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Abstra
tMathemati
al models and more spe
i�
ally rea
tion-di�usion based models havebeen widely used in the literature for modeling the growth of brain gliomas andtumors in general. Besides the vast amount of resear
h fo
used on mi
ros
opi
 andbiologi
al experiments, re
ently models have started integrating medi
al imagesin their formulations. By in
luding the geometry of the brain and the tumor, thedi�erent tissue stru
tures and the di�usion images, models are able to simulate thema
ros
opi
 growth observable in the images. Although generi
 models have beenproposed, methods for adapting these models to individual patient images remainan unexplored area.In this thesis we address the problem of �personalizing mathemati
al tumorgrowth models�. We fo
us on rea
tion-di�usion models and their appli
ationson modeling the growth of brain gliomas. As a �rst step, we propose a methodfor automati
 identi�
ation of patient-spe
i�
 model parameters from series ofmedi
al images. Observing the dis
repan
ies between the visualization of gliomasin MR images and the rea
tion-di�usion models, we derive a novel formulationfor explaining the evolution of the tumor delineation. This �modi�ed anisotropi
Eikonal� model is later used for estimating the model parameters from images.Thorough analysis on syntheti
 dataset validates the proposed method theoreti
allyand also gives us insights on the nature of the underlying problem. Preliminaryresults on real 
ases show promising potentials of the parameter estimation methodand the rea
tion-di�usion models both for quantifying tumor growth and also forpredi
ting future evolution of the pathology.Following the personalization, we fo
us on the 
lini
al appli
ation of su
hpatient-spe
i�
 models. Spe
i�
ally, we ta
kle the problem of limited visualizationof glioma in�ltration in MR images. The images only show a part of the tumor andmask the low density invasion. This missing information is 
ru
ial for radiotherapyand other types of treatment. We propose a formulation for this problem based onthe patient-spe
i�
 models. In the analysis we also show the potential bene�ts ofsu
h the proposed method for radiotherapy planning.The last part of this thesis deals with numeri
al methods for anisotropi
 Eikonalequations. This type of equation arises in both of the previous parts of this the-sis. Moreover, su
h equations are also used in di�erent modeling problems, 
om-puter vision, geometri
al opti
s and other di�erent �elds. We propose a numeri
almethod for solving anisotropi
 Eikonal equations in a fast and a

urate manner. By
omparing it with a state-of-the-art method we demonstrate the advantages of ourte
hnique.





RésuméLes modèles mathématiques et plus spé
i�quement les modèles basés sur l'équationde réa
tion-di�usion ont été utilisés largement dans la littérature pour modéliser la
roissan
e des gliomes 
érébraux et des tumeurs en général. De plus la grande lit-térature de re
her
he qui 
on
entre sur les expérien
es biologiques et mi
ros
opiques,ré
emment les modèles ont 
ommen
é intégrer l'imagerie médi
ale dans ses formu-lations. In
luant la géométrie du 
erveau et 
elle de la tumeur, les stru
tures desdi�érentes tissues et la dire
tion de di�usion, ils ont montré qu'il est possible desimuler la 
roissan
e de la tumeur 
omme 
'est observé dans les images médi
ales.Bien que des modèles génériques ont été proposés, les méthodes pour adapter 
esmodèles aux images d'un patient reste un domaine inexploré.Dans 
ette thèse nous nous adressons au problème de �personnalisation de mod-èle mathématique de la 
roissan
e de tumeurs.� Nous nous fo
alisons sur les modèlesde réa
tion-di�usion et leurs appli
ations sur la 
roissan
e des gliomes 
érébrales.Dans la première étape, nous proposons une méthode pour l'identi�
ation automa-tique des paramètres �patient-spé
i�ques� du modèle à partir d'une série d'images.En observant la divergen
e entre la visualisation des gliomes dans les IRMs et lesmodèles réa
tion-di�usion, nous déduisons une nouvelle formulation pour expliquerl'évolution de la délinéation de la tumeur. Ce modèle �Eikonal anistropique modi-�é� est utilisé plus tard pour l'estimation des paramètres à partir des images. Nousavons théoriquement analysé la méthode proposée à l'aide d'un base donne synthé-tique et nous avons montré la 
apa
ité de la méthode et aussi sa limitation. En plus,les résultats préliminaires, sur les 
as réels montrent des potentiels prometteurs dela méthode d'estimation des paramètres et du modèle de réa
tion-di�usion pour laquanti�
ation de la 
roissan
e de tumeur et aussi pour la prédi
tion de l'évolutionfutur de la tumeur.En suivant la personnalisation, nous nous 
on
entrons sur les appli
ations 
lin-iques des modèles �patient-spé
i�ques�. Spé
i�quement, nous nous attaquons auproblème de la visualisation limitée d'in�ltration de gliome dans l'IRM. En e�et,les images ne montrent qu'une partie de la tumeur et masquent l'in�ltration basse-densité. Cette information absente est 
ru
iale pour la radiothérapie et aussi pourd'autre type de traitements. Dans 
e travail, nous proposons pour 
e problèmeune formulation basée sur les modèles �patient-spé
i�ques�. Dans l'analyse de 
etteméthode nous montrons également les béné�
es potentiels pour la plani�
ation dela radiothérapie.La dernière étape de 
ette thèse se 
on
entre sur les méthodes numériques del'équation �Eikonal anisotropique�. Ce type d'équation est utilisé dans beau
oupde problèmes di�érents tel que la modélisation, le traitement d'image, la vision parordinateur et l'optique géométrique. I
i nous proposons une méthode numériquerapide et e�
a
e pour résoudre l'équation Eikonal anisotropique. En la 
omparantave
 une autre méthode état-de-l'art nous démontrons les avantages de la te
hniqueproposée.
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Chapter 1Introdu
tion
Contents1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Problems Investigated . . . . . . . . . . . . . . . . . . . . 21.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . 31.1 ContextHow 
an we des
ribe the progression of tumors through mathemati
al models and
omputer simulations? This question has been keeping s
ientists busy for the last 30years. Mathemati
ians, 
lini
ians, biologists, physi
ists and 
omputer s
ientists are
ollaborating to ta
kle this problem. Considering the 
omplexity of the dynami
s oftumor growth and the fa
t that most of the underlying phenomena have not beendis
overed yet, these attempts will 
ontinue for a while. This thesis is a humble
ontribution towards these goals.Can
er is one of the leading 
auses of death and it is not ne
essary to des
ribe itsgraveness. The important point to note is that it is be
oming more 
ommon and wehave not yet totally understood the reasons for its o

urren
e and the way to 
ureit. Vast amount of experimental resear
h in biology and medi
ine enlightens manydi�erent aspe
ts of the dynami
s of 
an
er progression. They provide information inmany di�erent s
ales from geneti
s to tissue. Mathemati
al modeling is importantin this respe
t as it provides a melting pot for all these experimental results. Modelsprovide a systemati
 stru
ture that brings these results together and shows us theoverall pi
ture. This gives us the opportunity to better understand the tumor growthand intera
tion between di�erent fa
tors and also to help 
lini
ians in diagnosingand treating tumors.Mathemati
al modeling of tumor growth has re
eived 
onsiderable attentionduring the last 30 years. Di�erent modeling attempts have been proposed spanninga large range of s
ales and te
hniques des
ribing di�erent dynami
s and phenomenonin the growth pro
ess. Although lots of e�orts have been given to formulate morerealisti
 and detailed models, little attention has been given to the appli
ability ofthese models to 
lini
al data and their personalization. As the models be
ome moresophisti
ated the gap between the information 
lini
ally available and needed by themodels widen. As a result adapting mathemati
al models to patient data be
omeharder.The motivation of this thesis is therefore to study the link between mathemat-i
al tumor growth models and medi
al images in attempt to 
reate tools useful in1



2 CHAPTER 1. INTRODUCTION
lini
al settings. Instead of going one step further in detailing existing models andmaking them more realisti
, we take a step ba
kward and sear
h for ways to applythese models to spe
i�
 patient data using images. In this manner we take a morepragmati
 approa
h to tumor growth modeling.Although tumors in di�erent parts of the body have 
ertain 
ommon 
hara
-teristi
s they also di�er in many ways. Therefore, ea
h tumor should be studiedseparately. In this thesis we fo
us on the modeling of a spe
i�
 type of brain tumor,gliomas. In attempt to link medi
al images and the growth models, we start from anexisting model explaining the growth of gliomas, whi
h is based on the well knownRea
tion-Di�usion (RD) equations, and study its link with the available informationin Magneti
 Resonan
e Images (MRI).1.2 Problems InvestigatedIn the previous se
tion we have set the general motivation of this thesis as studyingthe link between tumor growth models and medi
al images. This is a very 
omplexproblem with di�erent 
omponents su
h as theoreti
al analysis of the models, physi
sof the image a
quisition and biologi
al analysis of the tissue response to tumorgrowth. Of 
ourse, this thesis does not aim to provide solutions to all these problems.It is rather intended to be a part of a 
ollaborative work ta
kling all these mentioned
omponents. In this thesis we fo
us on the theoreti
al analysis of a type of tumorgrowth model, whi
h is based on rea
tion-di�usion equations. In this respe
t wefo
us on three di�erent problems:
• Image Guided Personalization of Rea
tion-Di�usion Type TumorGrowth Models: The �rst problem we ta
kle is adapting the rea
tion-di�usion tumor growth model to spe
i�
 patient images, personalizing themodel. This adaptation 
an also be formulated as estimating the parametersof the rea
tion-di�usion tumor growth model using time series of medi
al im-ages taken from the same patient. So the exa
t question we try to solve is:How to estimate these patient-spe
i�
 parameters that would best explain theprogression of the tumor observed in the images? How to 
reate the patient-spe
i�
 model?
• Extrapolating Extents of Glioma Invasion in MRI: Medi
al imagesare one of the main sour
e of information in diagnosing and treating braintumors. Espe
ially in radiotherapy, images are 
ru
ial in planning the therapyand outlining the area whi
h will be irradiated. The images however, 
annotshow the whole extent of gliomas due to the invasive nature of this type oftumor. The extent of the whole tumor goes beyond the visible part in theimage and the possible dire
tion of this �undete
table� extension is importantin outlining the irradiation area. The se
ond question we ta
kle in this thesisis: How 
an we extrapolate this undete
table extension from the visible part ofthe tumor in the image using patient-spe
i�
 models?
• Anisotropi
 Eikonal Equations: The third point of fo
us in this thesisarose from the �rst two questions detailed above. The mathemati
al formula-



1.3. ORGANIZATION OF THE THESIS 3tions we derived to solve the �rst two questions ended up to have the form ofmodi�ed anisotropi
 Eikonal equations. Moreover, after reviewing other typeof models for di�erent organs and pathologies we realized the importan
e ofthis type of equations. Therefore, the third question we ask is a more method-ologi
al question: How to solve anisotropi
 Eikonal equations in a fast anda

urate manner?1.3 Organization of the ThesisThis thesis is organized around the three questions explained in the previousse
tion. We �rst start by providing general information about gliomas and medi
alimages followed by ba
kground information on tumor growth modeling. Afterthe ba
kground we present our work on the three main questions making up the
ontributions of this thesis. The detailed des
ription of the material 
overed inea
h 
hapter is given below.Chapter 2 gives some general knowledge on brain tumors and more spe
i�
allyon gliomas. Di�erent types of gliomas, the grading 
onventions and di�erentbehavior of these tumors are explained brie�y. We also give some informationabout the appearan
e of gliomas in MRI as this is 
ru
ial for the understanding ofthe remainder of the thesis.Chapter 3 provides an overview of the literature on tumor growth modeling.In this 
hapter we do not distinguish between brain tumors and tumors in theother parts of the body as the modeling attempts are linked together. The mainapproa
hes of modeling, di�erent s
ales of models, di�erent te
hniques and di�erentphenomena modeled are 
overed in this 
hapter. We dis
uss brie�y about modelsfo
using on mi
ros
opi
 dynami
s and models working with information 
omingfrom medi
al images. In this 
hapter we also give a review of di�erent imageanalysis te
hniques whi
h use tumor growth modeling to ta
kle di�erent problemssu
h as segmentation and registration.Chapter 4 explains our approa
h to the problem of personalizing the rea
tion-di�usion type tumor growth models. In this 
hapter we fo
us on the dis
repan
ybetween the information required by the rea
tion-di�usion models and the informa-tion available in medi
al images. Rea
tion-di�usion models des
ribe the evolutionof tumor 
ell density distributions however, in medi
al images we only observeboundaries between the enhan
ed/unenhan
ed tumoral region and the healthytissue. In order to solve this dis
repan
y, through asymptoti
 approximations wederive a formulation whi
h des
ribes the evolution of tumor delineations in theimages based on the dynami
s of rea
tion-di�usion growth models. Using thismore 
onsistent mathemati
al des
ription, we formulate the parameter estimationproblem for rea
tion-di�usion type tumor growth models using time series ofpatient images.



4 CHAPTER 1. INTRODUCTIONChapter 5 analyzes the parameter estimation methodology presented in Chapter4. We present experimental results on syntheti
 and real images. Throughsyntheti
ally 
reated data sets we perform theoreti
al analysis of the method andshow the feasibility of the parameter estimation problem under the 
onstraint ofmedi
al images, spe
i�
ally we show the non-uniqueness of the solution of themost general 
ase. We also show that under 
ertain assumptions the parameterestimation problem 
an be solved and 
ertain values unique to ea
h tumor 
anbe extra
ted from medi
al images, su
h as the speed of progression. Followingthis analysis, on real data we present promising results showing the ability ofthe method in �nding the set of parameters whi
h well des
ribes the evolution ofthe tumor observed in MR images. Moreover, we demonstrate the power of theestimated parameters and the rea
tion-di�usion models (or rather the formulationderived from the RD models) in predi
ting the future evolution of the tumor inimages.Chapter 6 explains the problem of limited visualization of gliomas in medi
alimages. In this 
hapter we propose a solution to this problem based on dynami
sdes
ribed by the rea
tion-di�usion models. Again through asymptoti
 approxima-tions we derive an extrapolation formulation whi
h starting from the visible partof the glioma in the MR image extrapolates the possible extents of the gliomaundete
table in the image. In other words the proposed method 
onstru
ts thetumor 
ell density distribution beyond the visible mass in the image.Chapter 7 presents the syntheti
 experiments we have performed to test theextrapolation method des
ribed in Chapter 6. We �rst analyze the method to see ifthe extrapolated invasion extent mat
hes the a
tual tumor 
ell density distributionof a syntheti
ally grown tumor. After verifying this we turn our attention to theplanning of radiotherapy. We fo
us on the phase of outlining the irradiation marginsstarting from the tumor delineation in the image. In 
onventional radiotherapy a
onstant margin of 1.5-2 
m is outlined around the tumor delineation to a

ountfor the undete
table extent of the glioma. In this 
hapter we show that a variablemargin 
onstru
ted a

ording to the possible extent of the glioma, theoreti
ally,may better target the tumor and harm less healthy brain tissue.Chapter 8 fo
uses on the numeri
al solutions of a type of partial di�erentialequation, the anisotropi
 Eikonal equations. This type of equations arise in the�rst two problems we presented in Chapters 4 and 6. Moreover, anisotropi
 Eikonalequations also arise in the modeling of di�erent organs and pathologies, espe
iallyin 
ardiovas
ular and wound healing models. On the other hand, these equationsare not inherent to biologi
al/physiologi
al modeling, they also arise in di�erent�elds su
h as geophysi
s and 
omputer vision. Therefore, fast and a

urate solversfor su
h equations are important for di�erent domains. In this 
hapter we propose anumeri
al method for anisotropi
 Eikonal equations whi
h extends the well knownFast Mar
hing method to work in anisotropi
 domains. We detail our method andprovide several experiments in
luding 
omparison with one of the state-of-the-artsolvers to demonstrate the performan
e of the proposed algorithm.



1.3. ORGANIZATION OF THE THESIS 5Chapter 9 
on
ludes this thesis by going over the 
ontributions we have proposedin ea
h 
hapter and providing the perspe
tives for the future work.Appendix A gives a brief overview on Hamilton-Ja
obi equations whi
h areextensively used in this thesis. This overview is by no means 
omplete and itjust aims to introdu
e this topi
 
oarsely to readers who are not familiar with it.Hamilton-Ja
obi equations is a wide 
lass of partial di�erential equations and theemphasis in this appendix is given to the type of equations mentioned in this thesis.Appendix B gives the algorithmi
 details on the minimization algorithm used inChapter 4. This algorithm is proposed by Powell in [Powell 2002℄ and the reviewin this Appendix goes over the basi
 steps of the method for 
ompleteness of thethesis.
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Chapter 2Brain Tumors and Medi
al Images
Contents2.1 Brain Tumors . . . . . . . . . . . . . . . . . . . . . . . . . . 72.2 Gliomas (Astro
ytomas) . . . . . . . . . . . . . . . . . . . 92.3 Imaging Gliomas with Magneti
 Resonan
e . . . . . . . 102.3.1 Magneti
 Resonan
e Imaging (MRI) . . . . . . . . . . . . 102.3.2 Appearan
e of Gliomas in MRI . . . . . . . . . . . . . . . 12ContextThe te
hniques and methods presented in this work deal with the mathemati
almodeling of brain tumors and the use of magneti
 resonan
e images for this purpose.Therefore, some knowledge about brain tumors, magneti
 resonan
e images andappearan
e of tumors in these images is ne
essary. In this 
hapter we provide briefinformation about brain tumors in Se
tion 2.1 and spe
i�
ally brain gliomas inSe
tion 2.2 sin
e they are the main fo
us of this thesis. In Se
tion 2.3 we des
ribeshortly the magneti
 resonan
e imaging and the appearan
e of brain gliomas onthese images. Detailed information about any of these three topi
s is outside thes
ope of this work. Please refer to [Wilson 1999℄ for information on gliomas andbrain tumors and refer to [Westbrook 1998, Liang 2000℄ for detailed information onmagneti
 resonan
e imaging.2.1 Brain TumorsThe term �tumor� originally means abnormal swelling of the �esh and is derived fromthe Latin word tumor whi
h means swelling. In the 
urrent use tumor means a lesionwhi
h is formed by abnormal growth and un
ontrolled rapid 
ellular proliferationthat possesses no fun
tion, a neoplasm. A tumor that is lo
ated in the brain is 
alleda brain tumor. Brain tumors are not very 
ommon pathologies, 
urrent statisti
sindi
ates around 100 in
iden
es per year in 100,000 people in the developed world.In the 
ase of 
hildren the rate of in
iden
e is even lower, 4.5 in
iden
es in 100,000.Even though these values are not very high, brain tumors are among the leading
ause of 
an
er-related death for all ages [DeAngelis 2001, ABTA 2008a℄.Brain tumors 
an be 
oarsely divided into groups using two di�erent 
lassi�
a-tions, a

ording to the degree of their aggressiveness and a

ording to their origin.In terms of aggressiveness the brain tumors are 
lassi�ed as benign and malignant.7



8 CHAPTER 2. BRAIN TUMORS AND MEDICAL IMAGESBenign brain tumors proliferates slowly and they rarely spread to the surroundingtissue. They would have a normal appearan
e under the mi
ros
ope and globallythey would show distin
t borders between the tumor and the brain tissue. Most ofthe time, if it 
an be done, the tumor 
an be totally removed by surgery. Althoughmost of these tumors are not life threatening, they may be so depending on theirsize and their lo
ation in the brain. Malignant brain tumors on the other hand,proliferate rapidly and invade the healthy areas of the brain. Their borders are not
lear due to their in�ltrative nature making surgi
al removal di�
ult. Moreover,they show neoangiogenesis and ne
rosis. Their 
ells 
an travel and 
olonize otherparts of the brain and the spinal 
ord through 
erebrospinal �uid. These tumors arelife-threatening with a low survival rate [Tovi 1993, Wilson 1999, DeAngelis 2001℄.The distin
tion between benign and malignant brain tumors is not obvious andrequires the de�nition of a set of 
riteria and grading systems. In order to fa
ilitatethe diagnosis and the therapy planning, tumors are graded based on their aggres-siveness. The most 
ommonly used grading system is the one proposed by the WorldHealth Organization (WHO). Grading of a tumor takes into a

ount di�erent fa
torssu
h as mitoti
 index, vas
ularity, presen
e of a ne
roti
 
ore, invasive potential andsimilarity to normal 
ells. In the WHO system 4 grades are used to 
lassify tumorwhi
h are summarized in the Table 2.1Table 2.1: WHO Tumor Grades and Chara
teristi
sGrade Chara
teristi
sGrade I - slow proliferation - 
ells look like normal - long survivalrate - e.g.. pilo
yti
 astro
ytomasGrade II - relatively slow proliferation - 
ells look like almost normal- may invade - may re
ur as grade II or a higher gradeGrade III - rapidly reprodu
ing - 
ells look abnormal - vas
ular pro-liferation - invade surrounding tissue - tends to re
ur - e.g..Anaplasti
 astro
ytomasGrade IV - very rapid proliferation - very abnormal appearan
e of 
ells- invasion of large areas - re
urs - ne
roti
 
ore - forms newvas
ularization to support growth - e.g. Glioblastoma Mul-tiformeThe 
lassi�
ation of brain tumors in terms of their origin also has two groups:primary and metastati
. Primary tumors are the ones that originate from the brain
ells and stay in the brain. They 
an o

ur at any age however, statisti
ally they aremore 
ommon in 
hildren and in older adults. These tumors 
an be benign or malig-nant. Di�erent tumors in this group are named based on the type of 
ells they origi-nate from. Examples of these tumors are gliomas, meningiomas, medulloblastomas,ependymomas and pituitary tumors. Among these the most important ones aremeningiomas as they form the biggest part of all primary brain tumors and gliomasbe
ause they represent the majority of the malignant brain tumors [DeAngelis 2001℄.Metastati
 brain tumors are formed by 
an
er 
ells whi
h began growing in anotherpart of the body and then traveled to the brain. These tumors are by nature malig-



2.2. GLIOMAS (ASTROCYTOMAS) 9nant and they are the most 
ommon type of brain tumors. Majority of the 
an
erswhi
h metastasize to the brain are lung and breast.2.2 Gliomas (Astro
ytomas)In this thesis we mainly fo
us on a spe
i�
 type of brain tumor, the gliomas. Gliomasare the neoplasms of glial 
ells whi
h support and nourish the brain. These tu-mors appear most 
ommonly in the 
erebral hemisphere but they 
an also be foundanywhere else in the brain like the 
erebellum. They 
an arise either alone oras a re
urren
e of a pre-existing tumor. The fa
tors that 
ause glial tumors ismostly unknown but the only identi�ed risk for these tumors is the ionizing radia-tion [DeAngelis 2001℄.Gliomas have varying histopathologi
al features and biologi
al behavior. They
over a large range aggressiveness and grades from benign grade I, pilo
yti
 astro
y-tomas, to malignant grade IV, glioblastoma multiforme (GBM). The di�erent fa
torsanalyzed for grading these tumors in
lude mitosis rates, mi
rovas
ular proliferation,nu
lear atypia and ne
rosis [Wilson 1999℄. The lowest grade gliomas, namely thepilo
yti
 astro
ytomas, stand a little di�erent than the other ones. These tumorsdo not in�ltrate and they grow very slowly by means of mitosis. Although they 
anbe
ome large, they are not life-threatening and most of them are 
urable. Grade Igliomas are most 
ommonly seen in pediatri
 
ases. The higher grade gliomas fromII to IV are 
alled di�use gliomas and they share 
ertain 
hara
teristi
s. Thesetumors in�ltrate into the surrounding tissue and invade the healthy brain. Thegrade II ones, di�usive astro
ytomas, grow slowly however they show malignantprogression despite therapy. The higher grade ones, anaplasti
 astro
ytomas andglioblastoma multiforme, grow very rapidly and invade the brain in tenta
les pene-trating into the brain paren
hyma. They are usually surrounded by edema and thegrade IV ones 
reate extensive network of blood vessels and 
ontain ne
roti
 
ore.Due to their rapid growth and the edema they exert pressure on the brain tissueand 
ause lo
al mass e�e
t [Wilson 1999, DeAngelis 2001℄.The most important dynami
 in the growth of di�use gliomas is the invasion ofthe healthy brain. The in�ltration into the surrounding tissue is seen in di�erentgrades of di�use gliomas and it is a very 
omplex mole
ular pro
ess [Demuth 2004℄.The tumor 
ells in�ltrate mostly through the white matter tra
ts but also use
erebrospinal �uid and the vas
ular 
onduits [Wilson 1999℄. The myelinated �bertra
ts a
t as a route of invasion on whi
h the migration 
apabilities of 
ells en-han
e [Giese 1996℄. Di�use gliomas also show 
orti
al in�ltration demonstratingthat they 
an invade the gray matter as well. However, the gray matter in�ltrationis slower than the white matter one.The other two high grade spe
i�
 
hara
teristi
s seen in the growth of gliomasare the formation of the ne
roti
 
ore and the vas
ularization [Wilson 1999℄. Whenthe tumor grows very rapidly, the 
ells 
ompete for the limited nutrition and oxygen.In the 
ase of gliomas the tumor starts growing as a spheroid getting the ne
essarynutrition from the periphery. Due to the rapid growth and the 
ompetition less andless nutrition be
omes available for the tumor 
ells in the 
enter. As a result 
ells in



10 CHAPTER 2. BRAIN TUMORS AND MEDICAL IMAGESthe 
enter undergoes ne
rosis and a ne
roti
 
ore forms. The existen
e of ne
roti

ore is used in distinguishing between grade III and grade IV gliomas. Therefore byde�nition it only exists in the 
ase of glioblastoma multiforme. The other dynami
that takes pla
e as a result of the extensive need of nutrition of the rapidly growingtumor is the vas
ularization. As the tumor needs more blood �ow it forms its ownblood vessel systems within the tumor. These systems are either formed throughangiogenesis or remodeling of the existing vas
ulature. The vas
ular systems in thelow grade gliomas are similar to the one of the brain while it is mu
h more prominentin the 
ase of higher grade gliomas.The treatment 
ourse of brain gliomas in
ludes surgery, radiation therapy and
hemotherapy. The exa
t planning of the treatment and the type of therapy to beapplied depend on the grade and the lo
ation of the tumor. The treatment strate-gies of grade I gliomas and the others di�er due to the in�ltration present in thehigher grade tumors. The grade I gliomas have distin
t boundaries therefore sur-gi
al removal when total rese
tion is possible might su�
e. When total rese
tionis not possible, due to the lo
ation or the size of the tumor, then additional radio-therapy and/or 
hemotherapy is applied to the remaining part [ABTA 2008b℄. Ingeneral the average survival rates for patients of grade I gliomas is pretty high. Thetreatment of grade II to grade IV gliomas on the other hand is mu
h more di�
ult.The �rst step is again surgi
al removal when it is possible. However, the total re-se
tion is not possible due to the in�ltrative nature of di�use gliomas. Even whenthe visible tumor is totally rese
ted, removal of mi
ros
opi
 in�ltration into thebrain paren
hyma is not possible [Wilson 1999, DeAngelis 2001℄. Therefore, patientfollow-up with additional treatment in the form of radiotherapy and/or 
hemother-apy is applied. The in�ltration also poses problems for the additional treatmentsand as a result the tumor re
urs. In the 
ase of grade II gliomas the tumor mayre
ur as a higher grade glioma showing malignant progression. The average survivalrates for patients of these tumors is 5-10 years however, the variability is large. Forgrade III and IV gliomas the applied treatment is mu
h more aggressive howeverthe progression of the disease is mu
h faster as well. The prognosis for these 
ases isreally low, the average survival rates remain around 3 years and 1 year for the gradeIII and grade IV gliomas respe
tively. In the view of this s
enario extensive resear
his being 
ondu
ted on di�erent 
hemotherapeuti
 agents and radiation therapys
hemes [Ri
ard 2007, Bat
helor 2007, Fiveash 2003, Mahajan 2005, Nandi 2008℄.2.3 Imaging Gliomas with Magneti
 Resonan
e2.3.1 Magneti
 Resonan
e Imaging (MRI)Magneti
 Resonan
e (MR) is an imaging te
hnique whi
h uses the the nu
lear mag-neti
 resonan
e (NMR) signals emitted from the obje
ts themselves. In this respe
tit di�ers from the other imaging te
hniques like X-ray Computed Tomography (CT)or Positron Emission Tomography (PET), where either a beam is irradiated or aradioa
tive agent is given to the body. The prin
iple of MRI is based on the naturalspinning of nu
lei present in every obje
t. In addition to this spinning, the nu
leiof 
ertain atoms present in the human body (su
h as hydrogen, 
arbon, oxygen,...)
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reates a natural magneti
 �eld when 
ombined with the spin. Clini
al MR fo
useson the hydrogen whi
h is the most abundant atom in the human body. The mag-neti
 moments of hydrogen nu
lei in the body are randomly oriented under normal
onditions. In the presen
e of an external magneti
 �eld these nu
lei align them-selves along the external �eld and 
ontinue their pre
essing around the dire
tion of�eld. This relationship forms the basis of MRI.During MR imaging a 
onstant base magneti
 �eld B0 is applied to the bodyaligning the nu
lei, whi
h keep pre
essing at a frequen
y 
alled as pre
ession fre-quen
y. When a Radio Frequen
y (RF) pulse with the same frequen
y as the pre-
ession is applied, the nu
lei resonate, gain energy, 
hange their alignment and goin phase with ea
h other. As every element has a di�erent pre
ession frequen
y aspe
i�
 RF pulse only resonates with the nu
lei of spe
i�
 elements. As the RF isstopped the nu
lei relax and lose their energy. This pro
ess is 
alled relaxation andthe energy emitted in relaxation is the MR signal we dete
t. There are two impor-tant properties of the applied RF pulse, the repetition time (TR) and the e
ho time(TE). The repetition time is the time di�eren
e between ea
h RF pulse and the e
hotime is the time elapsed between appli
ation of an RF pulse and the peak signalobtained. The relationship between TR and TE 
reates the 
ontrast visible in theMR images and gives the 
ontext in MR. By 
hanging this relationship one obtainsdi�erent images su
h as T1-weighted and T2-weighted. Based on similar ideas anMR image 
an be made to be a spatial map of density of the spins, of the relaxationtimes or of the water di�usion. As a result di�erent images su
h as di�usion tensor(DT) MRI, MR spe
tros
opy (MRS) or fun
tional MRI (fMRI) 
an be obtained.MR is very good in soft tissue dis
rimination 
ompared to other imaging te
h-niques. The two extreme 
ases in terms of 
ontrast di�eren
e in MR are the fatand the water. In T1-weighted images the fat tissue is enhan
ed while the water isnot, showing the �uid around the 
orti
al areas and within the ventri
les as darkregions. On the other hand, in T2-weighted images free water and water embeddedin the tissue is strongly enhan
ed and appears bright, see Figures 2.1(a) and (b).Although this high intrinsi
 
ontrast di�eren
es are very useful in dis
riminatingbrain tissues, they may not always be enough to dete
t pathologies a

urately. Inorder to in
rease the 
ontrast between pathologies and the brain tissue, enhan
e-ment agents may be given to the patient and additional images might be a
quired.One important agent that is widely used for imaging brain tumors is Gadolinium(Gd). Gadolinium inje
tion is followed by a T1-weighted image a
quisition and ithelps in
reasing the enhan
ement of water mole
ules neighboring tissue. In the MRimages this is espe
ially visible in highly vas
ular regions (vessels themselves or re-gion with abnormal angiogenesis). Tumors and other lesions are therefore stronglyenhan
ed due to the inje
tion [Westbrook 1998℄. Another modality whi
h is veryuseful in the 
ase of pathologies is the FLAIR. The important property of the �airis that the 
erebrospinal �uid (CSF) is not enhan
ed as in the T2-weighted images.Therefore, the pathologies adja
ent to the CSF are seen mu
h more 
learly.In the methods presented in this thesis, besides the anatomi
al MR images, wealso fo
us on the di�usion tensor MR images (DT-MRI). The DT-MRI is not ana
quired modality but it is rather 
onstru
ted from the di�usion weighted images(DWI). DWIs give lo
al dire
tional information on the di�usivity of water inside
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(a) (b) (
)Figure 2.1: (a) An axial sli
e of a T1-weighted image of a healthy brain. (b) Thesame axial sli
e of the T2-weighted image of the same brain. We see that in T1-weighted images the fat tissue is enhan
ed while the water is not. On the other hand,in T2-weighted images the appearen
e of fat and water are inverse. This �exibilityin MR imaging gives us the opportunity to have a very di�erent appearan
e of thesame brain in two di�erent modalities. (
) An axial sli
e of a DT-MRI image of thesame brain as shown in Figures (a) and (b). Ea
h tensor is visualized as an ellipsoidand the image is subsampled for a 
learer visualization. The 
olors of the ellipsoidsrepresent the dire
tion of their major axis.the brain tissue. Using these images we 
an understand how mu
h a water mole
ule
an migrate along ea
h dire
tion in a given lo
ation. Through a
quiring DWIsalong di�erent dire
tions we 
an 
onstru
t lo
al estimates of 
ovarian
e matri
esrepresenting the lo
al dire
tional di�usion information of water. These 
ovarian
ematri
es are 
alled di�usion tensors and the image 
onsisting of these matri
es indi�erent lo
ations is 
alled DT-MRI. In Figure 2.1(
) we show a single sli
e of anexample DT-MRI image where ea
h point 
onsists of a tensor des
ribing the lo
aldi�usivity of the water mole
ule.2.3.2 Appearan
e of Gliomas in MRIThe MR images are one of the most important radiologi
al information in the diag-nosis and grading of brain gliomas and tumors in general [DeAngelis 2001, Tovi 1994,Pri
e 2007℄. The appearan
e of gliomas in MR images di�er depending on the gradeof the tumor and the modality of the image. The most important property of thetumors that is visualized in the anatomi
al MR is the ex
essive 
ontent of freewater. Due to this gliomas appear as hyper-intense regions in the T2-weighted im-ages and hypo-intense in the T1-weighted, as shown in Figures 2.2 and Figures 2.3.When gadolinium is inje
ted the highly vas
ularity in the tumor gets enhan
ed inthe T1-weighted image and we get hyper-intensity regions inside the tumor for theT1-weighted images, Figure 2.3(
).Appearan
e of low grade gliomas (grade I and II) are pretty homogeneous un-
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(a) (b) (
) (d)Figure 2.2: In the images above we show axial sli
es of (a) T1-weighted, (b) T2-weighted, (
) T1-weighted post gadolinium inje
tion and (d) FLAIR images of apediatri
 patient with a di�usive astro
ytoma of grade II. We see that the tumor isenhan
ed in the T2-weighted and the FLAIR images.der MR images. In Figure 2.2 we show axial sli
es of MR images of a di�usiveastro
ytoma (grade II) dete
ted in a pediatri
 patient. We observe that the tu-mor is enhan
ed in the T2-weighted and the FLAIR images with 
lear boundariesseparating the tumor from the healthy tissue. On the other hand we only observehypo-intense regions in the T1-weighted and the T1-weighted after gadolinium in-je
tion images. The 
lear boundaries seen in the T2-weighted images in the 
aseof grade-II-astro
ytoma might be misleading due to the in�ltrative nature of thetumor [DeAngelis 2001℄. Although we see su
h 
lear separation, the tumor mighthave penetrated the brain paren
hyma beyond the enhan
ement of the MR sig-nal [Wilson 1999, Johnson 1989, Tovi 1994℄.

(a) (b) (
)Figure 2.3: In the images above we show axial sli
es of (a) T1-weighted, (b) T2-weighted and (
) T1-weighted post gadolinium inje
tion images of a patient su�eringfrom a grade IV glioma, glioblastoma multiforme. The appearan
e of GBM is veryirregular in the MR images.In the 
ase of high grade gliomas, espe
ially the grade IV gliomas, the MR
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e of the tumor is very irregular. In the T1-weighted image again we donot see any enhan
ement in the tumor region. In T2-weighted images on the otherhand we see several 
ompartments of the tumor whi
h are well enhan
ed. Lookingat Figure 2.3(b), we observe the very highly enhan
ed middle part of the pathologywhi
h in
ludes the highly a
tive part of the tumor and the ne
roti
 
ore. However,the ne
roti
 
ore 
annot be distinguished. Around this part we observe anotherhighly enhan
ed part, whi
h 
orresponds to the edema. The edema region is alsoin�ltrated with tumor 
ells however, the number of tumor 
ells per volume is mu
hlower than the a
tive part [Johnson 1989, Tovi 1994℄. In the T1-weighted imageafter gadolinium inje
tion we 
learly see the most a
tive part of the tumor and thene
roti
 
ore. The dark area inside the pathology is the ne
roti
 
ore where thereare no live 
ells. The bright rim around this area is the a
tively proliferating regionof the tumor where the vas
ularization is very dense and the tumor 
ell density ishigh. In the 
ase of grade III gliomas these images look di�erent as there is none
roti
 
ore and the there might not be any edema region.One of the most 
ru
ial points of MR appearan
e of gliomas is the in�ltrationof the tumor whi
h beyond a 
ertain 
ore region is not enhan
ed in the images.Di�erent experiments 
omparing histopathologi
al analysis with MR images haveshown that tumor 
ells exists beyond the enhan
ed region in the T1-weighted imageand the T2-weighted image [Tovi 1994, Johnson 1989℄. In the images the di�eren
ebetween the tumorous region and the brain tissue seems abrupt. However, thehypotheti
al distribution of tumor 
ell density is smoother. In Figure 2.4 we showthe hypotheti
al 
ross se
tion of a GBM where the tumor 
ell density is representedby the height of the blue 
urve. The T1 and T2 image intensities are shown in the�gure as di�erent thresholds on the tumor 
ell density [Swanson 2008b℄. We see thathypotheti
ally the transition between the enhan
ed region in the post gadoliniumT1-weighted image and the enhan
ed region in the T2-weighted image is smooth.Moreover, the tumor 
ell density 
ontinue to drop after the T2 threshold suggestingin�ltration beyond the enhan
ed region in the image. This dete
tion problem posesdi�
ulties for the treatment of the tumor espe
ially in the 
ase of radiotherapy whereimages guide the irradiation. In order to deal with this problem in radiotherapy anormal looking band around the tumor is also irradiated [Kantor 2001℄. However,these e�orts seem to be not enough be
ause di�use gliomas tend to re
ur due to thein�ltration [Wilson 1999, DeAngelis 2001℄.Re
ent resear
h on other MR modalities su
h as DT-MRI and MRS haveshown that these images 
an also be used to gather information about the tu-mor 
hara
teristi
s and its spatial distribution. As the tumor invades the brainthrough white matter it damages the underlying �ber stru
tures. DT-MRI im-ages have shown to be useful in dete
ting this damage by using di�erent measures[Lu 2003, Lu 2004, Roberts 2005, Sinha 2002, Pri
e 2003℄.. The �rst 
hange thato

urs is that the mean di�usivity (MD) in
reases in the regions invaded by thetumor or by edema, see Figure 2.5(b). Moreover, as the �ber stru
tures are dam-aged the dire
tional organization of the �bers is lost and this 
an be quanti�ed bythe fra
tional anisotropy (FA) 2.5(
). MR spe
tros
opy on the other hand, givesinformation about the metaboli
 a
tivity inside and around the tumor. A
tivitiesregarding 
ertain mole
ules are spe
i�
 to brain tumors therefore, use of MRS 
an
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Figure 2.4: The MR images of grade II to grade IV gliomas are not able to showthe whole in�ltration of the tumor inside the brain paren
hyma. In the plot weshow hypotheti
al distribution of the tumor 
ell density and the relation of it to theenhan
ed region in the MR images. We see that tumor 
ell density drops smoothlysuggesting in�ltration beyond the enhan
ed region in the T2-weighted image.

