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Abstract

Mathematical models and more specifically reaction-diffusion based models have
been widely used in the literature for modeling the growth of brain gliomas and
tumors in general. Besides the vast amount of research focused on microscopic and
biological experiments, recently models have started integrating medical images
in their formulations. By including the geometry of the brain and the tumor, the
different tissue structures and the diffusion images, models are able to simulate the
macroscopic growth observable in the images. Although generic models have been
proposed, methods for adapting these models to individual patient images remain
an unexplored area.

In this thesis we address the problem of “personalizing mathematical tumor
growth models”. We focus on reaction-diffusion models and their applications
on modeling the growth of brain gliomas. As a first step, we propose a method
for automatic identification of patient-specific model parameters from series of
medical images. Observing the discrepancies between the visualization of gliomas
in MR images and the reaction-diffusion models, we derive a novel formulation
for explaining the evolution of the tumor delineation. This “modified anisotropic
Eikonal” model is later used for estimating the model parameters from images.
Thorough analysis on synthetic dataset validates the proposed method theoretically
and also gives us insights on the nature of the underlying problem. Preliminary
results on real cases show promising potentials of the parameter estimation method
and the reaction-diffusion models both for quantifying tumor growth and also for
predicting future evolution of the pathology.

Following the personalization, we focus on the clinical application of such
patient-specific models. Specifically, we tackle the problem of limited visualization
of glioma infiltration in MR images. The images only show a part of the tumor and
mask the low density invasion. This missing information is crucial for radiotherapy
and other types of treatment. We propose a formulation for this problem based on
the patient-specific models. In the analysis we also show the potential benefits of
such the proposed method for radiotherapy planning.

The last part of this thesis deals with numerical methods for anisotropic Eikonal
equations. This type of equation arises in both of the previous parts of this the-
sis. Moreover, such equations are also used in different modeling problems, com-
puter vision, geometrical optics and other different fields. We propose a numerical
method for solving anisotropic Eikonal equations in a fast and accurate manner. By
comparing it with a state-of-the-art method we demonstrate the advantages of our
technique.






Résumé

Les modeéles mathématiques et plus spécifiquement les modéles basés sur I’équation
de réaction-diffusion ont été utilisés largement dans la littérature pour modéliser la
croissance des gliomes cérébraux et des tumeurs en général. De plus la grande lit-
térature de recherche qui concentre sur les expériences biologiques et microscopiques,
récemment les modéles ont commencé intégrer I'imagerie médicale dans ses formu-
lations. Incluant la géométrie du cerveau et celle de la tumeur, les structures des
différentes tissues et la direction de diffusion, ils ont montré qu’il est possible de
simuler la croissance de la tumeur comme c’est observé dans les images médicales.
Bien que des modeéles génériques ont été proposés, les méthodes pour adapter ces
modéles aux images d’un patient reste un domaine inexploré.

Dans cette thése nous nous adressons au probléme de “personnalisation de mod-
éle mathématique de la croissance de tumeurs.” Nous nous focalisons sur les modéles
de réaction-diffusion et leurs applications sur la croissance des gliomes cérébrales.
Dans la premiére étape, nous proposons une méthode pour l'identification automa-
tique des paramétres “patient-spécifiques” du modeéle & partir d’une série d’images.
En observant la divergence entre la visualisation des gliomes dans les IRMs et les
modeéles réaction-diffusion, nous déduisons une nouvelle formulation pour expliquer
I'évolution de la délinéation de la tumeur. Ce modeéle “Eikonal anistropique modi-
fie” est utilisé plus tard pour I'estimation des paramétres & partir des images. Nous
avons théoriquement analysé la méthode proposée a 1’aide d'un base donne synthé-
tique et nous avons montré la capacité de la méthode et aussi sa limitation. En plus,
les résultats préliminaires, sur les cas réels montrent des potentiels prometteurs de
la méthode d’estimation des paramétres et du modéle de réaction-diffusion pour la
quantification de la croissance de tumeur et aussi pour la prédiction de I’évolution
futur de la tumeur.

En suivant la personnalisation, nous nous concentrons sur les applications clin-
iques des modeéles “patient-spécifiques”. Spécifiquement, nous nous attaquons au
probléme de la visualisation limitée d’infiltration de gliome dans 'IRM. En effet,
les images ne montrent qu’'une partie de la tumeur et masquent l'infiltration basse-
densité. Cette information absente est cruciale pour la radiothérapie et aussi pour
d’autre type de traitements. Dans ce travail, nous proposons pour ce probléme
une formulation basée sur les modeles “patient-spécifiques”. Dans ’analyse de cette
méthode nous montrons également les bénéfices potentiels pour la planification de
la radiothérapie.

La derniére étape de cette thése se concentre sur les méthodes numériques de
I’équation “Eikonal anisotropique”. Ce type d’équation est utilisé dans beaucoup
de problémes différents tel que la modélisation, le traitement d’image, la vision par
ordinateur et l'optique géométrique. Ici nous proposons une méthode numeérique
rapide et efficace pour résoudre 1’équation Eikonal anisotropique. En la comparant
avec une autre méthode état-de-1’art nous démontrons les avantages de la technique
proposée.
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1.1 Context

How can we describe the progression of tumors through mathematical models and
computer simulations? This question has been keeping scientists busy for the last 30
years. Mathematicians, clinicians, biologists, physicists and computer scientists are
collaborating to tackle this problem. Considering the complexity of the dynamics of
tumor growth and the fact that most of the underlying phenomena have not been
discovered yet, these attempts will continue for a while. This thesis is a humble
contribution towards these goals.

Cancer is one of the leading causes of death and it is not necessary to describe its
graveness. The important point to note is that it is becoming more common and we
have not yet totally understood the reasons for its occurrence and the way to cure
it. Vast amount of experimental research in biology and medicine enlightens many
different aspects of the dynamics of cancer progression. They provide information in
many different scales from genetics to tissue. Mathematical modeling is important
in this respect as it provides a melting pot for all these experimental results. Models
provide a systematic structure that brings these results together and shows us the
overall picture. This gives us the opportunity to better understand the tumor growth
and interaction between different factors and also to help clinicians in diagnosing
and treating tumors.

Mathematical modeling of tumor growth has received considerable attention
during the last 30 years. Different modeling attempts have been proposed spanning
a large range of scales and techniques describing different dynamics and phenomenon
in the growth process. Although lots of efforts have been given to formulate more
realistic and detailed models, little attention has been given to the applicability of
these models to clinical data and their personalization. As the models become more
sophisticated the gap between the information clinically available and needed by the
models widen. As a result adapting mathematical models to patient data become
harder.

The motivation of this thesis is therefore to study the link between mathemat-
ical tumor growth models and medical images in attempt to create tools useful in
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clinical settings. Instead of going one step further in detailing existing models and
making them more realistic, we take a step backward and search for ways to apply
these models to specific patient data using images. In this manner we take a more
pragmatic approach to tumor growth modeling.

Although tumors in different parts of the body have certain common charac-
teristics they also differ in many ways. Therefore, each tumor should be studied
separately. In this thesis we focus on the modeling of a specific type of brain tumor,
gliomas. In attempt to link medical images and the growth models, we start from an
existing model explaining the growth of gliomas, which is based on the well known
Reaction-Diffusion (RD) equations, and study its link with the available information
in Magnetic Resonance Images (MRI).

1.2 Problems Investigated

In the previous section we have set the general motivation of this thesis as studying
the link between tumor growth models and medical images. This is a very complex
problem with different components such as theoretical analysis of the models, physics
of the image acquisition and biological analysis of the tissue response to tumor
growth. Of course, this thesis does not aim to provide solutions to all these problems.
It is rather intended to be a part of a collaborative work tackling all these mentioned
components. In this thesis we focus on the theoretical analysis of a type of tumor
growth model, which is based on reaction-diffusion equations. In this respect we
focus on three different problems:

e Image Guided Personalization of Reaction-Diffusion Type Tumor
Growth Models: The first problem we tackle is adapting the reaction-
diffusion tumor growth model to specific patient images, personalizing the
model. This adaptation can also be formulated as estimating the parameters
of the reaction-diffusion tumor growth model using time series of medical im-
ages taken from the same patient. So the exact question we try to solve is:
How to estimate these patient-specific parameters that would best explain the
progression of the tumor observed in the images? How to create the patient-
specific model?

e Extrapolating Extents of Glioma Invasion in MRI: Medical images
are one of the main source of information in diagnosing and treating brain
tumors. Especially in radiotherapy, images are crucial in planning the therapy
and outlining the area which will be irradiated. The images however, cannot
show the whole extent of gliomas due to the invasive nature of this type of
tumor. The extent of the whole tumor goes beyond the visible part in the
image and the possible direction of this “undetectable” extension is important
in outlining the irradiation area. The second question we tackle in this thesis
is: How can we extrapolate this undetectable extension from the visible part of
the tumor in the image using patient-specific models?

e Anisotropic Eikonal Equations: The third point of focus in this thesis
arose from the first two questions detailed above. The mathematical formula-
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tions we derived to solve the first two questions ended up to have the form of
modified anisotropic Eikonal equations. Moreover, after reviewing other type
of models for different organs and pathologies we realized the importance of
this type of equations. Therefore, the third question we ask is a more method-
ological question: How to solve anisotropic Fikonal equations in a fast and
accurate manner?

1.3 Organization of the Thesis

This thesis is organized around the three questions explained in the previous
section. We first start by providing general information about gliomas and medical
images followed by background information on tumor growth modeling. After
the background we present our work on the three main questions making up the
contributions of this thesis. The detailed description of the material covered in
each chapter is given below.

Chapter 2 gives some general knowledge on brain tumors and more specifically
on gliomas. Different types of gliomas, the grading conventions and different
behavior of these tumors are explained briefly. We also give some information
about the appearance of gliomas in MRI as this is crucial for the understanding of
the remainder of the thesis.

Chapter 3 provides an overview of the literature on tumor growth modeling.
In this chapter we do not distinguish between brain tumors and tumors in the
other parts of the body as the modeling attempts are linked together. The main
approaches of modeling, different scales of models, different techniques and different
phenomena modeled are covered in this chapter. We discuss briefly about models
focusing on microscopic dynamics and models working with information coming
from medical images. In this chapter we also give a review of different image
analysis techniques which use tumor growth modeling to tackle different problems
such as segmentation and registration.

Chapter 4 explains our approach to the problem of personalizing the reaction-
diffusion type tumor growth models. In this chapter we focus on the discrepancy
between the information required by the reaction-diffusion models and the informa-
tion available in medical images. Reaction-diffusion models describe the evolution
of tumor cell density distributions however, in medical images we only observe
boundaries between the enhanced/unenhanced tumoral region and the healthy
tissue. In order to solve this discrepancy, through asymptotic approximations we
derive a formulation which describes the evolution of tumor delineations in the
images based on the dynamics of reaction-diffusion growth models. Using this
more consistent mathematical description, we formulate the parameter estimation
problem for reaction-diffusion type tumor growth models using time series of
patient images.
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Chapter 5 analyzes the parameter estimation methodology presented in Chapter
4.  We present experimental results on synthetic and real images. Through
synthetically created data sets we perform theoretical analysis of the method and
show the feasibility of the parameter estimation problem under the constraint of
medical images, specifically we show the non-uniqueness of the solution of the
most general case. We also show that under certain assumptions the parameter
estimation problem can be solved and certain values unique to each tumor can
be extracted from medical images, such as the speed of progression. Following
this analysis, on real data we present promising results showing the ability of
the method in finding the set of parameters which well describes the evolution of
the tumor observed in MR images. Moreover, we demonstrate the power of the
estimated parameters and the reaction-diffusion models (or rather the formulation
derived from the RD models) in predicting the future evolution of the tumor in
images.

Chapter 6 explains the problem of limited visualization of gliomas in medical
images. In this chapter we propose a solution to this problem based on dynamics
described by the reaction-diffusion models. Again through asymptotic approxima-
tions we derive an extrapolation formulation which starting from the visible part
of the glioma in the MR image extrapolates the possible extents of the glioma
undetectable in the image. In other words the proposed method constructs the
tumor cell density distribution beyond the visible mass in the image.

Chapter 7 presents the synthetic experiments we have performed to test the
extrapolation method described in Chapter 6. We first analyze the method to see if
the extrapolated invasion extent matches the actual tumor cell density distribution
of a synthetically grown tumor. After verifying this we turn our attention to the
planning of radiotherapy. We focus on the phase of outlining the irradiation margins
starting from the tumor delineation in the image. In conventional radiotherapy a
constant margin of 1.5-2 cm is outlined around the tumor delineation to account
for the undetectable extent of the glioma. In this chapter we show that a variable
margin constructed according to the possible extent of the glioma, theoretically,
may better target the tumor and harm less healthy brain tissue.

Chapter 8 focuses on the numerical solutions of a type of partial differential
equation, the anisotropic Eikonal equations. This type of equations arise in the
first two problems we presented in Chapters 4 and 6. Moreover, anisotropic Eikonal
equations also arise in the modeling of different organs and pathologies, especially
in cardiovascular and wound healing models. On the other hand, these equations
are not inherent to biological/physiological modeling, they also arise in different
fields such as geophysics and computer vision. Therefore, fast and accurate solvers
for such equations are important for different domains. In this chapter we propose a
numerical method for anisotropic Eikonal equations which extends the well known
Fast Marching method to work in anisotropic domains. We detail our method and
provide several experiments including comparison with one of the state-of-the-art
solvers to demonstrate the performance of the proposed algorithm.
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Chapter 9 concludes this thesis by going over the contributions we have proposed
in each chapter and providing the perspectives for the future work.

Appendix A gives a brief overview on Hamilton-Jacobi equations which are
extensively used in this thesis. This overview is by no means complete and it
just aims to introduce this topic coarsely to readers who are not familiar with it.
Hamilton-Jacobi equations is a wide class of partial differential equations and the
emphasis in this appendix is given to the type of equations mentioned in this thesis.

Appendix B gives the algorithmic details on the minimization algorithm used in
Chapter 4. This algorithm is proposed by Powell in [Powell 2002| and the review
in this Appendix goes over the basic steps of the method for completeness of the
thesis.
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Brain Tumors and Medical Images

Contents
2.1 Brain Tumors. . . . . . . ...t ii it 7
2.2 Gliomas (Astrocytomas) . . .. ... ... 9
2.3 Imaging Gliomas with Magnetic Resonance . ... ... 10
2.3.1 Magnetic Resonance Imaging (MRI) . . . ... ... ... 10
2.3.2 Appearance of Gliomasin MRI . . . . ... ... ..... 12
Context

The techniques and methods presented in this work deal with the mathematical
modeling of brain tumors and the use of magnetic resonance images for this purpose.
Therefore, some knowledge about brain tumors, magnetic resonance images and
appearance of tumors in these images is necessary. In this chapter we provide brief
information about brain tumors in Section 2.1 and specifically brain gliomas in
Section 2.2 since they are the main focus of this thesis. In Section 2.3 we describe
shortly the magnetic resonance imaging and the appearance of brain gliomas on
these images. Detailed information about any of these three topics is outside the
scope of this work. Please refer to [Wilson 1999] for information on gliomas and
brain tumors and refer to [Westbrook 1998, Liang 2000| for detailed information on
magnetic resonance imaging.

2.1 Brain Tumors

The term “tumor” originally means abnormal swelling of the flesh and is derived from
the Latin word fumor which means swelling. In the current use tumor means a lesion
which is formed by abnormal growth and uncontrolled rapid cellular proliferation
that possesses no function, a neoplasm. A tumor that is located in the brain is called
a brain tumor. Brain tumors are not very common pathologies, current statistics
indicates around 100 incidences per year in 100,000 people in the developed world.
In the case of children the rate of incidence is even lower, 4.5 incidences in 100,000.
Even though these values are not very high, brain tumors are among the leading
cause of cancer-related death for all ages [DeAngelis 2001, ABTA 2008a].

Brain tumors can be coarsely divided into groups using two different classifica-
tions, according to the degree of their aggressiveness and according to their origin.
In terms of aggressiveness the brain tumors are classified as benign and malignant.
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Benign brain tumors proliferates slowly and they rarely spread to the surrounding
tissue. They would have a normal appearance under the microscope and globally
they would show distinct borders between the tumor and the brain tissue. Most of
the time, if it can be done, the tumor can be totally removed by surgery. Although
most of these tumors are not life threatening, they may be so depending on their
size and their location in the brain. Malignant brain tumors on the other hand,
proliferate rapidly and invade the healthy areas of the brain. Their borders are not
clear due to their infiltrative nature making surgical removal difficult. Moreover,
they show neoangiogenesis and necrosis. Their cells can travel and colonize other
parts of the brain and the spinal cord through cerebrospinal fluid. These tumors are
life-threatening with a low survival rate [Tovi 1993, Wilson 1999, DeAngelis 2001].

The distinction between benign and malignant brain tumors is not obvious and
requires the definition of a set of criteria and grading systems. In order to facilitate
the diagnosis and the therapy planning, tumors are graded based on their aggres-
siveness. The most commonly used grading system is the one proposed by the World
Health Organization (WHO). Grading of a tumor takes into account different factors
such as mitotic index, vascularity, presence of a necrotic core, invasive potential and
similarity to normal cells. In the WHO system 4 grades are used to classify tumor
which are summarized in the Table 2.1

Table 2.1: WHQO Tumor Grades and Characteristics

‘ Grade ‘ Characteristics
Grade I | - slow proliferation - cells look like normal - long survival
rate - e.g.. pilocytic astrocytomas
Grade IT | - relatively slow proliferation - cells look like almost normal
- may invade - may recur as grade II or a higher grade
Grade III | - rapidly reproducing - cells look abnormal - vascular pro-

liferation - invade surrounding tissue - tends to recur - e.g..
Anaplastic astrocytomas

Grade IV | - very rapid proliferation - very abnormal appearance of cells
- invasion of large areas - recurs - necrotic core - forms new
vascularization to support growth - e.g. Glioblastoma Mul-
tiforme

The classification of brain tumors in terms of their origin also has two groups:
primary and metastatic. Primary tumors are the ones that originate from the brain
cells and stay in the brain. They can occur at any age however, statistically they are
more common in children and in older adults. These tumors can be benign or malig-
nant. Different tumors in this group are named based on the type of cells they origi-
nate from. Examples of these tumors are gliomas, meningiomas, medulloblastomas,
ependymomas and pituitary tumors. Among these the most important ones are
meningiomas as they form the biggest part of all primary brain tumors and gliomas
because they represent the majority of the malignant brain tumors [DeAngelis 2001].
Metastatic brain tumors are formed by cancer cells which began growing in another
part of the body and then traveled to the brain. These tumors are by nature malig-
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nant and they are the most common type of brain tumors. Majority of the cancers
which metastasize to the brain are lung and breast.

2.2 Gliomas (Astrocytomas)

In this thesis we mainly focus on a specific type of brain tumor, the gliomas. Gliomas
are the neoplasms of glial cells which support and nourish the brain. These tu-
mors appear most commonly in the cerebral hemisphere but they can also be found
anywhere else in the brain like the cerebellum. They can arise either alone or
as a recurrence of a pre-existing tumor. The factors that cause glial tumors is
mostly unknown but the only identified risk for these tumors is the ionizing radia-
tion [DeAngelis 2001].

Gliomas have varying histopathological features and biological behavior. They
cover a large range aggressiveness and grades from benign grade I, pilocytic astrocy-
tomas, to malignant grade IV, glioblastoma multiforme (GBM). The different factors
analyzed for grading these tumors include mitosis rates, microvascular proliferation,
nuclear atypia and necrosis [Wilson 1999]. The lowest grade gliomas, namely the
pilocytic astrocytomas, stand a little different than the other ones. These tumors
do not infiltrate and they grow very slowly by means of mitosis. Although they can
become large, they are not life-threatening and most of them are curable. Grade I
gliomas are most commonly seen in pediatric cases. The higher grade gliomas from
IT to IV are called diffuse gliomas and they share certain characteristics. These
tumors infiltrate into the surrounding tissue and invade the healthy brain. The
grade II ones, diffusive astrocytomas, grow slowly however they show malignant
progression despite therapy. The higher grade ones, anaplastic astrocytomas and
glioblastoma multiforme, grow very rapidly and invade the brain in tentacles pene-
trating into the brain parenchyma. They are usually surrounded by edema and the
grade IV ones create extensive network of blood vessels and contain necrotic core.
Due to their rapid growth and the edema they exert pressure on the brain tissue
and cause local mass effect [Wilson 1999, DeAngelis 2001].

The most important dynamic in the growth of diffuse gliomas is the invasion of
the healthy brain. The infiltration into the surrounding tissue is seen in different
grades of diffuse gliomas and it is a very complex molecular process [Demuth 2004].
The tumor cells infiltrate mostly through the white matter tracts but also use
cerebrospinal fluid and the vascular conduits [Wilson 1999]. The myelinated fiber
tracts act as a route of invasion on which the migration capabilities of cells en-
hance [Giese 1996]. Diffuse gliomas also show cortical infiltration demonstrating
that they can invade the gray matter as well. However, the gray matter infiltration
is slower than the white matter one.

The other two high grade specific characteristics seen in the growth of gliomas
are the formation of the necrotic core and the vascularization |[Wilson 1999]. When
the tumor grows very rapidly, the cells compete for the limited nutrition and oxygen.
In the case of gliomas the tumor starts growing as a spheroid getting the necessary
nutrition from the periphery. Due to the rapid growth and the competition less and
less nutrition becomes available for the tumor cells in the center. As a result cells in
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the center undergoes necrosis and a necrotic core forms. The existence of necrotic
core is used in distinguishing between grade III and grade IV gliomas. Therefore by
definition it only exists in the case of glioblastoma multiforme. The other dynamic
that takes place as a result of the extensive need of nutrition of the rapidly growing
tumor is the vascularization. As the tumor needs more blood flow it forms its own
blood vessel systems within the tumor. These systems are either formed through
angiogenesis or remodeling of the existing vasculature. The vascular systems in the
low grade gliomas are similar to the one of the brain while it is much more prominent
in the case of higher grade gliomas.

The treatment course of brain gliomas includes surgery, radiation therapy and
chemotherapy. The exact planning of the treatment and the type of therapy to be
applied depend on the grade and the location of the tumor. The treatment strate-
gies of grade I gliomas and the others differ due to the infiltration present in the
higher grade tumors. The grade I gliomas have distinct boundaries therefore sur-
gical removal when total resection is possible might suffice. When total resection
is not possible, due to the location or the size of the tumor, then additional radio-
therapy and/or chemotherapy is applied to the remaining part [ABTA 2008b|. In
general the average survival rates for patients of grade I gliomas is pretty high. The
treatment of grade II to grade IV gliomas on the other hand is much more difficult.
The first step is again surgical removal when it is possible. However, the total re-
section is not possible due to the infiltrative nature of diffuse gliomas. Even when
the visible tumor is totally resected, removal of microscopic infiltration into the
brain parenchyma is not possible [Wilson 1999, DeAngelis 2001|. Therefore, patient
follow-up with additional treatment in the form of radiotherapy and/or chemother-
apy is applied. The infiltration also poses problems for the additional treatments
and as a result the tumor recurs. In the case of grade II gliomas the tumor may
recur as a higher grade glioma showing malignant progression. The average survival
rates for patients of these tumors is 5-10 years however, the variability is large. For
grade IIT and IV gliomas the applied treatment is much more aggressive however
the progression of the disease is much faster as well. The prognosis for these cases is
really low, the average survival rates remain around 3 years and 1 year for the grade
I1T and grade IV gliomas respectively. In the view of this scenario extensive research
is being conducted on different chemotherapeutic agents and radiation therapy
schemes |Ricard 2007, Batchelor 2007, Fiveash 2003, Mahajan 2005, Nandi 2008].

2.3 Imaging Gliomas with Magnetic Resonance

2.3.1 Magnetic Resonance Imaging (MRI)

Magnetic Resonance (MR) is an imaging technique which uses the the nuclear mag-
netic resonance (NMR) signals emitted from the objects themselves. In this respect
it differs from the other imaging techniques like X-ray Computed Tomography (CT)
or Positron Emission Tomography (PET), where either a beam is irradiated or a
radioactive agent is given to the body. The principle of MRI is based on the natural
spinning of nuclei present in every object. In addition to this spinning, the nuclei
of certain atoms present in the human body (such as hydrogen, carbon, oxygen,...)
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creates a natural magnetic field when combined with the spin. Clinical MR focuses
on the hydrogen which is the most abundant atom in the human body. The mag-
netic moments of hydrogen nuclei in the body are randomly oriented under normal
conditions. In the presence of an external magnetic field these nuclei align them-
selves along the external field and continue their precessing around the direction of
field. This relationship forms the basis of MRI.

During MR imaging a constant base magnetic field By is applied to the body
aligning the nuclei, which keep precessing at a frequency called as precession fre-
quency. When a Radio Frequency (RF) pulse with the same frequency as the pre-
cession is applied, the nuclei resonate, gain energy, change their alignment and go
in phase with each other. As every element has a different precession frequency a
specific RF pulse only resonates with the nuclei of specific elements. As the RF is
stopped the nuclei relax and lose their energy. This process is called relaxation and
the energy emitted in relaxation is the MR signal we detect. There are two impor-
tant properties of the applied RF pulse, the repetition time (TR) and the echo time
(TE). The repetition time is the time difference between each RF pulse and the echo
time is the time elapsed between application of an RF pulse and the peak signal
obtained. The relationship between TR and TE creates the contrast visible in the
MR images and gives the context in MR. By changing this relationship one obtains
different images such as T1-weighted and T2-weighted. Based on similar ideas an
MR image can be made to be a spatial map of density of the spins, of the relaxation
times or of the water diffusion. As a result different images such as diffusion tensor
(DT) MRI, MR spectroscopy (MRS) or functional MRI (fMRI) can be obtained.

MR is very good in soft tissue discrimination compared to other imaging tech-
niques. The two extreme cases in terms of contrast difference in MR are the fat
and the water. In T1-weighted images the fat tissue is enhanced while the water is
not, showing the fluid around the cortical areas and within the ventricles as dark
regions. On the other hand, in T2-weighted images free water and water embedded
in the tissue is strongly enhanced and appears bright, see Figures 2.1(a) and (b).
Although this high intrinsic contrast differences are very useful in discriminating
brain tissues, they may not always be enough to detect pathologies accurately. In
order to increase the contrast between pathologies and the brain tissue, enhance-
ment agents may be given to the patient and additional images might be acquired.
One important agent that is widely used for imaging brain tumors is Gadolinium
(Gd). Gadolinium injection is followed by a T1-weighted image acquisition and it
helps increasing the enhancement of water molecules neighboring tissue. In the MR
images this is especially visible in highly vascular regions (vessels themselves or re-
gion with abnormal angiogenesis). Tumors and other lesions are therefore strongly
enhanced due to the injection [Westbrook 1998]. Another modality which is very
useful in the case of pathologies is the FLAIR. The important property of the flair
is that the cerebrospinal fluid (CSF) is not enhanced as in the T2-weighted images.
Therefore, the pathologies adjacent to the CSF are seen much more clearly.

In the methods presented in this thesis, besides the anatomical MR images, we
also focus on the diffusion tensor MR images (DT-MRI). The DT-MRI is not an
acquired modality but it is rather constructed from the diffusion weighted images
(DWI). DWIs give local directional information on the diffusivity of water inside
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Figure 2.1: (a) An axial slice of a T1-weighted image of a healthy brain. (b) The
same axial slice of the T2-weighted image of the same brain. We see that in T1-
weighted images the fat tissue is enhanced while the water is not. On the other hand,
in T2-weighted images the appearence of fat and water are inverse. This flexibility
in MR imaging gives us the opportunity to have a very different appearance of the
same brain in two different modalities. (¢) An axial slice of a DT-MRI image of the
same brain as shown in Figures (a) and (b). Each tensor is visualized as an ellipsoid
and the image is subsampled for a clearer visualization. The colors of the ellipsoids
represent the direction of their major axis.

the brain tissue. Using these images we can understand how much a water molecule
can migrate along each direction in a given location. Through acquiring DWIs
along different directions we can construct local estimates of covariance matrices
representing the local directional diffusion information of water. These covariance
matrices are called diffusion tensors and the image consisting of these matrices in
different locations is called DT-MRI. In Figure 2.1(c) we show a single slice of an
example DT-MRI image where each point consists of a tensor describing the local
diffusivity of the water molecule.

2.3.2 Appearance of Gliomas in MRI

The MR images are one of the most important radiological information in the diag-
nosis and grading of brain gliomas and tumors in general [DeAngelis 2001, Tovi 1994,
Price 2007]. The appearance of gliomas in MR images differ depending on the grade
of the tumor and the modality of the image. The most important property of the
tumors that is visualized in the anatomical MR is the excessive content of free
water. Due to this gliomas appear as hyper-intense regions in the T2-weighted im-
ages and hypo-intense in the T1-weighted, as shown in Figures 2.2 and Figures 2.3.
When gadolinium is injected the highly vascularity in the tumor gets enhanced in
the T1-weighted image and we get hyper-intensity regions inside the tumor for the
T1-weighted images, Figure 2.3(c).

Appearance of low grade gliomas (grade T and IT) are pretty homogeneous un-
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Figure 2.2: In the images above we show axial slices of (a) T1-weighted, (b) T2-
weighted, (c) T1-weighted post gadolinium injection and (d) FLAIR images of a
pediatric patient with a diffusive astrocytoma of grade II. We see that the tumor is
enhanced in the T2-weighted and the FLAIR images.

der MR images. In Figure 2.2 we show axial slices of MR images of a diffusive
astrocytoma (grade II) detected in a pediatric patient. We observe that the tu-
mor is enhanced in the T2-weighted and the FLAIR images with clear boundaries
separating the tumor from the healthy tissue. On the other hand we only observe
hypo-intense regions in the T1-weighted and the T1-weighted after gadolinium in-
jection images. The clear boundaries seen in the T2-weighted images in the case
of grade-Il-astrocytoma might be misleading due to the infiltrative nature of the
tumor [DeAngelis 2001|. Although we see such clear separation, the tumor might
have penetrated the brain parenchyma beyond the enhancement of the MR sig-
nal [Wilson 1999, Johnson 1989, Tovi 1994].

Figure 2.3: In the images above we show axial slices of (a) T1-weighted, (b) T2-
weighted and (c¢) T1-weighted post gadolinium injection images of a patient suffering
from a grade IV glioma, glioblastoma multiforme. The appearance of GBM is very
irregular in the MR images.

In the case of high grade gliomas, especially the grade IV gliomas, the MR
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appearance of the tumor is very irregular. In the T1-weighted image again we do
not see any enhancement in the tumor region. In T2-weighted images on the other
hand we see several compartments of the tumor which are well enhanced. Looking
at Figure 2.3(b), we observe the very highly enhanced middle part of the pathology
which includes the highly active part of the tumor and the necrotic core. However,
the necrotic core cannot be distinguished. Around this part we observe another
highly enhanced part, which corresponds to the edema. The edema region is also
infiltrated with tumor cells however, the number of tumor cells per volume is much
lower than the active part [Johnson 1989, Tovi 1994|. In the T1-weighted image
after gadolinium injection we clearly see the most active part of the tumor and the
necrotic core. The dark area inside the pathology is the necrotic core where there
are no live cells. The bright rim around this area is the actively proliferating region
of the tumor where the vascularization is very dense and the tumor cell density is
high. In the case of grade III gliomas these images look different as there is no
necrotic core and the there might not be any edema region.

One of the most crucial points of MR appearance of gliomas is the infiltration
of the tumor which beyond a certain core region is not enhanced in the images.
Different experiments comparing histopathological analysis with MR images have
shown that tumor cells exists beyond the enhanced region in the T1-weighted image
and the T2-weighted image [Tovi 1994, Johnson 1989]. In the images the difference
between the tumorous region and the brain tissue seems abrupt. However, the
hypothetical distribution of tumor cell density is smoother. In Figure 2.4 we show
the hypothetical cross section of a GBM where the tumor cell density is represented
by the height of the blue curve. The T1 and T2 image intensities are shown in the
figure as different thresholds on the tumor cell density [Swanson 2008b|. We see that
hypothetically the transition between the enhanced region in the post gadolinium
T1-weighted image and the enhanced region in the T2-weighted image is smooth.
Moreover, the tumor cell density continue to drop after the T2 threshold suggesting
infiltration beyond the enhanced region in the image. This detection problem poses
difficulties for the treatment of the tumor especially in the case of radiotherapy where
images guide the irradiation. In order to deal with this problem in radiotherapy a
normal looking band around the tumor is also irradiated [Kantor 2001]. However,
these efforts seem to be not enough because diffuse gliomas tend to recur due to the
infiltration [Wilson 1999, DeAngelis 2001].

Recent research on other MR modalities such as DT-MRI and MRS have
shown that these images can also be used to gather information about the tu-
mor characteristics and its spatial distribution. As the tumor invades the brain
through white matter it damages the underlying fiber structures. DT-MRI im-
ages have shown to be useful in detecting this damage by using different measures
[Lu 2003, Lu 2004, Roberts 2005, Sinha 2002, Price 2003].. The first change that
occurs is that the mean diffusivity (MD) increases in the regions invaded by the
tumor or by edema, see Figure 2.5(b). Moreover, as the fiber structures are dam-
aged the directional organization of the fibers is lost and this can be quantified by
the fractional anisotropy (FA) 2.5(c). MR spectroscopy on the other hand, gives
information about the metabolic activity inside and around the tumor. Activities
regarding certain molecules are specific to brain tumors therefore, use of MRS can
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Figure 2.4: The MR images of grade II to grade IV gliomas are not able to show
the whole infiltration of the tumor inside the brain parenchyma. In the plot we
show hypothetical distribution of the tumor cell density and the relation of it to the
enhanced region in the MR images. We see that tumor cell density drops smoothly
suggesting infiltration beyond the enhanced region in the T2-weighted image.

Figure 2.5: The DT-MRI images can show different effects of the tumor to the fiber
structures providing us another mean to visualize the pathology. (a) FLAIR image
of a grade IT astrocytoma, (b) Mean Diffusivity (MD) image of the same patient
derived from the DT-MRI, (c¢) Fractional anisotropy (FA) image of the same patient
again derived from the DT-MRI. We observe that in the tumor region the MD image
shows extra enhancement while the FA image shows degradation in the same region.

help us gather some information about the tumor and its extent [Devos 2005|. The
problems with these two modalities, DT-MRI and MRS, is the resolution of the
images which are inferior to the anatomical images. Accurate local information is
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not very possible to obtain however, as the MR technology improve these problems
will be solved as well.

There are also other imaging techniques which provide different information
about gliomas than MRI. Positive emission tomography for instance gives local
metabolical information about the tumor. In PET a radioactive agent is injected
and the uptake of this material is correlated with the existence of tumor cells.
Different studies have analyzed and shown discrepancies and similarities between
the appearance of gliomas in PET and MRI [Ogawa 1993, Kracht 2004, Kato 2008,
Miwa 2004|. They have demonstrated that the appearance in both imaging tech-
niques might be different. Therefore, using these images together might be the
optimum choice.
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Context

In this chapter we present an overview of mathematical tumor growth modeling.
We explain the main approaches by going through different models proposed. We
talk about microscopic models, different stages of tumor growth and their modeling,
macroscopic models and some image analysis tools using these models.

3.1 Introduction

The domain of mathematical tumor growth modeling in the research community
is vast. There is extensive existing research both on brain tumors and on tumors
in other parts of the body. In order to situate the methods presented in this work
a good understanding of the literature is necessary. In this chapter we provide an
overview of the literature published on tumor growth models. A complete review of
all the works on this topic would be too long therefore, we provide the main steps
and the research orientations. For further reviews on the topic refer to [Araujo 2004,
Mantzaris 2004, Sanga 2007].

The main aim of tumor growth modeling is to develop mathematical models ex-
plaining interactions of tumor cells with each other and with the surrounding tissue,
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which lead to the growth of the tumor, via mathematical abstractions. In order
to explain the underlying mechanisms as accurately as possible, such abstractions
take into account many different biological factors, which were observed through
experimentation. Such factors include internal dynamics of cancerous cells, their
interactions with each other and with healthy tissue, nutrition and oxygen trans-
port from the extracellular matrix (ECM) and from the vascular network, chemicals
secreted by tumor cells, type of the underlying tissue, and many more. Models
aim to combine all these factors in a unified mathematical framework, which would
agree with the observed results. While most of the work in the literature has been
concentrated in modeling the growth process in a general framework, there has been
some recent attempts to develop patient specific models. These developments are
directed more on describing the growth of the tumor using the observations obtained
from the patient.

Benefits of describing the tumor growth mathematically are numerous. First
of all, such descriptions would help us to combine experimental findings made in
many diverse fields of cancer research in a common mathematical ground. These
models allow us to interpret experimental results and understand the underlying
mechanisms of tumor growth and behavior of cancerous cells. Virtual experiments
and simulations give us the opportunity to observe effects of different treatments
on cancerous cells, and would lead us to improve these treatments or suggest new
ones. On the other hand, patient-specific models could be used in treating patients.
Such models could be used for therapy planning, suggesting radiotherapy margins
adapted to the growth dynamics or helping the oncologist make a choice between
different types of drugs that would best suit the patient. Virtual realizations of the
tumor and the brain structures could help neurosurgeons during operations, provid-
ing precise locations of vital structures. Another benefit of tumor growth models is
that they could allow us to make predictions. The shape and invasion margins of
an existing tumor in a future time could be predicted using such models and com-
puter simulations. The predictions would give the medical doctor the opportunity
to foresee the problems the patient might undergo and also would help him decide
on the best time of operation if necessary. Including the genetic information in such
models, one could even produce the probability of occurrence of a brain tumor in
the future.

