H. Bouma, Visual recognition of isolated lower-case letters, Vision Research, vol.11, issue.5, pp.459-474, 1971.
DOI : 10.1016/0042-6989(71)90087-3

M. Coltheart, E. Davelaar, J. T. Jonasson, and D. Besner, Access to the internal lexicon, Attention and performance VI, pp.535-555, 1977.

P. Courrieu, Straight monotonic embedding of data sets in Euclidean spaces, Neural Networks, vol.15, issue.10, pp.1182-1193, 2002.
DOI : 10.1016/S0893-6080(02)00091-6

URL : https://hal.archives-ouvertes.fr/hal-01441376

P. Courrieu and S. De-falco, Segmental vs. dynamic analysis of letter shape by preschool children, CPC: European Bulletin of Cognitive Psychology, vol.9, issue.2, pp.189-198, 1989.

P. Dunn-rankin, The similarity of lower-case letters of the English alphabet, Journal of Verbal Learning and Verbal Behavior, vol.7, issue.6, pp.990-995, 1968.
DOI : 10.1016/S0022-5371(68)80057-X

P. Dunn-rankin, D. A. Leton, and V. F. Shelton, Congruency factors related to visual confusion of English letters. Perceptual Motor Skills, pp.659-666, 1968.

K. I. Forster and J. C. Forster, DMDX: A Windows display program with millisecond accuracy, Behavior Research Methods, Instruments, & Computers, vol.31, issue.1, pp.116-124, 2003.
DOI : 10.3758/BF03195503

K. Fukushima, Character recognition with neural networks, Neurocomputing, vol.4, issue.5, 1992.
DOI : 10.1016/0925-2312(92)90028-N

K. Fukushima and T. Imagawa, Recognition and segmentation of connected characters with selective attention, Neural Networks, vol.6, issue.1, pp.33-41, 1993.
DOI : 10.1016/S0893-6080(05)80071-1

K. Fukushima, S. Miyake, and T. Ito, Neocognitron: A neural network model for a mechanism of visual pattern recognition, IEEE Transactions on Systems, Man, and Cybernetics, vol.13, issue.5, pp.826-834, 1983.
DOI : 10.1109/TSMC.1983.6313076

H. Hotelling, 2. References-baratgin, J. Ripoll, T. Ripoll, H. Courrieu et al., Simplified calculation of principal components Similarity judgment of basketball play con®gurations by experts and novices, Psychometrika, issue.1, 1936.

M. F. Barnsley, Academic PreP), Fractals Everywhere

P. Courrieu, The Hyperbell algorithm for global optimization: a random walk using Cauchy densities, Journal of Global Optimization, vol.10, issue.1, pp.37-55, 1997.
DOI : 10.1023/A:1008230212303

P. Courrieu, T. Ripoll, H. Ripoll, J. Baratgin, and E. Laurent, Similarity judgment of basketball play con®gurations by experts and novices

P. Diaconis and D. Freedman, Iterated Random Functions, SIAM Review, vol.41, issue.1, pp.41-45, 1999.
DOI : 10.1137/S0036144598338446

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.4923

D. Husmeier and J. G. Taylor, Neural Networks for Predicting Conditional Probability Densities: Improved Training Scheme Combining EM and RVFL, Neural Networks, vol.11, issue.1, pp.89-116, 1998.
DOI : 10.1016/S0893-6080(97)00089-0

L. Ingber and B. Rosen, Genetic Algorithms and Very Fast Simulated Reannealing: A comparison, Mathematical and Computer Modelling, vol.16, issue.11, pp.87-100, 1992.
DOI : 10.1016/0895-7177(92)90108-W

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal Representations by Error Propagation, 1986.
DOI : 10.1016/B978-1-4832-1446-7.50035-2

F. J. Solis, R. J. Wets, and -. , Minimization by Random Search Techniques, Mathematics of Operations Research, vol.6, issue.1, 1981.
DOI : 10.1287/moor.6.1.19

H. G. Traven, A neural network approach to statistical pattern classification by 'semiparametric' estimation of probability density functions, IEEE Transactions on Neural Networks, vol.2, issue.3, pp.366-377, 1991.
DOI : 10.1109/72.97913

P. Courrieu, Two methods for encoding clusters, Neural Networks, vol.14, issue.2, pp.175-183, 2001.
DOI : 10.1016/S0893-6080(00)00096-4

URL : https://hal.archives-ouvertes.fr/hal-01441387

R. Blumenthal and L. M. , New theorems and methods in determinant theory, Duke Mathematical Journal, vol.2, issue.2, pp.396-404, 1936.
DOI : 10.1215/S0012-7094-36-00230-2

P. Courrieu, Two methods for encoding clusters, Neural Networks, vol.14, issue.2, pp.175-183, 2001.
DOI : 10.1016/S0893-6080(00)00096-4

URL : https://hal.archives-ouvertes.fr/hal-01441387

T. F. Cox and M. A. Cox, Multidimensional Scaling, 1994.
DOI : 10.1007/978-3-540-33037-0_14

A. Cressant, R. U. Muller, and B. Poucet, Failure of centrally placed objects to control the firing fields of hippocampal place cells, The Journal of Neuroscience, vol.17, issue.7, pp.2531-2542, 1997.