(a) (b) (
)Figure 2.5: The DT-MRI images 
an show di�erent e�e
ts of the tumor to the �berstru
tures providing us another mean to visualize the pathology. (a) FLAIR imageof a grade II astro
ytoma, (b) Mean Di�usivity (MD) image of the same patientderived from the DT-MRI, (
) Fra
tional anisotropy (FA) image of the same patientagain derived from the DT-MRI. We observe that in the tumor region the MD imageshows extra enhan
ement while the FA image shows degradation in the same region.help us gather some information about the tumor and its extent [Devos 2005℄. Theproblems with these two modalities, DT-MRI and MRS, is the resolution of theimages whi
h are inferior to the anatomi
al images. A

urate lo
al information is



16 CHAPTER 2. BRAIN TUMORS AND MEDICAL IMAGESnot very possible to obtain however, as the MR te
hnology improve these problemswill be solved as well.There are also other imaging te
hniques whi
h provide di�erent informationabout gliomas than MRI. Positive emission tomography for instan
e gives lo
almetaboli
al information about the tumor. In PET a radioa
tive agent is inje
tedand the uptake of this material is 
orrelated with the existen
e of tumor 
ells.Di�erent studies have analyzed and shown dis
repan
ies and similarities betweenthe appearan
e of gliomas in PET and MRI [Ogawa 1993, Kra
ht 2004, Kato 2008,Miwa 2004℄. They have demonstrated that the appearan
e in both imaging te
h-niques might be di�erent. Therefore, using these images together might be theoptimum 
hoi
e.
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hapter we present an overview of mathemati
al tumor growth modeling.We explain the main approa
hes by going through di�erent models proposed. Wetalk about mi
ros
opi
 models, di�erent stages of tumor growth and their modeling,ma
ros
opi
 models and some image analysis tools using these models.3.1 Introdu
tionThe domain of mathemati
al tumor growth modeling in the resear
h 
ommunityis vast. There is extensive existing resear
h both on brain tumors and on tumorsin other parts of the body. In order to situate the methods presented in this worka good understanding of the literature is ne
essary. In this 
hapter we provide anoverview of the literature published on tumor growth models. A 
omplete review ofall the works on this topi
 would be too long therefore, we provide the main stepsand the resear
h orientations. For further reviews on the topi
 refer to [Araujo 2004,Mantzaris 2004, Sanga 2007℄.The main aim of tumor growth modeling is to develop mathemati
al models ex-plaining intera
tions of tumor 
ells with ea
h other and with the surrounding tissue,17
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h lead to the growth of the tumor, via mathemati
al abstra
tions. In orderto explain the underlying me
hanisms as a

urately as possible, su
h abstra
tionstake into a

ount many di�erent biologi
al fa
tors, whi
h were observed throughexperimentation. Su
h fa
tors in
lude internal dynami
s of 
an
erous 
ells, theirintera
tions with ea
h other and with healthy tissue, nutrition and oxygen trans-port from the extra
ellular matrix (ECM) and from the vas
ular network, 
hemi
alsse
reted by tumor 
ells, type of the underlying tissue, and many more. Modelsaim to 
ombine all these fa
tors in a uni�ed mathemati
al framework, whi
h wouldagree with the observed results. While most of the work in the literature has been
on
entrated in modeling the growth pro
ess in a general framework, there has beensome re
ent attempts to develop patient spe
i�
 models. These developments aredire
ted more on des
ribing the growth of the tumor using the observations obtainedfrom the patient.Bene�ts of des
ribing the tumor growth mathemati
ally are numerous. Firstof all, su
h des
riptions would help us to 
ombine experimental �ndings made inmany diverse �elds of 
an
er resear
h in a 
ommon mathemati
al ground. Thesemodels allow us to interpret experimental results and understand the underlyingme
hanisms of tumor growth and behavior of 
an
erous 
ells. Virtual experimentsand simulations give us the opportunity to observe e�e
ts of di�erent treatmentson 
an
erous 
ells, and would lead us to improve these treatments or suggest newones. On the other hand, patient-spe
i�
 models 
ould be used in treating patients.Su
h models 
ould be used for therapy planning, suggesting radiotherapy marginsadapted to the growth dynami
s or helping the on
ologist make a 
hoi
e betweendi�erent types of drugs that would best suit the patient. Virtual realizations of thetumor and the brain stru
tures 
ould help neurosurgeons during operations, provid-ing pre
ise lo
ations of vital stru
tures. Another bene�t of tumor growth models isthat they 
ould allow us to make predi
tions. The shape and invasion margins ofan existing tumor in a future time 
ould be predi
ted using su
h models and 
om-puter simulations. The predi
tions would give the medi
al do
tor the opportunityto foresee the problems the patient might undergo and also would help him de
ideon the best time of operation if ne
essary. In
luding the geneti
 information in su
hmodels, one 
ould even produ
e the probability of o

urren
e of a brain tumor inthe future.As we said the mathemati
al work on tumor growth modeling is trying to de-velop mathemati
al abstra
tions that would best explain the observed phenomenon;hen
e, it is very 
losely asso
iated with the experimental and 
lini
al work beingdone in 
an
er resear
h. Most growth models use observations 
oming from di�er-ent sour
es like in-vitro experiments, in-vivo experiments done on animal subje
ts,biopsy results, autopsy results and medi
al images of patients like Computed To-mography (CT) s
ans or Magneti
 Resonan
e Images (MRIs). These experimentsand images are keys to developing models des
ribing the tumor growth pro
essa

urately. Observations used 
an be 
lassi�ed in two groups based on the s
ale:ma
ros
opi
 and mi
ros
opi
 s
ales. Experiments 
on
entrated on the 
ellular a
tiv-ities 
an be pla
ed under the mi
ros
opi
 
lass, like in-vitro and in-vivo experiment,while larger s
ale views like medi
al images 
an be pla
ed under ma
ros
opi
 
lass.Although the ma
ros
opi
 and mi
ros
opi
 
lassi�
ation 
an be done in other man-



3.2. CLASSIFICATION 19ners, in this thesis we make distin
tion based on the use of medi
al images.There has been great advan
es in tumor growth modeling, there are several prob-lems on the way of developing more a

urate models. The most 
ru
ial problem isthe la
k of knowledge on the behavior of tumor 
ells in the living tissue. Observa-tions 
oming from in-vitro and in-vivo experiments gives us insight on the behaviorof tumor 
ells on laboratory set-ups like petri dish or on animal subje
ts. However,in-vivo observations on human beings, whi
h is the 
ase the tumor models aim todes
ribe, are s
ar
e. The best one 
an do is to propose assumptions on the behaviorof tumor 
ells in the human brain, using observations available at hand. Anotherproblem related to observations is limitations in ma
ros
opi
 imaging te
hniques,[Tovi 1994℄. Medi
al imaging te
hniques are able to enhan
e and dete
t regions
ontaining tumor 
ells, only if the number of tumor 
ells are above some threshold.There are several estimates given in the literature on the lowest dete
tion thresholdof CT images (1-40 % of the maximum number of tumor 
ells brain paren
hyma
an handle), [Tra
qui 1995, Swanson 2008b℄. Although there is no work being doneon the dete
tion threshold of MRIs for tumor 
ells, the extent of the tumor (inva-sion margin) in these images are very similar to the one in CT images thus, it is a
ommon pra
ti
e to a

ept the same threshold.In the rest of this 
hapter we will give general information about tumor growthmodels, summarize some of the milestones in tumor growth modeling and also reviewre
ently proposed tumor growth models trying to give an overview on the state ofthe art. In Se
tion 3.2 we will introdu
e a 
lassi�
ation of tumor growth modelswhi
h we will use throughout this 
hapter to analyze di�erent models proposed.Based on this 
lassi�
ation we review the 
orresponding literature of mi
ros
opi
models in Se
tion 3.3 and ma
ros
opi
 models in Se
tion 3.4. In Se
tions 3.5 and 3.6we fo
us on the appli
ations on medi
al images and explain some of the modelsproposed for therapy planning and other works whi
h use models for segmentationand registration.3.2 Classi�
ationResear
h being done on tumor growth modeling 
an be 
oarsely 
lassi�ed into twolarge groups. This 
lassi�
ation is based on the s
ale of the model and there are two
lasses: mi
ros
opi
 models and ma
ros
opi
 models. The main di�eren
e betweenthese 
lasses is the s
ale of observations they are trying to explain and formulate.Mi
ros
opi
 models 
on
entrate on observations in the mi
ros
opi
 s
ale, like in-vitroand in-vivo experiments. They try to explain the growth phenomena at the mi
ro-s
opi
 level by des
ribing the intera
tions between di�erent 
ells, di�erent 
hemi
alsse
reted by 
ells, nutrition sour
es, oxygen and nearby vessels. Ma
ros
opi
 modelson the other hand, are 
on
entrated on observations at the ma
ros
opi
 s
ale likethe ones provided by medi
al images. They formulate the average behavior of tumor
ells and their intera
tions with underlying tissue stru
tures, whi
h are visible atthis s
ale of observation (gray matter, white matter, bones, ...). These models tryto des
ribe the behavior of the tumor as a whole, 
onsisting of 
lusters of 
ells.Further 
lassi�
ation within these groups 
an be made based on the stage of the



20 CHAPTER 3. LITERATURE REVIEWtumor growth being analyzed or the e�e
t of the growth on the brain. Classi�
ationbased on the stage 
riteria is more suitable for the mi
ros
opi
 models and will beused for those models only. On the other hand the e�e
t 
riteria will be used forthe ma
ros
opi
 models.The 
lassi�
ation based on stages of the tumor growth 
onsists of three 
lasses,whi
h are basi
ally three di�erent phases of the growth: the avas
ular growth,the angiogenesis and the vas
ular growth. At this point, we would like to givevery simpli�ed explanations for these stages for 
ompleteness. The avas
ular growth
orresponds to the stage where the pro
ess is mostly governed by the proliferationof tumor 
ells. In this stage the tumor is 
onsidered to be a solid mass, whi
h isgrowing by means of mitosis. Although not 
ompletely known, it is thought thatthere is no invasion of the healthy tissue. The intera
tions between tumor 
ellsand the healthy tissue is also thought to be limited, [Araujo 2004℄. The tumor
annot grow inde�nitely in the avas
ular stage be
ause as the tumor mass grows,less and less nutrition is available for the 
ells deep inside the avas
ular mass. Asa result ne
rosis begins, tumor 
ells that are not getting enough nutrition die, andonly 
ells on the outer perimeter of the tumor 
ontinue to proliferate. At one pointne
rosis and the proliferation balan
es ea
h other and the avas
ular tumor rea
hesa limiting size, whi
h is assumed to be around 1-3 mm in diameter, [Orme 1996b℄.Angiogenesis (vas
ularization) is the stage where tumor 
ells in the avas
ular massmodify the existing vas
ular stru
ture, to 
reate new vessels that would feed them.Through this pro
ess the tumor 
an over
ome its limit size, grow mu
h faster andinvade the surrounding tissue. Due to the 
ru
ial role of angiogenesis on the tumorgrowth, its underlying me
hanism has 
aptured attention and many models havebeen proposed trying to explain it. The third stage of the tumor growth, vas
ulargrowth, has been paid less attention than two previous stages. The 
omplexity ofthe tumor growth in this stage is higher be
ause there are several pro
esses going onsimultaneously. In addition to 
ellular and 
hemi
al intera
tions going on in the �rsttwo stages, tumor 
ells start to invade the surrounding tissue via me
hanisms not
learly known yet. At this stage, the tumor be
omes di�usive and is not 
onsideredto be solid anymore. While the di�eren
e between 
an
erous and healthy regionsare 
lear in the avas
ular stage, this di�eren
e vanishes during the vas
ular growthbe
ause tumor 
ells move towards healthy regions.Classi�
ation based on the e�e
t of tumor growth on the brain is more appro-priate for ma
ros
opi
 models. We 
an distinguish two major groups: me
hani
almodels, whi
h 
on
entrate on the mass-e�e
t of the tumor and di�usive models,whi
h 
on
entrate on the in�ltration of the brain tissue. In following se
tions wewill go over some of important and re
ent models that have been proposed. Whilementioning di�erent models we will try to make use of 
lassi�
ation types explainedabove, whi
h is summarized in �gure 3.2.3.3 Mi
ros
opi
 ModelsTumor growth models, whi
h 
an be named as mi
ros
opi
, aim to des
ribe thetumor growth pro
ess at the 
ellular level using experimental observations at this
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MODELSFigure 3.1: Classi�
ation of tumor growth modelslevel. They take into a

ount physi
al and 
hemi
al intera
tions between 
ells andthe ECM, and build a 
ause-result relationship between the tumor growth and theseintera
tions using mathemati
al formulation. Me
hani
al phenomenon like 
ohesionfor
es, adhesion for
es and pressures are often in
luded to des
ribe physi
al inter-a
tions between 
an
erous and healthy 
ells. As for 
hemi
al intera
tions, theyin
lude pro
esses like di�usion of nutrition and oxygen, se
retion of di�erent fa
-tors by tumor 
ells and their e�e
ts on the ECM, blood vessels and other 
ells.Mathemati
al systems obtained are usually very detailed as they try to take intoa

ount all the fa
tors observed to a�e
t the tumor growth. Formulations used in
reating mi
ros
opi
 models enjoy a large variety of mathemati
al methods. Most
ommonly used methods are partial di�erential equation (PDE) systems, 
ellularautomata and statisti
al models.3.3.1 Avas
ular Growth/Solid TumorMost of the modeling work at the mi
ros
opi
 s
ale has been 
on
entrated on theavas
ular stage of the growth. In the beginning it was thought that the whole pro
essof tumor growth was only governed by the proliferation of 
ells. Models using onlypopulation growth dynami
s like exponential growth or Gompertzian growth wereproposed. In table 3.1 we give some of the population growth equations 
ommonlyused. u in these equations is the normalized density of tumor 
ells (normalized bythe maximum tumor 
ell density the underlying tissue 
an handle), ∂u/∂t denotesthe 
hange of u in time and ρ is the proliferation rate of tumor 
ells whi
h istaken to be ρ = 1 in the �gures. One of the �rst papers employing this idea waspublished by Mayneord in 1932, [Mayneord 1932℄. This work explained the e�e
t ofdi�erent distributions of a
tively dividing 
ells on the growth, based on histologi
alexperiments telling that viable 
ells are only found on the outer periphery of the



22 CHAPTER 3. LITERATURE REVIEWTable 3.1: Commonly used population growth terms

Exponential (green) Gompertz (red) Logisti
 (blue)
∂u/∂t = ρu ∂u/∂t = ρu ln(1/u) ∂u/∂t = ρu(1− u)solid tumor.In light of further experiments, di�usion and 
onsumption of oxygen was in
ludedin the model as a fa
tor in the mitosis rate and ne
rosis. Models proposed byThomlinson et al. and Burton [Thomlinson 1955, Burton 1966℄ examined this e�e
tand showed that when the blood supply (as a supply of oxygen) was limited tothe perimeter of the tumor, formation of the ne
roti
 part 
ould be explained as aresult of la
k of oxygen. These developments showed that the Gompertzian modelbetter �ts the tumor growth. Although these models were able to mat
h the growthrate of the tumor, they were not able to explain its 
ompa
tness. Greenspan in[Greenspan 1972℄, in
luded surfa
e tension among living 
ells on the periphery, inorder to obtain a 
ompa
t tumor. In this paper, he assumed that ne
roti
 
ells weredissolving and due to the surfa
e tension, 
ells on the periphery were pushed towardsthe ne
roti
 region. He also tried to explain the inhomogeneity in the mitosis ratethroughout the tumor via the se
retion of growth inhibiting fa
tors (GIF) by tumor
ells in a spatially uniform manner. The tumor radius evolution followed an integro-di�erential equation, whi
h was 
oupled to rea
tion-di�usion equations explainingthe distribution of nutrition and GIFs. Although in
luding the oxygen 
onsumptionin the model was a big step, it was unable to explain the slow thinning of the viablerim following the formation of a ne
roti
 
ore. Deakin in [Deakin 1975℄ in
ludedinhomogeneous 
onsumption of oxygen in the tumor explaining this phenomenon.Besides the 
ell loss in the tumor due to ne
rosis, M
Elwain et al. [M
Elwain 1978℄in
luded another 
ell loss me
hanism, apoptosis, following the experiments showingthat tumor 
ells may die even though they do not la
k nutrition nor oxygen. The
onstant 
ell loss rate 
oming from apoptosis, was also 
ausing the tumor to stay ata limit size.
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 models of growth that has been proposed there has alsobeen some sto
hasti
 ones emphasizing the probabilisti
 nature of the growth. One ofthe �rst works in this 
ontext is of Wette et al. in [Wette 1974a, Wette 1974b℄. Themain argument of su
h models is that �u
tuations around the average behavior maybe more important than the average behavior itself, when the population assumessmall values. These models simply add the possibility that average values like mitosisrate or di�usion of fa
tors may deviate a lot.Later on, the e�e
t of GIFs on the growth pro
ess was analyzed by Adam etal. in [Maggelakis 1990℄. They showed that GIFs indeed play a 
ru
ial role on thedorman
y of the tumor in the avas
ular stage. In their model they in
luded inho-mogeneity of nutrition 
onsumption and GIF produ
tion using spatially dependentfun
tions, assuming GIFs were produ
ed more in the ne
roti
 
ore and de
reaselinearly towards the perimeter. Even though they did not in
lude the volume lossin the ne
roti
 
ore, they were able to obtain limiting sizes, showing GIFs alone
an also 
ause dorman
y in solid tumors. By in
luding both inhomogeneous forma-tion of GIFs and 
onsumption of oxygen they 
ombined all previous ideas in oneformulation.Following experiments suggesting that 
ells in solid tumors tend to grow towardsblood vessels, M
Elwain et al., [M
Elwain 1993℄ introdu
ed an a
tive migration to-wards nutrition gradient in their model. Des
ribing the motion of 
ells with twoparts: passive motion towards the ne
roti
 
ore 
aused by pressures and the 
hemo-taxis towards nutrition sour
es. However, experiments showed that not all 
ellsfollowed the a
tive migration. Pettet et al. [Pettet 2001℄ proposed to use the 
ell
y
le to explain this. In this model, 
ells that were going through mitosis were not
hemota
ti
ally a
tive. Only quies
ent 
ells were a�e
ted by the 
hemotaxis towardsthe nutrition gradient.As models des
ribing the motion of a single element, tumor 
ells, are gettingmore and more elaborate, some attention has started to be given to multiphasemodels to be applied to tumor growth. Please et al. in [Please 1999℄ used thetheory of multiphase to model the tumor growth using two phases: tumor 
ells andextra
ellular matrix. They modeled physi
al intera
tions between these two phasesand analyzed the e�e
t of me
hani
al stresses in the tissue on the formation of thene
roti
 region. Both phases in this model were assumed to be invis
id. Lateron, Landman et al. added the interphase drag for
es in this formulation and usingthe model, showed the e�e
t of surfa
e tension on the formation of the ne
roti

ore and also on the stable limiting size of the tumor, [Landman 2001℄. Brewardet al. in [Breward 2002℄, also used two phases, however, they took into a

ountthe intera
tions between tumor 
ells by modeling 
ellular 
ohesion between them.Hen
e, the pressure in the tumor di�erentiated from the pressure of the extra
ellularmatrix, due to these intera
tions. Byrne et al. in [Byrne 2003℄ took a di�erentapproa
h to two phase models. They used theory of mixtures to model the tumoras an organi
 balloon 
reating a solid-
ellular phase and the surrounding media as aliquid 
ontaining nutrition and di�erent growth fa
tors. The dynami
s of the growthwere des
ribed by mass and momentum balan
es in addition to the 
onstitutive laws.The me
hani
al intera
tion 
ombined with the mass ex
hange between two phasesenabled them to 
ompute lo
al stress indu
ed within in the tumor. In their work,
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t of this stress on the rate of proliferation and the equilibrium
on�guration of the avas
ular tumor. Consistent with in-vitro experiments theyshow that external loads and stress exerted on tumor 
ells a�e
t the size of theavas
ular tumor. As a result they demonstrated that avas
ular tumors 
an rea
htheir limiting size either through nutritious equilibrium or stress equilibrium.Most of the previously mentioned models use exponential, Gompertz or logisti
growth for the proliferation of tumor 
ells. There has also been some re
ent work ontype of growth equation that would best �t tumor mitosis. Tabatai et al. proposedto use a di�erent set of growth models 
alled hyperbolasti
 models, [Tabatai 2005℄.They say that the in
rease in the number of tumor 
ells 
an be better explainedusing su
h a model with more �exibility.Tumor-Indu
ed AngiogenesisTumor-indu
ed angiogenesis is a very 
omplex pro
ess in
luding lots of 
hemi
aland me
hani
al phenomena, whi
h has not been totally understood. Mantzaris etal. in [Mantzaris 2004℄ reviewed some of the known biologi
al pro
esses taking pla
ein angiogenesis. The basi
 observable 
onsequen
e is that tumor 
ells a�e
t nearbyblood vessels to sprout new vessels towards themselves 
reating new vas
ular stru
-ture as a sour
e of nutrients and oxygen, see �gure 3.2. As a result of angiogenesisthe tumor re
eives extra nutrition and the growth speeds up. Mathemati
al formu-lations modeling angiogenesis, usually takes into a

ount motion of endothelial 
ells(ECs), tumor angiogenesis fa
tor (TAF), �brone
tin stru
tures of extra
ellular ma-trix (ECM), vas
ular endothelial growth fa
tor (VEGF) and angiogenesis inhibitorfa
tors.There have been some attempts to model the initial phase of angiogenesis. The pro-
ess starts by produ
tion of VEGF by tumor 
ells and their binding to nearby vessels.This fa
tor initiates the deta
hing of ECs from the vessel, moving of ECs towardsthe tissue by means of haptotaxis (
ells move up a gradient of adhesion) and begin-ning the formation of buds. Orme et al. [Orme 1996a℄ tried to model this pro
ess in1D, using rea
tion-di�usion equations for the motion of ECs, based on haptotaxis.The bud formation was formulated as a 
ombination of rea
tion, di�usion and taxis,surprisingly having no relation to the density of VEGF. In [Levine 2000℄ using thismodel as a basis, Levin et al. formulated a very 
omplex system 
ontaining 31parameters to model the angiogenesis initialization. They formulated 
omplex in-tera
tions between TAFs, ECs, protease and �brone
tin. Although the model was
reated to be very realisti
, some in
luded intera
tions are not observed yet.Later stages of the angiogenesis have re
eived more attention from the mathe-mati
al 
ommunity. One of the �rst models, whi
h in
luded fa
tors like TAF, wasproposed by Byrne et al. in [Byrne 1996℄. The 1D model in
luded two di�erentpopulations of ECs: 
ells at the tip and 
ells forming the sprout. The reason forthis is that, EC proliferation and the bran
hing of the vessel only o

urs at the tip.The model in
luded the e�e
t of TAF in EC proliferation and bran
hing of the tip.Chaplain et al. extended this model in 2D, in
luding EC density, 
on
entration ofTAF and �brone
tin in their model in [Chaplain 1998℄. Motion of ECs were modeledas haptotaxis using �brone
tin stru
tures of ECM. The 
ommon feature of most of
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Figure 3.2: Sket
h of the angiogenesis pro
ess showing di�erent stages of the pro
essstarting from (a) to (
), image taken from [Mantzaris 2004℄.the later models is that TAF 
on
entration was assumed to be at steady state, sin
ethis fa
tor di�uses mu
h faster than ECs. This model showed the importan
e ofhaptotaxis for a su

essful angiogenesis.Anderson et al. tried to model the angiogenesis pro
ess in the absen
e of ECproliferation, [Anderson 2000℄. The aim was to show that angiogenesis would bein
omplete without the proliferation. In their 1D model they in
luded di�usionof TAF and ECs, with the e�e
t of haptotaxis with �brone
tin and 
hemotaxistowards TAF gradient. Chaplain et al. in [Chaplain 2000℄ extended this model in2D, showing that ECs do not rea
h the tumor in the absen
e of proliferation. E�e
tof angiogenesis inhibitor fa
tors was in
luded in another model of Anderson et al.in [Anderson 2000℄. They have formulated the se
retion of angiogenesis inhibitorfa
tors from an existing tumor to prevent the vas
ularization of a se
ond tumor. Inthe model, they showed that under the e�e
t of inhibitor fa
tors, vas
ularizationwas 
eased for the se
ond tumor.While most of the models proposed for angiogenesis used only rea
tion-di�usionsystems, taking into a

ount the 
hemi
al intera
tions, some models formulated thephysi
al intera
tions between EC and ECM. The 
hemi
al intera
tions between ECand ECM were des
ribed by haptotaxis through �brone
tin. On the other hand, EC
ells exert tra
tion for
es on the ECM �bers 
reating displa
ement of the matter.Holmes et al. in
luded this me
hani
al intera
tion besides the 
hemi
al intera
tionsof previous works in their model in [Holmes 2000℄. They observed that below a
riti
al tra
tion value, the stru
ture of vas
ular network was homogeneous, whileabove this value the stru
ture was highly heterogeneous. This is a 
riti
al step,
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e, heterogeneity of vas
ular stru
tures, would a�e
t the growth pro
ess greatly.Besides the models explained above, some dis
rete models were also proposedto predi
t the vas
ular stru
ture itself. One of the most important work in thiswas proposed by Stokes and Lau�enburger in [Stokes 1991℄. In their model theytreat ea
h sprout individually and tra
k the motion of growing tips in 2D. Theirformulation in
luded position and velo
ity for every tip, where evolution of thevelo
ity of a tip was given by a sto
hasti
 di�erential equation adding a white noiseto take into a

ount the randomness. The position and the velo
ity of the a tip wasa�e
ted by the TAF 
on
entration through the phenomena of 
hemotaxis. Theyhave taken the TAF 
on
entration at steady state in their model, whi
h was laterrelaxed by Tong and Yuan in [Tong 2000℄.Anderson and Chaplain also proposed a model to predi
t the vas
ular stru
ture,[Anderson 1998℄. Their model start by 
al
ulating values of EC density, TAF and�brone
tin 
on
entration using the formulation they proposed in [Chaplain 1998℄.Using these values, they assign probabilities to 
ells moving to di�erent grid points.Based on these probabilities they have visualized the vas
ular stru
tures in 2D.Sin
e probabilities in
luded the information 
oming from di�usion, 
hemotaxis andhaptotaxis, so did vas
ular stru
tures.Re
ently, Habbal formulated a Nash game for the angiogenesis pro
ess,[Habbal 2005℄. The vas
ularization is been modeled as a 
ompetition between thetumor, whi
h tries to provide itself an optimal drainage, and the host tissue, whi
hwants to keep its stru
tural integrity, not letting any blood vessels to form. Theagents of the game are TAFs se
reted by the tumor and antiangiogeni
 fa
tors. Using�nite elements Habbal solved for the Nash equilibria and visualized the formationof the vas
ularate stru
ture in 2D. This model is unique in the sense that the ECMis modeled expli
itly as a resistan
e to tumor-indu
ed angiogenesis.Vas
ular Growth/Invasive TumorMost of the re
ent work on mi
ros
opi
 tumor growth modeling 
on
entrates on thevas
ular growth. Moreover, they 
ombine all three phases of the growth. We in
ludesu
h uni�ed works in this part. The di�eren
e between vas
ular and avas
ulargrowth is the existen
e of blood vessels within the tumor. These vessels might havebeen formed by angiogenesis or the tumor might have initialized around a vessel,as in the 
ase of tumor 
ords. Sin
e the nutrition sour
e of tumor 
ells is not justlimited to di�usion from the perimeter, as opposed to avas
ular tumors, formationof ne
roti
 regions is mu
h more 
omplex, if they exist at all. Moreover, due to thesame reason, vas
ular tumors are not 
ompa
t masses of 
an
erous 
ells, they don'thave a limiting size and 
an grow inde�nitely. They are invasive and tend to di�usetowards the surrounding tissue. The tumor region and the healthy tissue regionare not separated with a boundary as in the 
ase of avas
ular tumors, due to thisinvasive nature.Works on modeling the tumor invasion began by trying to explain the dynami
sof the metastati
 pro
ess, whi
h 
auses the tumor to spread to other tissues bymeans of traveling through the vas
ular system. Saidel et al. [Saidel 1976℄ beganby 
onsidering the metastasis from a solid tumor, 
reating a model taking into
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ount di�erent populations like tumor 
ells inside the vessel, around the vesseland in the metastati
 fo
i. In their work they fo
used on des
ribing the intera
tionsbetween vessel surfa
es and tumor 
ells. Although metastases is not a 
riti
al issuefor brain tumors, modeling work on this pro
ess initialized other works trying tomodel di�usion of tumor 
ells. One of the �rst models des
ribing the di�usionwas proposed by Liotta et al. in [Liotta 1974℄. Using 
oupled di�usion-rea
tionequations, they tried to explain the 
hange in tumor 
ells density and the 
hangein vessel surfa
e area (in the form of density) inside the tumor, whi
h was not avery a

urate model for migration of vessels in the tumor. In this model, tumor 
elldi�usion and proliferation were dependent on the vessel surfa
e area. Ne
roti
 
oreformation was also analyzed in this work, as a result of low levels of nutrition 
auseby not enough vas
ularization.In [Orme 1996b℄, Orme et al. 
ontinued to use di�usion systems to model vas-
ular tumor growth, where they in
luded an a
tive di�usion of tumor 
ells towardsblood vessels (up gradient of vessels) and also explained the formation of ne
roti

ore by too mu
h proliferation of tumor 
ells resulting in 
ollapse of vessels. Us-ing a similar idea Byrne et al. proposed a non-ne
roti
 tumor growth model, alsobased on di�usion-rea
tion systems, [Byrne 1995℄. Besides in
luding di�usion ofnutrients from vessels towards tumor 
ells, they have also in
luded di�usion and se-
retion of growth inhibitor fa
tors and analyzed e�e
ts of them. Unlike most otherworks, they have also 
onsidered apoptosis as a tumor 
ell death, and in
luded itin their model. One alternative to the di�usion-rea
tion formalism was proposedin [Perumpanani 1999℄ by Perumpanani et al.. They modeled the tumor invasionand growth, based on the idea that the invasion is governed by proteolysis and hap-totaxis. In their formalism the random motion of 
ells did not exist, 
ells movedtowards extra
ellular gradient. This was di�erent than all the previous models intwo ways. The �rst di�eren
e was that the 
ell motion was based on haptotaxisinstead of being dominated by di�usion towards blood vessels. The other di�eren
ewas in the type of resulting mathemati
al system; the dire
ted 
ell motion resultedin a rea
tion-adve
tion system rather than a rea
tion-di�usion system.Besides di�erent fa
tors that have been proposed to a�e
t tumor growth likenutrition and oxygen 
on
entration, growth inhibiting fa
tors, physi
al for
es and
ell 
y
le, a
idity of the extra
ellular matrix was also used in some models to af-fe
t the tumor invasion. One of the �rst models that examined the a
id-mediatedinvasion was proposed by Gatenby et al. in [Gatenby 1996℄. They formulated theobservation that tumor 
ells produ
e H+ ions during their metabolismi
 rea
tionsand by releasing them to the extra
ellular matrix, they in
rease the a
idity of theenvironment. This in turn help their invasion in three ways: killing healthy 
ells,stimulating the produ
tion of a
idi
 enzymes for proteolysis and redu
ing the 
ohe-sion between tumor 
ells, setting them free to move. They modeled these e�e
ts by
reating a rea
tion-di�usion system des
ribing densities of ea
h 
hemi
al 
omponentlike H+ ions and glu
ose. Patel et al. [Patel 2001℄ used a similar formulation forthe a
idity in simulating early tumor growth and examining the e�e
t of existingvas
ular network and tumor 
ell metabolism in the growth pro
ess. They 
reated ahybrid 
ellular automaton (CA) model, where motion, se
retion and 
onsumption ofglu
ose and H+ ions were modeled by rea
tion-di�usion systems and the dynami
s
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ells were set by CA rules. Using this model they were able to simulate tumorsstarting from several 
ells and growing up to huge sizes, giving the opportunity toexamine the early growth, see Figure 3.3.

Figure 3.3: Example of an early growth pro
ess where vas
ularity of the tumor is
oming from existing vessels. Tumor's size in
rease several s
ales of magnitude,image taken from [Patel 2001℄.In [Athale 2005℄, Athale et al. proposed a 2D dis
rete model whi
h fo
used onthe experimental observations of Giese et al. stating that glioma 
ells either migrateor proliferate but they do not show both phenotypes at the same time [Giese 1996℄.They have in
luded this in their model as a de
ision pro
ess for ea
h 
ell. Theymodeled the gene-protein intera
tions using di�erent ligands and epidermal growthfa
tor re
eptors (EGFR). They showed that using a EGFR related de
ision networkone 
an simulate the di
hotomy between migrating and proliferating 
ells observedin reality. In their following arti
le [Athale 2006℄ they examined the e�e
t of theEGFR density on the growth patterns of the tumor. Zhang et al. have built on thismodel and 
arried the 
omputation in 3D [Zhang 2007℄.Bertuzzi et al. examined the dynami
s of 
an
erous 
ells in tumor 
ords, where
ells simply grow surrounding a vessel, forming a vas
ular tumor, [Bertuzzi 2003℄.In their model, they took into a

ount that viable 
ells in a tumor 
an 
onsist ofquies
ent and proliferating populations. To get a more realisti
 model, they also
onsidered the 
ell-
y
le of a proliferating 
ell and integrated it in the model. Whilethe vessel a
ting as the nutrition sour
e, death of tumor 
ells were modeled eitherdue to insu�
ient nutrient supply or apoptosis. This model was one of the �rstones, integrating 
ell 
y
les in the growth pro
ess. Later on, Alar
ón et al. 
reateda model using 
ellular automata, to examine the e�e
t of oxygen and nutrition
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ess indu
ed by the blood �ow through vas
ularnetwork, [Alar
ón 2004℄. Besides modeling the blood �ow, vas
ular adaptation anddi�usion of oxygen and nutrition towards 
ells, they have also taken into a

ounte�e
t of 
ell 
y
les in the invasion and proliferation pro
esses. E�e
ts of extra
ellularoxygen levels on 
ell 
y
les were modeled expli
itly for the �rst time, using theinformation that tumor 
ells 
an adapt their 
y
le better than healthy 
ells in 
aseof low oxygen. Re
ently Byrne et al. have used this model to analyze the e�e
t of
hemotherapy on vas
ular growth of tumors [Byrne 2006℄.In [Cristini 2003℄, Cristini et al. reformulated the model in [Greenspan 1972℄to model non-ne
roti
 tumors. While the model of Greenspan only span avas
u-lar tumors, the model presented by Cristini et al. is able to simulate vas
ular andavas
ular growth, through adding 
apillary density within the tumor in their model.They have used rea
tion-di�usion system to formulate dynami
s of nutrients andGIFs, where blood is the main sour
e of all 
hemi
als. One of the most important
ontributions of the paper is the observation that the invasive growth 
an o

urwithout any �ngerings of the tumor. They have 
on
luded that in order to obtain�ngerings in the growth pro
ess, some kind of anisotropy 
oming from the tissueshould be in
luded. Later on, Zheng et al. in [Zheng 2005℄, extended this by adding
(a) (b)Figure 3.4: Zheng et al. were able to simulate the growth starting from an initialavas
ular tumor with a surrounding vas
ular stru
ture, (a), going to an invasive andvas
ular tumor, (b). Bla
k boundary shows the extent of the tumor and thin linebundles represent blood vessels, whi
h are away from the tumor in (a) and insidethe tumor after angiogenesis (b). (Image taken from [Zheng 2005℄)a formulation to model the transition through avas
ular to vas
ular tumor, angio-genesis. Moreover, they also added the onset of ne
rosis to the previous model.Rea
tion-di�usion formalism was used to formulate growth pro
esses while a 
om-bined dis
rete-
ontinuum model was used to des
ribe angiogenesis. Distin
t partsof the model used to explain di�erent stages of the growth are not as sophisti
atedas some of the models explained above. However, the signi�
an
e of this work liesin the 
ompleteness of the model proposed, whi
h 
ombines all three stages of thetumor growth. This way, one 
an observe how ongoing vas
ularization would a�e
tthe tumor invasion and also simulate the growth starting from a multi-
ell spheroidgoing to an invasive tumor, see �gure 3.4.
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ombining all stages of the tumor growth Frieboes et al. 
ontinuedon the model proposed by Cristini et al. [Frieboes 2007℄. In this work the authorsexplain the tumor morphology and the invasion pattern in the tissue s
ale by linkingthe dynami
s to phenotype of 
ells, mole
ular fa
tors and phenomena in the mi
ro-environment. In this sense their model is one of the �rst multi-s
ale models. Thelink 
onsists of 
omplex nonlinear relationships and fun
tionals whi
h are said tobe based on experimental results. In their invasion dynami
s they have in
luded
hemotaxis, haptotaxis and the me
hani
al pressure due to proliferation. They also
oupled their growth model with a model of angiogenesis given in [Plank 2004℄.In order to set the values of some parameters, su
h as the proliferation rate andthe apoptosis rate, they used in-vitro 
ell lines and ex-vivo patient data. For theother parameters, like the rate of di�usion of vital parameters, they solve the modelnumeri
ally and determine the values that result in growth and invasion.Following a similar path Lloyd et al. in [Lloyd 2007℄ also proposed a growthmodel whi
h aims at 
ombining all three stages of the tumor growth. Espe
iallythey 
on
entrate on 
oupling the angiogenesis pro
ess with the vas
ular growth.Besides taking into a

ount the di�erent fa
tors a�e
ting the tumor growth su
has oxygen di�usion and di�erent enzymes se
reted, they also model the vas
ulatureexpli
itly. This expli
it s
heme in
ludes a 3D �nite element model where the angio-genesis pro
ess is modeled in detail. Biome
hani
al e�e
ts of the tumor growth onthe vas
ulature is taken into a

ount expli
itly. Later on, in [Lloyd 2008℄ they en-large their modeling framework by in
luding 
ellular-level simulation of the oxygendi�usion into the tissue and di�erent me
hanisms of vessel remodelling due to shearstress.There have also been some multiphase models proposed for vas
ular tumorgrowth, with the most re
ent one being from Breward et al., [Breward 2004℄. Theyhave extended their previous work for avas
ular tumors, by introdu
ing blood ves-sels as a third phase. Physi
al intera
tions between di�erent phases are modeledexpli
itly in terms of pressures. In their model they have also in
luded the 
ollapseof blood vessels due to pressure exerted on them, 
reating a better realization of thetumor dynami
s.We have seen that most models explained above either use dis
rete or 
ontinuumformulation, and in some 
ases both. The link between the dis
rete and 
ontinuumformulation has also been studied however, mu
h less than the models themselves.In [Stevens 2000℄, Stevens et al. have started from a dis
rete set of tumor 
ellsmigrating under the e�e
t of 
hemi
al agent, performing 
hemotaxis. They haveshown that in the limiting 
ase when the number of tumor 
ells in
rease one 
andes
ribe the 
hemotaxis using adve
tion-rea
tion-di�usion equations, notably a 
on-tinuum formulation. Later on Hillen et al. have a
hieved the same result for anotherinvasion dynami
s, mesen
hymal motion [Hillen 2006℄. In this type of motion thetumor 
ells moves in a �ber network following the �ber dire
tions. These worksstand di�erent than the models explained however, they have a big importan
e forthe models as they 
an be the link between di�erent s
ales of tumor modeling.
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ros
opi
 ModelsObservations at the ma
ros
opi
 s
ale 
onsists of medi
al images like Computed To-mography s
ans (CT), Magneti
 Resonan
e Images (MRI) and MR di�usion tensorimages (MR-DTI). Sin
e the resolution of these observations is limited, typi
allyaround 1mm × 1mm × 1mm in the best 
ase, observable fa
tors are limited. Dueto this reason, 
ompared to the models explained in Se
tion 3.3 ma
ros
opi
 mod-els in
lude fewer fa
tors and their formulations are usually simpler. On the otherhand, while mi
ros
opi
 models simulate the tumor growth in theoreti
al settings(in�nite boundaries, known lo
ation of di�erent stru
tures,...), ma
ros
opi
 modelsuse real settings, e.g. real boundaries of the brain, gray-white matter segmentation,geometry of the tumor.To review the re
ent ma
ros
opi
 models we are going to use a di�erent 
lassi�-
ation than the one used in Se
tion 3.3. Based on the targeted e�e
t of the tumor onthe brain, ma
ros
opi
 models 
an be 
lassi�ed into two di�erent 
lasses: me
hani
almodels, whi
h 
on
entrate on the mass-e�e
t of the tumor on the brain tissue, anddi�usive models, whi
h 
on
entrates on the invasion of surrounding tissue by tumor
ells. In terms of mathemati
al formulations, unlike mi
ros
opi
 models, almost allma
ros
opi
 models use 
ontinuum formulations, where tumor 
ells are assumed tobe a 
ontinuum. As a result, formulations 
ontain several ordinary and/or partialdi�erential equations to des
ribe the growth pro
ess.3.4.1 Di�usive ModelsAlmost all ma
ros
opi
 models, formulating the growth pro
ess 
on
entrating onthe di�usive nature of the tumor, use the rea
tion-di�usion formalism [Murray 2002,Mandonnet 2008℄. This formalism models the invasive tumor by adding a di�usionterm to the simple solid tumor growth models, whi
h formulate proliferation of
ells, see table 3.1. The `building blo
k' equation of this formalism is the partialdi�erential equation (PDE) given as:
∂u

∂t
= ∇ · (D∇u) +R(u, t) (3.1)

(η · ∇)u = 0 (3.2)where in equation 3.1 u is the tumor 
ell density, ∂/∂t is the di�erentiation operatorwith respe
t to time, D is the di�usion tensor for tumor 
ells and R(u, t) is theso-
alled rea
tion term. This equation isolates two di�erent 
hara
teristi
s of thetumor growth in two terms: di�usion and proliferation. The �rst term on the righthand side, ∇ · (D∇u) des
ribes the invasion of tumor 
ells by means of a Brownianmotion, whi
h is 
hara
terized by the di�usion tensor D. The se
ond term in theequation, R(u, t), des
ribes the proliferation of tumor 
ells. For this term populationgrowth equations are 
ommonly as summarized in Table 3.1. In ma
ros
opi
 models,Equation 3.1 is usually solved using real geometries therefore, boundaries should bein
luded in the model. Equation 3.2 is the no-�ux boundary 
ondition whi
h isapplied at the brain boundary and at the ventri
les with the normal dire
tions η,formulating the fa
t that tumor 
ells do not di�use in these stru
tures.
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tion-di�usion formalism for the tumorgrowth was proposed by Cruywagen et al. in [Cruywagen 1995℄. They argue that, agrowth model that uses equation 3.1 and whi
h 
onsists only a single 
ell populationwas not able to 
apture the growth dynami
s seen in CT images. Hen
e, theyproposed to use a model with two populations of tumor 
ells, whi
h is formulated by
oupling two equations of the form 3.1, ea
h one des
ribing a di�erent population.Through the 
oupling terms they were able to des
ribe the 
ompetition betweenpopulations for nutrients and growth fa
tors. The se
ond population of tumor 
ells,were assumed to be a mutation of the �rst type. The o

urren
e of these 
ells wasattributed to the use of 
hemotherapy and/or radiotherapy, 
ausing 
ells to mutateinto a more resistant type. They also in
luded the e�e
t of treatment in their modelas a 
onstant 
ell loss me
hanism, whi
h is basi
ally another rea
tion term. Their�nal formulation had the form:
∂u1

∂t
= Du1

∇2u1 + f(u1, u2)− C1(u1, t)

∂u2

∂t
= Du2

∇2u2 + g(u1, u2)− C2(u2, t)where rea
tion terms f and g des
ribe the 
oupling between tumor populationsgiven by u1 and u2, while C1 and C2 formulate e�e
ts of therapy. In their model,Cruywagen et al. formulated the invasion of tumor 
ells as an isotropi
-homogeneousdi�usion where speed of di�usion was given by 
oe�
ients Du1
and Du2

.In [Swanson 2000, Swanson 2002b℄, Swanson et al. revised the hypothesis thattumor 
ells di�use homogeneously in the brain made in the previous works. In thelight of the experimental results of Giese et al. regarding the di�erential motility oftumor 
ells on gray and white matters [Giese 1996℄, they formulated the invasion oftumor 
ells by isotropi
-nonhomogeneous di�usion. In this formulation the di�usiontensor D in Equation 3.1 was assumed to be isotropi
 and nonhomogeneous (spa-tially varying). Its form was given as: D = d(x)I, where I is an identity matrix and
d(x) is the di�usion rate. d(x) took two di�erent values in the white matter,dw , andin the gray matter, dg, where dw >> dg 
orresponding to the observation that tu-mor 
ells move faster on myelin sheath. In this work, only one population was usedand the no-�ux boundary 
onditions were applied. For the rea
tion term, authorsused exponential growth, taking into a

ount only the proliferation of tumor 
ells(see Table 3.1). Later on, Swanson et al. in [Swanson 2002a℄ in
luded the e�e
t of
hemotherapy through a negative rea
tion term. Instead of modelling the e�e
t oftherapy via a 
onstant 
ell loss, they took into a

ount the temporal e�e
tivenessof drugs used and also the possible spatial heterogeneity of drug e�
a
y. In bothworks CT and MR images were used and the attention for validating the model wasgiven to predi
ting survival times after diagnosis.Extending the idea of Swanson et al. regarding the di�erential motility of tumor
ells on di�erent tissues, Clatz et al. and later Jbabdi et al. in
luded anisotropy tothe invasion me
hanism of tumor 
ells, [Clatz 2005℄ and [Jbabdi 2005℄. They mod-elled the di�usivity of tumor 
ells through an anisotropi
-nonhomogeneous di�usion.The assumption they have made is that tumor 
ells not only move faster on myelin,but also follow the white matter �ber tra
ts in the brain. They have 
onstru
ted



3.4. MACROSCOPIC MODELS 33Table 3.2: Di�erential motility between white and gray matter. The �ber tra
tis along the y-axis in the se
ond image. (Images taken from [Clatz 2005℄) In the
onstru
tion of D, α is the multipli
ative 
onstant between gray and white mattermotility and f is the relation between water di�usion and tumor di�usion.

