ0M2
s

. (2.7)

where J is the exchange constant and Ku the uniaxial anisotropy constant, Ms:

is saturation magnetization and µ0 is the vacuum permeability.

2.3 Super-paramagnetism

As the size of ferromagnetic nanoparticles is reduced below 10 nm, the thermal

energy KBT becomes comparable with the anisotropy energy KV inducing ran-

dom fluctuations of the magnetization in these particles resulting in a zero net

magnetization when averaged over a typical time scale τ of these fluctuations.

This phenomenon is called super-paramagnetism.

The relaxation time describes how fast does it take for a magnetization reversal

between two energy minima separated by an anisotropy (shape, magneto−crystalline,..)

energy barrier. The relaxation time given by Néel−Brown’s model is (Brown

[1963]; Néel [1949]):
1

τ
=

1

τ0

exp
(
− ∆E

KBT

)
(2.8)

From a mechanical model and considering the elastic properties of ferromagnets,

Néel deduced that τ0 ranges from 10−10 to 10−12 s for magnetic nanoparticles.

The theory of super-paramagnetism indicates that in the absence of an applied

external field, the magnetic moments will be randomly oriented in a way simi-

lar to paramagnetic atoms but with a much larger magnetic susceptibility. This

implies that for such particles, the field dependence of magnetization is not hys-

teretic but rather described by a Brillouin function; furthermore, the temperature

dependence of the magnetic susceptibility follows a Curie law behavior.
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Figure 2.3: The variation of coercivity with the particle’s diameter.

In terms of comparison between the anisotropy energy KV and the thermal

energy KBT, there are two major types of super-paramagnetism:

• If the thermal energy is large enough i.e. KbT �KV, then the magnetic

moments is said to be freely fluctuating. The treatment of the thermal

equilibrium magnetization properties of an ensemble of such particles is

similar to the Langevin treatment of atomic paramagnetism. Such behavior

is called isotropic super-paramagnetism

• If the two energies are comparable i.e KbT≤KV, then the magnetic moment

will be blocked up to a given temperature called blocking temperature Tb,

above which the direction of magnetization will fluctuate between the two

easy directions with a characteristic time τ (equation 2.8). Such behavior

is called anisotropic or blocked super−paramagnetism.

2.3.1 Blocking temperature

Introduced by Néel in 1949, the blocking temperature is a characteristic temper-

ature of super−paramagnetic particles which serves as a threshold temperature

above which the paramagnetic behavior appears. Below Tb hysteretic response

of the moments is observed for the reason that the thermal activation is not

19



2. Basic Facts

sufficient to allow the immediate alignment of these moments with the external

applied field. In other words, below Tb, due to the anisotropy the magnetic mo-

ments are blocked from responding freely to the external applied field.

It should be noted that for a specific sample, Tb is not uniquely defined and it

depends on the size and the shape of the particles, the substrate as well as on

the time scale of observation.

2.4 Dynamical equations

In fine ferromagnetic nanoparticles, the magnetization dynamics could be ad-

dressed either by solving the stochastic langevin equation, which is the Landau-

lifshitz-Gilbert equation, or by solving the equivalent Fokker Planck equation

derived by Brown.

2.4.1 Landau-Lifshitz-Gilbert equation

From quantum mechanics, we know that an ensemble of magnetic moments will

undergo a precessional motion if placed in a magnetic field. Applying the theorem

of angular momentum, we calculate the equation of motion of these moments :

d
−→
L

dt
=
d−→m
dt

= −γ−→m ∧ −→H (2.9)

with
−→
L being the angular momentum of the total magnetic moment −→m (m =∑

imi). Provided that, the magnetization
−→
M=−→m/V, where V is the volume of

the ensemble, we write down the equation of motion of the magnetization vector

of this ensemble :
d
−→
M

dt
= −γ−→M ∧ −→H (2.10)

where γ = g |e|
2me

is the gyromagnetic coefficient.

In magnetic materials, the evolution of the magnetization vector in time and space

is well described by the phenomenological equation of Landau-Lifshitz (Landau

and Lifshitz [1935]) or Landau-Lifshitz-Gilbert (Gilbert [1955]).

The model is based on the above derived dynamical equation (2.10), but with
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a driving field
−→
H eff that takes into account the external applied field and the

quantum mechanical effects (exchange), and the anisotropy (magneto−crystalline

and shape) :
−→
H eff =

−→
H ex +

−→
H an +

−→
H 0

However, the magnetization dynamics in real systems is often damped. The

damping could result from the complex interactions of the electron’s magnetic

moment with: the crystal lattice (impurities, defects ,...), other electrons, phonon,

etc...(Aharoni [1996]).

To account for this damping, Landau−Lifshitz introduced a phenomenological

term to the equation 2.10 of the form :

−αγ
′µ0

Ms

−→
M ∧

(−→
M ∧ −→H eff

)
where γ′ = γ/(1 + α2) and α: damping constant.

Then, the Landau−Lifshitz dynamical equation of magnetization vector reads :

∂
−→
M

∂t
= −γ′µ0

(−→
M ∧ −→H eff

)
− λγ′µ0

Ms

(−→
M ∧

[−→
M ∧ −→H eff

])
(2.11)

Later on, Gilbert introduced a damping term that acts not only on the reorien-

tation of magnetization towards the effective field but on the precessional motion

itself :

− α

Ms

−→
M ∧ ∂

−→
M

∂t

The Gilbert equation of motion reads :

∂
−→
M

∂t
= −γµ0

(−→
M ∧ −→H eff

)
− α

Ms

(−→
M ∧ ∂

−→
M

∂t

)
(2.12)

The damping constant α is very significant since it parameterizes the relaxation

of the magnetization vector towards the equilibrium direction. In other words, it

corresponds to the energy dissipation per precession period. For α=0 (no damp-

ing), the magnetization will infinitely precess around the effective field. It is of the

order 10−4 − 10−2 in garnets and 10−2 in cobalt or permalloy (Mayergoyz et al.

[2009]; Respaud et al. [1999]). Therefore, the Landau-Lifshitz-Gilbert equation is
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:

∂
−→
M

∂t
= − γµ0

(1 + α2)Ms

(−→
M ∧ −→H eff

)
− γαµ0

(1 + α2)Ms

(−→
M ∧

[−→
M ∧ −→H eff

])
(2.13)

Figure 2.4: The precession of the magnetization vector (red) around the effective field

(blue) : A- No damping; B- with damping.

From a physical point of view, the first term of equation 2.13 corresponds to

a torque exerted by the effective field
−→
H eff on

−→
M forcing it to precess (figure

2.4−A) while, the second term represents another torque that pushes
−→
M in the

direction of
−→
H eff (figure 2.4−B).

2.4.2 Fokker Planck equation

In a statistical mechanical formalism, the time evolution of the probability distri-

bution P of the magnetization orientation is given by the following Fokker Planck

equation (Garcia-Palacios [2000]):

∂P

∂t
= − ∂

∂
−→
M
·
[(
− γµ0

(1 + α2)Ms

(−→
M ∧ −→H eff

)
− γαµ0

(1 + α2)Ms

(−→
M ∧

[−→
M ∧ −→H eff

])
+

1

2τN

−→
M ∧

(−→
M ∧ ∂

−→
M

∂t

))
P
]

(2.14)
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τN is the Néel free diffusion time which is a characteristic time of diffusion in the

absence of the energy barrier. Knowing that the boltzmann distribution :

Pe(
−→
M) ∝ exp(−βE(

−→
M)) (2.15)

is a stationary solution of the Fokker Planck equation with E(
−→
M) being the total

energy of the system, we find that (Garcia-Palacios [2000]) :

τN = 2D
γ2

1 + α2

The factor D determines the amplitude of the thermal or random field introduced

by Brown.

D =
αKBT

µ0γMsV
(2.16)

2.5 Néel-Brown’s Model

Due to the important practical application of monodomains in data storage, the

full understanding of magnetization reversal and the knowledge of the correspond-

ing relaxation times are essential.

At low temperatures, the magnetization reversal in isolated monodomain parti-

cles takes place either under an external applied field which suppresses the energy

barrier, or due to thermal effects which produce statistical fluctuations.

In an external applied field, the magnetization reversal process is well described

by Stoner-Wohlfarth model (Stoner and Wohlfarth [1948]). The mains assump-

tions underlying this model are:

• Macro-spin approximation where the atomic magnetic moments (spins) are

treated as a giant magnetic moment (giant spin).

• Coherent rotation of magnetization in each particle where the atomic spins

remain parallel as they rotate to new magnetic moment orientation.

The magnetization reversal by thermal activation was first proposed by Néel

in 1949 (Néel [1949]) and further developed by Brown (Brown [1963]). The

Néel−Brown model states that at any finite temperature T, thermal fluctuations
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cause the spins to undergo a Brownian-like motion about the easy axis, with a

finite probability that the moment will flip from one easy direction to another.

Figure 2.5: Dependence of energy of uniaxial anisotropic particles.

2.5.1 Néel Model

In a semi−classical model, Néel introduced the first calculations of the relax-

ation time in monodomains with uniaxial anisotropy. The model is based on the

approximations of coherent rotation, macrospins and discrete orientation model.

• Macrospin approximation: in a monodomain nanoparticle, all the mag-

netic moments (spins) are rigidly coupled so that they form a giant moment.

The resulting total magnetic moment is given by m = VMs.

• Discrete orientation model:

In the discrete orientation model, a monodomain nanoparticle at a given

energy minimum (see figure 2.5), would be magnetized along a given axis

as long as the energy barrier separating any two minima is large compared

to the thermal energy i.e (Emax − Emin) >> KBT .

Consider an ensemble of n particles distributed, according to their directions

up or down, on two semi-spheres separated by an equatorial plane where

the +x-axis and the −x-axis form the easy axes of magnetization.

This is equivalent to the case where the particles are distributed at two

24



2. Basic Facts

energy minima separated with an anisotropy energy barrier as in figure 2.5.

For a particle with orientation 1 along +x, there is a probability ν12dt to

jump to orientation 2 along −x in a time interval dt. In the same time

interval, there will be a probability ν21 for a particle to undergo an inverse

transition i.e. from −x direction to +x direction.

Assuming that there exist n1 particles at the first energy minimum (with

direction up) and n2 particles at the second minimum (with direction down),

then the approach to statistical equilibrium is described by the following

equation:

ṅ1 = −ṅ2 = n2ν21 − n1ν12. (2.17)

The transition or jump probability is given by Boltzmann statistics :

νij = cijexp
(
− (Em − Ei)/KBT

)
(2.18)

It is worth to mention that this simple model will break down eventually

as V/T tends to 0, because the distribution will no longer be sufficiently

concentrated near 0 and π.

2.5.1.1 Calulation of the relaxation time τ

The relaxation time is the inverse of the probability per unit time for a spin to flip

its direction and depends on the number of particles which traverse the equatorial

plane in the two directions.
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Figure 2.6: Dependence of energy of uniaxial anisotropic particles in absence of ex-

ternal field.

In the absence of an external magnetic field, the transition probability ν12 =

ν21=ν :

ν =
KV

KBT
exp
(
− KV

KBT

)
Consequently, equation 2.17 could be re-written as follows :

ṅ1 = −ṅ2 =
n2

2τ
− n1

2τ

In a further approximation, Néel assumed that ṅ1 particles cross the barrier

in one direction only:

ṅ1 =
n1

2τ
(2.19)

The validity of this one-direction crossover of the barrier will be discussed in

section 2.5.2.
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Figure 2.7: Spins in a cone at the equatorial plane.

In the equatorial plane, ṅ1 is by definition equivalent to the number of particles

contained in the cone of angle π
2
− | dθ

dt
| dt with | dθ

dt
|> 0 (see figure 2.7). Thus,

ṅ1 = n1ν | dθdt |, then using equation 2.19 the relaxation time is given by :

1

τ
=

2KV

KBT
| dθ
dt
| exp

(
− KV

KBT

)
(2.20)

Calculation of | dθ
dt
|:

The macro−spin can be approximated as a gyroscope with angular moment per

unit volume :
−→m =

−→
M =

gµB
~
−→σ then −→σ =

2m

eg

−→
M (2.21)

where e and m are the charge and the mass of an electron respectively, g is Landé

factor and M is the spontaneous magnetization.

The passage across the barrier is animated by the perturbing forces which are

capable to transfer the thermal agitation energy of the lattice to the macro-spins.

The perturbing forces or the coupling forces with the lattice are equivalent to a

torque
−→
Γ situated in the equatorial plan and perpendicular to

−→
M . The magnitude

of
−→
Γ is :

Γ = −∂Ea
∂θ
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= −
( ∂
∂θ
KV sin2 θ

)
= −2K sin θ cos θ

To calculate | dθ
dt
|, Néel solved the equation of motion of the gyroscope given by

the general theorem of angular momentum :

−→
Γ =

d−→σ
dt

=
2m

eg

d
−→
M

dt

=
2m

eg
| dθ
dt
| ∧−→M

It follows that

| dθ
dt
| =

2eK

mMs

cos θ

=
e

mMs sin θ
| Γ |

But in the equatorial plane, θ = π/2, thus

| dθ
dt
|= e

mMs

| Γ | (2.22)

Therefore, the first expression of the relaxation time is:

1

τ
=

2KV

KBT

e

mMs

| Γ | exp
(
− KV

KBT

)
(2.23)

Now, the problem reduces to the determination of the average | Γ | of the per-

turbing forces.

What is the origin of the perturbing forces ?

Due to the rotational invariance of the spin ensemble, Heisenberg exchange in-

teractions could be excluded.

Actually, thermal agitations cause deformations in the crystalline lattice. Conse-

quently, these deformations induce magneto-crystalline anisotropy , magneto−elastic
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coupling forces with crystalline lattice, and lead to variations of the shape demag-

netizing field. All these three effects could be the possible origin of the perturbing

forces. However, the analytical calculation of the average | Γ | for all types of

deformations is not possible. For simplicity, the deformations are assumed to be

uniform.

The average torque | Γe | due to the magneto−elastic forces is:

| Γe |= 3Gλ

√
2GKBT

πV
(2.24)

where G is the drift coefficient and λ is longitudinal magnetostriction at satura-

tion.

The average torque | Γd | due to the demagnetizing forces is:

| Γd |= FM2
s

√
2GKBT

πV
(2.25)

where F is a constant.

The total average | Γ | of the perturbing forces is thus:

| Γ |=| FM2
s + 3Gλ |

√
2GKBT

πV
(2.26)

Therefore, in the absence of any external magnetic field, the relaxation time in

isolated monodomain ferromagnetic nanoparticle is:

1

τ
=

2Ke

mMs

| FM2
s + 3Gλ |

√
2V

πGKBT
exp
(
− KV

KBT

)
(2.27)

This is the expression obtained by Néel in his fundamental work of 1949 (Néel

[1949]).

2.5.2 Brown Model

In gyromagnetic system, the only effect of the large torque is to produce a pre-

cession about the polar axis so that a representative point moves along a parallel

of latitude and it is not obvious that a passage to the new pole is more probable
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than a return to the old one (Brown [1959]).

To avoid this dilemma Brown approached the problem in a more general way

based on the theory of stochastic processes and Brownian motion. Each particle

or macro−spin has a uniform magnetization vector
−→
M of constant magnitude but

variable orientation. It is only the direction of
−→
M that is influenced by the ther-

mal fluctuations while the magnitude is conserved. The changes in the direction

obey a LLG equation:

∂
−→
M

∂t
= − µ0γ0

Ms(1 + α2)

−→
M × [

−→
H + α

−→
M ×−→H ]. (2.28)

To account for the thermal agitation or fluctuation Brown introduced a random

field to the LLG equation, so that the equation describing the dynamics of the

moments is:

∂
−→
M

∂t
= − µ0γ0

Ms(1 + α2)

−→
M × [(

−→
H +

−−→
h(t)) + α

−→
M × (

−→
H +

−−→
h(t))] (2.29)

where the field is given by
−→
H = ∂E−−→

∂M
and E is the total energy. Despite that

Brown had not discussed the origin of the random field, however he introduced a

detailed study of its statistical properties. The concept of the random field will

be discussed in the following paragraph.

2.5.2.1 The random field

The random or thermal field is a gaussian stationary stochastic process that

stands for the effects of interactions of the magnetic moment with the micro-

scopic degrees of freedom (phonons, conducting electrons, nuclear spins...) which

cause the fluctuations in orientation of the moments (Garcia-Palacios [2000]).

