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Préambule

La chromodynamique quantique (QCD de I'anglais “Quantum ChromoDynamics”) est la théorie
de linteraction entre les quarks et les gluons. Elle décrit I'une des quatre interactions fonda-
mentales connues et constitue, avec la théorie électrofaible, le modele standard de la physique
des particules. Elle présente les avantages de pouvoir étre formulé de maniere compacte, de ne
dépendre que de sept parametres —les masses des six quarks et la constante de couplage forte
as— et de prédire un nombre incalculable d’observables.

Ce succes théorique vient en partie d’une propriété fondamentale de la théorie : la liberté
asymptotique. Celle-ci prédit que la constante de couplage forte décroit avec I’énergie, rendant les
calculs perturbatifs asymptotiquement convergents a haute énergie. Les calculs dans ce régime
ont notamment permis d’établir la validité de la théorie dans des accélerateurs, et restent encore
aujourd’hui cruciaux pour interpréter avec précision les résultats obtenus dans un grand nombre
d’expériences de physique des hautes énergies. A contrario, a basse énergie, les calculs pertur-
batifs ne décrivent plus les phénomenes observés. La phénoménologie change drastiquement et
aucun lien entre la théorie fondamentale n’est évident. On assiste en effet a ’émergence d un
grand nombre d’états — stables ou résonnants vis-a-vis de l'interaction forte — qui semblent
interagir entre eux sans signature des degrés de liberté fondamentaux que sont les quarks et
les gluons. Ceux-ci sont dits confinés dans un ensemble d’états apelés hadrons. Différentes ap-
proches ont été suivies pour décrire la physique hadronique — le but n’est pas d’en donner une
liste exhaustive ici — mais force est de constater qu’il est extrémement difficile de construire
des modeles effectifs qui décrivent de maniere quantitative ’ensemble des phénomenes observés.
L’enigme est d’autant plus stimulante que I'interaction forte résiduelle entre les hadrons est aussi
a 'origine de la cohésion des noyaux et de certaines de leur propriétés.

Cette these est dédiée & 1’étude théorique de la spectroscopie des baryons (composés de trois
quarks) en utilisant la seule approche connue & ce jour pour traiter de maniére non perturbative
la QCD, a savoir la chromodynamique quantique sur réseau. Ce document vise a détailler toutes
les étapes nécessaires pour extraire l'information physique sur les masses des baryons a partir de
la formulation théorique de la QCD.

La QCD sur réseau est une approche numérique basée sur la discrétisation de ’espace
quadridimensionel de la formulation Euclidienne de la QCD. Elle fut introduite d’abord comme
un outil théorique par K. Wilson en 1974 avant que M. Creutz ne réalise en 1980 la premiere
simulation numérique de théorie quantique des champs sur réseau. La méthode est essen-
tiellement fondée sur l'utilisation de la formulation fonctionnelle de la théorie et consiste a
évaluer numériquement | intégrale fonctionnelle en échantillonant, via des méthodes Monte Carlo,
I’espace de configurations des champs. Comme nous le verrons, la génération de tels échantillons
est de loin la partie la plus cotteuse en terme de puissance de calcul et nécessite 1'utilisation des
Super Calculteurs les plus perfomants disponibles a I’heure actuelle.

Le premier chapitre retrace brievement ’avénement de la QCD comme théorie de | interaction
forte et résume les principes généraux qui permettent d’effectuer des simulations numériques.



L’accent est mis sur les motivations et les défis qui font de ce champ de recherche un domaine
actif. Le second chapitre introduit les fermions utilisés au sein de la collaboration ”European
Twisted Mass” (ETM). Ceux ci présentent notamment les avantages de permettre la simulation
de doublets de quarks (dégénérés ou non), et de garantir que les effets de discrétisation soient
d’ordre a? (ou a est la maille du réseau). En revanche, ils brisent les symétries de parité et
d’isospin. Ces symétries ne sont restorées que dans la limite du continu (a — 0) et posent des
problemes propres a ce choix de discrétisation.

Le troisieme chapitre est dédié a 'extraction des masses de hadron en QCD sur réseau. On y
montre que le comportement & long temps de corrélateurs de la forme (J(x)J(0)), (ou J est un
opérateur qui a les nombres quantiques du hadron que ’on cherche & étudier), est exponentielle-
ment décroissant et que le taux de décroissance est donné par la masse du hadron. Les champs
interpolants de loctet de spin 1/2 et du décuplet de spin 3/2 sont ensuite donnés. On démontre
ensuite une formule générale qui permet de construire explicitement le corrélateur associé a un
champ interpolant (local) de baryon quelconque. Cette formule a été implementée dans un code
parallele et constitue la pierre angulaire dont découle tous les résultats bruts concernant la masse
des baryons. Les méthodes d’analyse sont ensuite discutées, I’accent étant mis sur ’estimation
des erreurs statistiques.