As we said the mathematical work on tumor growth modeling is trying to de-
velop mathematical abstractions that would best explain the observed phenomenon;
hence, it is very closely associated with the experimental and clinical work being
done in cancer research. Most growth models use observations coming from differ-
ent sources like in-vitro experiments, in-vivo experiments done on animal subjects,
biopsy results, autopsy results and medical images of patients like Computed To-
mography (CT) scans or Magnetic Resonance Images (MRIs). These experiments
and images are keys to developing models describing the tumor growth process
accurately. Observations used can be classified in two groups based on the scale:
macroscopic and microscopic scales. Experiments concentrated on the cellular activ-
ities can be placed under the microscopic class, like in-vitro and in-vivo experiment,
while larger scale views like medical images can be placed under macroscopic class.
Although the macroscopic and microscopic classification can be done in other man-



3.2. CLASSIFICATION 19

ners, in this thesis we make distinction based on the use of medical images.

There has been great advances in tumor growth modeling, there are several prob-
lems on the way of developing more accurate models. The most crucial problem is
the lack of knowledge on the behavior of tumor cells in the living tissue. Observa-
tions coming from in-vitro and in-vivo experiments gives us insight on the behavior
of tumor cells on laboratory set-ups like petri dish or on animal subjects. However,
in-vivo observations on human beings, which is the case the tumor models aim to
describe, are scarce. The best one can do is to propose assumptions on the behavior
of tumor cells in the human brain, using observations available at hand. Another
problem related to observations is limitations in macroscopic imaging techniques,
[Tovi 1994]. Medical imaging techniques are able to enhance and detect regions
containing tumor cells, only if the number of tumor cells are above some threshold.
There are several estimates given in the literature on the lowest detection threshold
of CT images (1-40 % of the maximum number of tumor cells brain parenchyma
can handle), [Tracqui 1995, Swanson 2008b]. Although there is no work being done
on the detection threshold of MRIs for tumor cells, the extent of the tumor (inva-
sion margin) in these images are very similar to the one in CT images thus, it is a
common practice to accept the same threshold.

In the rest of this chapter we will give general information about tumor growth
models, summarize some of the milestones in tumor growth modeling and also review
recently proposed tumor growth models trying to give an overview on the state of
the art. In Section 3.2 we will introduce a classification of tumor growth models
which we will use throughout this chapter to analyze different models proposed.
Based on this classification we review the corresponding literature of microscopic
models in Section 3.3 and macroscopic models in Section 3.4. In Sections 3.5 and 3.6
we focus on the applications on medical images and explain some of the models
proposed for therapy planning and other works which use models for segmentation
and registration.

3.2 Classification

Research being done on tumor growth modeling can be coarsely classified into two
large groups. This classification is based on the scale of the model and there are two
classes: microscopic models and macroscopic models. The main difference between
these classes is the scale of observations they are trying to explain and formulate.
Microscopic models concentrate on observations in the microscopic scale, like in-vitro
and in-vivo experiments. They try to explain the growth phenomena at the micro-
scopic level by describing the interactions between different cells, different chemicals
secreted by cells, nutrition sources, oxygen and nearby vessels. Macroscopic models
on the other hand, are concentrated on observations at the macroscopic scale like
the ones provided by medical images. They formulate the average behavior of tumor
cells and their interactions with underlying tissue structures, which are visible at
this scale of observation (gray matter, white matter, bones, ...). These models try
to describe the behavior of the tumor as a whole, consisting of clusters of cells.
Further classification within these groups can be made based on the stage of the
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tumor growth being analyzed or the effect of the growth on the brain. Classification
based on the stage criteria is more suitable for the microscopic models and will be
used for those models only. On the other hand the effect criteria will be used for
the macroscopic models.

The classification based on stages of the tumor growth consists of three classes,
which are basically three different phases of the growth: the avascular growth,
the angiogenesis and the vascular growth. At this point, we would like to give
very simplified explanations for these stages for completeness. The avascular growth
corresponds to the stage where the process is mostly governed by the proliferation
of tumor cells. In this stage the tumor is considered to be a solid mass, which is
growing by means of mitosis. Although not completely known, it is thought that
there is no invasion of the healthy tissue. The interactions between tumor cells
and the healthy tissue is also thought to be limited, [Araujo 2004|. The tumor
cannot grow indefinitely in the avascular stage because as the tumor mass grows,
less and less nutrition is available for the cells deep inside the avascular mass. As
a result necrosis begins, tumor cells that are not getting enough nutrition die, and
only cells on the outer perimeter of the tumor continue to proliferate. At one point
necrosis and the proliferation balances each other and the avascular tumor reaches
a limiting size, which is assumed to be around 1-3 mm in diameter, [Orme 1996b].
Angiogenesis (vascularization) is the stage where tumor cells in the avascular mass
modify the existing vascular structure, to create new vessels that would feed them.
Through this process the tumor can overcome its limit size, grow much faster and
invade the surrounding tissue. Due to the crucial role of angiogenesis on the tumor
growth, its underlying mechanism has captured attention and many models have
been proposed trying to explain it. The third stage of the tumor growth, vascular
growth, has been paid less attention than two previous stages. The complexity of
the tumor growth in this stage is higher because there are several processes going on
simultaneously. In addition to cellular and chemical interactions going on in the first
two stages, tumor cells start to invade the surrounding tissue via mechanisms not
clearly known yet. At this stage, the tumor becomes diffusive and is not considered
to be solid anymore. While the difference between cancerous and healthy regions
are clear in the avascular stage, this difference vanishes during the vascular growth
because tumor cells move towards healthy regions.

Classification based on the effect of tumor growth on the brain is more appro-
priate for macroscopic models. We can distinguish two major groups: mechanical
models, which concentrate on the mass-effect of the tumor and diffusive models,
which concentrate on the infiltration of the brain tissue. In following sections we
will go over some of important and recent models that have been proposed. While
mentioning different models we will try to make use of classification types explained
above, which is summarized in figure 3.2.

3.3 Microscopic Models

Tumor growth models, which can be named as microscopic, aim to describe the
tumor growth process at the cellular level using experimental observations at this
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Figure 3.1: Classification of tumor growth models

level. They take into account physical and chemical interactions between cells and
the ECM, and build a cause-result relationship between the tumor growth and these
interactions using mathematical formulation. Mechanical phenomenon like cohesion
forces, adhesion forces and pressures are often included to describe physical inter-
actions between cancerous and healthy cells. As for chemical interactions, they
include processes like diffusion of nutrition and oxygen, secretion of different fac-
tors by tumor cells and their effects on the ECM, blood vessels and other cells.
Mathematical systems obtained are usually very detailed as they try to take into
account all the factors observed to affect the tumor growth. Formulations used in
creating microscopic models enjoy a large variety of mathematical methods. Most
commonly used methods are partial differential equation (PDE) systems, cellular
automata and statistical models.

3.3.1 Avascular Growth/Solid Tumor

Most of the modeling work at the microscopic scale has been concentrated on the
avascular stage of the growth. In the beginning it was thought that the whole process
of tumor growth was only governed by the proliferation of cells. Models using only
population growth dynamics like exponential growth or Gompertzian growth were
proposed. In table 3.1 we give some of the population growth equations commonly
used. u in these equations is the normalized density of tumor cells (normalized by
the maximum tumor cell density the underlying tissue can handle), du/0t denotes
the change of u in time and p is the proliferation rate of tumor cells which is
taken to be p = 1 in the figures. One of the first papers employing this idea was
published by Mayneord in 1932, [Mayneord 1932|. This work explained the effect of
different distributions of actively dividing cells on the growth, based on histological
experiments telling that viable cells are only found on the outer periphery of the
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Table 3.1: Commonly used population growth terms
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solid tumor.

In light of further experiments, diffusion and consumption of oxygen was included
in the model as a factor in the mitosis rate and necrosis. Models proposed by
Thomlinson et al. and Burton [Thomlinson 1955, Burton 1966] examined this effect
and showed that when the blood supply (as a supply of oxygen) was limited to
the perimeter of the tumor, formation of the necrotic part could be explained as a
result of lack of oxygen. These developments showed that the Gompertzian model
better fits the tumor growth. Although these models were able to match the growth
rate of the tumor, they were not able to explain its compactness. Greenspan in
|Greenspan 1972|, included surface tension among living cells on the periphery, in
order to obtain a compact tumor. In this paper, he assumed that necrotic cells were
dissolving and due to the surface tension, cells on the periphery were pushed towards
the necrotic region. He also tried to explain the inhomogeneity in the mitosis rate
throughout the tumor via the secretion of growth inhibiting factors (GIF) by tumor
cells in a spatially uniform manner. The tumor radius evolution followed an integro-
differential equation, which was coupled to reaction-diffusion equations explaining
the distribution of nutrition and GIFs. Although including the oxygen consumption
in the model was a big step, it was unable to explain the slow thinning of the viable
rim following the formation of a necrotic core. Deakin in [Deakin 1975] included
inhomogeneous consumption of oxygen in the tumor explaining this phenomenon.
Besides the cell loss in the tumor due to necrosis, McElwain et al. [McElwain 1978|
included another cell loss mechanism, apoptosis, following the experiments showing
that tumor cells may die even though they do not lack nutrition nor oxygen. The
constant cell loss rate coming from apoptosis, was also causing the tumor to stay at
a limit size.
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Besides the deterministic models of growth that has been proposed there has also
been some stochastic ones emphasizing the probabilistic nature of the growth. One of
the first works in this context is of Wette et al. in [Wette 1974a, Wette 1974b|. The
main argument of such models is that fluctuations around the average behavior may
be more important than the average behavior itself, when the population assumes
small values. These models simply add the possibility that average values like mitosis
rate or diffusion of factors may deviate a lot.

Later on, the effect of GIFs on the growth process was analyzed by Adam et
al. in [Maggelakis 1990]. They showed that GIFs indeed play a crucial role on the
dormancy of the tumor in the avascular stage. In their model they included inho-
mogeneity of nutrition consumption and GIF production using spatially dependent
functions, assuming GIFs were produced more in the necrotic core and decrease
linearly towards the perimeter. Even though they did not include the volume loss
in the necrotic core, they were able to obtain limiting sizes, showing GIFs alone
can also cause dormancy in solid tumors. By including both inhomogeneous forma-
tion of GIFs and consumption of oxygen they combined all previous ideas in one
formulation.

Following experiments suggesting that cells in solid tumors tend to grow towards
blood vessels, McElwain et al., [McElwain 1993] introduced an active migration to-
wards nutrition gradient in their model. Describing the motion of cells with two
parts: passive motion towards the necrotic core caused by pressures and the chemo-
taxis towards nutrition sources. However, experiments showed that not all cells
followed the active migration. Pettet et al. [Pettet 2001] proposed to use the cell
cycle to explain this. In this model, cells that were going through mitosis were not
chemotactically active. Only quiescent cells were affected by the chemotaxis towards
the nutrition gradient.

As models describing the motion of a single element, tumor cells, are getting
more and more elaborate, some attention has started to be given to multiphase
models to be applied to tumor growth. Please et al. in [Please 1999] used the
theory of multiphase to model the tumor growth using two phases: tumor cells and
extracellular matrix. They modeled physical interactions between these two phases
and analyzed the effect of mechanical stresses in the tissue on the formation of the
necrotic region. Both phases in this model were assumed to be inviscid. Later
on, Landman et al. added the interphase drag forces in this formulation and using
the model, showed the effect of surface tension on the formation of the necrotic
core and also on the stable limiting size of the tumor, [Landman 2001|. Breward
et al. in |Breward 2002|, also used two phases, however, they took into account
the interactions between tumor cells by modeling cellular cohesion between them.
Hence, the pressure in the tumor differentiated from the pressure of the extracellular
matrix, due to these interactions. Byrne et al. in [Byrne 2003| took a different
approach to two phase models. They used theory of mixtures to model the tumor
as an organic balloon creating a solid-cellular phase and the surrounding media as a
liquid containing nutrition and different growth factors. The dynamics of the growth
were described by mass and momentum balances in addition to the constitutive laws.
The mechanical interaction combined with the mass exchange between two phases
enabled them to compute local stress induced within in the tumor. In their work,
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they study the effect of this stress on the rate of proliferation and the equilibrium
configuration of the avascular tumor. Consistent with in-vitro experiments they
show that external loads and stress exerted on tumor cells affect the size of the
avascular tumor. As a result they demonstrated that avascular tumors can reach
their limiting size either through nutritious equilibrium or stress equilibrium.

Most of the previously mentioned models use exponential, Gompertz or logistic
growth for the proliferation of tumor cells. There has also been some recent work on
type of growth equation that would best fit tumor mitosis. Tabatai et al. proposed
to use a different set of growth models called hyperbolastic models, |[Tabatai 2005].
They say that the increase in the number of tumor cells can be better explained
using such a model with more flexibility.

Tumor-Induced Angiogenesis

Tumor-induced angiogenesis is a very complex process including lots of chemical
and mechanical phenomena, which has not been totally understood. Mantzaris et
al. in [Mantzaris 2004| reviewed some of the known biological processes taking place
in angiogenesis. The basic observable consequence is that tumor cells affect nearby
blood vessels to sprout new vessels towards themselves creating new vascular struc-
ture as a source of nutrients and oxygen, see figure 3.2. As a result of angiogenesis
the tumor receives extra nutrition and the growth speeds up. Mathematical formu-
lations modeling angiogenesis, usually takes into account motion of endothelial cells
(ECs), tumor angiogenesis factor (TAF), fibronectin structures of extracellular ma-
trix (ECM), vascular endothelial growth factor (VEGF) and angiogenesis inhibitor
factors.

There have been some attempts to model the initial phase of angiogenesis. The pro-
cess starts by production of VEGF by tumor cells and their binding to nearby vessels.
This factor initiates the detaching of ECs from the vessel, moving of ECs towards
the tissue by means of haptotaxis (cells move up a gradient of adhesion) and begin-
ning the formation of buds. Orme et al. [Orme 1996a] tried to model this process in
1D, using reaction-diffusion equations for the motion of ECs, based on haptotaxis.
The bud formation was formulated as a combination of reaction, diffusion and taxis,
surprisingly having no relation to the density of VEGF. In [Levine 2000] using this
model as a basis, Levin et al. formulated a very complex system containing 31
parameters to model the angiogenesis initialization. They formulated complex in-
teractions between TAFs, ECs, protease and fibronectin. Although the model was
created to be very realistic, some included interactions are not observed yet.

Later stages of the angiogenesis have received more attention from the mathe-
matical community. One of the first models, which included factors like TAF, was
proposed by Byrne et al. in [Byrne 1996]. The 1D model included two different
populations of ECs: cells at the tip and cells forming the sprout. The reason for
this is that, EC proliferation and the branching of the vessel only occurs at the tip.
The model included the effect of TAF in EC proliferation and branching of the tip.
Chaplain et al. extended this model in 2D, including EC density, concentration of
TAF and fibronectin in their model in [Chaplain 1998]. Motion of ECs were modeled
as haptotaxis using fibronectin structures of ECM. The common feature of most of
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Figure 3.2: Sketch of the angiogenesis process showing different stages of the process
starting from (a) to (c), image taken from [Mantzaris 2004].

the later models is that TAF concentration was assumed to be at steady state, since
this factor diffuses much faster than ECs. This model showed the importance of
haptotaxis for a successful angiogenesis.

Anderson et al. tried to model the angiogenesis process in the absence of EC
proliferation, [Anderson 2000]. The aim was to show that angiogenesis would be
incomplete without the proliferation. In their 1D model they included diffusion
of TAF and ECs, with the effect of haptotaxis with fibronectin and chemotaxis
towards TAF gradient. Chaplain et al. in [Chaplain 2000] extended this model in
2D, showing that ECs do not reach the tumor in the absence of proliferation. Effect
of angiogenesis inhibitor factors was included in another model of Anderson et al.
in [Anderson 2000]. They have formulated the secretion of angiogenesis inhibitor
factors from an existing tumor to prevent the vascularization of a second tumor. In
the model, they showed that under the effect of inhibitor factors, vascularization
was ceased for the second tumor.

While most of the models proposed for angiogenesis used only reaction-diffusion
systems, taking into account the chemical interactions, some models formulated the
physical interactions between EC and ECM. The chemical interactions between EC
and ECM were described by haptotaxis through fibronectin. On the other hand, EC
cells exert traction forces on the ECM fibers creating displacement of the matter.
Holmes et al. included this mechanical interaction besides the chemical interactions
of previous works in their model in [Holmes 2000]. They observed that below a
critical traction value, the structure of vascular network was homogeneous, while
above this value the structure was highly heterogeneous. This is a critical step,



26 CHAPTER 3. LITERATURE REVIEW

since, heterogeneity of vascular structures, would affect the growth process greatly.

Besides the models explained above, some discrete models were also proposed
to predict the vascular structure itself. One of the most important work in this
was proposed by Stokes and Lauffenburger in [Stokes 1991|. In their model they
treat each sprout individually and track the motion of growing tips in 2D. Their
formulation included position and velocity for every tip, where evolution of the
velocity of a tip was given by a stochastic differential equation adding a white noise
to take into account the randomness. The position and the velocity of the a tip was
affected by the TAF concentration through the phenomena of chemotaxis. They
have taken the TAF concentration at steady state in their model, which was later
relaxed by Tong and Yuan in [Tong 2000].

Anderson and Chaplain also proposed a model to predict the vascular structure,
[Anderson 1998]. Their model start by calculating values of EC density, TAF and
fibronectin concentration using the formulation they proposed in [Chaplain 1998].
Using these values, they assign probabilities to cells moving to different grid points.
Based on these probabilities they have visualized the vascular structures in 2D.
Since probabilities included the information coming from diffusion, chemotaxis and
haptotaxis, so did vascular structures.

Recently, Habbal formulated a Nash game for the angiogenesis process,
[Habbal 2005|. The vascularization is been modeled as a competition between the
tumor, which tries to provide itself an optimal drainage, and the host tissue, which
wants to keep its structural integrity, not letting any blood vessels to form. The
agents of the game are TAFs secreted by the tumor and antiangiogenic factors. Using
finite elements Habbal solved for the Nash equilibria and visualized the formation
of the vascularate structure in 2D. This model is unique in the sense that the ECM
is modeled explicitly as a resistance to tumor-induced angiogenesis.

Vascular Growth /Invasive Tumor

Most of the recent work on microscopic tumor growth modeling concentrates on the
vascular growth. Moreover, they combine all three phases of the growth. We include
such unified works in this part. The difference between vascular and avascular
growth is the existence of blood vessels within the tumor. These vessels might have
been formed by angiogenesis or the tumor might have initialized around a vessel,
as in the case of tumor cords. Since the nutrition source of tumor cells is not just
limited to diffusion from the perimeter, as opposed to avascular tumors, formation
of necrotic regions is much more complex, if they exist at all. Moreover, due to the
same reason, vascular tumors are not compact masses of cancerous cells, they don’t
have a limiting size and can grow indefinitely. They are invasive and tend to diffuse
towards the surrounding tissue. The tumor region and the healthy tissue region
are not separated with a boundary as in the case of avascular tumors, due to this
invasive nature.

Works on modeling the tumor invasion began by trying to explain the dynamics
of the metastatic process, which causes the tumor to spread to other tissues by
means of traveling through the vascular system. Saidel et al. [Saidel 1976] began
by considering the metastasis from a solid tumor, creating a model taking into
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account different populations like tumor cells inside the vessel, around the vessel
and in the metastatic foci. In their work they focused on describing the interactions
between vessel surfaces and tumor cells. Although metastases is not a critical issue
for brain tumors, modeling work on this process initialized other works trying to
model diffusion of tumor cells. One of the first models describing the diffusion
was proposed by Liotta et al. in [Liotta 1974]. Using coupled diffusion-reaction
equations, they tried to explain the change in tumor cells density and the change
in vessel surface area (in the form of density) inside the tumor, which was not a
very accurate model for migration of vessels in the tumor. In this model, tumor cell
diffusion and proliferation were dependent on the vessel surface area. Necrotic core
formation was also analyzed in this work, as a result of low levels of nutrition cause
by not enough vascularization.

In [Orme 1996b|, Orme et al. continued to use diffusion systems to model vas-
cular tumor growth, where they included an active diffusion of tumor cells towards
blood vessels (up gradient of vessels) and also explained the formation of necrotic
core by too much proliferation of tumor cells resulting in collapse of vessels. Us-
ing a similar idea Byrne et al. proposed a non-necrotic tumor growth model, also
based on diffusion-reaction systems, [Byrne 1995|. Besides including diffusion of
nutrients from vessels towards tumor cells, they have also included diffusion and se-
cretion of growth inhibitor factors and analyzed effects of them. Unlike most other
works, they have also considered apoptosis as a tumor cell death, and included it
in their model. One alternative to the diffusion-reaction formalism was proposed
in [Perumpanani 1999 by Perumpanani et al.. They modeled the tumor invasion
and growth, based on the idea that the invasion is governed by proteolysis and hap-
totaxis. In their formalism the random motion of cells did not exist, cells moved
towards extracellular gradient. This was different than all the previous models in
two ways. The first difference was that the cell motion was based on haptotaxis
instead of being dominated by diffusion towards blood vessels. The other difference
was in the type of resulting mathematical system; the directed cell motion resulted
in a reaction-advection system rather than a reaction-diffusion system.

Besides different factors that have been proposed to affect tumor growth like
nutrition and oxygen concentration, growth inhibiting factors, physical forces and
cell cycle, acidity of the extracellular matrix was also used in some models to af-
fect the tumor invasion. One of the first models that examined the acid-mediated
invasion was proposed by Gatenby et al. in [Gatenby 1996]. They formulated the
observation that tumor cells produce H™ ions during their metabolismic reactions
and by releasing them to the extracellular matrix, they increase the acidity of the
environment. This in turn help their invasion in three ways: killing healthy cells,
stimulating the production of acidic enzymes for proteolysis and reducing the cohe-
sion between tumor cells, setting them free to move. They modeled these effects by
creating a reaction-diffusion system describing densities of each chemical component
like H* ions and glucose. Patel et al. [Patel 2001| used a similar formulation for
the acidity in simulating early tumor growth and examining the effect of existing
vascular network and tumor cell metabolism in the growth process. They created a
hybrid cellular automaton (CA) model, where motion, secretion and consumption of
glucose and H ions were modeled by reaction-diffusion systems and the dynamics
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of cells were set by CA rules. Using this model they were able to simulate tumors
starting from several cells and growing up to huge sizes, giving the opportunity to
examine the early growth, see Figure 3.3.

Figure 3.3: Example of an early growth process where vascularity of the tumor is
coming from existing vessels. Tumor’s size increase several scales of magnitude,
image taken from [Patel 2001].

In [Athale 2005], Athale et al. proposed a 2D discrete model which focused on
the experimental observations of Giese et al. stating that glioma cells either migrate
or proliferate but they do not show both phenotypes at the same time [Giese 1996].
They have included this in their model as a decision process for each cell. They
modeled the gene-protein interactions using different ligands and epidermal growth
factor receptors (EGFR). They showed that using a EGFR related decision network
one can simulate the dichotomy between migrating and proliferating cells observed
in reality. In their following article [Athale 2006 they examined the effect of the
EGFR density on the growth patterns of the tumor. Zhang et al. have built on this
model and carried the computation in 3D [Zhang 2007].

Bertuzzi et al. examined the dynamics of cancerous cells in tumor cords, where
cells simply grow surrounding a vessel, forming a vascular tumor, [Bertuzzi 2003].
In their model, they took into account that viable cells in a tumor can consist of
quiescent and proliferating populations. To get a more realistic model, they also
considered the cell-cycle of a proliferating cell and integrated it in the model. While
the vessel acting as the nutrition source, death of tumor cells were modeled either
due to insufficient nutrient supply or apoptosis. This model was one of the first
ones, integrating cell cycles in the growth process. Later on, Alarcon et al. created
a model using cellular automata, to examine the effect of oxygen and nutrition
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inhomogeneity on the growth process induced by the blood flow through vascular
network, [Alarcon 2004]. Besides modeling the blood flow, vascular adaptation and
diffusion of oxygen and nutrition towards cells, they have also taken into account
effect of cell cycles in the invasion and proliferation processes. Effects of extracellular
oxygen levels on cell cycles were modeled explicitly for the first time, using the
information that tumor cells can adapt their cycle better than healthy cells in case
of low oxygen. Recently Byrne et al. have used this model to analyze the effect of
chemotherapy on vascular growth of tumors [Byrne 2006].

In [Cristini 2003], Cristini et al. reformulated the model in [Greenspan 1972]
to model non-necrotic tumors. While the model of Greenspan only span avascu-
lar tumors, the model presented by Cristini et al. is able to simulate vascular and
avascular growth, through adding capillary density within the tumor in their model.
They have used reaction-diffusion system to formulate dynamics of nutrients and
GIFs, where blood is the main source of all chemicals. One of the most important
contributions of the paper is the observation that the invasive growth can occur
without any fingerings of the tumor. They have concluded that in order to obtain
fingerings in the growth process, some kind of anisotropy coming from the tissue
should be included. Later on, Zheng et al. in [Zheng 2005|, extended this by adding
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Figure 3.4: Zheng et al. were able to simulate the growth starting from an initial
avascular tumor with a surrounding vascular structure, (a), going to an invasive and
vascular tumor, (b). Black boundary shows the extent of the tumor and thin line
bundles represent blood vessels, which are away from the tumor in (a) and inside
the tumor after angiogenesis (b). (Image taken from [Zheng 2005])

a formulation to model the transition through avascular to vascular tumor, angio-
genesis. Moreover, they also added the onset of necrosis to the previous model.
Reaction-diffusion formalism was used to formulate growth processes while a com-
bined discrete-continuum model was used to describe angiogenesis. Distinct parts
of the model used to explain different stages of the growth are not as sophisticated
as some of the models explained above. However, the significance of this work lies
in the completeness of the model proposed, which combines all three stages of the
tumor growth. This way, one can observe how ongoing vascularization would affect
the tumor invasion and also simulate the growth starting from a multi-cell spheroid
going to an invasive tumor, see figure 3.4.
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In the aim of combining all stages of the tumor growth Frieboes et al. continued
on the model proposed by Cristini et al. [Frieboes 2007]. In this work the authors
explain the tumor morphology and the invasion pattern in the tissue scale by linking
the dynamics to phenotype of cells, molecular factors and phenomena in the micro-
environment. In this sense their model is one of the first multi-scale models. The
link consists of complex nonlinear relationships and functionals which are said to
be based on experimental results. In their invasion dynamics they have included
chemotaxis, haptotaxis and the mechanical pressure due to proliferation. They also
coupled their growth model with a model of angiogenesis given in [Plank 2004].
In order to set the values of some parameters, such as the proliferation rate and
the apoptosis rate, they used in-vitro cell lines and ex-vivo patient data. For the
other parameters, like the rate of diffusion of vital parameters, they solve the model
numerically and determine the values that result in growth and invasion.

Following a similar path Lloyd et al. in [Lloyd 2007| also proposed a growth
model which aims at combining all three stages of the tumor growth. FKEspecially
they concentrate on coupling the angiogenesis process with the vascular growth.
Besides taking into account the different factors affecting the tumor growth such
as oxygen diffusion and different enzymes secreted, they also model the vasculature
explicitly. This explicit scheme includes a 3D finite element model where the angio-
genesis process is modeled in detail. Biomechanical effects of the tumor growth on
the vasculature is taken into account explicitly. Later on, in [Lloyd 2008] they en-
large their modeling framework by including cellular-level simulation of the oxygen
diffusion into the tissue and different mechanisms of vessel remodelling due to shear
stress.

There have also been some multiphase models proposed for vascular tumor
growth, with the most recent one being from Breward et al., [Breward 2004|. They
have extended their previous work for avascular tumors, by introducing blood ves-
sels as a third phase. Physical interactions between different phases are modeled
explicitly in terms of pressures. In their model they have also included the collapse
of blood vessels due to pressure exerted on them, creating a better realization of the
tumor dynamics.

We have seen that most models explained above either use discrete or continuum
formulation, and in some cases both. The link between the discrete and continuum
formulation has also been studied however, much less than the models themselves.
In [Stevens 2000], Stevens et al. have started from a discrete set of tumor cells
migrating under the effect of chemical agent, performing chemotaxis. They have
shown that in the limiting case when the number of tumor cells increase one can
describe the chemotaxis using advection-reaction-diffusion equations, notably a con-
tinuum formulation. Later on Hillen et al. have achieved the same result for another
invasion dynamics, mesenchymal motion [Hillen 2006|. In this type of motion the
tumor cells moves in a fiber network following the fiber directions. These works
stand different than the models explained however, they have a big importance for
the models as they can be the link between different scales of tumor modeling.
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3.4 Macroscopic Models

Observations at the macroscopic scale consists of medical images like Computed To-
mography scans (CT), Magnetic Resonance Images (MRI) and MR diffusion tensor
images (MR-DTI). Since the resolution of these observations is limited, typically
around 1lmm X 1lmm X Imm in the best case, observable factors are limited. Due
to this reason, compared to the models explained in Section 3.3 macroscopic mod-
els include fewer factors and their formulations are usually simpler. On the other
hand, while microscopic models simulate the tumor growth in theoretical settings
(infinite boundaries, known location of different structures,...), macroscopic models
use real settings, e.g. real boundaries of the brain, gray-white matter segmentation,
geometry of the tumor.

To review the recent macroscopic models we are going to use a different classifi-
cation than the one used in Section 3.3. Based on the targeted effect of the tumor on
the brain, macroscopic models can be classified into two different classes: mechanical
models, which concentrate on the mass-effect of the tumor on the brain tissue, and
diffusive models, which concentrates on the invasion of surrounding tissue by tumor
cells. In terms of mathematical formulations, unlike microscopic models, almost all
macroscopic models use continuum formulations, where tumor cells are assumed to
be a continuum. As a result, formulations contain several ordinary and/or partial
differential equations to describe the growth process.

3.4.1 Diffusive Models

Almost all macroscopic models, formulating the growth process concentrating on
the diffusive nature of the tumor, use the reaction-diffusion formalism [Murray 2002,
Mandonnet 2008]. This formalism models the invasive tumor by adding a diffusion
term to the simple solid tumor growth models, which formulate proliferation of
cells, see table 3.1. The ‘building block’ equation of this formalism is the partial
differential equation (PDE) given as:

ou
5=V (DVu) + R(u,t) (3.1)

(n-V)u=0 (3.2)

where in equation 3.1 u is the tumor cell density, 0/t is the differentiation operator
with respect to time, D is the diffusion tensor for tumor cells and R(u,t) is the
so-called reaction term. This equation isolates two different characteristics of the
tumor growth in two terms: diffusion and proliferation. The first term on the right
hand side, V - (DVu) describes the invasion of tumor cells by means of a Brownian
motion, which is characterized by the diffusion tensor D. The second term in the
equation, R(u,t), describes the proliferation of tumor cells. For this term population
growth equations are commonly as summarized in Table 3.1. In macroscopic models,
Equation 3.1 is usually solved using real geometries therefore, boundaries should be
included in the model. Equation 3.2 is the no-flux boundary condition which is
applied at the brain boundary and at the ventricles with the normal directions 7,
formulating the fact that tumor cells do not diffuse in these structures.
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One of the first models using the reaction-diffusion formalism for the tumor
growth was proposed by Cruywagen et al. in [Cruywagen 1995|. They argue that, a
growth model that uses equation 3.1 and which consists only a single cell population
was not able to capture the growth dynamics seen in CT images. Hence, they
proposed to use a model with two populations of tumor cells, which is formulated by
coupling two equations of the form 3.1, each one describing a different population.
Through the coupling terms they were able to describe the competition between
populations for nutrients and growth factors. The second population of tumor cells,
were assumed to be a mutation of the first type. The occurrence of these cells was
attributed to the use of chemotherapy and/or radiotherapy, causing cells to mutate
into a more resistant type. They also included the effect of treatment in their model
as a constant cell loss mechanism, which is basically another reaction term. Their
final formulation had the form:

ou
a—tl = DmV?ul + f(u1,u2) — C1(u1,t)
ou
8—152 — Du2V2U2 + g(ug,uz) — Co(usg,t)

where reaction terms f and g describe the coupling between tumor populations
given by u; and ug, while C'7 and Cy formulate effects of therapy. In their model,
Cruywagen et al. formulated the invasion of tumor cells as an isotropic-homogeneous
diffusion where speed of diffusion was given by coefficients D,,, and D,,.

In [Swanson 2000, Swanson 2002b|, Swanson et al. revised the hypothesis that
tumor cells diffuse homogeneously in the brain made in the previous works. In the
light of the experimental results of Giese et al. regarding the differential motility of
tumor cells on gray and white matters [Giese 1996], they formulated the invasion of
tumor cells by isotropic-nonhomogeneous diffusion. In this formulation the diffusion
tensor D in Equation 3.1 was assumed to be isotropic and nonhomogeneous (spa-
tially varying). Its form was given as: D = d(x)I, where I is an identity matrix and
d(x) is the diffusion rate. d(x) took two different values in the white matter,d,,, and
in the gray matter, d,, where d,, >> d, corresponding to the observation that tu-
mor cells move faster on myelin sheath. In this work, only one population was used
and the no-flux boundary conditions were applied. For the reaction term, authors
used exponential growth, taking into account only the proliferation of tumor cells
(see Table 3.1). Later on, Swanson et al. in [Swanson 2002a] included the effect of
chemotherapy through a negative reaction term. Instead of modelling the effect of
therapy via a constant cell loss, they took into account the temporal effectiveness
of drugs used and also the possible spatial heterogeneity of drug efficacy. In both
works CT and MR images were used and the attention for validating the model was
given to predicting survival times after diagnosis.

Extending the idea of Swanson et al. regarding the differential motility of tumor
cells on different tissues, Clatz et al. and later Jbabdi et al. included anisotropy to
the invasion mechanism of tumor cells, [Clatz 2005] and [Jbabdi 2005]. They mod-
elled the diffusivity of tumor cells through an anisotropic-nonhomogeneous diffusion.
The assumption they have made is that tumor cells not only move faster on myelin,
but also follow the white matter fiber tracts in the brain. They have constructed
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Table 3.2: Differential motility between white and gray matter. The fiber tract
is along the y-axis in the second image. (Images taken from [Clatz 2005]) In the
construction of D, « is the multiplicative constant between gray and white matter
motility and f is the relation between water diffusion and tumor diffusion.
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the tumor diffusion tensor (TDT) from the water diffusion tensor using magnetic
resonance diffusion tensor images (MR-DTI). Although methods of construction of
the TDT were different in these works, the main idea was to assign isotropic diffu-
sion in the gray matter and anisotropic diffusion in the white matter having greater
diffusion along the fiber direction as given in table 3.2. By including the anisotropy
of tumor diffusion in the formulation, these models were able to capture the “spiky”
and fingering patterns of tumors observed in the images, see Figure 3.5. Both of
the works proposed an evaluation of their models by comparing visible tumors in
the MR images with the ones simulated with the model. Recently Hogeaet al. built
on the anisotropic reaction-diffusion model and included the observation that one
of the mechanisms tumor cells migrate is that they push each other [Hogea 2007].
They included this rather mechanical dynamics of invasion in their model by adding
an advection term in the Equation 3.1.

The reaction-diffusion models as proposed in [Swanson 2000, Clatz 2005,
Jbabdi 2005, Hogea 2007| are appropriate for explaining the invasive parts of the
tumor which are far away from the core of the tumor. The growth of the central
part of the tumor, where tumor cells are very dense, is not well captured by the
diffusion process. This region grows rather like a compact ball, exponentially rapid
at the beginning and then linearly. Stein et al. deals with this problem for the
case of in-vitro experiments, [Stein 2007|. Instead of applying the reaction-diffusion
model to the whole tumor they use two reaction-diffusion models describing the
core and the invasive regions as two different populations. The two populations are
coupled by a velocity bias applied on the invasive region such that the tumor cells
try to move away from the core of the tumor. They show that a two population
model such as the one they propose, is able to capture the different dynamics of the
invasive region and the core of the tumor in the case of petri dish experiments.

Besides the continuum formulations explained above, recently Stamatakos et al.
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Figure 3.5: Diffusive models including anisotropy in the tumor diffusion are able to
capture spiky nature of tumor growth. Figures show evolution of the tumor in two
different axial slices. First two columns show the initial image and initial state of
the model respectively, while the third column shows the tumor after 6 months and
the fourth column shows the evolved tumor using the model given in [Clatz 2005].

proposed to use a cellular automata based algorithm to model tumor growth in med-
ical images [Stamatakos 2006a| and [Stamatakos 2006b]. Their model discretizes the
visible tumor volume in the post gadolinium T1-weighted MR image into mesh cells
containing groups of tumor cells. They explain growth by assigning certain proba-
bilistic set of rules to every mesh cell, which define cell cycle dynamics for the group
of cells inside that mesh cell. These rules take into account nutrition distribution
throughout the tumor, effect of abnormal p53 gene expression and type of metabolic
activity of the cell in assigning transition probabilities between different phases of
the cell cycle, mitosis, apoptosis (controlled death of cells) and necrosis (infected
death of cells). As a result, the growth phenomena is explained by the cell cycle,
governed by probabilistic transition rules. Although some of these features are not
well observable in medical images they model them based on assumptions coming
from biological experiments. As an example, the nutrition distribution is taken to
be decreasing homogeneously from the periphery of the tumor to the center. Their
model does not take into account the infiltration of tumor cells, but rather only the
growth through mitosis. Through the probabilistic nature of their model they were
able to obtain realistic looking differentiated tumor growth.

3.4.2 Mechanical Models

Mechanical models, which concentrate on the mass-effect of the tumor, contain two
distinct formulations, one for the tumor growth and one for the mechanical char-
acteristics of the brain tissue. These models combine these formulations through
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coupling, to describe the mechanical interactions between the brain tissue and the
tumor growth leading to deformations. There have been many works on charac-
terizing the mechanical properties of the brain tissue, which is deformable but not
elastic. In [Wasserman 1996] it is said that the brain tissue is a sponge like material,
possessing instantaneous properties of elastic materials and time-dependent prop-
erties of the viscoelastic ones. Moreover, there is a great variation between elastic
parameters of brain tissue within similar tissues as well as between differing tissues.
Instead of formulating these complex mechanical characteristics, almost all models
use assumptions to simplify brain tissue’s characteristics.