<
−→
h (t) >= 0 and <

−→
h i(t)

−→
h j(t

′) >= 2Dδijδ(t− t′). (2.30)

The constant D given by equation 2.16, measures the strength of the thermal

fluctuations and (i=1,2,3) are the components of the field.

The Gaussian property of the fluctuations arises from the interaction of the mo-

ment with a large number of microscopic degrees of freedom with equivalent
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statistical properties. Besides, the thermal field is assumed to be a ′white′ noise

meaning that it is not correlated to its values at earlier or later times so that, its

autocorrelation function is a delta Dirac function (Garcia-Palacios [2000]). The

autocorrelation function has two possible interpretations: a mathematical one

given by Itô and a physical one given by Stratonovich.

• Itô interpretation: the noise is instantaneous and it is a delta dirac func-

tion and thus it has no physical realization.

• Stratonovich interpretation: there exist an interval of time much shorter

than the response time of the system over which the noise is not instanta-

neous.

Brown adopted the physical interpretation proposed by Stratonovich.

2.5.2.2 Derivation of the Fokker Planck equation

A particle with instantaneous moment orientation (θ, φ) can be represented by

a point over a unit sphere and a statistical ensemble of such particles can be

represented by a distribution of points over a unit sphere with surface density

W (θ, φ, t).

The movement of the representative points on the surface of the sphere due to

the changes in the direction of the moments, induces a net surface current density

J(θ, φ):
−→
J = W−→v − k′−→∇W. (2.31)

Given that ḱ is a positive constant.

The first term accounts for the motion of the representative points with velocity
−→v while the second term accounts for the thermal agitation. Writing continuity

equation 2.14 in spherical coordinates and setting P = W sin θ, we get the current

density components :

Jθ = −
(
h′
∂E

∂θ
− g′ 1

sin θ

∂E

∂φ

)
W + k′

∂W

∂θ

Jφ = −
(
g′
∂E

∂θ
+ h′

1

sin θ

∂E

∂φ

)
W + k′

1

sin θ

∂W

∂φ
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where

h′ =
αγ0

(1 + α2)µ0VMs

; g′ = h′/α; k′ = h′/β

Then the general FP equation for a monodomain magnetic nanoparticle is given

by:

∂W

∂t
=

1

sin θ

∂

∂θ

(
sin θ

[(
h′
∂E

∂θ
− g′ 1

sin θ

∂E

∂φ

)
W + k′

∂W

∂θ

])
+

1

sin θ

∂

∂φ

[(
g′
∂E

∂θ
+ h′

1

sin θ

∂E

∂φ

)
W + k′

1

sin θ

∂W

∂φ

]
. (2.32)

The general solution of the FP equation is of the form:

W = W0 +
∞∑
n=1

AnFn(θ, φ)exp(−pnt) (2.33)

with W0 = Aexp(−βE) being the equilibrium solution and β = (KBT )−1.

2.5.2.3 Kramer’s Method and High Energy Barrier

The analytical solution of the general FP equation is only possible for nanopar-

ticles with uniaxial anisotropy i.e. when φ is constant.

The general FP equation reduces to :

∂W

∂t
=

1

sin θ

∂

∂θ

(
sin θ

[
h′
∂E

∂θ
W + k′

∂W

∂θ

])
(2.34)

And the total energy:

E = E(θ) = KV sin2 θ − µ0VMsH cos θ

where the external field is applied parallel or anti−parallel to the easy axis.
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Figure 2.8: Energy Distribution.

Between the two energy minima 0 and π, choose two regions 0 ≤ θ ≤ θ1 and

θ2 ≤ θ ≤ π under the following two conditions:

• From the outset, the equilibrium is being achieved in these regions.

• e−βEm � e−βE(θi) � e−βEi this condition is satisfied by the high energy

barrier approximation where β(Em − Ei)� 1.

Knowing that the total number of particles is given by n =
∫
WdΩ, then:

• in the region (0, θ1) the number of particles n1 is:

n1 = 2πW1e
βE1I1 with I1 =

∫ θ1

0

e−βE(θ) sin θdθ and W1 = W (0) (2.35)

• in the region (0, θ2) the number of particles n2 is:

n2 = 2πW2e
βE2I2 with I2 =

∫ π

θ2

e−βE(θ) sin θdθ and W2 = W (π) (2.36)

To proceed, we may replace E(θ) by its Taylor’s series about 0 truncated at the

second order. This is justified by the second condition which indicates that there
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exists a rapid decrease of the exponential factor with distance from the minimum

of energy. Also, because θ is small we may replace sinθ by θ, then:

Ii = e−βEi/βki with k1 ≡ E
′′
(0) and k2 ≡ E

′′
(π) (2.37)

Despite the fact that W is very small between (θ1, θ2), it is sufficient to maintain

a small net flow of points from the overpopulated to the under-populated region.

This flow can be approximated by a steady divergenceless current:

I = 2πsinθJθ (2.38)

But

Jθ = −
(
h′
∂E

∂θ
W + k′

∂W

∂θ

)
and k′ = h′/β, then:

∂W

∂θ
+ β

∂E

∂θ
W = − βI

2πh′ sin θ
(2.39)

By multiplying equation 2.39 by e−βE and integrating between θ1 and θ2, we get:

W2e
−βE2 −W1e

−βE1 = − βI

2πh′
Im where Im =

∫ θ2

θ1

eβE
dθ

sin θ
(2.40)

As for Ii, we expand E(θ) around θm and then replace sinθ by sinθm, we get:

Im =
eβEm

sin θm

√
2π

βkm
where km ≡ −E ′′(θm) (2.41)

From equations 2.35, 2.36, 2.39 and 2.40 and knowing that I = ṅ1 = −ṅ2,we get:

ṅ1 = −ṅ2 =
h′

βIm

(n2

I2

− n1

I1

)
(2.42)

The high energy barrier approximation validates the discrete orientation model

2.17, then:

νij =
h′

βImIi
where (i = 1, j = 2 or i = 2, j = 1) (2.43)

From equations 2.37 and 2.43, we can write down the final expression of the
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transition probability:

νij = cije
−β(Em−Ei) with cij = h′ki sin θm

√
βkm
2π

(2.44)

In the very early stages of an approach to equilibrium, the inverse of the longest

finite time constant is determined by the smallest non-vanishing eigenvalue of the

FP equation corresponding to n=1 in equation 2.33.

1

τ
= ν12 + ν21 with ν12 = c12e

−β(Em−E1) and ν21 = c21e
−β(Em−E2) (2.45)

Provided that cos θm = ε = H
Hc

where Hc = 2K
µ0Ms

is the coercive field, then the

energy at the maximum of the barrier (figure 2.8) Em = KV (1 − ε2), and the

energies at the two minima are E1
2

= ±µ0HMV .

The constants Km = 2KV (1− ε2) and K1
2

= 2KV (1± ε).
The height of the energy barrier can be calculated as follows:

∆E = KV (1− H0

Hc

)2 (2.46)

where H0 is the external applied field and Hc=
2K
µ0Ms

is the coercive field.

Finally, the relaxation time in isolated monodomain ferromagnetic nanoparticle

is:

1

τ
=

α

1 + α2

γ0

MsV

(2KV )3/2

(2πKBT )1/2
(1− ε2)

[
(1 + ε)e

− KV
KBT

(1+ε)2
+ (1− ε)e−

KV
KBT

(1−ε)2
]

(2.47)

• K= anisotropy constant; V= Volume of the particle;

• Ms= saturation magnetization; α= damping constant

The formula derived by brown calculations is similar to Néel and the difference

between the two approaches is restricted in the pre−factor.
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2.5.2.4 Non-axially symmetric particles

When an external magnetic field is applied with a given angle ψ to the easy axis

then the total energy of the particle is modified (Stoner and Wohlfarth [1948]):

E = E(θ) = KV sin2 θ − µ0VMsH cos(θ − ψ)

The relaxation times in monodomain nanoparticles with an oblique external field,

can be calculated in the same way as for the axially symmetric case provided that

the minima of energy corresponds to 0 < θA and θB = π-θA < π. The height of

the energy barrier can be approximated as follows (Coffey et al. [1995]):

∆E = KV (1− H0

Hc

)0.86+1.14hc(ψ) (2.48)

where

•
hc(ψ) =

1

(cos(ψ)2/3 + sin(ψ)2/3)3/2

•
Hc =

2K

µ0Ms

· hcψ

1

τ
=

h
′

2π
sin(θm)

√
−E ′′(sin(θm))

[√E ′′(sin(θA))

sin(θA)
e−β(E(θm)−E(θA))

−
√
E ′′(sin(θB))

sin(θB)
e−β(E(θm)−E(θB))

]
(2.49)

2.5.2.5 Discussion

To this end, we have presented the approaches of Néel and Brown used to derive

analytically the relaxation time of magnetization reversal processes in magnetic

nanoparticles. The Néel−Brown’s model is restricted to the uniaxial particles

with an external field applied along the anisotropy axis. However, other theo-

retical works using numerical simulations succeeded to calculate the relaxation

times for any arbitrary angle of the external applied magnetic field (Coffey et al.
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[1995]), as it was discussed in the previous paragraph. Moreover, (Aharoni [1973])

calculated the relaxation times in particles with cubic anisotropy.

Regarding the Néel’s calculations, one may remark that it is not clear why the

magnetic moments cross the barrier in one direction only and consequently change

their orientation knowing that there is no reason for these particles to reoriented

toward their initial position.

Brown’s calculations seem to be more rigorous, however Brown did not precise

the origin of the thermal field. In Brown’s calculation, the assumption of constant

magnitude of magnetization is also questionable.

For both models, it is assumed that the magnetization undergoes a gyroscopic-

like motion during its reversal i.e coherent motion during the reversal. Recently,

Andrade et al. [2006] have shown that for superparamagnetic nanoparticles with

uniaxial anisotropy (diameter≤4 nm), the assumption of complete coherent rota-

tion is not valid.

The Néel−Brown’s model ignores the interactions among the nanoparticles such

as the magnetic dipole-dipole interaction which are found to have important ef-

fects on the dynamics of nanoparticles (Djurberg et al. [1997]; Mamiya et al.

[1999]; Mørup et al. [1983]; Rancourt and Daniels [1984]).

The validity of the Néel−Brown’s model to describe the magnetization dynam-

ics in isolated magnetic nanoparticles will be discussed in details in Chapter 6,

in addition, we investigate the effects of the dipolar interaction on the reversal

dynamics.
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Ultrafast Magnetization

Dynamics

So many are the reasons that makes the magnetization dynamics an exciting topic

and give it a relevant importance for both fundamental studies and technologi-

cal applications especially with the increasing demands on high speed magnetic

memories with high storage density.

A dynamical response in ferromagnetic materials may be induced either by the

application of an external magnetic field or thermally by optical excitations with

laser pulses. For the first case, it is obvious that a strong magnetic field will align

the magnetic moments parallel to each others along its direction. This stable state

will break down as soon as the direction of the field is changed. This perturba-

tion forces the magnetic moments to realign themselves along the new direction

of the field via a coherent damped precession around the external field with a

GHz frequency. This process may take several picoseconds (ps) to nanoseconds

(ns).

Secondly, shining a ferromagnetic material with intense laser pulses will thermally

perturb both the charge and the spin populations inducing ultrafast dynamical

responses happening on time scales that range from few hundreds of femtosecond

(fs) to ∼ 1 nanosecond (ns).
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3.1 Historical Review

Back to 1984, when the first laser induced magnetization dynamics was done on

thin Ni films (50−100 nm) (Agranat et al. [1984]). It was predicted that the

spin−lattice relaxation time lies between 1 and 40 ns. Later on,Vaterlaus et al.

[1992] estimated a 100 ± 80 ps relaxation time in films of gadolinium. This relax-

ation time was confirmed by the theoretical predictions of Hübner (Hübner and

Bennemann [1996]).

However, the cornerstone experimental observation which triggered out the do-

main of optical manipulation of magnetization with femtosecond laser pulses was

that done in strasbourg in 1996 (Beaurepaire et al. [1996]). The authors per-

formed Kerr Magneto-optical measurements in pump(400 nm)−probe(800 nm)

configuration on a 20 nm Ni film, and they reported an ultrafast demagnetiza-

tion within ∼ 2 ps.

This unprecedented result plotted on figure 3.1, was confirmed by the different

subsequent experimental works (Bigot [2001]; Bigot et al. [2004]; Güdde et al.

[1999]; Hohlfeld et al. [1997]; Ogasawara et al. [2005]; Scholl et al. [1997]). More-

over and on larger time scales, other works showed that it is possible to induce

precession of the magnetization vector (Bigot et al. [2005]; Ju et al. [1998]).
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Figure 3.1: The result taken from Ref Beaurepaire et al. [1996] showing a demagne-

tization in 2 ps.

However in an experiment performed by Koopmans, it is shown that when

the electrons are out of equilibrium, the MO signals (ellipticity and rotation) do

not follow the same dynamics and therefore, breaking down the proportionality

between the magnetization and the voigt vector (Koopmans et al. [2000]). Such

conclusions raised questions on the reliability of the interpretation of the experi-

mental result obtained by Beaurepaire et al..The results are reproduced on figure

3.2.
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3. Ultrafast Magnetization Dynamics

Figure 3.2: Comparison between the induced ellipticity (open circles) and rotation

(filled diamonds).Ref (Koopmans et al. [2000])

Two years later, the group of Bigot replied on the criticism. The authors

proposed that one should analyze the real and the imaginary parts of the voigt

vector (Q = q′ + iq′′) rather than the Faradays’ ellipticity and rotation as Koop-

mans et al. did. In their work, the authors studied films of CoPt3 using much

shorter pulses with 20 fs duration. They showed that after the thermalization of

electrons q′ and q′′ have the same dynamics. However, during the thermalization,

the two components follow the different dynamics. The film lost its magnetization

on a sub−100 femtosecond time scale where the electrons are not yet thermalized

(Guidoni et al. [2002]). Therefore, the raised problem is referred to the used

formalism to describe the non−thermalized spin dynamics and this implies new

formalisms for the laser induced de−magnetization. For example Boeglin et al.

[2010] have shown that during the thermalization of electrons in CoPd samples,

an ultrafast change in the spin−orbit coupling leads the quenching of the perpen-

dicular magnetic anisotropy of the samples, thus resulting in a demagnetization

of the samples.
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3. Ultrafast Magnetization Dynamics

Figure 3.3: (a) Time−resolved Faraday MO signals (ellipticity and rotation). (b)

Short−delay relative variations of the voigt vector components.(Guidoni et al. [2002])

3.2 Ultrafast Dynamics

The Time Resolved Magneto−Optical Kerr Effect (TR−MOKE) measurements

with femtosecond pump and probe pulses, is a very powerful tool to study the

ultrafast interaction processes that take place between the spins, the charges and

the lattice.

3.2.1 Charge Dynamics

The absorption of an intense laser beam by a metallic film within a skin depth

of ∼ 20 nm will excite the electron-hole pairs that acquire a large kinetic energy

far above the Fermi level leading to a nonthermal electronic distribution (figure

3.4−A).
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Figure 3.4: Sketch of the electron dynamics in a metal excited with a femtosecond

optical pulse.

The quasiparticles then thermalize to a hot Fermi-Dirac distribution (figure

3.4−B). This thermalization process is dominated by the scattering between the

quasiparticles electron-electron (e-e), hole-hole (h-h) and electron-hole (e-h) and

lasts during a few hundreds of femtoseconds. It has been shown that in metals,

the electron-phonon scattering also contributes to the electron and hole thermal-

ization (Del Fatti et al. [1998]). The efficient energy transfer between the electrons

and the phonons then leads to a cooling of the electronic distribution until an

equilibrium between the quasiparticles and lattice temperatures is reached (figure

3.4− C). The corresponding timescale depends on the electron-phonon coupling

and on the temperature dependent specific heat of the electrons. Typically it

occurs within a few picoseconds. The final step is the energy propagation or

heat diffusion that depends on the thermal conductivities of the material and

surrounding medium with a timescale ≤ 1 ns. The relaxation process is well

described using the Two−Temperature Model.
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3.2.1.1 Two Temperature Model

The two−temperature model (Kaganov et al. [1957]) is widely used to predict

the electron and phonon temperature evolution in metals after excitation by ul-

trashort laser pulses. After the thermalization of the electrons, the metal could

be divided into two distinct subsystems, one corresponding to the conduction

electrons and one to the lattice phonons.