A. Cressant, R. U. Muller, and B. Poucet, Further study of the control of place cell firing by intra-apparatus objects, Hippocampus, vol.509, issue.4, pp.423-431, 1999.
DOI : 10.1002/(SICI)1098-1063(1999)9:4<423::AID-HIPO8>3.0.CO;2-U

P. Demartines and J. Hérault, Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets, IEEE Transactions on Neural Networks, vol.8, issue.1, pp.148-154, 1997.
DOI : 10.1109/72.554199

W. F. Donoghue, Monotone matrix functions and analytic continuation, 1974.
DOI : 10.1007/978-3-642-65755-9

D. M. Ennis, Confusable and discriminable stimuli: Comment on Nosofsky (1986) and Shepard (1986)., Journal of Experimental Psychology: General, vol.117, issue.4, pp.408-411, 1986.
DOI : 10.1037/0096-3445.117.4.408

M. Fréchet, Les dimensions d'un ensemble abstrait, Mathematische Annalen, vol.IX, issue.2, pp.145-168, 1910.
DOI : 10.1007/BF01474158

F. Girosi and T. Poggio, Networks and the best approximation property, Biological Cybernetics, vol.4, issue.3, pp.169-176, 1990.
DOI : 10.1007/BF00195855

J. B. Kruskal, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika, vol.5, issue.1, pp.1-27, 1964.
DOI : 10.1007/BF02289565

J. B. Kruskal, Nonmetric multidimensional scaling: A numerical method, Psychometrika, vol.60, issue.2, pp.115-129, 1964.
DOI : 10.1007/BF02289694

R. A. Lowrance and R. A. Wagner, An extension of the string to string correction problem, JACM, vol.22, issue.2, pp.177-183, 1975.

C. A. Micchelli, Interpolation of scattered data: Distance matrices and conditionally positive definite functions, Constructive Approximation, vol.23, issue.1, pp.11-22, 1986.
DOI : 10.1007/BF01893414

R. U. Muller, A Quarter of a Century of Place Cells, Neuron, vol.17, issue.5, pp.813-822, 1996.
DOI : 10.1016/S0896-6273(00)80214-7

R. M. Nosofsky, Attention, similarity, and the identification???categorization relationship., Journal of Experimental Psychology: General, vol.115, issue.1, pp.39-57, 1986.
DOI : 10.1037/0096-3445.115.1.39

R. M. Nosofsky, Similarity Scaling and Cognitive Process Models, Annual Review of Psychology, vol.43, issue.1, pp.25-53, 1992.
DOI : 10.1146/annurev.ps.43.020192.000325

O. 'keefe, J. Nadel, and L. , Hippocampus as a cognitive map, 1978.

M. Okochi and T. Sakai, Trapezo?¨dalTrapezo?¨dal dynamic programming matching with time reversibility, Proceedings of the IEEE-ASSP Conference, pp.1239-1242, 1982.

T. Poggio and F. Girosi, Networks for approximation and learning, Proceedings of the IEEE, pp.1481-1497, 1990.
DOI : 10.1109/5.58326

B. Poucet, E. Save, and P. Lenck-santini, Sensory and Memory Properties of Hippocampal Place Cells, Reviews in the Neurosciences, vol.11, issue.2-3, pp.95-111, 2000.
DOI : 10.1515/REVNEURO.2000.11.2-3.95

I. J. Schoenberg, On Certain Metric Spaces Arising From Euclidean Spaces by a Change of Metric and Their Imbedding in Hilbert Space, The Annals of Mathematics, vol.38, issue.4, pp.787-793, 1937.
DOI : 10.2307/1968835

I. J. Schoenberg, Metric spaces and positive definite functions. Transactions of the, pp.522-536, 1938.
DOI : 10.1090/s0002-9947-1938-1501980-0

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.377.3750

R. N. Shepard, The analysis of proximities: Multidimensional scaling with an unknown distance function. I., Psychometrika, vol.65, issue.2, pp.125-140, 1962.
DOI : 10.1007/BF02289630

R. N. Shepard, The analysis of proximities: Multidimensional scaling with an unknown distance function. II, Psychometrika, vol.17, issue.3, pp.219-246, 1962.
DOI : 10.1007/BF02289621

R. N. Shepard, Discrimination and generalization in identification and classification: Comment on Nosofsky., Journal of Experimental Psychology: General, vol.115, issue.1, pp.58-61, 1986.
DOI : 10.1037/0096-3445.115.1.58

R. N. Shepard, Toward a universal law of generalization for psychological science, Science, vol.237, issue.4820, pp.1317-1323, 1987.
DOI : 10.1126/science.3629243

T. K. Vinstuk, Speech discrimination by dynamic programming, Kibernetika, vol.4, issue.1, pp.81-88, 1968.

R. A. Wagner and M. J. Fischer, The String-to-String Correction Problem, Journal of the ACM, vol.21, issue.1, pp.168-173, 1974.
DOI : 10.1145/321796.321811

F. W. Young and W. S. Torgerson, Torsca, a Fortran IV program for Shepard ? Kruskal multidimensional scaling analysis, Behavioral Science, vol.12, p.468, 1967.

P. Courrieu, Straight monotonic embedding of data sets in Euclidean spaces, Neural Networks, vol.15, issue.10, pp.1185-1196, 2002.
DOI : 10.1016/S0893-6080(02)00091-6

URL : https://hal.archives-ouvertes.fr/hal-01441376

R. Courrieu and P. , Density codes and shape spaces, Neural Networks, vol.19, issue.4, pp.429-445, 2006.
DOI : 10.1016/j.neunet.2005.10.006

URL : https://hal.archives-ouvertes.fr/hal-00289023

P. Courrieu, Fast density codes for image data, Neural Information Processing - Letters and Reviews, vol.11, issue.12, pp.247-255, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00276335

H. Glotin, Z. Zhao, and S. Ayache, Efficient image concept indexing by harmonic &#x00026; arithmetic profiles entropy, 2009 16th IEEE International Conference on Image Processing (ICIP), pp.277-280, 2009.
DOI : 10.1109/ICIP.2009.5413350

R. Guyonneau, H. Kirchner, and S. J. Thorpe, Animals roll around the clock: The rotation invariance of ultrarapid visual processing, Journal of Vision, vol.6, issue.10, pp.1008-1017, 2006.
DOI : 10.1167/6.10.1

URL : https://hal.archives-ouvertes.fr/hal-00118756

T. A. Nazir and J. K. O-'regan, Some results on translation invariance in the human visual system, Spatial Vision, vol.5, issue.2, pp.81-100, 1990.
DOI : 10.1163/156856890X00011