Wasserman et al. proposed one of the first mechanical models in
[Wasserman 1996]. In this 2D model they assume the brain tissue is a linear elastic
material for which stress-strain relations can be given by generalized Hooke’s law.
Moreover the amount of strain caused on a given volume, by a specific amount of
stress, was proportional to the density of brain tissue in that volume. For the tumor
growth part, they assumed a very simple formulation including only the proliferation
of cells, in which the rate of mitosis was set to be constant. The coupling between
the growth and constitutive equation of the tissue was established by assigning a ho-
mogeneous pressure proportional to the number of tumor cells per volume. Through
this coupling they were able to model the growth of the tumor under mechanical
constraints and interactions in CT images. In [Kyriacou 1999|, Kyriacou et al. as-
sumed that brain tissue can be better characterized by a nonlinear elastic material
than a linear one. They modelled white, gray and tumor tissue as nonlinear elas-
tic solids obeying equations of an incompressible nonlinearly elastic neo-Hookean
model. With the introduction of nonlinear elasticity into the model and the use
of nonlinear geometry, they were able to describe large deformations through their
formulation. Tumor growth was kept as a pure proliferation process with uniform
growth causing uniform outward strain. They have applied this model in register-
ing images of patients with tumor induced deformations to brain atlases. Their 2D
model was applied on individual cross-sectional images obtain by CT or MR.

Mohamed and Davatzikos extended this model by modelling the brain tissue as
an isotropic and homogeneous hyperelastic material, [Mohamed 2005]. With this
they relaxed the incompressibility assumption made in [Kyriacou 1999] and ignored
the viscous effect, keeping in mind that times related to deformations was very large
compared to viscosity time constants. In addition to modeling the mass effect due
to bulk tumor growth they have also taken into account the expansion caused by
the edema and the fact that part of the mass effect should be attributed to edema.
They have also assumed a proliferation model for the tumor growth, which had a
constant mitosis rate. Coupling of tumor growth and mechanical interactions was
done the same way as in Wasserman’s model. As in the work of Kyriacou et al., this
model was also able to describe large deformations. In [Hogea 2006, Hogea et al.
reformulated the model within a general Fulerian framework, with a level-set based
approach for the evolving tumor aiming at a more efficient method, see Figure 3.6.
They have also mentioned that for patient specific models, parameters should be
found via solving an inverse problem. However this work was aiming to generate
large number of brain anatomies deformed by simulated tumors, hence they did not
concentrate on the patient specific modelling. In order to validate their model they
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have compared deformations seen in MR images with the ones simulated with their
models.

Tumor growth process has been kept very simple and has been associated with
only proliferation of tumor cells in all previous macroscopic models, which concen-
trate on the mass-effect of the tumor. Clatz et. al combined two approaches of the
macroscopic modelling in [Clatz 2005] in creating a formulation for glioblastoma
multiforme (GBM). They have formulated the invasive nature of the tumor growth,
besides proliferation, and the deformation this causes on the brain tissue. They
assumed that brain tissue is a linear viscoelastic material, which can be modeled
using a static equilibrium equation, since the time scale of tumor growth is very
large. The coupling of the growth with the mechanical deformation on brain tissue
was established using two different mass-effects: one for the bulk tumor and the
other for the tumor infiltrated edema. The effect of bulk tumor was set as a homo-
geneous pressure caused by the volume increase as a result of cell proliferation. The

Figure 3.6: Models can model large deformations due to tumor growth and edema.
Simulated tumor growth in a normal brain template, starting from a small ini-
tial seed, orbital-frontal left, using the modeling framework in [Mohamed 2005]
and |[Hogea 2006|. Left: original healthy segmented brain template (axial, sagit-
tal, coronal) with a small tumor seed; Right: corresponding deformed template
with the grown tumor at the end of the simulation. Large deformations can be
clearly observed.
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mass-effect of the tumor infiltrated edema included the effect of invasion through a
stress term which contained tumor cell density as given in Equation 3.3.

V- (0' - )\136) + fext =0 (33)

where V- is the divergence operator, o is the strain tensor, ¢ is the tumor cell density
at a location, f.,; is the external force and X is the coupling factor. With this model
they were able to simulate both the invasion and the mass effect simultaneously.

Previous works on macroscopic modeling have concentrated on creating realistic
models and focused on the modeling framework. Garg and Miga in [Garg 2008]
preferred to build on these existing models and focused on the inhibitory effects
of the mechanical stress on the tumor growth. In their work they have added the
inhibitory effect of the mass effect for the reaction-diffusion tumor growth models.
They have shown that this effect has a big impact on such modeling frameworks
and it should not be left aside.

3.5 Image Guided Tools for Therapy Planning

The tumor growth models explained in the previous section can be very useful for
diagnosis and therapy planning in the clinical practice [Mandonnet 2008|. Using
the dynamics of the tumor growth, they can provide realistic simulations of the
therapy or predict the extent of the tumor. Such tools aim at helping the doctor
in planning the therapy course by quantifying and predicting the efficacy of a given
scheme. The effect of therapy on the tumor and on the brain tissue is extremely
complex and not known totally. In order to include all the known information in the
model one needs to combine microscopic and macroscopic approaches because inter
and intra cell dynamics play important role [Gardner 2003]. Several authors have
included the effect of therapy in their macroscopic models, specifically chemotherapy.
Cruywagen et al. for example modeled the effect of drugs through a constant cell
loss mechanism using a negative reaction term.

One of the first elaborate macroscopic models focusing on therapy was proposed
by Swanson et al. [Swanson 2002a, Swanson 2004]. They improved the idea of in-
tegrating the therapy as cell loss mechanism and formulated temporal effectiveness
of the drugs and spatial heterogeneity of their efficacy. Including these two effects
they were able to get more realistic simulations of the growth of the tumor under
the effect of chemotherapy.

Recently in [Stamatakos 2006a] Stamatakos et al. have modeled the effect of
chemotherapy based on their cellular automata growth model, which was explained
in the previous section. The effect of the drug is included as a damage to each cell,
which if large enough drives the cell to apoptosis. The relation between drug dose
administered orally (D) and the plasma concentration (C}) the tumor encounters is
given by the relation

_ FDk,
Vd(ka - kel)

where F' is the fraction of drug reaching the circulation, Vy total volume the drug
will distribute in, ¢ time elapsed since drug administration, k, and k.l are the

Cp (e~keat _ g=haty (3.4)
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absorption and elimination rate respectively. For those parameters that are not
observable through clinical situations and medical images, like k,, population mean
values proposed in the literature are used. The damage given to a cell is computed
through survival fraction

SF = e KsrTsrCp, (3.5)

which depends on Kgp survival fraction constant and Tsr exposure of tumor cells
to the drug. Equation 3.5 depends on the type of drug used and the given form is for
the drug called Temozolomide (TMZ), which the authors used in their simulations.
Using this model they simulated two different oral administration schemes with 3
different doses and compared the outcomes in terms of the number of proliferating
tumor cells. Using probabilities for cell cycle and drug damage they captured the
stochastic nature of the therapy and tumor growth. In their simulations they use
the drug TMZ and a patient data with a high grade glioma. They start using the
real tumor delineation and demonstrate a virtual realistic evolution, see Figure 3.7.

In another work of the same group [Stamatakos 2006b|, Stamatakos et al. have
used their cellular automata based model in modeling the effect of radiotherapy and
simulating therapy. They have included in the model the damage caused in a tumor
cells (group of cells in their case) due to irradiation. This is explained by survival
probabilities given by the linear-quadratic model

S(D) = exp[—(aD + BD?)]. (3.6)

S(D) is the survival probability of a cell given that it takes D dose of irradiation
(in Gy). The « and 3 parameters define the radiosensitivity of the cell and they
are varying according to the phase of the cell-cycle, p53 gene expression and the
metabolic activity type of the cell (oxic or hypoxic). Parameters not observed from
medical images are set by assumptions and mean values coming from experiments in
biology. Their model was able to demonstrate conformal shrinkage of the tumor due
to irradiation, which is observed in real cases. Using their model, they simulated
standard and hyper fractionation of irradiation and compared these two strategies
through simulation. Although they obtained realistic results several phenomena are
not taken into account in their model such as infiltration of tumor cells and the effect
of irradiation on the surrounding healthy tissue. As in the case of the chemotherapy
modeling, simulations start from the real tumor delineation and demonstrates a
virtual evolution.

3.6 Applications to Registration and Segmentation

Tumor growth models, besides being used to create therapy planning tools, have
been used to aid registration and segmentation tools as well. Problems of brain
tissue segmentation and atlas to patient registration in the presence of a pathology
have received attention from the medical imaging community for a long time. Lately
there have been several works proposed for these purposes using the tumor growth
dynamics. These works can be classified into two related groups: atlas to patient
registration and synthetic brain image creation consisting of a tumor.
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Figure 3.7: Left: An MRI axial slice depicting a glioblastoma multiforme tumour.
Both the gross volume of the tumour and its central necrotic area have been de-
lineated. The same procedure has been applied to all MRI slices. Right: 3D visu-
alization of the simulated response of a clinical glioblastoma multiforme tumor to
one cycle of chemotherapeutic scheme (150 mg/m orally once daily for 5 consecutive
days/28-day treatment cycle, |fractionation scheme A)|. (A) External surface of the
tumor before the start of chemotherapy, (B) internal structure of the tumor before
the start of chemotherapy, (C) external surface of the tumor 20 days after the start
of chemotherapy, and (D) internal structure of the tumor 20 days after the start
of chemotherapy. Pseudocolor Code: red: proliferating cell layer, green: dormant
cell layer (GO0), blue: dead cell layer. The following “99.8 %” criterion has been
applied: “If the percentage of dead cells within a geometrical cell of the discritizing
mesh is lower than 99.8 % then [if percentage of proliferating cells > percentage of
GO cells, then paint the geometrical cell red (proliferating cell layer), else paint the
geometrical cell green (GO cell layer)| else paint the geometrical cell blue (dead cell
layer)” [Stamatakos 2006a].

3.6.1 Registration

The registration of an anatomical atlas to a patient with a brain tumor is a difficult
task due to the deformation caused by the tumor. Registration algorithms proposed
for normal to normal registration fail due to this reason. Recently, several authors
proposed to include the tumor growth models in their registration algorithms to
tackle this difficult task. The important ingredient the growth models can add is
the quantification of the tumor-induced deformation on the brain structures through
model parameters. Proposed algorithms use these model parameters in separating
the deformation field between the atlas and the patient image into the tumor-induced
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deformation and the normal inter-subject variation.

Kyriacou et al. proposed one of the first atlas to patient registration algorithms
based on the tumor growth dynamics [Kyriacou 1999|. Starting from the patient
image, their algorithm first simulates the biomechanical contraction in the case of
the removal of the tumor to estimate patient anatomy prior to the tumor. A normal
to normal registration between the atlas and the tumor-free patient brain follows the
contraction. At this point instead of deforming the registered atlas with the inverse
of the deformation field obtained during the contraction, they perform a nonlinear
regression in order to estimate the tumor growth parameters that would best fit the
observed tumor-induced deformation. These parameters consist the center and the
amount of expansion of the tumor. Once the parameters are estimated they perform
the biomechanical tumor growth inside the registered atlas to obtain the final atlas
to patient registration, which was performed in 2D.

In contrast to separating the deformation caused by the tumor and the deforma-
tion explaining inter-subject variability, in [Cuadra 2004], Cuadra et al. proposed to
combine these two in a nonlinear demons based registration algorithm [Thirion 1998|
for the atlas to patient registration. The algorithm starts by placing the two brains
on the same frame and scale using a global affine registration. An expert manu-
ally places the tumor seed on the affinely registered atlas, which corresponds to the
place of it in the patient image. The seeding is followed by a nonlinear registration
algorithm with adaptive regularization. The tumor growth is modeled as an out-
ward pressure causing radial displacement of the surrounding structures. Authors
included this displacement field in their registration algorithm to take into account
the tumor-induced deformation.

Mohamed et al. took a statistical approach for the atlas to patient registration
problem in [Mohamed 2006|. They propose a statistical model on the deformation
map created by applying a nonlinear elastic registration to match an atlas with the
patient image. This model is based on the fact that although normal registration
techniques would fail in the vicinity of the tumor, they will provide the right defor-
mation field for the other parts. Their statistical model uses the space of displace-
ment fields and decomposes any deformation field on two orthogonal hyperplanes,
one describing the tumor-induced deformations and other inter-subject variability.
The formulation of the hyperplanes is done by principal component analysis (PCA)
assuming linearity of the governing space and that displacement fields are realiza-
tions of two independent Gaussian random vectors. The training of the PCA for the
inter-subject variability is done by samples coming from registering the atlas to a
dataset of healthy subjects. On the same dataset they grow artificial tumors using
their growth model explained in Section 3.4 for different sets of growth parameters,
including center of the tumor, expansion of the tumor and the edema extent. These
instances serve as the training samples of the PCA for the tumor-induced deforma-
tion. When a new patient image is encountered, they decompose the deformation
field and find the tumor growth parameters specific for the patient as

U =~ pe+Vea+pug+Vyb (3.7)

where Uy is the total displacement field, . and V. are the mean and covariance
matrix displacement fields for inter-subject registration, and pg and V4 are the
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Figure 3.8: Left to right: the atlas image with manually labeled regions, the pa-
tient image, the atlas to patient registration result using the algorithm explained
in [Mohamed 2006], which includes tumor growth modeling. (b) The selected labels
in the atlas are warped and correspondingly superimposed on the patient’s image

same identities corresponding to tumor-induced deformation. Once the deformation
field linking atlas to subject and tumor growth parameters are found, the atlas is
registered and the tumor is grown in it. Zacharaki et al. in |[Zacharaki 2006] pro-
posed to improve the registration algorithm used in this work by a more flexible
one, based on HAMMER algorithm [Shen 2002|, taking into account the fact that
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around the tumor region the deformation field is distorted when the tumor model
parameters are not optimal. To tackle this, they introduced a patient-specific opti-
mization framework based on similarity matching and smoothness properties of the
deformation around the tumor, see Figure 3.6.1.

3.6.2 Segmentation

Another application of tumor growth modeling is the synthetic dataset creation for
validating segmentation algorithms. Presence of a tumor is a big challenge for the
segmentation algorithms. Algorithms are compared with expert manual segmenta-
tions for validation and performance analysis. Manual segmentations however, show
high inter-expert variability and contains human error due to fatigue and other rea-
sons. In order to tackle this problem, several works proposed to generate synthetic
realistic MR images containing tumors, for which ground truths are known and can
be used for validation and analysis. There are two different subproblems for the
generation. One of them is to simulate the tumor growth realistically. The other
one is to mathematically describe the effect of tumor growth on MR signal intensi-
ties. In other words, how the image intensities change in different parts of the image
(e.g. edema, actively proliferating tumor region, tumor free part,...).

Figure 3.9: Upper row shows the synthetic images generated of a patient with glioma
using the algorithm proposed in [Prastawa 2005]. T2w, contrast enhanced T1w and
T1w images from left to right. Bottom row shows the same images coming from a
real patient.

Rexilius et al. proposed one of the first models for this problem in [Rexilius 2004].
They have modeled the tumor with three compartments: the active tumor tissue,
the necrotic (dead) tumor core and the edema. The active tissue and the necrotic
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part are drawn in the desired location with the desired size. Later on reasonable gray
values are assigned to these regions including Gaussian noise to make the intensities
realistic. As an example, in the case of contrast enhanced T1w image the realistic
values included contrast accumulation in the active tumor part. The mass effect of
the drawn tumor is applied to the underlying healthy subject MR image assuming
linear elastic material properties for tissues. The growth is simulated by a radial
displacement applied to surrounding tissues using finite element methods. Lastly
for the edema, they use the distance transform of the tumor on the white matter
mask of the underlying image and deform it with the same mass effect applied to
the brain. Based on the resulting distance transform values they assign intensity
values corresponding to edema infiltration.

In order to create more realistic MR images, Prastawa et al. [Prastawa 2005,
Prastawa 2008] have tackled the same problem using a more sophisticated tumor
growth model and adding contrast accumulation properties of different tissues. They
have adopted the growth model proposed by Clatz et al. [Clatz 2005]|. In addition
to this model, in their formulation they took into account the displacement and
destruction of white matter fibers using image warping and nonlinear interpolation,
based on the observations of Lu et al. [Lu 2003]. For the image generation part,
they have modeled the contrast agent diffusion inside the brain using the reaction-
diffusion formalism. Using such a formulation they were able to simulate the high
contrast accumulation in CSF and in active tumor regions. As a result they obtained
realistic looking synthetic data with contrast irregularities as in Figure 3.6.2.

3.7 Discussions

In this chapter, we have reviewed some works on mathematical tumor growth mod-
eling and its applications proposed by the medical image analysis community. Away
being from a complete review on this subject, this chapter is an attempt to highlight
the main approaches and applications.

In terms of realistically modeling the growth phenomena, some solid attempts
have been taken. However, there are very exciting challenges awaiting to be solved.
Tumor growth is a very complex phenomena, including different scales of ingredients
from genetic to macroscopic. The biggest lacking point at the moment is the link
between these scales. Observations that can be obtained from medical images are
limited and obtaining microscopic observations for a large view-area is not possible
at the moment. One approach that can be taken to tackle this problem would
be to included information coming from different modalities of images in growth
models. Including techniques like positron emission tomography (PET), magnetic
resonance spectroscopy (MRS) and functional-MRI (fMRI) would yield information
about nutrient, oxygen and metabolite levels in the tumor giving an opportunity
to integrate microscopic phenomena in macroscopic models and for patient specific
models.

Personalization of the tumor growth models and therapy models summarized in
this chapter is an important missing link between mathematical methods and clinical
applications. Inter-patient variation of parameters can be large, hence obtaining the
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necessary parameters automatically through inverse problems is a required step in
adapting general growth models to individual patients. Such inverse problems also
serve as quantification tools that can assess the efficacy of a therapy or understanding
the amount of deformation caused as we have seen in Section 3.6.1. Moreover, intra-
patient variation of these parameters has also not been studied yet. Variation within
the same tumor might result in different growth patterns than the one expected by
the growth models formulating the average behavior of the tumor. The heterogeneity
in a single tumor might be high strengthening the need for stochastic approaches
for tumor growth models.

One other big challenge for creating more accurate models, is the lack of a proper
quantitative validation technique. For macroscopic models the comparison is done
with observed medical images, which are not able to visualize the whole tumor.
Although some quantitative validation methods were proposed by some authors,
[Clatz 2005, Mohamed 2005, Prastawa 2008], the field still lacks a golden standard
in validation methodology.

Improving imaging techniques and more accurate models will yield valuable tools
for clinical oncology in the future. Patient-specific models combining information
from different scales will enable us to perform patient-specific simulations. Such
simulations, either for therapy or simple growth will aid in patient treatment and
hopefully improve prognosis.
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Context

Reaction-diffusion based tumor growth models have been widely used in the litera-
ture for modeling the growth of brain gliomas. Lately, recent models have started
integrating medical images, specifically anatomical and diffusion atlases, in their
formulation. Including different tissue types, geometry of the brain and the direc-
tions of white matter fiber tracts improved the spatial accuracy of reaction-diffusion
models. The adaptation of the general model to the specific patient cases on the
other hand have not been studied thoroughly yet. In this chapter we address this
adaptation. We propose a parameter estimation method for reaction-diffusion tu-
mor growth models using time series of medical (Magnetic Resonance) images. This
method estimates the patient specific parameters of the model using the images
of the patient taken at different successive time instances. The proposed method
formulates the evolution of the tumor delineation visible in the images based on
the reaction-diffusion dynamics therefore it remains consistent with the information
available.
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4.1 Introduction

The reaction-diffusion models provide a general framework where the integration of
information coming from medical images is possible. We have seen in Chapter 3
some of these models and how they integrated information coming from images into
their formulation. The general formulation for the reaction-diffusion models are
based on the equations

% =V - (D(x)Vu) + pu(l —u) (4.1)
DVu-ngq =0, (4.2)

where wu is the tumor cell density, D is a local diffusion tensor (i.e. symmetric
positive definite 3x3 matrix), p is the proliferation rate, 2 is the brain domain,
0N represents the boundaries of the brain and ngg is the normal direction to the
boundary. Equation 4.1 describes the temporal evolution of tumor cell density while
Equation 4.2 represents the no-flux boundary conditions. Once the integration of
medical images in this model is achieved the next step is to adapt the model to
specific patients data, in other words to personalize the model. This can be done
via estimating the parameters of the general model, D and p, which best simulates
the evolution of the tumor observed in the time series of images (images of the same
patient taken at successive time instances). The difficulty in this estimation is due
to the sparsity of the available information. The reaction-diffusion models describe
the temporal evolution of tumor cell densities while in the images we only observe
the evolution of the tumor delineation which is assumed to correspond to an iso-
density contour [Burger 1988], as shown in Figure 4.1. In this chapter and in other
parts of the thesis the terms tumor delineation, tumor front and tumor boundary
are used interchangeably to describe the boundary of the visible part of the tumor
in the medical images.

The problem of estimating parameters from time series of images in the context
of tumor growth models is a rather unexplored problem. A first attempt was made
by Tracqui et al. in [Tracqui 1995] where they optimized the parameters of their
model by comparing the area of the tumor observed in CT images at different times
and the area of the simulated tumor. The drawback of this approach was to use
tumor cell densities requiring an initialization of the density distribution through-
out the brain while these densities are not observable in the images. More recently,
in [Hogea 2007|, Hogea et al. have optimized their parameters by comparing loca-
tions of some manually placed landmarks with the model generated ones. In addition
to the parameters of the reaction-diffusion model they optimize the parameters of
their mechanical model as well. However, they also use tumor cell density distribu-
tion in their optimization process which is not available in the images. Moreover,
a detailed analysis of the estimated parameters and their minimization framework
is not provided. Recently Swanson et al. in [Swanson 2008a] proposed a param-
eter estimation method for the diffusion process in petri-dish experiments, which
is consistent with the observables in the images as it uses the tumor boundaries
rather than tumor cell densities. They have derived analytical approximations for
the evolution of the tumor delineation for 2 dimensional circular growth. Using the
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Figure 4.1: MR Flair images of a grade II astrocytoma: (a) image at the first
examination (b) image at the second examination. In the anatomical MR images
we observe the boundary of the visible part of the tumor rather than the tumor cell
densities.

formulation for the tumor delineation they have estimated the diffusion coefficient
for the petri-dish experiments. The difficulty one would encounter if one wants to
apply this method to medical images is that the method assumes radial symmetric
growth which is not the case in the brain (in-vivo). Moreover, the existence of a
reaction term results in a different evolution than pure diffusion.

In this chapter, we propose and analyze a parameter estimation method for
reaction-diffusion based tumor growth models using time series of medical images.
The method is based on the evolution of the tumor delineation rather than tumor
cell densities and in this respect it is consistent with the observations in the images.
In Section 4.2, we explain our method, detail the anisotropic Eikonal approximation
we use for describing the temporal evolution of the tumor delineation and formulate
the parameter estimation problem.

4.2 Method

The parameter estimation methodology and the choice of the estimated pa-
rameters depend naturally on the exact formulation of the underlying reaction-
diffusion model. In this work we focus on the specific formulation proposed
in [Clatz 2005, Jbabdi 2005]. However, due to the similarities of reaction-diffusion
models the ideas we present here can be adjusted for other formulations. The model
for tumor growth proposed in [Clatz 2005| is formulated by the system given in
Equations 4.1 and 4.2. The diffusion tensor D is an anisotropic tensor taking into
account two different phenomena: differential motility of tumor cells in different
tissues and directional preference of tumor cell diffusion. The construction of D,
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which is obtained from the DT-MRI, is as follows:

dgl , X € gray matter

D(x) = { dwDyater , X € white matter (4.3)

where tumor cells are assumed to diffuse isotropically in the gray matter with a rate
dg and diffuse along the white matter tracts proportional to the diffusion tensor for
the water molecules Dyyqter through a coefficient dy,. Dygter in this construction is
obtained from DT-MRI and normalized such that the highest diffusion rate in the
brain would be 1.

We note that in [Clatz 2005] the authors also couple the evolution of the tumor
with its mass effect on the brain but for this work, as a first step, we focus only
on the reaction-diffusion part ignoring the mechanical effect. Once the problem for
the growing tumor is solved and understood then the parameter estimation can also
take into account the mechanical model.

The reaction-diffusion model given by Equations 4.1, 4.2 and 4.3 describes the
temporal evolution of local tumor cell densities. As we have noted before, this
creates an inconsistency with the observables in the images, see Figure 4.1. In order
to solve the parameter estimation problem we need a formulation consistent with the
images in which the evolution of the tumor delineation instead of the evolution of
the tumor cell densities will be mathematically described. In section 4.2.1 we detail
the construction of such a formulation, which is a projection of the reaction-diffusion
equation. Once such a formulation is available then one can optimize the parameters
using different error measures and optimization schemes. In section 4.2.2 we detail
our choice for the error measure and the optimization scheme.

4.2.1 Eikonal Approximation for Reaction-Diffusion Models

The asymptotic properties of the reaction-diffusion equations under certain condi-
tions allow us to construct a traveling time formulation for the tumor delineation.
Reaction-diffusion equations and their asymptotic properties have been well studied
in the literature [Aronson 1978, U. Ebert 2000 and these properties have been used
for different applications [Maini 2004, Murray 2002, Keener 1998, Sermesant 2007].
Here we wish to summarize some of the relevant results in these works.

At large times, the constant coefficient case of Equation 4.1 admits a traveling
wave solution in the infinite cylinder. In other words, when the change of u is non-
zero in only one direction, n, for very large times the solution of Equation 4.1 can
be given in the form:

u(x,t) =u(n-x —vt) =u(§) as t — oo. (4.4)

where v is the asymptotic speed of the front and £ = (x-n—wot) is the moving frame
of the traveling wave. The center of the moving frame £ is at v = 0.5. Plugging
this asymptotic form of the solution into the reaction-diffusion equation given in
Equation 4.1 we obtain an ordinary differential equation (ODE)

d d
n'Dnl Y %0y pu(l —u) = (4.5)
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This is a constant coefficient nonlinear equation and in order to have admissible
solutions the asymptotic speed v should depend on the diffusion tensor D and p,
and also on the shape of the initial condition u(x,0). When the initial condition
has a compact support the asymptotic speed of the traveling wave can be given as,
[Aronson 1978, Murray 2002]:

v =24/pn'Dn (4.6)

The planar initial condition with compact support converges to a travelling plane
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Figure 4.2: (a) The tumor distribution evolving with the constant coefficient
reaction-diffusion equation (cross-section of the tumor cell density distribution in
the infinite cylinder) is plotted at different times (non-dimensional). We see that
the shape of the tumor cell density distribution approaches a constant shape in time
and becomes a traveling wave. (b) The speed of a single iso-density contour (u = 0.5)
is plotted in time along with the asymptotic speed v. In the non-dimensional form of
the Equation 4.1 the coefficients are unit therefore v = 2. We observe that the speed
the iso-density contour convergence to the asymptotic one but the rate of conver-
gence is not very high, in O(1/t). The convergence characteristics of the speed also
depends on the iso-density value. For each u value the curve given in (b) will be dif-
ferent. However, this dependence is on the order of O(1/t?) therefore, the difference
between the curves will die out faster and will not be significant [U. Ebert 2000].

with speed v in time. As the speed of the travelling plane converges to v its shape
also converges to a constant shape, which depends on the reaction term and does
not have an analytical form for the term we use (logistic growth term). Figure 4.2
illustrates the convergence of the front shape and the speed of the traveling wave in
time.

The fact that reaction-diffusion equations admit traveling wave solutions in cer-
tain cases (constant coefficients and in the infinite cylinder) states that any iso-
density contour of w at large times under certain conditions will move with a speed
of v. Therefore, we can formulate the speed of the tumor delineation observed in
the images using v. Although this gives the general idea, it is not complete because
the convergence of the observed speed of an iso-contour to v is slow, in O(1/t).
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Ebert et al. have studied this convergence behavior and derived the rate analyti-
cally [U. Ebert 2000]. In their study they noticed that the convergence rate can be
approximated with a time varying function which does not depend on the value of
u on the iso-density contour. This approximation assumes that all the iso-density
contours of u behaves like the v = 0.5 one, which is the origin of the moving frame.
Following these studies we include the effect of convergence in v and have a time
varying estimate of the speed of the u = 0.5 iso-density contour as

_ ——4tp — 3
v(t) = vn'Dn NG (4.7)

The speed variation of the u = 0.5 iso-density contour with time is different from
the other ones. However, the effect of the value of the iso-density contour is shown
to be O(1/t?) and therefore we ignore it [U. Ebert 2000]. The differences between
the observed speed of the moving frame, the asymptotic speed and time varying
estimate is shown in Figure 4.3(a). In Figure 4.3(b) we show the integrals of these
speeds starting from the same initial condition to demonstrate the effect of the
convergence on the location of the moving frame (which corresponds to the tumor
delineation in the context of this work). At this point we can readily formulate the
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Figure 4.3: (a) The traveling wave has an asymptotic speed shown with a dashed
curve. However, when we observe the speed of an iso-density contour in time we
notice the low rate of convergence to this speed (see the solid curve). An approxima-
tion of the speed of the iso-density contour including the convergence effect yields a
closer curve to the the observed on (see point-dashed curve). (b) Starting from the
same point the integrals of the speed curves, namely the distances to the initial point
as a function of time, are shown. Notice that we get a much better approximation
when we add the convergence effect. All axis are in non-dimensional coordinates.

traveling time formulation for the tumor delineation. Based on the ideas presented
in using [Sethian 1999], v(¢) can seen as

-1

VT| = 1/0(t) = [%ﬁpn@n - % n'Dn] (4.8)

p



4.2. METHOD ol

where 7' is an implicit time function such that it embeds the locations of the tumor
delineation as iso-time surfaces (7'(x) is the function representing the time when the
tumor delineation passes over the point x). As a result of this n can be written as
VT/|VT| and we can write the traveling time formulation as

2 /5T
VVI'DVT = —YI— f - (4.9)
T —

where the equation has the Eikonal form (: F/VT'DVT = 1 with F being a general
speed function.) This equation alone only gives the relation of successive iso-time
surfaces of T'. In order to build the solution throughout the domain we need a
Dirichlet type boundary condition, namely an initial surface for which we know the
T value. In the context of the tumor growth modeling this surface is given as the
tumor delineation in the first image. Using this we can write the necessary Dirichlet
condition as

T(z) =Ty Yz €T (4.10)

where Ty is the initial time and I is the tumor delineation found in the first image.
As a result the final traveling time formulation is given by the equations

9 /5T
VVT'DVT = = f . (4.11)
T

T(x) =Ty Vo €T (4.12)

where in the context of tumor growth Tj is the time elapsed since the tumor has
started diffusing until the acquisition of the first image. The value of Tj is not
available in the images but as we are going to explain in Section 4.2.2 it can be
regarded as another parameter of the model. Here we would like to note a limiting
case of this formulation when Ty = oco. In this case we do not take into account
the time convergence of the speed of the tumor delineation and model the evolution
of the tumor delineation only using the asymptotic behavior of reaction-diffusion
models. The limiting case formulation has the form

2/ VT'pDVT = 1, (4.13)

where the T dependence of the equation is gone. We see that if we do not consider
the convergence effect and use the asymptotic speed v then Ty is not necessary in
the problem. We also observe that in the equation, p and D appear in the product
form and cannot be separated. In this formulation the pairs p, D with the same
product will give us exactly the same evolution of the tumor delineation.

The formulation given in Equations 4.11 and 4.12 is valid in the infinite cylinder
where the evolution is in one direction (in this case the traveling wave is a plane).
In the case of the growth of a tumor, the delineation is curved therefore its evolu-
tion is not similar to an evolution in the infinite cylinder. We can still apply the
formulation found in the infinite cylinder to more general cases (non-planar cases)
in 3D by assuming that within a voxel the tumor delineation is planar and the
model coefficients are constant. Then by starting from the initial tumor delineation
and sweeping the domain outwards we can construct the solution. However, such
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a generalization does not take into account the effect of curvature in the more gen-
eral evolutions. Several works in the literature have extended the Eikonal equations
and included the effect of curvature [Keener 1998, Franzone 1990| (where they have
not taken into account the effect of convergence). In this work we focus on the
method proposed by Keener et al. in [Keener 1998]. The authors demonstrate a
way to take into account the effect of curvature for slightly curved surfaces in the
case of isotropic diffusion. Following the same principles we can derive the general
formulation for anisotropic diffusion.

Derivation of the Effect of the Curvature for Anisotropic Tensors

Here we follow the derivation given in [Keener 1998] and modify it for the anisotropic
tensor case. The reaction-diffusion model has the general form:

ou _
ot

We apply a coordinate change by parameterizing the moving frame of the u function

up = V- (DVu) + pu(l — u). (4.14)

as
x=X(71), t=1. (4.15)

We assume that this parameterization is a diffeomorphism. By chain rule the partial
derivatives using the new coordinates can be written as

o  0X; 0

0 0 0X; 0

R AT N 4.1
or 8t+ or 0Ox; (4.17)

where the indices are summmed (this is the case throughout this section). Likewise
the partial derivatives with respect to the Euclidean coordinates can be written in
terms of the new coordinate system.

) )
5e. = g (4.18)
0 _ 8 _,, %0 (4.19)

ot~ or Yot g

are the partial derivatives in terms of the new coordinate system. «;; is the igth
component of the inverse of the Jacobian matrix with respect to the parameterization
X. We identify & as the normal direction to the isosurfaces of v at every point. We
also define the tangent and the normal vectors of the parameterization as
0X;
r, = 7, (4.20)
n; = r; Xrg, j,k‘ 75 1. (421)

Using this we can define the [a] matrix using these vectors:

i = (rnil)l (4.22)
777
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For the ease of derivation, through the choice of the parameterization we let r{-ro = 0
and r1 -r3 =0 (r; || n;) and set it as the normal vector to the iso-surface of the u
function. The derivative terms in the reaction-diffusion equation become

ou 8X ou

= 4.2
“ ar  “*or og, (4.23)
0%u 0 ou
V- (DVu) = akpaijdkzagpagj + 5= (dkz ”)853' (4.24)

Then the whole equation can be written as

0%u 0 ou
4.2
akpawdkz 8&;8@ + (dkza”)afj ( 5)
ou 0X; Ou
_<8_T ]ka 8£>+pu(1—u)—0.

Here we use the two strong assumptions made in [Keener 1998]. The first assumption
says that the spatial variation of & is much smaller than for & and £3. This means
that the normal to the tumor delineation changes faster than the tangent space
of the parameterization. Therefore the effect of curvature is in a lower order than
the speed of the moving frame. Remembering that the [¢] is the inverse Jacobian
matrix of the parameterization X this assumptions lets us say that a;j; = O(1) while
AL = O(E)

The second strong assumption is that to the leading order in €, u is independent
of 7. In the planar evolution this assumption readily holds since the solution of
the reaction-diffusion equation is a traveling wave and therefore does not depend
on time. However, for the curved evolution this does not hold. This assumption on
the dependence on 7 lets us treat the curved evolution as if it admits a traveling
wave. Using the singular perturbation method we can gather the first order terms
and Equation 4.25 reduces to

0%u 0 ou
akldklaz‘la—g + 8—xk(dki04i1)—851 (4.26)
0X; Ou
a1 96, + pu(l —u) = O(e).

Gathering the terms and recognizing the matrix multiplications this equation can
be rewritten in the compact form

a Da% + <V (Do) + - 8X> ggl + pu(l —u) = O(e), (4.27)

where a vector is defined as [«]; = a1; Now in order to have a traveling wave solution
this ODE should have the same form as the one in Equation 4.5. This means that
we need the coefficients of this equation to be constants and satisfy the relation
given as the one given in Equation 4.6. However, this will not be possible for every
iso-contour of the function u. The curvature will have different effects for different
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iso-surfaces. Hence, we require it only for the origin of the moving frame (u = 0.5
iso-contour in the case of logistic growth). Using this we obtain

o' Da=p (4.28)
X
V. (Da)+a- ‘96—t _ 9. (4.29)

At this point we remember that « || n; which is normal to the iso-surface of w.
We define a level set function S such that the zero-level set of S will correspond to
the origin of our moving frame therefore, V.S/|VS| = n. We can then write « as
a = —KVS where K is just a coefficient to be determined. From Equation 4.28 we

find K as
/ p
K=,/———. 4.30
VS'DVS ( )

On the other hand, the Equation 4.29 gives us
-V - (DKVS)—-KVS - X, =2p. (4.31)

In order to replace X; we need one more relation which comes from the fact that the
value of function S at the origin of the moving frame doesn’t change by construction.
Therefore,

0
as(x’ t) |0n the moving frame origin = 0 (432)

VS Xy + 5 =0. (4.33)
Placing this in Equation 4.31 we obtain

V. (DKVS)+ KS, =2p (4.34)

P p
- DVS Sy = 2p. 4.35
v < v \/VS’DVS)+\/VS’DVS t=2p (4.35)

We transform the dynamic equation given above into a static one by inverting the
embedding method explained in |Osher 1993]. We apply the following embedding
and the transformation derived from it:

S(x,t) =0 < T(x)=t,
)

T = —.
\Y S,

As a result of this transformation and the embedding we obtain the anisotropic
Eikonal equation with the curvature term

P p
A pvr =)+ ==L = 2. 4.36
v < v VT’DVT>+ vi'ovr (4.36)

Relocating terms we get our formulation:

DvVT
2y/p—V+ ————  VVIT'DVT = 1. 4.37
{ VP \/VT/DVT} ( )
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The Equation 4.37 is derived using the asymptotic speed v, but we can also
replace v by v(t) and include the effect of convergence in this formulation. Adding
it all together we obtain the following equation to describe the evolution of the
tumor delineation in 3D based on the reaction-diffusion dynamics.