Figure 3.5: The evolution of the electronic and the lattice temperature following a

laser excitation.

The dynamics of the electrons and lattice temperatures is given by a set of

two coupled differential equations :

Ce(Te)
∂Te
∂t

= −Gel(Te − Tl) + P (t)−−→∇κe
−→∇Te(t,−→r )

Cl(Tl)
∂Tl
∂t

= Gel(Te − Tl)−
−→∇κl
−→∇Tl(t,−→r ) (3.1)

where Ce and Cl are respectively the electronic and the lattice specific heats. Gel

is the coupling constant between the electron and the lattice baths and represents

the electron-phonons interactions (Philip [1987]; Suárez et al. [1995]). P(t) is the

source term and can be modelled by the envelope of a Gaussian pump pulse

with a duration ∆t, P (t) = P0exp(−t/∆t) . κl and κe are the thermal diffusion

constants.
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3. Ultrafast Magnetization Dynamics

For a free electron metal, Ce is a linear function of the temperature and can be

written as: Ce=γTe , with γ being a constant that depends on the density of

electrons and the Fermi temperature (Kittel [1986]).

The Debye Model expresses the lattice specific heat as :

Cv = 9NKB

( T
θD

)∫ θD/T

0

x4ex

(ex − 1)2
dx (3.2)

where θD = 3NKB is the Debye temperature and KB is the Boltzmann constant.

In the limit T > θD/3, the electron phonon relaxation time is (Grimvall [1976]) :

τep = 2πλ
KBT

~
(3.3)

The constant λ accounts for the mass enhancement due to the electron phonon

interactions. Its typical values for metals ranges between 0.1 and 3.

But what about the non thermalized electrons ? how to model the non thermal

regime ? and consequently calculate the thermalization time of the electrons ?

In the non−thermalized regime, the electronic distribution is divided into two

parts : a thermalized part characterized by its temperature Te and a non−thermal

part characterized by the energy density per volume of the non−thermal electrons.

To calculate the thermalization time, we need to solve the following three coupled

equations :

dN

dt
= −αN − βN

Ce(Te)
dTe
dt

= −Gel(Te − Tl) + αN (3.4)

Cl(Tl)
dTl
dt

= Gel(Te − Tl) + βN

where N is the number of excited particles, α and β parameterizes the heat rates

of the thermalized electrons and phonons respectively. therefore τther=1/α.
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3.3 Magnetization Dynamics

Soon after the excitation with the intense laser pulse, the magnetic material will

loose partially or completely its magnetization. An effect known as ultrafast de-

magnetization.

Figure 3.6: variation of the magnetization of a ferromagnet with temperature.

The physical origin of this phenomenon was a debated question for many

years. Spin flips induced by the spin orbit coupling could be a possible origin of

demagnetization (Bigot [2001]; Zhang et al. [2002]; Zhang and Hübner [2000]).

In a recent paper, Bigot et al. showed that it is due to a direct coupling between

the light field and the spins populations (Bigot et al. [2009]).

In a second step, the magnetic moments will return to the equilibrium state in a

relaxation process known as the re−magnetization process. At high temperatures,

the dominant relaxation mechanism of the spins to the lattice is the Raman

process sketched on figure 3.7, which can be summarized as follows :

• spin flips.

• absorption of a phonon with frequency ω.

• emission of a phonon with frequency ω+ω0.
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3. Ultrafast Magnetization Dynamics

where ω0 is the frequency of the direct transition from | b〉 to | a〉.

Figure 3.7: Raman Process.

The theoretical modeling of the ultrafast magnetization dynamics is a very

complicated problem where the famous models of Heisenberg and Stoner fails to

provide sufficient interpretations. However, the first modeling of these ultrafast

phenomena was the three temperature model.

3.3.0.2 Three Temperature Model

The three temperature model was introduced in Ref (Beaurepaire et al. [1996]).

The basic idea behind this model is to add a third subsystem or reservoir for the

spins and consequently a third equation to the system 3.1:

Ce(Te)
∂Te
∂t

= −Gel(Te − Tl) + P (t)−−→∇κe
−→∇Te(t,−→r )

Cl(Tl)
∂Tl
∂t

= Gel(Te − Tl)−
−→∇κl
−→∇Tl(t,−→r ) (3.5)

Cs(Ts)
∂Ts
∂t

= Ges(Te − Ts)−Gsl(Tl − Ts)−
−→∇κs
−→∇Ts(t,−→r )

47



3. Ultrafast Magnetization Dynamics

Figure 3.8: Simulated temperature profile for a Ni film excited by an ultrashort laser

pulse.

The light is absorbed by the electronic population first, leading to an increase

in their temperature (see figure 3.8). Then, the heat will be redistributed among

the two other reservoirs. It is also clear that the magnetization will be affected

on a time scale where the lattice has not participated in the relaxation yet.

3.3.0.3 Precession of the Magnetization

In addition to the ultrafast demagnetization, the laser excitation may induce a

precession of the magnetization vector around an effective field which takes into

account the anisotropy and the external fields. In fact, the laser pulse perturbs

the direction of the effective field and thus, bringing the magnetic moments out of

equilibrium. Their realignment along the new field direction is achieved through

a precessional motion.

In general at constant temperature, the precessional motion of the magnetization

vector could be modelized using the LLG equation 2.13. But this approach does

not hold for a laser induced precession because of the varying temperature. A

new approach that takes into account the dynamical change of the modulus of the

magnetization vector ‖ −→M ‖ is needed. In this essence, Bigot et al. [2005] proposed

a phenomenological model of this precession based on the combination of the
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Bloch equation (Bloch [1946]) and a term that accounts for the demagnetization.

d
−→
M

dt
= γ

(−→
M ∧ −→H eff

)
−
[d−→M
dt

]
relax
− P (t)

−→
M(t) (3.6)

where the second term of the right part of equation 3.6 corresponds to the damp-

ing. The magnetization modulus dependence on temperature is chosen to be

represented by the following equation:

| −→M(Te(t)) |=

Ms

√
1−

(Te(t)
Tc

)2

Te ≤ Tc

0 Te > Tc (3.7)

where Te is the electronic temperature calculated from the two temperature

model, and Tc the Curie temperature.

For the anisotropy constants there exist different models that account for their

variation with the temperature (Staunton et al. [2004]; Zener [1954]). For exam-

ple, the iron magneto−crystalline dependance on temperature is given by (Mor-

rish [1966]):

K1(T ) = K1(0)
[ | −→M(T ) |
M(0)

]10

(3.8)

where K1(0) and M(0) are the anisotropy and the magnetization at the absolute

zero.

In the following, we will be concerned by the laser induced dynamics in magnetic

nanoparticles such as the thermalization of the spins taking place at femtosecond

timescales, their corresponding relaxation to the equilibrium position. Besides,

we aim to explore the precession dynamics of the magnetization vector during its

return to its equilibrium position.
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Chapter 4

Experimental

4.1 Polarization of Light

Light is treated as a transverse electromagnetic wave. The polarization is a

physical property of a wave that describes the orientation of the electric field of

an electromagnetic wave as it propagates.

4.1.1 States of Polarization

Basically, three types of polarization states are generally considered: linear, circu-

lar and elliptical. Consider two waves traveling in the z−direction with a relative

phase difference ε :

−→
E x(z, t) =

−→
i E0xcos(kz − ωt)

−→
E y(z, t) =

−→
j E0ycos(kz − ωt+ ε)

The resultant wave is the vector sum of the two waves :

−→
E (z, t) =

−→
E x(z, t) +

−→
E y(z, t) (4.1)

4.1.1.1 Linear Polarization

The resultant wave is said to be linearly polarized, if the orientation of the field

does not change during its propagation with a constant phase ε i.e. ε should be
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a multiple of 2π.

• if ε=±2nπ ⇒ −→E (z,t)=(
−→
i E0x+

−→
j E0y)cos(kz−ω t)

• if ε=±2(n+ 1)π ⇒ −→E (z,t)=(
−→
i E0x-

−→
j E0y)cos(kz−ω t)

Figure 4.1: A linearly polarized light.

4.1.1.2 Circular Polarization

If the orientation of the electric field rotates with a constant magnitude, then

the resultant wave will be circularly polarized. Depending on the direction of

rotation, we distinguish between two types of circular polarization :

• Right circular polarized light :

ε = +π
2
⇒ −→E (z, t) =

−→
E 0(z, t)(

−→
i cos(kz − ωt) +

−→
j sin(kz − ωt)

• Left circular polarized light :

ε = −π
2
⇒ −→E (z, t) =

−→
E 0(z, t)(

−→
i cos(kz − ωt)−−→j sin(kz − ωt)
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Figure 4.2: A circularly polarized light.

4.1.1.3 Elliptical Polarization

The linear and the circular polarizations are two special cases of the elliptical po-

larization. The orientation of the electric field rotates and the magnitude changes

as well during the propagation of the wave. The polarization of the resultant wave

describes an ellipse making an angle α with (Ex, Ey) whose equation is :( Ex
E0x

)2

+
( Ey
E0y

)2

− 2
( Ex
E0x

)( Ey
E0y

)
cos(ε) = sin2(ε) (4.2)
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Figure 4.3: An elliptically polarized light.

the angle alpha is given by

tang(2α) =
2E0xE0y cos(ε)

E2
0xE

2
0y

(4.3)

According to the values of ε, we distinguish between two types of elliptical po-

larization :

• 0 < ε < π ⇒ counter-clock wise elliptical polarization.

• π < ε < 2π ⇒ clock wise elliptical polarization.

4.1.2 Some Useful Definitions

In this section, we present some useful definitions of some keywords used through-

out this Chapter :

1. Rotation : is the rotation angle of the plane of polarization of a linearly

polarized light as it passes through a magnetized material.

2. Ellipticity : is ratio of the major axis to the minor axis of an ellipse.

53



4. Experimental

3. Birefringence : is the decomposition of a light ray into two rays ordinary

and extraordinary when it traverses certain anisotropic materials. It was

first observed by Rasmus Bartholin in 1669 in calcite.

4. Circular Dichroism : is the differential absorption of the left circular

polarized light (LCP) and the right circular polarized light (RCP). It was

discovered by Jean−Baptiste Biot, Augustin Fresnel, and Aimé Cotton.

4.2 Magneto−Optical Effects

Magneto−Optical effect is now a widely used physical method to explore the prop-

erties of magnetic materials. The Magneto−Optical effects described here were

first discovered by Michael Faraday , (FARADAY EFFECT) observed in trans-

mission through a glass (Faraday [1846]) and the reverend J. C. Kerr (KERR

EFFECT) observed on the reflection off a metal (Kerr [1877]) . Therefore, the

effects for transmitted light are called Faraday effects and for reflected light are

called Kerr effects.

4.2.1 Faraday Effects

The experiment of Faraday consisted in measuring the transmission of an incident

polarized light through a glass rod under an applied magnetic field. In particular,

he observed that the polarization plane rotates by a angle depending on the mag-

netic field (see figure 4.4). The Faraday effect was one of the earliest indications

of the interaction between magnetism and light (Hecht [2002]).
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Figure 4.4: The Magneto−Optical Faraday effect where θF is the angle of rota-

tion (in radians), B is the magnetic flux density in the direction of propagation (in

tesla), d is the length of the path (in meters) where the light and magnetic field inter-

act.(http://en.wikipedia.org/wiki/Optical isolator)

4.2.2 Kerr Effects

In 1877, the Rev. John Kerr observed that when linearly polarized light is re-

flected from the polished surface of a magnetized sample, its polarization rotates

and becomes slightly elliptical (see figure 4.5). Although these effects are impor-

tant in magnetic media (ferro−magnetic or ferri−magnetic), they are still small

and often difficult to detect.
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Figure 4.5: The Magneto−Optical Kerr effect.

4.2.3 The Physics of the Magneto−Optical Effects

Microscopically, it is the spin orbit interaction that stands behind the MO effects

in metals. The hamiltonian of this interaction is of the form :

HSO =
~

4m2c2
(
−→∇V ∧ −→P ) · −→σ (4.4)

As long as the MO effects are related to the electric current produced by the mo-

bile electrons, the Heisenberg exchange interactions cannot explain such effects

because the Molecular field influences the alignment of the moments rather than

the motion of the electrons.

In 1932, Hulme stated that the spin−orbit interaction couples the electron mag-

netic moment −→σ with the magnetic field (
−→∇V ∧−→P )that the electron ’sees’ when

moving with a momentum
−→
P through the electric field −−→∇V inside a medium

(Argyres [1955]; Hulme [1932]). This coupling of the motion of an electron to

its magnetic moment could be responsible for the connection of the optical and

magnetic properties of ferromagnets.
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In a more general description, the induced ellipticity and rotation of the reflected

or transmitted light beam may be referred to the birefringence and circular dichro-

ism in the magnetic materials. Indeed, a linearly polarized light may be written

as a superposition of RCP and LCP waves. In a magnetic material, these two

waves propagate with different velocities, leading to a rotation of the plane of

polarization of the light beam. In addition, these two waves undergo different

absorption rates causing the wave to acquire a finite ellipticity.

Starting from the Maxwell’s equations, we write down the equation of propa-

gation of a monochromatic wave
−→
E (−→r , ω) with frequency ω in a thin magnetic

film:

−→∇ ∧−→∇ ∧−→E (−→r , ω) = −ω
2

c2

(−→
E (−→r , ω) + 4π

−→
P (−→r , ω) +

4πci

ω

−→∇ ∧−→M(−→r , ω)
)

(4.5)

The polarization could be separated into optical
−→
P and magneto−optical

−→
M

which in turn are separated into linear and nonlinear :

−→
P (−→r , ω) =

−→
P
L
(−→r , ω) +

−→
P
NL

(−→r , ω)
−→
M(−→r , ω) =

−→
M

L
(−→r , ω) +

−→
M

NL
(−→r , ω)

In the magneto−optical experiments, the first order χ(1) and the third order χ(3),

linear and nonlinear susceptibility tensors are defined as follows (Bigot [2001]):

P
(1)
i (ω) =

∑
j

χ
(1)
ij (ω)Ej(ω) (4.6)

P
(3)
i (ω) =

∑
jkl

℘χ
(3)
ijkl(ω;ω1, ω2, ω3)Ej(ω1)Ek(ω2)El(ω3)

M
(1)
i (ω) =

∑
j

χ
(1)MO
ijν (ω)Ej(ω)Hν

M
(3)
i (ω) =

∑
jkl

℘χ
(3)MO
ijklν (ω;ω1, ω2, ω3)Ej(ω1)Ek(ω2)El(ω3)Hν

ω = ω1 + ω2 + ω3

where the indices i, j, k refer to the components of the electric fields and ν to

those of the magnetic field (or magnetization direction for a ferromagnetic film)
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and ℘ indicates the permutations of the fields. The superscript MO is meant to

distinguish between the optical and magneto-optical responses.

The MO effects are proportional to the ratio of the non−diagonal and diagonal

components of the dielectric tensor ε. The dielectric tensor of a given material

can be obtained from the solution of the equation of free electrons given by Drude

model with a Lorentz force −e(−→E +−→v ∧−→B ) and a friction force −m
τ ′
−→v where τ ′

is the electron mean free path.

For isotropic materials, the dielectric tensor reads (You and Shin [1998]) :

ε = εxx

 1 −iQmz iQmy

iQmz 1 −iQmx

−iQmy iQmx 1

 (4.7)

where Q is called the magneto−optical constant, and −→m is the unit magnetization

vector. In some notations, Qmi (i=x,y,z), is often replaced by Q̃ and called the

voigt vector with three components Q̃x, Q̃y, Q̃z, where Q̃ is defined as follows :

Q̃ = −i ε̃xy
ε̃xx

= q′ + iq′′ where ε̃xx = ε′xx + iε′′xx

The two normal modes are the LCP wave with refraction index :

nL = n(1− 1

2
Q̃ · −→K )

and the RCP with refraction index :

nR = n(1 +
1

2
Q̃ · −→K )

where n =
√
ε. The linear MO effects originates from the non−zero difference

between nL and nR. In the case of normal incidence of the incident light (parallel

to the normal of the sample), the complex Kerr polarization angle is found to be

equal to :

ΦK = θK + iηK = i
NL −NR

1−NLNR

= −i ε
(1)MO
xy

(ε
(1)MO
xx − 1)

√
ε

(1)MO
xx

(4.8)

58



4. Experimental

• θK=Re(ΦK) is the Kerr rotation.