URL : https://hal.archives-ouvertes.fr/hal-01088058

T. Suk and J. Flusser, Combined blur and affine moment invariants and their use in pattern recognition, Pattern Recognition, vol.36, issue.12, pp.2895-2907, 2003.
DOI : 10.1016/S0031-3203(03)00187-0

T. Suk and J. Flusser, Graph method for generating affine moment invariants, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., 2004.
DOI : 10.1109/ICPR.2004.1334093

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.3311

S. Amari and . Nagaoka, Methods of information geometry, AMS translations of mathematical monographs, vol.191, 2000.

K. Arbter, W. E. Snyder, H. Burkhardt, and G. Hirzinger, Application of affine-invariant Fourier descriptors to recognition of 3-D objects, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.640-646, 1990.
DOI : 10.1109/34.56206

B. Israel, A. Greville, and T. N. , Generalized inverses: Theory and applications, 2003.

T. Cacoullos, Estimation of a multivariate density, Annals of the Institute of Statistical Mathematics, vol.27, issue.1, pp.179-189, 1966.
DOI : 10.1007/BF02869528

G. Calot, Cours de calcul des probabilites, Revue de l'Institut International de Statistique / Review of the International Statistical Institute, vol.36, issue.1, 1967.
DOI : 10.2307/1401347

P. Courrieu, Two methods for encoding clusters, Neural Networks, vol.14, issue.2, pp.175-183, 2001.
DOI : 10.1016/S0893-6080(00)00096-4

URL : https://hal.archives-ouvertes.fr/hal-01441387

P. Courrieu, Straight monotonic embedding of data sets in Euclidean spaces, Neural Networks, vol.15, issue.10, pp.1182-1193, 2002.
DOI : 10.1016/S0893-6080(02)00091-6

URL : https://hal.archives-ouvertes.fr/hal-01441376

P. Courrieu, Solving time of least square systems in sigma?pi unit networks, Neural Information Processing: Letters and Reviews, vol.4, issue.3, pp.39-45, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00276480

P. Courrieu, Function approximation on non-Euclidean spaces, Neural Networks, vol.18, issue.1, pp.91-102, 2005.
DOI : 10.1016/j.neunet.2004.09.003

URL : https://hal.archives-ouvertes.fr/hal-00202168

P. Courrieu, Fast computation of Moore?Penrose inverse matrices, Neural Information Processing: Letters and Reviews, vol.8, issue.2, pp.25-29, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00276477

H. Faure, Discrépance de suites associées a ` un système de numération (en dimension s) Acta Arithmetica, XLI, pp.337-351, 1982.

H. Faure, Variations on (0,??s)-Sequences, Journal of Complexity, vol.17, issue.4, pp.741-753, 2001.
DOI : 10.1006/jcom.2001.0590

URL : http://doi.org/10.1006/jcom.2001.0590

J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numerische Mathematik, vol.38, issue.1, pp.84-90, 1960.
DOI : 10.1007/BF01386213

J. Heikkilä, Pattern matching with affine moment descriptors, Pattern Recognition, vol.37, issue.9, pp.1825-1834, 2004.
DOI : 10.1016/j.patcog.2004.03.005

M. K. Hu, Visual pattern recognition by moment invariants, IRE Transactions on Information Theory, vol.8, pp.179-187, 1962.

L. Jin and Z. Tianxu, Fast algorithm for generation of moment invariants, Pattern Recognition, vol.37, issue.8, pp.1745-1756, 2004.
DOI : 10.1016/j.patcog.2004.02.006

D. G. Kendall, Shape Manifolds, Procrustean Metrics, and Complex Projective Spaces, Bulletin of the London Mathematical Society, vol.16, issue.2, pp.81-121, 1984.
DOI : 10.1112/blms/16.2.81

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.452.9838

F. Mokhtarian and S. Abbasi, Shape similarity retrieval under affine transforms, Pattern Recognition, vol.35, issue.1, pp.31-41, 2002.
DOI : 10.1016/S0031-3203(01)00040-1

J. Moody and C. J. Darken, Fast Learning in Networks of Locally-Tuned Processing Units, Neural Computation, vol.1, issue.2, pp.281-294, 1989.
DOI : 10.1109/MASSP.1987.1165576

E. Parzen, On Estimation of a Probability Density Function and Mode, The Annals of Mathematical Statistics, vol.33, issue.3, pp.1065-1076, 1962.
DOI : 10.1214/aoms/1177704472

M. Riesenhuber and T. Poggio, Hierarchical models of object recognition in cortex, Nature Neuroscience, vol.2, issue.11, pp.1019-1025, 1999.

D. F. Specht, Probabilistic neural networks, Probabilistic neural networks, pp.109-118, 1990.
DOI : 10.1016/0893-6080(90)90049-Q

T. Suk and J. Flusser, Combined blur and affine moment invariants and their use in pattern recognition, Pattern Recognition, vol.36, issue.12, pp.2895-2907, 2003.
DOI : 10.1016/S0031-3203(03)00187-0

J. Tzelgov and A. Henik, On the recognition of words with inverted letters., Canadian Journal of Psychology/Revue canadienne de psychologie, vol.37, issue.2, pp.233-242, 1983.
DOI : 10.1037/h0080722

D. Zhang and G. Lu, Shape-based image retrieval using generic Fourier descriptor, Signal Processing: Image Communication, pp.825-848, 2002.
DOI : 10.1016/S0923-5965(02)00084-X

J. Zhang, X. Zhang, H. Krim, and G. G. Walter, Object representation and recognition in shape spaces, Pattern Recognition, vol.36, issue.5, pp.1143-1154, 2003.
DOI : 10.1016/S0031-3203(02)00226-1