4pT — 3 DVT
- V- -—— +VVT'DVT =1 4.38
{ 2/pT \/VT’DVT} (4.38)

where the term V- (DVT/VVT'DVT) is the effect of the curvature. In the deriva-
tion of this term it is assumed that the surface is slightly curved which requires the
effect of curvature to be of a lower order than the term 2,/p (the first assumption).
However, the value of the curvature might be high in the general case especially in
the presence of the anisotropy in the diffusion process. Therefore one would need
to saturate the effect of the curvature to satisfy the assumption. In [Franzone 1990]
Franzone et al. have overcome this problem by using a slightly different term then
the curvature term derived above. Their formulation included the divergence of VT’
as follows

4pT —3  V-DVT JOTDVT
- VIT'DVT =1 4.39
{ 2/pT \/VT’DVT} (4.39)

Notice that the difference between the terms is the location of the divergence opera-
tor V-. The divergence operator creates a more diffusive scheme than the curvature
and therefore, we call this term as the diffusive scheme. In order to better under-
stand the need of saturation and compare Equations 4.38 and 4.39 we analyze a
specific case of growth where the analytical solution of the reaction-diffusion equa-
tion is available.

Analysis in Spherical Growth

In most cases the solution for the reaction-diffusion equation given in Equation 4.1
cannot be written analytically especially in the presence of nonlinear reaction term
[Rodrigo 2003, Petrovskii 2001]. But for certain geometries and boundary condi-
tions, analytical solutions for the linearized reaction-diffusion equation can be found.
In this part we focus on the growth of a spherically symmetric tumor initialized as
a point source in a medium with homogeneous diffusion and reaction coefficients.
We examine how a single iso-density contour of this tumor evolves and compare it
with the evolution described with traveling time formulation (Equation 4.38).

The exact problem we focus on is the linear reaction-diffusion equation with
homogeneous parameters.

uy = dAu + pu, (4.40)

where d is the scalar diffusion coefficient, p is the proliferation rate and A is the
Laplacian operator. For a simpler analysis we can non-dimensionalize this equation

by using the transformations
T = \/§$, t = pt, (4.41)
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where the T and the ¢ are the non-dimensional space and time variables. Us-
ing these variables in the reaction-diffusion equation we get rid of the parame-
ters [Murray 2002|. For simplicity we drop the line over the ¢ and the Z. As a result
of the transformations we obtain the non-dimensional form

ur = Au+u (4.42)
u(z,0) = o(x), (4.43)

where §(z) is the Dirac delta function. Equation 4.43 is the initial condition which
is set to be a point source. Notice the reaction term is linear which is different from
u(l —u). As long as we limit our analysis in this part for low u values these two
reaction terms are very similar. We also note here that the point source initialization
is not realistic in the case of in-vivo growth. The more realistic situation would be
to set a boundary condition such as

w(0,1) =1, (4.44)

which would corrrespond to the existence of a spheroid [Araujo 2004]. The diffusion
then starts from the spheroid and during the diffusion the density of the spheroid
would remain 1. However, the solution of this problem is harder to analyze therefore
we stick to the point initialization [Rodrigo 2003, Petrovskii 2001|. Equations 4.42
and 4.43 describe a symmetric evolution therefore we can change the coordinate
system into the spherical one. Using Green functions [Kevorkian 2000] the solution
for this problem can be written analytically as

2

el (4.45)

u(r,t) = 7871_3/2153/26 1

where r is the radial distance from the center. All the iso-density surfaces of this
evolution are spheres moving away from the center. We can describe the motion of
a single iso-density surface in terms of the radius as a function of time

1
r*(t) = 2t\/1 -7 In(873/2¢3/2q*), (4.46)

where r* is the radius of the iso-density surface with the value u*. We observe
that the evolution of the iso-density surface depends on the density value u*. In
Figure 4.4(a) we plot the 7*(¢) function for different values of w*. We notice that
some of these iso-density surfaces reduce in size first and then start growing. This is
due to the point source initialization in the formulation given in Equation 4.43 and
it is not realistic. The more realistic case for any iso-density surface would be that
first it remains dormant and then starts growing. Keeping this in mind we focus on
the u* value which produces an evolution like this even in the case of point source
initialization. Therefore, searching for the u* which satisfies

dr*
i — =0 4.47
min ( o > , ( )

we find v* = 0.0346 and we focus our analysis on the evolution of this iso-density
surface (shown in red in Figure 4.4).
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Figure 4.4: (a) 7*(t) is plotted for different values of w*. The red curve is the bio-
logically reasonable evolution of an iso-density surface and is given by v* = 0.0346.
(b) In blue, the evolution of the u* = 0.0346 iso-density surface is drawn. The solid
red and the solid green curves are the evolutions described by the traveling time
formulations given in Equations 4.38 and 4.39 respectively. The dashed red curve is
the evolution obtained by saturating the effect of the curvature as in Equation 4.53.
(c) We zoom in the plot (b) around the region where the tumor is smaller. In this
region the diffusive scheme is close to the real evolution however, it diverges as the
tumor gets larger.

The two traveling time formulations given in Equations 4.38 and 4.39 in the
spherically symmetric and homogeneous parameter case take the forms

AT -3 2
-—|T,=1 4.48
[ - ] ) (4.43)
AT -3 2
[ oT _;:| T, =1+T,, (449)

respectively. In these equations T is again the traveling time function, 7T, represents
the derivative with respect to 7 and 2/r is the mean curvature given in terms of
radius. Note that these equations are also in non-dimensional form. Equations 4.48
and 4.49 formulate the evolution of the delineation of a spherically symmetric tumor
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whose real evolution is given by Equation 4.46 for v* = 0.0346. In Figure 4.4(b) we
plot the evolutions described by these three formulations where the traveling time
formulations start from the delineation of the tumor at ¢ = 1 and 7} is not allowed
to fall below 0. In the figure we plot the distance of the delineation from the center
of the tumor as a function of time (radius as a function of time). The blue curve
is the real evolution, the red curve is the evolution under the effect of curvature as
given in Equation 4.48 and the green curve is the evolution with the divergence term
as given in Equation 4.49. We observe that neither of these evolutions is close to
the real one. The evolution including divergence of VT is close to the real evolution
when the tumor is small, see Figure 4.4(c), however later it diverges greatly, see
Figure 4.4(b). On the other hand the evolution including the curvature is very bad
when the tumor is small and it gets better in terms of slope of the evolution (speed)
as the tumor gets bigger. This observation is consistent with the assumption we had
done during the derivation of the curvature term in Section 4.2.1. When the tumor
is small in size its curvature is high therefore our assumption of low curvature fails.
In order to overcome this problem we propose to saturate the curvature effect using
a saturation function

flheps) = sign(kegs)risar (1—6“"6”'/"8“) (4.50)
2
Reff = = (4.51)

where kg4q is the saturation value for the curvature term k.rr and sign() is the
sign function. The exact form of the function is not very important but what is
important is that at k. = 0 the derivative of the function is 1. When we put this
in Equation 4.48 and apply curvature saturation in the spherical case we obtain the
final traveling time formulation in the spherically symmetric case

AT -3 —9/(rrsat) _
[ S Fa (1 . ) T,=1 (4.52)

Remembering that the order of 2,/p should be higher than the curvature effect and
by fitting the evolution defined by Equation 4.52 to the one defined by Equation 4.46
we find kgt = 0.15(2,/p). We note that small changes on this value do not affect
the evolution much. In Figure 4.4(b) we plot the evolution of the tumor delineation
obtained using Equation 4.52 in red dashed curve. Again we solve this Equation
starting from the tumor delineation at ¢ = 1 and 7. is not allowed to fall below 0.
Notice that this evolution is much closer to the real one plotted in blue than the
others.

The Traveling Time Formulation for the Tumor Delineation

Adding the saturation of the curvature effect to the Equation 4.38 we obtain the
final formulation which describes the evolution of the tumor delineation based on
the reaction-diffusion formalism:

! — 0 _ |‘5 ff‘/(ogfp) V/NT! \V/ —
. e € . = 4
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DVT
_y. v 454
feff YNT'DVT (4.54)
T(z) =Ty Vo €T (4.55)

where we have chosen to use the exponential form for the saturation function but
any other choice would work as well. In this formulation we notice that the left
hand side of the Equation 4.53 can become negative especially for low values of
T. This is due to the fact that the approximations for the time convergence and
curvature effects get worse for lower 7" values |U. Ebert 2000]. In order to overcome
this approximation error, in our scheme we do not let the left hand side drop lower

than
4pT — 3
2,/pT

which serves as the minimum threshold for the speed of the tumor. In terms of the
speed of progression of the tumor delineation, this limit can be written as

Umin = 0.14/ pn’ Dn, (4.57)

where n is the direction of the vector VT'. As a result of this constraint we have a
growing tumor delineation at all times, consistent with the reaction-diffusion model.

—0.3/p (1 - e“eff|/(0'3\//3))} > {0.1,/p}, (4.56)

Numerical Method

Equations 4.53, 4.54 and 4.55 constitute the formulation describing the evolution of
the tumor delineation in 3D. This formulation is based on the hypothesis that the
tumor delineation corresponds to an iso-density surface of the tumor cell density
u (the value is not specified) whose evolution is defined by the reaction-diffusion
model given in Equations 4.1 and 4.2. Equation 4.53 is a static partial differential
equation having a similar form as the Hamilton-Jacobi equations (see Appendix A).
Several methods have been proposed to solve such equations numerically in the
literature [Osher 1993, Bryson 2003, Qian 2006, Sethian 2003, Kao 2005]. In this
thesis, to solve this equation numerically, we adopt an algorithm we propose in
Chapter 8.

The static Hamilton-Jacobi equation given in Equation 4.11 is a first order equa-
tion and has the form of an anisotropic Eikonal equation. Just as a reminder, the
anisotropic Eikonal equations have the general form

F(z)VNT'DVT = 1, (4.58)

where the additional F(z) is a spatially varying speed function. The numerical
method proposed in Chapter 8 is dedicated to solve such equations. It is based
on the Fast Marching method [Sethian 1999] and modifies it in order to take into
account the anisotropy in the equation. It starts from a given initial contour and
sweeps the domain outwards following the characteristic directions of the partial
differential equation. The differential equation has 2 different solutions at each
voxel and in this scheme we choose the value such that as we move away from the
delineation the T' value increases (since the tumor delineation will pass from those
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points at a later time in the case where the tumor grows). The advantages of this
method are that it is a sweeping method and it only uses the immediate neighbors
of a point rather than using points far away [Sethian 2003] to compute the values.
Therefore, it is a fast and accurate method for solving anisotropic Eikonal equations.
For the details of the algorithm please refer to Chapter 8. Here, regardless of the
details of the algorithm, we continue our discussion based on the fact that we have
a sweeping algorithm which solves anisotropic Eikonal equations in a fast manner.

The Equation 4.38 (and the Equation 4.53) is a second order equation due to
the divergence term. Hence, it is not obvious to solve it with sweeping methods.
These equations can be solved with other iterative methods [Osher 1993, Qian 2006]
however, these methods are not very fast. In order to benefit from the advantages
of the sweeping methods we separate the curvature part from the equation and
construct an iterative method that solves anisotropic Eikonal equations at each
iteration with different updated speed terms. The form we use for Equation 4.38 (it
is the same construction for Equation 4.53) becomes

4pT — 3 DV
V. VVT'DVT =1 4.59
{ 2/pT \/VT’DVT} (4.59)

4pT — 3
{5 o7+ Fan}VTDVT = 1. (4.60)

Viewing the convergence term as a speed term independent of T" as Fy,, enables
us to use the sweeping method and construct the simple iterative scheme

Foyry =0 (4.61)
{45\:;;;”_13 + FL W NT 1DVl =1 (4.62)
Compute 771 (4.63)
n—1
=V \/VTZ’)”vlTDVTnl (464)
Flipy = iy +a(C" = FiL). (4.65)

where @ < 1 is the parameter determining the rate of convergence which in our
case is taken as o = 0.8. In Equation 4.65 we see that the F[) . is updated with
a proportional gain using the error made in the previous iteration. In this respect

this scheme is similar to the feedback control loops. We iterate this algorithm until

Y |er—Fp,,l <e (4.66)

e

where the sum represents the summation over all points in the domain of compu-
tation and € is a small value. Once this criteria is satisfied we know that F,, is
indeed the effect of the curvature. The rate of convergence depends on « however,
in our experiments we have observed that for a large range of a € (0.2,0.8) the
rate is very rapid (see Figure 4.5). For lower « values the scheme takes longer time
to converge and for higher values we observed oscillations therefore, the time of
convergence also increased.
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Figure 4.5: The curve showing the rate of convergence for the iterative scheme given
by Equations 4.61-4.65. We visualize the difference ), |C" — F, ., | as a function
the iteration number n. The curve is obtained for the example shown in Figure 4.6.

The Evolution of the Tumor Delineation

The traveling time formulation given by Equations 4.53, 4.54 and 4.55 combines dif-
ferent approximations and due to this it does not produce exactly the same propaga-
tion as the reaction-diffusion model. In order to understand how close an evolution
we obtain with two formulations we compare the evolution of the tumor delineations.
First we virtually grow a synthetic tumor using the reaction-diffusion growth model.
This provides us the evolution of the tumor cell densities u(x,t) at every point. From
the tumor cell density distribution, we extract the iso-density surface v = 0.4 (value
consistent with the one proposed in [Tracqui 1995]) at each time instance and ob-
tain the evolution of the tumor delineation that would be visible in medical images.
In Figure 4.6 we show this evolution for one example. The white contours are the
tumor delineations observed at the days 400, 600, 800, 1000 and 1200 from inwards
to outwards. Following this, we set the inner white tumor delineation (delineation
in the image at day 400) as the starting point for the traveling time formulation
and evolve it using the same growth parameters as the reaction-diffusion model with
Ty set as 400. We obtained the black contours as the evolved tumor delineations
at the same dates. The similarity shows us that in the case of images where we
cannot directly apply the reaction-diffusion models, the traveling time formulation
given by Equations 4.53, 4.54 and 4.55 can provide us a very good approximation
of the evolution described by the model. In Figure 4.7 we also show the same evo-
lution however, this time the curvature effect is modeled using the diffusive scheme
as proposed by Franzone et al. in [Franzone 1990]. As explained above this scheme



62 CHAPTER 4. PARAMETER ESTIMATION: METHOD

includes the divergence of V1 as given in Equation 4.39. In Section 4.2.1 we show
that this scheme actually lags behind the actual evolution of the tumor delineation
described by the reaction-diffusion equation. In Figure 4.7 we observe this lagging
and we also note that the lag is less dramatic than the theoretical analysis due to
the large size of the tumor we are modeling. In Section 5.1.1 we provide quantitative
analysis of the quality of this approximation.

Figure 4.6: The temporal evolution of the iso-density contour is demonstrated
for a synthetic tumor. Contours are shown for days 400, 600, 800, 1000 and
1200 from the innermost to outermost respectively. The synthetic tumor is vir-
tually grown using the reaction-diffusion model. White contours are obtained
by thresholding the tumor cell densities at u = 0.4 for the respective day val-
ues (400-600-800-1000-1200). Then in order to simulate the evolution of the iso-
density contour (assumed to correspond to tumor delineation in real images) start-
ing from day—400, without the knowledge of the tumor cell density distribution
we use the traveling time formulation. Black curves are the contours we obtain
at days 600 (2nd innermost) to 1200 (outermost). We notice that the travel-
ing time formulation is quite accurate in describing the evolution of the tumor
delineation in the case of synthetic tumors. The tumors were grown in the im-
ages of a healthy subject for whom we also have the DT-MRIs. Parameters:
(dw = 0.25 mm?/day,d, = 0.01 mm?/day,p = 0.012 day~" Ty = 400 days) The

number of iterations for including the curvature effect in this example was 4.

4.2.2 The Parameter Estimation Problem

The parameter estimation for the reaction-diffusion model from time series of images
becomes possible once we link the evolution we observe in the images to the model.
The traveling time formulation T'(x) serves as such a link. In the reaction-diffusion
model given by Equations 4.1, 4.2 and 4.3 we have three different parameters, d,,,
dy and p. Moreover, in the previous section by integrating the convergence char-
acteristics of traveling wave solutions into the traveling time formulation we added
another parameter Ty. This gives us 4 parameters to estimate for: (dy.dg.p,Tp). In
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(b)

Figure 4.7: The temporal evolution of the iso-density contour is demonstrated as the
one given in Figure 4.6. However, this time the effect of curvature in the traveling
time formulation is taken as suggested by Franzone et al. in |[Franzone 1990|, the
diffusive scheme given in Equation 4.39. We see that, as expected, the evolution
of the tumor delineation described by this scheme lags behind the actual evolution
given by the reaction-diffusion model. This problem is resolved by the formulation
proposed in this chapter.

this work we try to optimize these parameters such that the evolution we simulate
using the traveling time formulation best fits the real evolution we observe in the
images, which are taken at different times for the same patient.

In order to formulate the parameter estimation problem we need to define an
error measure. In a series of [NV images taken from the same patient at different times
to,t1...,tnN—1, we have N snapshots of the tumor delineation at different times. tg
in this frame is the acquisition time of the first image. For a given parameter
set, starting from the first time image we can simulate the evolution of the tumor
delineation and compare it with the real delineations. We note that the value of g
is not known and regarding the time instances we only know the differences between
acquisitions Atg = 0, Atq, ..., Aty. Using this idea we can define

N-1
Cl(dwvdg’vaO) = Z dlSt(FZ’fz)Q (467)
1

Ui = {2|T(a, dy.p10) () = To + At;} (4.68)
with T({B) =Ty Vx €l

where dist() is the symmetric distance between two surfaces normalized by the
surface area of the surfaces, I'; is the surface enclosing the tumor in the image taken
at t; and fz is the tumor delineation simulated by the traveling time formulation at
t;. In this formulation we notice that Tj is the estimate of t3. The estimation of g,
maps the time instances, for which we only know the successive differences, on the
respective convergence curve (like the example given in Figure 4.3).



64 CHAPTER 4. PARAMETER ESTIMATION: METHOD

One information we have not used completely in C'; is the size of the visible tumor
in the first image I'g. In our experiments we observed that in order to correctly map
the time instances on the convergence curve we need to include this size. The inquiry
we make is whether it would have been possible to obtain I'g at Tj using the traveling
time formulation if we had started from the time the tumor had started diffusing,
namely T = 0. The assumption we make here is that the tumor started diffusing
from a set of isolated small regions. These small regions actually correspond to the
avascular masses that start diffusing and speed up after vascularization. In order to
include this in our error measure we run the traveling time formulation backwards in
time starting from I'g within the delineation. We do this by solving the Equation 4.53
within the visible tumor in the first image. As explained in Section 4.2.1 we start
from the delineation I'y and sweep the region enclosed by I'y. The only difference
this time is that in Section 4.2.1 the T values were increasing as we move further
from the first delineation while in this case T values decrease as we go backwards
in time. This backward evolution in time provides us a minimum T value, Thin
and the corresponding point from which the tumor is assumed to start from (or a
set of points) Zpn. We notice that if the parameter set dy,,dy, p, To is consistent
with the size of I'g then T,,;, = Ty. Therefore the error we need is a function of
|Tnin — To|. In order to have a measure consistent with C; we need to convert the
time difference into a spatial distance. For this we use the minimum allowable speed
value (see Section 4.2.1)

Umin = 0~1\/pn;naxD($min)nmax (469)

at the point i, where n,,,, is the principal eigenvector of D () providing the
highest diffusion rate and the factor 0.1 comes from the minimum threshold for the
speed of the tumor explained in Section 4.2.1. Using v,,;, we obtain

CQ(dwydgapy TO) = (Um'in‘Tm'in - TODQ (470)
C=C1+Cs (4.71)

Combining C'; and Cy we obtain the error criteria C' we wish to minimize with
respect to the model parameters.

The minimization of C' is a multidimensional optimization problem and it can
be handled using different methods. One important criteria affecting the choice of
the minimization algorithm is that explicit derivatives of C' with respect to different
parameters are not easily available. Another point is that although the parameters
have biologically relevant bounds ( such as d,dy, p, Tp > 0) this constraint is not
restrictive. Based on these observations we have chosen to use the unconstrained
minimization algorithm proposed by Powell in [Powell 2002|, see Appendix B for
details. The attractive feature of this algorithm is that it does not require derivatives
of the objective function. Instead, its local quadratic approximations are used in the
minimization. The algorithm requires different instances of the objective function-
which are computed using the traveling time formulation-to construct the quadratic
approximation and updates it as the minimization proceeds. For each instance Cy
and Cs are computed and fed to the optimization algorithm.
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4.3 The overall algorithm

Finally in this section we provide the overall parameter estimation algorithm ex-
plained in this chapter. The algorithm is composed mainly of three different parts:
the traveling time formulation, the error measure and the minimization algorithm.
In Sections 4.2.1 and 4.2.2 we have explained the first two parts which are our con-
tributions. In Appendix B we briefly explain the minimization algorithm we used
in this work which was proposed by Powell [Powell 2002]. The pseudocode for the
parameter estimation method explained in this chapter is given in Algorithm 1 and
the flowchart given in Figure 4.8.

Algorithm 1 Pseudocode for the parameter estimation methodology.

Inputs: Tumor delineations in the time series of anatomical images, DT-MRI of
the patient, White-gray matter segmentation, Initial estimate of the parameters
repeat

- Construct the tumor diffusion tensors using the parameters d,,, dg, the DT-MRI
image and the white-gray matter segmentation.

- Simulate the evolution of the tumor delineation starting from the 1st image in
the time sequence as explained in Section 4.2.1.

- Compare the simulated evolution of the tumor delineation with the actual de-
lineations at the given dates (The days images where acquired). Compute
C1 + Cy = C as explained in Section 4.2.2.

- Minimization algorithm chooses a new set of parameters with which the evolu-
tion of the tumor delineation will be simulated and the error C' will be computed
(see Appendix B).

until Optimization algorithm converges (see Appendix B)
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Figure 4.8: The overall algorithm of the parameter estimation method for reaction-
diffusion tumor growth models.
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We devote this chapter for the experiments and analysis of the parameter esti-
mation methodology explained in Chapter 4. In the first section we analyze the
proposed methodology “theoretically” using synthetic tumors virtually grown by
reaction-diffusion models. We provide a thorough analysis in order to understand
the performance of the proposed method and also to understand the dynamics of
the parameter estimation problem itself. In the second section we show some case
studies using patient images. We show some promising preliminary results in the
few cases we focus on.

5.1 Results for Synthetic Tumors

In the evaluation phase of the parameter estimation method, we test the capabilities
of the method for retrieving the real parameters of the tumor growth. We first per-
form tests with synthetic tumors for which the parameters are known. We construct

67
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a dataset of 180 tumors using the reaction-diffusion model composed of 60 different
parameter sets at 3 different locations in the brain. The different parameter sets
of the model were constructed using different combinations of d.,,d, and p values
given in the table below.

dw [mm?/day] | 0.025 | 0.05 | 0.1 | 025 | 0.5
dg [mm?/day] | 0.005 | 0.01 | 0.025
p [1/day] 0.009 | 0.012 | 0.018 | 0.024

As can be seen from the values for each parameter the final parameter sets cover
a large range of growth speed and anisotropy. Each tumor was initialized in a
single voxel and grown in the MR image of a healthy subject with a resolution of
1x1x2.6mm3. The diffusion tensor D was constructed using the DT-MRI of the
same subject. In order to create the synthetic images of these tumors, we assumed
a simple imaging process where a voxel is visualized as tumoral if the number of
tumor cells exceeds 40% of the maximum tumor cell capacity the brain parenchyma
can handle (u > 0.4) [Tracqui 1995|. For each tumor, the detection and the first
image acquisition is made when the visible tumor size reaches a diameter of 1.5
cm. The time the tumor reaches this size depends on the parameters of the model
therefore the Ty value is different for each parameter set.

5.1.1 Comparing Traveling Time with Reaction-Diffusion

The first thing we do before starting the experiments for parameter estimation is to
evaluate the resemblance between the evolution of the tumor delineation described
by the reaction-diffusion equation and the traveling time formulation. In other
words quantify the similarity seen in Figure 4.6. For each of the 180 synthetic
tumors explained we simulate the evolution of the tumor delineation by the traveling
time formulation using the exact same parameters as the reaction-diffusion equation
used to grow the tumor. We initialize the traveling time formulation with the
first image of each tumor and predict the tumor delineation at 200, 300 and 400
days after the detection. Then we compare the predicted delineations with the
synthetic images constructed for the corresponding days. We compute the error
measure (7, which measures the symmetric distances between the real and the
predicted delineations, for each of the synthetic tumors. In Table 5.1 we summarize
the results of the comparison. The columns named after the parameters of the
model denote all the tumors having that value for the specific parameter. For
example, the cell p = 0.009/day represents all the synthetic tumors having the
p value as 0.009/day. There are 15 different tumors for this specific value with
different diffusion coefficients, set as combinations of different d,, and d, values.
The cell on the right hand side of the p = 0.009/day cell shows the mean and the
standard deviation of C] values computed for the 15 different tumors represented
in that cell. The rest of the table is interpreted likewise. We notice that all the
error values are around Imm which is approximately 1 voxel. Observing the error
values in this table we can conclude that the traveling time formulation describes
the evolution of the delineations of synthetic tumors grown by the reaction-diffusion
model very well. We did not include (5 in this analysis because the aim of this part
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(o [l [ & & [ 4 & ]
0.009 | 0.92 £0.17 || 0.025 | 0.94 +0.12 || 0.005 | 0.97 & 0.16
0.012 | 0.94 £0.12 0.05 | 0.89 £0.10 0.01 | 0.94+0.13
0.018 | 0.94 £0.10 0.1 0.854+0.03 || 0.025 | 0.92 +0.09
0.024 | 0.99 +£0.10 0.25 | 0.94 £0.07
0.5 1.11 £0.11

Table 5.1: Resemblance between the travelling time formulation and the reaction-
diffusion equation. We observe that the evolution of the tumor delineation simulated
by the traveling time formulation is on the average at most 1.11mm away from the
real delineation observed in synthetic images. Keeping in mind the resolution of
the images used (1x1x2.6mm?) we can say that the traveling time formulation is
successful in describing the evolution of the delineations of the synthetic tumors.

is to understand how close we can simulate the evolution of tumor delineation with
the right parameters of the model, which is defined by the error measure C'.

5.1.2 Problem of Non-Uniqueness

In the first set of experiments we tried to estimate all the parameters of the reaction-
diffusion model (d, dg, p) and the first acquisition time Tp (the time elapsed between

In these experiments we observed the non-uniqueness of the solution to this problem
caused by the coupling between proliferation and diffusion rates and the sparsity
of the information contained in the images. The reaction-diffusion model combined
with the imaging process can result in very similar evolutions of the tumor delin-
eation with very different parameters. In Figure 5.1 we show the evolutions of two
different tumors (green and red) for which the diffusion and proliferation parameters
are given in the accompanying table. The contours with the same color are the de-
lineations of the same tumor in different images taken at successive time instances.
The inner contour is the delineation in the first image and the other contours as we
go outwards are from the images taken at 200, 300 and 400 days after the first image
acquisition respectively. We observe that although the parameters are different the
evolutions are almost the same. Quantitatively, the difference between these two
evolutions measured by the error criteria C' (see Equation 4.71) is 0.644 mm?2. On
the other hand, the closest tumor delineation evolutions we can get to these ones
using the traveling time formulation with the optimum parameters have errors of
C = 1.28 mm? for the red and C' = 1.29 mm? for the green tumor. This shows us
that with the current resolution of medical images we cannot distinguish between
these two parameter sets if we observe either of the evolutions. Therefore, we leave
aside the question of estimating the diffusion and the proliferation rates separately.

One observation about the values of the parameters is that between the two
cases in Figure 5.1 the functions 21/pd,, and 2./pd, remain almost the same, around
0.1 mm/day and 0.03 mm/day respectively. This is consistent with the fact that
the asymptotic speed of reaction-diffusion equations are given by 2y/pn’Dn, see
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Red | Green
dy | 0.273 | 0.153
dy | 0.024 | 0.014
p | 0.012 | 0.0185

Figure 5.1: In the image we show the evolution of two different synthetic tumors
virtually grown using the reaction-diffusion model with different parameters. The
contours of the same color are the tumor delineations for the same tumor in 4
different images taken at 4 successive time instances (Tp, Tp + 200,75 + 300 and
To + 400 days after the first image). The reaction-diffusion model parameters for
these tumors are given in the table. We observe that although the diffusion and
proliferation rates of these tumors are different the evolutions are almost the same.
The difference between these evolutions measured using C' is 0.644 mm? which
is lower than the minimum error we find by estimating the parameters using the
traveling time formulation (C' = 1.28 for red and C' = 1.29 for green). This shows
that we cannot distinguish between these two parameter sets if we observe either of
the evolutions. We also observe that the products d,,p and dyp are very close for
the two tumors. This tells us that although distinguishing between d,,,d, and p is
not obvious estimating the product of dy, 4p is possible.

Section 4.2.1. Therefore, even though we cannot estimate the proliferation and the
diffusion rate separately we can estimate the speed of evolution in the white and in
the gray matter by fixing the value of p.

5.1.3 Fixing p and the 3 Parameter Case

Since estimating all the parameters of the reaction-diffusion equation proved itself
to have a non-unique solution (under the given hypotheses) we turn our attention
to the case when we can fix a parameter. The proliferation rate p is a microscopic
parameter and its coupling with the diffusion rate creates the non-uniqueness of the
solution. Here we assume that the value of p can be estimated using biopsy results
and microscopic analysis or an average value of p can be provided as a result of the
staging and grading of the tumor. Therefore, we can have a good estimate of p and
fix it in the parameter estimation problem. In our analysis we assume we know the
real value of p and fix it, once it is fixed the problem becomes solvable. In this case
we are left with three parameters to estimate (dy,dy) and Tp.

For each of the synthetic tumors previously described we create a dataset of 3
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images, the first image taken at the time of detection and two other images taken
at 200 and 400 days after the detection 5.2. Using these images and the time
difference between acquisitions we estimate the diffusion parameters and T;. We
show and discuss the obtained estimates based on two different analyses. The first
one is the proximity of the estimated parameters to the real ones and the sensitivity
which tells us if we are able to distinguish between two different tumors with close
parameters. The second analysis is about the shape of the minimization surface
around the estimated point. The parameter estimation method, as explained in the
previous section, minimizes the objective function C. The shape of this function
around its minimum shows us the feasibility of the minimization process.

<

(a) (b) (©)

Figure 5.2: An example of the synthetic dataset created for each virtual tumor for
the theoretical analysis of the proposed parameter estimation method. (a) Shows
the 1% image acquired at the time of detection. The white region is the visible part
of the virtual tumor. (b) Shows the 2" image of this dataset taken 200 days after
the first one. (c) 3"¢ image of this dataset taken 400 days after the first one. For
illustrative purposes we show a fast growing tumor.

Analysis of the Estimated Parameters

In Figures 5.3(a) we show the estimated diffusion parameters along with the real
ones. In order to demonstrate the results, we project the high dimensional param-
eter space onto the 2D (dy,dy). The larger markers in the plot represent the real
parameters used to grow the synthetic tumors and the smaller ones represent the
estimated parameters retrieved from the images. Each small marker with a specific
shape and color is the estimate for the larger marker with the same shape and color.
Although there is only one estimate for each parameter set d,,,dy, p there are mul-
tiple small markers for each large marker due to projecting onto lower dimensional
space. In other words, different small markers of the same shape and color are the
estimated parameters of the tumors with different p but same d,, and d,.
Analyzing the Figure 5.3 we observe that the parameter estimation method is
able to retrieve the value of d,, with good accuracy. Moreover, the method is able to
distinguish between different tumors with close diffusion coefficients. The estimation
of d, on the other hand seems to be less accurate. We notice the consistent positive
bias in the estimate of d;, which increases with increasing d,,. We believe there are
two reasons for this. The first one is the difference between numerical schemes we
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Figure 5.3: The results of the parameter estimation from time series of images for the
synthetic tumor experiments. The synthetic tumors are grown with the reaction-
diffusion model with known parameters and synthetic images were created from
these tumors at 3 different time points (at the detection time Tp, Ty + 200 days and
To + 400 days after the detection). The parameter estimation method was applied
to these images to retrieve the parameters of the model. The plot (a) shows the
real diffusion rates d,, and dy (the large markers) and the estimated diffusion rates
(the small markers). Small markers of a specific shape and color are the estimates
of the larger marker with the same shape and the same color. Figure(b) plots the
estimated initial time estimate Ty (the time elapsed between the emergence of the
tumor and the detection) vs. its real value. y = x line is also drawn for better
comparison.

use to solve the reaction-diffusion PDE and the traveling time formulation. The
numerical scheme for the PDE [McCorquodale 2001| uses linear interpolation of the
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diffusion tensors between voxels creating higher diffusion within the gray matter
neighboring white matter. The traveling time formulation, which uses the diffusion
tensors on the voxels, accounts for this by increasing d, therefore estimating a
higher d;. As a result as the value of d,, increases the bias on d4 increases. The
second reason is computing the curvature effect term in Equation 4.54 using the
images, where the contour enclosing the tumor delineation has sharp corners (due
to discretization) which causes high curvature. Since the high curvature slows down
the evolution, the traveling time formulation accounts for this by increasing the
diffusion coefficient. This second reason is especially observed for the tumors where
dy is low. Even in the presence of this bias we notice that for slowly diffusing
tumors the d, estimates are very close to the real values and the method is able
to distinguish between different tumors with close diffusion coefficients. For highly
diffusing tumors the d, estimates are rather unreliable however the order of the ratio
between d,, and d, is well captured. Regarding the estimation of Tp, in Figure 5.3(b)
we plot the estimated value of Ty in the y-axis versus its real value in the x-axis
where the y = x line is also drawn. Observing this plot we notice that the estimates
for Ty remains within the 10-15% margin of the real value, which shows that the
proposed method is able to retrieve Tp.

Analysis of the Minimization Surface

Regarding the shape of the minimization (error) surface on the global scale, in
our experiments we observed that this surface, which is defined by 3 dimensions
(dy,dg,Tp) namely the parameters we are minimizing for, remains convex for all
the tumors. However, the exact shape of the surface and the slope of the surface in
different directions around the minimum point varied. We know that the estimated
parameters provide us the best fit to the evolution of the tumor delineation we
observe in a set of images, let us say with an error of C*. The question we want
to answer is how much this evolution varies from the optimum when we slightly
move away from the “best” parameter set. In order to answer this question, for an
estimated parameter set (d;"u,dz,TS) which gives a minimum error of C* we find
the other parameter sets which give an error smaller than C* 4 €. In other words
parameter sets which provides an evolution of the tumor delineation which is € away
from the best fit in the average. In our high dimensional parameter space these
parameter sets are enclosed in an ellipsoid around the estimated point which we
name e-ellipsoid.

Construction of e-Ellipsoids

The parameter estimation problem in this work is formulized as the optimization
problem with the objective function C'. For a given set of images, the method tries
to find the parameters of the tumor growth model which would minimize the value
of the function C. e-ellipsoids is a simple way to understand the shape and the
steepness of the minimization surface around the minimum point. The construction
of the e-ellipsoids is as follows. For a given parameter estimation problem let us say
the estimated parameters p* corresponds to an error value of C*. As a consequence
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C* is the minimum of the objective function C' for this problem. We first construct
the quadratic approximation of C' around p*

C=C" g0 -p) + 50— ) Glo— "), 6)
where g is the gradient vector and G is the Hessian at p*. Since p* is the minimum
we know that ¢ = 0. Moreover since the point p* is the minimum of C the G
is a positive definite matrix. The construction of the quadratic approximation is
done by sampling the function C' and fitting a quadratic function by least square
minimization.

Once the quadratic approximation of C is obtained we define the e-ellipsoid as
follows

P={plC(p) = C" + ¢}, (5.2)

where the set P is the e-ellipsoid and p is an arbitrary parameter set. Since G is a
positive definite matrix we are sure that P is a closed surface and for all the points
remaining inside P, C(p) < C* +e.

Using the e-ellipsoid we enclose a set of parameters (parameter sets p’s) for which
each parameter set produces an evolution of the tumor delineation that is e close
to the optimum evolution created by p*. This means if the e-ellipsoid is big for a
problem then the minimization surface is flatter therefore, it is harder to find the
minimum point. Moreover, the directions of the semi-major and semi-minor axis of
the ellipsoid provides us the coupling between different parameters.

In Figures 5.4(a,b) we show the projections of some of these e-ellipsoids (for
¢ = 0.1mm?) on the respective parameter spaces where the round dots are the
actual parameters, the crosses are the estimated parameters and ellipses around
each cross are the projections of the e-ellipsoids.