Dg = dI Dw = αdf(Dwater)the tumor di�usion tensor (TDT) from the water di�usion tensor using magneti
resonan
e di�usion tensor images (MR-DTI). Although methods of 
onstru
tion ofthe TDT were di�erent in these works, the main idea was to assign isotropi
 di�u-sion in the gray matter and anisotropi
 di�usion in the white matter having greaterdi�usion along the �ber dire
tion as given in table 3.2. By in
luding the anisotropyof tumor di�usion in the formulation, these models were able to 
apture the �spiky�and �ngering patterns of tumors observed in the images, see Figure 3.5. Both ofthe works proposed an evaluation of their models by 
omparing visible tumors inthe MR images with the ones simulated with the model. Re
ently Hogeaet al. builton the anisotropi
 rea
tion-di�usion model and in
luded the observation that oneof the me
hanisms tumor 
ells migrate is that they push ea
h other [Hogea 2007℄.They in
luded this rather me
hani
al dynami
s of invasion in their model by addingan adve
tion term in the Equation 3.1.The rea
tion-di�usion models as proposed in [Swanson 2000, Clatz 2005,Jbabdi 2005, Hogea 2007℄ are appropriate for explaining the invasive parts of thetumor whi
h are far away from the 
ore of the tumor. The growth of the 
entralpart of the tumor, where tumor 
ells are very dense, is not well 
aptured by thedi�usion pro
ess. This region grows rather like a 
ompa
t ball, exponentially rapidat the beginning and then linearly. Stein et al. deals with this problem for the
ase of in-vitro experiments, [Stein 2007℄. Instead of applying the rea
tion-di�usionmodel to the whole tumor they use two rea
tion-di�usion models des
ribing the
ore and the invasive regions as two di�erent populations. The two populations are
oupled by a velo
ity bias applied on the invasive region su
h that the tumor 
ellstry to move away from the 
ore of the tumor. They show that a two populationmodel su
h as the one they propose, is able to 
apture the di�erent dynami
s of theinvasive region and the 
ore of the tumor in the 
ase of petri dish experiments.Besides the 
ontinuum formulations explained above, re
ently Stamatakos et al.
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Figure 3.5: Di�usive models in
luding anisotropy in the tumor di�usion are able to
apture spiky nature of tumor growth. Figures show evolution of the tumor in twodi�erent axial sli
es. First two 
olumns show the initial image and initial state ofthe model respe
tively, while the third 
olumn shows the tumor after 6 months andthe fourth 
olumn shows the evolved tumor using the model given in [Clatz 2005℄.proposed to use a 
ellular automata based algorithm to model tumor growth in med-i
al images [Stamatakos 2006a℄ and [Stamatakos 2006b℄. Their model dis
retizes thevisible tumor volume in the post gadolinium T1-weighted MR image into mesh 
ells
ontaining groups of tumor 
ells. They explain growth by assigning 
ertain proba-bilisti
 set of rules to every mesh 
ell, whi
h de�ne 
ell 
y
le dynami
s for the groupof 
ells inside that mesh 
ell. These rules take into a

ount nutrition distributionthroughout the tumor, e�e
t of abnormal p53 gene expression and type of metaboli
a
tivity of the 
ell in assigning transition probabilities between di�erent phases ofthe 
ell 
y
le, mitosis, apoptosis (
ontrolled death of 
ells) and ne
rosis (infe
teddeath of 
ells). As a result, the growth phenomena is explained by the 
ell 
y
le,governed by probabilisti
 transition rules. Although some of these features are notwell observable in medi
al images they model them based on assumptions 
omingfrom biologi
al experiments. As an example, the nutrition distribution is taken tobe de
reasing homogeneously from the periphery of the tumor to the 
enter. Theirmodel does not take into a

ount the in�ltration of tumor 
ells, but rather only thegrowth through mitosis. Through the probabilisti
 nature of their model they wereable to obtain realisti
 looking di�erentiated tumor growth.3.4.2 Me
hani
al ModelsMe
hani
al models, whi
h 
on
entrate on the mass-e�e
t of the tumor, 
ontain twodistin
t formulations, one for the tumor growth and one for the me
hani
al 
har-a
teristi
s of the brain tissue. These models 
ombine these formulations through



3.4. MACROSCOPIC MODELS 35
oupling, to des
ribe the me
hani
al intera
tions between the brain tissue and thetumor growth leading to deformations. There have been many works on 
hara
-terizing the me
hani
al properties of the brain tissue, whi
h is deformable but notelasti
. In [Wasserman 1996℄ it is said that the brain tissue is a sponge like material,possessing instantaneous properties of elasti
 materials and time-dependent prop-erties of the vis
oelasti
 ones. Moreover, there is a great variation between elasti
parameters of brain tissue within similar tissues as well as between di�ering tissues.Instead of formulating these 
omplex me
hani
al 
hara
teristi
s, almost all modelsuse assumptions to simplify brain tissue's 
hara
teristi
s.Wasserman et al. proposed one of the �rst me
hani
al models in[Wasserman 1996℄. In this 2D model they assume the brain tissue is a linear elasti
material for whi
h stress-strain relations 
an be given by generalized Hooke's law.Moreover the amount of strain 
aused on a given volume, by a spe
i�
 amount ofstress, was proportional to the density of brain tissue in that volume. For the tumorgrowth part, they assumed a very simple formulation in
luding only the proliferationof 
ells, in whi
h the rate of mitosis was set to be 
onstant. The 
oupling betweenthe growth and 
onstitutive equation of the tissue was established by assigning a ho-mogeneous pressure proportional to the number of tumor 
ells per volume. Throughthis 
oupling they were able to model the growth of the tumor under me
hani
al
onstraints and intera
tions in CT images. In [Kyria
ou 1999℄, Kyria
ou et al. as-sumed that brain tissue 
an be better 
hara
terized by a nonlinear elasti
 materialthan a linear one. They modelled white, gray and tumor tissue as nonlinear elas-ti
 solids obeying equations of an in
ompressible nonlinearly elasti
 neo-Hookeanmodel. With the introdu
tion of nonlinear elasti
ity into the model and the useof nonlinear geometry, they were able to des
ribe large deformations through theirformulation. Tumor growth was kept as a pure proliferation pro
ess with uniformgrowth 
ausing uniform outward strain. They have applied this model in register-ing images of patients with tumor indu
ed deformations to brain atlases. Their 2Dmodel was applied on individual 
ross-se
tional images obtain by CT or MR.Mohamed and Davatzikos extended this model by modelling the brain tissue asan isotropi
 and homogeneous hyperelasti
 material, [Mohamed 2005℄. With thisthey relaxed the in
ompressibility assumption made in [Kyria
ou 1999℄ and ignoredthe vis
ous e�e
t, keeping in mind that times related to deformations was very large
ompared to vis
osity time 
onstants. In addition to modeling the mass e�e
t dueto bulk tumor growth they have also taken into a

ount the expansion 
aused bythe edema and the fa
t that part of the mass e�e
t should be attributed to edema.They have also assumed a proliferation model for the tumor growth, whi
h had a
onstant mitosis rate. Coupling of tumor growth and me
hani
al intera
tions wasdone the same way as in Wasserman's model. As in the work of Kyria
ou et al., thismodel was also able to des
ribe large deformations. In [Hogea 2006℄, Hogea et al.reformulated the model within a general Eulerian framework, with a level-set basedapproa
h for the evolving tumor aiming at a more e�
ient method, see Figure 3.6.They have also mentioned that for patient spe
i�
 models, parameters should befound via solving an inverse problem. However this work was aiming to generatelarge number of brain anatomies deformed by simulated tumors, hen
e they did not
on
entrate on the patient spe
i�
 modelling. In order to validate their model they
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ompared deformations seen in MR images with the ones simulated with theirmodels.Tumor growth pro
ess has been kept very simple and has been asso
iated withonly proliferation of tumor 
ells in all previous ma
ros
opi
 models, whi
h 
on
en-trate on the mass-e�e
t of the tumor. Clatz et. al 
ombined two approa
hes of thema
ros
opi
 modelling in [Clatz 2005℄ in 
reating a formulation for glioblastomamultiforme (GBM). They have formulated the invasive nature of the tumor growth,besides proliferation, and the deformation this 
auses on the brain tissue. Theyassumed that brain tissue is a linear vis
oelasti
 material, whi
h 
an be modeledusing a stati
 equilibrium equation, sin
e the time s
ale of tumor growth is verylarge. The 
oupling of the growth with the me
hani
al deformation on brain tissuewas established using two di�erent mass-e�e
ts: one for the bulk tumor and theother for the tumor in�ltrated edema. The e�e
t of bulk tumor was set as a homo-geneous pressure 
aused by the volume in
rease as a result of 
ell proliferation. The

Figure 3.6: Models 
an model large deformations due to tumor growth and edema.Simulated tumor growth in a normal brain template, starting from a small ini-tial seed, orbital-frontal left, using the modeling framework in [Mohamed 2005℄and [Hogea 2006℄. Left: original healthy segmented brain template (axial, sagit-tal, 
oronal) with a small tumor seed; Right: 
orresponding deformed templatewith the grown tumor at the end of the simulation. Large deformations 
an be
learly observed.
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t of the tumor in�ltrated edema in
luded the e�e
t of invasion through astress term whi
h 
ontained tumor 
ell density as given in Equation 3.3.
∇ · (σ − λI3c) + fext = 0 (3.3)where ∇· is the divergen
e operator, σ is the strain tensor, c is the tumor 
ell densityat a lo
ation, fext is the external for
e and λ is the 
oupling fa
tor. With this modelthey were able to simulate both the invasion and the mass e�e
t simultaneously.Previous works on ma
ros
opi
 modeling have 
on
entrated on 
reating realisti
models and fo
used on the modeling framework. Garg and Miga in [Garg 2008℄preferred to build on these existing models and fo
used on the inhibitory e�e
tsof the me
hani
al stress on the tumor growth. In their work they have added theinhibitory e�e
t of the mass e�e
t for the rea
tion-di�usion tumor growth models.They have shown that this e�e
t has a big impa
t on su
h modeling frameworksand it should not be left aside.3.5 Image Guided Tools for Therapy PlanningThe tumor growth models explained in the previous se
tion 
an be very useful fordiagnosis and therapy planning in the 
lini
al pra
ti
e [Mandonnet 2008℄. Usingthe dynami
s of the tumor growth, they 
an provide realisti
 simulations of thetherapy or predi
t the extent of the tumor. Su
h tools aim at helping the do
torin planning the therapy 
ourse by quantifying and predi
ting the e�
a
y of a givens
heme. The e�e
t of therapy on the tumor and on the brain tissue is extremely
omplex and not known totally. In order to in
lude all the known information in themodel one needs to 
ombine mi
ros
opi
 and ma
ros
opi
 approa
hes be
ause interand intra 
ell dynami
s play important role [Gardner 2003℄. Several authors havein
luded the e�e
t of therapy in their ma
ros
opi
 models, spe
i�
ally 
hemotherapy.Cruywagen et al. for example modeled the e�e
t of drugs through a 
onstant 
ellloss me
hanism using a negative rea
tion term.One of the �rst elaborate ma
ros
opi
 models fo
using on therapy was proposedby Swanson et al. [Swanson 2002a, Swanson 2004℄. They improved the idea of in-tegrating the therapy as 
ell loss me
hanism and formulated temporal e�e
tivenessof the drugs and spatial heterogeneity of their e�
a
y. In
luding these two e�e
tsthey were able to get more realisti
 simulations of the growth of the tumor underthe e�e
t of 
hemotherapy.Re
ently in [Stamatakos 2006a℄ Stamatakos et al. have modeled the e�e
t of
hemotherapy based on their 
ellular automata growth model, whi
h was explainedin the previous se
tion. The e�e
t of the drug is in
luded as a damage to ea
h 
ell,whi
h if large enough drives the 
ell to apoptosis. The relation between drug doseadministered orally (D) and the plasma 
on
entration (Cp) the tumor en
ounters isgiven by the relation

Cp =
FDka

Vd(ka − kel)
(e−kelt − e−kat) (3.4)where F is the fra
tion of drug rea
hing the 
ir
ulation, Vd total volume the drugwill distribute in, t time elapsed sin
e drug administration, ka and kel are the



38 CHAPTER 3. LITERATURE REVIEWabsorption and elimination rate respe
tively. For those parameters that are notobservable through 
lini
al situations and medi
al images, like ka, population meanvalues proposed in the literature are used. The damage given to a 
ell is 
omputedthrough survival fra
tion
SF = e−KSF TSF Cp , (3.5)whi
h depends on KSF survival fra
tion 
onstant and TSF exposure of tumor 
ellsto the drug. Equation 3.5 depends on the type of drug used and the given form is forthe drug 
alled Temozolomide (TMZ), whi
h the authors used in their simulations.Using this model they simulated two di�erent oral administration s
hemes with 3di�erent doses and 
ompared the out
omes in terms of the number of proliferatingtumor 
ells. Using probabilities for 
ell 
y
le and drug damage they 
aptured thesto
hasti
 nature of the therapy and tumor growth. In their simulations they usethe drug TMZ and a patient data with a high grade glioma. They start using thereal tumor delineation and demonstrate a virtual realisti
 evolution, see Figure 3.7.In another work of the same group [Stamatakos 2006b℄, Stamatakos et al. haveused their 
ellular automata based model in modeling the e�e
t of radiotherapy andsimulating therapy. They have in
luded in the model the damage 
aused in a tumor
ells (group of 
ells in their 
ase) due to irradiation. This is explained by survivalprobabilities given by the linear-quadrati
 model

S(D) = exp[−(αD + βD2)]. (3.6)
S(D) is the survival probability of a 
ell given that it takes D dose of irradiation(in Gy). The α and β parameters de�ne the radiosensitivity of the 
ell and theyare varying a

ording to the phase of the 
ell-
y
le, p53 gene expression and themetaboli
 a
tivity type of the 
ell (oxi
 or hypoxi
). Parameters not observed frommedi
al images are set by assumptions and mean values 
oming from experiments inbiology. Their model was able to demonstrate 
onformal shrinkage of the tumor dueto irradiation, whi
h is observed in real 
ases. Using their model, they simulatedstandard and hyper fra
tionation of irradiation and 
ompared these two strategiesthrough simulation. Although they obtained realisti
 results several phenomena arenot taken into a

ount in their model su
h as in�ltration of tumor 
ells and the e�e
tof irradiation on the surrounding healthy tissue. As in the 
ase of the 
hemotherapymodeling, simulations start from the real tumor delineation and demonstrates avirtual evolution.3.6 Appli
ations to Registration and SegmentationTumor growth models, besides being used to 
reate therapy planning tools, havebeen used to aid registration and segmentation tools as well. Problems of braintissue segmentation and atlas to patient registration in the presen
e of a pathologyhave re
eived attention from the medi
al imaging 
ommunity for a long time. Latelythere have been several works proposed for these purposes using the tumor growthdynami
s. These works 
an be 
lassi�ed into two related groups: atlas to patientregistration and syntheti
 brain image 
reation 
onsisting of a tumor.
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Figure 3.7: Left: An MRI axial sli
e depi
ting a glioblastoma multiforme tumour.Both the gross volume of the tumour and its 
entral ne
roti
 area have been de-lineated. The same pro
edure has been applied to all MRI sli
es. Right: 3D visu-alization of the simulated response of a 
lini
al glioblastoma multiforme tumor toone 
y
le of 
hemotherapeuti
 s
heme (150 mg/m orally on
e daily for 5 
onse
utivedays/28-day treatment 
y
le, [fra
tionation s
heme A)℄. (A) External surfa
e of thetumor before the start of 
hemotherapy, (B) internal stru
ture of the tumor beforethe start of 
hemotherapy, (C) external surfa
e of the tumor 20 days after the startof 
hemotherapy, and (D) internal stru
ture of the tumor 20 days after the startof 
hemotherapy. Pseudo
olor Code: red: proliferating 
ell layer, green: dormant
ell layer (G0), blue: dead 
ell layer. The following �99.8 %� 
riterion has beenapplied: �If the per
entage of dead 
ells within a geometri
al 
ell of the dis
ritizingmesh is lower than 99.8 % then [if per
entage of proliferating 
ells > per
entage ofG0 
ells, then paint the geometri
al 
ell red (proliferating 
ell layer), else paint thegeometri
al 
ell green (G0 
ell layer)℄ else paint the geometri
al 
ell blue (dead 
elllayer)� [Stamatakos 2006a℄.3.6.1 RegistrationThe registration of an anatomi
al atlas to a patient with a brain tumor is a di�
ulttask due to the deformation 
aused by the tumor. Registration algorithms proposedfor normal to normal registration fail due to this reason. Re
ently, several authorsproposed to in
lude the tumor growth models in their registration algorithms tota
kle this di�
ult task. The important ingredient the growth models 
an add isthe quanti�
ation of the tumor-indu
ed deformation on the brain stru
tures throughmodel parameters. Proposed algorithms use these model parameters in separatingthe deformation �eld between the atlas and the patient image into the tumor-indu
ed



40 CHAPTER 3. LITERATURE REVIEWdeformation and the normal inter-subje
t variation.Kyria
ou et al. proposed one of the �rst atlas to patient registration algorithmsbased on the tumor growth dynami
s [Kyria
ou 1999℄. Starting from the patientimage, their algorithm �rst simulates the biome
hani
al 
ontra
tion in the 
ase ofthe removal of the tumor to estimate patient anatomy prior to the tumor. A normalto normal registration between the atlas and the tumor-free patient brain follows the
ontra
tion. At this point instead of deforming the registered atlas with the inverseof the deformation �eld obtained during the 
ontra
tion, they perform a nonlinearregression in order to estimate the tumor growth parameters that would best �t theobserved tumor-indu
ed deformation. These parameters 
onsist the 
enter and theamount of expansion of the tumor. On
e the parameters are estimated they performthe biome
hani
al tumor growth inside the registered atlas to obtain the �nal atlasto patient registration, whi
h was performed in 2D.In 
ontrast to separating the deformation 
aused by the tumor and the deforma-tion explaining inter-subje
t variability, in [Cuadra 2004℄, Cuadra et al. proposed to
ombine these two in a nonlinear demons based registration algorithm [Thirion 1998℄for the atlas to patient registration. The algorithm starts by pla
ing the two brainson the same frame and s
ale using a global a�ne registration. An expert manu-ally pla
es the tumor seed on the a�nely registered atlas, whi
h 
orresponds to thepla
e of it in the patient image. The seeding is followed by a nonlinear registrationalgorithm with adaptive regularization. The tumor growth is modeled as an out-ward pressure 
ausing radial displa
ement of the surrounding stru
tures. Authorsin
luded this displa
ement �eld in their registration algorithm to take into a

ountthe tumor-indu
ed deformation.Mohamed et al. took a statisti
al approa
h for the atlas to patient registrationproblem in [Mohamed 2006℄. They propose a statisti
al model on the deformationmap 
reated by applying a nonlinear elasti
 registration to mat
h an atlas with thepatient image. This model is based on the fa
t that although normal registrationte
hniques would fail in the vi
inity of the tumor, they will provide the right defor-mation �eld for the other parts. Their statisti
al model uses the spa
e of displa
e-ment �elds and de
omposes any deformation �eld on two orthogonal hyperplanes,one des
ribing the tumor-indu
ed deformations and other inter-subje
t variability.The formulation of the hyperplanes is done by prin
ipal 
omponent analysis (PCA)assuming linearity of the governing spa
e and that displa
ement �elds are realiza-tions of two independent Gaussian random ve
tors. The training of the PCA for theinter-subje
t variability is done by samples 
oming from registering the atlas to adataset of healthy subje
ts. On the same dataset they grow arti�
ial tumors usingtheir growth model explained in Se
tion 3.4 for di�erent sets of growth parameters,in
luding 
enter of the tumor, expansion of the tumor and the edema extent. Theseinstan
es serve as the training samples of the PCA for the tumor-indu
ed deforma-tion. When a new patient image is en
ountered, they de
ompose the deformation�eld and �nd the tumor growth parameters spe
i�
 for the patient as
Uf ≈ µc + Vca + µd + Vdb (3.7)where Uf is the total displa
ement �eld, µc and Vc are the mean and 
ovarian
ematrix displa
ement �elds for inter-subje
t registration, and µd and Vd are the
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(a)
(b)Figure 3.8: Left to right: the atlas image with manually labeled regions, the pa-tient image, the atlas to patient registration result using the algorithm explainedin [Mohamed 2006℄, whi
h in
ludes tumor growth modeling. (b) The sele
ted labelsin the atlas are warped and 
orrespondingly superimposed on the patient's imagesame identities 
orresponding to tumor-indu
ed deformation. On
e the deformation�eld linking atlas to subje
t and tumor growth parameters are found, the atlas isregistered and the tumor is grown in it. Za
haraki et al. in [Za
haraki 2006℄ pro-posed to improve the registration algorithm used in this work by a more �exibleone, based on HAMMER algorithm [Shen 2002℄, taking into a

ount the fa
t that



42 CHAPTER 3. LITERATURE REVIEWaround the tumor region the deformation �eld is distorted when the tumor modelparameters are not optimal. To ta
kle this, they introdu
ed a patient-spe
i�
 opti-mization framework based on similarity mat
hing and smoothness properties of thedeformation around the tumor, see Figure 3.6.1.3.6.2 SegmentationAnother appli
ation of tumor growth modeling is the syntheti
 dataset 
reation forvalidating segmentation algorithms. Presen
e of a tumor is a big 
hallenge for thesegmentation algorithms. Algorithms are 
ompared with expert manual segmenta-tions for validation and performan
e analysis. Manual segmentations however, showhigh inter-expert variability and 
ontains human error due to fatigue and other rea-sons. In order to ta
kle this problem, several works proposed to generate syntheti
realisti
 MR images 
ontaining tumors, for whi
h ground truths are known and 
anbe used for validation and analysis. There are two di�erent subproblems for thegeneration. One of them is to simulate the tumor growth realisti
ally. The otherone is to mathemati
ally des
ribe the e�e
t of tumor growth on MR signal intensi-ties. In other words, how the image intensities 
hange in di�erent parts of the image(e.g. edema, a
tively proliferating tumor region, tumor free part,...).

Figure 3.9: Upper row shows the syntheti
 images generated of a patient with gliomausing the algorithm proposed in [Prastawa 2005℄. T2w, 
ontrast enhan
ed T1w andT1w images from left to right. Bottom row shows the same images 
oming from areal patient.Rexilius et al. proposed one of the �rst models for this problem in [Rexilius 2004℄.They have modeled the tumor with three 
ompartments: the a
tive tumor tissue,the ne
roti
 (dead) tumor 
ore and the edema. The a
tive tissue and the ne
roti




3.7. DISCUSSIONS 43part are drawn in the desired lo
ation with the desired size. Later on reasonable grayvalues are assigned to these regions in
luding Gaussian noise to make the intensitiesrealisti
. As an example, in the 
ase of 
ontrast enhan
ed T1w image the realisti
values in
luded 
ontrast a

umulation in the a
tive tumor part. The mass e�e
t ofthe drawn tumor is applied to the underlying healthy subje
t MR image assuminglinear elasti
 material properties for tissues. The growth is simulated by a radialdispla
ement applied to surrounding tissues using �nite element methods. Lastlyfor the edema, they use the distan
e transform of the tumor on the white mattermask of the underlying image and deform it with the same mass e�e
t applied tothe brain. Based on the resulting distan
e transform values they assign intensityvalues 
orresponding to edema in�ltration.In order to 
reate more realisti
 MR images, Prastawa et al. [Prastawa 2005,Prastawa 2008℄ have ta
kled the same problem using a more sophisti
ated tumorgrowth model and adding 
ontrast a

umulation properties of di�erent tissues. Theyhave adopted the growth model proposed by Clatz et al. [Clatz 2005℄. In additionto this model, in their formulation they took into a

ount the displa
ement anddestru
tion of white matter �bers using image warping and nonlinear interpolation,based on the observations of Lu et al. [Lu 2003℄. For the image generation part,they have modeled the 
ontrast agent di�usion inside the brain using the rea
tion-di�usion formalism. Using su
h a formulation they were able to simulate the high
ontrast a

umulation in CSF and in a
tive tumor regions. As a result they obtainedrealisti
 looking syntheti
 data with 
ontrast irregularities as in Figure 3.6.2.3.7 Dis
ussionsIn this 
hapter, we have reviewed some works on mathemati
al tumor growth mod-eling and its appli
ations proposed by the medi
al image analysis 
ommunity. Awaybeing from a 
omplete review on this subje
t, this 
hapter is an attempt to highlightthe main approa
hes and appli
ations.In terms of realisti
ally modeling the growth phenomena, some solid attemptshave been taken. However, there are very ex
iting 
hallenges awaiting to be solved.Tumor growth is a very 
omplex phenomena, in
luding di�erent s
ales of ingredientsfrom geneti
 to ma
ros
opi
. The biggest la
king point at the moment is the linkbetween these s
ales. Observations that 
an be obtained from medi
al images arelimited and obtaining mi
ros
opi
 observations for a large view-area is not possibleat the moment. One approa
h that 
an be taken to ta
kle this problem wouldbe to in
luded information 
oming from di�erent modalities of images in growthmodels. In
luding te
hniques like positron emission tomography (PET), magneti
resonan
e spe
tros
opy (MRS) and fun
tional-MRI (fMRI) would yield informationabout nutrient, oxygen and metabolite levels in the tumor giving an opportunityto integrate mi
ros
opi
 phenomena in ma
ros
opi
 models and for patient spe
i�
models.Personalization of the tumor growth models and therapy models summarized inthis 
hapter is an important missing link between mathemati
al methods and 
lini
alappli
ations. Inter-patient variation of parameters 
an be large, hen
e obtaining the
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essary parameters automati
ally through inverse problems is a required step inadapting general growth models to individual patients. Su
h inverse problems alsoserve as quanti�
ation tools that 
an assess the e�
a
y of a therapy or understandingthe amount of deformation 
aused as we have seen in Se
tion 3.6.1. Moreover, intra-patient variation of these parameters has also not been studied yet. Variation withinthe same tumor might result in di�erent growth patterns than the one expe
ted bythe growth models formulating the average behavior of the tumor. The heterogeneityin a single tumor might be high strengthening the need for sto
hasti
 approa
hesfor tumor growth models.One other big 
hallenge for 
reating more a

urate models, is the la
k of a properquantitative validation te
hnique. For ma
ros
opi
 models the 
omparison is donewith observed medi
al images, whi
h are not able to visualize the whole tumor.Although some quantitative validation methods were proposed by some authors,[Clatz 2005, Mohamed 2005, Prastawa 2008℄, the �eld still la
ks a golden standardin validation methodology.Improving imaging te
hniques and more a

urate models will yield valuable toolsfor 
lini
al on
ology in the future. Patient-spe
i�
 models 
ombining informationfrom di�erent s
ales will enable us to perform patient-spe
i�
 simulations. Su
hsimulations, either for therapy or simple growth will aid in patient treatment andhopefully improve prognosis.
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tion-Di�usionModels Using Time Series ofImages: Method
Contents4.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . 464.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474.2.1 Eikonal Approximation for Rea
tion-Di�usion Models . . 484.2.2 The Parameter Estimation Problem . . . . . . . . . . . . 624.3 The overall algorithm . . . . . . . . . . . . . . . . . . . . . 65
ContextRea
tion-di�usion based tumor growth models have been widely used in the litera-ture for modeling the growth of brain gliomas. Lately, re
ent models have startedintegrating medi
al images, spe
i�
ally anatomi
al and di�usion atlases, in theirformulation. In
luding di�erent tissue types, geometry of the brain and the dire
-tions of white matter �ber tra
ts improved the spatial a

ura
y of rea
tion-di�usionmodels. The adaptation of the general model to the spe
i�
 patient 
ases on theother hand have not been studied thoroughly yet. In this 
hapter we address thisadaptation. We propose a parameter estimation method for rea
tion-di�usion tu-mor growth models using time series of medi
al (Magneti
 Resonan
e) images. Thismethod estimates the patient spe
i�
 parameters of the model using the imagesof the patient taken at di�erent su

essive time instan
es. The proposed methodformulates the evolution of the tumor delineation visible in the images based onthe rea
tion-di�usion dynami
s therefore it remains 
onsistent with the informationavailable. 45



46 CHAPTER 4. PARAMETER ESTIMATION: METHOD4.1 Introdu
tionThe rea
tion-di�usion models provide a general framework where the integration ofinformation 
oming from medi
al images is possible. We have seen in Chapter 3some of these models and how they integrated information 
oming from images intotheir formulation. The general formulation for the rea
tion-di�usion models arebased on the equations
∂u

∂t
= ∇ · (D(x)∇u) + ρu(1− u) (4.1)

D∇u · n∂Ω = 0, (4.2)where u is the tumor 
ell density, D is a lo
al di�usion tensor (i.e. symmetri
positive de�nite 3x3 matrix), ρ is the proliferation rate, Ω is the brain domain,
∂Ω represents the boundaries of the brain and n∂Ω is the normal dire
tion to theboundary. Equation 4.1 des
ribes the temporal evolution of tumor 
ell density whileEquation 4.2 represents the no-�ux boundary 
onditions. On
e the integration ofmedi
al images in this model is a
hieved the next step is to adapt the model tospe
i�
 patients data, in other words to personalize the model. This 
an be donevia estimating the parameters of the general model, D and ρ, whi
h best simulatesthe evolution of the tumor observed in the time series of images (images of the samepatient taken at su

essive time instan
es). The di�
ulty in this estimation is dueto the sparsity of the available information. The rea
tion-di�usion models des
ribethe temporal evolution of tumor 
ell densities while in the images we only observethe evolution of the tumor delineation whi
h is assumed to 
orrespond to an iso-density 
ontour [Burger 1988℄, as shown in Figure 4.1. In this 
hapter and in otherparts of the thesis the terms tumor delineation, tumor front and tumor boundaryare used inter
hangeably to des
ribe the boundary of the visible part of the tumorin the medi
al images.The problem of estimating parameters from time series of images in the 
ontextof tumor growth models is a rather unexplored problem. A �rst attempt was madeby Tra
qui et al. in [Tra
qui 1995℄ where they optimized the parameters of theirmodel by 
omparing the area of the tumor observed in CT images at di�erent timesand the area of the simulated tumor. The drawba
k of this approa
h was to usetumor 
ell densities requiring an initialization of the density distribution through-out the brain while these densities are not observable in the images. More re
ently,in [Hogea 2007℄, Hogea et al. have optimized their parameters by 
omparing lo
a-tions of some manually pla
ed landmarks with the model generated ones. In additionto the parameters of the rea
tion-di�usion model they optimize the parameters oftheir me
hani
al model as well. However, they also use tumor 
ell density distribu-tion in their optimization pro
ess whi
h is not available in the images. Moreover,a detailed analysis of the estimated parameters and their minimization frameworkis not provided. Re
ently Swanson et al. in [Swanson 2008a℄ proposed a param-eter estimation method for the di�usion pro
ess in petri-dish experiments, whi
his 
onsistent with the observables in the images as it uses the tumor boundariesrather than tumor 
ell densities. They have derived analyti
al approximations forthe evolution of the tumor delineation for 2 dimensional 
ir
ular growth. Using the
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(a) (b)Figure 4.1: MR Flair images of a grade II astro
ytoma: (a) image at the �rstexamination (b) image at the se
ond examination. In the anatomi
al MR imageswe observe the boundary of the visible part of the tumor rather than the tumor 
elldensities.formulation for the tumor delineation they have estimated the di�usion 
oe�
ientfor the petri-dish experiments. The di�
ulty one would en
ounter if one wants toapply this method to medi
al images is that the method assumes radial symmetri
growth whi
h is not the 
ase in the brain (in-vivo). Moreover, the existen
e of area
tion term results in a di�erent evolution than pure di�usion.In this 
hapter, we propose and analyze a parameter estimation method forrea
tion-di�usion based tumor growth models using time series of medi
al images.The method is based on the evolution of the tumor delineation rather than tumor
ell densities and in this respe
t it is 
onsistent with the observations in the images.In Se
tion 4.2, we explain our method, detail the anisotropi
 Eikonal approximationwe use for des
ribing the temporal evolution of the tumor delineation and formulatethe parameter estimation problem.4.2 MethodThe parameter estimation methodology and the 
hoi
e of the estimated pa-rameters depend naturally on the exa
t formulation of the underlying rea
tion-di�usion model. In this work we fo
us on the spe
i�
 formulation proposedin [Clatz 2005, Jbabdi 2005℄. However, due to the similarities of rea
tion-di�usionmodels the ideas we present here 
an be adjusted for other formulations. The modelfor tumor growth proposed in [Clatz 2005℄ is formulated by the system given inEquations 4.1 and 4.2. The di�usion tensor D is an anisotropi
 tensor taking intoa

ount two di�erent phenomena: di�erential motility of tumor 
ells in di�erenttissues and dire
tional preferen
e of tumor 
ell di�usion. The 
onstru
tion of D,
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h is obtained from the DT-MRI, is as follows:
D(x) =

{
dgI , x ∈ gray matter
dwDwater , x ∈ white matter (4.3)where tumor 
ells are assumed to di�use isotropi
ally in the gray matter with a rate

dg and di�use along the white matter tra
ts proportional to the di�usion tensor forthe water mole
ules Dwater through a 
oe�
ient dw. Dwater in this 
onstru
tion isobtained from DT-MRI and normalized su
h that the highest di�usion rate in thebrain would be 1.We note that in [Clatz 2005℄ the authors also 
ouple the evolution of the tumorwith its mass e�e
t on the brain but for this work, as a �rst step, we fo
us onlyon the rea
tion-di�usion part ignoring the me
hani
al e�e
t. On
e the problem forthe growing tumor is solved and understood then the parameter estimation 
an alsotake into a

ount the me
hani
al model.The rea
tion-di�usion model given by Equations 4.1, 4.2 and 4.3 des
ribes thetemporal evolution of lo
al tumor 
ell densities. As we have noted before, this
reates an in
onsisten
y with the observables in the images, see Figure 4.1. In orderto solve the parameter estimation problem we need a formulation 
onsistent with theimages in whi
h the evolution of the tumor delineation instead of the evolution ofthe tumor 
ell densities will be mathemati
ally des
ribed. In se
tion 4.2.1 we detailthe 
onstru
tion of su
h a formulation, whi
h is a proje
tion of the rea
tion-di�usionequation. On
e su
h a formulation is available then one 
an optimize the parametersusing di�erent error measures and optimization s
hemes. In se
tion 4.2.2 we detailour 
hoi
e for the error measure and the optimization s
heme.4.2.1 Eikonal Approximation for Rea
tion-Di�usion ModelsThe asymptoti
 properties of the rea
tion-di�usion equations under 
ertain 
ondi-tions allow us to 
onstru
t a traveling time formulation for the tumor delineation.Rea
tion-di�usion equations and their asymptoti
 properties have been well studiedin the literature [Aronson 1978, U. Ebert 2000℄ and these properties have been usedfor di�erent appli
ations [Maini 2004, Murray 2002, Keener 1998, Sermesant 2007℄.Here we wish to summarize some of the relevant results in these works.At large times, the 
onstant 
oe�
ient 
ase of Equation 4.1 admits a travelingwave solution in the in�nite 
ylinder. In other words, when the 
hange of u is non-zero in only one dire
tion, n, for very large times the solution of Equation 4.1 
anbe given in the form:
u(x, t) = u(n · x− vt) = u(ξ) as t→∞. (4.4)where v is the asymptoti
 speed of the front and ξ = (x ·n−vt) is the moving frameof the traveling wave. The 
enter of the moving frame ξ is at u = 0.5. Pluggingthis asymptoti
 form of the solution into the rea
tion-di�usion equation given inEquation 4.1 we obtain an ordinary di�erential equation (ODE)

n′Dn
d2u

dξ2
+ v

du

dξ
+ ρu(1− u) = 0 (4.5)



4.2. METHOD 49This is a 
onstant 
oe�
ient nonlinear equation and in order to have admissiblesolutions the asymptoti
 speed v should depend on the di�usion tensor D and ρ,and also on the shape of the initial 
ondition u(x, 0). When the initial 
onditionhas a 
ompa
t support the asymptoti
 speed of the traveling wave 
an be given as,[Aronson 1978, Murray 2002℄:
v = 2

√
ρn′Dn (4.6)The planar initial 
ondition with 
ompa
t support 
onverges to a travelling plane
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observed
asymptotic(b)Figure 4.2: (a) The tumor distribution evolving with the 
onstant 
oe�
ientrea
tion-di�usion equation (
ross-se
tion of the tumor 
ell density distribution inthe in�nite 
ylinder) is plotted at di�erent times (non-dimensional). We see thatthe shape of the tumor 
ell density distribution approa
hes a 
onstant shape in timeand be
omes a traveling wave. (b) The speed of a single iso-density 
ontour (u = 0.5)is plotted in time along with the asymptoti
 speed v. In the non-dimensional form ofthe Equation 4.1 the 
oe�
ients are unit therefore v = 2. We observe that the speedthe iso-density 
ontour 
onvergen
e to the asymptoti
 one but the rate of 
onver-gen
e is not very high, in O(1/t). The 
onvergen
e 
hara
teristi
s of the speed alsodepends on the iso-density value. For ea
h u value the 
urve given in (b) will be dif-ferent. However, this dependen
e is on the order of O(1/t2) therefore, the di�eren
ebetween the 
urves will die out faster and will not be signi�
ant [U. Ebert 2000℄.with speed v in time. As the speed of the travelling plane 
onverges to v its shapealso 
onverges to a 
onstant shape, whi
h depends on the rea
tion term and doesnot have an analyti
al form for the term we use (logisti
 growth term). Figure 4.2illustrates the 
onvergen
e of the front shape and the speed of the traveling wave intime.The fa
t that rea
tion-di�usion equations admit traveling wave solutions in 
er-tain 
ases (
onstant 
oe�
ients and in the in�nite 
ylinder) states that any iso-density 
ontour of u at large times under 
ertain 
onditions will move with a speedof v. Therefore, we 
an formulate the speed of the tumor delineation observed inthe images using v. Although this gives the general idea, it is not 
omplete be
ausethe 
onvergen
e of the observed speed of an iso-
ontour to v is slow, in O(1/t).



50 CHAPTER 4. PARAMETER ESTIMATION: METHODEbert et al. have studied this 
onvergen
e behavior and derived the rate analyti-
ally [U. Ebert 2000℄. In their study they noti
ed that the 
onvergen
e rate 
an beapproximated with a time varying fun
tion whi
h does not depend on the value of
u on the iso-density 
ontour. This approximation assumes that all the iso-density
ontours of u behaves like the u = 0.5 one, whi
h is the origin of the moving frame.Following these studies we in
lude the e�e
t of 
onvergen
e in v and have a timevarying estimate of the speed of the u = 0.5 iso-density 
ontour as

v(t) =
√

n′Dn
4tρ− 3

2t
√
ρ
. (4.7)The speed variation of the u = 0.5 iso-density 
ontour with time is di�erent fromthe other ones. However, the e�e
t of the value of the iso-density 
ontour is shownto be O(1/t2) and therefore we ignore it [U. Ebert 2000℄. The di�eren
es betweenthe observed speed of the moving frame, the asymptoti
 speed and time varyingestimate is shown in Figure 4.3(a). In Figure 4.3(b) we show the integrals of thesespeeds starting from the same initial 
ondition to demonstrate the e�e
t of the
onvergen
e on the lo
ation of the moving frame (whi
h 
orresponds to the tumordelineation in the 
ontext of this work). At this point we 
an readily formulate the
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(b)Figure 4.3: (a) The traveling wave has an asymptoti
 speed shown with a dashed
urve. However, when we observe the speed of an iso-density 
ontour in time wenoti
e the low rate of 
onvergen
e to this speed (see the solid 
urve). An approxima-tion of the speed of the iso-density 
ontour in
luding the 
onvergen
e e�e
t yields a
loser 
urve to the the observed on (see point-dashed 
urve). (b) Starting from thesame point the integrals of the speed 
urves, namely the distan
es to the initial pointas a fun
tion of time, are shown. Noti
e that we get a mu
h better approximationwhen we add the 
onvergen
e e�e
t. All axis are in non-dimensional 
oordinates.traveling time formulation for the tumor delineation. Based on the ideas presentedin using [Sethian 1999℄, v(t) 
an seen as
|∇T | = 1/v(t) =

[

2
√
ρn′Dn− 3

2T

√
n′Dn

ρ

]−1 (4.8)



4.2. METHOD 51where T is an impli
it time fun
tion su
h that it embeds the lo
ations of the tumordelineation as iso-time surfa
es (T (x) is the fun
tion representing the time when thetumor delineation passes over the point x). As a result of this n 
an be written as
∇T/|∇T | and we 
an write the traveling time formulation as

√
∇T ′D∇T =

2
√
ρT

4ρT − 3
, (4.9)where the equation has the Eikonal form (: F√∇T ′D∇T = 1 with F being a generalspeed fun
tion.) This equation alone only gives the relation of su

essive iso-timesurfa
es of T . In order to build the solution throughout the domain we need aDiri
hlet type boundary 
ondition, namely an initial surfa
e for whi
h we know the

T value. In the 
ontext of the tumor growth modeling this surfa
e is given as thetumor delineation in the �rst image. Using this we 
an write the ne
essary Diri
hlet
ondition as
T (x) = T0 ∀x ∈ Γ (4.10)where T0 is the initial time and Γ is the tumor delineation found in the �rst image.As a result the �nal traveling time formulation is given by the equations

√
∇T ′D∇T =

2
√
ρT

4ρT − 3
(4.11)

T (x) = T0 ∀x ∈ Γ (4.12)where in the 
ontext of tumor growth T0 is the time elapsed sin
e the tumor hasstarted di�using until the a
quisition of the �rst image. The value of T0 is notavailable in the images but as we are going to explain in Se
tion 4.2.2 it 
an beregarded as another parameter of the model. Here we would like to note a limiting
ase of this formulation when T0 = ∞. In this 
ase we do not take into a

ountthe time 
onvergen
e of the speed of the tumor delineation and model the evolutionof the tumor delineation only using the asymptoti
 behavior of rea
tion-di�usionmodels. The limiting 
ase formulation has the form
2
√
∇T ′ρD∇T = 1, (4.13)where the T dependen
e of the equation is gone. We see that if we do not 
onsiderthe 
onvergen
e e�e
t and use the asymptoti
 speed v then T0 is not ne
essary inthe problem. We also observe that in the equation, ρ and D appear in the produ
tform and 
annot be separated. In this formulation the pairs ρ,D with the sameprodu
t will give us exa
tly the same evolution of the tumor delineation.The formulation given in Equations 4.11 and 4.12 is valid in the in�nite 
ylinderwhere the evolution is in one dire
tion (in this 
ase the traveling wave is a plane).In the 
ase of the growth of a tumor, the delineation is 
urved therefore its evolu-tion is not similar to an evolution in the in�nite 
ylinder. We 
an still apply theformulation found in the in�nite 
ylinder to more general 
ases (non-planar 
ases)in 3D by assuming that within a voxel the tumor delineation is planar and themodel 
oe�
ients are 
onstant. Then by starting from the initial tumor delineationand sweeping the domain outwards we 
an 
onstru
t the solution. However, su
h



52 CHAPTER 4. PARAMETER ESTIMATION: METHODa generalization does not take into a

ount the e�e
t of 
urvature in the more gen-eral evolutions. Several works in the literature have extended the Eikonal equationsand in
luded the e�e
t of 
urvature [Keener 1998, Franzone 1990℄ (where they havenot taken into a

ount the e�e
t of 
onvergen
e). In this work we fo
us on themethod proposed by Keener et al. in [Keener 1998℄. The authors demonstrate away to take into a

ount the e�e
t of 
urvature for slightly 
urved surfa
es in the
ase of isotropi
 di�usion. Following the same prin
iples we 
an derive the generalformulation for anisotropi
 di�usion.Derivation of the E�e
t of the Curvature for Anisotropi
 TensorsHere we follow the derivation given in [Keener 1998℄ and modify it for the anisotropi
tensor 
ase. The rea
tion-di�usion model has the general form:
∂u

∂t
= ut = ∇ · (D∇u) + ρu(1− u). (4.14)We apply a 
oordinate 
hange by parameterizing the moving frame of the u fun
tionas

x = X(ξ, τ), t = τ. (4.15)We assume that this parameterization is a di�eomorphism. By 
hain rule the partialderivatives using the new 
oordinates 
an be written as
∂

∂ξi
=

∂Xj

∂ξi

∂

∂xj
(4.16)

∂

∂τ
=

∂

∂t
+
∂Xj

∂τ

∂

∂xj
(4.17)where the indi
es are summed (this is the 
ase throughout this se
tion). Likewisethe partial derivatives with respe
t to the Eu
lidean 
oordinates 
an be written interms of the new 
oordinate system.