P. Courrieu, Density codes and shape spaces, Neural Networks, vol.19, issue.4, pp.429-445, 2006.
DOI : 10.1016/j.neunet.2005.10.006

URL : https://hal.archives-ouvertes.fr/hal-00289023

P. Courrieu, Density codes and shape spaces, Neural Networks, vol.19, issue.4, pp.429-445, 2006.
DOI : 10.1016/j.neunet.2005.10.006

URL : https://hal.archives-ouvertes.fr/hal-00289023

D. F. Specht, Probabilistic neural networks, Probabilistic Neural Networks, pp.109-118, 1990.
DOI : 10.1016/0893-6080(90)90049-Q

J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numerische Mathematik, vol.38, issue.1, pp.84-90, 1960.
DOI : 10.1007/BF01386213

H. Faure, Discr??pances de suites associ??es ?? un syst??me de num??ration (en dimension un), Bulletin de la Soci&#233;t&#233; math&#233;matique de France, vol.79, pp.337-351, 1982.
DOI : 10.24033/bsmf.1935

H. Faure, Variations on (0,??s)-Sequences, Journal of Complexity, vol.17, issue.4, pp.741-753, 2001.
DOI : 10.1006/jcom.2001.0590

URL : http://doi.org/10.1006/jcom.2001.0590

P. Courrieu, Fast Computation of Moore-Penrose Inverse Matrices, Neural Information Processing-Letters and Reviews, vol.8, issue.2, pp.25-29, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00276477

R. Courrieu and P. , A convergent generator of neural networks, Neural Networks, vol.6, issue.6, pp.835-844, 1993.
DOI : 10.1016/S0893-6080(05)80128-5

P. Courrieu, Function approximation on non-Euclidean spaces, Neural Networks, vol.18, issue.1, pp.91-102, 2005.
DOI : 10.1016/j.neunet.2004.09.003

URL : https://hal.archives-ouvertes.fr/hal-00202168

S. E. Fahlman and C. Lebiere, The Cascade-Correlation learning algorithm, 1990.

L. Pezard and J. Nandrino, Paradigme dynamique en psychopathologie: la «Théorie du chaos», de la physique à la psychiatrie, pp.260-268, 2001.

T. Poggio and F. Girosi, Networks for approximation and learning, Proceedings of the IEEE, pp.1481-1497, 1990.
DOI : 10.1109/5.58326

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal Representations by Error Propagation, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, pp.318-362, 1986.
DOI : 10.1016/B978-1-4832-1446-7.50035-2

S. Sin and R. J. Defigueiredo, Efficient learning procedures for optimal interpolative nets, Neural Networks, vol.6, issue.1, pp.99-113, 1993.
DOI : 10.1016/S0893-6080(05)80075-9

J. Yoon, Interpolation by Radial Basis Functions on Sobolev Space, Journal of Approximation Theory, vol.112, issue.1, pp.1-15, 2001.
DOI : 10.1006/jath.2001.3584

URL : http://doi.org/10.1006/jath.2001.3584

R. Ciarlet and P. G. , Introduction a ` l'Analyse Numérique Matricielle et a ` l'Optimisation, 1982.

P. Courrieu, A convergent generator of neural networks, Neural Networks, vol.6, issue.6, pp.835-844, 1993.
DOI : 10.1016/S0893-6080(05)80128-5

P. Courrieu, Three algorithms for estimating the domain of validity of feedforward neural networks, Neural Networks, vol.7, issue.1, pp.169-174, 1994.
DOI : 10.1016/0893-6080(94)90065-5

P. Courrieu, The Hyperbell algorithm for global optimization: a random walk using Cauchy densities, Journal of Global Optimization, vol.10, issue.1, pp.37-55, 1997.
DOI : 10.1023/A:1008230212303

P. Courrieu, Two methods for encoding clusters, Neural Networks, vol.14, issue.2, pp.175-183, 2001.
DOI : 10.1016/S0893-6080(00)00096-4

URL : https://hal.archives-ouvertes.fr/hal-01441387

P. Courrieu, Straight monotonic embedding of data sets in Euclidean spaces, Neural Networks, vol.15, issue.10, pp.1185-1196, 2002.
DOI : 10.1016/S0893-6080(02)00091-6

URL : https://hal.archives-ouvertes.fr/hal-01441376

P. Courrieu, F. Farioli, and J. Grainger, Inverse discrimination time as a perceptual distance for alphabetic characters, Visual Cognition, vol.11, issue.7, pp.601-919
DOI : 10.1080/13506280444000049

URL : https://hal.archives-ouvertes.fr/hal-00202173

G. Cybenko, Approximation by superposition of sigmoidal functions, Mathematics of Control, Signals, and Systems, pp.303-314, 1989.

S. E. Fahlman and C. Lebiere, The cascade-correlation learning algorithm Advances in neural information processing systems, pp.525-532, 1990.

K. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks, vol.2, issue.3, pp.183-192, 1989.
DOI : 10.1016/0893-6080(89)90003-8

F. Girosi and T. Poggio, Networks and the best approximation property, Biological Cybernetics, vol.4, issue.3, pp.169-176, 1990.
DOI : 10.1007/BF00195855

K. Hornik, Some new results on neural network approximation, Neural Networks, vol.6, issue.8, pp.1069-1072, 1993.
DOI : 10.1016/S0893-6080(09)80018-X

L. Ingber and B. Rosen, Genetic Algorithms and Very Fast Simulated Reannealing: A comparison, Mathematical and Computer Modelling, vol.16, issue.11, pp.87-100, 1992.
DOI : 10.1016/0895-7177(92)90108-W

V. Y. Kreinovich, Arbitrary nonlinearity is sufficient to represent all functions by neural networks: A theorem, Neural Networks, vol.4, issue.3, pp.381-383, 1991.
DOI : 10.1016/0893-6080(91)90074-F

M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural Networks, vol.6, issue.6, pp.861-867, 1993.
DOI : 10.1016/S0893-6080(05)80131-5

R. Lowrance and R. A. Wagner, An extension of the string to string correction problem, JACM, vol.22, issue.2, pp.177-183, 1975.