Observing Figure 5.4(a) we notice that the major axis of the ellipses remain
parallel to d, axis however, this is due to the difference of scale between d,, axis
and the d,; axis. When placed on the same scale these ellipses are rather circular.
The second thing we notice is that the ellipses grow with increasing d,,. This is a
consequence of using normalized distances between surfaces in our error measure,
see Equation 4.67. As d,, increases the tumor diffuses faster in the white matter
and its size increases. As a result the boundaries of the visible tumor reaches the
extent of the white matter and most of the surface enclosing the tumor delineation
in the image remains in the gray matter (as gray matter diffusion is much lower the
tumor stops in the white-gray matter boundary) or reaches the boundaries of the
brain. Therefore changing d,, does not affect these portions of the surface and its
contribution to the error measure decreases resulting in the larger ellipses we observe.
This shows us that for more diffusive tumors a larger set of parameters yields similar
errors therefore minimization surface is flatter. In Figure 5.4(b) we observe the
coupling between d,, and Ty. One can obtain a similar evolution by increasing d,,
and decreasing Ty (and vice-versa). The reason for this can be explained by the
effect of convergence given in Equation 4.11, see Figure 4.3. We see that when Tj is
lower the speed of the tumor delineation is slower but if we increase the value of the
diffusion we would obtain a similar evolution. The shape of the convergence curve
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Figure 5.4: Figures plot the projections of some of the e-ellipsoids on the respective
parameter spaces. The round dots are the real parameters of the reaction-diffusion
model, the crosses are the estimated parameters and ellipses are the projections of
the e-ellipsoids for each cross. For a given cross, the cross represents the minimum of
the respective minimization surface with an error of C* and all the points inside the
ellipse surrounding that cross are the parameters who has error less than C* + 0.1.
In other words ellipses enclose all the parameters producing very similar evolutions
of the tumor delineation as the cross in the center.

in Figure 4.3 allows us to distinguish between these different cases and therefore
find a minimum. In Equation 4.11 we also notice that if 7 is very high then a
small change in Ty does not affect the speed of the tumor delineation and this is
the reason why we observe ellipsoids with major-axis parallel to the T axis at high
Ty values. One can think of the extreme case where Tj is very large and the effect
of convergence becomes negligible. In this case we would expect its value not to
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change anything however, including the size of the tumor in the first image using
the error term Cy (Equation 4.70) helps us distinguish between very high Tj values.

5.1.4 Changing the fixed p and Speed of Growth

In all the above experiments we have fixed the value of p to its real value. Naturally
the diffusion rate estimates depend on the value of p. Therefore, by fixing p we
actually determine the location of the d,, and d, estimates. In order to understand
the effect of the value of p on the estimation of diffusion rates and the coupling
between p and D we have performed a slightly different experiment. Instead of
fixing p to its real value we have set it to a different value and then estimated the
other parameters d,,,d,; and Ty. For the ease of demonstration we only show the
estimation results for the synthetic tumors with p = 0.012/day. The experiment
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Figure 5.5: In the figures we plot v(, ¢) = 2y/d(y,g)p values estimated by fixing
p = 0.015 versus p = 0.012. We also plot the y = x line for a better comparison. We
know that the estimated d,, and d, values depend on where we fix the p. However,
observing these figures we note that no matter what value we fix p to, the product
of p and the estimated diffusion coefficient d,, 4
asymptotic speed of growth of the tumor in the white matter and in the gray matter
can be estimated uniquely.

remains constant. Therefore the

we performed is the same as the one explained in the previous section however, this
time in the estimation method we set p = 0.015/day. As expected the estimated
diffusion rates are lower than the values estimated by setting p = 0.012/day. The
interesting point however, was not the change in the values but the coupling between
D and p. In Figure 5.5(a) we plot v, = 2v/dyp computed with p = 0.015 and the
d,, value estimated by fixing p to this value versus v computed using p = 0.012
and the d,, estimated with this p. Figure 5.5(b) is the same plot for d, values. We
observe from these graphs that the estimated diffusion rates change when we change
the fixed p however, the product of the proliferation and the diffusion rates remain
constant. The value v = 2, /d(y, 4)p is the asymptotic speed of tumor growth and
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even though we cannot estimate the proliferation and the diffusion rates separately
we are able to estimate v for each tumor regardless of which value we fix p to.

5.1.5 Reducing the Number of Images Used

In the experiments shown above we have always used 3 successive images of the same
patient taken at the time of detection, 200 days after and the last one 400 days after
the time of detection. In normal clinical routine the number of images does not
have to be the same for each patient. The follow-up can be very irregular for some
patients and the intermediate images in time might not be available. In this part
we analyze the effect of the number of images used for parameter estimation on the
proposed methodology. In these experiments we estimated the growth parameters
(dy,dg,Tp) using only 2 images, one taken at the time of detection and the other
one taken at the end of the study, 400 days after the time of detection. As we
have done in Section 5.1.3, we analyze the estimated parameters and the shape of
the minimization surface C around the estimated parameters. In Figures 5.6(a)
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Figure 5.6: The results of the parameter estimation experiments for the synthetic
tumors using only 2 successive images in time. In figures we show the same pattern as
Figures 5.3(a) and (b) but the parameters are estimated using 2 images. Comparing
the estimates obtained using 3 successive images in time given in Figures 5.3 and
these Figures we notice that the locations of the estimated parameters are not
affected by the decrease in the number of images.

and (b) we show the estimated diffusion coefficients (d,,d;) and the estimated
initial time Tp. We observe that the locations of the estimated parameters and
their relations with the real ones are very similar to the case where we have used 3
images. Between Figures 5.3(a) and 5.6(a), we observe the same positive bias in the
diffusion coefficients and the same unreliability of d, estimated when the d,, value
is high. The estimation of Tj also shows very similar behavior in Figures 5.3(b)
and 5.6(b). Based on these observations we conclude that the estimated parameters
are not affected by reducing the number of images used in estimation to 2.

On the other hand, the objective function C' changes when the number of images
changes. Therefore, the local shape of the minimization surface around the estimated
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parameters change as well. In Figures 5.7(a) and (b) we plot the projections of the e-
ellipsoids onto the respective parameter spaces for some of the estimated parameter
sets. Comparing Figure 5.7(a) with Figure 5.4(a) we observe that the size of the
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Figure 5.7: Figures plot the projections of some of the e-ellipsoids on the respective
parameter spaces for the experiments using only 2 successive images in time. Figures
are drawn the same way as Figures 5.4 (a) and (b). Comparing these Figures with
the ones given in 5.4 we observe that using more images in the estimation gives us
a better confidence on the estimated parameters especially for the diffusion rates.

ellipses in the (dg4,d,) space are much bigger in the case where we use 2 images
to estimate the parameters. The uncertainty on the diffusion coefficients increased
and the reliability of the parameters decreased. This observation is coherent with
the general expectation that the more images we use the more reliable estimates
we obtain. When we observe the Figures 5.4(b) and 5.7(b) we notice that changing
the number of images also increased the size of the ellipses in the Tg, d,, space but
the change is not big. The reliability of the Ty estimate remained almost the same.
From this we understand the most important factor determining the value of Ty is
the size of the tumor in the initial image. This factor was included in the parameter
estimation scheme by using C5 in the Equation 4.70 in Section 4.2.2.

5.1.6 Forgetting the Convergence Effect and T

The last issue we tackle in our analysis for synthetic tumors is the effect of including
the time convergence and the initial time estimate T on the estimated parameters.
Specifically on the estimated diffusion rates. In this part we set the Ty = co and con-
centrate on the asymptotic behavior of the reaction-diffusion model. More precisely
we would like to estimate the diffusion coefficients d,, and d, using only the asymp-
totic speed of the tumor delineation with the formulation given in the Equation 4.13
in Section 4.2.1. In Figures 5.8 (a) and (b) we show the estimated (d,, dy) pairs and
the e-ellipsoids for these pairs. These pairs are estimated without using the time
convergence of the speed of the tumor delineation. We observe that the estimated
diffusion rates are much lower than the real values especially for the tumor with high
diffusion rates. When the time convergence is not included we over approximate the
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Figure 5.8: The results of the parameter estimation experiments for the synthetic
tumors without including the time convergence of the tumor delineation speed and
Ty. Figure (a) is plotted the same way as Figure 5.3(a). Comparing the estimates
shown in Figure 5.3(a) and these ones we notice that the estimated diffusion rates
are much lower when Tj is not taken into account. This effect is especially stronger
for fast growing tumors. For slowly growing tumors the change in the estimated
parameters is smaller. Comparing the e-ellipsoids given in Figure 5.4(a) and the
ones given in Figure (b) here we see that the shape of the minimization surface is
not affected by including the time convergence of the speed of growth.

speed of the tumor delineation (see Figure 4.3) and therefore in the end we obtain
lower estimates for the diffusion rates. For the tumors with lower diffusion rates we
observe that the effect of including the convergence is more subtle. This is due to
the fact that slow tumors take longer time to grow and their initial Tj values are
already very high therefore replacing it with Ty = oo does not affect the estimates
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that much. The local shape of the minimization surface remains unchanged as ob-
served from the shapes of the e-ellipsoids. Viewing these results we conclude that for
all tumors including the convergence of speed in time and the initial time estimate
Ty improves the quality of the estimated diffusion rates. On the other hand, this
effect is much smaller for the slowly growing tumors whose diffusion rates are lower.

5.1.7 Different Tensor Construction

All the results above are based on the model proposed in [Clatz 2005] where the tu-
mor diffusion tensor D is constructed as given in Equation 4.3. In this part we would
like to test the parameter estimation algorithm for a different tensor construction.
In the construction used above the diffusion tensor D in the white matter is ob-
tained by scaling the water diffusion tensor with the coefficient d,,. In [Clatz 2005],
using this type of construction the authors have shown high resemblance between
the simulated tumor growth and the evolution of grade IV gliomas, glioblastome
multiforme. In a very similar model Jbabdi et al. [Jbabdi 2005] have proposed to
use another tensor construction to describe the evolution of low grade gliomas. In
their construction they create a more anisotropic diffusion tensor D as follows

| dgI , X € gray matter
D(x) = { V(x) [diag(aer (X)dw, dgy )| V()T x € white matter © 00

where V(x) is the eigenvector matrix obtained by decomposing the water diffusion
tensor Dyater, €1(X) is the principal eigenvalue of the same tensor and « here is
a normalization factor such that highest e; value in the brain becomes 1. The
difference between this construction and the one given in Equation 4.3 is that in
this one tumor cells are assumed to diffuse much faster along the fiber and they
diffuse very slowly in the transverse direction. In the construction the diffusion rate
in the gray matter is used also for this transverse diffusion rate. As a result of such
a construction the evolution obtained is much more anisotropic and creates more
“spiky” tumors, see Figure 5.9.

In order to understand the effect of using a different tensor construction on
the parameter estimation methodology we have run the same set of experiments as
explained above. This time however, the synthetic tumors were grown using the
reaction-diffusion model that uses the tensor construction given in Equation 5.3 as
proposed in [Jbabdi 2005]. All the other details of the experiments are exactly the
same as the ones described in Section 5.1.3. The results of these experiments are
summarized in Figure 5.10. We observe that the results are similar to the ones
obtained for the previous tensor construction, see Section 5.1.3. The estimated
parameters and the shape of the minimization surfaces at the estimated parameters
are pretty similar with some differences. Comparing Figures 5.10 with 5.3 and 5.4
we notice that the parameter estimation method works better for the d, in the
case presented in this section. This is natural since, in the tensor construction
given in Equation 5.3 the parameter d, plays a more dominant role and affects the
white matter diffusion as well as the gray matter diffusion. As a result it becomes
significant and easier to estimate. The other difference we observe is at the extreme
case where the white matter diffusion is very high and gray matter diffusion is
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(a) (b)

Figure 5.9: The evolution of the iso-density contour in time is demonstrated for
a synthetic tumor created by the tensor construction given in Equation 5.3. The
details of the images are exactly the same as Figure 4.6. In summary the white con-
tours show the evolution of the tumor delineation in time and black contours show
the evolution simulated by the traveling time formulation. Comparing this figure
with the one given in Figure 4.6 we see that the anisotropic tensor construction yields
more “spiky” and anisotropic growth of the tumor. We also see that the traveling
time formulation is quite accurate in describing the evolution of the tumor delin-
eation in this type of synthetic tumors as well. Parameters: (d, = 0.25 mm?/day,
dg = 0.01 mm?/day, p = 0.012 day?)

low. This case is observed on the upper left hand corner of Figure 5.10(a). We
see that the diffusion coefficients, especially the d,, is over estimated. The reason
for this is the effect of curvature. When the anisotropy is very high the tumor
delineation has a very spiky form and contains lots of very high curvature regions.
This behavior can be seen up to some extent in Figure 5.9. As we have explained
in the previous sections the traveling time formulation cannot capture the evolution
of very curved tumor delineations with very good accuracy. When the curvature is
too high the simulated evolution of the tumor delineation is slower than it should
be and to account for this gap the parameter estimation method overestimates the
dy, and d,. We also observe this effect in the shape of the minimization surface in
the Figure 5.10(c). We see that at the extreme anisotropic case the minimization
surface has a very narrow and long valley in the direction of d,. This is caused
by the saturation of the curvature effect we integrate in our method. When the
curvature is too high we saturate its effect, in other words we saturate the speed of
the front, therefore, the effect of change in d,, is reduced in the final shape causing
this long and narrow valley.
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Figure 5.10: The results of the parameter estimation from time series of images
for the synthetic tumor experiments using the anisotropic tensor construction given
in Equation 5.3. The figures are plotted the same way as Figures 5.3 and 5.4.
Comparing the Figures 5.3 and 5.4 with this one we observe overall the results
are very similar. The differences are that in this case the estimation of d, is more
successful. However, in the extreme case of very anisotropic tumor (upper left corner
in Figures(a) and (c)) the parameter estimation method encounters problems. This
is due to the high curvature regions obtained in a very anisotropic tumor. Very
high curvatures pose difficulties for the traveling time formulation of the tumor
delineation as explained in Section 4.2.1.

5.2 Preliminary Results with Real Cases

The evaluation of parameter estimation for tumor growth models using real patient
images is not easy because we do not have access to the real values of the param-
eters. The real values could be found using microscopic in-vivo analysis however,
up to the best of our knowledge such a study has not been done yet. In this work
we perform indirect evaluation for the proposed parameter estimation method using
patient images. The first type of study we explain here is to use the images of a
patient to find the patient specific parameters using the proposed methodology. We
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compare the actual evolution of the tumor observed in the images with the evolution
obtained using the optimum parameters and the traveling time formulation. The
resemblance shows us how well the estimated parameters explain what is observed,
Section 5.2.1. In the second type of study, for a given patient dataset, we estimate
the parameters using all but the image taken at the last time point. Then using
the estimated parameters, we simulate the evolution of the tumor delineation start-
ing from the image taken just before the last one for the same number of days as
the time difference between the last image and the one before it. We then com-
pare the evolution predicted using the estimated parameters and the traveling time
formulation with the one observed in the last image. The correlation between the
prediction and the observed delineation provides us with a qualitative evaluation of
the estimated parameters, Section 5.2.2.

Here we impose two strong assumptions. The first one is we assume that the
values of the model parameters remain constant between the images. Considering
therapy and other effects on the tumor this assumption is not very realistic. How-
ever, we consider the estimated parameters as the average parameters over time
including all the effects and carry on with the analysis. The second point we as-
sume is that the fiber structure of the patient will not change in time in the regions
not enhanced as tumor. In other words, the local fiber structure will keep intact
until the visible tumor covers them. We do not have to pay attention to the regions
already covered by the tumor since these regions do not affect the further evolution
of the tumor in the traveling time formulation. This assumption on the stability
of the fiber structure in time is also not realistic since due to mass effect of the
tumor and the undetectable infiltration the fiber structure changes. For the sake of
simplicity and coherence with the available data, here we neglect this change.

As a preliminary step, in this work we use two patient datasets which include
anatomical and diffusion tensor MR images. The dataset for the first patient, who
suffers from a high grade glioma (Glioblastoma Multiforme), includes three T1-post
gadolinium MR images (with the resolution of 0.5x0.5x6.5 mm?) taken at successive
time points. The time interval between the first two images is 21 days while the
difference between the second and the third is 46 days. There also exists the diffusion
tensor MR image (with the resolution of 2.5x2.5x2.5 mm?) taken at the second time
point. The second patient suffers from a low grade glioma (grade IT astrocytoma)
and the dataset for this patient includes T2 flair MR images (with the resolution
of 0.5x0.5x6.5 mm?3) taken at 5 successive time points and a DT-MRI image (with
the resolution of 2.5x2.5x2.5 mm3) taken at the first time point. The time intervals
between successive images for this patient are as follows: 38 days between the first
two, 82 days between second and third, 90 days between third and fourth and 180
days between the fourth and the fifth. The DT-MRI images of the patients are used
to construct the diffusion tensor D of the tumor growth model. Since we perform
all our computations on the anatomical image space we register the DT-MRI rigidly
to the anatomical image of the same patient. The tensor transformations are taken
into account during this registration to keep the directions of the tensors physically
coherent |[Alexander 2001]. In constructing the diffusion tensor D for tumor cells
we adapt the models proposed in [Clatz 2005] and [Jbabdi 2005]. Clatz et al. have
proposed the tensor construction as given in Equation 4.3 for the high grade gliomas,
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following this we use this type of construction for the high grade case. On the other
hand, Jbabdi et al. proposed to use the construction given in Equation 5.3 for the
low grade gliomas therefore, we use this type of construction for the low grade case.

5.2.1 Fitting the Observed Evolution

In this part, for both patient cases, we first estimate the parameters of the reaction-
diffusion model using all of the patient images. Once the parameters are estimated
we simulate the evolution of the tumor delineation between successive images. In
other words, we initialize the traveling time formulation using the image taken at
the time ¢,,_; and simulate its evolution until ¢, using the estimated parameters.
We then compare the evolution observed in the images and the evolution simulated
using the estimated parameters and the traveling time formulation. In Figures 5.11
and 5.12 we show the patient images used in estimation and the results in terms of
the estimated parameters and also the evolution described by these parameters. In
both Figures each row shows the evolution of the tumor in a difference axial slices
and in each column we show the images taken at different time instances. In the
images we also show the manual delineation of the tumor in white and the evolution
of the tumor delineation simulated using the estimated parameters in black. The
estimated parameters are given in the accompanying tables. Also in Appendix C,
in Figures C.1- C.3 and Figures C.4- C.8 we provide additional slices (axial) of the
images given in Figures 5.11 and 5.12 respectively.

In the images of the first patient, in Figure 5.11, the tumor showed evolution in
two different regions. In the first region seen on the upper left corner of the images
the tumor has a much larger volume, contains a necrotic core and exerts visible mass
effect. The second region, the region we apply our analysis on, on the other hand
is newly emerging in the images and it does not exert observable mass effect. This
part is believed to be a diffused branch of the larger region however, no connection
was visible in the images most probably due to slice spacing. We apply our analysis
to the newly emerging part because it does not exert a mass effect and it is ideal
for our analysis. Following the discussions given in Section 5.1.2 we fix the value of
p to be able to estimate the diffusion parameters. The proliferation rate was set at
p = 0.05/day, based on the discussions with a neurosurgeon as a value around the
suggested average value in the literature [Swanson 2002a]. Using the three successive
images and the p value we estimate for the diffusion rates, which are given in the
table in Figure 5.11. Observing the correlation between the dark contours and
the manual delineations (white) we note that the traveling time formulation (or
the reaction-diffusion model) together with the estimated parameters is in good
agreement with the real evolution of the tumor. The overall shape of the tumor and
the direction of its progression is well captured.

For the low grade tumor, based on our discussions with a neurosurgeon, we
picked a lower proliferation rate than the one in the previous case since it is a lower
grade tumor (our discussions showed that there should be an order of 10 difference).
This rate was set to p = 0.008/day. This choice is rather heuristic however as we
have shown in Section 5.1.4 the product of the diffusion and the proliferation rates
are rather independent of the specific values. Observing Figure 5.12, we see that
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) Initial Tmage ) 21 days after (c) 67 days after

p(set) dy dg
0.05 1/day | 0.75 mm?/day | 0.002 mm?/day

Figure 5.11: The parameter estimation method is applied to the images of a patient
suffering from a high grade glioma. In columns we show the images taken at different
times and in rows we illustrate different axial slices of the same image. We observe
the evolution of the tumor, where the manual delineations are also contoured in
white. Using these images we estimate the parameters of the reaction-diffusion
model as given in the table. We also show the evolution of the tumor delineation
simulated using the traveling time formulation and the estimated parameters in
black. We observe that the simulated evolution well captures the real evolution of
the tumor visible in the images.

the correlation between the evolution of the tumor delineation simulated with the
estimated parameters (in black) and the observed evolution (in white) confirms our
previous arguments. The direction of the progression and the overall shape is well
captured using the optimum parameters and the traveling time formulation. We
also notice the differences between the diffusion rates for the high grade tumor and
the low grade one (although different tensor constructions were used for the two
tumors). The estimated speed of evolution in the white matter for the high grade
glioma is vy, = 0.39 mm/day while for the low grade one it is v,, = 0.07 mm/day.
We also see a similar difference for the speeds in the gray matter.
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(a) Initial Tmage  (b) 120 days after  (c) 210 days after  (d) 390 days after
p(set) dy dg
0.008 1/day | 0.165 mm?/day | 0.0005 mm?/day

Figure 5.12: As a second case we applied our methodology to the images of a patient
suffering from a low grade tumor. The images and the contours are plotted the same
way as the Figure 5.11. Here we also observe that the real evolution of the tumor
visible in the images is well captured by the estimated parameters and the traveling
time formulations.

5.2.2 Predicting Future Evolution Beyond Observed Image Data

In the second type of experiments with the patient images, we tested if the estimated
parameters combined with the model are able to predict the further progression of
the tumor. As explained, for this purpose we estimate the parameters of the tumor
growth model using all but the image taken at the last time point. Then we simulate
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the evolution of the tumor delineation in the image taken one before the last using
the estimated parameters. We run the simulation until the acquisition time of the
last image and compare this evolution with the visible tumor. In Figures 5.13
and 5.14 we show the results of this prediction along with the estimated parameters
(in the accompanying table). The top rows show the axial slices of the image taken
just before the last one where the manual delineations are also overlaid in white. On
the bottom rows we show the slices of the image taken at the last time point along
with the predicted (in dark) and the actual tumor delineation (in white). As in the
previous section, in Appendix C we show additional slices (axial) of the images given
in Figures 5.13 and 5.14 in Figures C.9- C.10 and in Figures C.11- C.12 respectively.

(b) The last image: Taken 46 days after the one above.

p(set) dy dg
0.05 1/day | 0.66 mm?/day | 0.0013 mm?/day

Figure 5.13: Predicting the further evolution of the tumor for the high grade case:
In the top row we show the image taken one time step before the last image with the
tumor manually delineated in white. The bottom row shows the images taken at
the last acquisition time showing the state of the tumor also delineated in white. In
black we show the state of the tumor delineation predicted starting from the image
at the top row using the estimated parameters and the traveling time formulation.
As explained in the text, the parameters used for this prediction were estimated
using only the first two images in time and not the last one. The overlays of the real
and predicted tumor boundaries illustrate the degree of agreement of our modeling
scheme.

In the case of the high grade glioma, Figure 5.13, the predicted delineation
of the tumor is in good agreement with the actual delineation. We observe that
although we start simulating the growth from a small tumor, the parameters and
the traveling time formulation captures the rapid progression of the glioma. This
tells us that overall average dynamics of the evolution are well captured with the
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estimated parameters. We see a very similar result for the low grade glioma as well,
see Figure 5.14. In this case the tumor already has a large volume at the time we
start the simulation. The progression of the tumor is very spiky and it is along the
direction of the fiber tracts. We observe that the predicted tumor delineation also
shows this behavior illustrating good agreement with the actual progression.

ki

) The image taken at the time just before the last acqulsltlon

(b) The last image: Taken 180 days after the one above.

p(set) duw dg
0.008 1/day | 0.20 mm?/day | 0.0007 mm?/day

Figure 5.14: Predicting the further evolution of the tumor for the low grade case:
The images are shown in the same manner as the Figure 5.13. We see that amount
of growth and the spiky nature of the evolution of the tumor is well predicted.



5.3. CONCLUSIONS 89

5.3 Conclusions

In the previous we proposed and analyzed a parameter estimation methodology for
the reaction-diffusion tumor growth models in the context of brain gliomas. The
proposed methodology formulates the evolution of tumor delineations in the medical
images based on the dynamics of the reaction-diffusion model. As a consequence,
it does not use the information of tumor cell density distribution throughout the
brain. In this respect the method is consistent with the information available in the
images.

We analyzed the proposed algorithm using synthetic tumors for which the growth
model parameters are known. The reaction-diffusion model used here includes 3
different parameters: the diffusion rate in the gray matter dy, the diffusion rate in the
white matter d,, and the proliferation rate of tumor cells p. In our analysis we have
shown that these parameters are coupled and therefore there is not a unique solution
constrained by the observations made on medical images. However, we have shown
that once the proliferation rate p is fixed, we can uniquely estimate the diffusion
rates in gray matter d,; and in white matter d,,. Moreover, in this case we can also
estimate the time elapsed between the emergence of the tumor and its detection,
Tp. In fixing p we assumed that its value can be found through microscopic analysis
of biopsy results. We have also shown that the value of p determines the estimates
of the other parameters. In that sense fixing p means determining the values of the
other parameters especially the diffusion rates. Investigating the coupling between
diffusion and the proliferation rate we have shown that no matter what p value we
fix the product of the estimated diffusion rates with p remains constant for the same
tumor. Therefore, using the proposed method the speed of growth of the tumor,
which is given by the mentioned product, can be estimated uniquely for each tumor.

In our experiments we analyzed the effect of the number of images used in esti-
mating the parameters. We have seen that the diffusion coefficients and the initial
time estimate Ty can be estimated (by fixing p) using 2 images of the same patient
taken successively in time. Using more images does not change the location of the
estimates however it increases the reliability of the estimates and our confidence on
them.

We also applied our method to two real cases, one high grade glioma and one
low grade. We have estimated parameters for these tumors and performed indirect
evaluations by prediction of growth showing promising preliminary results. The
strongest assumption we made during this analysis was that the parameters of the
growth model do not change in time and they do not vary in space. This is not very
realistic for the exact values of the parameters considering the existence of different
types of therapies and the random nature of the tumor progression. On the other
hand, independent parameter estimation and analysis could be done between each
set of two successive images as well. Such an analysis combined with the time course
of the therapy could give us hints on the effect of the therapy on different parameters
and on the growth speed of the tumor.

In the methods proposed in this thesis, as a first step, we ignored the mass effect
of the tumor. In most glioma cases the mass effect is apparent, smaller in the low
grade gliomas and larger for the higher grades. For a complete modeling in the
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parameter estimation methodology the mass effect should be taken into account.

Eventually a more thorough analysis of the estimated parameters and the esti-
mation methodology should be performed using a large dataset of patient images.
In the follow-up of this work we plan to focus on this direction. There are sev-
eral problems that should be overcome for this purpose. The first problem is the
lack of diffusion tensor imaging for the patients. As we have seen the DTI is very
important in the modeling and in the estimation of the parameters therefore, it
is crucial to have this information. The advances in the registration methods can
be helpful to solve this problem as they would give us the opportunity to register
DT-MRI atlas on the patient images. The second problem is regarding the surgery
applied in glioma cases. The surgery changes the structure of the brain as well as
the properties of the tumor. In order to overcome this problem, we need to adjust
the traveling time formulation such that it can describe the evolution of the tumor
delineation between pre-op and post-op images.

In terms of clinical use, estimated parameters, especially the speed of growth
which can be estimated uniquely, can serve as a quantification measure for tumor
growth and help the diagnosis process. Moreover, the proposed methodology gives
us the opportunity to construct patient-specific tumor growth models. Through
personalizing the generic growth models, we can describe the specific evolution of a
patients tumor. Such patient-specific models can be used to better plan the therapy
process and predict possible outcomes of the therapy administered to the patient.
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In the treatment of brain gliomas, especially in the planning of radiotherapy, medical
images such as magnetic resonance (MR) and computed tomography (CT) images
play a crucial role. They provide information on the spatial extent of the tumor.
However, images can only visualize parts of the tumor where cancerous cells are
dense enough, masking the low density infiltration. In radiotherapy, the approach
taken to handle this problem is to irradiate the visible tumor plus a 2cm constant
margin around it. This approach does not take into account the growth dynamics
of gliomas, particularly the differential motility of tumor cells in white and in gray
matter. In this chapter, we propose a novel method for estimating the full extent
of the tumor infiltration starting from its visible mass in the patients” MR images.
We derive a formulation starting from the reaction-diffusion based tumor growth
models, explained in the previous chapter. By using asymptotic properties of these
models, we obtain an extrapolation method that constructs the tumor cell density
distribution beyond the visible part of the tumor in the images.

6.1 Introduction

For the diagnosis and the therapy of gliomas, clinicians rely on medical images,
such as Magnetic Resonance (MR) and Computed Tomography (CT) images, which
show the mass part of the tumor. As explained in Chapter 2, current imaging tech-
niques are not able to expose the low density infiltration |[Tovi 1994, Johnson 1989,
Tracqui 1995, Swanson 2004| posing a problem for the experts in outlining the
whole tumor and in understanding its extent. Figure 6.1(a) is an example of a
T2 weighted MR image of a patient with grade IV glioma. The image shows the
two clinical target volumes (CTV) used in radiotherapy, the bulk tumor (CTV1)

91
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and the tumor infiltrated edema (CTV2) enclosed in black and white delineations
respectively [Seither 1995]. Figure 6.1(b) on the other hand, shows the hypothet-
ical tumor profile along the white line drawn on the MR image. In radiotherapy,
this problem of visualizing low density infiltration is addressed by outlining the
CTV2 and assuming the whole tumor infiltration is contained within a constant
margin of 2cm around that volume [Seither 1995, Kantor 2001]|. Therefore, the ir-
radiation region is constructed accordingly. This approach however, does not take
into account the infiltration dynamics of gliomas, particularly the higher motil-
ity of tumor cells in white matter compared to gray matter [Giese 1996]. As a
result, the irradiation region ignoring these dynamics might not reach the full ex-
tent of the tumor infiltration in white matter and irradiate healthy gray matter.
Mathematical tumor growth models can offer solutions to this problem by inte-
grating clinical information and theoretical knowledge about tumor cell dynam-
ics [Swanson 2002b, Stamatakos 2006a, Stamatakos 2006b|. Here we describe a new
formulation which aims to solve the problem of estimating tumor cell density dis-
tribution beyond the visible part in an image (low density infiltration) for gliomas.
It uses the anatomical MR images and diffusion tensor imaging (DTI) to suggest
irradiation margins taking into account the growth dynamics.

Tumor cell T2 MRI
density signal

P
---- I............-.u

Necrosis

—
=3
=

Figure 6.1: (a) T2-weighted MR image showing a high grade glioma. Two clinically
important volumes, the bulk tumor (CTV1) and the infiltrated edema (CTV2) are
enclosed in black and white contours, respectively. (b) Distribution of tumor cell
density is given by the dashed curve. T2 weighted MRI signal intensity on the other
hand is given by the solid curve. The MR signal does not reveal the presence of
tumoral cells when their density is below a certain threshold.

The literature on predicting irradiation margins on medical images using auto-
matic methods is rather limited. In [Kaspari 1997|, Kaspari et al. used artificial
neural networks to model statistically the way the radiotherapist constructs the ir-
radiation margin. In their work they focused on predicting margins as constructed
by the radiotherapist not including the growth dynamics of gliomas. Zizzari et al.
started from the same framework and included mathematical growth models in their
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prediction of the irradiation volume |Zizzari 2004]. They use their model to predict
further growth of the tumor and then use this prediction to construct the irradiation
margins through artificial neural networks. However, these works do not focus on
the spatial distribution of tumor cells at a given time and they do not include the
differential motility of glioma cells in different tissues.

In this chapter, we propose a formulation to extrapolate the tumor cell density
distribution of diffusive gliomas beyond their visible mass in MR images taking into
account the growth tendencies of the tumor. In the previous chapter we have seen
that we can personalize reaction-diffusion type growth models by estimating their
patient specific parameters. Based on this, to derive our formulation we started
from these type of growth models as given in [Clatz 2005, Jbabdi 2005]. Apply-
ing reaction-diffusion models to solve the previously mentioned problem poses sev-
eral difficulties. As we encountered in Chapter 4, in order to perform simulations,
reaction-diffusion models require the knowledge of tumor cell densities at every
point in the brain while in reality only CTV1 and/or CTV2 contours are observable
in the images. We have seen that this problem can be solved using the traveling
time formulation explained in the previous chapter. The other problem is that the
reaction-diffusion models describe the time evolution of tumor cells, however, the
problem we are tackling is static, dealing with the distribution of tumor cells at a
single time instance. As in the previous chapter, we use asymptotic approximations
to overcome these difficulties and derive a static formulation to solve the problem
of estimating low density infiltration of gliomas in an image. The proposed method
starts from the delineation of the tumor in the image (manual delineation or au-
tomatic segmentation) and constructs an approximation for the tumor cell density
distribution beyond the visible part taking into account the underlying tissue charac-
teristics by using anatomical and diffusion tensor images. With such a formulation,
we aim to construct irradiation margins that would be more efficient in targeting
tumor cells and reducing the irradiation of healthy brain tissues.

In Section 6.2, we explain the reaction-diffusion type models in detail and derive
our formulation. Subsequently, in chapter 7 we assess the quality of the approxi-
mation constructed by the proposed formulation using virtual tumors. In addition
to that, we use our formulation to construct a variable irradiation margin and com-
pare it to the conventionally used constant irradiation margin in terms of number
of tumor cells and volume of healthy tissue targeted in the case of synthetic tumors.
In Section 7.4 we conclude by summarizing the work with our results and provide
future directions.

6.2 Method

In this section we use asymptotic approximations to derive a formulation based
on reaction-diffusion models which offers a solution to the problem of visualizing
low density infiltration. In Chapter 4 we have studied some of the asymptotic
properties of reaction-diffusion models. We have focused our attention on the speed
of the tumor delineation. Here we are going study other aspects of the asymptotic
properties and focus on the shape of the tumor distribution below a certain density
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value. As in Chapter 4 we assume that the iso-density surface at this density value
corresponds to the tumor delineations observed in the images. Therefore, our focus
in this section will be on the tumor cell distribution beyond the tumor delineation
in the images.

Before we delve into details let us mathematically formulate the problem we
solve. Reaction-diffusion growth models describe the temporal change of tumor
cell densities denoted by u(x,t) at every point in the brain (u can also be inferred
as the probability of finding tumor cells). In terms of u, the imaging process of
gliomas can be modeled with a simple Heaviside function as done in the previous
works [Swanson 2002b, Tracqui 1995| and the previous chapter:

1 ifu>wug

Im(u(x,t)) = { 0 ifu<ug (6.1)

where I'm is the imaging function and ug is the detection threshold. A detection
threshold ug is given for CT images in [Tracqui 1995], and based on the coherence of
observations obtained from MR images, radiologists assume a similar threshold. As
we have done in the previous chapter, here we use the same threshold as proposed
in [Tracqui 1995], up = 0.4. In this setting, the problem of extrapolating low density
infiltration of a tumor, starting from the visible part in the image taken at a time
instant ¢ = ty can be described as constructing an approximation

u(x,t0) = u(x) vV x € {x|Im(x) = 0}. (6.2)

This equation basically states that 4 approximates the actual tumor distribution
u at the time instant ty in the regions where the image is not visualizing the tu-
mor. Unlike the reaction-diffusion models, which are dynamic and describe time
evolution of gliomas, the construction of this approximation is a static problem.
Moreover, in the clinical situations the value ¢y, which indicates the time elapsed
between the emergence of the tumor and the imaging, is not available. Therefore,
the approximation @ should not depend on .

In the following sections we derive a formulation for constructing the approxi-
mation 4 which is the proposed solution to the problem of extrapolating low density
infiltration for gliomas. As in the previous chapter we focus on the reaction-diffusion
model proposed in [Clatz 2005]. However, we note that the same formulations
and analysis can be carried over to other types of reaction-diffusion models such
as [Swanson 2002a, Jbabdi 2005].

ou

ot V- (D(x)Vu) + pu(l — u) (6.3)
_ ] dgd , X € gray matter
D(X) B { dwDyater , X € white matter. (6'5)

We have seen in the previous chapter that the parameters of the model d,,, d, and
p can be identified up to some extent for each patient using time series of images. In
this chapter we assume that these parameters are found and we continue our study
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from there on. However, even if the parameters are not known (the case where
there is only one image of the patient) the proposed method aims to provide the
radiotherapist a tool with which he/she can visualize different possible distributions
by playing with the parameters. We also remind that p and D of the model cannot
be identified separately using time series of images 5.1.2. We take into account this
ambiguity in our analysis and study its effect.

6.2.1 Tumor Cell Density Extrapolation

The asymptotic properties of reaction-diffusion equations explained in the previous
chapter help us construct the approximation we seek for, @(x). We use the existence
of an asymptotic traveling wave to extrapolate the low density infiltration regions
of diffusive gliomas. We know that the reaction-diffusion equations admit traveling
wave solutions under homogeneous parameters and in the infinite cylinder. This
means that the solution of the equations can be given as

w(x,t) =um-x —ovt) =u(€) as t — oo. (6.6)

where v is the asymptotic speed, £ = (x-n —wt) is the moving frame of the traveling
wave and n is the direction of motion of the traveling wave. In the previous chapter
we have used that the speed of the traveling wave v = 2v/n’Dn to solve for the
parameter estimation problem. In this chapter we use the shape of the traveling
wave, namely its slope. In order to have an analytical description of the asymptotic
shape we focus on the infinite cylinder case with homogeneous parameters. As the
tumor cell density distribution converges to the traveling wave the shape of the
distribution also converges. In Figure 6.2 we show this behavior both for the overall
distribution and the shape of the distribution below u = uyg.