∂

∂xi
= αij

∂

∂ξj
(4.18)

∂

∂t
=

∂

∂τ
− αjk

∂Xj

∂t

∂

∂ξk
(4.19)are the partial derivatives in terms of the new 
oordinate system. αij is the ijth
omponent of the inverse of the Ja
obian matrix with respe
t to the parameterization

X. We identify ξ1 as the normal dire
tion to the isosurfa
es of u at every point. Wealso de�ne the tangent and the normal ve
tors of the parameterization as
ri =

∂Xj

∂ξi
(4.20)

ni = rj × rk, j, k 6= i. (4.21)Using this we 
an de�ne the [α] matrix using these ve
tors:
αij =

(nj)i
rjnj

. (4.22)



4.2. METHOD 53For the ease of derivation, through the 
hoi
e of the parameterization we let r1·r2 = 0and r1 · r3 = 0 (r1 ‖ n1) and set it as the normal ve
tor to the iso-surfa
e of the ufun
tion. The derivative terms in the rea
tion-di�usion equation be
ome
ut =

∂u

∂τ
− αjk

∂Xj

∂τ

∂u

∂ξk
(4.23)

∇ · (D∇u) = αkpαijdki
∂2u

∂ξp∂ξj
+

∂

∂xk
(dkiαij)

∂u

∂ξj
. (4.24)Then the whole equation 
an be written as

αkpαijdki
∂2u

∂ξp∂ξj
+

∂

∂xk
(dkiαij)

∂u

∂ξj
(4.25)

−
(
∂u

∂τ
− αjk

∂Xj

∂τ

∂u

∂ξk

)
+ ρu(1− u) = 0.Here we use the two strong assumptions made in [Keener 1998℄. The �rst assumptionsays that the spatial variation of ξ1 is mu
h smaller than for ξ2 and ξ3. This meansthat the normal to the tumor delineation 
hanges faster than the tangent spa
eof the parameterization. Therefore the e�e
t of 
urvature is in a lower order thanthe speed of the moving frame. Remembering that the [α] is the inverse Ja
obianmatrix of the parameterization X this assumptions lets us say that αj1 = O(1) while

αjk = O(ǫ).The se
ond strong assumption is that to the leading order in ǫ, u is independentof τ . In the planar evolution this assumption readily holds sin
e the solution ofthe rea
tion-di�usion equation is a traveling wave and therefore does not dependon time. However, for the 
urved evolution this does not hold. This assumption onthe dependen
e on τ lets us treat the 
urved evolution as if it admits a travelingwave. Using the singular perturbation method we 
an gather the �rst order termsand Equation 4.25 redu
es to
αk1dk1αi1

∂2u

∂ξ21
+

∂

∂xk
(dkiαi1)

∂u

∂ξ1
(4.26)

αj1
∂Xj

∂τ

∂u

∂ξ1
+ ρu(1− u) = O(ǫ).Gathering the terms and re
ognizing the matrix multipli
ations this equation 
anbe rewritten in the 
ompa
t form

α′Dα
∂2u

∂ξ21
+

(
∇ · (Dα) + α · ∂X

∂τ

)
∂u

∂ξ1
+ ρu(1− u) = O(ǫ), (4.27)where α ve
tor is de�ned as [α]i = α1i Now in order to have a traveling wave solutionthis ODE should have the same form as the one in Equation 4.5. This means thatwe need the 
oe�
ients of this equation to be 
onstants and satisfy the relationgiven as the one given in Equation 4.6. However, this will not be possible for everyiso-
ontour of the fun
tion u. The 
urvature will have di�erent e�e
ts for di�erent
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es. Hen
e, we require it only for the origin of the moving frame (u = 0.5iso-
ontour in the 
ase of logisti
 growth). Using this we obtain
α′Dα = ρ (4.28)

∇ · (Dα) + α · ∂X
∂t

= 2ρ. (4.29)At this point we remember that α ‖ n1 whi
h is normal to the iso-surfa
e of u.We de�ne a level set fun
tion S su
h that the zero-level set of S will 
orrespond tothe origin of our moving frame therefore, ∇S/|∇S| = n. We 
an then write α as
α = −K∇S where K is just a 
oe�
ient to be determined. From Equation 4.28 we�nd K as

K =

√
ρ

∇S′D∇S . (4.30)On the other hand, the Equation 4.29 gives us
−∇ · (DK∇S)−K∇S ·Xt = 2ρ. (4.31)In order to repla
e Xt we need one more relation whi
h 
omes from the fa
t that thevalue of fun
tion S at the origin of the moving frame doesn't 
hange by 
onstru
tion.Therefore,

∂

∂t
S(x, t)|on the moving frame origin = 0 (4.32)

∇S ·Xt + St = 0. (4.33)Pla
ing this in Equation 4.31 we obtain
∇ · (DK∇S) +KSt = 2ρ (4.34)

∇ ·
(
D∇S

√
ρ

∇S′D∇S

)
+

√
ρ

∇S′D∇SSt = 2ρ. (4.35)We transform the dynami
 equation given above into a stati
 one by inverting theembedding method explained in [Osher 1993℄. We apply the following embeddingand the transformation derived from it:
S(x, t) = 0 ↔ T (x) = t,

∇T =
∇S
St

.As a result of this transformation and the embedding we obtain the anisotropi
Eikonal equation with the 
urvature term
∇ ·

(
D∇T

√
ρ

∇T ′D∇T

)
+

√
ρ

∇T ′D∇T = 2ρ. (4.36)Relo
ating terms we get our formulation:
{

2
√
ρ−∇ · D∇T√

∇T ′D∇T

}√
∇T ′D∇T = 1. (4.37)



4.2. METHOD 55The Equation 4.37 is derived using the asymptoti
 speed v, but we 
an alsorepla
e v by v(t) and in
lude the e�e
t of 
onvergen
e in this formulation. Addingit all together we obtain the following equation to des
ribe the evolution of thetumor delineation in 3D based on the rea
tion-di�usion dynami
s.
{

4ρT − 3

2
√
ρT

−∇ · D∇T√
∇T ′D∇T

}√
∇T ′D∇T = 1 (4.38)where the term ∇ · (D∇T/√∇T ′D∇T ) is the e�e
t of the 
urvature. In the deriva-tion of this term it is assumed that the surfa
e is slightly 
urved whi
h requires thee�e
t of 
urvature to be of a lower order than the term 2

√
ρ (the �rst assumption).However, the value of the 
urvature might be high in the general 
ase espe
ially inthe presen
e of the anisotropy in the di�usion pro
ess. Therefore one would needto saturate the e�e
t of the 
urvature to satisfy the assumption. In [Franzone 1990℄Franzone et al. have over
ome this problem by using a slightly di�erent term thenthe 
urvature term derived above. Their formulation in
luded the divergen
e of ∇Tas follows {

4ρT − 3

2
√
ρT

− ∇ ·D∇T√
∇T ′D∇T

}√
∇T ′D∇T = 1 (4.39)Noti
e that the di�eren
e between the terms is the lo
ation of the divergen
e opera-tor ∇·. The divergen
e operator 
reates a more di�usive s
heme than the 
urvatureand therefore, we 
all this term as the di�usive s
heme. In order to better under-stand the need of saturation and 
ompare Equations 4.38 and 4.39 we analyze aspe
i�
 
ase of growth where the analyti
al solution of the rea
tion-di�usion equa-tion is available.Analysis in Spheri
al GrowthIn most 
ases the solution for the rea
tion-di�usion equation given in Equation 4.1
annot be written analyti
ally espe
ially in the presen
e of nonlinear rea
tion term[Rodrigo 2003, Petrovskii 2001℄. But for 
ertain geometries and boundary 
ondi-tions, analyti
al solutions for the linearized rea
tion-di�usion equation 
an be found.In this part we fo
us on the growth of a spheri
ally symmetri
 tumor initialized asa point sour
e in a medium with homogeneous di�usion and rea
tion 
oe�
ients.We examine how a single iso-density 
ontour of this tumor evolves and 
ompare itwith the evolution des
ribed with traveling time formulation (Equation 4.38).The exa
t problem we fo
us on is the linear rea
tion-di�usion equation withhomogeneous parameters.

ut = d∆u+ ρu, (4.40)where d is the s
alar di�usion 
oe�
ient, ρ is the proliferation rate and ∆ is theLapla
ian operator. For a simpler analysis we 
an non-dimensionalize this equationby using the transformations
x =

√
ρ

d
x, t = ρt, (4.41)



56 CHAPTER 4. PARAMETER ESTIMATION: METHODwhere the x and the t are the non-dimensional spa
e and time variables. Us-ing these variables in the rea
tion-di�usion equation we get rid of the parame-ters [Murray 2002℄. For simpli
ity we drop the line over the t and the x. As a resultof the transformations we obtain the non-dimensional form
ut = ∆u+ u (4.42)

u(x, 0) = δ(x), (4.43)where δ(x) is the Dira
 delta fun
tion. Equation 4.43 is the initial 
ondition whi
his set to be a point sour
e. Noti
e the rea
tion term is linear whi
h is di�erent from
u(1 − u). As long as we limit our analysis in this part for low u values these tworea
tion terms are very similar. We also note here that the point sour
e initializationis not realisti
 in the 
ase of in-vivo growth. The more realisti
 situation would beto set a boundary 
ondition su
h as

u(0, t) = 1, (4.44)whi
h would 
orrrespond to the existen
e of a spheroid [Araujo 2004℄. The di�usionthen starts from the spheroid and during the di�usion the density of the spheroidwould remain 1. However, the solution of this problem is harder to analyze thereforewe sti
k to the point initialization [Rodrigo 2003, Petrovskii 2001℄. Equations 4.42and 4.43 des
ribe a symmetri
 evolution therefore we 
an 
hange the 
oordinatesystem into the spheri
al one. Using Green fun
tions [Kevorkian 2000℄ the solutionfor this problem 
an be written analyti
ally as
u(r, t) =

1

8π3/2t3/2
e

−r2

4t et, (4.45)where r is the radial distan
e from the 
enter. All the iso-density surfa
es of thisevolution are spheres moving away from the 
enter. We 
an des
ribe the motion ofa single iso-density surfa
e in terms of the radius as a fun
tion of time
r∗(t) = 2t

√
1− 1

t
ln(8π3/2t3/2u∗), (4.46)where r∗ is the radius of the iso-density surfa
e with the value u∗. We observethat the evolution of the iso-density surfa
e depends on the density value u∗. InFigure 4.4(a) we plot the r∗(t) fun
tion for di�erent values of u∗. We noti
e thatsome of these iso-density surfa
es redu
e in size �rst and then start growing. This isdue to the point sour
e initialization in the formulation given in Equation 4.43 andit is not realisti
. The more realisti
 
ase for any iso-density surfa
e would be that�rst it remains dormant and then starts growing. Keeping this in mind we fo
us onthe u∗ value whi
h produ
es an evolution like this even in the 
ase of point sour
einitialization. Therefore, sear
hing for the u∗ whi
h satis�es

min

(
dr∗

dt

)
= 0, (4.47)we �nd u∗ = 0.0346 and we fo
us our analysis on the evolution of this iso-densitysurfa
e (shown in red in Figure 4.4).
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(a) (b)
(
)Figure 4.4: (a) r∗(t) is plotted for di�erent values of u∗. The red 
urve is the bio-logi
ally reasonable evolution of an iso-density surfa
e and is given by u∗ = 0.0346.(b) In blue, the evolution of the u∗ = 0.0346 iso-density surfa
e is drawn. The solidred and the solid green 
urves are the evolutions des
ribed by the traveling timeformulations given in Equations 4.38 and 4.39 respe
tively. The dashed red 
urve isthe evolution obtained by saturating the e�e
t of the 
urvature as in Equation 4.53.(
) We zoom in the plot (b) around the region where the tumor is smaller. In thisregion the di�usive s
heme is 
lose to the real evolution however, it diverges as thetumor gets larger.The two traveling time formulations given in Equations 4.38 and 4.39 in thespheri
ally symmetri
 and homogeneous parameter 
ase take the forms

[
4T − 3

2T
− 2

r

]
Tr = 1 (4.48)

[
4T − 3

2T
− 2

r

]
Tr = 1 + Trr (4.49)respe
tively. In these equations T is again the traveling time fun
tion, Tr representsthe derivative with respe
t to r and 2/r is the mean 
urvature given in terms ofradius. Note that these equations are also in non-dimensional form. Equations 4.48and 4.49 formulate the evolution of the delineation of a spheri
ally symmetri
 tumor



58 CHAPTER 4. PARAMETER ESTIMATION: METHODwhose real evolution is given by Equation 4.46 for u∗ = 0.0346. In Figure 4.4(b) weplot the evolutions des
ribed by these three formulations where the traveling timeformulations start from the delineation of the tumor at t = 1 and Tr is not allowedto fall below 0. In the �gure we plot the distan
e of the delineation from the 
enterof the tumor as a fun
tion of time (radius as a fun
tion of time). The blue 
urveis the real evolution, the red 
urve is the evolution under the e�e
t of 
urvature asgiven in Equation 4.48 and the green 
urve is the evolution with the divergen
e termas given in Equation 4.49. We observe that neither of these evolutions is 
lose tothe real one. The evolution in
luding divergen
e of ∇T is 
lose to the real evolutionwhen the tumor is small, see Figure 4.4(
), however later it diverges greatly, seeFigure 4.4(b). On the other hand the evolution in
luding the 
urvature is very badwhen the tumor is small and it gets better in terms of slope of the evolution (speed)as the tumor gets bigger. This observation is 
onsistent with the assumption we haddone during the derivation of the 
urvature term in Se
tion 4.2.1. When the tumoris small in size its 
urvature is high therefore our assumption of low 
urvature fails.In order to over
ome this problem we propose to saturate the 
urvature e�e
t usinga saturation fun
tion
f(κeff ) = sign(κeff )κsat

(
1− e−|κeff |/κsat

) (4.50)
κeff =

2

r
(4.51)where κsat is the saturation value for the 
urvature term κeff and sign() is thesign fun
tion. The exa
t form of the fun
tion is not very important but what isimportant is that at κeff = 0 the derivative of the fun
tion is 1. When we put thisin Equation 4.48 and apply 
urvature saturation in the spheri
al 
ase we obtain the�nal traveling time formulation in the spheri
ally symmetri
 
ase

[
4T − 3

2T
− κsat

(
1− e−2/(rκsat)

)]
Tr = 1 (4.52)Remembering that the order of 2

√
ρ should be higher than the 
urvature e�e
t andby �tting the evolution de�ned by Equation 4.52 to the one de�ned by Equation 4.46we �nd κsat = 0.15(2

√
ρ). We note that small 
hanges on this value do not a�e
tthe evolution mu
h. In Figure 4.4(b) we plot the evolution of the tumor delineationobtained using Equation 4.52 in red dashed 
urve. Again we solve this Equationstarting from the tumor delineation at t = 1 and Tr is not allowed to fall below 0.Noti
e that this evolution is mu
h 
loser to the real one plotted in blue than theothers.The Traveling Time Formulation for the Tumor DelineationAdding the saturation of the 
urvature e�e
t to the Equation 4.38 we obtain the�nal formulation whi
h des
ribes the evolution of the tumor delineation based onthe rea
tion-di�usion formalism:

{
4ρT − 3

2
√
ρT

− 0.3
√
ρ

(
1− e−|κeff |/(0.3

√
ρ)

)}√
∇T ′D∇T = 1 (4.53)
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κeff = ∇ · D∇T√

∇T ′D∇T
(4.54)

T (x) = T0 ∀x ∈ Γ (4.55)where we have 
hosen to use the exponential form for the saturation fun
tion butany other 
hoi
e would work as well. In this formulation we noti
e that the lefthand side of the Equation 4.53 
an be
ome negative espe
ially for low values of
T . This is due to the fa
t that the approximations for the time 
onvergen
e and
urvature e�e
ts get worse for lower T values [U. Ebert 2000℄. In order to over
omethis approximation error, in our s
heme we do not let the left hand side drop lowerthan {

4ρT − 3

2
√
ρT

− 0.3
√
ρ

(
1− e−|κeff |/(0.3

√
ρ)

)}
≥ {0.1√ρ}, (4.56)whi
h serves as the minimum threshold for the speed of the tumor. In terms of thespeed of progression of the tumor delineation, this limit 
an be written as

vmin = 0.1
√
ρn′Dn, (4.57)where n is the dire
tion of the ve
tor ∇T . As a result of this 
onstraint we have agrowing tumor delineation at all times, 
onsistent with the rea
tion-di�usion model.Numeri
al MethodEquations 4.53, 4.54 and 4.55 
onstitute the formulation des
ribing the evolution ofthe tumor delineation in 3D. This formulation is based on the hypothesis that thetumor delineation 
orresponds to an iso-density surfa
e of the tumor 
ell density

u (the value is not spe
i�ed) whose evolution is de�ned by the rea
tion-di�usionmodel given in Equations 4.1 and 4.2. Equation 4.53 is a stati
 partial di�erentialequation having a similar form as the Hamilton-Ja
obi equations (see Appendix A).Several methods have been proposed to solve su
h equations numeri
ally in theliterature [Osher 1993, Bryson 2003, Qian 2006, Sethian 2003, Kao 2005℄. In thisthesis, to solve this equation numeri
ally, we adopt an algorithm we propose inChapter 8.The stati
 Hamilton-Ja
obi equation given in Equation 4.11 is a �rst order equa-tion and has the form of an anisotropi
 Eikonal equation. Just as a reminder, theanisotropi
 Eikonal equations have the general form
F (x)

√
∇T ′D∇T = 1, (4.58)where the additional F (x) is a spatially varying speed fun
tion. The numeri
almethod proposed in Chapter 8 is dedi
ated to solve su
h equations. It is basedon the Fast Mar
hing method [Sethian 1999℄ and modi�es it in order to take intoa

ount the anisotropy in the equation. It starts from a given initial 
ontour andsweeps the domain outwards following the 
hara
teristi
 dire
tions of the partialdi�erential equation. The di�erential equation has 2 di�erent solutions at ea
hvoxel and in this s
heme we 
hoose the value su
h that as we move away from thedelineation the T value in
reases (sin
e the tumor delineation will pass from those



60 CHAPTER 4. PARAMETER ESTIMATION: METHODpoints at a later time in the 
ase where the tumor grows). The advantages of thismethod are that it is a sweeping method and it only uses the immediate neighborsof a point rather than using points far away [Sethian 2003℄ to 
ompute the values.Therefore, it is a fast and a

urate method for solving anisotropi
 Eikonal equations.For the details of the algorithm please refer to Chapter 8. Here, regardless of thedetails of the algorithm, we 
ontinue our dis
ussion based on the fa
t that we havea sweeping algorithm whi
h solves anisotropi
 Eikonal equations in a fast manner.The Equation 4.38 (and the Equation 4.53) is a se
ond order equation due tothe divergen
e term. Hen
e, it is not obvious to solve it with sweeping methods.These equations 
an be solved with other iterative methods [Osher 1993, Qian 2006℄however, these methods are not very fast. In order to bene�t from the advantagesof the sweeping methods we separate the 
urvature part from the equation and
onstru
t an iterative method that solves anisotropi
 Eikonal equations at ea
hiteration with di�erent updated speed terms. The form we use for Equation 4.38 (itis the same 
onstru
tion for Equation 4.53) be
omes
{4ρT − 3

2
√
ρT

−∇ · D∇T√
∇T ′D∇T

}
√
∇T ′D∇T = 1 (4.59)

{4ρT − 3

2
√
ρT

+ Fcurv}
√
∇T ′D∇T = 1. (4.60)Viewing the 
onvergen
e term as a speed term independent of T as Fcurv enablesus to use the sweeping method and 
onstru
t the simple iterative s
heme

F 0
curv = 0 (4.61)

{4ρT
n−1 − 3

2
√
ρT n−1

+ Fn−1
curv}

√
∇T ′n−1D∇T n−1 = 1 (4.62)Compute T n−1 (4.63)

Cn−1 = −∇ · D∇T n−1

√
∇T ′n−1D∇T n−1

(4.64)
Fn

curv = Fn−1
curv + α(Cn−1 − Fn−1

curv). (4.65)where α < 1 is the parameter determining the rate of 
onvergen
e whi
h in our
ase is taken as α = 0.8. In Equation 4.65 we see that the Fn
curv is updated witha proportional gain using the error made in the previous iteration. In this respe
tthis s
heme is similar to the feedba
k 
ontrol loops. We iterate this algorithm until

∑

x∈Ω

|Cn − Fn
curv| < ǫ (4.66)where the sum represents the summation over all points in the domain of 
ompu-tation and ǫ is a small value. On
e this 
riteria is satis�ed we know that Fcurv isindeed the e�e
t of the 
urvature. The rate of 
onvergen
e depends on α however,in our experiments we have observed that for a large range of α ∈ (0.2, 0.8) therate is very rapid (see Figure 4.5). For lower α values the s
heme takes longer timeto 
onverge and for higher values we observed os
illations therefore, the time of
onvergen
e also in
reased.
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Figure 4.5: The 
urve showing the rate of 
onvergen
e for the iterative s
heme givenby Equations 4.61-4.65. We visualize the di�eren
e ∑
x∈Ω |Cn−Fn

curv| as a fun
tionthe iteration number n. The 
urve is obtained for the example shown in Figure 4.6.The Evolution of the Tumor DelineationThe traveling time formulation given by Equations 4.53, 4.54 and 4.55 
ombines dif-ferent approximations and due to this it does not produ
e exa
tly the same propaga-tion as the rea
tion-di�usion model. In order to understand how 
lose an evolutionwe obtain with two formulations we 
ompare the evolution of the tumor delineations.First we virtually grow a syntheti
 tumor using the rea
tion-di�usion growth model.This provides us the evolution of the tumor 
ell densities u(x, t) at every point. Fromthe tumor 
ell density distribution, we extra
t the iso-density surfa
e u = 0.4 (value
onsistent with the one proposed in [Tra
qui 1995℄) at ea
h time instan
e and ob-tain the evolution of the tumor delineation that would be visible in medi
al images.In Figure 4.6 we show this evolution for one example. The white 
ontours are thetumor delineations observed at the days 400, 600, 800, 1000 and 1200 from inwardsto outwards. Following this, we set the inner white tumor delineation (delineationin the image at day 400) as the starting point for the traveling time formulationand evolve it using the same growth parameters as the rea
tion-di�usion model with
T0 set as 400. We obtained the bla
k 
ontours as the evolved tumor delineationsat the same dates. The similarity shows us that in the 
ase of images where we
annot dire
tly apply the rea
tion-di�usion models, the traveling time formulationgiven by Equations 4.53, 4.54 and 4.55 
an provide us a very good approximationof the evolution des
ribed by the model. In Figure 4.7 we also show the same evo-lution however, this time the 
urvature e�e
t is modeled using the di�usive s
hemeas proposed by Franzone et al. in [Franzone 1990℄. As explained above this s
heme
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ludes the divergen
e of ∇T as given in Equation 4.39. In Se
tion 4.2.1 we showthat this s
heme a
tually lags behind the a
tual evolution of the tumor delineationdes
ribed by the rea
tion-di�usion equation. In Figure 4.7 we observe this laggingand we also note that the lag is less dramati
 than the theoreti
al analysis due tothe large size of the tumor we are modeling. In Se
tion 5.1.1 we provide quantitativeanalysis of the quality of this approximation.

(a) (b)Figure 4.6: The temporal evolution of the iso-density 
ontour is demonstratedfor a syntheti
 tumor. Contours are shown for days 400, 600, 800, 1000 and1200 from the innermost to outermost respe
tively. The syntheti
 tumor is vir-tually grown using the rea
tion-di�usion model. White 
ontours are obtainedby thresholding the tumor 
ell densities at u = 0.4 for the respe
tive day val-ues (400-600-800-1000-1200). Then in order to simulate the evolution of the iso-density 
ontour (assumed to 
orrespond to tumor delineation in real images) start-ing from day=400, without the knowledge of the tumor 
ell density distributionwe use the traveling time formulation. Bla
k 
urves are the 
ontours we obtainat days 600 (2nd innermost) to 1200 (outermost). We noti
e that the travel-ing time formulation is quite a

urate in des
ribing the evolution of the tumordelineation in the 
ase of syntheti
 tumors. The tumors were grown in the im-ages of a healthy subje
t for whom we also have the DT-MRIs. Parameters:(dw = 0.25 mm2/day,dg = 0.01 mm2/day,ρ = 0.012 day−1 T0 = 400 days) Thenumber of iterations for in
luding the 
urvature e�e
t in this example was 4.4.2.2 The Parameter Estimation ProblemThe parameter estimation for the rea
tion-di�usion model from time series of imagesbe
omes possible on
e we link the evolution we observe in the images to the model.The traveling time formulation T (x) serves as su
h a link. In the rea
tion-di�usionmodel given by Equations 4.1, 4.2 and 4.3 we have three di�erent parameters, dw,
dg and ρ. Moreover, in the previous se
tion by integrating the 
onvergen
e 
har-a
teristi
s of traveling wave solutions into the traveling time formulation we addedanother parameter T0. This gives us 4 parameters to estimate for: (dw,dg,ρ,T0). In
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(a) (b)Figure 4.7: The temporal evolution of the iso-density 
ontour is demonstrated as theone given in Figure 4.6. However, this time the e�e
t of 
urvature in the travelingtime formulation is taken as suggested by Franzone et al. in [Franzone 1990℄, thedi�usive s
heme given in Equation 4.39. We see that, as expe
ted, the evolutionof the tumor delineation des
ribed by this s
heme lags behind the a
tual evolutiongiven by the rea
tion-di�usion model. This problem is resolved by the formulationproposed in this 
hapter.this work we try to optimize these parameters su
h that the evolution we simulateusing the traveling time formulation best �ts the real evolution we observe in theimages, whi
h are taken at di�erent times for the same patient.In order to formulate the parameter estimation problem we need to de�ne anerror measure. In a series of N images taken from the same patient at di�erent times
t0, t1..., tN−1, we have N snapshots of the tumor delineation at di�erent times. t0in this frame is the a
quisition time of the �rst image. For a given parameterset, starting from the �rst time image we 
an simulate the evolution of the tumordelineation and 
ompare it with the real delineations. We note that the value of t0is not known and regarding the time instan
es we only know the di�eren
es betweena
quisitions ∆t0 = 0,∆t1, ...,∆tN . Using this idea we 
an de�ne

C1(dw, dg, ρ, T0) =

N−1∑

1

dist(Γi, Γ̂i)
2 (4.67)

Γ̂i = {x|T(dw ,dg,ρ,T0)(x) = T0 + ∆ti} (4.68)with T (x) = T0 ∀x ∈ Γ0where dist() is the symmetri
 distan
e between two surfa
es normalized by thesurfa
e area of the surfa
es, Γi is the surfa
e en
losing the tumor in the image takenat ti and Γ̂i is the tumor delineation simulated by the traveling time formulation at
ti. In this formulation we noti
e that T0 is the estimate of t0. The estimation of t0,maps the time instan
es, for whi
h we only know the su

essive di�eren
es, on therespe
tive 
onvergen
e 
urve (like the example given in Figure 4.3).



64 CHAPTER 4. PARAMETER ESTIMATION: METHODOne information we have not used 
ompletely in C1 is the size of the visible tumorin the �rst image Γ0. In our experiments we observed that in order to 
orre
tly mapthe time instan
es on the 
onvergen
e 
urve we need to in
lude this size. The inquirywe make is whether it would have been possible to obtain Γ0 at T0 using the travelingtime formulation if we had started from the time the tumor had started di�using,namely T = 0. The assumption we make here is that the tumor started di�usingfrom a set of isolated small regions. These small regions a
tually 
orrespond to theavas
ular masses that start di�using and speed up after vas
ularization. In order toin
lude this in our error measure we run the traveling time formulation ba
kwards intime starting from Γ0 within the delineation. We do this by solving the Equation 4.53within the visible tumor in the �rst image. As explained in Se
tion 4.2.1 we startfrom the delineation Γ0 and sweep the region en
losed by Γ0. The only di�eren
ethis time is that in Se
tion 4.2.1 the T values were in
reasing as we move furtherfrom the �rst delineation while in this 
ase T values de
rease as we go ba
kwardsin time. This ba
kward evolution in time provides us a minimum T value, Tminand the 
orresponding point from whi
h the tumor is assumed to start from (or aset of points) xmin. We noti
e that if the parameter set dw, dg, ρ, T0 is 
onsistentwith the size of Γ0 then Tmin = T0. Therefore the error we need is a fun
tion of
|Tmin − T0|. In order to have a measure 
onsistent with C1 we need to 
onvert thetime di�eren
e into a spatial distan
e. For this we use the minimum allowable speedvalue (see Se
tion 4.2.1)

vmin = 0.1
√
ρn′

maxD(xmin)nmax (4.69)at the point xmin, where nmax is the prin
ipal eigenve
tor of D(xmin) providing thehighest di�usion rate and the fa
tor 0.1 
omes from the minimum threshold for thespeed of the tumor explained in Se
tion 4.2.1. Using vmin we obtain
C2(dw, dg, ρ, T0) = (vmin|Tmin − T0|)2 (4.70)

C = C1 + C2 (4.71)Combining C1 and C2 we obtain the error 
riteria C we wish to minimize withrespe
t to the model parameters.The minimization of C is a multidimensional optimization problem and it 
anbe handled using di�erent methods. One important 
riteria a�e
ting the 
hoi
e ofthe minimization algorithm is that expli
it derivatives of C with respe
t to di�erentparameters are not easily available. Another point is that although the parametershave biologi
ally relevant bounds ( su
h as dw, dg, ρ, T0 > 0) this 
onstraint is notrestri
tive. Based on these observations we have 
hosen to use the un
onstrainedminimization algorithm proposed by Powell in [Powell 2002℄, see Appendix B fordetails. The attra
tive feature of this algorithm is that it does not require derivativesof the obje
tive fun
tion. Instead, its lo
al quadrati
 approximations are used in theminimization. The algorithm requires di�erent instan
es of the obje
tive fun
tion-whi
h are 
omputed using the traveling time formulation-to 
onstru
t the quadrati
approximation and updates it as the minimization pro
eeds. For ea
h instan
e C1and C2 are 
omputed and fed to the optimization algorithm.



4.3. THE OVERALL ALGORITHM 654.3 The overall algorithmFinally in this se
tion we provide the overall parameter estimation algorithm ex-plained in this 
hapter. The algorithm is 
omposed mainly of three di�erent parts:the traveling time formulation, the error measure and the minimization algorithm.In Se
tions 4.2.1 and 4.2.2 we have explained the �rst two parts whi
h are our 
on-tributions. In Appendix B we brie�y explain the minimization algorithm we usedin this work whi
h was proposed by Powell [Powell 2002℄. The pseudo
ode for theparameter estimation method explained in this 
hapter is given in Algorithm 1 andthe �ow
hart given in Figure 4.8.Algorithm 1 Pseudo
ode for the parameter estimation methodology.Inputs: Tumor delineations in the time series of anatomi
al images, DT-MRI ofthe patient, White-gray matter segmentation, Initial estimate of the parametersrepeat- Constru
t the tumor di�usion tensors using the parameters dw, dg, the DT-MRIimage and the white-gray matter segmentation.- Simulate the evolution of the tumor delineation starting from the 1st image inthe time sequen
e as explained in Se
tion 4.2.1.- Compare the simulated evolution of the tumor delineation with the a
tual de-lineations at the given dates (The days images where a
quired). Compute
C1 + C2 = C as explained in Se
tion 4.2.2.- Minimization algorithm 
hooses a new set of parameters with whi
h the evolu-tion of the tumor delineation will be simulated and the error C will be 
omputed(see Appendix B).until Optimization algorithm 
onverges (see Appendix B)
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INPUTS:
− Tumor delineations in the times series of anatomical MRIs
− DT−MRI of the patient
− White−grey matter segmentation
− Initial estimate of the parameters
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for the tumor delineation:
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Figure 4.8: The overall algorithm of the parameter estimation method for rea
tion-di�usion tumor growth models.



Chapter 5Parameter Estimation forRea
tion-Di�usion Models UsingTime Series of Images: Results
Contents5.1 Results for Syntheti
 Tumors . . . . . . . . . . . . . . . . 675.1.1 Comparing Traveling Time with Rea
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ing the Number of Images Used . . . . . . . . . . . 775.1.6 Forgetting the Convergen
e E�e
t and T0 . . . . . . . . . 785.1.7 Di�erent Tensor Constru
tion . . . . . . . . . . . . . . . . 805.2 Preliminary Results with Real Cases . . . . . . . . . . . . 825.2.1 Fitting the Observed Evolution . . . . . . . . . . . . . . . 845.2.2 Predi
ting Future Evolution Beyond Observed Image Data 865.3 Con
lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 89ContextWe devote this 
hapter for the experiments and analysis of the parameter esti-mation methodology explained in Chapter 4. In the �rst se
tion we analyze theproposed methodology �theoreti
ally� using syntheti
 tumors virtually grown byrea
tion-di�usion models. We provide a thorough analysis in order to understandthe performan
e of the proposed method and also to understand the dynami
s ofthe parameter estimation problem itself. In the se
ond se
tion we show some 
asestudies using patient images. We show some promising preliminary results in thefew 
ases we fo
us on.5.1 Results for Syntheti
 TumorsIn the evaluation phase of the parameter estimation method, we test the 
apabilitiesof the method for retrieving the real parameters of the tumor growth. We �rst per-form tests with syntheti
 tumors for whi
h the parameters are known. We 
onstru
t67



68 CHAPTER 5. PARAMETER ESTIMATION: RESULTSa dataset of 180 tumors using the rea
tion-di�usion model 
omposed of 60 di�erentparameter sets at 3 di�erent lo
ations in the brain. The di�erent parameter setsof the model were 
onstru
ted using di�erent 
ombinations of dw, dg and ρ valuesgiven in the table below.
dw [mm2/day℄ 0.025 0.05 0.1 0.25 0.5
dg [mm2/day℄ 0.005 0.01 0.025
ρ [1/day℄ 0.009 0.012 0.018 0.024As 
an be seen from the values for ea
h parameter the �nal parameter sets 
overa large range of growth speed and anisotropy. Ea
h tumor was initialized in asingle voxel and grown in the MR image of a healthy subje
t with a resolution of1x1x2.6mm3. The di�usion tensor D was 
onstru
ted using the DT-MRI of thesame subje
t. In order to 
reate the syntheti
 images of these tumors, we assumeda simple imaging pro
ess where a voxel is visualized as tumoral if the number oftumor 
ells ex
eeds 40% of the maximum tumor 
ell 
apa
ity the brain paren
hyma
an handle (u > 0.4) [Tra
qui 1995℄. For ea
h tumor, the dete
tion and the �rstimage a
quisition is made when the visible tumor size rea
hes a diameter of 1.5
m. The time the tumor rea
hes this size depends on the parameters of the modeltherefore the T0 value is di�erent for ea
h parameter set.5.1.1 Comparing Traveling Time with Rea
tion-Di�usionThe �rst thing we do before starting the experiments for parameter estimation is toevaluate the resemblan
e between the evolution of the tumor delineation des
ribedby the rea
tion-di�usion equation and the traveling time formulation. In otherwords quantify the similarity seen in Figure 4.6. For ea
h of the 180 syntheti
tumors explained we simulate the evolution of the tumor delineation by the travelingtime formulation using the exa
t same parameters as the rea
tion-di�usion equationused to grow the tumor. We initialize the traveling time formulation with the�rst image of ea
h tumor and predi
t the tumor delineation at 200, 300 and 400days after the dete
tion. Then we 
ompare the predi
ted delineations with thesyntheti
 images 
onstru
ted for the 
orresponding days. We 
ompute the errormeasure C1, whi
h measures the symmetri
 distan
es between the real and thepredi
ted delineations, for ea
h of the syntheti
 tumors. In Table 5.1 we summarizethe results of the 
omparison. The 
olumns named after the parameters of themodel denote all the tumors having that value for the spe
i�
 parameter. Forexample, the 
ell ρ = 0.009/day represents all the syntheti
 tumors having the

ρ value as 0.009/day. There are 15 di�erent tumors for this spe
i�
 value withdi�erent di�usion 
oe�
ients, set as 
ombinations of di�erent dw and dg values.The 
ell on the right hand side of the ρ = 0.009/day 
ell shows the mean and thestandard deviation of C1 values 
omputed for the 15 di�erent tumors representedin that 
ell. The rest of the table is interpreted likewise. We noti
e that all theerror values are around 1mm whi
h is approximately 1 voxel. Observing the errorvalues in this table we 
an 
on
lude that the traveling time formulation des
ribesthe evolution of the delineations of syntheti
 tumors grown by the rea
tion-di�usionmodel very well. We did not in
lude C2 in this analysis be
ause the aim of this part
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ρ C1 [mm] dw C1 dg C1

0.009 0.92 ± 0.17 0.025 0.94 ± 0.12 0.005 0.97 ± 0.16

0.012 0.94 ± 0.12 0.05 0.89 ± 0.10 0.01 0.94 ± 0.13

0.018 0.94 ± 0.10 0.1 0.85 ± 0.03 0.025 0.92 ± 0.09

0.024 0.99 ± 0.10 0.25 0.94 ± 0.07

0.5 1.11 ± 0.11Table 5.1: Resemblan
e between the travelling time formulation and the rea
tion-di�usion equation. We observe that the evolution of the tumor delineation simulatedby the traveling time formulation is on the average at most 1.11mm away from thereal delineation observed in syntheti
 images. Keeping in mind the resolution ofthe images used (1x1x2.6mm3) we 
an say that the traveling time formulation issu

essful in des
ribing the evolution of the delineations of the syntheti
 tumors.is to understand how 
lose we 
an simulate the evolution of tumor delineation withthe right parameters of the model, whi
h is de�ned by the error measure C1.5.1.2 Problem of Non-UniquenessIn the �rst set of experiments we tried to estimate all the parameters of the rea
tion-di�usion model (dw, dg, ρ) and the �rst a
quisition time T0 (the time elapsed betweenthe emergen
e of the tumor and its dete
tion) using the traveling time formulation.In these experiments we observed the non-uniqueness of the solution to this problem
aused by the 
oupling between proliferation and di�usion rates and the sparsityof the information 
ontained in the images. The rea
tion-di�usion model 
ombinedwith the imaging pro
ess 
an result in very similar evolutions of the tumor delin-eation with very di�erent parameters. In Figure 5.1 we show the evolutions of twodi�erent tumors (green and red) for whi
h the di�usion and proliferation parametersare given in the a

ompanying table. The 
ontours with the same 
olor are the de-lineations of the same tumor in di�erent images taken at su

essive time instan
es.The inner 
ontour is the delineation in the �rst image and the other 
ontours as wego outwards are from the images taken at 200, 300 and 400 days after the �rst imagea
quisition respe
tively. We observe that although the parameters are di�erent theevolutions are almost the same. Quantitatively, the di�eren
e between these twoevolutions measured by the error 
riteria C (see Equation 4.71) is 0.644 mm2. Onthe other hand, the 
losest tumor delineation evolutions we 
an get to these onesusing the traveling time formulation with the optimum parameters have errors of
C = 1.28 mm2 for the red and C = 1.29 mm2 for the green tumor. This shows usthat with the 
urrent resolution of medi
al images we 
annot distinguish betweenthese two parameter sets if we observe either of the evolutions. Therefore, we leaveaside the question of estimating the di�usion and the proliferation rates separately.One observation about the values of the parameters is that between the two
ases in Figure 5.1 the fun
tions 2

√
ρdw and 2

√
ρdg remain almost the same, around

0.1 mm/day and 0.03 mm/day respe
tively. This is 
onsistent with the fa
t thatthe asymptoti
 speed of rea
tion-di�usion equations are given by 2
√
ρn′Dn, see
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Red Green

dw 0.273 0.153
dg 0.024 0.014
ρ 0.012 0.0185

Figure 5.1: In the image we show the evolution of two di�erent syntheti
 tumorsvirtually grown using the rea
tion-di�usion model with di�erent parameters. The
ontours of the same 
olor are the tumor delineations for the same tumor in 4di�erent images taken at 4 su

essive time instan
es (T0, T0 + 200,T0 + 300 and
T0 + 400 days after the �rst image). The rea
tion-di�usion model parameters forthese tumors are given in the table. We observe that although the di�usion andproliferation rates of these tumors are di�erent the evolutions are almost the same.The di�eren
e between these evolutions measured using C is 0.644 mm2 whi
his lower than the minimum error we �nd by estimating the parameters using thetraveling time formulation (C = 1.28 for red and C = 1.29 for green). This showsthat we 
annot distinguish between these two parameter sets if we observe either ofthe evolutions. We also observe that the produ
ts dwρ and dgρ are very 
lose forthe two tumors. This tells us that although distinguishing between dw, dg and ρ isnot obvious estimating the produ
t of dw,gρ is possible.Se
tion 4.2.1. Therefore, even though we 
annot estimate the proliferation and thedi�usion rate separately we 
an estimate the speed of evolution in the white and inthe gray matter by �xing the value of ρ.5.1.3 Fixing ρ and the 3 Parameter CaseSin
e estimating all the parameters of the rea
tion-di�usion equation proved itselfto have a non-unique solution (under the given hypotheses) we turn our attentionto the 
ase when we 
an �x a parameter. The proliferation rate ρ is a mi
ros
opi
parameter and its 
oupling with the di�usion rate 
reates the non-uniqueness of thesolution. Here we assume that the value of ρ 
an be estimated using biopsy resultsand mi
ros
opi
 analysis or an average value of ρ 
an be provided as a result of thestaging and grading of the tumor. Therefore, we 
an have a good estimate of ρ and�x it in the parameter estimation problem. In our analysis we assume we know thereal value of ρ and �x it, on
e it is �xed the problem be
omes solvable. In this 
asewe are left with three parameters to estimate (dw, dg) and T0.For ea
h of the syntheti
 tumors previously des
ribed we 
reate a dataset of 3



5.1. RESULTS FOR SYNTHETIC TUMORS 71images, the �rst image taken at the time of dete
tion and two other images takenat 200 and 400 days after the dete
tion 5.2. Using these images and the timedi�eren
e between a
quisitions we estimate the di�usion parameters and T0. Weshow and dis
uss the obtained estimates based on two di�erent analyses. The �rstone is the proximity of the estimated parameters to the real ones and the sensitivitywhi
h tells us if we are able to distinguish between two di�erent tumors with 
loseparameters. The se
ond analysis is about the shape of the minimization surfa
earound the estimated point. The parameter estimation method, as explained in theprevious se
tion, minimizes the obje
tive fun
tion C. The shape of this fun
tionaround its minimum shows us the feasibility of the minimization pro
ess.
(a) (b) (
)Figure 5.2: An example of the syntheti
 dataset 
reated for ea
h virtual tumor forthe theoreti
al analysis of the proposed parameter estimation method. (a) Showsthe 1st image a
quired at the time of dete
tion. The white region is the visible partof the virtual tumor. (b) Shows the 2nd image of this dataset taken 200 days afterthe �rst one. (
) 3rd image of this dataset taken 400 days after the �rst one. Forillustrative purposes we show a fast growing tumor.Analysis of the Estimated ParametersIn Figures 5.3(a) we show the estimated di�usion parameters along with the realones. In order to demonstrate the results, we proje
t the high dimensional param-eter spa
e onto the 2D (dw, dg). The larger markers in the plot represent the realparameters used to grow the syntheti
 tumors and the smaller ones represent theestimated parameters retrieved from the images. Ea
h small marker with a spe
i�
shape and 
olor is the estimate for the larger marker with the same shape and 
olor.Although there is only one estimate for ea
h parameter set dw, dg, ρ there are mul-tiple small markers for ea
h large marker due to proje
ting onto lower dimensionalspa
e. In other words, di�erent small markers of the same shape and 
olor are theestimated parameters of the tumors with di�erent ρ but same dw and dg.Analyzing the Figure 5.3 we observe that the parameter estimation method isable to retrieve the value of dw with good a

ura
y. Moreover, the method is able todistinguish between di�erent tumors with 
lose di�usion 
oe�
ients. The estimationof dg on the other hand seems to be less a

urate. We noti
e the 
onsistent positivebias in the estimate of dg whi
h in
reases with in
reasing dw. We believe there aretwo reasons for this. The �rst one is the di�eren
e between numeri
al s
hemes we
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T0(b)Figure 5.3: The results of the parameter estimation from time series of images for thesyntheti
 tumor experiments. The syntheti
 tumors are grown with the rea
tion-di�usion model with known parameters and syntheti
 images were 
reated fromthese tumors at 3 di�erent time points (at the dete
tion time T0, T0 + 200 days and
T0 + 400 days after the dete
tion). The parameter estimation method was appliedto these images to retrieve the parameters of the model. The plot (a) shows thereal di�usion rates dw and dg (the large markers) and the estimated di�usion rates(the small markers). Small markers of a spe
i�
 shape and 
olor are the estimatesof the larger marker with the same shape and the same 
olor. Figure(b) plots theestimated initial time estimate T0 (the time elapsed between the emergen
e of thetumor and the dete
tion) vs. its real value. y = x line is also drawn for better
omparison.use to solve the rea
tion-di�usion PDE and the traveling time formulation. Thenumeri
al s
heme for the PDE [M
Corquodale 2001℄ uses linear interpolation of the



5.1. RESULTS FOR SYNTHETIC TUMORS 73di�usion tensors between voxels 
reating higher di�usion within the gray matterneighboring white matter. The traveling time formulation, whi
h uses the di�usiontensors on the voxels, a

ounts for this by in
reasing dg therefore estimating ahigher dg. As a result as the value of dw in
reases the bias on dg in
reases. These
ond reason is 
omputing the 
urvature e�e
t term in Equation 4.54 using theimages, where the 
ontour en
losing the tumor delineation has sharp 
orners (dueto dis
retization) whi
h 
auses high 
urvature. Sin
e the high 
urvature slows downthe evolution, the traveling time formulation a

ounts for this by in
reasing thedi�usion 
oe�
ient. This se
ond reason is espe
ially observed for the tumors where
dw is low. Even in the presen
e of this bias we noti
e that for slowly di�usingtumors the dg estimates are very 
lose to the real values and the method is ableto distinguish between di�erent tumors with 
lose di�usion 
oe�
ients. For highlydi�using tumors the dg estimates are rather unreliable however the order of the ratiobetween dw and dg is well 
aptured. Regarding the estimation of T0, in Figure 5.3(b)we plot the estimated value of T0 in the y-axis versus its real value in the x-axiswhere the y = x line is also drawn. Observing this plot we noti
e that the estimatesfor T0 remains within the 10-15% margin of the real value, whi
h shows that theproposed method is able to retrieve T0.Analysis of the Minimization Surfa
eRegarding the shape of the minimization (error) surfa
e on the global s
ale, inour experiments we observed that this surfa
e, whi
h is de�ned by 3 dimensions(dw, dg, T0) namely the parameters we are minimizing for, remains 
onvex for allthe tumors. However, the exa
t shape of the surfa
e and the slope of the surfa
e indi�erent dire
tions around the minimum point varied. We know that the estimatedparameters provide us the best �t to the evolution of the tumor delineation weobserve in a set of images, let us say with an error of C∗. The question we wantto answer is how mu
h this evolution varies from the optimum when we slightlymove away from the �best� parameter set. In order to answer this question, for anestimated parameter set (d∗w, d

∗
g, T

∗
0 ) whi
h gives a minimum error of C∗ we �ndthe other parameter sets whi
h give an error smaller than C∗ + ǫ. In other wordsparameter sets whi
h provides an evolution of the tumor delineation whi
h is ǫ awayfrom the best �t in the average. In our high dimensional parameter spa
e theseparameter sets are en
losed in an ellipsoid around the estimated point whi
h wename ǫ-ellipsoid.Constru
tion of ǫ-EllipsoidsThe parameter estimation problem in this work is formulized as the optimizationproblem with the obje
tive fun
tion C. For a given set of images, the method triesto �nd the parameters of the tumor growth model whi
h would minimize the valueof the fun
tion C. ǫ-ellipsoids is a simple way to understand the shape and thesteepness of the minimization surfa
e around the minimum point. The 
onstru
tionof the ǫ-ellipsoids is as follows. For a given parameter estimation problem let us saythe estimated parameters p∗ 
orresponds to an error value of C∗. As a 
onsequen
e
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C∗ is the minimum of the obje
tive fun
tion C for this problem. We �rst 
onstru
tthe quadrati
 approximation of C around p∗

C = C∗ + g′(p − p∗) +
1

2
(p − p∗)′G(p− p∗), (5.1)where g is the gradient ve
tor and G is the Hessian at p∗. Sin
e p∗ is the minimumwe know that g = 0. Moreover sin
e the point p∗ is the minimum of C the Gis a positive de�nite matrix. The 
onstru
tion of the quadrati
 approximation isdone by sampling the fun
tion C and �tting a quadrati
 fun
tion by least squareminimization.On
e the quadrati
 approximation of C is obtained we de�ne the ǫ-ellipsoid asfollows