C. A. Micchelli, Interpolation of scattered data: Distance matrices and conditionally positive definite functions, Constructive Approximation, vol.23, issue.1, pp.11-22, 1986.
DOI : 10.1007/BF01893414

P. Courrieu, Function approximation on non-Euclidean spaces, Neural Networks, vol.18, issue.1, pp.91-102, 2005.
DOI : 10.1016/j.neunet.2004.09.003

URL : https://hal.archives-ouvertes.fr/hal-00202168

R. E. Moore, Interval analysis, 1966.

M. Okochi and T. Sakai, Trapezoidal D.P. matching with time reversibility, Proceedings of the IEEE-ASSP Conference, pp.1239-1242, 1982.

M. Pelillo, A relaxation algorithm for estimating the domain of validity of feedforward neural networks, Neural Processing Letters, vol.1, issue.No. 6, pp.113-121, 1996.
DOI : 10.1007/BF00420280

T. Poggio and F. Girosi, Networks for approximation and learning, Proceedings of the IEEE, pp.1481-1497, 1990.
DOI : 10.1109/5.58326

H. Ratschek and J. Rokra, Computer methods for the range of functions, 1984.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal Representations by Error Propagation, 1986.
DOI : 10.1016/B978-1-4832-1446-7.50035-2

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating errors, Nature, vol.85, issue.6088, pp.533-536, 1986.
DOI : 10.1038/323533a0

H. Sakoe and S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on ASSP, vol.26, issue.1, pp.194-200, 1978.

R. A. Wagner and M. J. Fischer, The String-to-String Correction Problem, Journal of the ACM, vol.21, issue.1, pp.168-173, 1974.
DOI : 10.1145/321796.321811

J. Yoon, Interpolation by Radial Basis Functions on Sobolev Space, Journal of Approximation Theory, vol.112, issue.1, pp.1-15, 2001.
DOI : 10.1006/jath.2001.3584

A. A. Zhigljavsky, Theory of global random search, 1991.
DOI : 10.1007/978-94-011-3436-1

P. Courrieu, Function approximation on non-Euclidean spaces, Neural Networks, vol.18, issue.1, pp.91-102, 2005.
DOI : 10.1016/j.neunet.2004.09.003

URL : https://hal.archives-ouvertes.fr/hal-00202168

K. L. Clarkson, Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm, SODA'08: Proceedings of the nineteenth annual ACM-SIAM Symposium on Discrete Algorithms, 2008.
DOI : 10.1145/1824777.1824783

P. Courrieu, A distributed search algorithm for global optimization on numerical spaces, RAIRO - Operations Research, vol.27, issue.3, pp.281-292, 1993.
DOI : 10.1051/ro/1993270302811

P. Courrieu, Three algorithms for estimating the domain of validity of feedforward neural networks, Neural Networks, vol.7, issue.1, pp.169-174, 1994.
DOI : 10.1016/0893-6080(94)90065-5

P. Courrieu, The Hyperbell algorithm for global optimization: a random walk using Cauchy densities, Journal of Global Optimization, vol.10, issue.1, pp.37-55, 1997.
DOI : 10.1023/A:1008230212303

P. Courrieu, Solving time of least square systems in Sigma-Pi unit networks, Neural Information Processing -Letters and Reviews, vol.4, issue.3, pp.39-45, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00276480

P. Courrieu, Fast computation of Moore-Penrose inverse matrices, Neural Information Processing -Letters and Reviews, vol.8, issue.2, pp.25-29, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00276477

P. Courrieu, Fast solving of weighted pairing least-squares systems, Journal of Computational and Applied Mathematics, vol.231, issue.1, pp.39-48, 2009.
DOI : 10.1016/j.cam.2009.01.016

URL : https://hal.archives-ouvertes.fr/hal-00358125

B. Gärtner and M. Jaggi, Coresets for polytope distance, Proceedings of the 25th annual symposium on Computational geometry, SCG '09, pp.33-42, 2009.
DOI : 10.1145/1542362.1542370

R. A. Maronna, R. D. Martin, and V. J. Yohai, Robust Statistics: Theory and Methods, 2006.
DOI : 10.1002/0470010940

M. Pelillo, A relaxation algorithm for estimating the domain of validity of feedforward neural networks, Neural Processing Letters, vol.1, issue.No. 6, pp.113-121, 1996.
DOI : 10.1007/BF00420280

F. J. Solis and R. Wets, Minimization by Random Search Techniques, Mathematics of Operations Research, vol.6, issue.1, pp.19-30, 1981.
DOI : 10.1287/moor.6.1.19

R. Baritompa and W. , Customizing methods for global optimization-a geometric viewpoint, Journal of Global Optimization, vol.21, issue.2, pp.193-212, 1993.
DOI : 10.1007/BF01096738

C. G. Boender, R. Kan, A. H. Stougie, L. Timmer, and G. T. , A stochastic method for global optimization, Mathematical Programming, vol.3, issue.1, pp.125-140, 1982.
DOI : 10.1007/BF01581033

L. Breiman and A. Cutler, A deterministic algorithm for global optimization, Mathematical Programming, vol.12, issue.2, pp.179-199, 1993.
DOI : 10.1007/BF01581266

P. Courrieu, A distributed search algorithm for global optimization on numerical spaces, RAIRO - Operations Research, vol.27, issue.3, pp.281-292, 1993.
DOI : 10.1051/ro/1993270302811

T. Csendes, A simple but hard-to-solve global optimization test problem, IIASA Workshop on Global Optimization, 1985.

A. Dekker and E. Aarts, Global optimization and simulated annealing, Global optimization and simulated annealing, pp.367-393, 1991.
DOI : 10.1007/BF01594945