• ηK=Im(ΦK) is the Kerr ellipticity.

In the case of the non linear MO effects, the analytical solution of equations (4.5)

and (4.6) is not trivial and the problem is complicated.

Since our experiments are based on the Magneto−Optical effects in reflection, in

the following we will concentrate on the physics of the Magneto−Optical Kerr

effects (MOKE).

4.2.4 Magneto−Optical Kerr Effects

The Magneto−Optical Kerr Effect (MOKE) is the modification of the reflection

of polarized light by a material sample under a magnetic field. This modification

can be observed with several configurations, including 1) rotation of the direction

of polarization of the light, 2) introduction of ellipticity in the reflected beam and

3) a change in the intensity of the reflected beam. The rotation and ellipticity of

the reflected light polarization are proportional to the magnetization.

In fact, MOKE can be divided into three configurations according to the direction

of the magnetization with respect to the plane of incidence and to the reflecting

surface: the longitudinal orientation figure 4.6−A, the polar orientation figure

4.6−B , and the transverse orientation figure 4.6−C.

Figure 4.6: The Magneto−optical Kerr effect configurations: A−Longitudinal

B−Polar, and C−Transverse.
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4.2.4.1 The Magneto−optical Kerr effect configurations

In the longitudinal case, the magnetization vector is in the plane of the surface

and parallel to the plane of incidence whereas in the polar case the magnetiza-

tion vector is perpendicular to the plane of the surface. The effect is simple and

occurs for P−polarized incident light (
−→
E parallel to the plane of incidence) or

the S−polarized (
−→
E perpendicular to the plane of incidence). The major axis of

the ellipse is often rotated slightly with respect to the principal plane and this

is referred to as the Kerr rotation. There is an associated ellipticity called the

Kerr ellipticity. The sign and magnitude of these effects are proportional to the

magnetization
−→
M .

The transverse case is quite different from the previous two. First, there is only

an effect for light polarized in the P−plane. Secondly, in such a case, the re-

flected light remains linearly polarized and there is only a change in reflected (or

transmitted) amplitude as the magnetization is reversed.

4.2.4.2 Jones Formalism

The complex kerr angle ΦK can be calculated from the fresnel reflection matrix

< which is obtained following the Jones formalism.(
Er
p

Er
s

)
= <

(
Ei
p

Ei
s

)
=

(
rpp rps

rsp rss

)(
Ei
p

Ei
s

)
(4.9)

rij represents the ratio of the incident j to the reflected i polarized electric field.

As an example of calculations, we show the Fresnel coefficients for a thin magnetic

film.
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Figure 4.7: A system constituted of the nonmagnetic medium 0, the magnetic medium

1, and the nonmagnetic medium 2. The thickness of medium 1 is d1 . The magnetization

direction of the medium 1 is arbitrary (You and Shin [1998]).

The expressions of rij are (You and Shin [1998]):

rpp =
ns cos θ0 − n0 cos θ2

ns cos θ0 + n0 cos θ2

+ i
4πn0d1 cos θ0

(
n2
s cos2 θ1 − n2

1 cos2 θ2

)
λ
(
n0 cos θ2 + ns cos θ0

)2

rsp =
4πn0n1Qd1 cos θ0

(
mzn1 cos θ2 +myns sin θ1

)
λ
(
n0 cos θ0 + ns cos θ2

)(
n0 cos θ2 + ns cos θ0

)
rss =

n0 cos θ0 − ns cos θ2

n0 cos θ0 + ns cos θ2

+ i
4πn0d1 cos θ0

(
n2

1 cos2 θ1 − n2
s cos2 θ2

)
λ
(
n0 cos θ0 + ns cos θ2

)2

rps =
4πn0n1Qd1 cos θ0

(
mzn1 cos θ2 −myns sin θ1

)
λ
(
n0 cos θ0 + ns cos θ2

)(
n0 cos θ2 + ns cos θ0

)
where n0, n1 and ns are the refractive indices of media 0, 1 and 2 respectively.

The complex Kerr angle for S− and P−polarizations is defined as follows :
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• Φs
K = θsK + iηsK = rps

rss

• Φp
K = θpK + iηpK = rsp

rpp

For a polar configuration i.e. (mz = 1,mx = my = 0), the Kerr angle reads :

Φs
K,pol =

(rps
rss

)
pol

=
− cos θ0

cos(θ0 − θ2)
· cos θ2 · ℵ

Φp
K,pol =

(rsp
rpp

)
pol

=
cos θ0

cos(θ0 + θ2)
· cos θ2 · ℵ

ℵ depends on the thickness of the magnetic medium

ℵ =
4πn0n

2
1Qd1

λ(n2
2 − n2

0)

4.3 Pump−Probe Spectroscopy

The Pump Probe spectroscopy performed with femtosecond laser pulses has

turned to be a performant technique to study ultrashort dynamical magnetic

processes. The method uses two ultrashort laser pulses : an intense laser pulse

called the pump and a relatively less intense pulse called the probe. The basic

idea is that the perturbations in the state of a given system induced by the pump

beam are investigated using the probe beam at different time delays.

For our experimental measurements, we have excited the samples with a 400

nm/150 fs pump pulse and probed with a 800 nm/150 fs. The description of the

laser setup will come later on in this chapter.

In a two level systems formed of a ground state and an excited state, the pump

beam induces a transfer of populations from the ground state to the excited state

leading to a change in the absorption of the excited sample which induces a change

in the transmissivity or reflectivity. This effect can be detected by measuring the

differential variation of the intensity of the transmitted or reflected beam :

∆I

I
=
Ipupr − Ipr
Ipr

I ∼ T,R (4.10)
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• Ipupr : intensity of the probe in the presence of the pump.

• Ipr : intensity of the probe in the absence of the pump.

For weak absorption, the variation of the transmissivity or reflectivity is propor-

tional to the absorption coefficient :

∆I

I
∝ −∆α(ω) with It(w) = I0e

−α(ω)d (4.11)

where d is the thickness of the sample and I0 is the incident intensity. In the

case of weak optical excitation, Rosei and Lynch [1972] showed that the real and

imaginary parts of the dielectric tensor can be written as linear combinations of
∆R
R

& ∆T
T

:

∆ε1 = A
∆T

T
+B

∆R

R

∆ε2 = C
∆T

T
+D

∆R

R

A, B, C and D are parameters that depend on the wavelength of the excitation,

film thickness and the index of refraction of the medium.

In pump−probe experiments, the effects of the pulses has to be expressed in terms

of the changes of the third order nonlinear susceptibility tensor χ(3) :

P
(3)
l (ωs) ∝

∑
ijkl

℘χ
(3)
ijk(ωs;ωi, ωj, ωk)Ei(ωi)E

∗
j (ωj)Ek(ωk)

where i, j, k stands for pr (probe) or (pu) pump beams with the condition to

have two prump and one probe laser pulses. It is clear from P
(3)
l that different

permutations of i, j, k can be obtained. However, as in our detection of the

reflected or transmitted beam is done is the direction of the probe, then only

three effective permutations are to be considered:

1. In the negative time delays, we have EprE
∗
puEpu.

2. During the superposition of the two pulses, we have EpuE
∗
prEpu and it is

called the coherent term.
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3. In the positive time delays, we have EpuE
∗
puEpr.

4.4 The Laser system

In the experiments, we have used an amplified laser system from Spectra physics

(Tsunami and Spitfire). The oscillator (Tsunami) (figure ??) delivers pulses at

800 nm with 80 fs duration, a rate of 82 MHz, and an average output power of

600 mW. The energy per pulse is about 7.3 nJ. A continuous laser (Millenia) is

used to pump the Tsunami cavity, and another pulsed laser (Evolution X) is used

to pump the regenerative amplifier cavity (Spitfire).

The pulses are amplified using a regenerative amplifier with also a Ti:sapphire

slab as a gain medium. The output of the amplifier delivers an average power

of ∼650 µW which corresponds to an energy of 200 µJ/pulse which have a pulse

duration of 150 fs at 5 kHz.

Figure 4.8: A sketch of the laser system.
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We use fast photodiodes and an oscilloscope to monitor the pulse train, and

a fiber spectrometer for the frequency spectrum.

4.4.1 Ultrashort Laser Pulses

In general, the shorter laser pulses require larger bandwidth. The corresponding

relation between a pulse duration ∆t and its spectral bandwidth ∆ω (optical

frequencies necessary to construct it) is given by the time bandwidth product

∆t∆ω. For any laser pulse, the product should be minimum:

∆t∆ω ≥ 1

2
(4.12)

Equation 4.12 is known as the time frequency uncertainty principle. From this

equation, we can deduce the relation between the frequency at full half maximum

width ∆ν and the duration at half maximum :

∆ν∆ω ≥ K

where K is a constant that depends on the shape of the pulse e.g. K=0.441 for a

pulse with a gaussian profile.

To generate ultrashort laser pulses, three main factors are to be considered : 1)

the gain medium, 2) the compensation of the group velocity dispersion GVD and

3) mode−locking.

1. As mentioned before we have used a regenerative amplifier with Ti3+:sapphire

doped medium. The Ti3+:sapphire doped medium provides: 1) large spec-

tral bandwidth (600 nm to 1 µm); 2) good thermal conductivity; and 3)

high mechanical and photochemical stability.

2. It is known that as the dispersion properties of the active medium and the

optical elements in a laser cavity affects the pulse duration significantly

and as the refractive index of any material n(ω) depends nonlinearly on the

frequency therefore, each frequency within the pulse experiences a slightly

different group velocity, vg as it propagates. This effect is known as the
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group velocity dispersion GVD.

In fact, the shorter the pulse, the broader the spectral range involved, in-

creasing the influence of GVD on the shape and the duration of the pulse.

Therefore, in order to achieve short, stable and reproducible output pulses

from a laser, it is necessary to compensate the effects of GVD. Actually,

there are two methods for the compensation : the 4 prisms and the diffrac-

tion grattings. In femtosecond laser system, the positive GVD is compen-

sated using the 4 prisms.

3. To obtain ultrashort intense laser pulses the phase relationship between the

components of the out coming pulse should be fixed. This can be done in

a technique called the mode−locking technique.

In general, there exit two main methods of mode−locking : active and

passive.

4.5 Brief description of how do we perform our

measurements

In order to explore the magnetization dynamics of the CocorePtshell pellets, we

have used a polar magneto−optical kerr configuration (described in section 4.2.4.1)

to perform the pump probe measurements.

The measurements are done with a 150 fs/400 nm pump pulse used to excite the

sample and a 150 fs/800 nm laser pulse used to probe the modifications in the

state of the samples in a function of the time delay between them. The tempo-

ral delay between the two pulses is controlled by their relative pathways which

is typically done with a precise motorized linear stage with a minimum step of

0.1 µm corresponding to a temporal delay of 6.66 fs. The experimental setup is

sketched on the following figure:
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Figure 4.9: A scheme of the experimental setup (A+B gives the reflectivity and A−B

gives the magnetization of the sample).

To obtain the laser pulses, we have used a regenerative amplifier which deliv-

ers 800 nm/150 fs laser pulses with a 5 kHz repetition rate which corresponds to

200 µs delay between two consecutive pulses. This delay is sufficient so that the

sample establishes its thermal equilibrium with the environment. In metals, the

heat diffusion process is in the order of nanoseconds.

Then, the output beam is divided into two parts using a beam splitter. The first

beam is used as a probe pulse, while the second is used to generate the pump

pulse using a 3 mm BBO (beta Barium Borate β −BaB2O4) crystal.

After that the pump and the probe are focused on the samples with an incidence

of zero with respect to the normal of the sample. The analysis of the state of

polarization of the reflected beam is done using a polarization bridge. The de-

tection of the reflected beam is made on a lock−in amplifier using photodiodes.

We perform the measurements on two directions of an external magnetic field
−→
H 0

applied perpendicular to the sample.
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4.5.1 Relation between the magnetization, reflectivity and

detected MO signal

The intensity detected by the photodiodes is proportional to the magnetization

of the sample.

4.5.1.1 Statics

For a polarimetric configuration composed of the sample and a polarizer, the

static intensity I± for the opposite directions of magnetization is equal to:

I± = I0

[
cos γ2 + sin γ2(θ2 + η2)± 2θ sin γ cos γ

]
(4.13)

where θ and η are the kerr rotation and ellipticity respectively. γ: angle of the

polarizer, I0: intensity of the initial incident light. We note that equation 4.13 is

valid for small values of the θ and η.

If we set γ=π/2-α, and in the limits of small angles, and if we separate the

magnetic and non magnetic contribution in the ellipticity and rotation, then

equation 4.13 could be written as follows (Bigot et al. [2004]):

I± = I0

[
α2 − 2α(θ0 ± θM) + (θ2

0 + η2
0 + θ2

M + η2
M)± 2(θ0θM + η0ηM)

]
(4.14)

where θ0, η0 are the non magnetic rotation and ellipticity induced by the sample.

θM and ηM are the magneto−optic rotation and ellipticity. All of these quantities

are wavelength dependent.

4.5.1.2 Dynamics

The differential signals detected by the lock−in amplifiers are given by :

∆M

M
=

∆I(t)+H0 −∆I(t)−H0

4I0(t)

(4.15)
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The relationship between ∆M/M and the detected signal is given by the following

equation (Bigot et al. [2004]):

∆M/M = −θM(t)α + θM(t)θ0 + ηM(t)η0 (4.16)

4.6 The Samples

In this thesis, we have studied 3D arrangements of CoPt core−shell nanopar-

ticles elaborated by redox transmetalation reactions. In general, such types of

reactions describe the exchange of ligands between the metals. The transmet-

alation reactions produce high quality small size (less than 10 nm) core−shell

bimetallic nanoparticles e.g. CoPt, CoAu, CoPd... (Lee et al. [2005]).

The CocorePtshell nanoparticles were fabricated by our collaborating group at

Yonsei University in Seoul (Prof. J. Cheon) on two steps : thermolysis1 and

refluxing2. In order to obtain the colloids of cobalt nanoparticles, the inorganic

compound Dicobalt octacarbonyl Co2(CO)8 is thermolyzed in toluene solution.

Then, the colloids are refluxed for 8 hours with beta−diketonate complexes of

platinum Pt(hfac)2 (hfac=1, 1, 1, 5, 5, 5−hexafluoroacetylacetonate) in a nonane

solution containing 0.06 mL of n−dodecyl C12H25NC as a stabilizer. The size

dispersion of the particles is approximately 10 %. Finally, the particles are as-

sembled into a compact bulk pellet (1.5 x 1 x 4.5 mm3) by cold pressing under

160 Pa. The final step was performed in the group of Prof. T.H. Kim at Ewha

Womans University in Seoul. The obtained Cocore Ptshell nanoparticles have an

average diameter of ∼ 6.5 nm where ∼ 5 nm cobalt resides at the core and is

surrounded by a ∼1.5 nm platinum shell (Park and Cheon [2001]). The shell to

shell distance between two CocorePtshell nanoparticles is about 0.2 nm.

1Thermolysis: is the separation of a chemical compound into elements or simpler com-
pounds caused by heat.

2Reflux: is a technique involving the condensation of vapors and the return of this con-
densate to the system from which it originated. It is used to supply energy to reactions over a
long period of time.
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Figure 4.10: A− Electron microscopy image of CoPt core−shell nanoparticles (insert:

detailed view of single particle), B− High resolution TEM image and composition

analysis of CoPt core−shell nanoparticle at different positions using Energy Dispersive

X-ray Spectroscopic(EDS) technique. From the EDS analysis, compositional changes

corresponding to the Pt shell (blue rectangles) and Co core (red circles) clearly confirm

the CoPt core−shell structure.).

The static magnetic characterization of the samples, such as the Zero Field

Cooling/Field Cooling (ZFC/FC) and the hysteresis loops M(H) were performed

using a SQUID magnetometer in SQUID lab at the IPCMS by Alain Derory.