The analytical description of the shape of the asymptotic traveling wave can be
obtained by placing the solution u(€) in Equation 6.3. By noticing that n is in the
direction of € and in the infinite cylinder the change of w is only nonzero in the n
direction we can transform the partial differential equation into an ordinary one

d?u

d
DnT2+2\/ pDn_,l—L'i'pu(l_u) =0 (67)
dé dg§
Dy =1'Dn, (6.8)

where the partial differentials become derivatives with respect to &, also shown in
Equation 4.5. The solution for this nonlinear equation does not have an analytical
form due to the nonlinear reaction term pu(1—wu). In this section our aim is to find
an approximation to the solution of Equation 6.7 without using global linearization
of the nonlinear term. Instead of global linearization, we can locally linearize this
term and obtain analytical solutions for local patches. Here, we propose to construct
these local solutions and then combine them to obtain the form of the traveling wave.
Assume that at a point & we know the value of the tumor cell density v = u* (in
the images this corresponds to having the delineation of the tumor and assuming
that it corresponds to an iso-density surface). When we linearize the Equation 6.7
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Figure 6.2: (a) The tumor distribution evolving with the constant coefficient
reaction-diffusion equation (cross-section of the tumor cell density distribution in
the infinite cylinder) is plotted at different times (non-dimensional). We plot the
distribution at different times on the moving frame £. Observe that as time passes
the shape of the distribution converges to an asymptotic shape. (b) When we plot
the distribution below u = ug at different times again we observe the convergence
behavior of the shape of the traveling wave.

around the point Z*, u* we get

d?u

D 4 0 /oDn ™ 4 pu(1 —ut) =0 (6.9)
dé dg§

Equation 6.9 can be solved analytically and the solution has the form

ugs (€) = Be MIHVIIE 4 gemM1-vun)e (6.10)
P

S 11

A= Do (6.11)

where A and B are integration constants and uz is the local solution around E*
Due to the smooth properties of the reaction-diffusion equations this solution can be
used as an approximation for the solution of Equation 6.7 in a small neighborhood
around & [Taylor 1996]. Then using the u values found on the boundary of this
neighborhood one can construct the approximations for the adjacent neighborhoods
and cover the whole domain like this. By constructing and combining these local
approximations in a successive manner, we reconstruct the shape of the traveling
wave u(£) starting from the known point u(€*) = u*. This idea is demonstrated in
Figure 6.3.

In order to obtain the relationship between the two constants A and B we use
the fact that w = 0.5, the origin of the moving frame &, is an inflection point of
the traveling wave. Therefore, the second derivative of u at v = 0.5 should be zero.
When we impose this to the local solution around u* which is close to v = 0.5 we
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Figure 6.3: The shape of the traveling wave can be reconstructed starting from
one known point and building local linear approximations to the reaction-diffusion
equation with nonlinear reaction term. If the known point is u(£,) = u#) then we can
use the local linear approximation at this point to find the value u(a) = u]. Then
using the linear approximation at Z’{ we can find the value u3 and the reconstruction
process goes on like this.

get
A 14+ Vu*)?
== g (6.12)
B (1-+Vu*)?
For values of u* close to 0.5 this ratio remains well over 20. The contribution of
Be~M+Vu)E ig much smaller than the other part. Therefore, we ignore this part
of the solution given in Equation 6.10. As a result the local approximation ﬂg* of

the tumor profile around u* can be given as
ugs (%, 1) & T+ (x) = g+ () = Ae V) for A= /p/Dy. (6.13)

We notice that the value of the integration constant A depends on the value of &.
The value of € at a point corresponds to its distance from the inflection point of the
traveling wave, which is at u = 0.5 (see Figure 6.2(a)). From the images however,
we can observe the regions where tumor cell density is greater than ug. Therefore,
we do not have access to the value of € at a point. For each local approximation
this problem can be solved easily. For a point £ = Z* + A€ we can write

ﬂg* (E* + AE) = Ae*)‘(lf\/ui*)(gmrﬂg) (614)
— Ae*)\(lf\/ui*)g* 6*)\(1*\/17*)45 (6.15)
= e MIVuDAL (6.16)

where AE is a small distance as we remain close to the point u*. As a result we
replace the unknowns A and € with the knowns u* and A€. Using ¢ variable instead
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of the A¢ we obtain our final local approximation for the form of the tumor profile

(traveling wave)
ligs = wre MIVEIE fop ) = vV p/n'Dn. (6.17)

We note that in the local neighborhood of (E*,u*) this solution can be written as
the integral

£
ag*:/ A1 = Vu)igdp with g (0) = u*. (6.18)
0

When we take small enough neighborhoods around each u*, in the limit, we replace
u* in the integrand with 4z<. Here we assume that in such a small neighborhood
ﬂg* values will be close to u*. Considering the smoothness of the reaction-diffusion
equations this approximation becomes valid [Taylor 1996]. With this approximation

the local solution given by the integral becomes

£
Ugr = | —A(1—/Ug)Ug=dp with g (0 u’. (6.19)
o= [ -xa- i o (0) =

Combining these local solutions in different neighborhoods using this integral form
we obtain the global approximation for the form of the traveling wave

a(x) = /0$—A(1—\/5)ad§ with  @(0) = uo, (6.20)
)\ — \/ﬁ
vn'Dn’

where x is the distance of the point x from the known point © = ug. In our context x
is the distance from the tumor delineation. We will use this global approximation for
our extrapolation formulation. However, just to understand its link to the nonlinear
PDE given in Equation 6.7, we look for the nonlinear PDE the solution given in
Equation 6.20 solves. For this placing this solution in Equation 6.7 we see that the

global approximation @ solves the equation

Dn% +2\/,072—g + pu(l — u) +,0M =0, (6.21)

where the additional nonlinearity puy/u(l —+/u)/2 is the error we make as a result
of the assumptions we have done in the derivation. We notice that this additional
nonlinearity remains well below pu(1—u) for u € [0,1] Once we write Equation 6.20
we notice that the slope of the form of the tumor cell density distribution depends
on A = +/p/n’/Dn, which is a ratio between the proliferation and the diffusion rate.
Remembering from Chapter 4 that the speed of the tumor front v = 2y/pn’Dn is
related to the product of these parameters we have a better insight on the effect of
the parameters of the model on the evolution of the tumor cell distribution. These
effects are summarized on the theoretical tumor profile in Figure 6.4.

In Figure 6.5 we plot the asymptotic form of the traveling wave and the ap-
proximation that reconstructs this traveling wave using Equation 6.20. The approx-
imation uses the location of a single point shown in dark dot in both figures in
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Figure 6.4: The shape and the speed of the hypothetical tumor profile depends on
the parameters of the reaction-diffusion model, D and p. The speed of the tumor
and how fast it grows depends mainly on the product of the parameters Dp. On
the other hand the shape of the profile and how far it has infiltrated into the brain
parenchyma depends on the ratio of these parameters p/D. In the figures we show
these relationships. For simplification we denote D as a scalar. (b) In solid line we
show the hypothetical density profile of a glioma. In dash-dot line we show another
profile with the same pD product but a lower p/D ratio. We see that its infiltration
is further away. Lastly in the dashed lines we show a tumor profile with the same
p/ D ratio as the solid profile but with a higher pD product. We see that this tumor
has the same profile shape but it moves faster.

reconstructing the tumor cell density distributions. The fit is very accurate espe-
cially around the point where we start the reconstruction. Since we are interested
in the tumor cell density distribution below some threshold ug = 0.4 we focus on
that region. In Figure 6.6 we zoom on this region and the performance of the ap-
proximation as a function of time. We plot the shape of the traveling wave (low
density regions of the tumor profile) reconstructed by Equation 6.20 as a function
of the distance from the known point (tumor delineation) along with the real form
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Figure 6.5: Figures show the shape of the traveling wave in solid lines and the
reconstructed approximations using Equation 6.20 in dashed curves. (a) We start
from the point ug = 0.4 and reconstruct the whole profile using only the location
of this point. This point is shown in the plot. (b) We do the same thing but this
time we start from ug = 0.7. We see that the approximation to the shape of the
traveling wave given in Equation 6.20 can accurately reconstruct the whole shape
of the traveling wave and therefore the hypothetical tumor cell density distribution
in this case.

of the traveling wave taken at different time instants for the infinite cylinder case.
We observe that this approximation is reasonable for the tails of the profile and it
gets better as time elapses.

The approximation explained above is constructed for the case where the coef-
ficients of the reaction-diffusion equation are constant over the whole domain and
the motion is only in one direction. This is not the case for general media and for
the brain. Moreover, when the tumor front is curved its motion would not be in
one direction and the solution of the reaction-diffusion equation cannot be given in
terms of a traveling wave. In order to reconstruct the hidden part of the tumor
cell density distribution in MR images we make the following assumptions: within
a voxel, the coefficients are constant and the motion of the front is only in one
direction. Based on these assumptions we can construct the local approximations
given in Equation 6.20 in each voxel separately. The computation in each voxel
uses the values at its neighbors as it is the case for the reconstruction in the infinite
cylinder. Using this principle, we sweep the domain starting from the visible part
of the tumor and going outwards computing the tumor cell density estimate at each
voxel. In this construction the direction of motion and the initial value for each
voxel are defined by its adjacent voxels.

Following our assumptions, the integrand in Equation 6.20 can be written as the
gradient relation in 3D,

ou
on
Placing A in this equation and replacing n with Va/ | Va |, we obtain the follow-
ing static Hamilton-Jacobi equation that constructs the approximation @ given in

= M1 — Va)i. (6.22)
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Figure 6.6: Approximation constructed for the low density regions of the tumor
profile in the infinite cylinder case. All the time and distance values are dimension-
less. To give an idea, for a high grade glioma each time unit would correspond to
60 days and each distance unit would correspond to 0.5 cm. The tail approxima-
tion constructed using Equation 6.20 (solid curve) is plotted with the actual tails
of the tumor front. The detection for the tumor in the infinite cylinder is assumed
to take place when the tumor has grown for 1.5 cm of diameter (the corresponding
non-dimensional unit). We show the low density regions of the at the time of de-
tection, 1, 2, 3, 4 and 5 time units after the detection, the dashed curves from left
to right respectively. As time increases the solid curve approximates the actual tail
better. The associated table shows the difference in tumor cell density between the
tail approximation and the actual tail at a given day for different locations in the
moving frame denoted by the vertical dashed lines in the figure.

Equation 6.2 at each voxel with the principle shown in Figure 6.3.
v Vi - (DVa
R ( ?) =1 a(l') = uo (6.23)
Vou(l —Va)

where I' is the contour around the visible part of the tumor in the image (u >= uyg).
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As a reminder in this chapter ug is taken as 0.4 following the assumptions made
in [Tracqui 1995].

Equation 6.23 has two solutions at each point, one with increasing and the other
one with decreasing 4. Since the reaction-diffusion equation tells us that as we move
away from the visible contour, the values of @ will decrease, for all points we choose
the decreasing solution. Using Equation 6.23 we start from I" and sweep the domain
moving outwards as we find % values for each voxel.

The Equation 6.23 is a static Hamilton-Jacobi equation. Several different nu-
merical methods have been proposed to solve this kind of equations [Qian 2006,
Sethian 2003]. In this thesis, we adopt a fast marching (FM) based approach
to solve it which is coherent with the sweeping idea we propose to construct
the low density infiltration estimate w. The details of the proposed numerical
method used is explained in Chapter 8. The original FM method as proposed by
Sethian and Osher solves the Eikonal equation but does not take into account the
anisotropy [Sethian 1999]. The method we use modifies the original FM algorithm
to include the effect of the anisotropy, Chapter 8. In this way it enjoys the efficiency
of the FM method and provides an accurate solution in the case of high anisotropy.
As a result of sweeping the domain outwards starting from the tumor delineation,
the continuity of the constructed @ is ensured. On the other hand, implicit interpo-
lation between different voxels, in other words the patching between planar solutions
in different voxels, depends on the order of the numerical scheme, which is linear in
our case. One can imagine a second order patching by including the effect of the
curvature in the extrapolation given by Equation 6.23.

Algorithm 2 The algorithm for extrapolating tumor cell density distribution ig-
noring the boundary conditions.

Inputs: Tumor delineation in the anatomical image, DT-MRI of the patient,
White-gray matter segmentation, personalized tumor growth parameters for the
reaction-diffusion model (or a parameter set the radiotherapist /radiologist would
like to try for visualizing different possible tumor density distributions).

- Construct the tumor diffusion tensors using the parameters d.,, dy, the DT-MRI
image and the white-gray matter segmentation.

- Initialize the extrapolation by setting @ to ug on the tumor delineation.

- Compute @ value at each voxel which has a neighbor whose @ value is set using
the numerical method in Chapter 8.

- Among the two computed @ values choose the one that is decreasing and set it
for that voxel.

- Sweep the domain in this respect outwards starting from the delineation.

Equation 6.23 constructs the low density infiltration estimate @(x) based on the
reaction-diffusion model (Equation 6.3) in the infinite domain. However, the total
model consists of a no-flux (Neumann) boundary condition (Equation 6.4) as well,
which affects the distribution of the tumor cell density in the brain. In Section 6.2.2
we include the effect of the boundary in our extrapolation formulation. Before going
into details of the boundary conditions in Algorithm 2 we summarize the method
explained in this section through an algorithm.
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6.2.2 Including Effects of the Boundary Condition

The estimate for low density infiltration of gliomas as constructed by Equation 6.23
does not take into account the effects of the Neumann boundary condition given
in Equation 6.4. This condition states that tumor cells trying to pass across the
boundary (skull and ventricles) bounce back from it and continue their motion
within the tissue. Thus, the effects of the Neumann boundary condition are not
only confined to the points neighboring the boundary. The condition affects the
tumor cell density distribution throughout the brain.

Construction in 1D

In order to understand and approximate this effect on the tumor profile, we examine
the 1-D linear reaction-diffusion equation including a boundary residing at x = 0
given as:

uy = dug, + pu for x <0 (6.24)

where d is the scalar diffusion coefficient in 1-D. For such systems, we can use the
method of reflection to construct the approximation for the low density parts of
the tumor in the presence of the boundary condition [Strauss 1992]. The method
of reflection is used to construct solutions of linear partial differential equations
such as the diffusion equation in finite domains, [Strauss 1992]. It uses the solution
under no boundary condition, reflects it with respect to the boundary and superpose
these two, relying on the linearity of the equation. By adding the reflected solution,
the boundary condition (Equation 6.25) is satisfied and since the problem given by
Equations 6.24 and 6.25 has a unique solution, the one created by this method is the
solution. In Figure 6.7(a), we illustrate the method of reflection by solving the 1-D
linear reaction-diffusion equation numerically following the steps of the method.

In the case of the nonlinear reaction diffusion equation we cannot superpose
two different solutions of the system. Therefore, in order to apply the method
of reflection we need to have certain assumptions. Let u!) be a solution of the
nonlinear reaction-diffusion equation in 1-D and u(? be its reflection with respect
to the boundary. Both u’s satisfy the nonlinear equation

up = dugy + pu(l — u), (6.26)

where d is the scalar diffusion coefficient. When we superpose the two solutions we
get

+ pu® +u®)(1 —u —u®) (6.27)
ugl) + u£2) = duggc) + du:(,i)

+ pu (1 =)+ pu@ (1 = u®) = 2puMu@ . (6.28)

We see that the superposition of the two solutions do not satisfy the equation due
to the nonlinearity. However, in this work we are interested in low values of u since
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T
‘‘‘‘‘ solution in infinite domain
““““ reflection ’
— solution in finite domain I

- - - result of method of reflection| ;|

= =~ sy Wref

Figure 6.7: (a) For linear partial differential equations the solution under the Neu-
mann boundary conditions can be constructed by removing the boundary and adding
a reflected wave on the other side of the boundary. The figure demonstrates this for
the 1-D reaction-diffusion equation under the boundary conditions. (b) Figure illus-
trates how we use the method of reflection for approximating the boundary effect in
the extrapolation formulation. The actual density distribution w is shown in solid
curve and the estimation % in the dark dashed one. As suggested by the method of
reflection, @ is formed by two parts: the no boundary approximation ,; and the
Uref. The boundary resides at = 0 and the u = ug point resides at £ = 0.

we try to extrapolate the tumor cell density distribution below some threshold uyg.
Therefore, the values of u(!) and u(® are low. Based on this, we assume that

(1 —u®M) (1 —u?)
Using this assumption we can say that
p(1 — M) >> puMu® and p(1 — u®)u® >> puMu?. (6.30)

Hence, we assume that the superposition of two solutions satisfy the nonlinear
reaction-diffusion equation for low values of .

In Section 6.2.1 we have seen that we can reconstruct the shape of traveling
wave solutions of nonlinear reaction-diffusion equations by local approximations and
integrating over them. This reconstruction was done in the infinite domain. In the
finite domain, we can construct @ using the idea of superposing two different parts
so that it takes into account the effect of the boundary conditions. Without loss of
generality let us assume that we know the value of u at z¢ such that u(zg) = ug (in
the context of the tumor delineation the value xq is the location of the delineation
and the value wug is the imaging threshold.), see Figure 6.7. In order to construct
the shape of the solution of Equation 6.26 starting from =z including the effect
of the boundary we superpose two approximations ,, and u,.r. Each of these
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approximations have the integral form like the one given in Equation 6.20:
() = /Ox A1 = Oy )linpd€ with  Gpp(€ = 0) = ugp (6.31)
Uref(x) = /O "M~ Vi dE with i (€ = 0) = tger, (6.32)
where gis the moving frame traveling at the same speed but in the opposite direction

as & Moreover, the point £ = 0 is the location of the tumor delineation while
the point & = 0 is the boundary, see Figure 6.8. The approximation @ consists

Tumor
Delineation Boundary
4) ( PN
3 g

[ ]

Figure 6.8: The two parts of the approximation « have different coordinate systems
as given in Equations 6.31 and 6.32. The two moving frames £ and ghave opposite
directions and different origins. The £ = 0 corresponds to the tumor delineation
while {Acorresponds to the boundary.

of a part that is constructed by ignoring the boundary condition, ,;, and the
reflection of this part on the boundary, t,.r, as demonstrated in Figure 6.7(b).
The reflection %,.r decreases in the opposite direction of ,;, in order to satisfy
the no-flux boundary condition and this is represented by the relation between the
variables f and ¢ such that df/df = —1. The initial conditions usp and Uper are
used to fit the approximation to the observation and also to the boundary condition.
Under this setting, constructing the low density infiltration estimation @ corresponds
to finding the values for the coefficients. Once the coefficients are found, at any
location the superposition of these solutions gives us the final form of the solution
of Equation 6.26 including the effect of the boundary,

W(x) = Upp(x) + Upef(). (6.33)
There are two criteria which determine the coefficients upp and upes. The first
one is the no-flux boundary condition
d . d d
%U\azzo [dxunb+ I ——ypeflz=0 = 0. (6.34)
It provides us the relation between the coefficients. Using the fact that the two parts
are going in opposite directions (d¢/d¢ = —1) we see that Equation 6.34 gives us

d . —
%U\xzo = )\(1 -V unb)unb‘x:O - )\(1 -V uref)uref = 07 (635)
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where we used the fundamental theorem of calculus. This suggests that once we
construct the ty,, by ignoring the boundary, we can find the reflection part s
based on the value of %@,; on the boundary such that the no-flux boundary condition
will be satisfied. However, this relation is a 4" order polynomial and solving such
polynomials is costly especially if we consider that we will solve this equation for
many different points on a 3D boundary. This will become clearer when we consider
the higher dimension in the next section. In order to have a simpler form we make
the approximation

(1 RV uref)uref ~ Uref
(1 = Vnp)nplo—0  Unblz=0

which is very close for low values of u. As a result of this approximation we obtain
a simpler relation to find uper value:

(6.36)

Upef = ﬂnb(x = 0) (637)

The second criterion is the fidelity of the approximation to the observation. Since
we observe the location of the u = ug point (iso-density contour), the approximation
should be coherent with this observation. Using the £ variable as in the previous
section to represent the location of u = ug point, we can write this criterion as

ﬁ|§:0 = [anb + aref]f:O = Uq. (6.38)

This relation basically states that when we add the two parts of the approximation
the location of the @ = ug should match the u = ug point. While the boundary
condition gives the relation between the coefficients, Equation 6.38 provides us the
numerical values for them.

Algorithm 3 The iterative algorithm for finding the effect of Neumann boundary
conditions on the low density infiltration.

Initialize the extrapolation: u,p? = ug
repeat
Upef® = ﬂ:?,b|x:0 fori>1
construct ﬂief
Unp' T = ug — aief|£=0 fori>1
until both criteria are satisfied with enough accuracy.

We use an iterative scheme to find the coefficients 1, and 4,.¢ that satisfies the
two criteria explained above. The scheme starts from the approximation constructed
for the infinite domain in Section 6.2.1 setting it as the initial 4,;. At each iteration
we construct @y, determine uper using the boundary condition, construct . and
update uyp according to the fidelity criterion. The pseudocode for this scheme is
given in Algorithm 3. This iterative process is demonstrated in Figure 6.9 where
the approximation at the beginning of the iterations (%”) and at the end of the 2nd

2

iteration (@* = @) are shown.
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tumar cell density

Uref

Figure 6.9: The figure illustrates the iterative process to find the coefficients upy
and upes. In order to approximate the actual profile (solid curve) ﬂﬁlb and &ief are
constructed iteratively to satisfy the boundary condition given in Equation 6.34 and
the fidelity criteria given in Equation 6.38.

Construction in higher dimensions

When applying the effect of the no-flux boundary condition on the low density
extrapolation in 3-D (2-D) we use the same principles as we developed for the 1-D
case. The boundary, which is a point in the 1-D case, becomes a surface (contour)
02} in 3-D from which the tumor cells bounce back in the dynamic formulation
of reaction-diffusion models. Hence, every point on the boundary will act as a
reflector of tumor cells. In order to derive the appropriate relations for the low
density infiltration estimation @ in 3D, let us assume that we have a homogeneous
and anisotropic media characterized by the diffusion tensor D and we have a planar
visible tumor front with the normal n. @ is constructed again as the sum of two
different parts as:

U = Upp +aref7

Gpx) = [ Aapll = V) pdS with s(0) =
0
aref(x) = /O_Aref(l_\/&ref)arefdg with aTef(O):uI'Ef
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o [P
>\nb - nTDna
. P
Aref = \ no”Dng’

¢ = n'x—d,

5 = nQTx—ct,

where n is the gradient direction of ,,;, ng is the normal to the boundary which by
construction coincides with the gradient direction of %,.¢ at the boundary and z is
the distance of point x to the tumor delineation. Notice that due to the anisotropic
diffusion tensor A, and A,y differ. By convention we choose ng to be pointing
towards the brain, i.e. ngn < 0. We construct i, in the same manner as explained
in Section 6.2.1. Once it is constructed, ..y is the only unknown in this setting
and we set it so to satisfy the boundary condition which is given as:

n}, DVulg = 0, (6.39)

stating that the component of the flux of tumor cells orthogonal to the boundary
should be 0. The approximation @ should follow this condition as well.

To construct u,.r, we need to find the relation between ,;, and ,.; at each
boundary point separately since every point acts as a cell reflector. At the point p
on the boundary, in order to satisfy the boundary condition we should satisfy

0, D (Vi + Vipes)|p- (6.40)

Placing the definitions of ,; and t,.s, for @ we obtain

U= /0 —Anb(l — \/ﬂ—nb)ﬂnbdé +/0 —>\7«ef(1 -V aref)arefdg- (6'41)

Using the fundamental theorem of calculus we can compute the gradient of @ at p

va‘p = _)\nb(l -V ﬂnb)ﬂnb|pn - )"ref(l Y U—ref)uref|pn(2~ (6-42)

Forcing the boundary condition given in Equation 6.39 we obtain the relation we
are looking for the points on the boundary

(1 - uref(x))uref(x) = (643)
- ngDn — VUpp(X) )Unp(x), for x
\/m ngDnQ (1 nb( )) nb( )7 fi € 0N.

Therefore, for each point on the boundary we can find upes by solving the 4t
order polynomial given by the Equation above. As we have explained during the
construction of the 1D solution this is costly therefore we apply the approximation
we have introduced in Equation 6.36. In higher dimensions this approximation
becomes

(1 - uref(x))uref(x) . uref(x)

(1= /s ()l (%) Tnp(%)

(6.44)
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As a result of this approximation we transform Equation 6.43 into

nl Dn
uref(x) = - Q2
vn” Dny/nl,Dng

As done in the previous section, the construction of the approximation 4 as
explained above assumes homogeneous media and planar tumor front. However,
these assumptions do not hold in the case of MR images of gliomas. To tackle
this, we follow the same voxel based assumptions we made in Section 6.2.1 stating
that the assumptions about the media and the shape of the tumor front holds true
within a voxel. To repeat, we assume that within a single voxel, coefficients of
the tumor growth model are constant and the tumor profile is not curved. Under

i ¢
(b)

(c) (d)

Unp(x), for x € 00. (6.45)

Figure 6.10: The 2-D example shown in the figures demonstrate the two parts of
the estimation % and the effect of including the boundary reflection. The striped
regions are set to be the boundaries with the Neumann boundary condition. (a)The
result of the reaction-diffusion equation for the low density region 0.002 < u < 0.08
shows the actual iso-density contours. (b) The no boundary part of the low density
region extrapolation @y,y. (c) The reflection part @,er. (d) The iso-density contours
of the superposition: Low density region estimation .

these assumptions, we use the fact that u,;, and ,.f satisfy the anisotropic Eikonal
equations

(1 — Vi) L, tnp(T') = unp (), (6.46)
VVires - (DVilres) = 1, Upef(00) = Uper(99), (6.47)

\/ﬁﬂref(l -V aref)

where uyy, is a function on the initial contour around the visible tumor just as Uyef
is on the boundary. This allows us to apply the same construction method as we
did in the previous section once the coefficients upp and uper are set.

As a result of the increase in dimension, the fidelity criterion is now defined over
the visible part of the tumor, I', which represents the u = wug iso-density surface,
and can be written as

(L) = () + ity (T) = wg. (6.48)
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Similarly, the iterative scheme can be carried over to the general higher dimensional
case by defining the update scheme on the surfaces I' and 0f). Figure 6.10, for a
simple 2-D example, shows the low density infiltration regions computed by solving
the reaction-diffusion equation and the two parts of the estimation @ along with itself
(a,b,c and d respectively). We observe that the effect of the Neumann boundary
condition is well captured by adapting the method of reflection in the low density
infiltration extrapolation. The algorithm summarizing the overall method explained
in this chapter is given in Algorithm 4.

Algorithm 4 The algorithm for extrapolating the low density infiltration of gliomas.
Inputs: Tumor delineation in the image (MR,CT,...), DT-MRI of the pa-
tient, White-gray matter segmentation, personalized growth parameters for the
reaction-diffusion model (see Chapter 4)
- Construct the tumor diffusion tensors using the parameters d.,, dy, the DT-MRI
image and the white-gray matter segmentation.
- Initialize the extrapolation by setting % to ug on the delineation.
repeat
- Construct the extrapolation ,, ignoring the boundaries by solving Equa-
tion 6.46, see Section 6.2.1. This equation is solved using the anisotropic Fast
marching method explained in Chapter 8.

- Compute the reflection from the boundary by Equation 6.45 and compute @,y
using Equation 6.47.

- Check the fidelity criterion given in Equation 6.48.

- Update the value of % on the tumor delineation as explained in Algorithm 3.
until Fidelity criterion given in Equation 6.48 is satisfied with enough accuracy.




CHAPTER 7
Extrapolating Glioma Invasion in
MR images: Results

Contents
7.1 Experiments . . . . . . . ¢ ittt e e 111
7.2 Assessing the Estimation Quality . . . ... ... ..... 112
7.3 Comparing Irradiation Margins . . . . ... ........ 118
7.4 Conclusion . ... ... ... ... 000l 124
Context

In the previous chapter we have presented the extrapolation formulation for con-
structing the low density infiltration estimation of gliomas @ to offer a solution to the
problem of limited tumor density visualization of medical images. We started from
the reaction-diffusion growth models for gliomas and derived the proposed solution
using their asymptotic behaviors. This chapter is devoted to the experiments and
the analysis of the extrapolation tool. We first analyze the tool by evaluating its
quality in extrapolation. Following that we devise synthetic irradiation experiments
and show the potential benefits of the proposed tool in defining irradiation margins.

7.1 Experiments

In this chapter, we assess the quality of the extrapolation method and the con-
structed estimation @ using synthetic tumors simulated by the reaction-diffusion
growth model given in Equations 6.3, 6.4, 6.5. For these synthetic cases, first we
compare the actual tumor cell density distribution beyond the visible mass in the
image with the estimation @ constructed by the proposed method. In the second
part we propose a method to tailor irradiation margins based on the estimated low
density infiltration. We compare these irradiation margins with the conventionally
used constant one through geometric comparisons. These comparisons include the
number of tumor cells not targeted and the volume of healthy tissue set to be
irradiated.

In both of the experiments shown in this chapter, we perform our analysis on
the synthetic dataset created in the Chapter 4. Here we briefly review the dataset,
for more details please refer to Section 5. In order to create this dataset we used
MR images taken from a healthy subject consisting of T1 weighted, T2 weighted

111
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and diffusion tensor images (DTI) with the resolution of 1mm x Imm x 2.6mm.
Using the reaction-diffusion model explained in Section 6.2 we simulated the growth
of 180 different synthetic tumors in three different locations and with 60 different
parameter sets. In this chapter, for clarity we show the results for 10 of these
tumors with 5 different parameter sets and 2 different locations. The locations of
the tumor seeds are one in the frontal lobe and the other one in the parietal lobe
as shown in Figures 7.1. We have chosen these two locations with different tissue
compositions to test the effect of tissue heterogeneity in our experiments. The
difference between the tumors at the same location is obtained by using different
growth parameters (diffusion coefficients and proliferation rates). These parameter
sets used to grow the synthetic tumors using the reaction-diffusion model are given
in the table in Figure 7.1 under the column “Real Parameters”. As explained in
the previous chapter each tumor was grown using the reaction-diffusion model. For
each tumor the detection and the first image acquisition take place when the visible
tumor reaches the size of 1.5cm in diameter. After the detection a synthetic image
is created every 50 days using the image function I'm given in Equation 6.1. These
images are then used as the inputs to our extrapolation method to estimate their
low density infiltration distribution.

The extrapolation methodology proposed in this chapter assumes that the tumor
growth parameters for the reaction-diffusion model D and p are known. These pa-
rameters are not available clinically however, in the previous chapter we have shown
that we can estimate these parameters from time series of images under certain con-
ditions. Therefore, here instead of using the real parameters of the reaction-diffusion
model we find it more appropriate to use the estimated ones. In the experiments
presented here we use the parameters estimated in the previous chapter for extrap-
olating the tumor cell density distribution beyond the visible part for the synthetic
tumors. The estimated parameters for different tumors are given in the table in
Figure 7.1 under the column “Estimated Parameters”. By using the estimated pa-
rameters we simulate a clinical situation where first we estimate the parameters
using numerous images and then use the estimated parameters to extrapolate the
infiltration of the glioma in an image.

The computation time to run the extrapolation method in the created images
depends on different factors such as ug (which is in our case ug = 0.4), the final value
up to which we will extrapolate, the parameters (D and p), the location of the tumor
and the desired accuracy of the iterative method for including boundary conditions.
As an example, in our simulations it took around 5 minutes to extrapolate the low
density distribution of the tumor at the frontal lobe with median diffusion rate,
starting from ug = 0.4 to v = 0.00001 with a very high accuracy using a 4Gb
memory 2.26GHz computer.

7.2 Assessing the Estimation Quality
The proposed extrapolation method constructs an estimate for the tumor cell dis-

tribution of gliomas beyond their visible part in the image. This construction uses
the visible part of the tumor and the anatomical information based on the reaction-
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(a) Frontal Lobe (b) Parietal Lobe

Real Parameters Estimated Parameters
name dy dy p %y Ay dy p

?’Tl_?’T'LQ me

day day
median 0.25 0.01 0.012 0.27 0.024 0.012
high 0.5 0.025 0.009 0.53 0.066 0.009
g/ p
low dy,g/p | 0.1 0.005 0.024 0.116 0.009 0.024
lower 0.1 0.025 0.012 0.115 0.035 0.012
anisotropy
higher 0.5 0.005 0.012 0.507 0.021 0.012
anisotropy

Figure 7.1: Figures (a),(b): Different initializations of the synthetic tumors are
shown. Table: Different diffusion and proliferation rates used for the simulations.
10 different tumors are created with these 5 set of parameters in the locations given
in Figures (a) and (b).

diffusion growth models. The first step we take in assessing the method is to compare
the actual low density tumor cell distribution with the estimated one for synthetic
tumors created using the reaction-diffusion model. Starting from the 10 synthetic
tumors explained above, we extrapolate the corresponding tumors low density in-
filtration regions (tails) and compare the extrapolated part with the actual density
distribution, see Figure 7.2.

In order to quantitatively compare the spatial resemblance of the actual den-
sity distribution of the synthetic tumors beyond their visible part and the density
distribution extrapolated using the images we compute the distance between their
corresponding iso-density contours. For the density value v and for the image taken
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) Simulated tumor density distribution - Reaction-Diffusion Model

-

(b) Tumor density extrapolated from the visible boundary of the tu-
mor ug = 0.4 - Reconstructed infiltration

(c) Comparison of iso-density contours

Figure 7.2: Example of an extrapolated image for a synthetic tumor (the median
tumor in the frontal lobe shown in Figure 7.1). (a) The image (up = 0.4) created for
a synthetic tumor is shown, where the white region is the visible part in the images.
The low density infiltration, which is normally not visible in the image, is also shown
in color from yellow (high density) to red (low density). (b) The extrapolated low
density infiltration computed by our method starting from the visible part of the
tumor (c) Several iso-density contours of the originally simulated tumor distribution
(red solid) and the corresponding ones of the extrapolated distribution (white solid)
are shown for comparison. We observe that the global resemblance between the
distribution of the synthetic tumor and the extrapolated one is very high.

t days after the detection we define the error measure €,/(¢).

) = %[dz‘st( Y TY) 4 dist(T3, TY)] (7.1)
i = {zlu(z,t) =v}
ry = {QJW( ) = v}

dist(A,B) = P Zdzstmm(a B),
acA
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where disty,in(a, B) is the minimum Euclidean distance between point a and the set
B, v is a density value for which the iso-density surfaces of v and @ are extracted
and @ is extrapolated based on the image taken at time ¢. Using this the total
resemblance error between two distributions at a given image taken t days after the

detection is defined as: )

(1) = 5 Y euld) (7.2)
veV

where V is the set of density values spanning the low density region. We have
16 iso-density values in the set V with the minimum wv,,;, = 0.005, which are
logarithmically spaced to ensure that the corresponding iso-density contours will
be equally spaced (due to the exponential drop of the front profile). This global
error criterion €(t) is the average over different values and provides a global spatial
resemblance measure.

In Figures 7.3(a) and (b) we plot €(t) for different time instances showing the
resemblance between estimated and the actual tumor cell density distributions. To
better understand the quality of the extrapolation method for different parameters,
we plot the error measure for tumors with different diffusion and proliferation rates
and for tumors at different locations (one at a region with heterogeneous tissue type
and the other at a region with homogeneous tissue type). In Figures 7.4(a) and (b)
we show €,(t) at ¢t = 200 days after the detection for different v values to show the
change of the error measure with respect to the iso-density contour value.

Observing Figures 7.3 and 7.4 we notice that the difference between the two pro-
files remains within the range of [0, ..., 1.5] mm, which tells us that the extrapolated
distribution remains within 1 to 2 voxel distance from the actual one (voxel size is
1x1x2.6 mm3). Analyzing the change of this difference with respect to several pa-
rameters, we can state the followings about the quality of the extrapolation method
in approximating the low density parts of a reaction-diffusion process:

- The average distance between the two distributions remains less than 1.0 mm
for all cases. The worst case error is reached at day 300 however, the difference
is not significant.

- When the ratio between diffusion of tumor cells and the proliferation rate (d/p)
18 low, the discrepancy between the extrapolated distribution and the real one
1s lower. When this ratio is higher the error seems to be higher. The reason
for this is that as the dispersion of tumor cells is faster the tumor cell density
distribution covers a larger space. Extrapolating a larger space brings higher
error because as we go further away from the tumor delineation we accumulate
errors. Therefore, the difference between the two distributions rises. Moreover,
we estimate the tumor cell distribution created by a reaction-diffusion process
with a convection one. As the process is dominated by diffusion the effect of
the curvature on the profile increases and raises the discrepancy.

- When the anisotropy coefficient dy,/dg is lower the extrapolation is closer to
the actual distribution. The reason for this is that as the convection process
estimates well the spherical growth. When there is anisotropy, the growth
diverges from spherical growth and the dynamics of diffusion becomes more
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Figure 7.3: Figures demonstrate the global difference between the actual and the
estimated tumor cell density distributions beyond the visible mass of the tumor at
different time instances. Figures (a)-(b): The global resemblance metric €(t) and
its change in time for 10 different tumors with different diffusion and proliferation
rates and at 2 different locations are demonstrated. The mean global difference
between two distributions remain within 1 voxel, smaller than 1.0 mm for all cases.
(Red: high dy, 4/p, Blue: low dy, 4/p, Black: median, Green: lower anisotropy, Cyan:
higher anisotropy.)

important. Therefore, the error we make by estimating diffusion by convection
becomes more apparent.

- € (t) increases as v decreases suggesting that the difference between the extrap-
olated and the actual distribution increases as we move away from the visible
part of the tumor. This is due to our construction of the extrapolation as an
integral solution which causes an accumulation of errors. However, the mean
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Figure 7.4: The differences between the corresponding iso-density contours of the
actual and the estimated low density infiltration regions for different density values
for the image taken 200 days after detection are shown. Figures (a)-(b) For the
10 tumors, €,(200) is plotted for different iso-density contour values v. The values
show that the error of approximation at different iso-density values remain within a
1 to 2 voxels, smaller than 1.5mm in all cases. (Red: high d,, 4/p, Blue: low d,, 4/p.
Black: median, Green: lower anisotropy, Cyan: higher anisotropy.)

error in this case remains below 1.5 mm for all cases, which corresponds to
1.5 voxels.