C. A. Floudas and P. M. Pardalos, Collection of Test Problems for Constrained Global Optimization Algorithms, Lecture Notes in Computer Science, vol.455, 1990.
DOI : 10.1007/3-540-53032-0

A. O. Griewank, Generalized descent for global optimization, Journal of Optimization Theory and Applications, vol.16, issue.1, pp.11-39, 1981.
DOI : 10.1007/BF00933356

R. Horst and P. M. Pardalos, Handbook of Global Optimization, 1995.
DOI : 10.1007/978-1-4615-2025-2

L. Ingber, Very fast simulated re-annealing, Mathematical and Computer Modelling, vol.12, issue.8, pp.967-973, 1989.
DOI : 10.1016/0895-7177(89)90202-1

L. Ingber and B. Rosen, Genetic Algorithms and Very Fast Simulated Reannealing: A comparison, Mathematical and Computer Modelling, vol.16, issue.11, pp.87-100, 1992.
DOI : 10.1016/0895-7177(92)90108-W

P. M. Pardalos, An open global optimization problem on the unit sphere, Journal of Global Optimization, vol.9, issue.2, 1995.
DOI : 10.1007/BF01096770

J. Pintér, Branch-and-Bound methods for solving global optimization problems with Lipschitzian structure, pp.101-110, 1988.

R. Kan, A. H. Timmer, and G. T. , Stochastic global optimization methods. Part I: clustering methods, Mathematical Programming, vol.39, pp.27-56, 1987.

R. Kan, A. H. Timmer, and G. T. , Stochastic global optimization methods. Part II: multi level methods, Mathematical Programming, vol.39, pp.57-78, 1987.

H. E. Romeijn and R. L. Smith, Simulated annealing for constrained global optimization, Journal of Global Optimization, vol.3, issue.2, pp.101-126, 1994.
DOI : 10.1007/BF01100688

M. Shub and S. Smale, Complexity of Bezout's Theorem: III. Condition Number and Packing, Journal of Complexity, vol.9, pp.4-14, 1993.
DOI : 10.1142/9789812792839_0018

F. J. Solis and R. Wets, Minimization by Random Search Techniques, Mathematics of Operations Research, vol.6, issue.1, pp.19-30, 1981.
DOI : 10.1287/moor.6.1.19

G. R. Wood, The bisection method in higher dimensions, Mathematical Programming, vol.21, issue.1-3, pp.319-337, 1992.
DOI : 10.1007/BF01581205

Z. B. Zabinsky, R. L. Smith, J. F. Mcdonald, H. E. Romeijn, and D. E. Kaufman, Improving Hit-and-Run for global optimization, Journal of Global Optimization, vol.53, issue.2, pp.171-192, 1993.
DOI : 10.1007/BF01096737

A. A. Zhigljavsky, Numerical methods for generalized least squares problems, Theory of Global Random Search, pp.571-584, 1991.

T. Zhou and D. Han, A weighted least squares method for scattered data fitting, Journal of Computational and Applied Mathematics, vol.217, issue.1, pp.56-63, 2008.
DOI : 10.1016/j.cam.2007.06.015

K. P. Bube, R. T. Langan, R. A. Maronna, R. D. Martin, and V. J. Yohai, Hybrid l 1 /l 2 minimization with applications to tomography Robust image matching under partial occlusion and spatially varying illumination change, Robust Statistics: Theory and Methods, pp.1183-1195, 1997.

P. Courrieu, Fast computation of Moore?Penrose inverse matrices, Neural Information Processing ? Letters and Reviews, vol.8, issue.2, pp.25-29, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00276477

M. A. Rakha, On the Moore???Penrose generalized inverse matrix, Applied Mathematics and Computation, vol.158, issue.1, pp.185-200, 2004.
DOI : 10.1016/j.amc.2003.09.004

W. Wang and J. Zhao, Perturbation analysis for the generalized Cholesky factorization, Applied Mathematics and Computation, vol.147, issue.2, pp.601-606, 2004.
DOI : 10.1016/S0096-3003(02)00798-1

J. Zhao, The generalized Cholesky factorization method for saddle point problems, Applied Mathematics and Computation, vol.92, issue.1, pp.49-58, 1998.
DOI : 10.1016/S0096-3003(97)10040-6

P. Courrieu, Straight monotonic embedding of data sets in Euclidean spaces, Neural Networks, vol.15, issue.10, pp.1185-1196, 2002.
DOI : 10.1016/S0893-6080(02)00091-6

URL : https://hal.archives-ouvertes.fr/hal-01441376

L. Giraud, J. Langou, M. Rozloznik, and J. Van-den-eshof, Rounding error analysis of the classical Gram-Schmidt orthogonalization process, Numerische Mathematik, vol.13, issue.1, pp.87-100, 2005.
DOI : 10.1007/s00211-005-0615-4

B. Ans, S. Carbonnel, and S. Valdois, A connectionist multiple-trace memory model for polysyllabic word reading., Psychological Review, vol.105, issue.4, pp.678-723, 1998.
DOI : 10.1037/0033-295X.105.4.678-723

URL : https://hal.archives-ouvertes.fr/hal-00171057

R. H. Baayen, R. Piepenbrock, and H. Van-rijn, The CELEX lexical database (CD­ROM) Philadelphia: Linguistic Data Consor­ tium, 1993.