P = {p|C(p) = C∗ + ǫ}, (5.2)where the set P is the ǫ-ellipsoid and p is an arbitrary parameter set. Sin
e G is apositive de�nite matrix we are sure that P is a 
losed surfa
e and for all the pointsremaining inside P , C(p) < C∗ + ǫ.Using the ǫ-ellipsoid we en
lose a set of parameters (parameter sets p's) for whi
hea
h parameter set produ
es an evolution of the tumor delineation that is ǫ 
loseto the optimum evolution 
reated by p∗. This means if the ǫ-ellipsoid is big for aproblem then the minimization surfa
e is �atter therefore, it is harder to �nd theminimum point. Moreover, the dire
tions of the semi-major and semi-minor axis ofthe ellipsoid provides us the 
oupling between di�erent parameters.In Figures 5.4(a,b) we show the proje
tions of some of these ǫ-ellipsoids (for
ǫ = 0.1mm2) on the respe
tive parameter spa
es where the round dots are thea
tual parameters, the 
rosses are the estimated parameters and ellipses aroundea
h 
ross are the proje
tions of the ǫ-ellipsoids.Observing Figure 5.4(a) we noti
e that the major axis of the ellipses remainparallel to dg axis however, this is due to the di�eren
e of s
ale between dw axisand the dg axis. When pla
ed on the same s
ale these ellipses are rather 
ir
ular.The se
ond thing we noti
e is that the ellipses grow with in
reasing dw. This is a
onsequen
e of using normalized distan
es between surfa
es in our error measure,see Equation 4.67. As dw in
reases the tumor di�uses faster in the white matterand its size in
reases. As a result the boundaries of the visible tumor rea
hes theextent of the white matter and most of the surfa
e en
losing the tumor delineationin the image remains in the gray matter (as gray matter di�usion is mu
h lower thetumor stops in the white-gray matter boundary) or rea
hes the boundaries of thebrain. Therefore 
hanging dw does not a�e
t these portions of the surfa
e and its
ontribution to the error measure de
reases resulting in the larger ellipses we observe.This shows us that for more di�usive tumors a larger set of parameters yields similarerrors therefore minimization surfa
e is �atter. In Figure 5.4(b) we observe the
oupling between dw and T0. One 
an obtain a similar evolution by in
reasing dwand de
reasing T0 (and vi
e-versa). The reason for this 
an be explained by thee�e
t of 
onvergen
e given in Equation 4.11, see Figure 4.3. We see that when T0 islower the speed of the tumor delineation is slower but if we in
rease the value of thedi�usion we would obtain a similar evolution. The shape of the 
onvergen
e 
urve
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T0(b)Figure 5.4: Figures plot the proje
tions of some of the ǫ-ellipsoids on the respe
tiveparameter spa
es. The round dots are the real parameters of the rea
tion-di�usionmodel, the 
rosses are the estimated parameters and ellipses are the proje
tions ofthe ǫ-ellipsoids for ea
h 
ross. For a given 
ross, the 
ross represents the minimum ofthe respe
tive minimization surfa
e with an error of C∗ and all the points inside theellipse surrounding that 
ross are the parameters who has error less than C∗ + 0.1.In other words ellipses en
lose all the parameters produ
ing very similar evolutionsof the tumor delineation as the 
ross in the 
enter.in Figure 4.3 allows us to distinguish between these di�erent 
ases and therefore�nd a minimum. In Equation 4.11 we also noti
e that if T0 is very high then asmall 
hange in T0 does not a�e
t the speed of the tumor delineation and this isthe reason why we observe ellipsoids with major-axis parallel to the T0 axis at high
T0 values. One 
an think of the extreme 
ase where T0 is very large and the e�e
tof 
onvergen
e be
omes negligible. In this 
ase we would expe
t its value not to
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hange anything however, in
luding the size of the tumor in the �rst image usingthe error term C2 (Equation 4.70) helps us distinguish between very high T0 values.5.1.4 Changing the �xed ρ and Speed of GrowthIn all the above experiments we have �xed the value of ρ to its real value. Naturallythe di�usion rate estimates depend on the value of ρ. Therefore, by �xing ρ wea
tually determine the lo
ation of the dw and dg estimates. In order to understandthe e�e
t of the value of ρ on the estimation of di�usion rates and the 
ouplingbetween ρ and D we have performed a slightly di�erent experiment. Instead of�xing ρ to its real value we have set it to a di�erent value and then estimated theother parameters dw, dg and T0. For the ease of demonstration we only show theestimation results for the syntheti
 tumors with ρ = 0.012/day. The experiment
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(b)Figure 5.5: In the �gures we plot v(w,g) = 2
√
d(w,g)ρ values estimated by �xing

ρ = 0.015 versus ρ = 0.012. We also plot the y = x line for a better 
omparison. Weknow that the estimated dw and dg values depend on where we �x the ρ. However,observing these �gures we note that no matter what value we �x ρ to, the produ
tof ρ and the estimated di�usion 
oe�
ient d(w,g) remains 
onstant. Therefore theasymptoti
 speed of growth of the tumor in the white matter and in the gray matter
an be estimated uniquely.we performed is the same as the one explained in the previous se
tion however, thistime in the estimation method we set ρ = 0.015/day. As expe
ted the estimateddi�usion rates are lower than the values estimated by setting ρ = 0.012/day. Theinteresting point however, was not the 
hange in the values but the 
oupling between
D and ρ. In Figure 5.5(a) we plot vw = 2

√
dwρ 
omputed with ρ = 0.015 and the

dw value estimated by �xing ρ to this value versus v 
omputed using ρ = 0.012and the dw estimated with this ρ. Figure 5.5(b) is the same plot for dg values. Weobserve from these graphs that the estimated di�usion rates 
hange when we 
hangethe �xed ρ however, the produ
t of the proliferation and the di�usion rates remain
onstant. The value v = 2
√
d(w,g)ρ is the asymptoti
 speed of tumor growth and



5.1. RESULTS FOR SYNTHETIC TUMORS 77even though we 
annot estimate the proliferation and the di�usion rates separatelywe are able to estimate v for ea
h tumor regardless of whi
h value we �x ρ to.5.1.5 Redu
ing the Number of Images UsedIn the experiments shown above we have always used 3 su

essive images of the samepatient taken at the time of dete
tion, 200 days after and the last one 400 days afterthe time of dete
tion. In normal 
lini
al routine the number of images does nothave to be the same for ea
h patient. The follow-up 
an be very irregular for somepatients and the intermediate images in time might not be available. In this partwe analyze the e�e
t of the number of images used for parameter estimation on theproposed methodology. In these experiments we estimated the growth parameters
(dw, dg, T0) using only 2 images, one taken at the time of dete
tion and the otherone taken at the end of the study, 400 days after the time of dete
tion. As wehave done in Se
tion 5.1.3, we analyze the estimated parameters and the shape ofthe minimization surfa
e C around the estimated parameters. In Figures 5.6(a)
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T0(b)Figure 5.6: The results of the parameter estimation experiments for the syntheti
tumors using only 2 su

essive images in time. In �gures we show the same pattern asFigures 5.3(a) and (b) but the parameters are estimated using 2 images. Comparingthe estimates obtained using 3 su

essive images in time given in Figures 5.3 andthese Figures we noti
e that the lo
ations of the estimated parameters are nota�e
ted by the de
rease in the number of images.and (b) we show the estimated di�usion 
oe�
ients (dw, dg) and the estimatedinitial time T0. We observe that the lo
ations of the estimated parameters andtheir relations with the real ones are very similar to the 
ase where we have used 3images. Between Figures 5.3(a) and 5.6(a), we observe the same positive bias in thedi�usion 
oe�
ients and the same unreliability of dg estimated when the dw valueis high. The estimation of T0 also shows very similar behavior in Figures 5.3(b)and 5.6(b). Based on these observations we 
on
lude that the estimated parametersare not a�e
ted by redu
ing the number of images used in estimation to 2.On the other hand, the obje
tive fun
tion C 
hanges when the number of images
hanges. Therefore, the lo
al shape of the minimization surfa
e around the estimated
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hange as well. In Figures 5.7(a) and (b) we plot the proje
tions of the ǫ-ellipsoids onto the respe
tive parameter spa
es for some of the estimated parametersets. Comparing Figure 5.7(a) with Figure 5.4(a) we observe that the size of the
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T0(b)Figure 5.7: Figures plot the proje
tions of some of the ǫ-ellipsoids on the respe
tiveparameter spa
es for the experiments using only 2 su

essive images in time. Figuresare drawn the same way as Figures 5.4 (a) and (b). Comparing these Figures withthe ones given in 5.4 we observe that using more images in the estimation gives usa better 
on�den
e on the estimated parameters espe
ially for the di�usion rates.ellipses in the (dg, dw) spa
e are mu
h bigger in the 
ase where we use 2 imagesto estimate the parameters. The un
ertainty on the di�usion 
oe�
ients in
reasedand the reliability of the parameters de
reased. This observation is 
oherent withthe general expe
tation that the more images we use the more reliable estimateswe obtain. When we observe the Figures 5.4(b) and 5.7(b) we noti
e that 
hangingthe number of images also in
reased the size of the ellipses in the T0, dw spa
e butthe 
hange is not big. The reliability of the T0 estimate remained almost the same.From this we understand the most important fa
tor determining the value of T0 isthe size of the tumor in the initial image. This fa
tor was in
luded in the parameterestimation s
heme by using C2 in the Equation 4.70 in Se
tion 4.2.2.5.1.6 Forgetting the Convergen
e E�e
t and T0The last issue we ta
kle in our analysis for syntheti
 tumors is the e�e
t of in
ludingthe time 
onvergen
e and the initial time estimate T0 on the estimated parameters.Spe
i�
ally on the estimated di�usion rates. In this part we set the T0 =∞ and 
on-
entrate on the asymptoti
 behavior of the rea
tion-di�usion model. More pre
iselywe would like to estimate the di�usion 
oe�
ients dw and dg using only the asymp-toti
 speed of the tumor delineation with the formulation given in the Equation 4.13in Se
tion 4.2.1. In Figures 5.8 (a) and (b) we show the estimated (dw, dg) pairs andthe ǫ-ellipsoids for these pairs. These pairs are estimated without using the time
onvergen
e of the speed of the tumor delineation. We observe that the estimateddi�usion rates are mu
h lower than the real values espe
ially for the tumor with highdi�usion rates. When the time 
onvergen
e is not in
luded we over approximate the
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(b)Figure 5.8: The results of the parameter estimation experiments for the syntheti
tumors without in
luding the time 
onvergen
e of the tumor delineation speed and
T0. Figure (a) is plotted the same way as Figure 5.3(a). Comparing the estimatesshown in Figure 5.3(a) and these ones we noti
e that the estimated di�usion ratesare mu
h lower when T0 is not taken into a

ount. This e�e
t is espe
ially strongerfor fast growing tumors. For slowly growing tumors the 
hange in the estimatedparameters is smaller. Comparing the ǫ-ellipsoids given in Figure 5.4(a) and theones given in Figure (b) here we see that the shape of the minimization surfa
e isnot a�e
ted by in
luding the time 
onvergen
e of the speed of growth.speed of the tumor delineation (see Figure 4.3) and therefore in the end we obtainlower estimates for the di�usion rates. For the tumors with lower di�usion rates weobserve that the e�e
t of in
luding the 
onvergen
e is more subtle. This is due tothe fa
t that slow tumors take longer time to grow and their initial T0 values arealready very high therefore repla
ing it with T0 = ∞ does not a�e
t the estimates
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h. The lo
al shape of the minimization surfa
e remains un
hanged as ob-served from the shapes of the ǫ-ellipsoids. Viewing these results we 
on
lude that forall tumors in
luding the 
onvergen
e of speed in time and the initial time estimate
T0 improves the quality of the estimated di�usion rates. On the other hand, thise�e
t is mu
h smaller for the slowly growing tumors whose di�usion rates are lower.5.1.7 Di�erent Tensor Constru
tionAll the results above are based on the model proposed in [Clatz 2005℄ where the tu-mor di�usion tensor D is 
onstru
ted as given in Equation 4.3. In this part we wouldlike to test the parameter estimation algorithm for a di�erent tensor 
onstru
tion.In the 
onstru
tion used above the di�usion tensor D in the white matter is ob-tained by s
aling the water di�usion tensor with the 
oe�
ient dw. In [Clatz 2005℄,using this type of 
onstru
tion the authors have shown high resemblan
e betweenthe simulated tumor growth and the evolution of grade IV gliomas, glioblastomemultiforme. In a very similar model Jbabdi et al. [Jbabdi 2005℄ have proposed touse another tensor 
onstru
tion to des
ribe the evolution of low grade gliomas. Intheir 
onstru
tion they 
reate a more anisotropi
 di�usion tensor D as follows

D(x) =

{
dgI , x ∈ gray matter
V (x) [diag(αe1(x)dw, dg, dg)]V (x)T , x ∈ white matter , (5.3)where V (x) is the eigenve
tor matrix obtained by de
omposing the water di�usiontensor Dwater, e1(x) is the prin
ipal eigenvalue of the same tensor and α here isa normalization fa
tor su
h that highest e1 value in the brain be
omes 1. Thedi�eren
e between this 
onstru
tion and the one given in Equation 4.3 is that inthis one tumor 
ells are assumed to di�use mu
h faster along the �ber and theydi�use very slowly in the transverse dire
tion. In the 
onstru
tion the di�usion ratein the gray matter is used also for this transverse di�usion rate. As a result of su
ha 
onstru
tion the evolution obtained is mu
h more anisotropi
 and 
reates more�spiky� tumors, see Figure 5.9.In order to understand the e�e
t of using a di�erent tensor 
onstru
tion onthe parameter estimation methodology we have run the same set of experiments asexplained above. This time however, the syntheti
 tumors were grown using therea
tion-di�usion model that uses the tensor 
onstru
tion given in Equation 5.3 asproposed in [Jbabdi 2005℄. All the other details of the experiments are exa
tly thesame as the ones des
ribed in Se
tion 5.1.3. The results of these experiments aresummarized in Figure 5.10. We observe that the results are similar to the onesobtained for the previous tensor 
onstru
tion, see Se
tion 5.1.3. The estimatedparameters and the shape of the minimization surfa
es at the estimated parametersare pretty similar with some di�eren
es. Comparing Figures 5.10 with 5.3 and 5.4we noti
e that the parameter estimation method works better for the dg in the
ase presented in this se
tion. This is natural sin
e, in the tensor 
onstru
tiongiven in Equation 5.3 the parameter dg plays a more dominant role and a�e
ts thewhite matter di�usion as well as the gray matter di�usion. As a result it be
omessigni�
ant and easier to estimate. The other di�eren
e we observe is at the extreme
ase where the white matter di�usion is very high and gray matter di�usion is
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(a) (b)Figure 5.9: The evolution of the iso-density 
ontour in time is demonstrated fora syntheti
 tumor 
reated by the tensor 
onstru
tion given in Equation 5.3. Thedetails of the images are exa
tly the same as Figure 4.6. In summary the white 
on-tours show the evolution of the tumor delineation in time and bla
k 
ontours showthe evolution simulated by the traveling time formulation. Comparing this �gurewith the one given in Figure 4.6 we see that the anisotropi
 tensor 
onstru
tion yieldsmore �spiky� and anisotropi
 growth of the tumor. We also see that the travelingtime formulation is quite a

urate in des
ribing the evolution of the tumor delin-eation in this type of syntheti
 tumors as well. Parameters: (dw = 0.25 mm2/day,
dg = 0.01 mm2/day, ρ = 0.012 day−1)
low. This 
ase is observed on the upper left hand 
orner of Figure 5.10(a). Wesee that the di�usion 
oe�
ients, espe
ially the dw is over estimated. The reasonfor this is the e�e
t of 
urvature. When the anisotropy is very high the tumordelineation has a very spiky form and 
ontains lots of very high 
urvature regions.This behavior 
an be seen up to some extent in Figure 5.9. As we have explainedin the previous se
tions the traveling time formulation 
annot 
apture the evolutionof very 
urved tumor delineations with very good a

ura
y. When the 
urvature istoo high the simulated evolution of the tumor delineation is slower than it shouldbe and to a

ount for this gap the parameter estimation method overestimates the
dw and dg. We also observe this e�e
t in the shape of the minimization surfa
e inthe Figure 5.10(
). We see that at the extreme anisotropi
 
ase the minimizationsurfa
e has a very narrow and long valley in the dire
tion of dw. This is 
ausedby the saturation of the 
urvature e�e
t we integrate in our method. When the
urvature is too high we saturate its e�e
t, in other words we saturate the speed ofthe front, therefore, the e�e
t of 
hange in dw is redu
ed in the �nal shape 
ausingthis long and narrow valley.
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T0(d)Figure 5.10: The results of the parameter estimation from time series of imagesfor the syntheti
 tumor experiments using the anisotropi
 tensor 
onstru
tion givenin Equation 5.3. The �gures are plotted the same way as Figures 5.3 and 5.4.Comparing the Figures 5.3 and 5.4 with this one we observe overall the resultsare very similar. The di�eren
es are that in this 
ase the estimation of dg is moresu

essful. However, in the extreme 
ase of very anisotropi
 tumor (upper left 
ornerin Figures(a) and (
)) the parameter estimation method en
ounters problems. Thisis due to the high 
urvature regions obtained in a very anisotropi
 tumor. Veryhigh 
urvatures pose di�
ulties for the traveling time formulation of the tumordelineation as explained in Se
tion 4.2.1.5.2 Preliminary Results with Real CasesThe evaluation of parameter estimation for tumor growth models using real patientimages is not easy be
ause we do not have a

ess to the real values of the param-eters. The real values 
ould be found using mi
ros
opi
 in-vivo analysis however,up to the best of our knowledge su
h a study has not been done yet. In this workwe perform indire
t evaluation for the proposed parameter estimation method usingpatient images. The �rst type of study we explain here is to use the images of apatient to �nd the patient spe
i�
 parameters using the proposed methodology. We



5.2. PRELIMINARY RESULTS WITH REAL CASES 83
ompare the a
tual evolution of the tumor observed in the images with the evolutionobtained using the optimum parameters and the traveling time formulation. Theresemblan
e shows us how well the estimated parameters explain what is observed,Se
tion 5.2.1. In the se
ond type of study, for a given patient dataset, we estimatethe parameters using all but the image taken at the last time point. Then usingthe estimated parameters, we simulate the evolution of the tumor delineation start-ing from the image taken just before the last one for the same number of days asthe time di�eren
e between the last image and the one before it. We then 
om-pare the evolution predi
ted using the estimated parameters and the traveling timeformulation with the one observed in the last image. The 
orrelation between thepredi
tion and the observed delineation provides us with a qualitative evaluation ofthe estimated parameters, Se
tion 5.2.2.Here we impose two strong assumptions. The �rst one is we assume that thevalues of the model parameters remain 
onstant between the images. Consideringtherapy and other e�e
ts on the tumor this assumption is not very realisti
. How-ever, we 
onsider the estimated parameters as the average parameters over timein
luding all the e�e
ts and 
arry on with the analysis. The se
ond point we as-sume is that the �ber stru
ture of the patient will not 
hange in time in the regionsnot enhan
ed as tumor. In other words, the lo
al �ber stru
ture will keep inta
tuntil the visible tumor 
overs them. We do not have to pay attention to the regionsalready 
overed by the tumor sin
e these regions do not a�e
t the further evolutionof the tumor in the traveling time formulation. This assumption on the stabilityof the �ber stru
ture in time is also not realisti
 sin
e due to mass e�e
t of thetumor and the undete
table in�ltration the �ber stru
ture 
hanges. For the sake ofsimpli
ity and 
oheren
e with the available data, here we negle
t this 
hange.As a preliminary step, in this work we use two patient datasets whi
h in
ludeanatomi
al and di�usion tensor MR images. The dataset for the �rst patient, whosu�ers from a high grade glioma (Glioblastoma Multiforme), in
ludes three T1-postgadolinium MR images (with the resolution of 0.5x0.5x6.5 mm3) taken at su

essivetime points. The time interval between the �rst two images is 21 days while thedi�eren
e between the se
ond and the third is 46 days. There also exists the di�usiontensor MR image (with the resolution of 2.5x2.5x2.5 mm3) taken at the se
ond timepoint. The se
ond patient su�ers from a low grade glioma (grade II astro
ytoma)and the dataset for this patient in
ludes T2 �air MR images (with the resolutionof 0.5x0.5x6.5 mm3) taken at 5 su

essive time points and a DT-MRI image (withthe resolution of 2.5x2.5x2.5 mm3) taken at the �rst time point. The time intervalsbetween su

essive images for this patient are as follows: 38 days between the �rsttwo, 82 days between se
ond and third, 90 days between third and fourth and 180days between the fourth and the �fth. The DT-MRI images of the patients are usedto 
onstru
t the di�usion tensor D of the tumor growth model. Sin
e we performall our 
omputations on the anatomi
al image spa
e we register the DT-MRI rigidlyto the anatomi
al image of the same patient. The tensor transformations are takeninto a

ount during this registration to keep the dire
tions of the tensors physi
ally
oherent [Alexander 2001℄. In 
onstru
ting the di�usion tensor D for tumor 
ellswe adapt the models proposed in [Clatz 2005℄ and [Jbabdi 2005℄. Clatz et al. haveproposed the tensor 
onstru
tion as given in Equation 4.3 for the high grade gliomas,
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onstru
tion for the high grade 
ase. On the otherhand, Jbabdi et al. proposed to use the 
onstru
tion given in Equation 5.3 for thelow grade gliomas therefore, we use this type of 
onstru
tion for the low grade 
ase.5.2.1 Fitting the Observed EvolutionIn this part, for both patient 
ases, we �rst estimate the parameters of the rea
tion-di�usion model using all of the patient images. On
e the parameters are estimatedwe simulate the evolution of the tumor delineation between su

essive images. Inother words, we initialize the traveling time formulation using the image taken atthe time tn−1 and simulate its evolution until tn using the estimated parameters.We then 
ompare the evolution observed in the images and the evolution simulatedusing the estimated parameters and the traveling time formulation. In Figures 5.11and 5.12 we show the patient images used in estimation and the results in terms ofthe estimated parameters and also the evolution des
ribed by these parameters. Inboth Figures ea
h row shows the evolution of the tumor in a di�eren
e axial sli
esand in ea
h 
olumn we show the images taken at di�erent time instan
es. In theimages we also show the manual delineation of the tumor in white and the evolutionof the tumor delineation simulated using the estimated parameters in bla
k. Theestimated parameters are given in the a

ompanying tables. Also in Appendix C,in Figures C.1- C.3 and Figures C.4- C.8 we provide additional sli
es (axial) of theimages given in Figures 5.11 and 5.12 respe
tively.In the images of the �rst patient, in Figure 5.11, the tumor showed evolution intwo di�erent regions. In the �rst region seen on the upper left 
orner of the imagesthe tumor has a mu
h larger volume, 
ontains a ne
roti
 
ore and exerts visible masse�e
t. The se
ond region, the region we apply our analysis on, on the other handis newly emerging in the images and it does not exert observable mass e�e
t. Thispart is believed to be a di�used bran
h of the larger region however, no 
onne
tionwas visible in the images most probably due to sli
e spa
ing. We apply our analysisto the newly emerging part be
ause it does not exert a mass e�e
t and it is idealfor our analysis. Following the dis
ussions given in Se
tion 5.1.2 we �x the value of
ρ to be able to estimate the di�usion parameters. The proliferation rate was set at
ρ = 0.05/day, based on the dis
ussions with a neurosurgeon as a value around thesuggested average value in the literature [Swanson 2002a℄. Using the three su

essiveimages and the ρ value we estimate for the di�usion rates, whi
h are given in thetable in Figure 5.11. Observing the 
orrelation between the dark 
ontours andthe manual delineations (white) we note that the traveling time formulation (orthe rea
tion-di�usion model) together with the estimated parameters is in goodagreement with the real evolution of the tumor. The overall shape of the tumor andthe dire
tion of its progression is well 
aptured.For the low grade tumor, based on our dis
ussions with a neurosurgeon, wepi
ked a lower proliferation rate than the one in the previous 
ase sin
e it is a lowergrade tumor (our dis
ussions showed that there should be an order of 10 di�eren
e).This rate was set to ρ = 0.008/day. This 
hoi
e is rather heuristi
 however as wehave shown in Se
tion 5.1.4 the produ
t of the di�usion and the proliferation ratesare rather independent of the spe
i�
 values. Observing Figure 5.12, we see that
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(a) Initial Image (b) 21 days after (
) 67 days after
ρ(set) dw dg0.05 1/day 0.75 mm2/day 0.002 mm2/dayFigure 5.11: The parameter estimation method is applied to the images of a patientsu�ering from a high grade glioma. In 
olumns we show the images taken at di�erenttimes and in rows we illustrate di�erent axial sli
es of the same image. We observethe evolution of the tumor, where the manual delineations are also 
ontoured inwhite. Using these images we estimate the parameters of the rea
tion-di�usionmodel as given in the table. We also show the evolution of the tumor delineationsimulated using the traveling time formulation and the estimated parameters inbla
k. We observe that the simulated evolution well 
aptures the real evolution ofthe tumor visible in the images.

the 
orrelation between the evolution of the tumor delineation simulated with theestimated parameters (in bla
k) and the observed evolution (in white) 
on�rms ourprevious arguments. The dire
tion of the progression and the overall shape is well
aptured using the optimum parameters and the traveling time formulation. Wealso noti
e the di�eren
es between the di�usion rates for the high grade tumor andthe low grade one (although di�erent tensor 
onstru
tions were used for the twotumors). The estimated speed of evolution in the white matter for the high gradeglioma is vw = 0.39 mm/day while for the low grade one it is vw = 0.07 mm/day.We also see a similar di�eren
e for the speeds in the gray matter.
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(a) Initial Image (b) 120 days after (
) 210 days after (d) 390 days after
ρ(set) dw dg0.008 1/day 0.165 mm2/day 0.0005 mm2/dayFigure 5.12: As a se
ond 
ase we applied our methodology to the images of a patientsu�ering from a low grade tumor. The images and the 
ontours are plotted the sameway as the Figure 5.11. Here we also observe that the real evolution of the tumorvisible in the images is well 
aptured by the estimated parameters and the travelingtime formulations.5.2.2 Predi
ting Future Evolution Beyond Observed Image DataIn the se
ond type of experiments with the patient images, we tested if the estimatedparameters 
ombined with the model are able to predi
t the further progression ofthe tumor. As explained, for this purpose we estimate the parameters of the tumorgrowth model using all but the image taken at the last time point. Then we simulate



5.2. PRELIMINARY RESULTS WITH REAL CASES 87the evolution of the tumor delineation in the image taken one before the last usingthe estimated parameters. We run the simulation until the a
quisition time of thelast image and 
ompare this evolution with the visible tumor. In Figures 5.13and 5.14 we show the results of this predi
tion along with the estimated parameters(in the a

ompanying table). The top rows show the axial sli
es of the image takenjust before the last one where the manual delineations are also overlaid in white. Onthe bottom rows we show the sli
es of the image taken at the last time point alongwith the predi
ted (in dark) and the a
tual tumor delineation (in white). As in theprevious se
tion, in Appendix C we show additional sli
es (axial) of the images givenin Figures 5.13 and 5.14 in Figures C.9- C.10 and in Figures C.11- C.12 respe
tively.
(a) The image taken at the time just before the last a
quisition

(b) The last image: Taken 46 days after the one above.
ρ(set) dw dg0.05 1/day 0.66 mm2/day 0.0013 mm2/dayFigure 5.13: Predi
ting the further evolution of the tumor for the high grade 
ase:In the top row we show the image taken one time step before the last image with thetumor manually delineated in white. The bottom row shows the images taken atthe last a
quisition time showing the state of the tumor also delineated in white. Inbla
k we show the state of the tumor delineation predi
ted starting from the imageat the top row using the estimated parameters and the traveling time formulation.As explained in the text, the parameters used for this predi
tion were estimatedusing only the �rst two images in time and not the last one. The overlays of the realand predi
ted tumor boundaries illustrate the degree of agreement of our modelings
heme.In the 
ase of the high grade glioma, Figure 5.13, the predi
ted delineationof the tumor is in good agreement with the a
tual delineation. We observe thatalthough we start simulating the growth from a small tumor, the parameters andthe traveling time formulation 
aptures the rapid progression of the glioma. Thistells us that overall average dynami
s of the evolution are well 
aptured with the



88 CHAPTER 5. PARAMETER ESTIMATION: RESULTSestimated parameters. We see a very similar result for the low grade glioma as well,see Figure 5.14. In this 
ase the tumor already has a large volume at the time westart the simulation. The progression of the tumor is very spiky and it is along thedire
tion of the �ber tra
ts. We observe that the predi
ted tumor delineation alsoshows this behavior illustrating good agreement with the a
tual progression.

(a) The image taken at the time just before the last a
quisition

(b) The last image: Taken 180 days after the one above.
ρ(set) dw dg0.008 1/day 0.20 mm2/day 0.0007 mm2/dayFigure 5.14: Predi
ting the further evolution of the tumor for the low grade 
ase:The images are shown in the same manner as the Figure 5.13. We see that amountof growth and the spiky nature of the evolution of the tumor is well predi
ted.



5.3. CONCLUSIONS 895.3 Con
lusionsIn the previous we proposed and analyzed a parameter estimation methodology forthe rea
tion-di�usion tumor growth models in the 
ontext of brain gliomas. Theproposed methodology formulates the evolution of tumor delineations in the medi
alimages based on the dynami
s of the rea
tion-di�usion model. As a 
onsequen
e,it does not use the information of tumor 
ell density distribution throughout thebrain. In this respe
t the method is 
onsistent with the information available in theimages.We analyzed the proposed algorithm using syntheti
 tumors for whi
h the growthmodel parameters are known. The rea
tion-di�usion model used here in
ludes 3di�erent parameters: the di�usion rate in the gray matter dg, the di�usion rate in thewhite matter dw and the proliferation rate of tumor 
ells ρ. In our analysis we haveshown that these parameters are 
oupled and therefore there is not a unique solution
onstrained by the observations made on medi
al images. However, we have shownthat on
e the proliferation rate ρ is �xed, we 
an uniquely estimate the di�usionrates in gray matter dg and in white matter dw. Moreover, in this 
ase we 
an alsoestimate the time elapsed between the emergen
e of the tumor and its dete
tion,
T0. In �xing ρ we assumed that its value 
an be found through mi
ros
opi
 analysisof biopsy results. We have also shown that the value of ρ determines the estimatesof the other parameters. In that sense �xing ρ means determining the values of theother parameters espe
ially the di�usion rates. Investigating the 
oupling betweendi�usion and the proliferation rate we have shown that no matter what ρ value we�x the produ
t of the estimated di�usion rates with ρ remains 
onstant for the sametumor. Therefore, using the proposed method the speed of growth of the tumor,whi
h is given by the mentioned produ
t, 
an be estimated uniquely for ea
h tumor.In our experiments we analyzed the e�e
t of the number of images used in esti-mating the parameters. We have seen that the di�usion 
oe�
ients and the initialtime estimate T0 
an be estimated (by �xing ρ) using 2 images of the same patienttaken su

essively in time. Using more images does not 
hange the lo
ation of theestimates however it in
reases the reliability of the estimates and our 
on�den
e onthem.We also applied our method to two real 
ases, one high grade glioma and onelow grade. We have estimated parameters for these tumors and performed indire
tevaluations by predi
tion of growth showing promising preliminary results. Thestrongest assumption we made during this analysis was that the parameters of thegrowth model do not 
hange in time and they do not vary in spa
e. This is not veryrealisti
 for the exa
t values of the parameters 
onsidering the existen
e of di�erenttypes of therapies and the random nature of the tumor progression. On the otherhand, independent parameter estimation and analysis 
ould be done between ea
hset of two su

essive images as well. Su
h an analysis 
ombined with the time 
ourseof the therapy 
ould give us hints on the e�e
t of the therapy on di�erent parametersand on the growth speed of the tumor.In the methods proposed in this thesis, as a �rst step, we ignored the mass e�e
tof the tumor. In most glioma 
ases the mass e�e
t is apparent, smaller in the lowgrade gliomas and larger for the higher grades. For a 
omplete modeling in the
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t should be taken into a

ount.Eventually a more thorough analysis of the estimated parameters and the esti-mation methodology should be performed using a large dataset of patient images.In the follow-up of this work we plan to fo
us on this dire
tion. There are sev-eral problems that should be over
ome for this purpose. The �rst problem is thela
k of di�usion tensor imaging for the patients. As we have seen the DTI is veryimportant in the modeling and in the estimation of the parameters therefore, itis 
ru
ial to have this information. The advan
es in the registration methods 
anbe helpful to solve this problem as they would give us the opportunity to registerDT-MRI atlas on the patient images. The se
ond problem is regarding the surgeryapplied in glioma 
ases. The surgery 
hanges the stru
ture of the brain as well asthe properties of the tumor. In order to over
ome this problem, we need to adjustthe traveling time formulation su
h that it 
an des
ribe the evolution of the tumordelineation between pre-op and post-op images.In terms of 
lini
al use, estimated parameters, espe
ially the speed of growthwhi
h 
an be estimated uniquely, 
an serve as a quanti�
ation measure for tumorgrowth and help the diagnosis pro
ess. Moreover, the proposed methodology givesus the opportunity to 
onstru
t patient-spe
i�
 tumor growth models. Throughpersonalizing the generi
 growth models, we 
an des
ribe the spe
i�
 evolution of apatients tumor. Su
h patient-spe
i�
 models 
an be used to better plan the therapypro
ess and predi
t possible out
omes of the therapy administered to the patient.



Chapter 6Extrapolating Glioma Invasion inMR images: Method
Contents6.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . 916.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936.2.1 Tumor Cell Density Extrapolation . . . . . . . . . . . . . 956.2.2 In
luding E�e
ts of the Boundary Condition . . . . . . . 103ContextIn the treatment of brain gliomas, espe
ially in the planning of radiotherapy, medi
alimages su
h as magneti
 resonan
e (MR) and 
omputed tomography (CT) imagesplay a 
ru
ial role. They provide information on the spatial extent of the tumor.However, images 
an only visualize parts of the tumor where 
an
erous 
ells aredense enough, masking the low density in�ltration. In radiotherapy, the approa
htaken to handle this problem is to irradiate the visible tumor plus a 2
m 
onstantmargin around it. This approa
h does not take into a

ount the growth dynami
sof gliomas, parti
ularly the di�erential motility of tumor 
ells in white and in graymatter. In this 
hapter, we propose a novel method for estimating the full extentof the tumor in�ltration starting from its visible mass in the patients' MR images.We derive a formulation starting from the rea
tion-di�usion based tumor growthmodels, explained in the previous 
hapter. By using asymptoti
 properties of thesemodels, we obtain an extrapolation method that 
onstru
ts the tumor 
ell densitydistribution beyond the visible part of the tumor in the images.6.1 Introdu
tionFor the diagnosis and the therapy of gliomas, 
lini
ians rely on medi
al images,su
h as Magneti
 Resonan
e (MR) and Computed Tomography (CT) images, whi
hshow the mass part of the tumor. As explained in Chapter 2, 
urrent imaging te
h-niques are not able to expose the low density in�ltration [Tovi 1994, Johnson 1989,Tra
qui 1995, Swanson 2004℄ posing a problem for the experts in outlining thewhole tumor and in understanding its extent. Figure 6.1(a) is an example of aT2 weighted MR image of a patient with grade IV glioma. The image shows thetwo 
lini
al target volumes (CTV) used in radiotherapy, the bulk tumor (CTV1)91



92 CHAPTER 6. EXTRAPOLATING INVASION: METHODand the tumor in�ltrated edema (CTV2) en
losed in bla
k and white delineationsrespe
tively [Seither 1995℄. Figure 6.1(b) on the other hand, shows the hypothet-i
al tumor pro�le along the white line drawn on the MR image. In radiotherapy,this problem of visualizing low density in�ltration is addressed by outlining theCTV2 and assuming the whole tumor in�ltration is 
ontained within a 
onstantmargin of 2
m around that volume [Seither 1995, Kantor 2001℄. Therefore, the ir-radiation region is 
onstru
ted a

ordingly. This approa
h however, does not takeinto a

ount the in�ltration dynami
s of gliomas, parti
ularly the higher motil-ity of tumor 
ells in white matter 
ompared to gray matter [Giese 1996℄. As aresult, the irradiation region ignoring these dynami
s might not rea
h the full ex-tent of the tumor in�ltration in white matter and irradiate healthy gray matter.Mathemati
al tumor growth models 
an o�er solutions to this problem by inte-grating 
lini
al information and theoreti
al knowledge about tumor 
ell dynam-i
s [Swanson 2002b, Stamatakos 2006a, Stamatakos 2006b℄. Here we des
ribe a newformulation whi
h aims to solve the problem of estimating tumor 
ell density dis-tribution beyond the visible part in an image (low density in�ltration) for gliomas.It uses the anatomi
al MR images and di�usion tensor imaging (DTI) to suggestirradiation margins taking into a

ount the growth dynami
s.

(a) (b)Figure 6.1: (a) T2-weighted MR image showing a high grade glioma. Two 
lini
allyimportant volumes, the bulk tumor (CTV1) and the in�ltrated edema (CTV2) areen
losed in bla
k and white 
ontours, respe
tively. (b) Distribution of tumor 
elldensity is given by the dashed 
urve. T2 weighted MRI signal intensity on the otherhand is given by the solid 
urve. The MR signal does not reveal the presen
e oftumoral 
ells when their density is below a 
ertain threshold.The literature on predi
ting irradiation margins on medi
al images using auto-mati
 methods is rather limited. In [Kaspari 1997℄, Kaspari et al. used arti�
ialneural networks to model statisti
ally the way the radiotherapist 
onstru
ts the ir-radiation margin. In their work they fo
used on predi
ting margins as 
onstru
tedby the radiotherapist not in
luding the growth dynami
s of gliomas. Zizzari et al.started from the same framework and in
luded mathemati
al growth models in their
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tion of the irradiation volume [Zizzari 2004℄. They use their model to predi
tfurther growth of the tumor and then use this predi
tion to 
onstru
t the irradiationmargins through arti�
ial neural networks. However, these works do not fo
us onthe spatial distribution of tumor 
ells at a given time and they do not in
lude thedi�erential motility of glioma 
ells in di�erent tissues.In this 
hapter, we propose a formulation to extrapolate the tumor 
ell densitydistribution of di�usive gliomas beyond their visible mass in MR images taking intoa

ount the growth tenden
ies of the tumor. In the previous 
hapter we have seenthat we 
an personalize rea
tion-di�usion type growth models by estimating theirpatient spe
i�
 parameters. Based on this, to derive our formulation we startedfrom these type of growth models as given in [Clatz 2005, Jbabdi 2005℄. Apply-ing rea
tion-di�usion models to solve the previously mentioned problem poses sev-eral di�
ulties. As we en
ountered in Chapter 4, in order to perform simulations,rea
tion-di�usion models require the knowledge of tumor 
ell densities at everypoint in the brain while in reality only CTV1 and/or CTV2 
ontours are observablein the images. We have seen that this problem 
an be solved using the travelingtime formulation explained in the previous 
hapter. The other problem is that therea
tion-di�usion models des
ribe the time evolution of tumor 
ells, however, theproblem we are ta
kling is stati
, dealing with the distribution of tumor 
ells at asingle time instan
e. As in the previous 
hapter, we use asymptoti
 approximationsto over
ome these di�
ulties and derive a stati
 formulation to solve the problemof estimating low density in�ltration of gliomas in an image. The proposed methodstarts from the delineation of the tumor in the image (manual delineation or au-tomati
 segmentation) and 
onstru
ts an approximation for the tumor 
ell densitydistribution beyond the visible part taking into a

ount the underlying tissue 
hara
-teristi
s by using anatomi
al and di�usion tensor images. With su
h a formulation,we aim to 
onstru
t irradiation margins that would be more e�
ient in targetingtumor 
ells and redu
ing the irradiation of healthy brain tissues.In Se
tion 6.2, we explain the rea
tion-di�usion type models in detail and deriveour formulation. Subsequently, in 
hapter 7 we assess the quality of the approxi-mation 
onstru
ted by the proposed formulation using virtual tumors. In additionto that, we use our formulation to 
onstru
t a variable irradiation margin and 
om-pare it to the 
onventionally used 
onstant irradiation margin in terms of numberof tumor 
ells and volume of healthy tissue targeted in the 
ase of syntheti
 tumors.In Se
tion 7.4 we 
on
lude by summarizing the work with our results and providefuture dire
tions.6.2 MethodIn this se
tion we use asymptoti
 approximations to derive a formulation basedon rea
tion-di�usion models whi
h o�ers a solution to the problem of visualizinglow density in�ltration. In Chapter 4 we have studied some of the asymptoti
properties of rea
tion-di�usion models. We have fo
used our attention on the speedof the tumor delineation. Here we are going study other aspe
ts of the asymptoti
properties and fo
us on the shape of the tumor distribution below a 
ertain density



94 CHAPTER 6. EXTRAPOLATING INVASION: METHODvalue. As in Chapter 4 we assume that the iso-density surfa
e at this density value
orresponds to the tumor delineations observed in the images. Therefore, our fo
usin this se
tion will be on the tumor 
ell distribution beyond the tumor delineationin the images.Before we delve into details let us mathemati
ally formulate the problem wesolve. Rea
tion-di�usion growth models des
ribe the temporal 
hange of tumor
ell densities denoted by u(x, t) at every point in the brain (u 
an also be inferredas the probability of �nding tumor 
ells). In terms of u, the imaging pro
ess ofgliomas 
an be modeled with a simple Heaviside fun
tion as done in the previousworks [Swanson 2002b, Tra
qui 1995℄ and the previous 
hapter:
Im(u(x, t)) =

{
1 if u ≥ u0

0 if u < u0
(6.1)where Im is the imaging fun
tion and u0 is the dete
tion threshold. A dete
tionthreshold u0 is given for CT images in [Tra
qui 1995℄, and based on the 
oheren
e ofobservations obtained from MR images, radiologists assume a similar threshold. Aswe have done in the previous 
hapter, here we use the same threshold as proposedin [Tra
qui 1995℄, u0 = 0.4. In this setting, the problem of extrapolating low densityin�ltration of a tumor, starting from the visible part in the image taken at a timeinstant t = t0 
an be des
ribed as 
onstru
ting an approximation

u(x, t0) ≈ ũ(x) ∀ x ∈ {x|Im(x) = 0}. (6.2)This equation basi
ally states that ũ approximates the a
tual tumor distribution
u at the time instant t0 in the regions where the image is not visualizing the tu-mor. Unlike the rea
tion-di�usion models, whi
h are dynami
 and des
ribe timeevolution of gliomas, the 
onstru
tion of this approximation is a stati
 problem.Moreover, in the 
lini
al situations the value t0, whi
h indi
ates the time elapsedbetween the emergen
e of the tumor and the imaging, is not available. Therefore,the approximation ũ should not depend on t0.In the following se
tions we derive a formulation for 
onstru
ting the approxi-mation ũ whi
h is the proposed solution to the problem of extrapolating low densityin�ltration for gliomas. As in the previous 
hapter we fo
us on the rea
tion-di�usionmodel proposed in [Clatz 2005℄. However, we note that the same formulationsand analysis 
an be 
arried over to other types of rea
tion-di�usion models su
has [Swanson 2002a, Jbabdi 2005℄.