- Although we see some difference between the €(t) and €,(t) plots for the tu-
mors placed in different locations of the brain, it is not significant to draw a
conclusion about the effect of the tissue composition on our formulation.
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7.3 Comparing Irradiation Margins

Radiotherapy has an important role in treating invasive brain tumors as a spatial
treatment. The target irradiation region is constructed based on the tumor geometry
visible in medical images. It contains the visible tumor plus a constant margin
around the delineation to deal with the low cell density infiltration of the tumor not
visible in images. This constant margin approach does not take into account the
growth tendencies of the tumor, particularly the differential motility of tumor cells
in the white and the gray matters.

The method to extrapolate the tumor cell density distribution beyond the visible
part of gliomas proposed in this work gives us the opportunity to tailor the irradia-
tion region based on the growth dynamics captured by the reaction-diffusion models.
In order to demonstrate this, in this section we construct variable irradiation margins
based on the extrapolated density distributions. Then, we geometrically compare
the potential efficacy of such margins with the conventionally used constant mar-
gins in the case of synthetic tumors simulated by reaction-diffusion models explained
in 6.2. In the construction of the variable margin, we use the same quantity of irra-
diation as the constant margin (same total volume to be irradiated) but reshape it
according to the estimation of the low density infiltration.

Since for the synthetic tumors, the cell density at every location is known, we
carry out a quantitative comparison. We do this by testing the spatial accuracies of
both of these approaches via two different clinically critical measures:

- R: number of tumor cells not targeted

- Vol: volume of healthy tissue targeted by the irradiation margin.

In Chapters 4 and 6 we have shown the reaction-diffusion model in its normalized
form. In order to compute the R value we need to return to the dimensional form
by including the maximum number of tumor cells a voxel of brain can handle.
Consistent with the values given in [Tracqui 1995| in this part we use that a voxel
of 1 x 1 x 2.6 mm? can hold a maximum of 9.1 x 10* tumor cells. Therefore the
values given in this analysis are found and should be considered with respect to this
value.

We construct the constant margin irradiation region M, by taking the 2cm mar-
gin around the visible part of the tumor and removing the skull and the ventricles
from it as shown in Figure 7.5(b). The construction of the variable margin irradia-
tion region M, is done in two parts. First we construct the low density infiltration
estimate starting from the visible part of the tumor, creating M}, and then we
include a constant error margin around it based on the error values we found in
Section 7.2 creating M2. The variable irradiation margin M, is the union of these
two regions, see Figure 7.5(c). In order to ensure that the amounts of irradiation
(assumed to be given by the volume) in M. and M, are the same, we tailor the
different parts of M, as

M} = {z)i(x,t) > 6}
M? = {z|distyn (v) < eq}
choose § such that Vol(M} U M?) = Vol(M,) = Vol(M,). (7.3)
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where distyg is the distance transform in the brain from the set M}, €4 is the error
margin we would like to include in our irradiation region and ¢ is the dependent
parameter. We determine ¢ so that the volume constraint given in Equation 7.3 is
satisfied. Based on the error measures we found in the Section 7.2 we set ¢4 = 4mm
so that the error margin would be large enough to take into account the e(¢) V¢ and
€y (t) Y.

(a) Tumor distribution (b) Constant margin (c) Variable margin

Figure 7.5: The proposed variable irradiation region construction takes into account
the growth dynamics of the tumor. Figure shows the two irradiation margin con-
struction approaches and the synthetic tumor cell distribution they aim to target.
Figure (a) shows the low density cancerous cell distribution of the synthetic tu-
mor. The white region corresponds to the visible part (visible in the image) while
the colored region is the infiltration non visible in the image. Figures (b) and (c)
show constant and variable irradiation regions overlaid on the tumor distribution
respectively. Transparent green regions represent the areas set to be irradiated. For
the synthetic tumor the variable margin better covers the extent of the infiltration
therefore might provide a better targeting.

As in the previous section we carry our analysis for the 10 different tumors
consisting 5 different growth parameter sets at 2 different locations and at images
taken at different time instances. The comparison between the constant and the
variable irradiation margins are given in Figures 7.6-7.10, where R and Vol graphs
are plotted. Analyzing the results given in Figures 7.6-7.10 we notice that including
the tumor growth dynamics in tailoring the irradiation margin greatly improves the
spatial targeting of the therapy in the case of synthetically grown tumors. Observ-
ing these figures we see that for all the cases we have experimented with, the R
and Vol curves for the variable irradiation margin remains well below the curves for
the constant margin, with a great difference in most cases. For example 350 days
after the detection of the tumor the difference in number of tumor cells targeted
between the two approaches can go up to 6 x 10% Cells. On the other hand the
difference in volume of healthy tissue targeted between the constant and variable
margin approaches goes up to 13 em?. These values suggest that assuming tumor
growth tendencies are well captured by reaction-diffusion models, the variable irra-
diation margin is more efficient in targeting tumor cells and irradiating less healthy
brain tissue. Moreover, we can state the followings after observing the graphs:

- Looking at the R graphs we notice that the difference between the constant
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Figure 7.6: R and Vol vs. time plots for the synthetic tumor: median (see the table
in Figure 7.1). Graphs show the difference between the constant and variable region
irradiation in the case of the synthetic tumor. R represents the number of tumor
cells not targeted by the irradiation. Vol represents the volume of healthy (tumor
free) tissue targeted. Dashed lines are the plots obtained with the constant margin
while the solid ones are the ones obtained with the variable margin. Plots obtained
for tumors with the same parameters but at different locations (par=parietal lobe,
fron—frontal lobe, see Figure 7.1) are plotted on the same graph. The variable
irradiation margin seems to target more tumor cells (difference goes up to 3.5 x 107
cells) and less healthy tissue (difference goes up to 13 em?).

and the variable margins in targeting tumor cells increases as time passes. For
example in the average diffusion rate case for the tumor at the parietal lobe,
the difference between targeted tumor cells rises from 1 x 107 to 3 x 107 from
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Figure 7.7: R and Vol vs. time plots for the synthetic tumor: low d,, 4/p (prolif-
eration dominated growth). Dashed lines are the plots obtained with the constant
margin while the solid ones are the ones obtained with the variable margin. Values
obtained at two different locations are plotted on the same graph. We see that for
slowly diffusing tumors the difference between the variable and constant margin is

very low.

the image taken at day O to the one taken at day 350. This is related to the
fact that tumor cells infiltrate more as time passes yielding a more anisotropic
distribution in the tissue, and the variable margin takes this into account.

- Comparing Figures 7.6, 7.7 and 7.8, we observe that both schemes are more
successful in targeting tumor cells when the diffusion is less and the prolifer-
ation is higher ( the growth is more proliferation dominated ). This is due to
the fact that with higher diffusion tumor cells infiltrate further away in the
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Figure 7.8: R and Vol vs. time plots for the synthetic tumor: high d,, ,/p (diffusion
dominated growth). Dashed lines are the plots obtained with the constant margin
while the solid ones are the ones obtained with the variable margin. Values obtained
at two different locations are plotted on the same graph. Although the curves of R
look close their numerical difference goes up to 6 x 10% tumor cells.

brain parenchyma creating a need for a larger irradiation margin to achieve
the same success rate. We also note that the difference between the two
schemes is nearly none for the tumor which does not diffuse much. However,
as the tumor becomes more diffusive we observe that the difference between
the two schemes, both in terms of tumor cells not targeted and healthy tissue
irradiated, increases.

- Comparing Figures 7.6, 7.9 and 7.10, we see that when the anisotropy is higher
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Figure 7.9: R and Vol vs. time plots for the synthetic tumor: lower anisotropy.
Dashed lines are the plots obtained with the constant margin while the solid ones
are the ones obtained with the variable margin. Values obtained at two different
locations are plotted on the same graph.

the difference in number of tumor cells not targeted between the two schemes
is much higher. Also the difference in the volume of healthy tissue irradiated is
greater in the higher anisotropy case. This is expected since as the anisotropy
is lower the tumor grows “more” spherically and the difference between the
variable and the constant margin decreases.

- Observing Vol plots we notice that as the diffusion rate increases and when
the underlying media becomes more heterogeneous (white-gray heterogeneity)
the variable margin approach becomes more efficient in distinguishing healthy
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and infiltrated tissue. This is also related to the fact that the variable margin
approach takes into account the anisotropic nature of the tumor growth.

7.4 Conclusion

In this chapter, we have addressed the problem of limited tumor visualization of
medical images through mathematical tumor growth modeling. Especially for inva-

sive gliomas, although

images can show the mass part of the tumor they are not able

to visualize the low density infiltration which causes a serious problem in treating
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this pathology. We proposed a novel formulation which integrates macroscopic tu-
mor growth models with medical images to extrapolate the low density infiltration
regions of gliomas starting from the visible part of the tumor. In deriving the pro-
posed formulation, we have started from the well known reaction-diffusion models
assuming that the growth dynamics of gliomas are well captured by this type of
modeling. We then used asymptotic approximations of reaction-diffusion models to
formulate the proposed solution to the mentioned problem of predicting the extents
of the tumor infiltration. The resulting formulation, in a sense, complements the
imaging process and provides a larger view of the extent of the tumor infiltration.
The proposed extrapolation method can also be applied to other applications which
are modeled by partial differential equations which bear traveling wave solutions
(e.g. wound healing [Maini 2004|, cardiac modeling [Franzone 1990]).

One of the most important assumptions we have made in this work was that
the tumor growth dynamics are well captured by the reaction-diffusion type models
as proposed in different works such as [Swanson 2002b, Jbabdi 2005, Clatz 2005].
These models cover the general features of tumor growth such as macroscopic het-
erogeneity and anisotropy of tumor growth and provide a good match with clinical
cases [Swanson 2008b|. Reaction-diffusion models have few parameters which can
be directly related to the information available in the medical images. Therefore,
the models can be adapted to specific patient cases. Although reaction-diffusion
models do not include microscopic spatio-temporal factors affecting the growth pro-
cess, this problem can be overcome as more image modalities become available in
the clinical setting. One can imagine that when high resolution metabolical images
become available, which would allow us to visualize different integrins and enzymes
for each patient, then the proposed formulation can be adapted such that it takes
into account different spatio-temporal effects yielding a more realistic prediction of
the extent of tumor infiltration.

In Chapter 7, we performed two types of experiments evaluating the proposed
extrapolation method. First, we showed that the tumor cell density distribution
extrapolated using the proposed method remains within the vicinity of 1-2 voxels
of the actual distribution of the tumor beyond its visible mass. This demonstrates
that the extrapolation formulation is successful in reconstructing the solution of
the reaction-diffusion model at a given time instance from sparse observations like
the image. This approximation can naturally be improved by including the effect
of tumor fronts curvature and convergence characteristics of the reaction-diffusion
equation the expense of increasing complexity and loosing generality.

In the second part of Chapter 7 we have shown the significance of using the
proposed extrapolation scheme for radiotherapy. We constructed variable irradiation
regions, which take into account the possible infiltration extents of gliomas, and
compared them to the constant margins used conventionally in clinical practice.
The geometrical comparisons presented demonstrates that the proposed method
has the potential to target more tumor cells while harming less healthy brain tissue.
This suggests the possible higher efficiency we can obtain in radiation therapy by
using irradiation margins taking into account the growth dynamics. Besides the
static geometrical comparisons, one can also compare the dynamic time course of
radiotherapy under the two different schemes. However, for this purpose the dose
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delivery mechanisms and the response of tumor cells to the radiation should also
be modeled. Considering the discrete nature of tumor response to radiotherapy
(cell cycles, varying mitotic potential of tumor cells and phase durations) using a
discrete model for these dynamics might be more appropriate. There have been
several works on discrete models and tumor response to radiotherapy using such
models, [Drasdo 2005, Stamatakos 2006b|. Using a combination of the continuum
approach given in this work and a discrete model as explained in the cited works one
can simulate the radiotherapy process under the two different schemes and compare
their outcomes. However, the modeling of tumor response to therapy and therefore
this comparison are outside the scope of this work.

In all the experiments shown in this chapter we tried to stay in the limits of the
clinical practice. Namely, for the synthetic images we created, we did not assume
that we knew the parameters of the growth model. We personalized the general
growth model to fit these images through estimating the parameters of the model
(Chapter 4) and then using these parameters to perform the extrapolation. In
this sense, we tried to simulate realistic clinical conditions. On the other hand
there still remains a big issue regarding the parameter estimation in the context
of radiotherapy. Most of the time the radiotherapy starts as soon as the tumor is
detected, specially for the high grade gliomas. Therefore, in order to have a more
realistic tool we also need to find a way to estimate the parameters of the growth
model from a single image. This problem is not tackled int his thesis however, it is
one of our ongoing research topics.

The results and experiments we presented in this work are all synthetic cases.
In order to understand the real benefits of the formulation proposed in this work,
validations with real patient cases and clinical validation should be performed. Al-
though we have not performed them, we envision two types of validations to be
done. The first one is the validation of the proposed extent of the tumor infiltra-
tion. Through microscopic investigations of post-mortem brain cross-sections or
animal models we can determine the real tumor cell distribution in the brain tissue
ex-vivo. Moreover, newly developing techniques for in-vivo microscopy can be used
to obtain tumor cell distribution for the patients [Vercauteren 2008|. The compar-
ison of this distribution with the extrapolated one would let us understand how
close we can get to the real infiltration margin using the proposed method. After
the in-vivo validation, clinical validations should also be performed to understand
whether adapting the irradiation margins of the radiotherapy to the extrapolated
infiltration extent of tumor is beneficial or not. Such an adaptation may suggest
critical structures to be irradiated while this may turn out to be harmful for the
patient.

In this chapter we have shown how mathematical growth models can be applied
in the therapy process. Our focus was given to radiotherapy but chemotherapy can
also benefit from the mathematical models and simulations obtained from them.
New therapy agents proposed in the literature [Batchelor 2007, Ricard 2007| can be
tested extensively using the mathematical simulations while, the usage of already
existing drugs can be optimized based on virtual experiments [Stamatakos 2006a,
Swanson 2002a).
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The importance of a specific type of partial differential equation the “anisotropic
Eikonal equation” has become evident in Chapters 4 and 6. In this chapter we
propose and briefly analyze a numerical method to solve such equations fast and
accurately. Such a method gives us the basic tool to solve the problems mentioned
in the previous chapters.

8.1 Introduction

In the attempt to bridge the gap between the reaction-diffusion type growth models
to medical images we have encountered static Hamilton-Jacobi equations and in
particular anisotropic Fikonal equations frequently in the previous chapters. We
have seen that the reaction-diffusion type growth models mathematically describe
the evolution of tumor cell density distributions. However, the images can only
visualize “delineations” of tumors, which are assumed to be iso-density surfaces of
the tumor density distribution. Both in the case of formulating the growth speed of
this delineation and in extrapolating the tumor cell distribution beyond the visible
part in the image we ended up with a static Hamilton-Jacobi equation of the form

FVVT'DVT =1 (8.1)

() = g(=),
where T is an implicit function (which we refer to as “time” in this chapter), D
is a tensor (positive definite matrix) , F' is a speed term, I' is a surface where the

Dirichlet type boundary conditions for T' is defined as g(z). In the previous chapters
we have seen that F'is usually a spatially varying function which might depend on

127
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T and its derivatives. In this chapter we focus our attention on the case where F' is
a spatially varying function that does not depend on T nor its derivatives. In this
case Equation 8.1 takes the form of an anisotropic Fikonal equation. Although we
focus on this specific type of equation, this does not constrain us from applying the
methodology explained here to more general cases. As we have seen in Chapter 4
through an appropriate iterative scheme we can solve for more general F' using the
scheme explained here.

The anisotropic Eikonal equations are not inherent to tumor growth modeling.
There are many other applications where these equations arise, e.g., cardiac electro-
physiology, wound healing, geology. Therefore, numerical solvers for these equations
are needed in many different domains as the one we are interested in.

There have been many different ways proposed to solve equations with the
form of Equation 8.1 or in general convex, static Hamilton-Jacobi equations.
These ways can be coarsely classified into four: algorithms using single-pass meth-
ods [Sethian 2003], sweeping methods [Qian 2006], iterative methods [Kao 2005] and
embedding methods [Osher 1993|. Single-pass methods start from points where time
(T') values are already known and follow the characteristic direction of the PDE to
compute T at other points. This approach is based on the fact that in equations
such as Eqn. 8.1, the value of T" at a point is only determined by a subset of its neigh-
boring points, which lie along the characteristic direction [Kevorkian 2000]. In the
isotropic case, where D = dI is an isotropic tensor, these methods are very efficient
because they follow the gradient direction, which coincides with the characteristic
direction [Sethian 1999]. In other words, they only use immediate neighbors of a
point with lower values of T' to compute the new arrival time at that point using
an upwind scheme. These concepts are explained in detail in Section 8.2. In the
anisotropic case, the characteristic direction does not necessarily coincide with the
gradient direction and the same idea used for isotropic case yields false results. In
order to deal with this, Sethian and Vladimirsky enlarged the neighborhood around
a point used to compute the new arrival time such that the characteristic direction
remains within the neighborhood [Sethian 2003]. But size of the enlarged neighbor-
hood increases with increasing anisotropy of D. Unfortunately, this results in large
number of points used to calculate new values and a high computational load in
case of high anisotropies.

Sweeping methods use the same idea of characteristics as the single-pass methods
however, they do not start from the known points. Instead they sweep the domain
in many different directions and update the values at each voxel at each sweep-
ing, [Qian 2006, Kao 2005]|. By using many different directions they make sure that
for each voxel at least one sweeping direction matches the characteristic direction
of the PDE. The sweeping continues until the computed 1" map converges. These
methods do not have a problem with anisotropy. However, depending on the spa-
tial variation of D and the amount of anisotropy, these methods might need a high
number of sweepings to converge, and therefore, high computation times. Moreover,
they need an ordering of the underlying mesh to sweep the domain, which might
not be trivial to obtain for general meshes.

Iterative methods start from an initial distribution of 7" and iterate us-
ing upwind, monotone, and consistent discretization until 7' satisfies the Equa-
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tion 8.1, [Rouy 1992|. They use minimization techniques at each iteration to find
the T at the next iteration. As it is the case for the sweeping methods, iterative
methods might take a long time to converge in the case of spatially varying and/or
highly anisotropic D.

The embedding methods do not solve the anisotropic Eikonal equation directly.
They transform the static Equation 8.1 into a dynamic Hamilton-Jacobi equa-
tion [Osher 1993]. This transformation consists of embedding the iso-time surfaces
of T" as zero level-sets of another implicit function and transforming the gradient of
T as follows

v(xz,t) =0 for {z|T(x)=t} (8.2)
e oq o, o1 (8.3)
Vg Vg Vg

where the v is a time varying implicit function and the subscripts denote partial
derivatives. As a result of this transformation Equation 8.1 becomes

v, — FVNT'DVT = 0, (8.4)

which is a dynamic equation. This equation uses the idea of level-sets as proposed
in [Sethian 1999]. Based on this it profits from subvoxel accuracy and many different
numerical methods proposed to solve it [Jiang 2000, Bryson 2003, Sethian 1999]. On
the other hand, initializing the implicit function v from a given surface and solving
it can be computationally costly.

In this chapter, we propose an efficient and accurate algorithm to solve the
anisotropic Eikonal equation given in Equation 8.1. Our algorithm is a single-pass
method that is based on the well known “Fast Marching” methods [Sethian 1999].
Contrary to the single-pass method proposed in [Sethian 2003], through including
“recursive correcting” we manage not to increase the neighborhood that is used to
compute the value at a given point. We detail our algorithm in Section 8.2. In
Section 8.3, we compare our algorithm to one of the state-of-the-art sweeping meth-
ods [Qian 2006]. Moreover, we provide some analysis on the effect of the anisotropy
on the performance our algorithm.

8.2 Method

In this section first we review some of the basic concepts about Hamilton-Jacobi
equations such as “characteristic directions” and “group velocity” necessary to ex-
plain our method. Following these concepts we review the well known Fast Marching
method and see why it fails in the case of anisotropic equations. We then detail the
proposed algorithm.

8.2.1 Basic Concepts

In order to understand the basic concepts for first order Hamilton-Jacobi equations
let us start by a simple equation

Fu;, +u; =0 (8.5)
u(xv 0) = f($)7 (8-6)
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where subscripts denote partial derivatives, F' is a scalar constant and f(z) is the
initial condition. The solution for this equation is given by

u(z,t) =u(x — Ft) = f(x — Ft). (8.7)

In this solution we notice that the value of u remains constant along the vector
V = Fi+j, where ¢ is the unit vector in x and j is the unit vector in the ¢ direction.
This vector is called the characteristic vector of the PDE given in Equation 8.5
(and its direction is called the characteristic direction). The lines that are parallel
to this vector are called characteristic lines [Strauss 1992]. In Figure 8.1 we show

t
\Vj A

Figure 8.1: Figure shows the characteristic lines for an example PDE in the form
of the Equation 8.5. Values of u along these lines are constant. As a result u(B) is

only defined by u(A).

an example demonstrating characteristic lines in the (x,t) coordinate system. Each
line represents a characteristic line and by definition the value of u is constant along
each line. As a result, if we pick a point B in this coordinate system, the value of u
at this point only depends on the value of v at A and to none of the other points.
In other words the domain of dependence of B is point A and the line connecting
these two points. On the other hand, the value of v at A is carried along the half
line AB. Along this line all the points will have the same value of A. In other words
the domain of influence of A is the line AB.

For more general first order Hamilton-Jacobi equations the characteristic lines
and the relations of the domain of dependence and the domain of influence do not
have to be this simple. Domain of dependence of a point may contain a region and a
point may influence a region as shown in Figure 8.2. The numerical schemes that are
in the categories of sweeping methods and the single-pass methods use the domain
of dependence and influence in their formulation. The basic idea is to compute the
value of u at the point B by using other points which are in the domain of dependence
of B. Another way to formulate this is to state that the characteristic direction of
the PDE at B remains within the neighborhood which is used to compute the value
of u at B.
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\

Figure 8.2: Figure shows a more general domain of dependence. The value of v at B
is determined by the shaded region. The important point is that the characteristic
vector at B shown as an arrow remains within the domain of dependence.

For general first order static Hamilton-Jacobi equations in the form
H(x,VT)=0 (8.8)

the characteristic vector is given by the gradient of H with respect to V7. In the
case of the anisotropic Eikonal equation this characteristic vector is given as
FDVT
V=—rob—Fr¢F——. (8.9)
vV1T'DVT
As we have explained the direction of this vector is called the characteristic direction.
On the other hand, this vector is also called the group velocity V4 a term borrowed
from geometrical optics. In explaining the proposed numerical method we will use
these two terms frequently.

8.2.2 Fast Marching Methods

The Fast Marching Method (FMM) is an efficient single-pass algorithm for solving
the isotropic version of the Eikonal equation:

FIVT| =1 (8.10)
T(T) = Ty, (8.11)

where the second equation is the Dirichlet type boundary condition [Sethian 1999]
and T is the implicit function. For the rest of this chapter we will refer to T" as the
arrival time function where the value at each point represents the time a virtual front
passes over it. The FMM algorithm starts from the surface I' and constructs the
solution 7" by following the characteristic directions of the equation. It constructs a
thin layer around the region for which 7" values are known, computes the T' values
in this layer, adds the new points in the known region and marches the thin layer
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to sweep the domain. The key ingredient is the choice of the new points which will
be added to the known region. Through the correct choice the FMM follows the
characteristic directions of the PDE. It constructs the T function in an increasing
(decreasing) order starting from the small (high) values proceeding to higher (lower)
ones.

There are two parts of the FMM algorithm. The computation of the T" values
using the immediate neighborhood of a point and the overall algorithm. At a point
p the computation of T" only uses the neighbors of p whose values are already known.
The discretization at p which takes into account the characteristic directions for the
Equation 8.10 in 2D is given as

1/2

—x 2 s JtT 2
max(d, T, 0)* + min(—d;“T,0) _ 1 (8.12)

+max(d, YT, 0)? + min(—d, YT, 0)? E,’

where d,, is the discrete derivative operator in the direction of its superscript, i.e.
d,* = (Tp — T, *)/dx with dx as the spacing in the x direction. From this equation
we see that there are two points neighboring p used to compute T, let us call them
q1 and ¢3. Equation 8.12 has a quadratic form and its solution can be found easily.
In all cases the roots of the quadratic equation must be real however, there are
two of them. The FMM chooses the minimum of these solutions which satisfies
Ty > max(Ty,, Ty,)-

In order to briefly explain the overall algorithm let us examine a 2D setting.
Assume that there is a point for which the T value is known, the red point in
Figure 8.3(a). The first step is to set a tag for this point as KNOW N. Following
this, FMM computes the values of the points adjacent to the known one and sets
their tags as TRIAL, shown in green in Figure 8.3(b). The next step is to choose
the TRIAL point with the minimum 7' value, change its tag to KNOWN and
compute T values for its adjacent points setting their tag as TRIAL. Moreover,
the T values at the points that had already the tag TRIAL are updated using
the new K NOW N point, see Figure 8.3(c). The algorithm continues like this, as
shown in Figure 8.3(d), until all the points in the domain have the tag KNOW N.

In Algorithm 5 we summarize the FMM algorithm. In the algorithm we refer the
computation of T at a point by the UPDATE routine, for which the details are
given in Equation 8.12.

The computation of 7' combined with the overall algorithm creates a single-pass
numerical scheme that which follows the gradient direction of T'. Due to the fact that
the gradient direction is indeed the characteristic direction for the isotropic Eikonal
equations the FMM algorithm follows the characteristics. In doing so it uses the
correct domain of dependence for each point constructing the correct solution in a
single pass.

The anisotropic Eikonal equation, given as Equation 8.1, poses extra difficulties
for the FMM algorithm. The characteristic direction for the anisotropic equation
does not have to coincide with the gradient direction of T'. We see in Equation 8.9
that the characteristic direction of T" depends on the tensor D. Therefore, following
the gradient directions the algorithm uses incorrect domain of dependence and yields
false results as shown in Figure 8.4.
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Figure 8.3: The steps of the FMM algorithm. (a) Algorithm starts by the known
point in red and the unknown ones in blue. (b) It computes the T values at its
adjacent points setting their tag as TRIAL in green. (c) Following this it chooses
the TRIAL point with the minimum T value and change its tag to KNOWN.
Using this value it updates the T" values at all the TRI AL points and the neighbors
of the newly KNOW N point. (d) The algorithm continues in this fashion until all
the points in the domain are tagged as KNOW N.

Algorithm 5 Fast Marching Method.
Initialization
for all X € KNOWN (red points) do
for all Y; € N(X) and Y; € FAR (blue points) do
compute T(Y;) «— UPDATE(Y;, X)
remove Y; from FAR and add Y; to TRIAL (green)
end for
end for
Main Loop
while TRIAL not empty do
X — argminyecrprar, TRIAL
remove X from TRIAL and add X to KNOWN
for all Y; e N(X) and Y; € TRIALU FAR do
compute T(Y;) «+ UPDATE(Y;, X)
if Y; € TRIAL and T(Y;) < T(Y;) then
T(V;) — T(V;)
else if Y; € FAR then
T(V;) — T(V;)
remove Y; from FAR and add Y; to TRIAL
end if
end for
end while

8.2.3 Recursive Anisotropic Fast Marching

The recursive anisotropic fast marching, proposed in this chapter, is based on the
single-pass idea and it uses immediate neighborhood to compute arrival times. It
is based on the principles of the FMM and modifies this algorithm such that the
effect of the anisotropic tensor D is taken into account. As a novel step, on top of
the FMM algorithm, it adds a recursive correction scheme and uses a more general
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v i? VT
(a) (b) (c)

Figure 8.4: Solutions of FvVI'DVT = 1, T'(center) = 0 with a constant anisotropic
D. The solution of the system obtained using the FMM (left) and the solution solved
by anisotropic methods (right). We see that the FMM solution is not correct due to
the problem of following the gradient directions and not the characteristic directions.
On the schema on the left we show the characteristic direction V and the gradient
direction VI'. We see that the two directions do not coincide.

formulation to compute the T values at each point. This algorithm works efficiently
under general meshes, high anisotropies and highly varying D fields. Moreover, it
can be applied to more general forms of static, convex Hamilton-Jacobi equations,
which is beyond the scope of this work. In this work we focus on the equation

FVNT'DVT =1 T(T) =Ty, (8.13)

where I' is a surface on which the 71" values are known and equal to Tj.

Algorithm

The overall algorithm is similar to the original fast marching method. The main
differences are the recursive correction scheme and the computation of T values.
The initialization steps for initializing the method are the same. First, we go over
points whose value are already known and add them to a list called KNOW N.
Following this we compute the traveling times for points neighboring the points in
the KNOW N list and whose values are not computed yet (such points are kept in
the FAR list). We compute the trial T values for these points using only the known
points and add them to the TRIAL list while removing them from the FAR list,
see Algorithm 6. By neighborhood A(X) we mean all points directly connected
to the point X in some preferred connectivity sense (e.g. 4-8 in 2D and 6-18-26
in 3D Cartesian grid). As explained in the previous section, the FMM algorithm
follows the same operations throughout its main loop. (The TRIAL point with the
minimum value of T, Y, is removed from the TRIAL list, added to the K NOW N
list, trial values of unknown neighbors of Y are computed, if they are in the FFAR
list they are added to the TRIAL list and removed from the FFAR one, and if they
are already in the TRIAL list their values are updated. )
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Algorithm 6 Anisotropic Fast Marching: Initialization
for all X ¢ KNOWN do
for all Y; e N(X) and Y; € FAR do
compute T(Y;) «— UPDATE(Y;, X)
remove Y; from FAR and add Y; to TRIAL
end for
end for
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Figure 8.5: The Recursive Correction: (a) Among the TRIAL points the one with
the minimum 7 value is chosen, Y. (b) Beside computing the values for the unknown
and trial neighbors of Y we also update the T" values of its known neighbors. In the
case a lower T value for any of these known neighbors is found it is moved into the
CHANGED list as it becomes yellow in the figure. (c) When the main loop starts
again it starts from this CHANGED point and updates its neighbors. (d) When
the CHANGED list is empty the algorithm continues as the FMM.

In order to take into account the anisotropy in the equation, we insert the re-
cursive correction in the main loop of the FMM. In the main loop we choose the
point in the TRIAL list with the minimum value of T, call the point Y, and move
it to the K NOW N list, as shown in Figure 8.5(a). At this point, besides computing
the trial values of unknown neighbors of Y, we also recompute its known neighbors’
values. The reason for this is that when values of these points were computed Y
was not used since it was not known. Hence, the characteristic direction may not
have been contained in the known neighborhood at the time, which was used to
compute their T" values. If we obtain a lower value of T during this recomputa-
tion we update the value and add the point to the CHANGUED list, which holds
known points whose values have been changed. In Figure 8.5 a known neighbor of
Y is updated and it is added in the CHANGED list as it becomes yellow. This
correction is based on the fact that the lowest T" value for a point is obtained when
the characteristic direction is contained in the neighborhood used in its T values
computation [Qian 2006, Sethian 2003]. Every time the main loop restarts it checks
if the CHANGED list is empty, if this is not the case then instead of taking a
point from the TRIAL list it takes from the CHANGED list. In other words the
main loop tries to empty the CHANGED list first. In the example in Figure 8.5(b)
the algorithm computes the values around the yellow point and then moves it to
the KNOW N list as it becomes red once again, see Figure 8.5(c). If there are no
more points in the CHANGED list, in other words no more yellow points, then the
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algorithm continues as the normal FMM as seen in Figure 8.5(d). The pseudo code
for this algorithm gives a clear summary of the recursive correction in Algorithm 7.

Algorithm 7 Anisotropic Fast Marching: Main Loop with Recursive Correction
while TRIAL or CHANGED lists are not empty do
if CHANGED list is not empty then
X «—argminycoyangep CHANGED
remove X from CHANGED
else
X «—argminycrprar, TRIAL
remove X from TRIAL and add X to KNOWN
end if
for all X; € N(X) and X; € KNOWN do
compute T(X;) « UPDATE(X;, X)
if T(X;) < T(X;) then
add X; to CHANGED list
end if
end for
for all Y; e N(X) and Y; € TRIALU FAR do
compute T(Y;) «+ UPDATE(Y;, X)
if Y; € TRIAL and T(Y;) < T(Y;) then
T(V;) — T(V;)
else if Y; € FAR then
T(V;) — T(V;)
remove Y; from FFAR and add Y; to TRIAL
end if
end for
end while

Local Solver

Up to now we have not detailed the computation of 7'(X) value using N'(X), namely
the UPDATE routine. For the FMM algorithm this routine was simply solving a
quadratic equation. In the anisotropic case it is a bit more complicated. We have
defined M (X) as the set of immediate neighbors of X and naturally there exists a
set of elements corresponding to this neighborhood, set of triangles (Ax) in 2D or
set of tetrahedras (T ETx) in 3D. In Figure 8.6 for a 2D example we demonstrate
the N(X) and the Ax. The T(X) value both in 2D and in 3D is calculated inside
every element using linear interpolation between nodes and solving a minimization
problem. We can write this minimization problem using the principles borrowed
from geometrical optics. Based on the properties of the anisotropic Eikonal equation
we know that there exists a single ray passing from the point X that coincides with
the characteristic direction of the PDE and determines the value of 7" at X. For
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Z

Figure 8.6: For the point X the figure shows the AV/(X) and also the Ax corre-
sponding to the neighborhood.

the example shown in Figure 8.6, assume that this ray remains within the triangle
XY Z, it passes through the point @) and its direction from X is given with the
vector v = )7@) Based on the characteristic vector, as defined in Equation 8.9, we
can write the relation between the gradient of 7" and v as

VT = kD7 v, (8.14)

where k is a scalar constant which ensures that VT satisfies the anisotropic Eikonal
equation

1
VT'DVT = x*(D7v)D(D7'v) = = (8.15)
1 1

(D-'v)YD(D-W)'/2F ~ [v'D-W]/2F"

(8.16)

K =

From this relationship the group velocity (as given in Equation 8.9) at the point X

can be written as
Fv

[v/ D-1v]1/2’ (8.17)

Vg =

Assuming that the T value at the point @ is known we can apply linear interpolation
and find the value of T" at X using the group velocity

XQ)|

T(X)=T@Q)+ :
Vel

(8.18)

where the second part on the right hand side is just distance over speed [Qian 2001].
As a result, once we are given a triangle such as the one XY Z it suffices to find the
point @ to find the right value of T" at X. Since we know that the correct point
@ provides us the lowest possible value of 7" for X we can formulate the problem
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of finding @ as a minimization assuming linearity. The respective minimization
problems for 1D, 2D and 3D are given as

fip(X,Y) = T(Y)+ [ViDD;VlD]m (8.19)
fop(X,Y,Z) = pren(l)nl {T(Y)p+T(Z)(1-p) (8.20)
N [vap(p)'D FlV2D(p)]1/2 )
(X Y.ZW) = i {[T(V)p+ T(Z)(0 -l (5.21)
+ T(W)(l o q) + [V3D(p> Q)tD;V3D(p7 q)]l/Q}
where
- vip =YX,

— —
- vop(p) =YXp+ ZX(1 —p) and

- van(p,q) = [YXp+ ZX(1 —p)lg + WX (1 - q).

Algorithm 8 Computation of T(X;) = UPDATE(X;, X)
IN 2D
for all A(XX;Y) e A ={AXX;Y)|]Y € N(X;)} do
if Ye KNOWN then
T(X;) — min(T(X,), f2p(X. X;, Y))
els_e
T(X;) « min(T(X;), fip(X, X))
end if
end for
IN 3D
for all TET(XX,YZ) € TET))(‘; ={TET(XX,YZ)|Y,Z € N(X;)} do
if Y,Ze€ KNOWN then
T(X;) — min(T(X,), fsp(X, X;, Y, 2))
elseif Y e KNOWN then
T(X;) — min(T(X;), fap(X, X;,Y))
elseif Z e KNOWN then
T(X:) — min(T(X,), fan(X, X;, 2))
els_e
T(X;) — min(T(X,), fip(X, X))
end if
end for

As in the original fast marching algorithm we only use known points in N'(X) to
compute the value T at X. For a given element either triangular or tetrahedral not
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all the nodes have to be in the K NOW N list. In such cases we only use the known
nodes and compute T'(X) using the respective element. As an example, in the case
of a tetrahedral element we use Equation 8.21 when all nodes of the tetrahedra are
known, Equation 8.20 when 2 nodes are known and Equation 8.19 when only 1 node
is known, see Algorithm 8. The minimization of Equation 8.20 has an analytical
solution however, the one in Equation 8.21 is not trivial. Instead of solving it with
a minimization algorithm, which would increase the computational load, we use
the quadratic equation in T'(X) obtained by discretizing equation F'vVVT!DVT =
1 on the nodes of the tetrahedral element. We check if this computed value of
T(X) satisfies the causality condition, which is that the characteristic direction
should lie inside the element used. Practically this is just computing V1" using the
new computed 7'(X) on the element and checking if DVT vector resides within
the tetrahedra. If this is the case, the minimum lies inside the tetrahedra and it
is approximated with the computed 7'(X). If this is not the case we search the
minimum on the triangular sides of the tetrahedra using fop. This method was
proposed by Qian et al. [Qian 2006] and it speeds up the overall algorithm greatly.
For more details on this please refer to [Qian 2006].

8.3 Experiments

In our experiments we have performed two different type of tests. The first type
of tests were intended to demonstrate the recursive anisotropic fast marching can
work on different geometries in reasonable computational times. We have tested
the proposed algorithm by solving FvVVT!DVT = 1 in 2D, 3D Cartesian grid
and on surfaces using triangulation where F' is taken to be 1. These results are
shown in Figures 8.7 and 8.8. Computation times for these results can be found
in Table 8.1, where we also compare our algorithm with the sweeping algorithm
proposed in [Qian 2006], for which we used our own implementation done in the
best possible way. Comparison is only done for cases in 2D Cartesian grid based on
the examples provided in the mentioned reference. The sweeping method has been
iterated until convergence, where the maximum number of iterations was 12 in the
variable D case. In the recursive anisotropic fast marching algorithm the size of
the CHANGED list did not exceed 3 for these cases. The following computational
times were obtained with Matlab7.1 for 2D cases and C++ for 3D cases on a 2.4GHz~
Intel Pentium machine with 1Gb of RAM. Cases given in Table 8.1 correspond to
images shown in Figures 8.7 and 8.8. The proposed algorithm is fast and visually
accurate even in the case of very high and variable anisotropy. Moreover, applying
the explained method to general meshes bears no difficulty. In our experiments with
triangular meshes on 2D and on surfaces, the algorithm was apparently much faster.