D. A. Balota and D. H. Spieler, The Utility of Item-Level Analyses in Model Evaluation: A Reply to Seidenberg and Plaut, Psychological Science, vol.124, issue.3, pp.238-240, 1998.
DOI : 10.1111/1467-9280.00047

M. Coltheart, K. Rastle, C. Perry, R. Langdon, and J. Ziegler, DRC: A dual route cascaded model of visual word recognition and reading aloud., Psychological Review, vol.108, issue.1, pp.204-256, 2001.
DOI : 10.1037/0033-295X.108.1.204

P. Good, Permutation tests: A practical guide to resampling methods for testing hypotheses, 1994.

J. Grainger and A. M. Jacobs, Orthographic processing in visual word recognition: A multiple read-out model., Psychological Review, vol.103, issue.3, pp.518-565, 1996.
DOI : 10.1037/0033-295X.103.3.518

M. W. Harm and M. S. Seidenberg, Computing the Meanings of Words in Reading: Cooperative Division of Labor Between Visual and Phonological Processes., Psychological Review, vol.111, issue.3, pp.662-720, 2004.
DOI : 10.1037/0033-295X.111.3.662

J. D. Opdyke, Fast Permutation Tests that Maximize Power Under Conventional Monte Carlo Sampling for Pairwise and Multiple Comparisons, Journal of Modern Applied Statistical Methods, vol.2, issue.1, pp.27-49, 2003.
DOI : 10.22237/jmasm/1051747500

C. Perry, J. C. Ziegler, and M. Zorzi, Nested incremental modeling in the development of computational theories: The CDP+ model of reading aloud., Psychological Review, vol.114, issue.2, pp.273-315, 2007.
DOI : 10.1037/0033-295X.114.2.273

URL : https://hal.archives-ouvertes.fr/hal-00201288

D. C. Plaut, J. L. Mcclelland, M. S. Seidenberg, and K. Patterson, Understanding normal and impaired word reading: Computational principles in quasi-regular domains., Psychological Review, vol.103, issue.1, pp.56-115, 1996.
DOI : 10.1037/0033-295X.103.1.56

A. Rey and N. O. Schiller, Graphemic complexity and multiple print-to-sound associations in visual word recognition, Memory & Cognition, vol.24, issue.1, pp.76-85, 2005.
DOI : 10.3758/BF03195298

URL : https://hal.archives-ouvertes.fr/hal-00218309

J. N. Rouder and J. Lu, An introduction to Bayesian hierarchical models with an application in the theory of signal detection, Psychonomic Bulletin & Review, vol.7, issue.4, pp.573-604, 2005.
DOI : 10.3758/BF03196750

M. S. Seidenberg, J. L. Mcclelland, M. Ahmed, and M. Shoukri, A distributed, de­ velopmental model of word recognition and naming A Bayesian estimator of the intracluster correlation coefficient from correlated binary responses, Psychological Review Journal of Data Science, vol.96, issue.8, pp.127-137, 1989.

H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-723, 1974.
DOI : 10.1109/TAC.1974.1100705

R. H. Baayen, R. Piepenbrock, and H. Van-rijn, The CELEX Lexical Database (CD-ROM) Linguistic Data Consortium, 1993.

D. A. Balota and D. H. Spieler, The Utility of Item-Level Analyses in Model Evaluation: A Reply to Seidenberg and Plaut, Psychological Science, vol.124, issue.3, pp.238-240, 1998.
DOI : 10.1111/1467-9280.00047

D. A. Balota, M. J. Yap, M. J. Cortese, K. A. Hutchison, B. Kessler et al., The English Lexicon Project, Behavior Research Methods, vol.24, issue.3, pp.445-459, 2007.
DOI : 10.3758/BF03193014

A. Content, P. Mousty, and M. Radeau, Brulex: Une base de données lexicales informatisée pour le français écrit et parlé. L'Année Psychologique, pp.551-566, 1990.

L. Ferrand, B. New, M. Brysbaert, E. Keuleers, P. Bonin et al., The French Lexicon Project: Lexical decision data for 38, 840 French words and 38, 840 pseudowords, Behavior Research Methods, vol.42, pp.488-496, 2010.
DOI : 10.1037/e520592012-805

E. J. Hannan and B. G. Quinn, The determination of the order of an autoregression, Journal of the Royal Statistical Society, B, vol.41, pp.190-195, 1979.

M. H. Hansen and B. Yu, Model Selection and the Principle of Minimum Description Length, Journal of the American Statistical Association, vol.96, issue.454, pp.746-774, 2001.
DOI : 10.1198/016214501753168398

R. E. Kass and A. E. Raftery, Bayes Factors, Journal of the American Statistical Association, vol.2, issue.430, pp.377-395, 1995.
DOI : 10.1080/01621459.1995.10476572

K. O. Mcgraw and S. P. Wong, Forming inferences about some intraclass correlation coefficients., Psychological Methods, vol.1, issue.1, pp.30-46, 1996.
DOI : 10.1037/1082-989X.1.1.30

I. J. Myung, M. A. Pitt, and W. Kim, Model Evaluation, Testing and Selection, Handbook of cognition, pp.422-436, 2005.
DOI : 10.4135/9781848608177.n19

J. D. Opdyke, Fast Permutation Tests that Maximize Power Under Conventional Monte Carlo Sampling for Pairwise and Multiple Comparisons, Journal of Modern Applied Statistical Methods, vol.2, issue.1, pp.27-49, 2003.
DOI : 10.22237/jmasm/1051747500

C. Perry, J. C. Ziegler, and M. Zorzi, Nested incremental modeling in the development of computational theories: The CDP+ model of reading aloud., Psychological Review, vol.114, issue.2, pp.273-315, 2007.
DOI : 10.1037/0033-295X.114.2.273

URL : https://hal.archives-ouvertes.fr/hal-00201288

C. Perry, J. C. Ziegler, and M. Zorzi, Beyond single syllables: Large-scale modeling of reading aloud with the Connectionist Dual Process (CDP++) model, Cognitive Psychology, vol.61, issue.2, 2010.
DOI : 10.1016/j.cogpsych.2010.04.001

URL : https://hal.archives-ouvertes.fr/hal-01440452

M. A. Pitt and I. J. Myung, When a good fit can be bad, Trends in Cognitive Sciences, vol.6, issue.10, pp.421-425, 2002.
DOI : 10.1016/S1364-6613(02)01964-2