4.6.1 The ZFC/FC measurements

In ZFC, the magnetization is measured while cooling the sample from 350 K to

5 K in a zero applied field, then the sample is heated from 5 K to 350 K in

the presence of a low magnetic field (typically 50 Oe) which is lower than the

saturation field of the samples. The FC measurements are done in a similar way

except that the field is applied from the beginning.
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Figure 4.11: Zero-Field-Cooling (ZFC) (dashed lines) / Field-Cooling (FC) (solid

lines) Magnetization curve .

The above ZFC/FC curve shows that the nanoparticles are superparamag-

netic with a blocking temperature TB=66 ± 3 K. The blocking temperature is

calculated from the blocking temperature distribution plotted on figure 4.12. The

distribution is obtained from the derivative − d
dT

(MFC −MZFC) (Denardin et al.

[2002]).
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Figure 4.12: The derivative with respect to temperature of the difference between

the magnetization obtained by the field cooling MFC and the magnetization obtained

by the zero field cooling MZFC .

4.6.2 The Magnetization curve

To study the dependance of the magnetization
−→
M on the external field, we have

performed several hysteresis loops measurements for two field directions (// or ⊥
with respect to

−→
M) and at different temperatures (5 K and 300 K).
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Figure 4.13: Hysteresis loop at 300 K for parallel (blue) and perpendicular (red)

directions. Inset: Zooming around zero.

Figure 4.13, shows a typical superparamagnetic hysteresis loop (zero coercive

field Hc=0 and zero magnetization at remanence MR=0), for the two directions

of the field confirming the superparamagnetic nature of the particles at room

temperature (300 K).

At 5K, for the parallel direction a ferromagnetic hysteresis loop is measured (figure

4.14). For the perpendicular direction, we measure a deformed hysteresis loop

which may reflect a competition between individual nanoparticles and the dipolar

interactions. From figure 4.15, it is clear that the magnetization at remanence

decreases with the weak external applied field (region around the H=0), which is

an indication of an anti−parallel alignment of the magnetic moments with respect

to the external applied field. This is induced by the dipolar interaction since it

favors the anti−ferromagnetic ordering (Arias et al. [2005]). At low temperatures,

Kechrakos and Trohidou [2008] have shown that as the strength of the dipolar

interaction increases, the magnetization at remanence decreases and for certain

strength of dipolar field it attains zero. However, in our case the magnetization

at remanence does not arrive at zero, which means that the dipolar interaction

are weak so that it does not establish itself properly.
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Figure 4.14: Hysteresis loop at 5 K for parallel direction (M//). Inset: Zooming

around zero.

Figure 4.15: Hysteresis loop at 5 K for perpendicular direction (M⊥). Inset: Zooming

around zero.

The magnetic characteristics of the samples (coercive field, magnetization at
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remanence and at saturation) are shown on the following table:

Figure 4.16: Magnetization parameters of the CoPt core-shell nanoparticles. T:

Temperature, MR and MS : Magnetization at remanence and at saturation, Hc: coercive

field, // and ⊥ designate the directions of magnetization M measured parallel and

perpendicular to the plane of the pellet sample.

4.6.3 The Annealing of Samples

The samples were annealed at 650 K for one hour in primary vacuum. The

thermal annealing derived enormous changes in the magnetic properties of the

pellets. For instance, the annealing induced a dilation in the diameter of the

particles. More importantly, it led to the formation of CoPt crystalline phase as

can be seen from the electron microscope images (figure 4.17).
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Figure 4.17: Electron microscopy image of CoPt core nanoparticles (insert: detailed

view of single particle).

A temperature dependent imaging of an individual nanoparticle assured the

enrichment of the cobalt cores with platinum. The evolution of the structure of

the nanoparticles from Cocore Ptshell to a CoPt crystalline phase is shown on the

following figure obtained by high-angle annular dark-field scanning transmission

electron microscopy (HAADF-STEM):
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Figure 4.18: Temperature dependent microscopy images of CoPt nanoparticles. A)

HAADF images of the pellet showing the evolution of a typical region during thermal

treatment up to 650 K. B) Intensity profiles of an individual particle extracted from the

HAADF images along the arrow in A. The morphology of a core-shell like nanoparticle

(300 K) evolves progressively with the increasing temperature, such that at 700 K the

core-shell structure evolves towards a homogenous one.

Here, it is worth to mention that the microscopy characterization of the sam-

ples was performed in the Department of Surfaces and Interfaces (DSI) at the

IPCMS by S. Moldovan and Ovidiu Ersen. The ZFC/FC curve shows that the

blocking temperature is shifted above the the room temperature (TB >350 K)

indicating that the pellets are ferromagnetic at room temperature.
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Figure 4.19: Zero-Field-Cooling (ZFC) (dashed lines) / Field-Cooling (FC) (solid

lines) Magnetization curve

This phase transition is also seen in the ferromagnetic hysteresis loop measured

at 300 K for the M⊥ and M// directions.
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Figure 4.20: Hysteresis loop at 300 K for parallel (blue) and perpendicular (red)

directions. Inset: Zooming around zero.

Figure 4.21: Hysteresis loop at 5 K for parallel (blue) and perpendicular (red) direc-

tions. Inset: Zooming around zero.
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The magnetic characteristics of the non−annealed samples (coercive field,

magnetization at remanence and at saturation) are shown on the following table:

Figure 4.22: Magnetization parameters of the CoPt core-shell nanoparticles. T:

Temperature, MR and MS : Magnetization at remanence and at saturation, Hc: coercive

field, // and ⊥ designate the directions of magnetization M measured parallel and

perpendicular to the plane of the pellet sample.

The induced ferromagnetism in the annealed pellets is attributed to the in-

crease of the magneto−crystalline anisotropy from CocorePtshell nanoparticles to

the CoPt crystalline nanoparticles.

To calculate the increase of the anisotropy constant K1, we use the blocking

temperature TB and the volume V of the nanoparticle. We have:

K1core/shell =
30.1KBTB

V
= 4.2 m5 J/m3 for TB = 66K and V = 6.65−26 m3

K1core/shell =
30.1KBTB

V
= 5.4 · 105 J/m3 for TB = 350K and V = 2.68−26 · 103

Assuming the same temperature as in the bulk Co (Paige and tanner [1984]),

then:

K1core/shell ≈ 0.38K1CoPt (4.17)
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N.B. To obtain the factor 30.1 we use the relaxation time given by equation

2.8. The measurement time τ is 120 s and τ0=10 ps calculated from the pre-

exponential factor of equation 2.47 using the physical parameters of the samples

(K=4.2 x105 Jm−3 and Ms=150 x103 Am−1).

In the next chapter, we will show the magnetization differential signals ob-

tained on different time scales on the pellets.
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Chapter 5

Results and Discussions

We have performed Polar Time Resolved Magneto Optical Kerr Effect (TR−MOKE)

measurements with 150 fs pulses at 400 nm for the pump and 800 nm for the probe

to study the magnetization and the charge dynamics in Cocore Ptshell nanoparti-

cles.

In the polar configuration, the pump and the probe are focused onto the sample

with normal incidence where the external field is applied perpendicular to the sur-

face of the sample. The detection of the reflected signal is made by synchronous

detection on a lock−in amplifier using a polarization bridge and photodiodes.

The advantage of TR−MOKE is that it allows to study the magnetization and

the charge dynamics at the same time. To extract the magnetization and the

reflectivity, we use the equations:

∆M

M
=

∆I(t)+H0 −∆I(t)−H0

Mstat

∆R

R
=

∆I(t)+H0

Rstat

=
∆I(t)−H0

Rstat

The samples (non−annealed and annealed) are studied on three different time

scales: where hereafter we name 1) very short time scale (-200 to 600 fs); 2) short

time scale (-1 to 3.5 ps); and 3) long time scale (-20 ps to 300 ps). The results

are presented on two sections, the first corresponds to the non−annealed samples

whereas the second is devoted for the annealed samples.
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5.1 Non−annealed Samples

5.1.1 Charge Dynamics

The obtained reflectivity curves, corresponds to the charge dynamics described

in chapter 3 section 3.2.1. The absorption of an intense laser pulse drives a gas

of electrons above the Fermi level, which relaxes to a hot Fermi−Dirac distribu-

tion undergoing electron−electron scattering processes with a characteristic time

τc−th=160 ± 5 fs1 for a pump energy Ep=0.8 mJ/cm2. Then, the hot electron

gas cools down to the lattice via electron−phonon scattering processes with a

characteristic time τc−rel=1.34 ± 0.03 ps2. This exchange of energy with the lat-

tice heats up the nanoparticles, so that the oscillations observed with a period

Tvib=1.95 ± 0.1 ps corresponds to a spherical breathing mode of the individual

nanoparticles which is a well known vibrational process in metallic nanoparticles

(Del Fatti et al. [1999]; Hodak et al. [2000]; Link and El Sayed [1999]; Nisoli et al.

[1997]). The ∆R(t)/R(t) on figure 5.1−B is fitted with a damped cosine function

of the form (∆R

R

)
(t) =

[
− Acos2(ωvibt) +B

]
exp
(
− t

τrel

)
1τc−th: is the charge thermalization time.
2τc−rel: is the charge relaxation time.
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Figure 5.1: Time resolved differential reflectivity (∆R/R)(t) of non−annealed CoPt

core−shell nanoparticles. A) Thermalization dynamics of electrons (blue: fit with

causal exponential growth using laser pulse autocorrelation in dashed black line). B)

Vibration dynamics of nanoparticles.
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Figure 5.2 shows a oscillatory behavior of the nanoparticles occurring on longer

a time scale. It is attributed to collective oscillations of the nanoparticles which

are organized locally. It is also fitted with a damped cosine function of the form:(∆R

R

)
(t) =

[
− Acos2(ωcollt) +B

]
exp
(
− t

τcoll

)
+ Cexp

(
− t

τdiff

)
It is characterized with a period Tcoll=146 ± 2 ps corresponding to a frequency

νcoll=ω/2π=6.85 GHz. The oscillations are rapidly damped with a characteristic

time τcoll=157 ± 2 ps. These low frequency oscillations corresponds to a local

supracrystalline ordering induced by a mild laser annealing. The supracrystalline

ordering corresponds to a coherent vibration of organized nanoparticles recently

observed on 3D Co supracrystals (Lisiecki et al. [2008]). We also note that the

heat diffusion to the environment on τdiff = 170± 2 ps.

Let us remark that the overall positive signal may be referred to the particularity

of the interband optical processes in cobalt platinum with some typical signatures

of the electron dynamics in metallic nanoparticles (Bigot et al. [2000]).

In summary, we have shown that the femtosecond laser pulses induce a mild laser

annealing of the pellet sample which leads to a local supracrystalline ordering.

The assembly of nanoparticles can then oscillate with a 146 ps period which is

different than the oscillations with 1.95 ps period associated with the breathing

mode of the individual nanoparticles.
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Figure 5.2: Time resolved differential reflectivity (∆R/R)(t) of non−annealed CoPt

core−shell nanoparticles: Collective oscillations of nanoparticles due to laser induced

supra-crystal ordering (blue: fit of damped oscillations).

5.1.2 Spin Dynamics

The overall magnetization dynamics occurs during the thermalization of the elec-

trons (Guidoni et al. [2002]). It is followed by a partial re−magnetization. The

spin population thermalizes faster than the charge population with a character-

istic time τs−th=101 ± 5 fs1 for Ep=0.85 mJ/cm2. This faster thermalization

may be attributed to the important spin scattering processes at the core/shell

interface.

Due to the efficient breathing mode relaxation process of the charges, the spin

relaxation process is also found to be faster with τs−rel=363 ± 5 fs2 for a pump

energy Ep=0.85 mJ/cm2.

1τs−th: is the spin thermalization time.
2τs−rel: is the spin relaxation time.
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Figure 5.3: Time resolved differential magnetization (∆M/M)(t) of non−annealed

CoPt core−shell nanoparticles. A) Thermalization dynamics of the magnetic moments

(spins) (blue: fit with causal exponential growth using laser pulse autocorrelation in

dashed black line). B) relaxation dynamics of the magnetic moments (spins) (fit with

exponential growth).
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On the long time scale, no remarkable features can be observed. This indicates

that the moments of the particles precesses randomly which is in agreement with

their superparamagnetic nature.

Figure 5.4: Time resolved differential magnetization ∆M/M(t) of non−annealed

CoPt core−shell nanoparticles: classical heat diffusion process.

In conclusion, in comparison with the charges, we have reported a faster spin

thermalization process attributed to the important scattering processes occurring

at the core/shell interface. Also, a faster spin relaxation process is reported. The

lattice heat diffusion process is observed to be monotonic.

5.2 Annealed Samples

As we have discussed in the previous chapter, the thermal annealing to 650 K

induced a magnetic phase transition from superparamagnetic to ferromagnetic

at room temperature (TB > 350K). Moreover, it has induced a CoPt crystalline

phase. The existence of this phase was confirmed by a temperature dependent mi-
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croscopy imaging carried on a single nanoparticle shown in chapter 4 section 4.5.3.

The ferromagnetism manifest itself as an increase in the magnetic anisotropy en-

ergy which in turn increases the energy barrier KV and consequently prevents

the thermal fluctuation of the magnetization.

5.2.1 Charge Dynamics

The annealed pellets follow the same charge dynamics as the non−annealed pel-

lets that is a thermalization, relaxation and heat diffusion processes. The ther-

malization process is found to be faster where τc−th=115 ± 5 fs for Ep=0.45

mJ/cm2 and τc−th=172 ± 5 fs for Ep=1.6 mJ/cm2.

As it is mentioned before, the thermal annealing induced important changes

in the morphology of the nanoparticles. It has induced an inhomogeneity at

the core−shell interface due to the platinum diffusion inside the cores of the

nanoparticles and/or to the intersticial platinum diffusion between the nanopar-

ticles which leads to the reduction of the mean free path of the electrons. This

reduction increases the scattering cross−section of the electrons which lead to the

faster thermalization (Link and El Sayed [1999]; Voisin et al. [2000]).

The electron phonon relaxation time is τc−rel=1.52 ± 0.04 ps for a pump energy

Ep=0.85 mJ/cm2. The annealed nanoparticles kept the breathing mode vibra-

tions during their relaxation, however, with an increased period Tvib=2.5 ± 0.1

ps. In fact, this can also be attributed to the diffusion of the platinum inside the

Co core.
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Figure 5.5: Time resolved differential reflectivity (∆R/R)(t) of annealed CoPt

core−shell nanoparticles. A) Thermalization dynamics of electrons (blue: fit with

causal exponential growth using laser pulse autocorrelation in dashed black line). B)

Vibration dynamics of nanoparticles.

The disappearance of the collective oscillations is another consequence of the

thermal annealing. We notice that the relaxation to the environment is slower in
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comparison with the non−annealed pellets. The process now takes place on two

steps corresponding to two time scales:

1. Thermal diffusion between the nanoparticles with a time constant τdiff,1=138

± 2 ps.

2. Overall thermal diffusion outside the spatial region probed by the laser

beam with a τdiff,2=980 ± 25 ps.

Figure 5.6: Time resolved differential reflectivity (∆R/R)(t) of annealed CoPt

core−shell nanoparticles: Thermal diffusion.

This longer thermal diffusion process is attributed to the low thermal conductiv-

ity of the pellets. The situation is different for nanoparticles dispersed in matrices

which serves as efficient heat reservoirs with a considerable thermal conductivity

that plays a significant role during the cooling process e.g Ag nanoparticles em-

bedded in AL2O3 or SiO2 (Halté et al. [1999]).

In conclusion, by thermally annealing the samples, the pellets cannot be any-

more ordered into supracrystals. In contrast, individual nanoparticles kept their
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breathing mode relaxation process. We remark an important electron scattering

processes leading to a faster thermalization of the electrons.

5.2.2 Spin Dynamics

The annealed samples show typical overall magnetization dynamics that is a de-

magnetization process followed by a partial re−magnetization. In comparison

with the non−annealed samples, the thermalization and relaxation processes are

observed to be slower. We obtained the following spin thermalization times :

τs−th=109 ± 5 fs for a pump energy Ep=0.471 mJ/cm2 or τs−th=154 ± 5 fs

for Ep=1.51 mJ/cm2, and spin relaxation times: τs−rel=495 ± 5 fs for Ep=1

mJ/cm2.