∂u

∂t
= ∇ · (D(x)∇u) + ρu(1− u) (6.3)

D∇u · −→n ∂Ω = 0, (6.4)
D(x) =

{
dgI , x ∈ gray matter
dwDwater , x ∈ white matter. (6.5)We have seen in the previous 
hapter that the parameters of the model dw, dg and

ρ 
an be identi�ed up to some extent for ea
h patient using time series of images. Inthis 
hapter we assume that these parameters are found and we 
ontinue our study



6.2. METHOD 95from there on. However, even if the parameters are not known (the 
ase wherethere is only one image of the patient) the proposed method aims to provide theradiotherapist a tool with whi
h he/she 
an visualize di�erent possible distributionsby playing with the parameters. We also remind that ρ and D of the model 
annotbe identi�ed separately using time series of images 5.1.2. We take into a

ount thisambiguity in our analysis and study its e�e
t.6.2.1 Tumor Cell Density ExtrapolationThe asymptoti
 properties of rea
tion-di�usion equations explained in the previous
hapter help us 
onstru
t the approximation we seek for, ũ(x). We use the existen
eof an asymptoti
 traveling wave to extrapolate the low density in�ltration regionsof di�usive gliomas. We know that the rea
tion-di�usion equations admit travelingwave solutions under homogeneous parameters and in the in�nite 
ylinder. Thismeans that the solution of the equations 
an be given as
u(x, t) = u(n · x− vt) = u(ξ) as t→∞. (6.6)where v is the asymptoti
 speed, ξ = (x ·n−vt) is the moving frame of the travelingwave and n is the dire
tion of motion of the traveling wave. In the previous 
hapterwe have used that the speed of the traveling wave v = 2

√
n′Dn to solve for theparameter estimation problem. In this 
hapter we use the shape of the travelingwave, namely its slope. In order to have an analyti
al des
ription of the asymptoti
shape we fo
us on the in�nite 
ylinder 
ase with homogeneous parameters. As thetumor 
ell density distribution 
onverges to the traveling wave the shape of thedistribution also 
onverges. In Figure 6.2 we show this behavior both for the overalldistribution and the shape of the distribution below u = u0.The analyti
al des
ription of the shape of the asymptoti
 traveling wave 
an beobtained by pla
ing the solution u(ξ) in Equation 6.3. By noti
ing that n is in thedire
tion of ξ and in the in�nite 
ylinder the 
hange of u is only nonzero in the ndire
tion we 
an transform the partial di�erential equation into an ordinary one

Dn

d2u

dξ
2 + 2

√
ρDn

du

dξ
+ ρu(1− u) = 0 (6.7)

Dn = n′Dn, (6.8)where the partial di�erentials be
ome derivatives with respe
t to ξ, also shown inEquation 4.5. The solution for this nonlinear equation does not have an analyti
alform due to the nonlinear rea
tion term ρu(1−u). In this se
tion our aim is to �ndan approximation to the solution of Equation 6.7 without using global linearizationof the nonlinear term. Instead of global linearization, we 
an lo
ally linearize thisterm and obtain analyti
al solutions for lo
al pat
hes. Here, we propose to 
onstru
tthese lo
al solutions and then 
ombine them to obtain the form of the traveling wave.Assume that at a point ξ∗ we know the value of the tumor 
ell density u = u∗ (inthe images this 
orresponds to having the delineation of the tumor and assumingthat it 
orresponds to an iso-density surfa
e). When we linearize the Equation 6.7
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(b)Figure 6.2: (a) The tumor distribution evolving with the 
onstant 
oe�
ientrea
tion-di�usion equation (
ross-se
tion of the tumor 
ell density distribution inthe in�nite 
ylinder) is plotted at di�erent times (non-dimensional). We plot thedistribution at di�erent times on the moving frame ξ. Observe that as time passesthe shape of the distribution 
onverges to an asymptoti
 shape. (b) When we plotthe distribution below u = u0 at di�erent times again we observe the 
onvergen
ebehavior of the shape of the traveling wave.around the point ξ∗, u∗ we get
Dn

d2u

dξ
2 + 2

√
ρDn

du

dξ
+ ρu(1− u∗) = 0. (6.9)Equation 6.9 
an be solved analyti
ally and the solution has the form

uξ
∗(ξ) = Be−λ(1+

√
u∗)ξ +Ae−λ(1−

√
u∗)ξ (6.10)

λ =

√
ρ

Dn

, (6.11)where A and B are integration 
onstants and uξ
∗ is the lo
al solution around ξ

∗.Due to the smooth properties of the rea
tion-di�usion equations this solution 
an beused as an approximation for the solution of Equation 6.7 in a small neighborhoodaround ξ
∗ [Taylor 1996℄. Then using the u values found on the boundary of thisneighborhood one 
an 
onstru
t the approximations for the adja
ent neighborhoodsand 
over the whole domain like this. By 
onstru
ting and 
ombining these lo
alapproximations in a su

essive manner, we re
onstru
t the shape of the travelingwave u(ξ) starting from the known point u(ξ∗) = u∗. This idea is demonstrated inFigure 6.3.In order to obtain the relationship between the two 
onstants A and B we usethe fa
t that u = 0.5, the origin of the moving frame ξ, is an in�e
tion point ofthe traveling wave. Therefore, the se
ond derivative of u at u = 0.5 should be zero.When we impose this to the lo
al solution around u∗ whi
h is 
lose to u = 0.5 we
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4Figure 6.3: The shape of the traveling wave 
an be re
onstru
ted starting fromone known point and building lo
al linear approximations to the rea
tion-di�usionequation with nonlinear rea
tion term. If the known point is u(ξ∗0) = u∗0) then we 
anuse the lo
al linear approximation at this point to �nd the value u(ξ∗1) = u∗1. Thenusing the linear approximation at ξ∗1 we 
an �nd the value u∗2 and the re
onstru
tionpro
ess goes on like this.get

A

B
=

(1 +
√
u∗)2

(1−
√
u∗)2

. (6.12)For values of u∗ 
lose to 0.5 this ratio remains well over 20. The 
ontribution of
Be−λ(1+

√
u∗)ξ is mu
h smaller than the other part. Therefore, we ignore this partof the solution given in Equation 6.10. As a result the lo
al approximation ũξ

∗ ofthe tumor pro�le around u∗ 
an be given as
uξ

∗(x, t) ≈ ũξ
∗(x) = ũξ

∗(ξ) = Ae−λξ(1−
√

u∗) for λ =
√
ρ/Dn. (6.13)We noti
e that the value of the integration 
onstant A depends on the value of ξ.The value of ξ at a point 
orresponds to its distan
e from the in�e
tion point of thetraveling wave, whi
h is at u = 0.5 (see Figure 6.2(a)). From the images however,we 
an observe the regions where tumor 
ell density is greater than u0. Therefore,we do not have a

ess to the value of ξ at a point. For ea
h lo
al approximationthis problem 
an be solved easily. For a point ξ = ξ

∗
+∆ξ we 
an write

ũξ
∗(ξ

∗
+∆ξ) = Ae−λ(1−

√
u∗)(ξ

∗

+∆ξ) (6.14)
= Ae−λ(1−

√
u∗)ξ

∗

e−λ(1−
√

u∗)∆ξ (6.15)
= u∗e−λ(1−

√
u∗)∆ξ, (6.16)where ∆ξ is a small distan
e as we remain 
lose to the point u∗. As a result werepla
e the unknowns A and ξ∗ with the knowns u∗ and ∆ξ. Using ξ variable instead
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al approximation for the form of the tumor pro�le(traveling wave)
ũξ

∗ = u∗e−λ(1−
√

u∗)ξ for λ =
√
ρ/n′Dn. (6.17)We note that in the lo
al neighborhood of (ξ

∗
, u∗) this solution 
an be written asthe integral

ũξ
∗ =

∫ ξ

0
−λ(1−

√
u∗)ũξ

∗dϕ with ũξ
∗(0) = u∗. (6.18)When we take small enough neighborhoods around ea
h u∗, in the limit, we repla
e

u∗ in the integrand with ũξ
∗ . Here we assume that in su
h a small neighborhood

ũξ
∗ values will be 
lose to u∗. Considering the smoothness of the rea
tion-di�usionequations this approximation be
omes valid [Taylor 1996℄. With this approximationthe lo
al solution given by the integral be
omes

ũξ
∗ =

∫ ξ

0
−λ(1−

√
ũξ

∗)ũξ
∗dϕ with ũξ

∗(0) = u∗. (6.19)Combining these lo
al solutions in di�erent neighborhoods using this integral formwe obtain the global approximation for the form of the traveling wave
ũ(x) =

∫ x

0
−λ(1−

√
ũ)ũdξ with ũ(0) = u0, (6.20)

λ =

√
ρ√

n′Dn
,where x is the distan
e of the point x from the known point u = u0. In our 
ontext xis the distan
e from the tumor delineation. We will use this global approximation forour extrapolation formulation. However, just to understand its link to the nonlinearPDE given in Equation 6.7, we look for the nonlinear PDE the solution given inEquation 6.20 solves. For this pla
ing this solution in Equation 6.7 we see that theglobal approximation ũ solves the equation

Dn

d2u

dξ
2 + 2

√
ρDn

du

dξ
+ ρu(1− u) + ρ

u
√
u(1−√u)

2
= 0, (6.21)where the additional nonlinearity ρu√u(1−√u)/2 is the error we make as a resultof the assumptions we have done in the derivation. We noti
e that this additionalnonlinearity remains well below ρu(1−u) for u ∈ [0, 1] On
e we write Equation 6.20we noti
e that the slope of the form of the tumor 
ell density distribution dependson λ =

√
ρ/n′Dn, whi
h is a ratio between the proliferation and the di�usion rate.Remembering from Chapter 4 that the speed of the tumor front v = 2

√
ρn′Dn isrelated to the produ
t of these parameters we have a better insight on the e�e
t ofthe parameters of the model on the evolution of the tumor 
ell distribution. Thesee�e
ts are summarized on the theoreti
al tumor pro�le in Figure 6.4.In Figure 6.5 we plot the asymptoti
 form of the traveling wave and the ap-proximation that re
onstru
ts this traveling wave using Equation 6.20. The approx-imation uses the lo
ation of a single point shown in dark dot in both �gures in
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(a)

 

 

normal

low ρ/D

high ρD

(b)Figure 6.4: The shape and the speed of the hypotheti
al tumor pro�le depends onthe parameters of the rea
tion-di�usion model, D and ρ. The speed of the tumorand how fast it grows depends mainly on the produ
t of the parameters Dρ. Onthe other hand the shape of the pro�le and how far it has in�ltrated into the brainparen
hyma depends on the ratio of these parameters ρ/D. In the �gures we showthese relationships. For simpli�
ation we denote D as a s
alar. (b) In solid line weshow the hypotheti
al density pro�le of a glioma. In dash-dot line we show anotherpro�le with the same ρD produ
t but a lower ρ/D ratio. We see that its in�ltrationis further away. Lastly in the dashed lines we show a tumor pro�le with the same
ρ/D ratio as the solid pro�le but with a higher ρD produ
t. We see that this tumorhas the same pro�le shape but it moves faster.re
onstru
ting the tumor 
ell density distributions. The �t is very a

urate espe-
ially around the point where we start the re
onstru
tion. Sin
e we are interestedin the tumor 
ell density distribution below some threshold u0 = 0.4 we fo
us onthat region. In Figure 6.6 we zoom on this region and the performan
e of the ap-proximation as a fun
tion of time. We plot the shape of the traveling wave (lowdensity regions of the tumor pro�le) re
onstru
ted by Equation 6.20 as a fun
tionof the distan
e from the known point (tumor delineation) along with the real form
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distance [real coordinates](b)Figure 6.5: Figures show the shape of the traveling wave in solid lines and there
onstru
ted approximations using Equation 6.20 in dashed 
urves. (a) We startfrom the point u0 = 0.4 and re
onstru
t the whole pro�le using only the lo
ationof this point. This point is shown in the plot. (b) We do the same thing but thistime we start from u0 = 0.7. We see that the approximation to the shape of thetraveling wave given in Equation 6.20 
an a

urately re
onstru
t the whole shapeof the traveling wave and therefore the hypotheti
al tumor 
ell density distributionin this 
ase.of the traveling wave taken at di�erent time instants for the in�nite 
ylinder 
ase.We observe that this approximation is reasonable for the tails of the pro�le and itgets better as time elapses.The approximation explained above is 
onstru
ted for the 
ase where the 
oef-�
ients of the rea
tion-di�usion equation are 
onstant over the whole domain andthe motion is only in one dire
tion. This is not the 
ase for general media and forthe brain. Moreover, when the tumor front is 
urved its motion would not be inone dire
tion and the solution of the rea
tion-di�usion equation 
annot be given interms of a traveling wave. In order to re
onstru
t the hidden part of the tumor
ell density distribution in MR images we make the following assumptions: withina voxel, the 
oe�
ients are 
onstant and the motion of the front is only in onedire
tion. Based on these assumptions we 
an 
onstru
t the lo
al approximationsgiven in Equation 6.20 in ea
h voxel separately. The 
omputation in ea
h voxeluses the values at its neighbors as it is the 
ase for the re
onstru
tion in the in�nite
ylinder. Using this prin
iple, we sweep the domain starting from the visible partof the tumor and going outwards 
omputing the tumor 
ell density estimate at ea
hvoxel. In this 
onstru
tion the dire
tion of motion and the initial value for ea
hvoxel are de�ned by its adja
ent voxels.Following our assumptions, the integrand in Equation 6.20 
an be written as thegradient relation in 3D,
∂ũ

∂n
= λ(1−

√
ũ)ũ. (6.22)Pla
ing λ in this equation and repla
ing n with ∇ũ/ | ∇ũ |, we obtain the follow-ing stati
 Hamilton-Ja
obi equation that 
onstru
ts the approximation ũ given in
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4 1× 10−4 −0.001 0.001

5 −0.003 −0.005 0.002Figure 6.6: Approximation 
onstru
ted for the low density regions of the tumorpro�le in the in�nite 
ylinder 
ase. All the time and distan
e values are dimension-less. To give an idea, for a high grade glioma ea
h time unit would 
orrespond to60 days and ea
h distan
e unit would 
orrespond to 0.5 
m. The tail approxima-tion 
onstru
ted using Equation 6.20 (solid 
urve) is plotted with the a
tual tailsof the tumor front. The dete
tion for the tumor in the in�nite 
ylinder is assumedto take pla
e when the tumor has grown for 1.5 
m of diameter (the 
orrespondingnon-dimensional unit). We show the low density regions of the at the time of de-te
tion, 1, 2, 3, 4 and 5 time units after the dete
tion, the dashed 
urves from leftto right respe
tively. As time in
reases the solid 
urve approximates the a
tual tailbetter. The asso
iated table shows the di�eren
e in tumor 
ell density between thetail approximation and the a
tual tail at a given day for di�erent lo
ations in themoving frame denoted by the verti
al dashed lines in the �gure.Equation 6.2 at ea
h voxel with the prin
iple shown in Figure 6.3.
√
∇ũ · (D∇ũ)
√
ρũ(1−

√
ũ)

= 1, ũ(Γ) = u0 (6.23)where Γ is the 
ontour around the visible part of the tumor in the image (u >= u0).
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hapter u0 is taken as 0.4 following the assumptions madein [Tra
qui 1995℄.Equation 6.23 has two solutions at ea
h point, one with in
reasing and the otherone with de
reasing ũ. Sin
e the rea
tion-di�usion equation tells us that as we moveaway from the visible 
ontour, the values of ũ will de
rease, for all points we 
hoosethe de
reasing solution. Using Equation 6.23 we start from Γ and sweep the domainmoving outwards as we �nd ũ values for ea
h voxel.The Equation 6.23 is a stati
 Hamilton-Ja
obi equation. Several di�erent nu-meri
al methods have been proposed to solve this kind of equations [Qian 2006,Sethian 2003℄. In this thesis, we adopt a fast mar
hing (FM) based approa
hto solve it whi
h is 
oherent with the sweeping idea we propose to 
onstru
tthe low density in�ltration estimate ũ. The details of the proposed numeri
almethod used is explained in Chapter 8. The original FM method as proposed bySethian and Osher solves the Eikonal equation but does not take into a

ount theanisotropy [Sethian 1999℄. The method we use modi�es the original FM algorithmto in
lude the e�e
t of the anisotropy, Chapter 8. In this way it enjoys the e�
ien
yof the FM method and provides an a

urate solution in the 
ase of high anisotropy.As a result of sweeping the domain outwards starting from the tumor delineation,the 
ontinuity of the 
onstru
ted ũ is ensured. On the other hand, impli
it interpo-lation between di�erent voxels, in other words the pat
hing between planar solutionsin di�erent voxels, depends on the order of the numeri
al s
heme, whi
h is linear inour 
ase. One 
an imagine a se
ond order pat
hing by in
luding the e�e
t of the
urvature in the extrapolation given by Equation 6.23.Algorithm 2 The algorithm for extrapolating tumor 
ell density distribution ig-noring the boundary 
onditions.Inputs: Tumor delineation in the anatomi
al image, DT-MRI of the patient,White-gray matter segmentation, personalized tumor growth parameters for therea
tion-di�usion model (or a parameter set the radiotherapist/radiologist wouldlike to try for visualizing di�erent possible tumor density distributions).- Constru
t the tumor di�usion tensors using the parameters dw, dg, the DT-MRIimage and the white-gray matter segmentation.- Initialize the extrapolation by setting ũ to u0 on the tumor delineation.- Compute ũ value at ea
h voxel whi
h has a neighbor whose ũ value is set usingthe numeri
al method in Chapter 8.- Among the two 
omputed ũ values 
hoose the one that is de
reasing and set itfor that voxel.- Sweep the domain in this respe
t outwards starting from the delineation.Equation 6.23 
onstru
ts the low density in�ltration estimate ũ(x) based on therea
tion-di�usion model (Equation 6.3) in the in�nite domain. However, the totalmodel 
onsists of a no-�ux (Neumann) boundary 
ondition (Equation 6.4) as well,whi
h a�e
ts the distribution of the tumor 
ell density in the brain. In Se
tion 6.2.2we in
lude the e�e
t of the boundary in our extrapolation formulation. Before goinginto details of the boundary 
onditions in Algorithm 2 we summarize the methodexplained in this se
tion through an algorithm.
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luding E�e
ts of the Boundary ConditionThe estimate for low density in�ltration of gliomas as 
onstru
ted by Equation 6.23does not take into a

ount the e�e
ts of the Neumann boundary 
ondition givenin Equation 6.4. This 
ondition states that tumor 
ells trying to pass a
ross theboundary (skull and ventri
les) boun
e ba
k from it and 
ontinue their motionwithin the tissue. Thus, the e�e
ts of the Neumann boundary 
ondition are notonly 
on�ned to the points neighboring the boundary. The 
ondition a�e
ts thetumor 
ell density distribution throughout the brain.Constru
tion in 1DIn order to understand and approximate this e�e
t on the tumor pro�le, we examinethe 1-D linear rea
tion-di�usion equation in
luding a boundary residing at x = 0given as:
ut = duxx + ρu for x ≤ 0 (6.24)

ux|x=0 = 0. (6.25)where d is the s
alar di�usion 
oe�
ient in 1-D. For su
h systems, we 
an use themethod of re�e
tion to 
onstru
t the approximation for the low density parts ofthe tumor in the presen
e of the boundary 
ondition [Strauss 1992℄. The methodof re�e
tion is used to 
onstru
t solutions of linear partial di�erential equationssu
h as the di�usion equation in �nite domains, [Strauss 1992℄. It uses the solutionunder no boundary 
ondition, re�e
ts it with respe
t to the boundary and superposethese two, relying on the linearity of the equation. By adding the re�e
ted solution,the boundary 
ondition (Equation 6.25) is satis�ed and sin
e the problem given byEquations 6.24 and 6.25 has a unique solution, the one 
reated by this method is thesolution. In Figure 6.7(a), we illustrate the method of re�e
tion by solving the 1-Dlinear rea
tion-di�usion equation numeri
ally following the steps of the method.In the 
ase of the nonlinear rea
tion di�usion equation we 
annot superposetwo di�erent solutions of the system. Therefore, in order to apply the methodof re�e
tion we need to have 
ertain assumptions. Let u(1) be a solution of thenonlinear rea
tion-di�usion equation in 1-D and u(2) be its re�e
tion with respe
tto the boundary. Both u's satisfy the nonlinear equation
ut = duxx + ρu(1− u), (6.26)where d is the s
alar di�usion 
oe�
ient. When we superpose the two solutions weget

(u(1) + u(2))t = d(u(1) + u(2))xx

+ ρ(u(1) + u(2))(1− u(1) − u(2)) (6.27)
u

(1)
t + u

(2)
t = du(1)

xx + du(2)
xx

+ ρu(1)(1− u(1)) + ρu(2)(1− u(2))− 2ρu(1)u(2). (6.28)We see that the superposition of the two solutions do not satisfy the equation dueto the nonlinearity. However, in this work we are interested in low values of u sin
e
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(a) (b)Figure 6.7: (a) For linear partial di�erential equations the solution under the Neu-mann boundary 
onditions 
an be 
onstru
ted by removing the boundary and addinga re�e
ted wave on the other side of the boundary. The �gure demonstrates this forthe 1-D rea
tion-di�usion equation under the boundary 
onditions. (b) Figure illus-trates how we use the method of re�e
tion for approximating the boundary e�e
t inthe extrapolation formulation. The a
tual density distribution u is shown in solid
urve and the estimation ũ in the dark dashed one. As suggested by the method ofre�e
tion, ũ is formed by two parts: the no boundary approximation ũnb and the
ũref . The boundary resides at x = 0 and the u = u0 point resides at ξ = 0.we try to extrapolate the tumor 
ell density distribution below some threshold u0.Therefore, the values of u(1) and u(2) are low. Based on this, we assume that

(1− u(1))

u(2)
>> 1 and (1− u(2))

u(1)
>> 1. (6.29)Using this assumption we 
an say that

ρ(1− u(1))u(1) >> ρu(1)u(2) and ρ(1− u(2))u(2) >> ρu(1)u(2). (6.30)Hen
e, we assume that the superposition of two solutions satisfy the nonlinearrea
tion-di�usion equation for low values of u.In Se
tion 6.2.1 we have seen that we 
an re
onstru
t the shape of travelingwave solutions of nonlinear rea
tion-di�usion equations by lo
al approximations andintegrating over them. This re
onstru
tion was done in the in�nite domain. In the�nite domain, we 
an 
onstru
t ũ using the idea of superposing two di�erent partsso that it takes into a

ount the e�e
t of the boundary 
onditions. Without loss ofgenerality let us assume that we know the value of u at x0 su
h that u(x0) = u0 (inthe 
ontext of the tumor delineation the value x0 is the lo
ation of the delineationand the value u0 is the imaging threshold.), see Figure 6.7. In order to 
onstru
tthe shape of the solution of Equation 6.26 starting from x0 in
luding the e�e
tof the boundary we superpose two approximations ũnb and ũref . Ea
h of these



6.2. METHOD 105approximations have the integral form like the one given in Equation 6.20:
ũnb(x) =

∫ x

0
−λ(1−

√
ũnb)ũnbdξ with ũnb(ξ = 0) = unb (6.31)

ũref (x) =

∫ x

0
−λ(1−

√
ũref )ũrefdξ̂ with ũref (ξ̂ = 0) = uref , (6.32)where ξ̂ is the moving frame traveling at the same speed but in the opposite dire
tionas ξ. Moreover, the point ξ = 0 is the lo
ation of the tumor delineation whilethe point ξ̂ = 0 is the boundary, see Figure 6.8. The approximation ũ 
onsists

x

ξ ξ̂

Boundary
Tumor
Delineation

Figure 6.8: The two parts of the approximation ũ have di�erent 
oordinate systemsas given in Equations 6.31 and 6.32. The two moving frames ξ and ξ̂ have oppositedire
tions and di�erent origins. The ξ = 0 
orresponds to the tumor delineationwhile ξ̂ 
orresponds to the boundary.of a part that is 
onstru
ted by ignoring the boundary 
ondition, ũnb, and there�e
tion of this part on the boundary, ũref , as demonstrated in Figure 6.7(b).The re�e
tion ũref de
reases in the opposite dire
tion of ũnb in order to satisfythe no-�ux boundary 
ondition and this is represented by the relation between thevariables ξ̂ and ξ su
h that dξ̂/dξ = −1. The initial 
onditions unb and uref areused to �t the approximation to the observation and also to the boundary 
ondition.Under this setting, 
onstru
ting the low density in�ltration estimation ũ 
orrespondsto �nding the values for the 
oe�
ients. On
e the 
oe�
ients are found, at anylo
ation the superposition of these solutions gives us the �nal form of the solutionof Equation 6.26 in
luding the e�e
t of the boundary,
ũ(x) = ũnb(x) + ũref (x). (6.33)There are two 
riteria whi
h determine the 
oe�
ients unb and uref . The �rstone is the no-�ux boundary 
ondition

d

dx
ũ|x=0 = [

d

dx
ũnb +

d

dx
ũref ]x=0 = 0. (6.34)It provides us the relation between the 
oe�
ients. Using the fa
t that the two partsare going in opposite dire
tions (dξ̂/dξ = −1) we see that Equation 6.34 gives us

d

dx
ũ|x=0 = λ(1−

√
ũnb)ũnb|x=0 − λ(1−√uref )uref = 0, (6.35)
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al
ulus. This suggests that on
e we
onstru
t the ũnb by ignoring the boundary, we 
an �nd the re�e
tion part ũrefbased on the value of ũnb on the boundary su
h that the no-�ux boundary 
onditionwill be satis�ed. However, this relation is a 4th order polynomial and solving su
hpolynomials is 
ostly espe
ially if we 
onsider that we will solve this equation formany di�erent points on a 3D boundary. This will be
ome 
learer when we 
onsiderthe higher dimension in the next se
tion. In order to have a simpler form we makethe approximation
(1−√uref )uref

(1−√ũnb)ũnb|x=0
≈ uref

ũnb|x=0
, (6.36)whi
h is very 
lose for low values of u. As a result of this approximation we obtaina simpler relation to �nd uref value:

uref = ũnb(x = 0). (6.37)The se
ond 
riterion is the �delity of the approximation to the observation. Sin
ewe observe the lo
ation of the u = u0 point (iso-density 
ontour), the approximationshould be 
oherent with this observation. Using the ξ variable as in the previousse
tion to represent the lo
ation of u = u0 point, we 
an write this 
riterion as
ũ|ξ=0 = [ũnb + ũref ]ξ=0 = u0. (6.38)This relation basi
ally states that when we add the two parts of the approximationthe lo
ation of the ũ = u0 should mat
h the u = u0 point. While the boundary
ondition gives the relation between the 
oe�
ients, Equation 6.38 provides us thenumeri
al values for them.Algorithm 3 The iterative algorithm for �nding the e�e
t of Neumann boundary
onditions on the low density in�ltration.Initialize the extrapolation: unb

0 = u0repeat
uref

i = ũi
nb|x=0 for i ≥ 1
onstru
t ũi

ref

unb
i+1 = u0 − ũi

ref |ξ=0 for i ≥ 1until both 
riteria are satis�ed with enough a

ura
y.We use an iterative s
heme to �nd the 
oe�
ients ũnb and ũref that satis�es thetwo 
riteria explained above. The s
heme starts from the approximation 
onstru
tedfor the in�nite domain in Se
tion 6.2.1 setting it as the initial ũnb. At ea
h iterationwe 
onstru
t ũnb, determine uref using the boundary 
ondition, 
onstru
t ũref andupdate unb a

ording to the �delity 
riterion. The pseudo
ode for this s
heme isgiven in Algorithm 3. This iterative pro
ess is demonstrated in Figure 6.9 wherethe approximation at the beginning of the iterations (ũ0) and at the end of the 2nditeration (ũ2 = ũ) are shown.
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Figure 6.9: The �gure illustrates the iterative pro
ess to �nd the 
oe�
ients unband uref . In order to approximate the a
tual pro�le (solid 
urve) ũi
nb and ũi

ref are
onstru
ted iteratively to satisfy the boundary 
ondition given in Equation 6.34 andthe �delity 
riteria given in Equation 6.38.
Constru
tion in higher dimensionsWhen applying the e�e
t of the no-�ux boundary 
ondition on the low densityextrapolation in 3-D (2-D) we use the same prin
iples as we developed for the 1-D
ase. The boundary, whi
h is a point in the 1-D 
ase, be
omes a surfa
e (
ontour)
∂Ω in 3-D from whi
h the tumor 
ells boun
e ba
k in the dynami
 formulationof rea
tion-di�usion models. Hen
e, every point on the boundary will a
t as are�e
tor of tumor 
ells. In order to derive the appropriate relations for the lowdensity in�ltration estimation ũ in 3D, let us assume that we have a homogeneousand anisotropi
 media 
hara
terized by the di�usion tensor D and we have a planarvisible tumor front with the normal n. ũ is 
onstru
ted again as the sum of twodi�erent parts as:

ũ = ũnb + ũref ,

ũnb(x) =

∫ x

0
−λnb(1−

√
ũnb)ũnbdξ with ũnb(0) = unb

ũref (x) =

∫ x

0
−λref (1−

√
ũref )ũrefdξ̂ with ũref (0) = uref
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λnb =

√
ρ

nTDn
,

λref =

√
ρ

nΩ
TDnΩ

,

ξ = nTx− ct,
ξ̂ = nΩ

Tx− ct,where n is the gradient dire
tion of ũnb, nΩ is the normal to the boundary whi
h by
onstru
tion 
oin
ides with the gradient dire
tion of ũref at the boundary and x isthe distan
e of point x to the tumor delineation. Noti
e that due to the anisotropi
di�usion tensor λnb and λref di�er. By 
onvention we 
hoose nΩ to be pointingtowards the brain, i.e. nT
Ωn < 0. We 
onstru
t ũnb in the same manner as explainedin Se
tion 6.2.1. On
e it is 
onstru
ted, ũref is the only unknown in this settingand we set it so to satisfy the boundary 
ondition whi
h is given as:

nT
ΩD∇u|Ω = 0, (6.39)stating that the 
omponent of the �ux of tumor 
ells orthogonal to the boundaryshould be 0. The approximation ũ should follow this 
ondition as well.To 
onstru
t ũref , we need to �nd the relation between ũnb and ũref at ea
hboundary point separately sin
e every point a
ts as a 
ell re�e
tor. At the point pon the boundary, in order to satisfy the boundary 
ondition we should satisfy

nT
ΩD(∇ũnb +∇ũref )|p. (6.40)Pla
ing the de�nitions of ũnb and ũref , for ũ we obtain

ũ =

∫ x

0
−λnb(1−

√
ũnb)ũnbdξ +

∫ x

0
−λref (1−

√
ũref )ũrefdξ̂. (6.41)Using the fundamental theorem of 
al
ulus we 
an 
ompute the gradient of ũ at p

∇ũ|p = −λnb(1−
√
ũnb)ũnb|pn− λref (1−√uref )uref |pnΩ. (6.42)For
ing the boundary 
ondition given in Equation 6.39 we obtain the relation weare looking for the points on the boundary

(1 −
√

uref (x))uref (x) = (6.43)
− nT

ΩDn
√

nTDn

√
nT

ΩDnΩ

(1−
√
ũnb(x))ũnb(x), for x ∈ ∂Ω.Therefore, for ea
h point on the boundary we 
an �nd uref by solving the 4thorder polynomial given by the Equation above. As we have explained during the
onstru
tion of the 1D solution this is 
ostly therefore we apply the approximationwe have introdu
ed in Equation 6.36. In higher dimensions this approximationbe
omes

(1−
√

uref (x))uref (x)

(1−
√
ũnb(x))ũnb(x)

≈ uref (x)

ũnb(x)
. (6.44)
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uref (x) = − nT

ΩDn
√

nTDn

√
nT

ΩDnΩ

ũnb(x), for x ∈ ∂Ω. (6.45)As done in the previous se
tion, the 
onstru
tion of the approximation ũ asexplained above assumes homogeneous media and planar tumor front. However,these assumptions do not hold in the 
ase of MR images of gliomas. To ta
klethis, we follow the same voxel based assumptions we made in Se
tion 6.2.1 statingthat the assumptions about the media and the shape of the tumor front holds truewithin a voxel. To repeat, we assume that within a single voxel, 
oe�
ients ofthe tumor growth model are 
onstant and the tumor pro�le is not 
urved. Under
(a) (b) (
) (d)Figure 6.10: The 2-D example shown in the �gures demonstrate the two parts ofthe estimation ũ and the e�e
t of in
luding the boundary re�e
tion. The stripedregions are set to be the boundaries with the Neumann boundary 
ondition. (a)Theresult of the rea
tion-di�usion equation for the low density region 0.002 ≤ u ≤ 0.08shows the a
tual iso-density 
ontours. (b) The no boundary part of the low densityregion extrapolation ũnb. (
) The re�e
tion part ũref . (d) The iso-density 
ontoursof the superposition: Low density region estimation ũ.these assumptions, we use the fa
t that ũnb and ũref satisfy the anisotropi
 Eikonalequations

√
∇ũnb · (D∇ũnb)√
ρũnb(1−

√
ũnb)

= 1, ũnb(Γ) = unb(Γ), (6.46)
√
∇ũref · (D∇ũref )
√
ρũref (1−

√
ũref )

= 1, ũref (∂Ω) = uref (∂Ω), (6.47)where unb is a fun
tion on the initial 
ontour around the visible tumor just as urefis on the boundary. This allows us to apply the same 
onstru
tion method as wedid in the previous se
tion on
e the 
oe�
ients unb and uref are set.As a result of the in
rease in dimension, the �delity 
riterion is now de�ned overthe visible part of the tumor, Γ, whi
h represents the u = u0 iso-density surfa
e,and 
an be written as
ũ(Γ) = ũnb(Γ) + ũref (Γ) = u0. (6.48)
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heme 
an be 
arried over to the general higher dimensional
ase by de�ning the update s
heme on the surfa
es Γ and ∂Ω. Figure 6.10, for asimple 2-D example, shows the low density in�ltration regions 
omputed by solvingthe rea
tion-di�usion equation and the two parts of the estimation ũ along with itself(a,b,
 and d respe
tively). We observe that the e�e
t of the Neumann boundary
ondition is well 
aptured by adapting the method of re�e
tion in the low densityin�ltration extrapolation. The algorithm summarizing the overall method explainedin this 
hapter is given in Algorithm 4.Algorithm 4 The algorithm for extrapolating the low density in�ltration of gliomas.Inputs: Tumor delineation in the image (MR,CT,...), DT-MRI of the pa-tient, White-gray matter segmentation, personalized growth parameters for therea
tion-di�usion model (see Chapter 4)- Constru
t the tumor di�usion tensors using the parameters dw, dg, the DT-MRIimage and the white-gray matter segmentation.- Initialize the extrapolation by setting ũ to u0 on the delineation.repeat- Constru
t the extrapolation ũnb ignoring the boundaries by solving Equa-tion 6.46, see Se
tion 6.2.1. This equation is solved using the anisotropi
 Fastmar
hing method explained in Chapter 8.- Compute the re�e
tion from the boundary by Equation 6.45 and 
ompute ũrefusing Equation 6.47.- Che
k the �delity 
riterion given in Equation 6.48.- Update the value of ũ on the tumor delineation as explained in Algorithm 3.until Fidelity 
riterion given in Equation 6.48 is satis�ed with enough a

ura
y.



Chapter 7Extrapolating Glioma Invasion inMR images: Results
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lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 124ContextIn the previous 
hapter we have presented the extrapolation formulation for 
on-stru
ting the low density in�ltration estimation of gliomas ũ to o�er a solution to theproblem of limited tumor density visualization of medi
al images. We started fromthe rea
tion-di�usion growth models for gliomas and derived the proposed solutionusing their asymptoti
 behaviors. This 
hapter is devoted to the experiments andthe analysis of the extrapolation tool. We �rst analyze the tool by evaluating itsquality in extrapolation. Following that we devise syntheti
 irradiation experimentsand show the potential bene�ts of the proposed tool in de�ning irradiation margins.7.1 ExperimentsIn this 
hapter, we assess the quality of the extrapolation method and the 
on-stru
ted estimation ũ using syntheti
 tumors simulated by the rea
tion-di�usiongrowth model given in Equations 6.3, 6.4, 6.5. For these syntheti
 
ases, �rst we
ompare the a
tual tumor 
ell density distribution beyond the visible mass in theimage with the estimation ũ 
onstru
ted by the proposed method. In the se
ondpart we propose a method to tailor irradiation margins based on the estimated lowdensity in�ltration. We 
ompare these irradiation margins with the 
onventionallyused 
onstant one through geometri
 
omparisons. These 
omparisons in
lude thenumber of tumor 
ells not targeted and the volume of healthy tissue set to beirradiated.In both of the experiments shown in this 
hapter, we perform our analysis onthe syntheti
 dataset 
reated in the Chapter 4. Here we brie�y review the dataset,for more details please refer to Se
tion 5. In order to 
reate this dataset we usedMR images taken from a healthy subje
t 
onsisting of T1 weighted, T2 weighted111



112 CHAPTER 7. EXTRAPOLATING INVASION: RESULTSand di�usion tensor images (DTI) with the resolution of 1mm × 1mm × 2.6mm.Using the rea
tion-di�usion model explained in Se
tion 6.2 we simulated the growthof 180 di�erent syntheti
 tumors in three di�erent lo
ations and with 60 di�erentparameter sets. In this 
hapter, for 
larity we show the results for 10 of thesetumors with 5 di�erent parameter sets and 2 di�erent lo
ations. The lo
ations ofthe tumor seeds are one in the frontal lobe and the other one in the parietal lobeas shown in Figures 7.1. We have 
hosen these two lo
ations with di�erent tissue
ompositions to test the e�e
t of tissue heterogeneity in our experiments. Thedi�eren
e between the tumors at the same lo
ation is obtained by using di�erentgrowth parameters (di�usion 
oe�
ients and proliferation rates). These parametersets used to grow the syntheti
 tumors using the rea
tion-di�usion model are givenin the table in Figure 7.1 under the 
olumn �Real Parameters�. As explained inthe previous 
hapter ea
h tumor was grown using the rea
tion-di�usion model. Forea
h tumor the dete
tion and the �rst image a
quisition take pla
e when the visibletumor rea
hes the size of 1.5
m in diameter. After the dete
tion a syntheti
 imageis 
reated every 50 days using the image fun
tion Im given in Equation 6.1. Theseimages are then used as the inputs to our extrapolation method to estimate theirlow density in�ltration distribution.The extrapolation methodology proposed in this 
hapter assumes that the tumorgrowth parameters for the rea
tion-di�usion model D and ρ are known. These pa-rameters are not available 
lini
ally however, in the previous 
hapter we have shownthat we 
an estimate these parameters from time series of images under 
ertain 
on-ditions. Therefore, here instead of using the real parameters of the rea
tion-di�usionmodel we �nd it more appropriate to use the estimated ones. In the experimentspresented here we use the parameters estimated in the previous 
hapter for extrap-olating the tumor 
ell density distribution beyond the visible part for the syntheti
tumors. The estimated parameters for di�erent tumors are given in the table inFigure 7.1 under the 
olumn �Estimated Parameters�. By using the estimated pa-rameters we simulate a 
lini
al situation where �rst we estimate the parametersusing numerous images and then use the estimated parameters to extrapolate thein�ltration of the glioma in an image.The 
omputation time to run the extrapolation method in the 
reated imagesdepends on di�erent fa
tors su
h as u0 (whi
h is in our 
ase u0 = 0.4), the �nal valueup to whi
h we will extrapolate, the parameters (D and ρ), the lo
ation of the tumorand the desired a

ura
y of the iterative method for in
luding boundary 
onditions.As an example, in our simulations it took around 5 minutes to extrapolate the lowdensity distribution of the tumor at the frontal lobe with median di�usion rate,starting from u0 = 0.4 to u = 0.00001 with a very high a

ura
y using a 4Gbmemory 2.26GHz 
omputer.7.2 Assessing the Estimation QualityThe proposed extrapolation method 
onstru
ts an estimate for the tumor 
ell dis-tribution of gliomas beyond their visible part in the image. This 
onstru
tion usesthe visible part of the tumor and the anatomi
al information based on the rea
tion-



7.2. ASSESSING THE ESTIMATION QUALITY 113

(a) Frontal Lobe (b) Parietal LobeReal Parameters Estimated Parametersname dw
mm2

day

dg
mm2

day

ρ 1
day dw dg ρmedian 0.25 0.01 0.012 0.27 0.024 0.012high

dw,g/ρ
0.5 0.025 0.009 0.53 0.066 0.009low dw,g/ρ 0.1 0.005 0.024 0.116 0.009 0.024loweranisotropy 0.1 0.025 0.012 0.115 0.035 0.012higheranisotropy 0.5 0.005 0.012 0.507 0.021 0.012Figure 7.1: Figures (a),(b): Di�erent initializations of the syntheti
 tumors areshown. Table: Di�erent di�usion and proliferation rates used for the simulations.10 di�erent tumors are 
reated with these 5 set of parameters in the lo
ations givenin Figures (a) and (b).di�usion growth models. The �rst step we take in assessing the method is to 
omparethe a
tual low density tumor 
ell distribution with the estimated one for syntheti
tumors 
reated using the rea
tion-di�usion model. Starting from the 10 syntheti
tumors explained above, we extrapolate the 
orresponding tumors low density in-�ltration regions (tails) and 
ompare the extrapolated part with the a
tual densitydistribution, see Figure 7.2.In order to quantitatively 
ompare the spatial resemblan
e of the a
tual den-sity distribution of the syntheti
 tumors beyond their visible part and the densitydistribution extrapolated using the images we 
ompute the distan
e between their
orresponding iso-density 
ontours. For the density value v and for the image taken
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(a) Simulated tumor density distribution - Rea
tion-Di�usion Model
(b) Tumor density extrapolated from the visible boundary of the tu-mor u0 = 0.4 - Re
onstru
ted in�ltration

(
) Comparison of iso-density 
ontoursFigure 7.2: Example of an extrapolated image for a syntheti
 tumor (the mediantumor in the frontal lobe shown in Figure 7.1). (a) The image (u0 = 0.4) 
reated fora syntheti
 tumor is shown, where the white region is the visible part in the images.The low density in�ltration, whi
h is normally not visible in the image, is also shownin 
olor from yellow (high density) to red (low density). (b) The extrapolated lowdensity in�ltration 
omputed by our method starting from the visible part of thetumor (
) Several iso-density 
ontours of the originally simulated tumor distribution(red solid) and the 
orresponding ones of the extrapolated distribution (white solid)are shown for 
omparison. We observe that the global resemblan
e between thedistribution of the syntheti
 tumor and the extrapolated one is very high.
t days after the dete
tion we de�ne the error measure ǫv(t).

ǫv(t) =
1

2
[dist(Γv

1,Γ
v
2) + dist(Γv

2,Γ
v
1)] (7.1)

Γv
1 = {x|u(x, t) = v}

Γv
2 = {x|ũ(x) = v}

dist(A,B) =
1

♯A

∑

a∈A

distmin(a,B),



7.2. ASSESSING THE ESTIMATION QUALITY 115where distmin(a,B) is the minimum Eu
lidean distan
e between point a and the set
B, v is a density value for whi
h the iso-density surfa
es of u and ũ are extra
tedand ũ is extrapolated based on the image taken at time t. Using this the totalresemblan
e error between two distributions at a given image taken t days after thedete
tion is de�ned as:

ǫ(t) =
1

V
∑

v∈V

ǫv(t), (7.2)where V is the set of density values spanning the low density region. We have16 iso-density values in the set V with the minimum vmin = 0.005, whi
h arelogarithmi
ally spa
ed to ensure that the 
orresponding iso-density 
ontours willbe equally spa
ed (due to the exponential drop of the front pro�le). This globalerror 
riterion ǫ(t) is the average over di�erent values and provides a global spatialresemblan
e measure.In Figures 7.3(a) and (b) we plot ǫ(t) for di�erent time instan
es showing theresemblan
e between estimated and the a
tual tumor 
ell density distributions. Tobetter understand the quality of the extrapolation method for di�erent parameters,we plot the error measure for tumors with di�erent di�usion and proliferation ratesand for tumors at di�erent lo
ations (one at a region with heterogeneous tissue typeand the other at a region with homogeneous tissue type). In Figures 7.4(a) and (b)we show ǫv(t) at t = 200 days after the dete
tion for di�erent v values to show the
hange of the error measure with respe
t to the iso-density 
ontour value.Observing Figures 7.3 and 7.4 we noti
e that the di�eren
e between the two pro-�les remains within the range of [0, ..., 1.5] mm, whi
h tells us that the extrapolateddistribution remains within 1 to 2 voxel distan
e from the a
tual one (voxel size is
1×1×2.6 mm3). Analyzing the 
hange of this di�eren
e with respe
t to several pa-rameters, we 
an state the followings about the quality of the extrapolation methodin approximating the low density parts of a rea
tion-di�usion pro
ess:- The average distan
e between the two distributions remains less than 1.0 mmfor all 
ases. The worst 
ase error is rea
hed at day 300 however, the di�eren
eis not signi�
ant.- When the ratio between di�usion of tumor 
ells and the proliferation rate (d/ρ)is low, the dis
repan
y between the extrapolated distribution and the real oneis lower. When this ratio is higher the error seems to be higher. The reasonfor this is that as the dispersion of tumor 
ells is faster the tumor 
ell densitydistribution 
overs a larger spa
e. Extrapolating a larger spa
e brings highererror be
ause as we go further away from the tumor delineation we a

umulateerrors. Therefore, the di�eren
e between the two distributions rises. Moreover,we estimate the tumor 
ell distribution 
reated by a rea
tion-di�usion pro
esswith a 
onve
tion one. As the pro
ess is dominated by di�usion the e�e
t ofthe 
urvature on the pro�le in
reases and raises the dis
repan
y.- When the anisotropy 
oe�
ient dw/dg is lower the extrapolation is 
loser tothe a
tual distribution. The reason for this is that as the 
onve
tion pro
essestimates well the spheri
al growth. When there is anisotropy, the growthdiverges from spheri
al growth and the dynami
s of di�usion be
omes more
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(a) homogeneous tissue region

(b) heterogeneous tissue regionFigure 7.3: Figures demonstrate the global di�eren
e between the a
tual and theestimated tumor 
ell density distributions beyond the visible mass of the tumor atdi�erent time instan
es. Figures (a)-(b): The global resemblan
e metri
 ǫ(t) andits 
hange in time for 10 di�erent tumors with di�erent di�usion and proliferationrates and at 2 di�erent lo
ations are demonstrated. The mean global di�eren
ebetween two distributions remain within 1 voxel, smaller than 1.0 mm for all 
ases.(Red: high dw,g/ρ, Blue: low dw,g/ρ, Bla
k: median, Green: lower anisotropy, Cyan:higher anisotropy.)important. Therefore, the error we make by estimating di�usion by 
onve
tionbe
omes more apparent.- ǫv(t) in
reases as v de
reases suggesting that the di�eren
e between the extrap-olated and the a
tual distribution in
reases as we move away from the visiblepart of the tumor. This is due to our 
onstru
tion of the extrapolation as anintegral solution whi
h 
auses an a

umulation of errors. However, the mean
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(a) homogeneous tissue region

(b) heterogeneous tissue regionFigure 7.4: The di�eren
es between the 
orresponding iso-density 
ontours of thea
tual and the estimated low density in�ltration regions for di�erent density valuesfor the image taken 200 days after dete
tion are shown. Figures (a)-(b) For the10 tumors, ǫv(200) is plotted for di�erent iso-density 
ontour values v. The valuesshow that the error of approximation at di�erent iso-density values remain within a1 to 2 voxels, smaller than 1.5mm in all 
ases. (Red: high dw,g/ρ, Blue: low dw,g/ρ,Bla
k: median, Green: lower anisotropy, Cyan: higher anisotropy.)error in this 
ase remains below 1.5 mm for all 
ases, whi
h 
orresponds to1.5 voxels.- Although we see some di�eren
e between the ǫ(t) and ǫv(t) plots for the tu-mors pla
ed in di�erent lo
ations of the brain, it is not signi�
ant to draw a
on
lusion about the e�e
t of the tissue 
omposition on our formulation.