D. C. Plaut, J. L. Mcclelland, M. S. Seidenberg, and K. Patterson, Understanding normal and impaired word reading: Computational principles in quasi-regular domains., Psychological Review, vol.103, issue.1, pp.56-115, 1996.
DOI : 10.1037/0033-295X.103.1.56

A. Rey, P. Courrieu, F. Schmidt-weigand, and A. M. Jacobs, Item performance in visual word recognition, Psychonomic Bulletin & Review, vol.24, issue.3, pp.600-608, 2009.
DOI : 10.3758/PBR.16.3.600

URL : https://hal.archives-ouvertes.fr/hal-00389615

A. Rey and N. O. Schiller, Graphemic complexity and multiple print-to-sound associations in visual word recognition, Memory & Cognition, vol.24, issue.1, pp.76-85, 2005.
DOI : 10.3758/BF03195298

URL : https://hal.archives-ouvertes.fr/hal-00218309

J. Rissanen, Fisher information and stochastic complexity, IEEE Transactions on Information Theory, vol.42, issue.1, pp.40-47, 1996.
DOI : 10.1109/18.481776

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

M. S. Seidenberg and J. L. Mcclelland, A distributed, developmental model of word recognition and naming., Psychological Review, vol.96, issue.4, pp.523-568, 1989.
DOI : 10.1037/0033-295X.96.4.523

M. Seidenberg and D. C. Plaut, Evaluating Word-Reading Models at the Item Level: Matching the Grain of Theory and Data, Psychological Science, vol.124, issue.3, pp.234-237, 1998.
DOI : 10.1111/1467-9280.00046

P. E. Shrout and J. L. Fleiss, Intraclass correlations: Uses in assessing rater reliability., Psychological Bulletin, vol.86, issue.2, pp.420-428, 1979.
DOI : 10.1037/0033-2909.86.2.420

D. H. Spieler and D. A. Balota, Bringing Computational Models of Word Naming Down to the Item Level, Psychological Science, vol.27, issue.6, pp.411-416, 1997.
DOI : 10.1037//0096-3445.124.2.107

N. M. Webb, R. J. Shavelson, and E. H. Haertel, 4 Reliability Coefficients and Generalizability Theory, Handbook of Statistics, vol.26, pp.81-124, 2006.
DOI : 10.1016/S0169-7161(06)26004-8

M. J. Yap and D. A. Balota, Visual word recognition of multisyllabic words, Journal of Memory and Language, vol.60, issue.4, pp.502-529, 2009.
DOI : 10.1016/j.jml.2009.02.001

B. Res, R. Balota, D. A. Yap, M. J. Cortese, M. J. Hutchison et al., The English Lexicon Project, Behav. Res. Methods, vol.39, pp.445-459, 2007.

P. Courrieu, M. Brand-d-'abrescia, R. Peereman, D. Spieler, R. et al., Validated intraclass correlation statistics to test item performance models, Behavior Research Methods, vol.60, issue.2
DOI : 10.3758/s13428-010-0020-5

URL : https://hal.archives-ouvertes.fr/hal-00522759

M. E. Faust, D. A. Balota, D. H. Spieler, and F. R. Ferraro, Individual differences in information-processing, 1999.

P. Courrieu, Quick approximation of bivariate functions, British Journal of Mathematical and Statistical Psychology, vol.112, issue.2
DOI : 10.1111/j.2044-8317.2011.02016.x

URL : https://hal.archives-ouvertes.fr/hal-01440377

P. Courrieu, Function approximation on non-Euclidean spaces, Neural Networks, vol.18, issue.1, pp.91-102, 2005.
DOI : 10.1016/j.neunet.2004.09.003

URL : https://hal.archives-ouvertes.fr/hal-00202168

P. Courrieu, Density codes and shape spaces, Neural Networks, vol.19, issue.4, pp.429-445, 2006.
DOI : 10.1016/j.neunet.2005.10.006

URL : https://hal.archives-ouvertes.fr/hal-00289023

P. Courrieu, Fast density codes for image data, Neural Information Processing - Letters and Reviews, vol.11, issue.12, pp.247-255, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00276335

P. Courrieu, M. Brand-d-'abrescia, R. Peereman, D. Spieler, and A. Rey, Validated intraclass correlation statistics to test item performance models, Behavior Research Methods, vol.60, issue.2, 2011.
DOI : 10.3758/s13428-010-0020-5

URL : https://hal.archives-ouvertes.fr/hal-00522759

P. Courrieu and A. Rey, Missing data imputation and corrected statistics for large-scale behavioral databases, Behavior Research Methods, vol.60, issue.2
DOI : 10.3758/s13428-011-0071-2

URL : https://hal.archives-ouvertes.fr/hal-00567176

C. J. Davis, The spatial coding model of visual word identification., Psychological Review, vol.117, issue.3, pp.713-758, 2010.
DOI : 10.1037/a0019738

E. Keuleers, K. Diependaele, and M. Brysbaert, Practice Effects in Large-Scale Visual Word Recognition Studies: A Lexical Decision Study on 14,000 Dutch Mono- and Disyllabic Words and Nonwords, Frontiers in Psychology, vol.1, 2010.
DOI : 10.3389/fpsyg.2010.00174

B. Lété and J. Pynte, Word-shape and word-lexical-frequency effects in lexical-decision and naming tasks, Visual Cognition, vol.39, issue.8, pp.913-948, 2003.
DOI : 10.1080/135062897395606

U. Marti and . H. Bunke, The IAM-database: an English sentence database for offline handwriting recognition, International Journal on Document Analysis and Recognition, vol.5, issue.1, pp.39-46, 2002.
DOI : 10.1007/s100320200071

J. L. Mcclelland, Preliminary letter identification in the perception of words and nonwords., Journal of Experimental Psychology: Human Perception and Performance, vol.2, issue.1, pp.80-91, 1976.
DOI : 10.1037/0096-1523.2.1.80