The slower thermalization and relaxation processes are attributed to the ferro-

magnetic nature of the annealed particles induced by the diffusion of the platinum

inside the cobalt core which led to the formation of a CoPt crystalline phase.

Similar thermalization and relaxation times have been reported on CoPt films by

Guidoni et al. [2002].

Actually, the induced CoPt phase has two effects on the magnetic properties of

the pellets. First, an increase in the value of magnetization at saturation as

can be seen from the 300 K ferromagnetic hysteresis loop plotted on figure 4.20.

Second, the ferromagnetic nanoparticles are no more separated by the platinum

shell enhancing the magnetic dipole−dipole interactions. This results in a differ-

ent magnetization for directions // and ⊥ to the sample plane.

As we have discussed in the previous chapter in section 4.5.3, we have estimated

the increase in the anisotropy constant to be:

K1core−shell ≈ 0.38K1CoPt
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5. Results and Discussions

Figure 5.7: Time resolved differential magnetization (∆M/M)(t) of annealed CoPt

core−shell nanoparticles. A) Thermalization dynamics of the magnetic moments (spins)

(blue: fit with causal exponential decay using laser pulse autocorrelation in dashed

black line). B) relaxation dynamics of the magnetic moments (spins) (fit: exponential

growth.
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On the contrary to the non−annealed samples, the heat diffusion process

induces a precession of the magnetization vector. On figure 5.8, we show an ex-

ample of this precession with a characteristic period Tprec=80 ± 2 ps for Ep=0.382

mJ/cm2 where the external field H0=0.2 T is applied at angles 50◦ and 130◦.

The ultrafast change in temperature induces a change in both the modulus and

orientation of the magnetization vector. Vomir et al. [2005] have shown that

the re−orientation of the magnetization vector in cobalt thin films is due to a

dynamical change in the effective field.

Figure 5.8: Time resolved differential magnetization (∆M/M)(t) of annealed CoPt

core−shell nanoparticles: precession of the magnetization vector.

We fit the precession with a damped cosine function of the form:(∆M

M

)
(t) =

[
− Acos2(ωcollt) +B

]
exp
(
− t

τprec

)
+ Cexp

(
− t

τdiff

)
Since both the amplitude and the direction of the effective field depend on the
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amplitude and orientation of the applied field, then it is expected that the vari-

ations of these parameters will affect the magnetization precession period. In

what follows we present a study of the effects of amplitude as well as orientation

variation on the precession in the pellets.

5.2.2.1 Variation with the Amplitude and Orientation

Figure 5.9, shows different precessions of the magnetization vector for different

amplitudes of the applied field.

Figure 5.9: Precession of the magnetization vector for different intensities of the field

(direction of H: 50,130).

The amplitude of the field varies between 0.2 and 0.074 T, we found that

the period of precession decreases (Tprec=160 ps for H0=0.074) as the amplitude

of the applied field increases (Tprec=104 ps for H0=0.2). The obtained results

are consistent with the results reported on NiFe/NiO bilayer (Ju et al. [1999]),
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ferromagnetic film and permalloy (Kampen et al. [2002]), GdFeCo structures

(Tsukamoto et al. [2004]) or Co/Al2O3 thin films (Vomir et al. [2005]).

Figure 5.10: Variation of the period vs the intensity of the applied field. Inset:

variation with orientation.

The laser excitation perturbs the direction of the effective field
−→
H eff (t) =

−→
H ani(t) +

−→
H 0, where

−→
H ani(t) represents the magnetic fields due to the shape and

the magneto−crystalline anisotropy and
−→
H 0 represents the external applied field.

This will lead to modifications of both the magnitude and the direction of the

magnetization vector. The change in the period of precession is related to the

modifications of the time dependent magneto−crystalline anisotropy (Bigot et al.

[2005]).

As discussed in chapter 3 (section 3.3.0.3), we model the ultrafast magnetization

vector precession following the model proposed by Bigot et al. [2005].

d
−→
M

dt
= γ

(−→
M ∧ −→H eff

)
−
[d−→M
dt

]
relax
− P (t)

−→
M(t) (5.1)

where the second term of the right part of equation 5.1 corresponds to the damp-

ing.
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5.3 Comparison

We stress that thermal annealing of the samples induced important changes in the

magnetic properties of the samples. The dynamical measurements are consistent

with the static measurements, and they confirm the ferromagnetic nature of the

annealed samples. The magnetization precession is an important characteristic

of the nanoparticles that has appeared after annealing.

Concerning the charge dynamics, we notice that the diffusion of the platinum into

the cobalt core accelerated the thermalization process. The thermal annealing

ceased the possibility to order the pellets into supracrystals using the femtosec-

ond laser pulses. We present two tables including the different characteristic

relaxation times of the non −annealed and annealed samples.

Figure 5.11: Characteristic electron and vibrational relaxation times in CoPt core-

shell nanoparticles. τc−th: thermalization of electrons, τc−rel: relaxation of electrons,

Tvib: breathing vibration period of individual nanoparticles, Tcoll: collective oscillations

associated to the supra-crystal ordering of nanoparticles, τcoll: damping of collective

oscillations, τdiff : energy dissipation to the environment. Ep is the absorbed density

energy of excitation.
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Figure 5.12: Characteristic spin relaxation times in CoPt core-shell nanoparticles.

τs−th: thermalization of spins, τs−rel: relaxation of spins. Ep is the absorbed density

energy of excitation.
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Chapter 6

Modeling the Magnetization

Dynamics in Nanoparticles

In the domain of magnetic nanomaterials, the numerical simulation is an effective

tool capable of providing better understanding of different physical phenomena

since it is only in few cases reliable experimental investigations are possible. For

instance, magnetization reversal (e.g. Scholz et al. [2004]), magnetic phase tran-

sition (e.g. Lopez-Diaz et al. [2002]), magnetization dynamics (e.g. Atxitia et al.

[2007]; Chubykalo et al. [2003]; Tsiantos et al. [2007]), effect of dipolar interac-

tions on the nanoparticles (e.g. Denisov et al. [2004]; Plumer et al. [2010])...etc.

As modern nanotechnology aims to use smaller monodomain magnetic nanoparti-

cles in the data storage, the understanding of magnetization reversal in these par-

ticles becomes critical. Since the leading theoretical models of Stoner-Wohlfarth

(Stoner and Wohlfarth [1948]) and Néel-Brown (Brown [1963]; Néel [1949]), on the

magnetization reversal by thermal activation in isolated single domain nanoparti-

cles, intensive experimental and theoretical work has been carried out. For exam-

ple, by performing switching field and waiting time measurement on small well

fabricated isolated monodomain nanoparticles with uniaxial anisotropy energy,

Wernsdorfer et al(Wernsdorfer et al. [1997]) showed that the measured relaxation

times fit very well with Arrhenius law given by Néel-Brown Model. On the other

hand, performing numerical simulations, Coffey et al.(Coffey et al. [1998]) did

not only verify Brown’s calculations for axially symmetric uniaxial particles but
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6. Numerical Simulations of Magnetic Nanoparticles

also were able to find an exact solution of Brown’s differential equation for any

arbitrary applied field direction.

However, as long as magnetic interparticle interactions, such as dipole-dipole,

exchange interaction, are considered the viability of Néel-Brown model becomes

questionable. Indeed, in dense samples where the magnetic moments are strongly

coupled, the effect of interparticle interactions especially dipole-dipole interaction

cannot be neglected. Recently, in many articles it is shown that these interparti-

cles interactions may lead to a collective behavior such as Super-Spin Glass behav-

ior (SSG) (Djurberg et al. [1997]; Mamiya et al. [1999]) or Super-Ferromagnetism

(SFM) (Mørup et al. [1983]; Rancourt and Daniels [1984]).

Therefore, due to the importance of understanding the effects of different inter-

actions on the magnetization reversal process such as interparticle dipolar inter-

actions, and due to our experimental observation on the magnetization dynamics

of super-paramagnetic nanoparticles, this part of the work is devoted to solve

Brown’s FP equation numerically first for isolated nanoparticles and then for

interacting assemblies of these nanoparticles.

6.1 Different Numerical Approaches

6.1.1 Langevin Dynamics Approach

The Langevin Dynamics LD approach was introduced by A. Lyberatos et al. in

1993 (Lyberatos et al. [2010]). It is considered to be the pearl of the numerical

simulations due to the close correspondence between the results and real experi-

ments. The approach consists on the direct numerical integration of the Landau

Lifshtiz Gilbert (LLG) equation derived by Brown (Brown [1963]). The LLG

models the time evolution as well as the precessional motion of magnetization

vector in the magnetic nanoparticle.

∂
−→
M

∂t
= − µ0γ0

Ms(1 + α2)

−→
M × [(

−→
H +

−−→
h(t)) + α

−→
M × (

−→
H +

−−→
h(t))] (6.1)

where

• γ : gyromagnetic coefficient.
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6. Numerical Simulations of Magnetic Nanoparticles

• α : damping constant.

• Ms : saturation magnetization.

• −−→h(t) : thermal or random field.

•
−→
H = − 1

MsV

∂E

∂
−→
M

Different discretization schemes of the above equation may provide results that

match with one of the two interpretations of the random field discussed in the first

chapter 2.5.2.1: the Itô′s interpretation e.g.Euler method (Greiner et al. [1988]),

and the Stratonovich′s interpretation e.g. Heun method (Garćıa-Palacios and

Lázaro [1998]; Wolf [1997]). Therefore, to be consistent with Brown calculations,

a Heun−like method should be used. The Heun’s method is a predictor−corrector

method where the predictor is the forward Euler’s method and the corrector is a

trapezoidal method.

Despite of the firm physical basis, the LD approach cannot be used to model the

dynamics on long time scales and it is limited to short time scales because the

numerical accuracy to model the spin precession forces very small discretization

step and so a LD simulation on a long time scale will be time and memory

consuming.

6.1.2 Monte Carlo Approach

The Monte Carlo MC numerical method was introduced a long time ago by

Metropolis N. and Ulam S. in 1949 (Metropolis and Ulam [1949]). The appli-

cation of MC to Micromagnetism is very useful especially as it allows to probe

the magnetization dynamics on long time scales i.e. on time scales where the LD

approach cannot be applied. The approach consists on the calculation of the tra-

jectories in phase space (−→r ,−→v ) following a master equation which stands for the

development of the probability distribution Ps(t) in phase space (Nowak [2001]):

dPs
dt

=
∑
s′

(Ps′ωs′→s − Psωs→s′ ) (6.2)
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Here s and s
′
denote different states of the system and ω is the transition rate

from one state to another.

Within MC method, we may distinguish between two basic algorithms: the spin

flip algorithm (Glauber [1963]) and the cluster algorithm (Swendsen and Wang

[1987]; Wolff [1989]).

The basic drawback in MC methods is that the time corresponds to the number of

MC steps and there is no clear connection to the real time i.e. physical time scale

at which the process takes place. However, the first serious attempt to overcome

this problem was introduced by Nowak et al. (Nowak et al. [2000]) where they

proposed a MC method with time quantified step. The basic assumptions of the

new method are:

1. The magnetic moments are uncorrelated.

2. The quantification is valid on time scales larger than those of the relaxation

and precession processes.

6.1.3 Fokker Planck Approach

In our study, we follow a third computational method that is equivalent to the

LD approach and it is based on the numerical integration of the Fokker Planck

(FP) equation derived by Brown (Brown [1963]). The FP equation governs the

non-equilibrium probability distribution W of magnetic moment orientation as-

sociated with the stochastic LLG equation. Knowing that E is the total energy,

then the FP eqution is:

∂W

∂t
=

1

sin θ

∂

∂θ

(
sin θ

[(
h′
∂E

∂θ
− g′ 1

sin θ

∂E

∂φ

)
W + k′

∂W

∂θ

])
+

1

sin θ

∂

∂φ

[(
g′
∂E

∂θ
+ h′

1

sin θ

∂E

∂φ

)
W + k′

1

sinθ

∂W

∂φ

]
.

In our work, we want to study the magnetization reversal processes in superpara-

magnetic nanoparticles where the thermal fluctuations causes the reorientation of

the magnetization from one equilibrium to another. We have decided to use the

Fokker Planck approach for two reasons: first the fluctuations are already taken
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into account by the Fokker Planck equation derived by Brown, so we do not need

to model these fluctuations. Second, adapting either of the Langevin dynamics

and the Time Quantified Monte Carlo method described in the preceding para-

graphs to the case of interacting nanoparticles would require prohibitive computa-

tional times and memory storage, particularly when the number of nanoparticles

is large.

6.2 Numerical Method

6.2.1 Finite Difference Method

The numerical method used is the Finite Difference (FD) method. The FD

method is a very simple and effective method. As in any method of numeri-

cal solution, the starting point of FD is to decompose the geometric domain into

a set of points or nodes forming a numerical grid. Each node of the grid is identi-

fied by its corresponding indices e.g. (i) for 1D, (i, j) for 2D and so on (see figure

6.1).

Figure 6.1: 1D and 2D grids.
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The main idea in the calculus of FD is to replace the derivatives with linear

combinations of discrete values of the function at each grid point so that there

will be one algebraic equation to be solved at each grid point (Ferziger and Peric

[1996]). At the boundary points, there are two types of boundary conditions:

• Dirichlet conditions: if the value of the function is known then no equa-

tion is needed.

• Neumann conditions: if the value of the function is not known then, the

boundary conditions should be discretized to provide the required equation.

6.2.1.1 Approximation of the First Derivative

By definition, the exact derivative of φ(x) (equation 6.3) at a given point xi is

the slope of the tangent to the curve representing φ(x) at that point.

(∂φ
∂x

)
i

= lim∆x→0
φ(x+ ∆x)− φ(x))

∆x
(6.3)

In FD method, the first derivative can be approximated in three possible ways:

Figure 6.2: On the definition of a derivative and its approximation.
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• Backward Difference Scheme (BDS): the slope is approximated by the slope

of the line passing by xi and a point before.(Dashed black line)(∂φ
∂x

)
i
≈ φi − φi−1

xi − xi−1

with ∆xi = xi − xi−1. (6.4)

• Forward Difference Scheme (FDS): the slope is approximated by the slope

of the line passing by xi and a point after.(Dashed blue line)(∂φ
∂x

)
i
≈ φi+1 − φi
xi+1 − xi

with ∆xi+1 = xi+1 − xi. (6.5)

• Central Difference Scheme (CDS): the slope is approximated by the slope

of the line passing by two points before and after xi.(Dashed red line)(∂φ
∂x

)
i
≈ φi+1 − φi−1

xi+1 − xi−1

(6.6)

For FDS and BDS, the truncation error is:

εr ≈
∆xi

2

(∂2φ

∂x2

)
i

(6.7)

While for the CDS, the truncation error is:

εr ≈
(1− re)∆xi

2

(∂2φ

∂x2

)
i
with re =

∆xi+1

∆xi
(6.8)

6.2.1.2 Approximation of the Second Derivative

By definition, the second derivative of φ(x) is the slope of the tangent to the

curve representing the first derivative. It is can be also approximated following

one of the three schemes mentioned above.(∂2φ

∂x2

)
i

=
φi+1(xi − xi−1) + φi−1(xi+1 − xi)− φi(xi+1 − xi−1)

(xi+1 − xi)2(xi − xi−1)
(6.9)
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with the the truncation error being:

εr ≈
∆xi+1 −∆xi

3

(∂3φ

∂x3

)
i

(6.10)

For example, for CDS where ∆xi+1 = ∆xi the approximation becomes:

(∂2φ

∂x2

)
i

=
φi+1 + φi−1 − 2φi

∆x2
(6.11)

6.2.1.3 Approximation of the Mixed Derivative

A mixed Derivative is approximated as follows:

∂2φ

∂x∂y
=
φi+1,j+1 − φi+1,j−1 − φi−1,j+1 + φi−1,j−1

4∆x∆y
(6.12)

6.3 Isolated Nanoparticles

The relaxation time describes how fast does a magnetization reversal between

two energy minima separated by an anisotropy barrier takes place.