118 CHAPTER 7. EXTRAPOLATING INVASION: RESULTS7.3 Comparing Irradiation MarginsRadiotherapy has an important role in treating invasive brain tumors as a spatialtreatment. The target irradiation region is 
onstru
ted based on the tumor geometryvisible in medi
al images. It 
ontains the visible tumor plus a 
onstant marginaround the delineation to deal with the low 
ell density in�ltration of the tumor notvisible in images. This 
onstant margin approa
h does not take into a

ount thegrowth tenden
ies of the tumor, parti
ularly the di�erential motility of tumor 
ellsin the white and the gray matters.The method to extrapolate the tumor 
ell density distribution beyond the visiblepart of gliomas proposed in this work gives us the opportunity to tailor the irradia-tion region based on the growth dynami
s 
aptured by the rea
tion-di�usion models.In order to demonstrate this, in this se
tion we 
onstru
t variable irradiation marginsbased on the extrapolated density distributions. Then, we geometri
ally 
omparethe potential e�
a
y of su
h margins with the 
onventionally used 
onstant mar-gins in the 
ase of syntheti
 tumors simulated by rea
tion-di�usion models explainedin 6.2. In the 
onstru
tion of the variable margin, we use the same quantity of irra-diation as the 
onstant margin (same total volume to be irradiated) but reshape ita

ording to the estimation of the low density in�ltration.Sin
e for the syntheti
 tumors, the 
ell density at every lo
ation is known, we
arry out a quantitative 
omparison. We do this by testing the spatial a

ura
ies ofboth of these approa
hes via two di�erent 
lini
ally 
riti
al measures:- R: number of tumor 
ells not targeted- V ol: volume of healthy tissue targeted by the irradiation margin.In Chapters 4 and 6 we have shown the rea
tion-di�usion model in its normalizedform. In order to 
ompute the R value we need to return to the dimensional formby in
luding the maximum number of tumor 
ells a voxel of brain 
an handle.Consistent with the values given in [Tra
qui 1995℄ in this part we use that a voxelof 1 × 1 × 2.6 mm3 
an hold a maximum of 9.1 × 104 tumor 
ells. Therefore thevalues given in this analysis are found and should be 
onsidered with respe
t to thisvalue.We 
onstru
t the 
onstant margin irradiation region Mc by taking the 2cm mar-gin around the visible part of the tumor and removing the skull and the ventri
lesfrom it as shown in Figure 7.5(b). The 
onstru
tion of the variable margin irradia-tion region Mv is done in two parts. First we 
onstru
t the low density in�ltrationestimate starting from the visible part of the tumor, 
reating M1
v , and then wein
lude a 
onstant error margin around it based on the error values we found inSe
tion 7.2 
reating M2

v . The variable irradiation margin Mv is the union of thesetwo regions, see Figure 7.5(
). In order to ensure that the amounts of irradiation(assumed to be given by the volume) in Mc and Mv are the same, we tailor thedi�erent parts of Mv as
M1

v = {x|ũ(x, t) > δ}
M2

v = {x|distM1
v
(x) < ǫd}
hoose δ su
h that V ol(M1

v ∪M2
v ) = V ol(Mv) = V ol(Mc). (7.3)
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v
is the distan
e transform in the brain from the set M1

v , ǫd is the errormargin we would like to in
lude in our irradiation region and δ is the dependentparameter. We determine δ so that the volume 
onstraint given in Equation 7.3 issatis�ed. Based on the error measures we found in the Se
tion 7.2 we set ǫd = 4mmso that the error margin would be large enough to take into a

ount the ǫ(t) ∀t and
ǫv(t) ∀v.

(a) Tumor distribution (b) Constant margin (
) Variable marginFigure 7.5: The proposed variable irradiation region 
onstru
tion takes into a

ountthe growth dynami
s of the tumor. Figure shows the two irradiation margin 
on-stru
tion approa
hes and the syntheti
 tumor 
ell distribution they aim to target.Figure (a) shows the low density 
an
erous 
ell distribution of the syntheti
 tu-mor. The white region 
orresponds to the visible part (visible in the image) whilethe 
olored region is the in�ltration non visible in the image. Figures (b) and (
)show 
onstant and variable irradiation regions overlaid on the tumor distributionrespe
tively. Transparent green regions represent the areas set to be irradiated. Forthe syntheti
 tumor the variable margin better 
overs the extent of the in�ltrationtherefore might provide a better targeting.As in the previous se
tion we 
arry our analysis for the 10 di�erent tumors
onsisting 5 di�erent growth parameter sets at 2 di�erent lo
ations and at imagestaken at di�erent time instan
es. The 
omparison between the 
onstant and thevariable irradiation margins are given in Figures 7.6-7.10, where R and V ol graphsare plotted. Analyzing the results given in Figures 7.6-7.10 we noti
e that in
ludingthe tumor growth dynami
s in tailoring the irradiation margin greatly improves thespatial targeting of the therapy in the 
ase of syntheti
ally grown tumors. Observ-ing these �gures we see that for all the 
ases we have experimented with, the Rand V ol 
urves for the variable irradiation margin remains well below the 
urves forthe 
onstant margin, with a great di�eren
e in most 
ases. For example 350 daysafter the dete
tion of the tumor the di�eren
e in number of tumor 
ells targetedbetween the two approa
hes 
an go up to 6 × 108 Cells. On the other hand thedi�eren
e in volume of healthy tissue targeted between the 
onstant and variablemargin approa
hes goes up to 13 cm3. These values suggest that assuming tumorgrowth tenden
ies are well 
aptured by rea
tion-di�usion models, the variable irra-diation margin is more e�
ient in targeting tumor 
ells and irradiating less healthybrain tissue. Moreover, we 
an state the followings after observing the graphs:- Looking at the R graphs we noti
e that the di�eren
e between the 
onstant
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(b) V olFigure 7.6: R and V ol vs. time plots for the syntheti
 tumor: median (see the tablein Figure 7.1). Graphs show the di�eren
e between the 
onstant and variable regionirradiation in the 
ase of the syntheti
 tumor. R represents the number of tumor
ells not targeted by the irradiation. V ol represents the volume of healthy (tumorfree) tissue targeted. Dashed lines are the plots obtained with the 
onstant marginwhile the solid ones are the ones obtained with the variable margin. Plots obtainedfor tumors with the same parameters but at di�erent lo
ations (par=parietal lobe,fron=frontal lobe, see Figure 7.1) are plotted on the same graph. The variableirradiation margin seems to target more tumor 
ells (di�eren
e goes up to 3.5× 107
ells) and less healthy tissue (di�eren
e goes up to 13 cm3).and the variable margins in targeting tumor 
ells in
reases as time passes. Forexample in the average di�usion rate 
ase for the tumor at the parietal lobe,the di�eren
e between targeted tumor 
ells rises from 1× 107 to 3× 107 from
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(a) R for u0 = 0.4
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(b) V ol for u0 = 0.4Figure 7.7: R and V ol vs. time plots for the syntheti
 tumor: low dw,g/ρ (prolif-eration dominated growth). Dashed lines are the plots obtained with the 
onstantmargin while the solid ones are the ones obtained with the variable margin. Valuesobtained at two di�erent lo
ations are plotted on the same graph. We see that forslowly di�using tumors the di�eren
e between the variable and 
onstant margin isvery low.the image taken at day 0 to the one taken at day 350. This is related to thefa
t that tumor 
ells in�ltrate more as time passes yielding a more anisotropi
distribution in the tissue, and the variable margin takes this into a

ount.- Comparing Figures 7.6, 7.7 and 7.8, we observe that both s
hemes are moresu

essful in targeting tumor 
ells when the di�usion is less and the prolifer-ation is higher ( the growth is more proliferation dominated ). This is due tothe fa
t that with higher di�usion tumor 
ells in�ltrate further away in the
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(b) V ol for u0 = 0.4Figure 7.8: R and V ol vs. time plots for the syntheti
 tumor: high dw,g/ρ (di�usiondominated growth). Dashed lines are the plots obtained with the 
onstant marginwhile the solid ones are the ones obtained with the variable margin. Values obtainedat two di�erent lo
ations are plotted on the same graph. Although the 
urves of Rlook 
lose their numeri
al di�eren
e goes up to 6× 108 tumor 
ells.brain paren
hyma 
reating a need for a larger irradiation margin to a
hievethe same su

ess rate. We also note that the di�eren
e between the twos
hemes is nearly none for the tumor whi
h does not di�use mu
h. However,as the tumor be
omes more di�usive we observe that the di�eren
e betweenthe two s
hemes, both in terms of tumor 
ells not targeted and healthy tissueirradiated, in
reases.- Comparing Figures 7.6, 7.9 and 7.10, we see that when the anisotropy is higher
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(b) V ol for u0 = 0.4Figure 7.9: R and V ol vs. time plots for the syntheti
 tumor: lower anisotropy.Dashed lines are the plots obtained with the 
onstant margin while the solid onesare the ones obtained with the variable margin. Values obtained at two di�erentlo
ations are plotted on the same graph.the di�eren
e in number of tumor 
ells not targeted between the two s
hemesis mu
h higher. Also the di�eren
e in the volume of healthy tissue irradiated isgreater in the higher anisotropy 
ase. This is expe
ted sin
e as the anisotropyis lower the tumor grows �more� spheri
ally and the di�eren
e between thevariable and the 
onstant margin de
reases.- Observing V ol plots we noti
e that as the di�usion rate in
reases and whenthe underlying media be
omes more heterogeneous (white-gray heterogeneity)the variable margin approa
h be
omes more e�
ient in distinguishing healthy
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(b) V ol for u0 = 0.4Figure 7.10: R and V ol vs. time plots for the syntheti
 tumor: higher anisotropy.Dashed lines are the plots obtained with the 
onstant margin while the solid onesare the ones obtained with the variable margin. Values obtained at two di�erentlo
ations are plotted on the same graph.and in�ltrated tissue. This is also related to the fa
t that the variable marginapproa
h takes into a

ount the anisotropi
 nature of the tumor growth.7.4 Con
lusionIn this 
hapter, we have addressed the problem of limited tumor visualization ofmedi
al images through mathemati
al tumor growth modeling. Espe
ially for inva-sive gliomas, although images 
an show the mass part of the tumor they are not ableto visualize the low density in�ltration whi
h 
auses a serious problem in treating



7.4. CONCLUSION 125this pathology. We proposed a novel formulation whi
h integrates ma
ros
opi
 tu-mor growth models with medi
al images to extrapolate the low density in�ltrationregions of gliomas starting from the visible part of the tumor. In deriving the pro-posed formulation, we have started from the well known rea
tion-di�usion modelsassuming that the growth dynami
s of gliomas are well 
aptured by this type ofmodeling. We then used asymptoti
 approximations of rea
tion-di�usion models toformulate the proposed solution to the mentioned problem of predi
ting the extentsof the tumor in�ltration. The resulting formulation, in a sense, 
omplements theimaging pro
ess and provides a larger view of the extent of the tumor in�ltration.The proposed extrapolation method 
an also be applied to other appli
ations whi
hare modeled by partial di�erential equations whi
h bear traveling wave solutions(e.g. wound healing [Maini 2004℄, 
ardia
 modeling [Franzone 1990℄).One of the most important assumptions we have made in this work was thatthe tumor growth dynami
s are well 
aptured by the rea
tion-di�usion type modelsas proposed in di�erent works su
h as [Swanson 2002b, Jbabdi 2005, Clatz 2005℄.These models 
over the general features of tumor growth su
h as ma
ros
opi
 het-erogeneity and anisotropy of tumor growth and provide a good mat
h with 
lini
al
ases [Swanson 2008b℄. Rea
tion-di�usion models have few parameters whi
h 
anbe dire
tly related to the information available in the medi
al images. Therefore,the models 
an be adapted to spe
i�
 patient 
ases. Although rea
tion-di�usionmodels do not in
lude mi
ros
opi
 spatio-temporal fa
tors a�e
ting the growth pro-
ess, this problem 
an be over
ome as more image modalities be
ome available inthe 
lini
al setting. One 
an imagine that when high resolution metaboli
al imagesbe
ome available, whi
h would allow us to visualize di�erent integrins and enzymesfor ea
h patient, then the proposed formulation 
an be adapted su
h that it takesinto a

ount di�erent spatio-temporal e�e
ts yielding a more realisti
 predi
tion ofthe extent of tumor in�ltration.In Chapter 7, we performed two types of experiments evaluating the proposedextrapolation method. First, we showed that the tumor 
ell density distributionextrapolated using the proposed method remains within the vi
inity of 1-2 voxelsof the a
tual distribution of the tumor beyond its visible mass. This demonstratesthat the extrapolation formulation is su

essful in re
onstru
ting the solution ofthe rea
tion-di�usion model at a given time instan
e from sparse observations likethe image. This approximation 
an naturally be improved by in
luding the e�e
tof tumor fronts 
urvature and 
onvergen
e 
hara
teristi
s of the rea
tion-di�usionequation the expense of in
reasing 
omplexity and loosing generality.In the se
ond part of Chapter 7 we have shown the signi�
an
e of using theproposed extrapolation s
heme for radiotherapy. We 
onstru
ted variable irradiationregions, whi
h take into a

ount the possible in�ltration extents of gliomas, and
ompared them to the 
onstant margins used 
onventionally in 
lini
al pra
ti
e.The geometri
al 
omparisons presented demonstrates that the proposed methodhas the potential to target more tumor 
ells while harming less healthy brain tissue.This suggests the possible higher e�
ien
y we 
an obtain in radiation therapy byusing irradiation margins taking into a

ount the growth dynami
s. Besides thestati
 geometri
al 
omparisons, one 
an also 
ompare the dynami
 time 
ourse ofradiotherapy under the two di�erent s
hemes. However, for this purpose the dose
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hanisms and the response of tumor 
ells to the radiation should alsobe modeled. Considering the dis
rete nature of tumor response to radiotherapy(
ell 
y
les, varying mitoti
 potential of tumor 
ells and phase durations) using adis
rete model for these dynami
s might be more appropriate. There have beenseveral works on dis
rete models and tumor response to radiotherapy using su
hmodels, [Drasdo 2005, Stamatakos 2006b℄. Using a 
ombination of the 
ontinuumapproa
h given in this work and a dis
rete model as explained in the 
ited works one
an simulate the radiotherapy pro
ess under the two di�erent s
hemes and 
omparetheir out
omes. However, the modeling of tumor response to therapy and thereforethis 
omparison are outside the s
ope of this work.In all the experiments shown in this 
hapter we tried to stay in the limits of the
lini
al pra
ti
e. Namely, for the syntheti
 images we 
reated, we did not assumethat we knew the parameters of the growth model. We personalized the generalgrowth model to �t these images through estimating the parameters of the model(Chapter 4) and then using these parameters to perform the extrapolation. Inthis sense, we tried to simulate realisti
 
lini
al 
onditions. On the other handthere still remains a big issue regarding the parameter estimation in the 
ontextof radiotherapy. Most of the time the radiotherapy starts as soon as the tumor isdete
ted, spe
ially for the high grade gliomas. Therefore, in order to have a morerealisti
 tool we also need to �nd a way to estimate the parameters of the growthmodel from a single image. This problem is not ta
kled int his thesis however, it isone of our ongoing resear
h topi
s.The results and experiments we presented in this work are all syntheti
 
ases.In order to understand the real bene�ts of the formulation proposed in this work,validations with real patient 
ases and 
lini
al validation should be performed. Al-though we have not performed them, we envision two types of validations to bedone. The �rst one is the validation of the proposed extent of the tumor in�ltra-tion. Through mi
ros
opi
 investigations of post-mortem brain 
ross-se
tions oranimal models we 
an determine the real tumor 
ell distribution in the brain tissueex-vivo. Moreover, newly developing te
hniques for in-vivo mi
ros
opy 
an be usedto obtain tumor 
ell distribution for the patients [Ver
auteren 2008℄. The 
ompar-ison of this distribution with the extrapolated one would let us understand how
lose we 
an get to the real in�ltration margin using the proposed method. Afterthe in-vivo validation, 
lini
al validations should also be performed to understandwhether adapting the irradiation margins of the radiotherapy to the extrapolatedin�ltration extent of tumor is bene�
ial or not. Su
h an adaptation may suggest
riti
al stru
tures to be irradiated while this may turn out to be harmful for thepatient.In this 
hapter we have shown how mathemati
al growth models 
an be appliedin the therapy pro
ess. Our fo
us was given to radiotherapy but 
hemotherapy 
analso bene�t from the mathemati
al models and simulations obtained from them.New therapy agents proposed in the literature [Bat
helor 2007, Ri
ard 2007℄ 
an betested extensively using the mathemati
al simulations while, the usage of alreadyexisting drugs 
an be optimized based on virtual experiments [Stamatakos 2006a,Swanson 2002a℄.
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 Con
epts . . . . . . . . . . . . . . . . . . . . . . . . 1298.2.2 Fast Mar
hing Methods . . . . . . . . . . . . . . . . . . . 1318.2.3 Re
ursive Anisotropi
 Fast Mar
hing . . . . . . . . . . . . 1338.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 1398.4 Con
lusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 141ContextThe importan
e of a spe
i�
 type of partial di�erential equation the �anisotropi
Eikonal equation� has be
ome evident in Chapters 4 and 6. In this 
hapter wepropose and brie�y analyze a numeri
al method to solve su
h equations fast anda

urately. Su
h a method gives us the basi
 tool to solve the problems mentionedin the previous 
hapters.8.1 Introdu
tionIn the attempt to bridge the gap between the rea
tion-di�usion type growth modelsto medi
al images we have en
ountered stati
 Hamilton-Ja
obi equations and inparti
ular anisotropi
 Eikonal equations frequently in the previous 
hapters. Wehave seen that the rea
tion-di�usion type growth models mathemati
ally des
ribethe evolution of tumor 
ell density distributions. However, the images 
an onlyvisualize �delineations� of tumors, whi
h are assumed to be iso-density surfa
es ofthe tumor density distribution. Both in the 
ase of formulating the growth speed ofthis delineation and in extrapolating the tumor 
ell distribution beyond the visiblepart in the image we ended up with a stati
 Hamilton-Ja
obi equation of the form

F
√
∇T ′D∇T = 1 (8.1)
T (Γ) = g(x),where T is an impli
it fun
tion (whi
h we refer to as �time� in this 
hapter), Dis a tensor (positive de�nite matrix) , F is a speed term, Γ is a surfa
e where theDiri
hlet type boundary 
onditions for T is de�ned as g(x). In the previous 
hapterswe have seen that F is usually a spatially varying fun
tion whi
h might depend on127
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T and its derivatives. In this 
hapter we fo
us our attention on the 
ase where F isa spatially varying fun
tion that does not depend on T nor its derivatives. In this
ase Equation 8.1 takes the form of an anisotropi
 Eikonal equation. Although wefo
us on this spe
i�
 type of equation, this does not 
onstrain us from applying themethodology explained here to more general 
ases. As we have seen in Chapter 4through an appropriate iterative s
heme we 
an solve for more general F using thes
heme explained here.The anisotropi
 Eikonal equations are not inherent to tumor growth modeling.There are many other appli
ations where these equations arise, e.g., 
ardia
 ele
tro-physiology, wound healing, geology. Therefore, numeri
al solvers for these equationsare needed in many di�erent domains as the one we are interested in.There have been many di�erent ways proposed to solve equations with theform of Equation 8.1 or in general 
onvex, stati
 Hamilton-Ja
obi equations.These ways 
an be 
oarsely 
lassi�ed into four: algorithms using single-pass meth-ods [Sethian 2003℄, sweeping methods [Qian 2006℄, iterative methods [Kao 2005℄ andembedding methods [Osher 1993℄. Single-pass methods start from points where time(T ) values are already known and follow the 
hara
teristi
 dire
tion of the PDE to
ompute T at other points. This approa
h is based on the fa
t that in equationssu
h as Eqn. 8.1, the value of T at a point is only determined by a subset of its neigh-boring points, whi
h lie along the 
hara
teristi
 dire
tion [Kevorkian 2000℄. In theisotropi
 
ase, where D = dI is an isotropi
 tensor, these methods are very e�
ientbe
ause they follow the gradient dire
tion, whi
h 
oin
ides with the 
hara
teristi
dire
tion [Sethian 1999℄. In other words, they only use immediate neighbors of apoint with lower values of T to 
ompute the new arrival time at that point usingan upwind s
heme. These 
on
epts are explained in detail in Se
tion 8.2. In theanisotropi
 
ase, the 
hara
teristi
 dire
tion does not ne
essarily 
oin
ide with thegradient dire
tion and the same idea used for isotropi
 
ase yields false results. Inorder to deal with this, Sethian and Vladimirsky enlarged the neighborhood arounda point used to 
ompute the new arrival time su
h that the 
hara
teristi
 dire
tionremains within the neighborhood [Sethian 2003℄. But size of the enlarged neighbor-hood in
reases with in
reasing anisotropy of D. Unfortunately, this results in largenumber of points used to 
al
ulate new values and a high 
omputational load in
ase of high anisotropies.Sweeping methods use the same idea of 
hara
teristi
s as the single-pass methodshowever, they do not start from the known points. Instead they sweep the domainin many di�erent dire
tions and update the values at ea
h voxel at ea
h sweep-ing, [Qian 2006, Kao 2005℄. By using many di�erent dire
tions they make sure thatfor ea
h voxel at least one sweeping dire
tion mat
hes the 
hara
teristi
 dire
tionof the PDE. The sweeping 
ontinues until the 
omputed T map 
onverges. Thesemethods do not have a problem with anisotropy. However, depending on the spa-tial variation of D and the amount of anisotropy, these methods might need a highnumber of sweepings to 
onverge, and therefore, high 
omputation times. Moreover,they need an ordering of the underlying mesh to sweep the domain, whi
h mightnot be trivial to obtain for general meshes.Iterative methods start from an initial distribution of T and iterate us-ing upwind, monotone, and 
onsistent dis
retization until T satis�es the Equa-



8.2. METHOD 129tion 8.1, [Rouy 1992℄. They use minimization te
hniques at ea
h iteration to �ndthe T at the next iteration. As it is the 
ase for the sweeping methods, iterativemethods might take a long time to 
onverge in the 
ase of spatially varying and/orhighly anisotropi
 D.The embedding methods do not solve the anisotropi
 Eikonal equation dire
tly.They transform the stati
 Equation 8.1 into a dynami
 Hamilton-Ja
obi equa-tion [Osher 1993℄. This transformation 
onsists of embedding the iso-time surfa
esof T as zero level-sets of another impli
it fun
tion and transforming the gradient of
T as follows

v(x, t) = 0 for {x|T (x) = t} (8.2)
vx

vt
= Tx , vy

vt
= Ty , vz

vt
= Tz. (8.3)where the v is a time varying impli
it fun
tion and the subs
ripts denote partialderivatives. As a result of this transformation Equation 8.1 be
omes

vt − F
√
∇T ′D∇T = 0, (8.4)whi
h is a dynami
 equation. This equation uses the idea of level-sets as proposedin [Sethian 1999℄. Based on this it pro�ts from subvoxel a

ura
y and many di�erentnumeri
al methods proposed to solve it [Jiang 2000, Bryson 2003, Sethian 1999℄. Onthe other hand, initializing the impli
it fun
tion v from a given surfa
e and solvingit 
an be 
omputationally 
ostly.In this 
hapter, we propose an e�
ient and a

urate algorithm to solve theanisotropi
 Eikonal equation given in Equation 8.1. Our algorithm is a single-passmethod that is based on the well known �Fast Mar
hing� methods [Sethian 1999℄.Contrary to the single-pass method proposed in [Sethian 2003℄, through in
luding�re
ursive 
orre
ting� we manage not to in
rease the neighborhood that is used to
ompute the value at a given point. We detail our algorithm in Se
tion 8.2. InSe
tion 8.3, we 
ompare our algorithm to one of the state-of-the-art sweeping meth-ods [Qian 2006℄. Moreover, we provide some analysis on the e�e
t of the anisotropyon the performan
e our algorithm.8.2 MethodIn this se
tion �rst we review some of the basi
 
on
epts about Hamilton-Ja
obiequations su
h as �
hara
teristi
 dire
tions� and �group velo
ity� ne
essary to ex-plain our method. Following these 
on
epts we review the well known Fast Mar
hingmethod and see why it fails in the 
ase of anisotropi
 equations. We then detail theproposed algorithm.8.2.1 Basi
 Con
eptsIn order to understand the basi
 
on
epts for �rst order Hamilton-Ja
obi equationslet us start by a simple equation

Fux + ut = 0 (8.5)
u(x, 0) = f(x), (8.6)



130 CHAPTER 8. ANISOTROPIC FAST MARCHINGwhere subs
ripts denote partial derivatives, F is a s
alar 
onstant and f(x) is theinitial 
ondition. The solution for this equation is given by
u(x, t) = u(x− Ft) = f(x− Ft). (8.7)In this solution we noti
e that the value of u remains 
onstant along the ve
tor

V = F i+ j, where i is the unit ve
tor in x and j is the unit ve
tor in the t dire
tion.This ve
tor is 
alled the 
hara
teristi
 ve
tor of the PDE given in Equation 8.5(and its dire
tion is 
alled the 
hara
teristi
 dire
tion). The lines that are parallelto this ve
tor are 
alled 
hara
teristi
 lines [Strauss 1992℄. In Figure 8.1 we show
x

A

B

t

V

Figure 8.1: Figure shows the 
hara
teristi
 lines for an example PDE in the formof the Equation 8.5. Values of u along these lines are 
onstant. As a result u(B) isonly de�ned by u(A).an example demonstrating 
hara
teristi
 lines in the (x, t) 
oordinate system. Ea
hline represents a 
hara
teristi
 line and by de�nition the value of u is 
onstant alongea
h line. As a result, if we pi
k a point B in this 
oordinate system, the value of uat this point only depends on the value of u at A and to none of the other points.In other words the domain of dependen
e of B is point A and the line 
onne
tingthese two points. On the other hand, the value of u at A is 
arried along the halfline −−→AB. Along this line all the points will have the same value of A. In other wordsthe domain of in�uen
e of A is the line −−→AB.For more general �rst order Hamilton-Ja
obi equations the 
hara
teristi
 linesand the relations of the domain of dependen
e and the domain of in�uen
e do nothave to be this simple. Domain of dependen
e of a point may 
ontain a region and apoint may in�uen
e a region as shown in Figure 8.2. The numeri
al s
hemes that arein the 
ategories of sweeping methods and the single-pass methods use the domainof dependen
e and in�uen
e in their formulation. The basi
 idea is to 
ompute thevalue of u at the point B by using other points whi
h are in the domain of dependen
eof B. Another way to formulate this is to state that the 
hara
teristi
 dire
tion ofthe PDE at B remains within the neighborhood whi
h is used to 
ompute the valueof u at B.
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x

t

B

Figure 8.2: Figure shows a more general domain of dependen
e. The value of u at Bis determined by the shaded region. The important point is that the 
hara
teristi
ve
tor at B shown as an arrow remains within the domain of dependen
e.For general �rst order stati
 Hamilton-Ja
obi equations in the form
H(x,∇T ) = 0 (8.8)the 
hara
teristi
 ve
tor is given by the gradient of H with respe
t to ∇T . In the
ase of the anisotropi
 Eikonal equation this 
hara
teristi
 ve
tor is given as

V =
FD∇T√
∇T ′D∇T

. (8.9)As we have explained the dire
tion of this ve
tor is 
alled the 
hara
teristi
 dire
tion.On the other hand, this ve
tor is also 
alled the group velo
ity Vg a term borrowedfrom geometri
al opti
s. In explaining the proposed numeri
al method we will usethese two terms frequently.8.2.2 Fast Mar
hing MethodsThe Fast Mar
hing Method (FMM) is an e�
ient single-pass algorithm for solvingthe isotropi
 version of the Eikonal equation:
F |∇T | = 1 (8.10)
T (Γ) = T0, (8.11)where the se
ond equation is the Diri
hlet type boundary 
ondition [Sethian 1999℄and T is the impli
it fun
tion. For the rest of this 
hapter we will refer to T as thearrival time fun
tion where the value at ea
h point represents the time a virtual frontpasses over it. The FMM algorithm starts from the surfa
e Γ and 
onstru
ts thesolution T by following the 
hara
teristi
 dire
tions of the equation. It 
onstru
ts athin layer around the region for whi
h T values are known, 
omputes the T valuesin this layer, adds the new points in the known region and mar
hes the thin layer



132 CHAPTER 8. ANISOTROPIC FAST MARCHINGto sweep the domain. The key ingredient is the 
hoi
e of the new points whi
h willbe added to the known region. Through the 
orre
t 
hoi
e the FMM follows the
hara
teristi
 dire
tions of the PDE. It 
onstru
ts the T fun
tion in an in
reasing(de
reasing) order starting from the small (high) values pro
eeding to higher (lower)ones.There are two parts of the FMM algorithm. The 
omputation of the T valuesusing the immediate neighborhood of a point and the overall algorithm. At a point
p the 
omputation of T only uses the neighbors of p whose values are already known.The dis
retization at p whi
h takes into a

ount the 
hara
teristi
 dire
tions for theEquation 8.10 in 2D is given as

[
max(d−x

p T, 0)2 + min(−d+x
p T, 0)2

+ max(d−y
p T, 0)2 + min(−d+y

p T, 0)2

]1/2

=
1

Fp
, (8.12)where dp is the dis
rete derivative operator in the dire
tion of its supers
ript, i.e.

d−x
p = (Tp − T−x

p )/dx with dx as the spa
ing in the x dire
tion. From this equationwe see that there are two points neighboring p used to 
ompute Tp, let us 
all them
q1 and q2. Equation 8.12 has a quadrati
 form and its solution 
an be found easily.In all 
ases the roots of the quadrati
 equation must be real however, there aretwo of them. The FMM 
hooses the minimum of these solutions whi
h satis�es
Tp ≥ max(Tq1

, Tq2
).In order to brie�y explain the overall algorithm let us examine a 2D setting.Assume that there is a point for whi
h the T value is known, the red point inFigure 8.3(a). The �rst step is to set a tag for this point as KNOWN . Followingthis, FMM 
omputes the values of the points adja
ent to the known one and setstheir tags as TRIAL, shown in green in Figure 8.3(b). The next step is to 
hoosethe TRIAL point with the minimum T value, 
hange its tag to KNOWN and
ompute T values for its adja
ent points setting their tag as TRIAL. Moreover,the T values at the points that had already the tag TRIAL are updated usingthe new KNOWN point, see Figure 8.3(
). The algorithm 
ontinues like this, asshown in Figure 8.3(d), until all the points in the domain have the tag KNOWN .In Algorithm 5 we summarize the FMM algorithm. In the algorithm we refer the
omputation of T at a point by the UPDATE routine, for whi
h the details aregiven in Equation 8.12.The 
omputation of T 
ombined with the overall algorithm 
reates a single-passnumeri
al s
heme that whi
h follows the gradient dire
tion of T . Due to the fa
t thatthe gradient dire
tion is indeed the 
hara
teristi
 dire
tion for the isotropi
 Eikonalequations the FMM algorithm follows the 
hara
teristi
s. In doing so it uses the
orre
t domain of dependen
e for ea
h point 
onstru
ting the 
orre
t solution in asingle pass.The anisotropi
 Eikonal equation, given as Equation 8.1, poses extra di�
ultiesfor the FMM algorithm. The 
hara
teristi
 dire
tion for the anisotropi
 equationdoes not have to 
oin
ide with the gradient dire
tion of T . We see in Equation 8.9that the 
hara
teristi
 dire
tion of T depends on the tensor D. Therefore, followingthe gradient dire
tions the algorithm uses in
orre
t domain of dependen
e and yieldsfalse results as shown in Figure 8.4.
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(a) (b) (
) (d)Figure 8.3: The steps of the FMM algorithm. (a) Algorithm starts by the knownpoint in red and the unknown ones in blue. (b) It 
omputes the T values at itsadja
ent points setting their tag as TRIAL in green. (
) Following this it 
hoosesthe TRIAL point with the minimum T value and 
hange its tag to KNOWN .Using this value it updates the T values at all the TRIAL points and the neighborsof the newly KNOWN point. (d) The algorithm 
ontinues in this fashion until allthe points in the domain are tagged as KNOWN .Algorithm 5 Fast Mar
hing Method.Initializationfor all X ∈ KNOWN (red points) dofor all Yi ∈ N (X) and Yi ∈ FAR (blue points) do
ompute T (Yi)← UPDATE(Yi,X)remove Yi from FAR and add Yi to TRIAL (green)end forend forMain Loopwhile TRIAL not empty do

X ← argminX∈TRIAL TRIALremove X from TRIAL and add X to KNOWNfor all Yi ∈ N (X) and Yi ∈ TRIAL ∪ FAR do
ompute T (Yi)← UPDATE(Yi,X)if Yi ∈ TRIAL and T (Yi) < T (Yi) then
T (Yi)← T (Yi)else if Yi ∈ FAR then
T (Yi)← T (Yi)remove Yi from FAR and add Yi to TRIALend ifend forend while8.2.3 Re
ursive Anisotropi
 Fast Mar
hingThe re
ursive anisotropi
 fast mar
hing, proposed in this 
hapter, is based on thesingle-pass idea and it uses immediate neighborhood to 
ompute arrival times. Itis based on the prin
iples of the FMM and modi�es this algorithm su
h that thee�e
t of the anisotropi
 tensor D is taken into a

ount. As a novel step, on top ofthe FMM algorithm, it adds a re
ursive 
orre
tion s
heme and uses a more general
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(a) (b) (
)Figure 8.4: Solutions of F√∇T ′D∇T = 1, T (
enter) = 0 with a 
onstant anisotropi

D. The solution of the system obtained using the FMM (left) and the solution solvedby anisotropi
 methods (right). We see that the FMM solution is not 
orre
t due tothe problem of following the gradient dire
tions and not the 
hara
teristi
 dire
tions.On the s
hema on the left we show the 
hara
teristi
 dire
tion V and the gradientdire
tion ∇T . We see that the two dire
tions do not 
oin
ide.formulation to 
ompute the T values at ea
h point. This algorithm works e�
ientlyunder general meshes, high anisotropies and highly varying D �elds. Moreover, it
an be applied to more general forms of stati
, 
onvex Hamilton-Ja
obi equations,whi
h is beyond the s
ope of this work. In this work we fo
us on the equation

F
√
∇T ′D∇T = 1 T (Γ) = T0, (8.13)where Γ is a surfa
e on whi
h the T values are known and equal to T0.AlgorithmThe overall algorithm is similar to the original fast mar
hing method. The maindi�eren
es are the re
ursive 
orre
tion s
heme and the 
omputation of T values.The initialization steps for initializing the method are the same. First, we go overpoints whose value are already known and add them to a list 
alled KNOWN .Following this we 
ompute the traveling times for points neighboring the points inthe KNOWN list and whose values are not 
omputed yet (su
h points are kept inthe FAR list). We 
ompute the trial T values for these points using only the knownpoints and add them to the TRIAL list while removing them from the FAR list,see Algorithm 6. By neighborhood N (X) we mean all points dire
tly 
onne
tedto the point X in some preferred 
onne
tivity sense (e.g. 4-8 in 2D and 6-18-26in 3D Cartesian grid). As explained in the previous se
tion, the FMM algorithmfollows the same operations throughout its main loop. (The TRIAL point with theminimum value of T , Y , is removed from the TRIAL list, added to the KNOWNlist, trial values of unknown neighbors of Y are 
omputed, if they are in the FARlist they are added to the TRIAL list and removed from the FAR one, and if theyare already in the TRIAL list their values are updated. )



8.2. METHOD 135Algorithm 6 Anisotropi
 Fast Mar
hing: Initializationfor all X ∈ KNOWN dofor all Yi ∈ N (X) and Yi ∈ FAR do
ompute T (Yi)← UPDATE(Yi,X)remove Yi from FAR and add Yi to TRIALend forend for
(a) (b) (
) (d)Figure 8.5: The Re
ursive Corre
tion: (a) Among the TRIAL points the one withthe minimum T value is 
hosen, Y . (b) Beside 
omputing the values for the unknownand trial neighbors of Y we also update the T values of its known neighbors. In the
ase a lower T value for any of these known neighbors is found it is moved into the

CHANGED list as it be
omes yellow in the �gure. (
) When the main loop startsagain it starts from this CHANGED point and updates its neighbors. (d) Whenthe CHANGED list is empty the algorithm 
ontinues as the FMM.In order to take into a

ount the anisotropy in the equation, we insert the re-
ursive 
orre
tion in the main loop of the FMM. In the main loop we 
hoose thepoint in the TRIAL list with the minimum value of T , 
all the point Y , and moveit to the KNOWN list, as shown in Figure 8.5(a). At this point, besides 
omputingthe trial values of unknown neighbors of Y , we also re
ompute its known neighbors'values. The reason for this is that when values of these points were 
omputed Ywas not used sin
e it was not known. Hen
e, the 
hara
teristi
 dire
tion may nothave been 
ontained in the known neighborhood at the time, whi
h was used to
ompute their T values. If we obtain a lower value of T during this re
omputa-tion we update the value and add the point to the CHANGED list, whi
h holdsknown points whose values have been 
hanged. In Figure 8.5 a known neighbor of
Y is updated and it is added in the CHANGED list as it be
omes yellow. This
orre
tion is based on the fa
t that the lowest T value for a point is obtained whenthe 
hara
teristi
 dire
tion is 
ontained in the neighborhood used in its T values
omputation [Qian 2006, Sethian 2003℄. Every time the main loop restarts it 
he
ksif the CHANGED list is empty, if this is not the 
ase then instead of taking apoint from the TRIAL list it takes from the CHANGED list. In other words themain loop tries to empty the CHANGED list �rst. In the example in Figure 8.5(b)the algorithm 
omputes the values around the yellow point and then moves it tothe KNOWN list as it be
omes red on
e again, see Figure 8.5(
). If there are nomore points in the CHANGED list, in other words no more yellow points, then the
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ontinues as the normal FMM as seen in Figure 8.5(d). The pseudo 
odefor this algorithm gives a 
lear summary of the re
ursive 
orre
tion in Algorithm 7.Algorithm 7 Anisotropi
 Fast Mar
hing: Main Loop with Re
ursive Corre
tionwhile TRIAL or CHANGED lists are not empty doif CHANGED list is not empty then
X ← argminX∈CHANGED CHANGEDremove X from CHANGEDelse
X ← argminX∈TRIAL TRIALremove X from TRIAL and add X to KNOWNend iffor all Xi ∈ N (X) and Xi ∈ KNOWN do
ompute T (Xi)← UPDATE(Xi,X)if T (Xi) < T (Xi) then
T (Xi)← T (Xi)add Xi to CHANGED listend ifend forfor all Yi ∈ N (X) and Yi ∈ TRIAL ∪ FAR do
ompute T (Yi)← UPDATE(Yi,X)if Yi ∈ TRIAL and T (Yi) < T (Yi) then
T (Yi)← T (Yi)else if Yi ∈ FAR then
T (Yi)← T (Yi)remove Yi from FAR and add Yi to TRIALend ifend forend whileLo
al SolverUp to now we have not detailed the 
omputation of T (X) value using N (X), namelythe UPDATE routine. For the FMM algorithm this routine was simply solving aquadrati
 equation. In the anisotropi
 
ase it is a bit more 
ompli
ated. We havede�ned N (X) as the set of immediate neighbors of X and naturally there exists aset of elements 
orresponding to this neighborhood, set of triangles (△X) in 2D orset of tetrahedras (TETX) in 3D. In Figure 8.6 for a 2D example we demonstratethe N (X) and the △X . The T (X) value both in 2D and in 3D is 
al
ulated insideevery element using linear interpolation between nodes and solving a minimizationproblem. We 
an write this minimization problem using the prin
iples borrowedfrom geometri
al opti
s. Based on the properties of the anisotropi
 Eikonal equationwe know that there exists a single ray passing from the point X that 
oin
ides withthe 
hara
teristi
 dire
tion of the PDE and determines the value of T at X. For
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X
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Y

Figure 8.6: For the point X the �gure shows the N (X) and also the △X 
orre-sponding to the neighborhood.the example shown in Figure 8.6, assume that this ray remains within the triangle
X̂Y Z, it passes through the point Q and its dire
tion from X is given with theve
tor v =

−−→
XQ. Based on the 
hara
teristi
 ve
tor, as de�ned in Equation 8.9, we
an write the relation between the gradient of T and v as

∇T = κD−1v, (8.14)where κ is a s
alar 
onstant whi
h ensures that ∇T satis�es the anisotropi
 Eikonalequation
∇T ′D∇T = κ2(D−1v)′D(D−1v) =

1

F 2
(8.15)

κ =
1

[(D−1v)′D(D−1v)]1/2F
=

1

[v′D−1v]1/2F
. (8.16)From this relationship the group velo
ity (as given in Equation 8.9) at the point X
an be written as

vg =
Fv

[v′D−1v]1/2
. (8.17)Assuming that the T value at the point Q is known we 
an apply linear interpolationand �nd the value of T at X using the group velo
ity

T (X) = T (Q) +
|−−→XQ|
|vg|

, (8.18)where the se
ond part on the right hand side is just distan
e over speed [Qian 2001℄.As a result, on
e we are given a triangle su
h as the one X̂Y Z it su�
es to �nd thepoint Q to �nd the right value of T at X. Sin
e we know that the 
orre
t point
Q provides us the lowest possible value of T for X we 
an formulate the problem
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tive minimizationproblems for 1D, 2D and 3D are given as
f1D(X,Y ) = T (Y ) +

[vt
1DD

−1v1D]1/2

F
(8.19)

f2D(X,Y,Z) = min
p∈[0,1]

{T (Y )p+ T (Z)(1− p) (8.20)
+

[v2D(p)tD−1v2D(p)]1/2

F
}

f3D(X,Y,Z,W ) = min
p,q∈[0,1]×[0,1]

{[T (Y )p+ T (Z)(1− p)]q (8.21)
+ T (W )(1− q) +

[v3D(p, q)tD−1v3D(p, q)]1/2

F
}where- v1D =

−−→
Y X,- v2D(p) =
−−→
Y Xp+

−−→
ZX(1− p) and- v3D(p, q) = [

−−→
Y Xp+

−−→
ZX(1− p)]q +

−−→
WX(1− q).Algorithm 8 Computation of T (Xi) = UPDATE(Xi,X)IN 2D

T (Xi)←∞for all △(XXiY ) ∈ △X
Xi

= {△(XXiY )|Y ∈ N (Xi)} doif Y ∈ KNOWN then
T (Xi)← min(T (Xi), f2D(X,Xi, Y ))else
T (Xi)← min(T (Xi), f1D(X,Xi))end ifend forIN 3D

T (Xi)←∞for all TET (XXiY Z) ∈ TETX
Xi

= {TET (XXiY Z)|Y,Z ∈ N (Xi)} doif Y,Z ∈ KNOWN then
T (Xi)← min(T (Xi), f3D(X,Xi, Y, Z))else if Y ∈ KNOWN then
T (Xi)← min(T (Xi), f2D(X,Xi, Y ))else if Z ∈ KNOWN then
T (Xi)← min(T (Xi), f2D(X,Xi, Z))else
T (Xi)← min(T (Xi), f1D(X,Xi))end ifend forAs in the original fast mar
hing algorithm we only use known points in N (X) to
ompute the value T at X. For a given element either triangular or tetrahedral not