The second tests we have performed aims to understand the effect of the strength
of anisotropy on the computation time. In our experiments we have observed that as
the strength of anisotropy increases the computation time also increased. In order
to test this we performed 2D experiments using spatially homogeneous tensors with



140

CHAPTER 8. ANISOTROPIC FAST MARCHING

Case (D is anisotropic in all | Sweeping Anisotropic

cases) Method [Qian 2006] | Fast Marching
(seconds) (seconds)

2D: constant D, 64 x 64 grid | 24.43 16.15

2D: constant D, 128 x 128 | 91.06 63.39

grid: Fig. 8.7(a)

2D: spirally varying D, 64 x64 | 80.6076 13.56

grid: Fig. 8.7(c)

2D: spirally varying D, 128 x | 319.34 49.48

128 grid

3D: constant D, 64 x 64 x 18 26

grid: Fig. 8.8(g)

3D: helix D, 64 x 64 x 64 grid: 65

Fig. 8.8(h)

3D: constant D, 13000 nodes 2

mesh: Fig. 8.8(e)

Table 8.1: Computation times

Figure 8.7: a) 2D Cartesian grid, high anisotropy in 120° increasing distance from
blue to red, b) iso-contours of a, ¢) 2D Cartesian grid, D is highly anisotropic inside
a spiral following it, isotropic in other regions, d) iso-contours of c.

different anisotropies. We have constructed different tensors as

D =

vV =

A =

VAV!
0.6 —0.8
0.8 0.6
A1 0
0 X |’

(8.22)

(8.23)

(8.24)

where A; and Ay are the first and the second eigenvalues respectively. The strength
of the anisotropy of D depends on the ratio between these two eigenvectors. Using
different ratios we have constructed the solution of

FVVT'DVT =1 T(0) =0.

(8.25)
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(b) (c) (d)

Figure 8.8: a) 2D triangular mesh with 13000 nodes anisotropy in x direction,
colors represent iso-contours, b) 2D triangular mesh on a surface D is anisotropic
and principle eigenvector is shown in black lines, colors represent iso-contours, c¢) 3D
Cartesian grid, anisotropic D d) 3D Cartesian grid, D is highly anisotropic inside a
helix following it, isotropic in other regions.

The computation time for this process depends on the ration A;/Ay. In Figure 8.9
we plot the computation time as a function this ratio along with some of the results
found with different ratios. We observe from Figure 8.9(a) that as the anisotropy
strength increases the computation time increases as well. Moreover, the rate of
increase is almost linear.

8.4 Conclusions

The static Hamilton-Jacobi equations and in particular the anisotropic Eikonal equa-
tions are frequently encountered in biological modeling. We have seen in the previ-
ous chapters the importance of such equations for bridging the gap between clinical
images and the mathematical tumor growth models. Besides tumor growth mod-
els, such equations arise in cardiac electrophysiology, geophysics, fluid dynamics and
computer vision. Therefore, having an efficient, accurate and a fast numerical solver
for such equations is crucial.

In this chapter, we proposed the recursive anisotropic fast marching algorithm
for solving anisotropic Eikonal equations numerically. The algorithm is based on the
well known Fast Marching Methods and in that sense it enjoys the many advantages
of the single-pass methods. We have shown that the algorithm is successful in
handling high anisotropies, which are often encountered in biological modeling, and
general meshes. Moreover, we have compared it with one of the state-of-the-art
methods to show its relative performance. We have seen that the proposed algorithm
is faster than the mentioned method. We have also shown that the computation
of the proposed algorithm depends highly on the strength of the anisotropy of the
tensor D. The experiments have shown that the computation times was almost
linearly related to the strength of the anisotropy.

In the previous chapters we have seen the usage of the anisotropic fast marching
method in the context of tumor growth modeling. Having a fast solver gave us the
opportunity to solve the parameter estimation problem in clinically reasonable time
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Figure 8.9: (a) The computation time increases almost linearly with the strength of
anisotropy of the tensor D. The figure show the plot of the computation time as a
function of the ratio A\;/A2 of D. (b)-(d) We show the results of the Equation 8.25
with different D’s having different anisotropy strengths.

spans. Moreover, considering the high anisotropy and the high non-homogeneity
of the diffusion tensors we have encountered, the anisotropic fast marching method
proved itself to be very useful.

The anisotropic fast marching method explained here is a general tool and can
be used for the different applications mentioned. Moreover, the algorithm can also
be used for solving general static, convex Hamilton-Jacobi equations encountered in
computer vision and material science. In this work we have focused on the algorith-
mic details. The future work should concentrate on the convergence characteristics
of the algorithm and the worst case complexity in order to have a better understand-
ing of the proposed method. Among different points to be tackled in a theoretical
manner are the accuracy, robustness and convergence analysis of the method.
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9.1 Conclusions

The main focus of the thesis presented here was on linking the mathematical tumor
growth models and medical images. We have built our research on reaction-diffusion
based tumor growth models which are shown to be suitable for modeling the macro-
scopic dynamics of tumor growth as visible in medical images. Previous works have
successfully integrated the anatomical and diffusion information in their mathemat-
ical description of tumor growth. This integration was either based on the use of
atlases or single patient images and aimed to include different tissue classes and/or
white matter fiber structure in the growth formulation. In this sense, these generic
models have adapted the anatomical information for modeling the growth and in-
vasion of brain gliomas. In this thesis, we have studied the integration in the other
sense, adapting the growth models to specific patient cases. Therefore, we have
taken a step towards patient specific tumor growth models.

9.1.1 Parameter Estimation

As a first step in adapting the reaction-diffusion based tumor growth models to
patient images, in Chapter 4 we have proposed a formulation for estimating the
parameters of the growth model based on time series of medical images. We have
seen that the generic growth model contains two different parameters, the diffusion
tensor of tumor cells D and the proliferation rate p. Moreover, the construction
of the diffusion tensor may contain several parameters, which in our case was 2,
the diffusion rate in the white matter d,, and in the gray matter d,. Estimating

143
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parameters in this context means finding the numerical values of these parameters
so that the evolution of the tumor described by the model best fits the evolution
observed in the medical images.

One of the main problems for parameter estimation is the inconsistency between
the information observable in the medical images and the information needed by
the reaction-diffusion model. The reaction-diffusion models describe the temporal
evolution of tumor cell density distributions throughout the brain. Therefore, for
simulating the growth of the tumor these models need the knowledge of the spatial
distribution of tumor cell density. Conventionally used medical images on the other
hand, do not provide this information. They rather visualize enhanced regions where
it is assumed that the tumor cell density is higher than a certain threshold. This
enhanced region is named either as wvisible tumor boundary or tumor delineation.
In order to solve this inconsistency we have proposed to use a front evolution for-
mulation. This formulation describes the evolution of the tumor delineation based
on the growth dynamics of reaction-diffusion models. These kind of formulations
have already been proposed in the literature for different applications. In this thesis
we have built on these existing works and improved them to take into account the
second order effects such as time convergence and better handling of the effect of
curvature.

Once we had a formulation for the growth of the tumor consistent with the images
we formulated the parameter estimation as an optimization problem. The optimum
parameters yielded us the best fit between the evolution of the tumor delineation
observed in the images and the one described by the front evolution. We have
performed thorough theoretical analysis of this method using synthetically grown
tumors and encountered its drawbacks. Most importantly we have seen the coupling
between the parameters of the tumor growth model and shown that these parameters
cannot be identified separately in the presented context. On the other hand, we have
seen that several identities such as the growth speed of the tumor can be identified
uniquely from medical images. Following these theoretical studies we have applied
the proposed method to some real cases and shown promising preliminary results.
These real cases have demonstrated the potential usage of the parameter estimation
method and the prediction power of personalized reaction-diffusion models.

To the best of our knowledge, in this thesis we have presented one of the first
parameter estimation methodologies using medical images in the context of tumor
growth models. In this sense, it is one of the first scientific contributions on per-
sonalizing tumor growth models. The theoretical analysis and preliminary results on
real cases also constitute new scientific contributions not yet published elsewhere.
During the course of this thesis we have presented our work regarding the parame-
ter estimation and the front evolution of tumor delineation in different international
conferences [Konukoglu 2007a| and [Konukoglu 2007b]. Moreover, we have submit-
ted a journal article covering a larger part of the analysis and techniques shown in
this thesis [Konukoglu ttedb].
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9.1.2 Extrapolating Invasion Margins

Following the parameter estimation problem, in Chapter 6 we have focused on the
potential benefits the tumor growth models can offer to the treatment of brain
gliomas, particularly to radiotherapy. The treatment of brain gliomas are difficult
and pose extra problems for radiotherapy due to their diffusive nature. The medical
images play a very important role and guide the therapy process however, they are
not able to visualize the whole extent of the infiltration of the tumor. In order
to tackle this problem conventional radiotherapy applies irradiation not only to the
visible part of the tumor but also to a healthy looking region around the tumor. This
region is constructed by taking a constant margin around the tumor assuming the
invisible infiltration remains in this part. This approach does not take into account
the fact that tumor cells diffuse faster in the white matter. As a result they may
underestimate the invasion of the white matter and not target the whole infiltration.
On the other hand, for the gray matter, the constant irradiation margin approach
may overestimate the infiltration and target healthy cortex causing unnecessary
damage.

The tumor growth models, once personalized, can offer solutions to the visual-
ization problem encountered in the case of diffusive tumors, particularly gliomas.
In Chapter 6 we have proposed such a solution. The proposed formulation ex-
trapolates the tumor cell density distribution beyond the part visible in the image,
starting from the delineation of the tumor. This formulation was derived from the
reaction-diffusion growth models through asymptotic approximations. As a result,
the extrapolated density distribution takes into account the differential motility of
tumor cells and the spiky nature of its growth. Using simulations on synthetically
grown tumors we have shown the theoretical success of the proposed algorithm in
extrapolating the infiltration not visible in the images. Following this, we have
proposed a way to construct irradiation margins that take into account the infil-
tration of gliomas. Again, using synthetically grown tumors we have shown the
potential benefits of using the proposed method in contouring irradiation margins.
Our experiments have shown that by taking into account the infiltration dynamics
of gliomas one may target more tumor cells and harm less healthy tissue using the
same amount of irradiation.

Although earlier research by others has addressed the question of constructing
the irradiation margins automatically, in the best of our knowledge, the work pre-
sented in this thesis is one of the first methods to address this question by including
tumor growth models. Moreover, it is also one of the first attempts to use tumor
growth models in therapy planning assuming clinical constraints, such as being able
to use expert delineations. Combined with the parameter estimation methodology,
we believe that the methods proposed in this thesis have the potential to be used
in the clinical conditions. We have presented our work on extrapolating the infil-
tration extent of gliomas in different conferences and workshops [Konukoglu 2006].
The details of the final algorithm and the final experimental results have also been
submitted as a journal paper [Konukoglu tteda].
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9.1.3 Anisotropic Fast Marching

In the last part of this thesis, we have focused on a more algorithmic and fun-
damental problem. During our analysis of the reaction-diffusion models we have
seen that anisotropic Fikonal equations play an important role. Both for estimat-
ing parameters and extrapolating the not detected infiltration of gliomas we have
encountered this type equations in our methods. In Chapter 8 we have proposed
a novel numerical method to solve anisotropic Eikonal equations in a fast and ac-
curate manner. The advantages of this method are that it is a fast method, it
can handle high anisotropies and it can easily be implemented on general meshes.
In our experiments, for demonstrating its speed, we have compared the proposed
algorithm with a state of the art method in terms of computation times. The pro-
posed algorithm proved itself to be faster in the cases we have examined. This
novel numerical method have been used throughout this thesis and thus it proved
its use in the context of tumor growth modeling. Moreover, it can also be applied to
different applications such as cardiac electrophsiological modeling, wound healing,
geophysics,... We have presented the proposed numerical method in international
conferences in the context of tumor growth modeling [Konukoglu 2007a|. We have
also used the proposed method for simulating the evolution of potential fronts in
the context of electrophysiological modeling of the heart [Sermesant 2007].

9.1.4 Other Contributions

Besides the technical contributions explained above we have also contributed in
review and state of the art articles focusing on the use of mathematical tumor
growth models and their potential importance in clinical cancer research [Clatz 2006,
Angelini 2007, Mandonnet 2008]. As a new field, we have written a state of the art
review chapter on tumor growth models in oncological image analysis which will
appear in next edition of the Handbook of Medical Imaging [Konukoglu 2008a].
The details of this work are also presented in the Chapter 3 of this thesis.

This thesis is aimed to be a coherent combination of our works on modeling
brain gliomas and linking these models to medical images. As a side topic we
have also worked on monitoring the growth of very slowly growing tumors. In
the case of tumors where the growth is extremely slow and the follow-up takes
years the methods explained in this thesis might not be suitable. However, such
tumors are not very uncommon both in the case of children, pilocytic astrocytomas,
and adults, meningiomas. Change detection is a critical task in the diagnosis of
these pathologies. In [Konukoglu 2008b|, we have described an approach that semi-
automatically performs this task using longitudinal medical images. Our focus was
on meningiomas, which experts often find difficult to monitor as the tumor evolution
can be obscured by image artifacts such as intensity differences or pose changes. We
have tested the proposed method on synthetic data with known tumor growth as
well as ten clinical data sets. We have shown that the results of our approach highly
correlate with expert findings but seem to be less impacted by inter- and intra-rater
variability.
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9.2 Perspectives

9.2.1 Technical Improvements

This thesis focused on reaction-diffusion type tumor growth models with a particular
interest in anisotropic models proposed recently. In terms of the methods presented
here there are still lots of improvements and analysis that can be and should be made.
In the first phase model for the evolution of the tumor delineation should be studied
and formulated better. Especially the effect of curvature should be better handled.
On the other hand, we have not analyzed the anisotropic fast marching method
theoretically enough. Therefore, a convergence analysis and worst-case complexity
should be studied.

In terms of the parameter estimation methodology presented, we have not taken
into account the mass effect of the tumor which is especially observable for the
high grade gliomas. This effect should be included in the method for a complete
parameter estimation. The way the mass effect is taken into account in the existing
literature is through coupling the tumor cell density distributions with the local
pressure exerted on the brain tissue. This poses a difficulty for the front evolution
formulation we have used in the method proposed. The attempt for taking into
account the mass effect should overcome this problem and link the evolution of the
tumor delineation with the deformation applied to the brain tissue. One way for
this would be to combine the extrapolation method with the parameter estimation
and create the tumor cell distribution for each parameter set during the estimation
process. Using this one can integrate the mass effect in the parameter estimation
method.

For the extrapolation of invasion margins and constructing variable irradiation
regions one should think of integrating a model for radiotherapy in the proposed
methodology. Although constructing irradiation margins consistent with the tumor
infiltration is a good first step, one should include the effect of therapy and the
response of the tumor to the therapy to simulate the real benefits of using variable
irradiation margins. For this purpose only macroscopic models would not be enough
because the stochastic nature of the response to therapy would not be captured.
Instead a hybrid model combining the microscopic and macroscopic models can be
used.

Our main concentration in this thesis, as we said, was on linking the medical
images and reaction-diffusion type growth models. However, there are many differ-
ent improvements one can think of in the reaction-diffusion models. The first set
of these are structural changes in the model. The reaction-diffusion formalism can
be extended using advection and convection processes which would better explain
the migratory behavior of tumor cells especially on the white matter. Moreover,
subdiving the tumor into different compartments such as the necrotic core, bulky
part of the tumor and the infiltrative part might be a better and more accurate
modeling strategy. Following this one would apply different model equations to
each compartment and couple them to create the link between the evolution of each
part. Such a partitioning can also be used for the brain tissue describing different
behavior of the tumor in different parts of the brain. In this context one can also
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study different construction methods for the tumor cell diffusion tensor using water
diffusion tensor. We have seen two examples in this thesis however, more general
construction methods can be used.

The models studied here were deterministic models and therefore, they were not
able to take into account the stochastic nature of tumor growth. The natural ex-
tension to these models would be to include the stochastic behavior. One way to
realize this would be to propose hybrid models which would have a microscopic part
and a macroscopic part. The general evolution would be captured by the macro-
scopic part while the stochastic nature would be present through the microscopic
part. One other way would be to use stochastic partial differential equations and
model the evolution of probabilities of growth rather than having a deterministic
evolution. In this context one should also study the link between micro and macro
models. The effect of microscopic dynamics on the macroscopic parameters are not
well explained for the tumor growth models. There are a few works which aimed to
build this link however, this field is still untraveled.

One other natural extension to the type of growth models presented in this thesis
is the modeling of therapy. There are two major reasons for this. The first one is
that the clinical cases always have the effect of therapy on them. Therefore, in order
to correctly apply tumor growth models to the patient cases one should take into
account the therapy administered. The second reason is inherent in the aim of the
cancer research. In trying to find a cure for the cancer, mathematical models can
serve as the initial “playgrounds” for the new therapy techniques where extensive
tests can be simulated. Correct and accurate modeling of the therapy process and
the response of the tumor to the therapy becomes a crucial for this purpose.

In the models we have studied anatomical and diffusion MR images were used
to formulate the growth of tumor. As new techniques become available and more
accessible one should think of integrating more imaging modalities in the mathe-
matical descriptions. PET, MRSI, perfusion images and others can help improve
the accuracy of the models.

9.2.2 Application to Clinical Images

During the course of this thesis we have realized the difficulty of obtaining patient
database where the proposed methodologies can be tested. In conventional clini-
cal setting only anatomical MR images are acquired and most of the time they do
not have a high resolution. On the other hand, in the models we have seen the
importance of high resolution images and the diffusion information in accurately
describing the growth process. Therefore, most of the patient images acquired at
the moment are not suitable for testing and validating the reaction-diffusion type
growth models and the methodologies presented in this thesis. Here we would like
to take the opportunity and describe the ideal patient database that could be used
for evaluating the methods presented in this thesis and the tumor growth models.
The anatomical images play a very important role in the modeling process as they
provide the geometry and location of the tumor and the brain structures. Moreover,
they provide the white matter gray matter segmentation which is crucial for mod-
eling the differential motility of tumor cells. The differential motility is not only
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modeled by this segmentation though, one needs to have high resolution accurate
information about the fiber structures of the brain as well. The diffusion tensor
images provide this information. On the other hand, the tumor growth models de-
scribe the evolution of the tumor. This evolution can only be observed from time
series of images. As a result, we see that the ideal dataset consists of high resolution
anatomical and diffusion images taken regularly from the same patient using the
same protocols and the same imaging devices. We were lucky enough to find 2 such
cases in this thesis and show preliminary results.

The ideal dataset explained above might not be available for all the patients.
High resolution anatomical and/or diffusion images might be missing for different
cases. In order to be able to apply the presented methodologies and tumor growth
models in the generic clinical situations one needs to overcome these problems.
Registration techniques proposed for anatomical and diffusion images is a very good
candidate for solving these problems. One can imagine to fill the place of the missing
image by registering an atlas to the patient space and continuing with the analysis.
However, the effect of using registration algorithms on the simulations should be
studied. And moreover, atlas images will not carry the patient specific diffusion
information as present in different tumor regions. Therefore, effect of this should
also be analyzed.

9.2.3 Validation

The in-vivo validation and evaluation of the methods presented here and in more
general of the tumor growth models is a big challenge. In this thesis and in most of
the previously proposed works “indirect” validation of the methods and models have
been performed. Measures such as, the resemblance of simulated and real data, the
mass effect of the tumor and deformation in the brain tissue and survival rates have
been widely used. Although these measures provide promising hints they are not
quantitatively validating the behavior of tumor cells and in this sense they are not
“direct” validations.

In the case of in-vitro experiments, direct validation can be achieved easier and
have been performed in different works. Through microscopic analysis the tumor cell
density on the petri-dish can be compared with the density distribution simulated
by the model which would serve as a validation both for the model itself and the
extrapolation method presented in this thesis. Using similar analysis the parameters
of the tumor cells in the petri-dish can be identified and these would be used to
validate the parameter estimation method. This sounds plausible however, in petri-
dish experiments the tumor is grown outside the body, in-vitro. The dynamics of
the tumor growth inside the body and on a petri may have differences and therefore,
although the in-vitro experiments provides valuable information they do not reflect
the behavior of the tumor in-vivo.

The in-vivo evolution of the tumor can be observed through medical images and
biopsies. As a first step these sources of information can be used for a preliminary
validation. Such a work bears certain difficulties like creating a large database of
brain gliomas, having regular follow-ups and spatially linking the biopsies to the im-
ages. For a thorough validation on the other hand, we have seen that the information
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available in the medical images are limited and the biopsy is a very local technique
that does not provide a global information about the tumor. Using these sources
we cannot obtain information regarding the tumor cell density distributions and
microscopic dynamics, which are crucial in validating the methods and the growth
models in general. For this purpose whole brain autopsies and animal models can
be useful. Microscopic analysis of several cross-sections of the post-mortem brain,
the animal model or a tumor resected as a whole can provide us the information
we seek about the tumor cell density distribution. Moreover, these analysis can be
combined with high resolution MR images to give us the opportunity to understand
what we observe in the medical images.

9.2.4 Future

The tumor growth modeling in the context of medical images is an emerging field.
Several preliminary works have been proposed that showed the potential of such
models and also pointed out the big challenges. As data acquisition techniques and
our understanding of the tumor biology improve these models will become more
realistic and accurate. Simulations will become a common ingredient in the therapy
development and testing as we see today for the other fields.

On the other hand, with the enhancing generic models, there will also be big
advancements in the personalization of these models. In the end we would be able
to obtain patient-specific models which would be used in the clinical setting both
for the diagnosis and treatment planning of the tumor. Based on the current state
of the patient the doctors will be able to simulate the possible outcomes under the
effects of different therapies and choose the right treatment for each patient.



APPENDIX A
Hamilton-Jacobi Equations: A
Brief Review

Hamilton-Jacobi (HJ) equations are first order nonlinear partial differential equa-
tions with the general form

0d(x,t)

5 +H(x,®,Vo,t) =0, xeR", (A1)

where H is called the Hamiltonian, ® is called the Hamilton’s principal function
and V is the gradient operator. These equations play an important role in calcu-
lus of variations as they can be linked to optimization problems through certain
transformations on the function ® and its derivatives [Brunt 2004, Giaquinta 1996].
Therefore, they are important for a large field of applications such as computer
vision, image processing, optimal control theory, geometric optics and geophysics.
Equation A.1 has a time dependence and describes the temporal change of the func-
tion ® therefore, it is a dynamic Hamilton-Jacobi equation. When the equation
does not have a time dependence then we have the static Hamilton-Jacobi equation
which has the general form

H(x,T,VT)=1, xecR" (A.2)

This equation as its dynamic counter part can also be nonlinear due to the form
of the H function. Osher in [Osher 1993| have linked the dynamic and the static
equations by showing that static HJ equations can be transformed into dynamic
ones through embedding the T function into an implicit function. We also used
this link in Chapter 4. The HJ equations are by definition first order. However,
in the literature certain equations involving second order derivatives are referred to
as second order Hamilton-Jacobi equations i.e. the curvature flow, [Sethian 1999].
The HJ equations are very general and in this thesis we are mostly interested in a
specific form of this general class, namely the Fikonal equation.
The Eikonal equation is a static HJ equation whose general form is

Fx)VT|=1, x€Q (A.3)

where F'(x) is called the speed function and |- | denotes the norm of a vector. This
equation simply describes the spatial gradient relationship of the function 7" under
the effect of the speed function F. Equation A.3 together with a Dirichlet type
boundary condition of the form

T)oq =0, (A.4)
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creates the boundary value problem (BVP), where 0f is the boundaries of the com-
putation domain. Physically, the solution 7" of this problem at any point p represents
the shortest time needed to travel from 02 to p. Therefore, T is usually referred
to as the traveling time function. The iso-value surfaces of this function provides us
iso-time (or isochrones) surfaces. Each iso-time surface is a combination of points
equidistant from the boundary 02, see Figure A.1. The type of Eikonal equation
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Figure A.1: The traveling time function 7" shown in color using the boundary con-
dition given in Equation A.4. The iso-time contours/surfaces are ensemble of points
equidistant from the boundary 02. The Eikonal equation is also linked to a level-
set equation through embedding the iso-time surfaces as zero level-sets of another
implicit function ®. As a result the evolution of the zero level-set of ® corresponds
to the T function.

we have majorly dealt with in this thesis is defined with respect to a tensor (3x3
positive definite matrix) and therefore has a slightly different form:

F(x)VVT'DVT =1, x€Q, (A.5)

where D is a tensor. Although this equation is different than Equation 4.3 its
physical meaning is the same under the assumption of an anisotropic speed map
implicitly governed by the tensor D and it is also a static HJ equation.

The static HJ equation given in A.3 can be linked to a dynamic one by following
the embedding and the transformation proposed by Osher in [Osher 1993]. If we
construct an implicit function ® through the embedding

B(x, ) =0 < T(x)=t (A.6)

and use the transformation

=—"4e[l,n]eN (A7)
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we obtain the type of dynamic HJ equation which is also referred to as a level-set
equation.

0d

5 =
This equation describes the temporal evolution of the zero level-set of ® through
the evolution of the whole implicit function. During the embedding, at a given time
t the only constraint on ® is around the T = t iso-time surface. Therefore, for the
construction of the rest of the ® there is a freedom, which is most of the time used in
favor of a signed distance function SDF(). The SDF is the distance map of a closed
surface (curve) (such as the boundary 9€) which has negative/positive values inside
the surface and positive/negative values outside it. The surface itself becomes the
zero level-set of this function as its distance from itself is zero. Assuming such a
construction for the &, the boundary condition given in Equation A.4 becomes an
initial condition

F(x)[Vel. (A.8)

®(x,0) = SDF(99) (A.9)

and Equation A.8 combined with this one creates an initial value problem (IVP). As
the function ® evolves in time its zero level-set changes its location and the evolution
of this zero level-set in time corresponds to the T function, see Figure A.1.

We have presented the level-set equation in relation to what we have mainly
used in the thesis, namely the Eikonal equations. However, level-set functions and
methods are in fact much more general. The general form of level-set equations
includes additional terms on its right hand side

0P

ETie Fx)|V®| 4+ V(x)-V® + G(x)k, (A.10)
where V' is an external vector field, G is a scalar function and & is the mean curvature.
As it was the case for Equation A.8 this equation also describes the motion of its

zero level-set. The effect of the three components on the right hand side are

- The first component F'(x)|V®| provides the motion of the zero level-set in the
normal direction. This term is called the propagation or convection term.

- The second component V(x) - V® provides the drifting motion of the zero
level-set under the effect of the external vector field V. This term is called the
advection term.

- The third term G(x)r is the curvature flow, which has a smoothing effect on
the zero level-set. This term is called the curvature term.

One important thing to note here is that the mean curvature « is a term that includes
second order derivatives. As we have explained, HJ equations are first order by
definition however, in the literature equations such as (A.10) are also referred to as
second order HJ equations. Further details on the level-set equations and methods
can be found in [Sethian 1999].
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APPENDIX B
Unconstrained Optimization by

Quadratic Approximation
|Powell 2002]

The multidimensional minimization problems are very common in many diverse
fields. In Chapter 4 we have formulated such a problem in the context of parameter
estimation for reaction-diffusion type tumor growth models. In this appendix we
briefly explain the optimization algorithm we have used to solve that minimization
problem. The algorithm is proposed by Powell in [Powell 2002| and for further
details on the algorithm please refer to this reference and the other accompanying
ones [Moré 1983, Powell 2001, Powell 2003].

The optimization algorithm we have used in this thesis does not use the deriva-
tives of the objective function instead it builds quadratic approximations to it and
uses the 1st and the 2nd derivatives of these approximations. Therefore, for the prob-
lems where the derivatives of the objective function are not available it is preferable.
Moreover, because the algorithm constructs quadratic approximations using inter-
polation, it is more robust to noise than the other algorithms computing explicit
derivatives. Before going into details of the algorithm we first explain briefly “trust
region methods” and the “trust region problem”, which will be used.

Trust region problem is an optimization problem whose solution is bounded in
a region such as

min{y(w) : [|w|| < A}, (B.1)

where 1 is the function to minimize, w is the solution we seek and A is the trust
region radius. We see that this problem searches for the solution under a magnitude
constraint, A. We readily notice that the size of A gives us the coarseness of the
algorithm. Meaning that, if A is large we are at a coarser resolution while if A
we are more focused on finer search. Trust region methods are a general class
of optimization algorithms which requires the solution of a trust region problem
between each iteration of the overall algorithm.

As we have noted the optimization algorithm in [Powell 2002], instead of the
derivatives of the objective function F', uses the derivatives of the quadratic model

Q) = e + dly(x —xv) + 3 (x ~ %) Co(x ~ x) xR, (B2

which is an approximation of F around the point z;. This model, in which g, is a
vector and G is a symmetric matrix, is constructed by interpolation to values of
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the objective function. Since this system has m = 1/2(n + 1)(n + 2) dimensions we
need to use m points to construct the model. So the interpolation satisfies

Q(Xi) = F(Xi), 1= 1, ey M. (B.S)

The points x;, “the interpolating points”, are found automatically in the algo-
rithm [Powell 2002]. The other ingredient used in the minimization algorithm is
the Lagrange functions of the interpolation problem. There exists as many La-
grange functions as the dimension of the problem and these functions are defined as
quadratic polynomials that satisfy

lj(Xi) = 61']'7 izl,...,m, (B4)

1
Li(x) = ¢+ gj(x—xp)+ 5x—xp)Gj(x —xp), xER,, (B.5)

Qx) = > Fxplix), (B.6)
j=1

where 0;; is the Kronecker delta and [; denotes the 4 Lagrange function with the
coefficients ¢;, g; and Gj;.

The overall optimization algorithm is mainly concerned with constructing a good
quadratic approximation @ to F' within a region and minimizing @) in that given
region. As the algorithm iterates this region moves towards the minimum (maxi-
mum) of F" and for each region a new () is constructed. Therefore we see that there
2 different questions: “How do we construct @ and then move it?” and “How do we
find the minimum of @ in a region?”.

We start the algorithm with 4 inputs, the objective function F', the initial opti-
mum guess xp, initial trust region radius ppe, and the final trust region radius pepq
(with ppeg > pend). The first step is to construct the interpolation function @ for
which the details can be found in [Powell 2002]. As we have noted the trust region
radius determines the coarseness of our search, we start our search for the minimum
at the coarser resolution p = pye4 by solving the trust region problem

min(Q(xx + d)) such that |[d]| < A, A>p, (B.7)

where xj is the point among the interpolating points which has the minimum F
value and A is another trust region radius which is added to increase the efficiency
of the algorithm, [Powell 2002|. At this point there are two outcomes, the first
one is that we find a d value which satisfies F/(xx +d) < F(xg). This means we
found a new minimum, therefore we move a “suitable” point interpolating point x;
to xx + d, reconstruct @), [;'s and solve Equation B.7. The second one is that we
do not find such a d. In this case we first ask the question whether @) is a good
approximation for F'. If the distance between one or more of interpolating points
x; and the minimum point xy is greater than ||x; — xk|| > 2p we move this point
closer to xy, reconstruct @), [;’s and solve Equation B.7. In order to find the new
location of x; we solve another trust region problem given as

max(l;(xx + d)) such that ||d|| < p. (B.8)
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This problem provides us a new location x; = xx + d such that the nonsingularity
of @ constructed using this new point will be assured, [Powell 2001]. On the other
hand, if we cannot find a point far away from xj we trust the quality of our approx-
imation @) and decide that we are in the basin of attraction and we need to go into
finer details. We reduce the trust region radius p and construct a finer quadratic
approximation ) and Lagrange functions /;’s. After this point the algorithm con-
tinues as before. The stopping criteria is given by p where once p < peng We stop.
The overall algorithm is also summarized briefly in Figure B.1. For a more detailed
description please refer to [Powell 2002].

The number of times the value of the objective function is computed for differ-
ent points remains low in this algorithm. As the initialization we call the objective
function m times. Later on for each iteration we only call it once and then recon-
struct the quadratic approximation and Lagrange functions through updating the
interpolating points, see |[Powell 2002]. Therefore, in the case where computation of
the objective function F' takes time, this algorithm becomes a good choice.
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Inputs: initial guess xy
objective function F'
trust region radii ppeg and p.nd

Construct initial quadratic approximation Q
Construct initial Lagrange functions
P = Poeg

v
Solve the trust region problem Update Q
f—————— f————
Problem B.7 Update [;’s
Compute F(xk + d). Name the minimum point Xy

A

Is there a new minimum 7 Move the point X;

F(xy +d) < F(x) to xx +d
Solve B.8
Is Q a good move X;
approximation N toxkx +d
for F 7 Compute F(xk + d).

Reduce p

Optimum parameters Xy

Figure B.1: The overall optimization algorithm wused in Chapter 4 proposed
in [Powell 2002]



APPENDIX C
Preliminary Results of the
Parameter Estimation

Methodology with Real Cases:
Extra Images

In this appendix we provide additional images for the results presented in Section 5.2.
In that section we have presented the preliminary results of the parameter estimation
methodology on the real cases both for fitting the observed evolution and also for
predicting the further evolution of the tumor. Each page in this appendix is devoted
to different axial slices of an MR image taken at the same time instance.

In Section C.1 we provide the additional images for the results given in Sec-
tion 5.2.1. We start from the first images (Figures C.1 and C.5) and show 15 axial
slices of those image including the manual delineations (in white). After that we pro-
vide the following images in the time series including both the manual delineations
(in white) and the evolution of the tumor delineation obtained with the estimated
parameters (in black).

In Section C.2 we provide the additional images for the results given in Sec-
tion 5.2.2. We start from the last image (Figures C.9 and C.11) that was used in
the estimation of the parameters and show 15 axial slices of those image including
the manual delineations (in white). After that we provide the final image showing
the final state of the tumor both the with manual delineation (in white) and the
predicted evolution of the tumor delineation (in black).

C.1 Fitting the Observed Evolution: Additional Images

C.2 Predicting the Further Evolution: Additional Im-
ages
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Figure C.1: The MR image taken at the first time point for the first patient. White
contour denotes the manual delineations.
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Figure C.2: The MR image taken at the second time point for the first patient.
The white contour denotes the manual delineations and the black contour is the
estimated evolution of the tumor delineation.
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Figure C.3: The MR image taken at the third time point for the first patient.
The white contour denotes the manual delineations and the black contour is the
estimated evolution of the tumor delineation.
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Figure C.4: The MR image taken at the first time point for the second patient.
White contour denotes the manual delineations.
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Figure C.5: The MR image taken at the second time point for the second patient.
The white contour denotes the manual delineations and the black contour is the
estimated evolution of the tumor delineation.
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Figure C.6: The MR image taken at the third time point for the second patient.
The white contour denotes the manual delineations and the black contour is the
estimated evolution of the tumor delineation.
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Figure C.7: The MR image taken at the fourth time point for the second patient.
The white contour denotes the manual delineations and the black contour is the
estimated evolution of the tumor delineation.
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Figure C.8: The MR image taken at the fifth time point for the second patient.
The white contour denotes the manual delineations and the black contour is the
estimated evolution of the tumor delineation.
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Figure C.9: The last image that was used in estimating the parameters of the
reaction-diffusion growth model for the first patient.
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Figure C.10: The final image showing the final state of the tumor along with the
tumor delineation predicted by the model (in black) and segmented by the expert
(in white).



170 APPENDIX C. PARAMETER ESTIMATION RESULTS: REAL CASES

v/
l
7

{

Figure C.11: The last image that was used in estimating the parameters of the
reaction-diffusion growth model for the second patient.
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Figure C.12: The final image showing the final state of the tumor along with the
tumor delineation predicted by the model (in black) and segmented by the expert
(in white).
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Abbreviations and Acronyms

BVP

CA
CSF
CT
CTV

DT
DT-MRI
DWI

EC
ECM
EGFR

FA
FM
FMM
fMRI

GBM
Gd
GIF
HJ
IVP
MD
MR
MRI
MRS
NMR
ODE
PCA

PDE
PET

Boundary Value Problem, 151

Cellular Automata, 27
Cerebrospinal Fluid, 11
Computed Tomography, 10
Clinical Target Volume, 91

Diffusion Tensor, 11
Diffusion Tensor MRI, 11
Diffusion Weighted Images, 11

Endothelial Cell, 24
Extracellular Matrix, 17
Epidermal Growth Factor Receptors, 28

Fractional Anisotropy, 15

Fast Marching, 102

Fast Marching Method, 131

functional Magnetic Resonance Imaging, 11

glioblastoma multiforme, 9
Gadolinium, 11

Growth Inhibiting Factor, 21
Hamilton-Jacobi, 151

Initial Value Problem, 153

Mean Diffusivity, 15

Magnetic Resonance, 10

Magnetic Resonance Imaging, 10
Magnetic Resonance Spectroscopy, 11
nuclear magnetic resonance, 10
Ordinary Differential Equation, 48
Principal Component Analysis, 40

Partial Differential Equation, 31
Positron Emission Tomography, 10
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RD Reaction-Diffusion, 2

RF Radio Frequency, 11

SDF Signed Distance Function, 153
TAF Tumor Angiogenesis Factor, 24
TDT Tumor Diffusion Tensor, 32
TE Echo Time, 11

TMZ Temozolomide, 37

TR Repetition Time, 11

VEGF Vascular Endothelial Growth Factor, 24

WHO World Health Organization, 8
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