As a starting point, we calculate the relaxation times of single domain ferro-

magnetic nanoparticles with uniaxial anisotropy (φ is constant). For that, we

solve numerically the Brown’s Fokker Planck equation for these particles (Brown

[1963]):
∂W

∂t
=

1

sin θ

∂

∂θ

(
sin θ

[
h′
∂E

∂θ
W + k′

∂W

∂θ

])
(6.13)

with the total energy:

E(θ) = KV sin2 θ − µ0VMs cos θ (6.14)

6.3.1 Discretization Scheme

In order to discretize the above equation, we perform following two changes of

variables:
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• x=cosθ then the FP eqution and the energy become:

∂W

∂t
=

∂

∂x

(
(1− x2)

[
h′
∂E

∂x
W + k′

∂W

∂x

])
(6.15)

E(θ) = KV sin2(θ)− µ0V HM cos(θ)

= KV (1− x2)− µ0V HMx

= E(x)

• t = t̂ ∗ tau
tau =

(1 + α2)VMs

αγ0KBT
(6.16)

Thus, the final dimensionless equation is:

∂W

∂t̂
=

∂

∂x

[
(1− x2)

(
(Ax+B)W +

∂W

∂x

)]
=

∂

∂x

[
(1− x2)(Ax+B)W

]
+

∂

∂x

[
(1− x2)

∂W

∂x

]
=

∂

∂x

(
U(x)W

)
+

∂

∂x

(
D(x)

∂W

∂x

)

where

• A = − 2KV
KBT

and B = −µ0V HM
KBT

.

• U(x)=(1− x2)(Ax+B) and D(x) = 1− x2

The temporal grid contains n nodes separated by a temporal step ∆t so that

ti = n ∗∆t with 0 ≤ i ≤ n, while the spatial grid contains s nodes separated by

a spatial step ∆x so that xj = x0 + j ∗ ∆x with x0 the position of initial node

and 0 ≤ j ≤ s.

The discretization in time is done following a forward derivative scheme:

∂W

∂t̂
=
W i+1
j −W i

j

∆t
(6.17)

107



6. Numerical Simulations of Magnetic Nanoparticles

The discretization in space is done following a central derivative scheme:

∂

∂x

(
U(x)W

)
=

Uj+1W
i
j+1 − Uj−1W

i
j−1

2∆x

∂

∂x

(
D(x)

∂W

∂x

)
=

(
D(x)W i

)
j+ 1

2

−
(
D(x)W i

)
j− 1

2

∆x

= (Dj+1 +Dj)
(W i

j+1

2∆x2

)
+ (Dj−1 +Dj)

(W i
j−1

2∆x2

)
− (Dj+1 +Dj−1 + 2Dj)

( W i
j

2∆x2

)

Finally,we get:

W i+1
j = W i

j

+ Uj+1

( ∆t

2∆x

)
W i
j+1 − Uj−1

( ∆t

2∆x

)
W i
j−1

+ (Dj+1 +Dj)
( ∆t

2∆x2

)
W i
j+1 + (Dj−1 +Dj)

( ∆t

2∆x2

)
W i
j−1

− (Dj+1 +Dj−1 + 2Dj)
( ∆t

2∆x2

)
W i
j

6.3.2 Boundary Conditions

The coefficients U and D are variable dependents and vanish at the boundaries.

However, their corresponding derivatives do not. This imposed special treatment

of the boundary conditions. The method that we have used to calculate the

boundary conditions can be found in the Appendix A.

The boundary conditions are:

• at j=0:

W i+1
0 = W i

0 +
1

2
U1

∆t

∆x
W i

1 +
1

2
D1

∆t

∆x2
(W i

1 −W i
0) (6.18)

108



6. Numerical Simulations of Magnetic Nanoparticles

• at j=s:

W i+1
s = W i

s −
1

2
Us−1

∆t

∆x
W i
s−1 −

1

2
Ds−1

∆t

∆x2
(W i

s −W i
s−1) (6.19)

6.3.3 Numerical Results

How do we get the relaxation time?

• The initial distribution of the moments is a half-gaussian centered at x = −1

(θ = π).

• Calculate the integral I=
∫ 0

−1
Wdx or I=

∫ 1

0
Wdx at any time and for different

values of the temperature T.

• To extract the numerical relaxation time we fit I with an exponential func-

tion of the form

f(t) = A0exp
(
− t

t̂

)
+ y0

Figure 6.3: A sketch of I1 fitted with an exponential decay..

• To get the real relaxation time we multiply t̂ by tau defined in equation

6.16.

In order to check the consistency of our numerical results, we perform the follow-

ing tests:
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• Verify always that the total number of configurations is conserved that is∫ 1

−1
Wdx=1 at any time.

• Verify that the final configuration of the particles converges to a Boltzmann

distribution function which is the equilibrium solution of Brown Fokker

Planck equation 6.13.

The numerical code is written in FORTRAN. In what follows, we perform simu-

lations for an isolated Co nanoparticle with the following properties (Nowak et al.

[2000]):

• V = 8 ∗ 10−24m3 Total volume of the particle.

• K = 4.2 ∗ 105J/m3 Anisotropy Constant.

• µs = NµB ∗ 1.7 = 1.12 ∗ 10−17J/T Saturation magnetic moment.

• Ms = µs/V = 1.4 ∗ 106A/m Saturation magnetization.

• | H0 |= 0.2/ µ0A/m Intensity of the applied field.

Figure 6.4: A spherical nanoparticle with a magnetic field applied parallel to the easy

axis of the particle’s magnetization (z−axis).
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6.3.3.1 Variation of τ with 1/T

In this section, we calculate the relaxation time of the particle as a function of

temperature. The initial configuration is shown on the figure below:

Figure 6.5: The initial distribution (red), the energy profile (green) and final distri-

bution (blue).

In figure 6.6, we compare values of the numerical relaxation times to the exact

values obtained directly from Néel-Brown relaxation formula (equation 2.47):

1

τ
=

α

1 + α2

γ0

MsV

(2KV )3/2

(2πKBT )1/2
(1− ε2)

[
(1 + ε)e

− KV
KBT

(1+ε)2
+ (1− ε)e−

KV
KBT

(1−ε)2
]

(6.20)
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Figure 6.6: The variation of τ as a function of 1/T for damping constant α=1.

It is obvious that for low temperatures, the numerical calculations are con-

sistent with those of Brown′s within 10 % accuracy. However, this consistency

breaks down for high temperatures and numerically it is expected that τ tends

to 0 as T tends to ∞.

To verify the obtained results, we present on figure 6.7 values of the relaxation

times obtained by different numerical techniques such as LD and MC (Nowak

et al. [2000]).
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Figure 6.7: The variation of τ as as a function of 1/T for damping constant α=1 for

three numerical methods: intermediate to high damping, LD simulation, MC simula-

tion.(Nowak et al. [2000])

We clearly see that , the different numerical approaches produce results that

show exactly the same behavior i.e. a correspondence at low temperatures and a

failure at high temperatures. Moreover, for ∆E
KBT

=2, the numerical methods (LD,

MC..) gives τ ≈ 1 ns which is exactly found in our simulations.

6.3.3.2 Variation of τ with the Damping Constant α

In this section, we investigate the effect of the damping constant on the relaxation

time.
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Figure 6.8: The variation of τ as a function of the damping constant α for ∆E/KBT =

2 (green) and 5 (blue).The red curve corresponds to the analytical brown asymptote.

The results (figure 6.8) show that our method gives a precise description of the

reversal process even at low damping limit at the precessional motion dominates

the process whereas the MC method proposed by Nowak functions only at the

high damping limit.(Chubykalo et al. [2003]; Nowak et al. [2000]).

6.3.3.3 Effect of the angle ψ of the external magnetic applied field

The effect of a constant magnetic field applied with an angle ψ with respect to

the easy axis of the magnetization of the particles (see figure 6.9) is studied.
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Figure 6.9: A spherical nanoparticle with a magnetic field applied with angle ψ to

the easy axis of the particle’s magnetization (z−axis).

Energetically, the application of an oblique magnetic field will affect the zee-

man contribution of the total energy (equation 6.14) only. The total energy is

modified as follows:

E(θ) = KV sin2θ − µ0VMscos(θ − ψ) (6.21)

In the first chapter paragraph 2.5.2.4, we have introduced an exact calculation of

the relaxation time for an oblique magnetic field.

N.B. The applied angle does not affect neither the discretization scheme nor the

boundary conditions.

On figure 6.12, we plot the variation of τ as a function of the angle ψ.
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Figure 6.10: The inverse of τ as a function of ψ for damping constant α=1 and

|B|=0.2 T (amplitude of the field). τ (ns) is normalized to 0.34.

It is found that the relaxation time is maximum for ψ = π/4 and minimum for

ψ = π/4. Qualitatively, these results could be interpreted as the manifestation of

the height of the energy barrier separating the two energy minima. In fact, the

height of the energy barrier for a π/2 field direction, is maximum with respect

to other directions, as can be seen from figure 6.11, making the reversal process

the slowest among other field directions. However, for a ψ = π/4 field direction

the height is the lowest making the reversal process the fastest among other field

directions. These conclusions are consistent with Brown’s calculation.
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Figure 6.11: Energy Barriers for: A: ψ=0◦, B: ψ=45◦, C: ψ=60◦ and D: ψ=90◦ 90

We do not show exact calculations of the relaxation times, since the analytical

expression of the relaxation time depends on the factor ∆E which represents the

height of the barrier and to calculate ∆E one needs to know the energy at the

maximum angle which cannot be determined analytically.

6.4 Interacting Nanoparticles

The interparticle dipole-dipole interactions or simply the dipolar interaction, are

at the center of intensive theoretical and experimental investigations due to their

important effects on the magnetic nanoparticles. For example, they induce fer-

romagnetic ordering of free dipoles sitting on Fcc lattice (Luttinger and Tisza

[1946]), super-spin glass behavior(Djurberg et al. [1997]; Mamiya et al. [1999]), or

Super-Ferromagnetism (SFM) (Mørup et al. [1983]; Rancourt and Daniels [1984]).

The effects of the dipolar interaction on the magnetization reversal processes in

fine ferromagnetic monodomain nanoparticles is a debated question whose an-

swers are not only different but even contradictory. Theoretically, there exit
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models stating that the dipolar interaction speed up the reversal process (Hansen

and Mørup [1998]; Mørup and Elisabeth [1994]) and other models predicting

the inverse that is the dipolar interaction slow down the process (Dormann et al.

[1988]; El-Hilo et al. [1992]). On the other hand, the performed experiments yields

also contradictory results since it is not easy to obtain samples of nanoparticles

with an effective control on the different parameters of the dipolar interaction

such as interparticle distance, anisotropy...(Dormann et al. [1988]; Mørup and

Elisabeth [1994]).

6.4.1 Mean Field Approximation

(Denisov [1999]) To account for the influence of the dipolar interaction a mean

field approximation is used. In the mean field approximation, the nanoparticles in

a given ensemble are considered to be independent of each others and are treated

as isolated nanoparticles. Consequently, the dynamics of each nanoparticle could

be described either by the LLG equation or by the equivalent Fokker Planck

equation derived by Brown (Brown [1963]).

Consider an ensemble of N spherical monodomain nanoparticles distributed over

a lattice with S sites. To calculate the mean dipolar magnetic field
−−−→
Hd(t) on a

given nanoparticle, first we have to compute the local dipolar field
−−→
h(t) that the

nanoparticle experiences from the other nanoparticles:

−−→
h(t) =

∑
i

3−→r i(−→mi.−→ri )− r2
i
−→mi

r5
i

(6.22)

The index i denotes all the nanoparticles other than the addressed nanoparticle.

Provided that particles are initially supposed to be oriented parallel to the easy

axis (the z−axis), we average
−−→
h(t) over all the possible configurations that the

nanoparticles may take in the lattice,

−−→
H(t) = <

−−→
h(t) >

= <
∑
i

3r2
iz − r2

i

r5
i

−−−→
miz(t) >
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= lim
V→∞

1

R

R∑
σ

∑
rσ

3r2
σz − r2

σ

r5
σ

mσz(t)

= lim
V→∞

R1

R

∑
r

3r2
z − r2

r5

( 1

R1

R1∑
l=1

ml
z(t)
)

r=radius vector of the i−th particle=d1(n1i
−→ex + n2i

−→ey ) + d2n3i
−→ez .

R=number of total permutations=S!/(N − S)!.

R1=number of permutations for a given site=(N/S)R.

p=(N/S)=probability of occupation of a given site.

S(ξ)=distribution function, where ξ = d2/d1:

S(ξ) =
1

8

∑
n1,n2,n3

2ξ2n2
3 − n2

1 − n2
2

(n2
1 + n2

2 + n2
3)

5
2

(6.23)

Figure 6.12: The function S(ξ) for 100 particles on the x,y and z axes.
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Thus, the mean dipole magnetic field is:

−−−→
Hd(t) = 8pS(ξ)d−3mz(t) (6.24)

where mz(t) = m
∫ π

0
cos(θ)W (θ, t)d(cos(θ)) and d being the distance from the

center of the first nanoparticle to the center of the next one.

The existence or the absence of the ferromagnetic order in a given ensemble

of nanoparticles could be understood as a result of a competition between differ-

ent interparticle forces such as the anisotropy, exchange and the dipolar forces

(Denisov [1999]). The contribution of the dipolar forces is determined through

the sign of equation 6.23 which indicates that there are two types of forces: 1−
forces of dipoles with 3r2

z−r2 ≤ 0 producing a mean dipolar field anti−parallel to

the total magnetization of the sample and 2− forces of dipoles with 3r2
z − r2 > 0

producing a dipolar field parallel to the total magnetization of the sample. And

thus, the competition between these forces determines the nature of ordering.

In this work, we study 2D systems of nanoparticles which corresponds to the case

where as ξ →∞ S(ξ) tends to −1.129.

6.4.2 Discretization Scheme and Boundary Conditions

To account for interparticle dipolar interaction, we modify the total energy of

the nanoparticle and consequently the first part of the discretized equation i.e.

equation 7.2. The new equations are:

E(θ) = KV sin2 θ − µ0VMs cos θ − µ0
−→m.−−−→Hd(t) (6.25)

∂W

∂t̂
=

∂

∂x

(
U(x)W

)
=

∂

∂x

(
(1− x2)(Ax+B + C)

)
(6.26)

where C is the strength of the dipolar interaction:

C = −µ0MsV

2πKBT
8pSd−3mz(t) (6.27)

N.B. Both the discretization scheme and the boundary conditions are not affected

by the modifications. To determine the relaxation time, we follow the same
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method of the non-interacting nanoparticles.

Finally, to check the consistency of our numerical results, we perform the following

tests:

• Similarly, verify always that the total number of configurations conserved

that is
∫ 1

−1
Wdx=1 at any time instant.

• For the convergence test, we calculate the boltzmann distribution numeri-

cally and then compare it to the final distribution of the initial configuration

(a half−gaussian distribution).

6.4.3 Numerical Results

In order to make a comparison with the isolated nanoparticles, we performed

simulations on an ensemble of the same Co nanoparticles where each has the

following properties:

• V = 8 ∗ 10−24m3 Total volume of the particle.

• K = 4.2 ∗ 105J/m3 Anisotropy Constant.

• µs = NµB ∗ 1.7 = 1.12 ∗ 10−17J/T Saturation magnetic moment.

• Ms = µs/V = 1.4 ∗ 106A/m Saturation magnetization.

• S(ξ) ≈ −1.129.

• | H0 |= 0.2/ µ0A/m Intensity of the applied field.

6.4.3.1 Variation of τ with 1/T

On figure 6.13, we plot the variation of τ with 1/T for isolated and interacting

nanoparticles. The interparticle distance (center to center) considered is 25 nm

and the probability of occupation p=0.5. The obtained results show that the

inclusion of the dipolar interaction accelerates the reversal process at low tem-

peratures e.g. for ∆E/KBT=2, τisol ≈ 1 ns whereas τinter ≈ 0.1 ns. However, at

high temperature up to ∆E/KBT=0.1, the interacting nanoparticles behaves as
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the isolated ones. In fact, as the temperature increases the strength of the dipo-

lar interaction decreases (equation 6.27)), then at high temperatures the dipolar

interaction is expected to be weak.

Figure 6.13: The variation of τ as a function of 1/T for damping constant α=1:

numerical results (red) and brown asymptote for no interaction (dashed line), dipolar

interaction for d=25 nm (green).

In the following two sub−sections, we study how does the reversal process

could be affected by the different parameters of the dipolar interaction, such as

the interparticle distance and the density of the particle.