8.3. EXPERIMENTS 139all the nodes have to be in the KNOWN list. In su
h 
ases we only use the knownnodes and 
ompute T (X) using the respe
tive element. As an example, in the 
aseof a tetrahedral element we use Equation 8.21 when all nodes of the tetrahedra areknown, Equation 8.20 when 2 nodes are known and Equation 8.19 when only 1 nodeis known, see Algorithm 8. The minimization of Equation 8.20 has an analyti
alsolution however, the one in Equation 8.21 is not trivial. Instead of solving it witha minimization algorithm, whi
h would in
rease the 
omputational load, we usethe quadrati
 equation in T (X) obtained by dis
retizing equation F√∇T tD∇T =
1 on the nodes of the tetrahedral element. We 
he
k if this 
omputed value of
T (X) satis�es the 
ausality 
ondition, whi
h is that the 
hara
teristi
 dire
tionshould lie inside the element used. Pra
ti
ally this is just 
omputing ∇T using thenew 
omputed T (X) on the element and 
he
king if D∇T ve
tor resides withinthe tetrahedra. If this is the 
ase, the minimum lies inside the tetrahedra and itis approximated with the 
omputed T (X). If this is not the 
ase we sear
h theminimum on the triangular sides of the tetrahedra using f2D. This method wasproposed by Qian et al. [Qian 2006℄ and it speeds up the overall algorithm greatly.For more details on this please refer to [Qian 2006℄.8.3 ExperimentsIn our experiments we have performed two di�erent type of tests. The �rst typeof tests were intended to demonstrate the re
ursive anisotropi
 fast mar
hing 
anwork on di�erent geometries in reasonable 
omputational times. We have testedthe proposed algorithm by solving F

√
∇T tD∇T = 1 in 2D, 3D Cartesian gridand on surfa
es using triangulation where F is taken to be 1. These results areshown in Figures 8.7 and 8.8. Computation times for these results 
an be foundin Table 8.1, where we also 
ompare our algorithm with the sweeping algorithmproposed in [Qian 2006℄, for whi
h we used our own implementation done in thebest possible way. Comparison is only done for 
ases in 2D Cartesian grid based onthe examples provided in the mentioned referen
e. The sweeping method has beeniterated until 
onvergen
e, where the maximum number of iterations was 12 in thevariable D 
ase. In the re
ursive anisotropi
 fast mar
hing algorithm the size ofthe CHANGED list did not ex
eed 3 for these 
ases. The following 
omputationaltimes were obtained with Matlab7.1 for 2D 
ases and C++ for 3D 
ases on a 2.4GHzIntel Pentium ma
hine with 1Gb of RAM. Cases given in Table 8.1 
orrespond toimages shown in Figures 8.7 and 8.8. The proposed algorithm is fast and visuallya

urate even in the 
ase of very high and variable anisotropy. Moreover, applyingthe explained method to general meshes bears no di�
ulty. In our experiments withtriangular meshes on 2D and on surfa
es, the algorithm was apparently mu
h faster.The se
ond tests we have performed aims to understand the e�e
t of the strengthof anisotropy on the 
omputation time. In our experiments we have observed that asthe strength of anisotropy in
reases the 
omputation time also in
reased. In orderto test this we performed 2D experiments using spatially homogeneous tensors with
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 in all
ases) SweepingMethod [Qian 2006℄ Anisotropi
Fast Mar
hing(se
onds) (se
onds)2D: 
onstant D, 64× 64 grid 24.43 16.152D: 
onstant D, 128 × 128grid: Fig. 8.7(a) 91.06 63.392D: spirally varying D, 64×64grid: Fig. 8.7(
) 80.6076 13.562D: spirally varying D, 128 ×
128 grid 319.34 49.483D: 
onstant D, 64 × 64 × 18grid: Fig. 8.8(g) 263D: helix D, 64×64×64 grid:Fig. 8.8(h) 653D: 
onstant D, 13000 nodesmesh: Fig. 8.8(e) 2Table 8.1: Computation times

(a) (b) (
) (d)Figure 8.7: a) 2D Cartesian grid, high anisotropy in 120◦ in
reasing distan
e fromblue to red, b) iso-
ontours of a, 
) 2D Cartesian grid, D is highly anisotropi
 insidea spiral following it, isotropi
 in other regions, d) iso-
ontours of 
.di�erent anisotropies. We have 
onstru
ted di�erent tensors as
D = V ΛV ′ (8.22)
V =

[
0.6 −0.8
0.8 0.6

] (8.23)
Λ =

[
λ1 0
0 λ2

]
, (8.24)where λ1 and λ2 are the �rst and the se
ond eigenvalues respe
tively. The strengthof the anisotropy of D depends on the ratio between these two eigenve
tors. Usingdi�erent ratios we have 
onstru
ted the solution of

F
√
∇T ′D∇T = 1 T (0) = 0. (8.25)
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(a) (b) (
) (d)Figure 8.8: a) 2D triangular mesh with 13000 nodes anisotropy in x dire
tion,
olors represent iso-
ontours, b) 2D triangular mesh on a surfa
e D is anisotropi
and prin
iple eigenve
tor is shown in bla
k lines, 
olors represent iso-
ontours, 
) 3DCartesian grid, anisotropi
 D d) 3D Cartesian grid, D is highly anisotropi
 inside ahelix following it, isotropi
 in other regions.The 
omputation time for this pro
ess depends on the ration λ1/λ2. In Figure 8.9we plot the 
omputation time as a fun
tion this ratio along with some of the resultsfound with di�erent ratios. We observe from Figure 8.9(a) that as the anisotropystrength in
reases the 
omputation time in
reases as well. Moreover, the rate ofin
rease is almost linear.8.4 Con
lusionsThe stati
 Hamilton-Ja
obi equations and in parti
ular the anisotropi
 Eikonal equa-tions are frequently en
ountered in biologi
al modeling. We have seen in the previ-ous 
hapters the importan
e of su
h equations for bridging the gap between 
lini
alimages and the mathemati
al tumor growth models. Besides tumor growth mod-els, su
h equations arise in 
ardia
 ele
trophysiology, geophysi
s, �uid dynami
s and
omputer vision. Therefore, having an e�
ient, a

urate and a fast numeri
al solverfor su
h equations is 
ru
ial.In this 
hapter, we proposed the re
ursive anisotropi
 fast mar
hing algorithmfor solving anisotropi
 Eikonal equations numeri
ally. The algorithm is based on thewell known Fast Mar
hing Methods and in that sense it enjoys the many advantagesof the single-pass methods. We have shown that the algorithm is su

essful inhandling high anisotropies, whi
h are often en
ountered in biologi
al modeling, andgeneral meshes. Moreover, we have 
ompared it with one of the state-of-the-artmethods to show its relative performan
e. We have seen that the proposed algorithmis faster than the mentioned method. We have also shown that the 
omputationof the proposed algorithm depends highly on the strength of the anisotropy of thetensor D. The experiments have shown that the 
omputation times was almostlinearly related to the strength of the anisotropy.In the previous 
hapters we have seen the usage of the anisotropi
 fast mar
hingmethod in the 
ontext of tumor growth modeling. Having a fast solver gave us theopportunity to solve the parameter estimation problem in 
lini
ally reasonable time
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(
) λ1/λ2 = 3.5 (d) λ1/λ2 = 17.5Figure 8.9: (a) The 
omputation time in
reases almost linearly with the strength ofanisotropy of the tensor D. The �gure show the plot of the 
omputation time as afun
tion of the ratio λ1/λ2 of D. (b)-(d) We show the results of the Equation 8.25with di�erent D's having di�erent anisotropy strengths.spans. Moreover, 
onsidering the high anisotropy and the high non-homogeneityof the di�usion tensors we have en
ountered, the anisotropi
 fast mar
hing methodproved itself to be very useful.The anisotropi
 fast mar
hing method explained here is a general tool and 
anbe used for the di�erent appli
ations mentioned. Moreover, the algorithm 
an alsobe used for solving general stati
, 
onvex Hamilton-Ja
obi equations en
ountered in
omputer vision and material s
ien
e. In this work we have fo
used on the algorith-mi
 details. The future work should 
on
entrate on the 
onvergen
e 
hara
teristi
sof the algorithm and the worst 
ase 
omplexity in order to have a better understand-ing of the proposed method. Among di�erent points to be ta
kled in a theoreti
almanner are the a

ura
y, robustness and 
onvergen
e analysis of the method.
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lusionsThe main fo
us of the thesis presented here was on linking the mathemati
al tumorgrowth models and medi
al images. We have built our resear
h on rea
tion-di�usionbased tumor growth models whi
h are shown to be suitable for modeling the ma
ro-s
opi
 dynami
s of tumor growth as visible in medi
al images. Previous works havesu

essfully integrated the anatomi
al and di�usion information in their mathemat-i
al des
ription of tumor growth. This integration was either based on the use ofatlases or single patient images and aimed to in
lude di�erent tissue 
lasses and/orwhite matter �ber stru
ture in the growth formulation. In this sense, these generi
models have adapted the anatomi
al information for modeling the growth and in-vasion of brain gliomas. In this thesis, we have studied the integration in the othersense, adapting the growth models to spe
i�
 patient 
ases. Therefore, we havetaken a step towards patient spe
i�
 tumor growth models.9.1.1 Parameter EstimationAs a �rst step in adapting the rea
tion-di�usion based tumor growth models topatient images, in Chapter 4 we have proposed a formulation for estimating theparameters of the growth model based on time series of medi
al images. We haveseen that the generi
 growth model 
ontains two di�erent parameters, the di�usiontensor of tumor 
ells D and the proliferation rate ρ. Moreover, the 
onstru
tionof the di�usion tensor may 
ontain several parameters, whi
h in our 
ase was 2,the di�usion rate in the white matter dw and in the gray matter dg. Estimating143



144 CHAPTER 9. CONCLUSIONS AND PERSPECTIVESparameters in this 
ontext means �nding the numeri
al values of these parametersso that the evolution of the tumor des
ribed by the model best �ts the evolutionobserved in the medi
al images.One of the main problems for parameter estimation is the in
onsisten
y betweenthe information observable in the medi
al images and the information needed bythe rea
tion-di�usion model. The rea
tion-di�usion models des
ribe the temporalevolution of tumor 
ell density distributions throughout the brain. Therefore, forsimulating the growth of the tumor these models need the knowledge of the spatialdistribution of tumor 
ell density. Conventionally used medi
al images on the otherhand, do not provide this information. They rather visualize enhan
ed regions whereit is assumed that the tumor 
ell density is higher than a 
ertain threshold. Thisenhan
ed region is named either as visible tumor boundary or tumor delineation.In order to solve this in
onsisten
y we have proposed to use a front evolution for-mulation. This formulation des
ribes the evolution of the tumor delineation basedon the growth dynami
s of rea
tion-di�usion models. These kind of formulationshave already been proposed in the literature for di�erent appli
ations. In this thesiswe have built on these existing works and improved them to take into a

ount these
ond order e�e
ts su
h as time 
onvergen
e and better handling of the e�e
t of
urvature.On
e we had a formulation for the growth of the tumor 
onsistent with the imageswe formulated the parameter estimation as an optimization problem. The optimumparameters yielded us the best �t between the evolution of the tumor delineationobserved in the images and the one des
ribed by the front evolution. We haveperformed thorough theoreti
al analysis of this method using syntheti
ally growntumors and en
ountered its drawba
ks. Most importantly we have seen the 
ouplingbetween the parameters of the tumor growth model and shown that these parameters
annot be identi�ed separately in the presented 
ontext. On the other hand, we haveseen that several identities su
h as the growth speed of the tumor 
an be identi�eduniquely from medi
al images. Following these theoreti
al studies we have appliedthe proposed method to some real 
ases and shown promising preliminary results.These real 
ases have demonstrated the potential usage of the parameter estimationmethod and the predi
tion power of personalized rea
tion-di�usion models.To the best of our knowledge, in this thesis we have presented one of the �rstparameter estimation methodologies using medi
al images in the 
ontext of tumorgrowth models. In this sense, it is one of the �rst s
ienti�
 
ontributions on per-sonalizing tumor growth models. The theoreti
al analysis and preliminary results onreal 
ases also 
onstitute new s
ienti�
 
ontributions not yet published elsewhere.During the 
ourse of this thesis we have presented our work regarding the parame-ter estimation and the front evolution of tumor delineation in di�erent international
onferen
es [Konukoglu 2007a℄ and [Konukoglu 2007b℄. Moreover, we have submit-ted a journal arti
le 
overing a larger part of the analysis and te
hniques shown inthis thesis [Konukoglu ttedb℄.



9.1. CONCLUSIONS 1459.1.2 Extrapolating Invasion MarginsFollowing the parameter estimation problem, in Chapter 6 we have fo
used on thepotential bene�ts the tumor growth models 
an o�er to the treatment of braingliomas, parti
ularly to radiotherapy. The treatment of brain gliomas are di�
ultand pose extra problems for radiotherapy due to their di�usive nature. The medi
alimages play a very important role and guide the therapy pro
ess however, they arenot able to visualize the whole extent of the in�ltration of the tumor. In orderto ta
kle this problem 
onventional radiotherapy applies irradiation not only to thevisible part of the tumor but also to a healthy looking region around the tumor. Thisregion is 
onstru
ted by taking a 
onstant margin around the tumor assuming theinvisible in�ltration remains in this part. This approa
h does not take into a

ountthe fa
t that tumor 
ells di�use faster in the white matter. As a result they mayunderestimate the invasion of the white matter and not target the whole in�ltration.On the other hand, for the gray matter, the 
onstant irradiation margin approa
hmay overestimate the in�ltration and target healthy 
ortex 
ausing unne
essarydamage.The tumor growth models, on
e personalized, 
an o�er solutions to the visual-ization problem en
ountered in the 
ase of di�usive tumors, parti
ularly gliomas.In Chapter 6 we have proposed su
h a solution. The proposed formulation ex-trapolates the tumor 
ell density distribution beyond the part visible in the image,starting from the delineation of the tumor. This formulation was derived from therea
tion-di�usion growth models through asymptoti
 approximations. As a result,the extrapolated density distribution takes into a

ount the di�erential motility oftumor 
ells and the spiky nature of its growth. Using simulations on syntheti
allygrown tumors we have shown the theoreti
al su

ess of the proposed algorithm inextrapolating the in�ltration not visible in the images. Following this, we haveproposed a way to 
onstru
t irradiation margins that take into a

ount the in�l-tration of gliomas. Again, using syntheti
ally grown tumors we have shown thepotential bene�ts of using the proposed method in 
ontouring irradiation margins.Our experiments have shown that by taking into a

ount the in�ltration dynami
sof gliomas one may target more tumor 
ells and harm less healthy tissue using thesame amount of irradiation.Although earlier resear
h by others has addressed the question of 
onstru
tingthe irradiation margins automati
ally, in the best of our knowledge, the work pre-sented in this thesis is one of the �rst methods to address this question by in
ludingtumor growth models. Moreover, it is also one of the �rst attempts to use tumorgrowth models in therapy planning assuming 
lini
al 
onstraints, su
h as being ableto use expert delineations. Combined with the parameter estimation methodology,we believe that the methods proposed in this thesis have the potential to be usedin the 
lini
al 
onditions. We have presented our work on extrapolating the in�l-tration extent of gliomas in di�erent 
onferen
es and workshops [Konukoglu 2006℄.The details of the �nal algorithm and the �nal experimental results have also beensubmitted as a journal paper [Konukoglu tteda℄.



146 CHAPTER 9. CONCLUSIONS AND PERSPECTIVES9.1.3 Anisotropi
 Fast Mar
hingIn the last part of this thesis, we have fo
used on a more algorithmi
 and fun-damental problem. During our analysis of the rea
tion-di�usion models we haveseen that anisotropi
 Eikonal equations play an important role. Both for estimat-ing parameters and extrapolating the not dete
ted in�ltration of gliomas we haveen
ountered this type equations in our methods. In Chapter 8 we have proposeda novel numeri
al method to solve anisotropi
 Eikonal equations in a fast and a
-
urate manner. The advantages of this method are that it is a fast method, it
an handle high anisotropies and it 
an easily be implemented on general meshes.In our experiments, for demonstrating its speed, we have 
ompared the proposedalgorithm with a state of the art method in terms of 
omputation times. The pro-posed algorithm proved itself to be faster in the 
ases we have examined. Thisnovel numeri
al method have been used throughout this thesis and thus it provedits use in the 
ontext of tumor growth modeling. Moreover, it 
an also be applied todi�erent appli
ations su
h as 
ardia
 ele
trophsiologi
al modeling, wound healing,geophysi
s,... We have presented the proposed numeri
al method in international
onferen
es in the 
ontext of tumor growth modeling [Konukoglu 2007a℄. We havealso used the proposed method for simulating the evolution of potential fronts inthe 
ontext of ele
trophysiologi
al modeling of the heart [Sermesant 2007℄.9.1.4 Other ContributionsBesides the te
hni
al 
ontributions explained above we have also 
ontributed inreview and state of the art arti
les fo
using on the use of mathemati
al tumorgrowth models and their potential importan
e in 
lini
al 
an
er resear
h [Clatz 2006,Angelini 2007, Mandonnet 2008℄. As a new �eld, we have written a state of the artreview 
hapter on tumor growth models in on
ologi
al image analysis whi
h willappear in next edition of the Handbook of Medi
al Imaging [Konukoglu 2008a℄.The details of this work are also presented in the Chapter 3 of this thesis.This thesis is aimed to be a 
oherent 
ombination of our works on modelingbrain gliomas and linking these models to medi
al images. As a side topi
 wehave also worked on monitoring the growth of very slowly growing tumors. Inthe 
ase of tumors where the growth is extremely slow and the follow-up takesyears the methods explained in this thesis might not be suitable. However, su
htumors are not very un
ommon both in the 
ase of 
hildren, pilo
yti
 astro
ytomas,and adults, meningiomas. Change dete
tion is a 
riti
al task in the diagnosis ofthese pathologies. In [Konukoglu 2008b℄, we have des
ribed an approa
h that semi-automati
ally performs this task using longitudinal medi
al images. Our fo
us wason meningiomas, whi
h experts often �nd di�
ult to monitor as the tumor evolution
an be obs
ured by image artifa
ts su
h as intensity di�eren
es or pose 
hanges. Wehave tested the proposed method on syntheti
 data with known tumor growth aswell as ten 
lini
al data sets. We have shown that the results of our approa
h highly
orrelate with expert �ndings but seem to be less impa
ted by inter- and intra-ratervariability.



9.2. PERSPECTIVES 1479.2 Perspe
tives9.2.1 Te
hni
al ImprovementsThis thesis fo
used on rea
tion-di�usion type tumor growth models with a parti
ularinterest in anisotropi
 models proposed re
ently. In terms of the methods presentedhere there are still lots of improvements and analysis that 
an be and should be made.In the �rst phase model for the evolution of the tumor delineation should be studiedand formulated better. Espe
ially the e�e
t of 
urvature should be better handled.On the other hand, we have not analyzed the anisotropi
 fast mar
hing methodtheoreti
ally enough. Therefore, a 
onvergen
e analysis and worst-
ase 
omplexityshould be studied.In terms of the parameter estimation methodology presented, we have not takeninto a

ount the mass e�e
t of the tumor whi
h is espe
ially observable for thehigh grade gliomas. This e�e
t should be in
luded in the method for a 
ompleteparameter estimation. The way the mass e�e
t is taken into a

ount in the existingliterature is through 
oupling the tumor 
ell density distributions with the lo
alpressure exerted on the brain tissue. This poses a di�
ulty for the front evolutionformulation we have used in the method proposed. The attempt for taking intoa

ount the mass e�e
t should over
ome this problem and link the evolution of thetumor delineation with the deformation applied to the brain tissue. One way forthis would be to 
ombine the extrapolation method with the parameter estimationand 
reate the tumor 
ell distribution for ea
h parameter set during the estimationpro
ess. Using this one 
an integrate the mass e�e
t in the parameter estimationmethod.For the extrapolation of invasion margins and 
onstru
ting variable irradiationregions one should think of integrating a model for radiotherapy in the proposedmethodology. Although 
onstru
ting irradiation margins 
onsistent with the tumorin�ltration is a good �rst step, one should in
lude the e�e
t of therapy and theresponse of the tumor to the therapy to simulate the real bene�ts of using variableirradiation margins. For this purpose only ma
ros
opi
 models would not be enoughbe
ause the sto
hasti
 nature of the response to therapy would not be 
aptured.Instead a hybrid model 
ombining the mi
ros
opi
 and ma
ros
opi
 models 
an beused.Our main 
on
entration in this thesis, as we said, was on linking the medi
alimages and rea
tion-di�usion type growth models. However, there are many di�er-ent improvements one 
an think of in the rea
tion-di�usion models. The �rst setof these are stru
tural 
hanges in the model. The rea
tion-di�usion formalism 
anbe extended using adve
tion and 
onve
tion pro
esses whi
h would better explainthe migratory behavior of tumor 
ells espe
ially on the white matter. Moreover,subdiving the tumor into di�erent 
ompartments su
h as the ne
roti
 
ore, bulkypart of the tumor and the in�ltrative part might be a better and more a

uratemodeling strategy. Following this one would apply di�erent model equations toea
h 
ompartment and 
ouple them to 
reate the link between the evolution of ea
hpart. Su
h a partitioning 
an also be used for the brain tissue des
ribing di�erentbehavior of the tumor in di�erent parts of the brain. In this 
ontext one 
an also
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onstru
tion methods for the tumor 
ell di�usion tensor using waterdi�usion tensor. We have seen two examples in this thesis however, more general
onstru
tion methods 
an be used.The models studied here were deterministi
 models and therefore, they were notable to take into a

ount the sto
hasti
 nature of tumor growth. The natural ex-tension to these models would be to in
lude the sto
hasti
 behavior. One way torealize this would be to propose hybrid models whi
h would have a mi
ros
opi
 partand a ma
ros
opi
 part. The general evolution would be 
aptured by the ma
ro-s
opi
 part while the sto
hasti
 nature would be present through the mi
ros
opi
part. One other way would be to use sto
hasti
 partial di�erential equations andmodel the evolution of probabilities of growth rather than having a deterministi
evolution. In this 
ontext one should also study the link between mi
ro and ma
romodels. The e�e
t of mi
ros
opi
 dynami
s on the ma
ros
opi
 parameters are notwell explained for the tumor growth models. There are a few works whi
h aimed tobuild this link however, this �eld is still untraveled.One other natural extension to the type of growth models presented in this thesisis the modeling of therapy. There are two major reasons for this. The �rst one isthat the 
lini
al 
ases always have the e�e
t of therapy on them. Therefore, in orderto 
orre
tly apply tumor growth models to the patient 
ases one should take intoa

ount the therapy administered. The se
ond reason is inherent in the aim of the
an
er resear
h. In trying to �nd a 
ure for the 
an
er, mathemati
al models 
anserve as the initial �playgrounds� for the new therapy te
hniques where extensivetests 
an be simulated. Corre
t and a

urate modeling of the therapy pro
ess andthe response of the tumor to the therapy be
omes a 
ru
ial for this purpose.In the models we have studied anatomi
al and di�usion MR images were usedto formulate the growth of tumor. As new te
hniques be
ome available and morea

essible one should think of integrating more imaging modalities in the mathe-mati
al des
riptions. PET, MRSI, perfusion images and others 
an help improvethe a

ura
y of the models.9.2.2 Appli
ation to Clini
al ImagesDuring the 
ourse of this thesis we have realized the di�
ulty of obtaining patientdatabase where the proposed methodologies 
an be tested. In 
onventional 
lini-
al setting only anatomi
al MR images are a
quired and most of the time they donot have a high resolution. On the other hand, in the models we have seen theimportan
e of high resolution images and the di�usion information in a

uratelydes
ribing the growth pro
ess. Therefore, most of the patient images a
quired atthe moment are not suitable for testing and validating the rea
tion-di�usion typegrowth models and the methodologies presented in this thesis. Here we would liketo take the opportunity and des
ribe the ideal patient database that 
ould be usedfor evaluating the methods presented in this thesis and the tumor growth models.The anatomi
al images play a very important role in the modeling pro
ess as theyprovide the geometry and lo
ation of the tumor and the brain stru
tures. Moreover,they provide the white matter gray matter segmentation whi
h is 
ru
ial for mod-eling the di�erential motility of tumor 
ells. The di�erential motility is not only



9.2. PERSPECTIVES 149modeled by this segmentation though, one needs to have high resolution a

urateinformation about the �ber stru
tures of the brain as well. The di�usion tensorimages provide this information. On the other hand, the tumor growth models de-s
ribe the evolution of the tumor. This evolution 
an only be observed from timeseries of images. As a result, we see that the ideal dataset 
onsists of high resolutionanatomi
al and di�usion images taken regularly from the same patient using thesame proto
ols and the same imaging devi
es. We were lu
ky enough to �nd 2 su
h
ases in this thesis and show preliminary results.The ideal dataset explained above might not be available for all the patients.High resolution anatomi
al and/or di�usion images might be missing for di�erent
ases. In order to be able to apply the presented methodologies and tumor growthmodels in the generi
 
lini
al situations one needs to over
ome these problems.Registration te
hniques proposed for anatomi
al and di�usion images is a very good
andidate for solving these problems. One 
an imagine to �ll the pla
e of the missingimage by registering an atlas to the patient spa
e and 
ontinuing with the analysis.However, the e�e
t of using registration algorithms on the simulations should bestudied. And moreover, atlas images will not 
arry the patient spe
i�
 di�usioninformation as present in di�erent tumor regions. Therefore, e�e
t of this shouldalso be analyzed.9.2.3 ValidationThe in-vivo validation and evaluation of the methods presented here and in moregeneral of the tumor growth models is a big 
hallenge. In this thesis and in most ofthe previously proposed works �indire
t� validation of the methods and models havebeen performed. Measures su
h as, the resemblan
e of simulated and real data, themass e�e
t of the tumor and deformation in the brain tissue and survival rates havebeen widely used. Although these measures provide promising hints they are notquantitatively validating the behavior of tumor 
ells and in this sense they are not�dire
t� validations.In the 
ase of in-vitro experiments, dire
t validation 
an be a
hieved easier andhave been performed in di�erent works. Through mi
ros
opi
 analysis the tumor 
elldensity on the petri-dish 
an be 
ompared with the density distribution simulatedby the model whi
h would serve as a validation both for the model itself and theextrapolation method presented in this thesis. Using similar analysis the parametersof the tumor 
ells in the petri-dish 
an be identi�ed and these would be used tovalidate the parameter estimation method. This sounds plausible however, in petri-dish experiments the tumor is grown outside the body, in-vitro. The dynami
s ofthe tumor growth inside the body and on a petri may have di�eren
es and therefore,although the in-vitro experiments provides valuable information they do not re�e
tthe behavior of the tumor in-vivo.The in-vivo evolution of the tumor 
an be observed through medi
al images andbiopsies. As a �rst step these sour
es of information 
an be used for a preliminaryvalidation. Su
h a work bears 
ertain di�
ulties like 
reating a large database ofbrain gliomas, having regular follow-ups and spatially linking the biopsies to the im-ages. For a thorough validation on the other hand, we have seen that the information
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al images are limited and the biopsy is a very lo
al te
hniquethat does not provide a global information about the tumor. Using these sour
eswe 
annot obtain information regarding the tumor 
ell density distributions andmi
ros
opi
 dynami
s, whi
h are 
ru
ial in validating the methods and the growthmodels in general. For this purpose whole brain autopsies and animal models 
anbe useful. Mi
ros
opi
 analysis of several 
ross-se
tions of the post-mortem brain,the animal model or a tumor rese
ted as a whole 
an provide us the informationwe seek about the tumor 
ell density distribution. Moreover, these analysis 
an be
ombined with high resolution MR images to give us the opportunity to understandwhat we observe in the medi
al images.9.2.4 FutureThe tumor growth modeling in the 
ontext of medi
al images is an emerging �eld.Several preliminary works have been proposed that showed the potential of su
hmodels and also pointed out the big 
hallenges. As data a
quisition te
hniques andour understanding of the tumor biology improve these models will be
ome morerealisti
 and a

urate. Simulations will be
ome a 
ommon ingredient in the therapydevelopment and testing as we see today for the other �elds.On the other hand, with the enhan
ing generi
 models, there will also be bigadvan
ements in the personalization of these models. In the end we would be ableto obtain patient-spe
i�
 models whi
h would be used in the 
lini
al setting bothfor the diagnosis and treatment planning of the tumor. Based on the 
urrent stateof the patient the do
tors will be able to simulate the possible out
omes under thee�e
ts of di�erent therapies and 
hoose the right treatment for ea
h patient.



Appendix AHamilton-Ja
obi Equations: ABrief Review
Hamilton-Ja
obi (HJ) equations are �rst order nonlinear partial di�erential equa-tions with the general form

∂Φ(x, t)

∂t
+H(x,Φ,∇Φ, t) = 0, x ∈ R

n, (A.1)where H is 
alled the Hamiltonian, Φ is 
alled the Hamilton's prin
ipal fun
tionand ∇ is the gradient operator. These equations play an important role in 
al
u-lus of variations as they 
an be linked to optimization problems through 
ertaintransformations on the fun
tion Φ and its derivatives [Brunt 2004, Giaquinta 1996℄.Therefore, they are important for a large �eld of appli
ations su
h as 
omputervision, image pro
essing, optimal 
ontrol theory, geometri
 opti
s and geophysi
s.Equation A.1 has a time dependen
e and des
ribes the temporal 
hange of the fun
-tion Φ therefore, it is a dynami
 Hamilton-Ja
obi equation. When the equationdoes not have a time dependen
e then we have the stati
 Hamilton-Ja
obi equationwhi
h has the general form
H(x, T,∇T ) = 1, x ∈ R

n. (A.2)This equation as its dynami
 
ounter part 
an also be nonlinear due to the formof the H fun
tion. Osher in [Osher 1993℄ have linked the dynami
 and the stati
equations by showing that stati
 HJ equations 
an be transformed into dynami
ones through embedding the T fun
tion into an impli
it fun
tion. We also usedthis link in Chapter 4. The HJ equations are by de�nition �rst order. However,in the literature 
ertain equations involving se
ond order derivatives are referred toas se
ond order Hamilton-Ja
obi equations i.e. the 
urvature �ow, [Sethian 1999℄.The HJ equations are very general and in this thesis we are mostly interested in aspe
i�
 form of this general 
lass, namely the Eikonal equation.The Eikonal equation is a stati
 HJ equation whose general form is
F (x)|∇T | = 1, x ∈ Ω (A.3)where F (x) is 
alled the speed fun
tion and | · | denotes the norm of a ve
tor. Thisequation simply des
ribes the spatial gradient relationship of the fun
tion T underthe e�e
t of the speed fun
tion F . Equation A.3 together with a Diri
hlet typeboundary 
ondition of the form

T |∂Ω = 0, (A.4)151



152 APPENDIX A. HAMILTON-JACOBI EQUATIONS
reates the boundary value problem (BVP), where ∂Ω is the boundaries of the 
om-putation domain. Physi
ally, the solution T of this problem at any point p representsthe shortest time needed to travel from ∂Ω to p. Therefore, T is usually referredto as the traveling time fun
tion. The iso-value surfa
es of this fun
tion provides usiso-time (or iso
hrones) surfa
es. Ea
h iso-time surfa
e is a 
ombination of pointsequidistant from the boundary ∂Ω, see Figure A.1. The type of Eikonal equation

Figure A.1: The traveling time fun
tion T shown in 
olor using the boundary 
on-dition given in Equation A.4. The iso-time 
ontours/surfa
es are ensemble of pointsequidistant from the boundary ∂Ω. The Eikonal equation is also linked to a level-set equation through embedding the iso-time surfa
es as zero level-sets of anotherimpli
it fun
tion Φ. As a result the evolution of the zero level-set of Φ 
orrespondsto the T fun
tion.we have majorly dealt with in this thesis is de�ned with respe
t to a tensor (3x3positive de�nite matrix) and therefore has a slightly di�erent form:
F (x)

√
∇T ′D∇T = 1, x ∈ Ω, (A.5)where D is a tensor. Although this equation is di�erent than Equation 4.3 itsphysi
al meaning is the same under the assumption of an anisotropi
 speed mapimpli
itly governed by the tensor D and it is also a stati
 HJ equation.The stati
 HJ equation given in A.3 
an be linked to a dynami
 one by followingthe embedding and the transformation proposed by Osher in [Osher 1993℄. If we
onstru
t an impli
it fun
tion Φ through the embedding

Φ(x, t) = 0 ⇔ T (x) = t (A.6)and use the transformation
∂T

∂xi
=

Φxi

Φt
i ∈ [1, n] ∈ N (A.7)



153we obtain the type of dynami
 HJ equation whi
h is also referred to as a level-setequation.
∂Φ

∂t
= F (x)|∇Φ|. (A.8)This equation des
ribes the temporal evolution of the zero level-set of Φ throughthe evolution of the whole impli
it fun
tion. During the embedding, at a given time

t the only 
onstraint on Φ is around the T = t iso-time surfa
e. Therefore, for the
onstru
tion of the rest of the Φ there is a freedom, whi
h is most of the time used infavor of a signed distan
e fun
tion SDF (). The SDF is the distan
e map of a 
losedsurfa
e (
urve) (su
h as the boundary ∂Ω) whi
h has negative/positive values insidethe surfa
e and positive/negative values outside it. The surfa
e itself be
omes thezero level-set of this fun
tion as its distan
e from itself is zero. Assuming su
h a
onstru
tion for the Φ, the boundary 
ondition given in Equation A.4 be
omes aninitial 
ondition
Φ(x, 0) = SDF (∂Ω) (A.9)and Equation A.8 
ombined with this one 
reates an initial value problem (IVP). Asthe fun
tion Φ evolves in time its zero level-set 
hanges its lo
ation and the evolutionof this zero level-set in time 
orresponds to the T fun
tion, see Figure A.1.We have presented the level-set equation in relation to what we have mainlyused in the thesis, namely the Eikonal equations. However, level-set fun
tions andmethods are in fa
t mu
h more general. The general form of level-set equationsin
ludes additional terms on its right hand side

∂Φ

∂t
= F (x)|∇Φ|+ V (x) · ∇Φ +G(x)κ, (A.10)where V is an external ve
tor �eld, G is a s
alar fun
tion and κ is the mean 
urvature.As it was the 
ase for Equation A.8 this equation also des
ribes the motion of itszero level-set. The e�e
t of the three 
omponents on the right hand side are- The �rst 
omponent F (x)|∇Φ| provides the motion of the zero level-set in thenormal dire
tion. This term is 
alled the propagation or 
onve
tion term.- The se
ond 
omponent V (x) · ∇Φ provides the drifting motion of the zerolevel-set under the e�e
t of the external ve
tor �eld V . This term is 
alled theadve
tion term.- The third term G(x)κ is the 
urvature �ow, whi
h has a smoothing e�e
t onthe zero level-set. This term is 
alled the 
urvature term.One important thing to note here is that the mean 
urvature κ is a term that in
ludesse
ond order derivatives. As we have explained, HJ equations are �rst order byde�nition however, in the literature equations su
h as (A.10) are also referred to asse
ond order HJ equations. Further details on the level-set equations and methods
an be found in [Sethian 1999℄.
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Appendix BUn
onstrained Optimization byQuadrati
 Approximation[Powell 2002℄
The multidimensional minimization problems are very 
ommon in many diverse�elds. In Chapter 4 we have formulated su
h a problem in the 
ontext of parameterestimation for rea
tion-di�usion type tumor growth models. In this appendix webrie�y explain the optimization algorithm we have used to solve that minimizationproblem. The algorithm is proposed by Powell in [Powell 2002℄ and for furtherdetails on the algorithm please refer to this referen
e and the other a

ompanyingones [Moré 1983, Powell 2001, Powell 2003℄.The optimization algorithm we have used in this thesis does not use the deriva-tives of the obje
tive fun
tion instead it builds quadrati
 approximations to it anduses the 1st and the 2nd derivatives of these approximations. Therefore, for the prob-lems where the derivatives of the obje
tive fun
tion are not available it is preferable.Moreover, be
ause the algorithm 
onstru
ts quadrati
 approximations using inter-polation, it is more robust to noise than the other algorithms 
omputing expli
itderivatives. Before going into details of the algorithm we �rst explain brie�y �trustregion methods� and the �trust region problem�, whi
h will be used.Trust region problem is an optimization problem whose solution is bounded ina region su
h as

min{ψ(w) : ||w|| ≤ ∆}, (B.1)where ψ is the fun
tion to minimize, w is the solution we seek and ∆ is the trustregion radius. We see that this problem sear
hes for the solution under a magnitude
onstraint, ∆. We readily noti
e that the size of ∆ gives us the 
oarseness of thealgorithm. Meaning that, if ∆ is large we are at a 
oarser resolution while if ∆we are more fo
used on �ner sear
h. Trust region methods are a general 
lassof optimization algorithms whi
h requires the solution of a trust region problembetween ea
h iteration of the overall algorithm.As we have noted the optimization algorithm in [Powell 2002℄, instead of thederivatives of the obje
tive fun
tion F , uses the derivatives of the quadrati
 model
Q(x) = cQ + g′Q(x− xb) +

1

2
(x− xb)′GQ(x− xb) x ∈ R

n, (B.2)whi
h is an approximation of F around the point xb. This model, in whi
h gq is ave
tor and GQ is a symmetri
 matrix, is 
onstru
ted by interpolation to values of155
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tive fun
tion. Sin
e this system has m = 1/2(n+ 1)(n+ 2) dimensions weneed to use m points to 
onstru
t the model. So the interpolation satis�es
Q(xi) = F (xi), i = 1, ...,m. (B.3)The points xi, �the interpolating points�, are found automati
ally in the algo-rithm [Powell 2002℄. The other ingredient used in the minimization algorithm isthe Lagrange fun
tions of the interpolation problem. There exists as many La-grange fun
tions as the dimension of the problem and these fun
tions are de�ned asquadrati
 polynomials that satisfy

lj(xi) = δij, i = 1, ...,m, (B.4)
lj(x) = cj + g′j(x− xb) +

1

2
(x− xb)′Gj(x− xb), x ∈ R, , (B.5)

Q(x) =

m∑

j=1

F (xj)lj(x), (B.6)where δij is the Krone
ker delta and lj denotes the jth Lagrange fun
tion with the
oe�
ients cj, gj and Gj .The overall optimization algorithm is mainly 
on
erned with 
onstru
ting a goodquadrati
 approximation Q to F within a region and minimizing Q in that givenregion. As the algorithm iterates this region moves towards the minimum (maxi-mum) of F and for ea
h region a new Q is 
onstru
ted. Therefore we see that there2 di�erent questions: �How do we 
onstru
t Q and then move it?� and �How do we�nd the minimum of Q in a region?�.We start the algorithm with 4 inputs, the obje
tive fun
tion F , the initial opti-mum guess xb, initial trust region radius ρbeg and the �nal trust region radius ρend(with ρbeg > ρend). The �rst step is to 
onstru
t the interpolation fun
tion Q forwhi
h the details 
an be found in [Powell 2002℄. As we have noted the trust regionradius determines the 
oarseness of our sear
h, we start our sear
h for the minimumat the 
oarser resolution ρ = ρbeg by solving the trust region problem
min(Q(xk + d)) su
h that ||d|| ≤ ∆, ∆ ≥ ρ, (B.7)where xk is the point among the interpolating points whi
h has the minimum Fvalue and ∆ is another trust region radius whi
h is added to in
rease the e�
ien
yof the algorithm, [Powell 2002℄. At this point there are two out
omes, the �rstone is that we �nd a d value whi
h satis�es F (xk + d) < F (xk). This means wefound a new minimum, therefore we move a �suitable� point interpolating point xito xk + d, re
onstru
t Q, lj 's and solve Equation B.7. The se
ond one is that wedo not �nd su
h a d. In this 
ase we �rst ask the question whether Q is a goodapproximation for F . If the distan
e between one or more of interpolating points

xi and the minimum point xk is greater than ||xi − xk|| > 2ρ we move this point
loser to xk, re
onstru
t Q, lj's and solve Equation B.7. In order to �nd the newlo
ation of xi we solve another trust region problem given as
max(li(xk + d)) su
h that ||d|| ≤ ρ. (B.8)



157This problem provides us a new lo
ation xi = xk + d su
h that the nonsingularityof Q 
onstru
ted using this new point will be assured, [Powell 2001℄. On the otherhand, if we 
annot �nd a point far away from xk we trust the quality of our approx-imation Q and de
ide that we are in the basin of attra
tion and we need to go into�ner details. We redu
e the trust region radius ρ and 
onstru
t a �ner quadrati
approximation Q and Lagrange fun
tions lj 's. After this point the algorithm 
on-tinues as before. The stopping 
riteria is given by ρ where on
e ρ < ρend we stop.The overall algorithm is also summarized brie�y in Figure B.1. For a more detaileddes
ription please refer to [Powell 2002℄.The number of times the value of the obje
tive fun
tion is 
omputed for di�er-ent points remains low in this algorithm. As the initialization we 
all the obje
tivefun
tion m times. Later on for ea
h iteration we only 
all it on
e and then re
on-stru
t the quadrati
 approximation and Lagrange fun
tions through updating theinterpolating points, see [Powell 2002℄. Therefore, in the 
ase where 
omputation ofthe obje
tive fun
tion F takes time, this algorithm be
omes a good 
hoi
e.
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Figure B.1: The overall optimization algorithm used in Chapter 4 proposedin [Powell 2002℄



Appendix CPreliminary Results of theParameter EstimationMethodology with Real Cases:Extra Images
In this appendix we provide additional images for the results presented in Se
tion 5.2.In that se
tion we have presented the preliminary results of the parameter estimationmethodology on the real 
ases both for �tting the observed evolution and also forpredi
ting the further evolution of the tumor. Ea
h page in this appendix is devotedto di�erent axial sli
es of an MR image taken at the same time instan
e.In Se
tion C.1 we provide the additional images for the results given in Se
-tion 5.2.1. We start from the �rst images (Figures C.1 and C.5) and show 15 axialsli
es of those image in
luding the manual delineations (in white). After that we pro-vide the following images in the time series in
luding both the manual delineations(in white) and the evolution of the tumor delineation obtained with the estimatedparameters (in bla
k).In Se
tion C.2 we provide the additional images for the results given in Se
-tion 5.2.2. We start from the last image (Figures C.9 and C.11) that was used inthe estimation of the parameters and show 15 axial sli
es of those image in
ludingthe manual delineations (in white). After that we provide the �nal image showingthe �nal state of the tumor both the with manual delineation (in white) and thepredi
ted evolution of the tumor delineation (in bla
k).C.1 Fitting the Observed Evolution: Additional ImagesC.2 Predi
ting the Further Evolution: Additional Im-ages

159



160 APPENDIX C. PARAMETER ESTIMATION RESULTS: REAL CASES

Figure C.1: The MR image taken at the �rst time point for the �rst patient. White
ontour denotes the manual delineations.



C.2. PREDICTING THE FURTHER EVOLUTION: ADDITIONAL IMAGES161

Figure C.2: The MR image taken at the se
ond time point for the �rst patient.The white 
ontour denotes the manual delineations and the bla
k 
ontour is theestimated evolution of the tumor delineation.
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Figure C.3: The MR image taken at the third time point for the �rst patient.The white 
ontour denotes the manual delineations and the bla
k 
ontour is theestimated evolution of the tumor delineation.
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Figure C.4: The MR image taken at the �rst time point for the se
ond patient.White 
ontour denotes the manual delineations.
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Figure C.5: The MR image taken at the se
ond time point for the se
ond patient.The white 
ontour denotes the manual delineations and the bla
k 
ontour is theestimated evolution of the tumor delineation.
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Figure C.6: The MR image taken at the third time point for the se
ond patient.The white 
ontour denotes the manual delineations and the bla
k 
ontour is theestimated evolution of the tumor delineation.
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Figure C.7: The MR image taken at the fourth time point for the se
ond patient.The white 
ontour denotes the manual delineations and the bla
k 
ontour is theestimated evolution of the tumor delineation.
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Figure C.8: The MR image taken at the �fth time point for the se
ond patient.The white 
ontour denotes the manual delineations and the bla
k 
ontour is theestimated evolution of the tumor delineation.
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Figure C.9: The last image that was used in estimating the parameters of therea
tion-di�usion growth model for the �rst patient.
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Figure C.10: The �nal image showing the �nal state of the tumor along with thetumor delineation predi
ted by the model (in bla
k) and segmented by the expert(in white).
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Figure C.11: The last image that was used in estimating the parameters of therea
tion-di�usion growth model for the se
ond patient.
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Figure C.12: The �nal image showing the �nal state of the tumor along with thetumor delineation predi
ted by the model (in bla
k) and segmented by the expert(in white).
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ronymsBVP Boundary Value Problem, 151CA Cellular Automata, 27CSF Cerebrospinal Fluid, 11CT Computed Tomography, 10CTV Clini
al Target Volume, 91DT Di�usion Tensor, 11DT-MRI Di�usion Tensor MRI, 11DWI Di�usion Weighted Images, 11EC Endothelial Cell, 24ECM Extra
ellular Matrix, 17EGFR Epidermal Growth Fa
tor Re
eptors, 28FA Fra
tional Anisotropy, 15FM Fast Mar
hing, 102FMM Fast Mar
hing Method, 131fMRI fun
tional Magneti
 Resonan
e Imaging, 11GBM glioblastoma multiforme, 9Gd Gadolinium, 11GIF Growth Inhibiting Fa
tor, 21HJ Hamilton-Ja
obi, 151IVP Initial Value Problem, 153MD Mean Di�usivity, 15MR Magneti
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e, 10MRI Magneti
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e Imaging, 10MRS Magneti
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