6.4.3.2 Effect of the interparticle distance

The interparticle distance is a key parameter for the interparticle dipolar in-

teraction. The interaction varies as d−3, therefore as the distance between the
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nanoparticles decreases, the dipolar interaction becomes more effective and its

contribution in the total energy leads to a decrease in the height of the barrier

and consequently it accelerates the process of reversal .

The results plotted on figure 6.14 confirm these theoretical predictions, for in-

stance, it shows that for long enough interparticle distance the dipolar interaction

effect is weak and the nanoparticles behave as isolated ones (similar to results for

d=50 nm). In general and for any values of the parameters of the nanoparticles

studied, it is found that the dipolar interaction can be neglected for d≥ 4*r (r:

radius of the nanoparticle).

Figure 6.14: The variation of τ as a function of 1/T−1 for different interparticle

distances d: numerical results (green) and brown asymptote for no interaction (dashed

line), dipolar interaction for distances: 50 nm (red),30 nm (wine) and 25 nm (black).

p=0.5 and α=1.
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6.4.3.3 Effect of the probability of occupation

In dense samples of nanoparticles, the dipolar interaction becomes more and

more relevant. Qualitatively, this can be explained as follows: the increase in the

density of the nanoparticles leads to an increase in the saturation value of the

magnetic moment of the nanoparticles which in turn increases the amplitude of

the dipolar interaction i.e. the factor C in the equation 6.27.

Figure 6.15: The variation of τ as a function of 1/T−1 for different occupation num-

bers: numerical results (blue) and brown asymptote for no interaction (dashed line),

dipolar interaction for probability of occupation: 0.25 (green), 0.5 (black) and 1 (wine).

d= 25 nm and α=1.

In our model 6.24, the parameter p represents the probability of occupation

of the nanoparticles in a given lattice and it can be viewed as the density of the

nanoparticles. What we observe from the numerical results plotted on figure 6.15
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is that the relaxation time decreases as the density of particles increases meaning

that the reversal process becomes faster. Actually, these findings confirm the

preceding results and is consistent with the theoretical predictions.

6.4.3.4 Experimental Parameters

Following these important results on the effects of the dipolar interaction, we

repeated the same simulations on another set of parameters corresponding to the

native samples that we have studied experimentally.

The native samples are dense samples of Core/Shell CoPt nanoparticles with

4.75 nm Co core nanoparticle surrounded by a 1.82 nm platinum shell. Each two

nanoparticles are separated by 0.2265 nm shell to shell distance.

• V = 5.6115 ∗ 10−26m3 Total volume of the particle.

• r = 2.375 nm Radius of the particle.

• K = 4.2 ∗ 105J/m3 Anisotropy Constant.

• µs = NµB ∗ 1.7 = 8.1 ∗ 10−20J/T Saturation magnetic moment.

• Ms = µs
V

= 1.4 ∗ 106A/m Saturation magnetization.

• S(ξ) ≈ −1.129.

• d = 8.617 nm Interparticle distance.

• p = 1 Occupation number.

• | H0 |= 0.2/ µ0A/m Intensity of the applied field.

6.4.3.5 Effect of the angle of the applied field ψ

Our model for the mean-field dipolar interaction (Denisov [1999]; Denisov et al.

[2004]) supposes that the self-consistent dipolar field is always aligned with the

axis of easy magnetization. Thus, it allows us to consider only the cases where

the external field is either parallel (ψ =0◦) or antiparallel (ψ=180◦) to the axis

of easy magnetization.
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Figure 6.16: Relaxation time τ vs the normalized inverse temperature, for an external

field applied antiparallel to the direction (ψ=180◦).The inset shows the same result for

of easy magnetization (ψ=0◦)

The results which are plotted on figure 6.16 show that the angle of the exter-

nal field influences remarkably the role of the dipolar interaction. We found that

as a function of the angle, the dipolar interaction might accelerate or decelerate

the reversal process. For instance, when the field is applied parallel to the z−axis

(ψ=0◦), the effect of the dipolar interaction is to shorten the relaxation time, i.e.,

to accelerate the reversal of the magnetization. In contrast, for the antiparallel

configuration (ψ=180◦), the relaxation time is longer when the interactions are

taken into account, at least for temperatures below a certain threshold (here the

threshold is situated near KV/KBT = 1.25, corresponding to a temperature T =

1365 K).

We postulate the existence of a threshold angle, above which such an effect could

be observed. However, this cannot be done with our model and a more sophisti-
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cated approach would be needed to investigate this effect for arbitrary values of

the angle ψ.

Actually, the dipolar field that we have used to account for the dipolar interaction,

assumes that the magnetic moments are initially aligned parallel to the z−axis.

The corresponding energy minima are at 0 and π. However, if the external mag-

netic field is applied with a given angle ψ, the moments will be aligned along the

direction of the external field, and this violates our assumption. Besides, this will

shift the energy minima. However, we think that we can still use the mean field

approach, but we should adapt the equations so that to take into account this

re−orientation of the moments as well as the shift in the energy minima.

b− Variation of τ with the p

In chapter 3 we mentioned that the dipolar contribution in the non−annealed

sample is weak (hysteresis at 5K perpendicular direction). This result is numer-

ically confirmed as can be seen from figure 6.17 where it shows that even if the

lattice is fully occupied by the nanoparticles i.e. p=1, the obtained relaxation

times are very close to those of the isolated nanoparticles.
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Figure 6.17: The variation of τ as a function of 1/T−1 for different occupation num-

bers: numerical results (black) and brown asymptote for no interaction (dashed line),

dipolar interaction for probability of occupation: 0.5 nm (green) and 1 (blue). d=8.617

nm and α=1.

b− Variation of τ with the field

In this part, we compare the numerical and the experimental relaxation times.

The experimental relaxation times correspond to the damping time of the mag-

netization vector precession which is obtained by fitting the differential magneti-

zation signal measured for one field direction with a cosine function mentioned in

section 5.2.2. Here the magnetic field direction is 0◦ with respect to the normal

of the sample.

The simulations are made at T=520 K. The temperature was obtained form the

two temperature simulations shown on figure 6.18.
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Figure 6.18: Two temperature simulations: electron temperature (blue) and lattice

temperature (red).

The results show that when the interactions are taken into account, our nu-

merical model produces relaxation times that are close to the experimental times.

Also, it is observed that the relaxation time increases as the strength of the ap-

plied field increases. And this is compatible with the fact that the external field

aligns the magnetic moments of the nanoparticles making the reversal process

slower.
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Figure 6.19: Comparison between the numerical and the experimental relaxation

times. Parameters: S=-1.129, p=1, d=8.617 nm, α=1: experiment (olive), simulation

with interaction (red) and simulation without interaction (blue).

The following table shows the different relaxation times:
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Figure 6.20: Relaxation times.
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6.5 Conclusions

In this chapter, we have addressed the magnetization reversal process through-

out the calculation of the corresponding relaxation times for both isolated and

interacting nanoparticles.

In a first approach, we have studied isolated nanoparticles. Despite of a failure

at high temperatures, the numerical results hold an important and clear evidence

on the validity of the Néel−Brown model to describe the reversal processes in

such types of nanoparticles. This validity is confirmed in paragraph 6.3.3.1.

A simple comparison of the obtained results with those of other numerical ap-

proaches (LD, MC,..) showed the reliability of the used numerical approach.

Furthermore, it is demonstrated that the approach is capable of providing a pre-

cise description of the reversal process even in the limit of low damping.

The second part of the chapter was devoted to interacting nanoparticles. To ac-

count for the interparticle dipolar interaction in 2D ensembles of nanoparticles,

a mean field approximation was introduced. The results show an important de-

viation from the asymptotic behavior of brown for non-interacting nanoparticles.

The general conclusion about the effects of the dipolar interaction, is that they

accelerate the reversal process. For that, we have tested the effects of the differ-

ent parameters of the dipolar interaction such as the interparticle distance, the

density of particles. It is found that the relaxation time decreases as the distance

increases and also as the density of the particles increases.

In a direct connection to experiment, it is shown that the numerical results are

in accordance with the experimentally measured values.
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Chapter 7

Global Conclusions and

Perspectives

My PhD Thesis is divided into two parts: an experimental part and a theoret-

ical part. In the first part we have used Time Resolved Magneto Optical Kerr

Effect TR−MOKE to study the magnetization dynamics in 3D arrangements of

CocorePtshell nanoparticles. We come out with the following conclusions:

• TR−MOKE manifests itself is a performing tool to address the different

dynamical magnetic processes that occur on ultrashort time scales. In ad-

dition, TR−MOKE provides the possibility to study the charge dynamics

at the same time.

• The CoPt nanoparticles in core/shell configuration emerge as a serious can-

didate to be considered in future developments of the magnetic storage

media.

• Concerning the magnetization dynamics: We have studied two types

of CocorePtshell samples: non−annealed and annealed samples (annealing

temperature=650K). The overall dynamics observed on both types, occur

during the thermalization of the electrons and it is followed by a re−magnetization.

However, the details of the dynamics are completely different. For example,

both thermalization and relaxation processes are observed to be slower on

the annealed samples with respect to those on the non−annealed samples.
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More importantly, on the long timescale we have observed a precessional

dynamics of the magnetization vector on the annealed samples that does

not exist on the non−annealed samples.

This difference in the dynamics is caused by the thermal annealing. In-

deed, the thermal annealing induced a diffusion of platinum in the cobalt

core leading to the formation of a CoPt crystalline phase which is an indi-

cation of ferromagnetism. In other words, the thermal annealing induced

a magnetic phase transition in the nanoparticles from superparamagnetic

with a blocking temperature TB=66 K to ferromagnetic with a blocking

temperature (TB >350 K).

The induced ferromagnetic phase has two main features: first an increase

of the values of magnetization at saturation of the samples. Second, an

increase in the anisotropy constant K1.

• Concerning the charge dynamics: We reported a typical charge dy-

namics on both types of the samples: a laser excitation is followed by a

thermalization of the highly excited electrons to the fermi level, then a re-

laxation to the lattice and finally a lattice heat diffusion process. We have

observed two types of oscillations: the first one has a characteristic period of

∼ 2 ps corresponding to the the breathing mode vibrations of the individual

nanoparticles. The second oscillatory behavior was observed only on the

non−annealed samples. It corresponds to a collective coherent vibration of

the nanoparticles with a 146 ± 2 ps. These oscillations are attributed to a

local supracrystalline ordering induced by a mild laser annealing.

It is Due to the thermal annealing of the samples that these oscillations

completely disappeared. Also, the thermal annealing resulted in faster ther-

malization of the electrons as it increased the scattering cross−section of

the electrons.

In the second part, a numerical studies of the magnetization reversal processes in

isolated and interacting nanoparticles as well are presented. We come out with

the following conclusions:

• Indeed, numerical simulations appears as an effective player at the interface
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between theoretical models and experiments capable of producing reliable

physical results.

• For isolated nanoparticles, we have found that the Néel−Brown model helps

to have better understanding of the main aspects of the magnetization dy-

namics at low temperatures.

• For the interacting nanoparticles, we have used a mean field approximation

to calculate a mean dipolar field. The obtained relaxation times deviates

from the Arrhenius law:

1

τ
=

1

τ0

exp
(
− KV

KBT

)
Generally, we have found that the dipolar interactions accelerates the rever-

sal process. Also, we have studied the effect of a magnetic field applied with

a given angle with respect to the easy axis of magnetization. We have found

that above a given temperature, there exist a threshold angle at which the

effect of the dipolar interactions is completely reversed.

Perspectives

There are still many things that could be done experimentally with the pel-

lets especially for the characterization of the dipole−dipole interactions. For the

non−annealed samples, it would be good to study them at low temperatures

(below the corresponding TB) to characterize the effects of the dipole−dipole

interactions on the magnetization dynamics.

For the theoretical study:

• Study the annealed samples where the effects of the dipolar interactions are

strong with respect to the native samples.

• Study the effects of the temperature on the reversal process.

• Develop the study to 3D systems of nanoparticles.

• Study the effects of the precession of magnetization vector on the reversal

process.
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Appendix A: Boundary

Conditions

Consider the equation that we want to solve numerically:

∂W

∂t̂
=

∂

∂x

(
U(x)W

)
+

∂

∂x

(
D(x)

∂W

∂x

)
(7.1)

To find the suitable boundary conditions: 1− we decompose the above equation

into two parts, 2− find the boundary conditions of each, and finally 3− combine

them to get the boundary conditions of the main equation.

The first part is :
∂W

∂t̂
=

∂

∂x

(
U(x)W

)
(7.2)

• at x = −1, the equation is discretized as follows:

∂

∂x

(
U(x)W

)
= β

(Uj+1W
i
j+1 − UjW i

j

∆x

)
the point x = −1 corresponds to the grid node j=0 on the spatial grid,thus

∂

∂x

(
U(x)W

)
−1

= β
(U1W

i
1

∆x

)
• at x = 1, the equation is discretized as follows:

∂

∂x

(
U(x)W

)
= β

(UjW i
j − Uj−1W

i
j−1

∆x

)
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the point x = 1 corresponds to the grid node j=s on the spatial grid,thus

∂

∂x

(
U(x)W

)
1

= −β
(Us−1W

i
s−1

∆x

)
therefore, the boundary conditions for this part are:

• W i+1
0 = W i

0 + β
(
U1W i

1

∆x

)
• W i+1

s = W i
s − β

(
U1W i

1

∆x

)
To find β, we need to calculate the summation

∑s
j=0W

n+1
j , knowing that for 1≤

j≤ s−1 the first part is discretized as follows:

∂

∂x

(
U(x)W

)
=
Uj+1W

i
j+1 − Uj−1W

i
j−1

2∆x

we find that:

s∑
j=0

W n+1
j =

s∑
j=0

W n
j + (2β − 1)

∆t

2∆x
U1W1 − (2β − 1)

∆t

2∆x
Us−1Ws−1 (7.3)

provided that the total number of configurations should be conserved,i.e

s∑
j=0

W n+1
j =

s∑
j=0

W n
j

we conclude that β should be 1/2.

The second part is :
∂W

∂t̂
=

∂

∂x

(
D(x)

∂W

∂x

)
(7.4)

• at x = −1, the equation is discretized as follows:

∂

∂x

(
D(x)

∂W

∂x

)
= φ

((Dj+1 −Dj

)(
W i
j+1 −W i

j

)
∆x2

)
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the point x = −1 corresponds to the grid node j=0 on the spatial grid,thus

∂

∂x

(
D(x)

∂W

∂x

)
−1

= φ
((D1

)(
W i

1 −W i
0

)
∆x2

)
• at x = 1, the equation is discretized as follows:

∂

∂x

(
D(x)

∂W

∂x

)
= φ

((Dj −Dj−1

)(
W i
j−1 −W i

j−1

)
∆x2

)
the point x = 1 corresponds to the grid node j=s on the spatial grid,thus

∂

∂x

(
D(x)

∂W

∂x

)
1

= −φ
((Ds−1

)(
W i
s −W i

s−1

)
∆x2

)
therefore, the boundary conditions for this part are:

• W i+1
0 = W i

0 + φ ∆t
∆x2

(
D1

)(
W i

1 −W i
0

)
• W i+1

s = W i
s − φ ∆t

∆x2

(
Ds−1

)(
W i
s −W i

s−1

)
for 1≤ j≤ s-1 this part is discretized as follows:

∂

∂x

(
D(x)

∂W

∂x

)
= (Dj+1 +Dj)

(W i
j+1

2∆x2

)
+ (Dj−1 +Dj)

(W i
j−1

2∆x2

)
− (Dj+1 +Dj−1 + 2Dj)

( W i
j

2∆x2

)

and the summation
∑s

j=0 W
n+1
j gives:

s∑
j=0

W n+1
j =

s∑
j=0

W n
j + (2φ− 1)

∆t

∆x2

(
W i

0 −W i
1 −W i

s−1 +W i
s

)
(7.5)

for the same reason as β, φ should be 1/2.
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Therefore, the boundary conditions are:

• at j=0:

W i+1
0 = W i

0 +
1

2
U1

∆t

∆x
W i

1 +
1

2
D1

∆t

∆x2
(W i

1 −W i
0) (7.6)

• at j=s:

W i+1
s = W i

s −
1

2
Us−1

∆t

∆x
W i
s−1 −

1

2
Ds−1

∆t

∆x2
(W i

s −W i
s−1) (7.7)
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