Le chapitre Eldétaille les algorithmes et les méthodes utilisées pour générer les configurations.
Une part importante de mon temps de travail a été dédiée a générer des configurations sur la
BG/P de I'IDRIS. Ces configurations sont maintenant activement utilisées dans 'ensemble de
notre collaboration et dans divers projets de physique. La problématique principale des calculs
sur réseau apparait clairement dans ce chapitre, en effet, on y explique pourquoi les cotuts des
simulations a des masses de pion tres proches de la masse du pion physique sont prohibitif. Ce
chapitre résume également quelques résultats importants obtenus par la collaboration durant ma
these.

Le chapitre | s’attache & décrire les théories effectives dites de pertubations chirales. Elles
fournissent de précieux outils pour extrapoler les résultats de nos simulations dans un régime
physique. On décrit en particulier les relations obtenues dans le secteur des baryons. Ces formules
seront ensuite utilisées dans les chapitres concernant ’étude des résultats réseaux proprement
dit. L’interprétation physique des différents termes permet de comprendre les différentes ap-
proximations et montre l'incertitude systématique inhérente des résultats. On souligne le fait
que la convergence des séries de perturbations chirales dans un régime ou la masse du pion est
> 300 MeV est fortement discutable.

Le chapitre 6 est consacré a l'analyse des données brutes dans le secteur des baryons légers
(Nucléon et A) pour les ensembles Np = 2 et Np = 2+1+1. On y étudie les effets systématiques
de volumes et de mailles finis. On discute les problemes liés a I'extrapolation chirale. Le chapitre
7 s’intéresse aux baryons dits étranges.









Dynamical twisted mass fermions
and baryon spectroscopy

Abstract

The aim of this work is an ab initio computation of the baryon masses starting from quantum
chromodynamics (QCD). This theory describe the interaction between quarks and gluons and
has been established at high energy thanks to one of its fundamental properties : the asymptotic
freedom. This property predicts that the running coupling constant tends to zero at high energy
and thus that perturbative expansions in the coupling constant are justified in this regime. On
the contrary the low energy dynamics can only be understood in terms of a non perturbative
approach. To date, the only known method that allows the computation of observables in
this regime together with a control of its systematic effects is called lattice QCD. It consists
in formulating the theory on an Euclidean space-time and to evaluating numerically suitable
functional integrals. First chapter is an introduction to the QCD in the continuum and on a
discrete space time. The chapter B describes the formalism of maximally twisted fermions used
in the European Twisted Mass (ETM) collaboration. The chapter Bl deals with the techniques
needed to build hadronic correlator starting from gauge configuration. We then discuss how we
determine hadron masses and their statistical errors. The numerical estimation of functional
integral is explained in chapter Bl . It is stressed that it requires sophisticated algorithm and
massive parallel computating on BlueGene type architecture. Gauge configuration production is
an important part of the work realized during my Ph.D. Chapter B is a critical review on chiral
perturbation theory in the baryon sector. The two last chapter are devoted to the analyze in the
light and strange baryon sector. Systematics and chiral extrapolation are extensively discussed.
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2 Chapter 1. Introduction

As a general introduction, we give a brief presentation of the basic concepts and ideas which
lead to the main subject of this thesis. We begin by a short overview of the history of the strong
interaction and recall the main ingredients of the Quantum Field Theory (QFT) formalism. This
leads to the present formulation of theory of strong interaction, namely the Quantum Chromo-
dynamics (QCD), and to its fundamental properties. We emphasize the important fact that
computing observables in this theory is a challenging task for theoritical research. This particu-
lar point will naturally motivate the need for a non perturbative formulation of the theory, which
is usually only considered from the perturbative point of view. Choosing a discrete space time
as a regulator of the theory will provide such a formulation. A number of issues are raised by
this approach of quantum field theory and we will briefly discuss them. Finally particular care
has been devoted to baryon spectroscopy problems inside a context of an active and promising
field of research. Some of the related questions drive theoritical and phenomenological particle
physics since decades.

1.1 Early History of the Strong Interaction

In 1919, Rutherford realized that nucleus of all the atoms were composed of hydrogen nuclei. He
was the first to understand the fundamental role played by hydrogen nuclei and he called proton
this “fundamental particle”. Few years after, in 1932, Chadwick [1] realized that the radiation
that had been observed by Walther Bothe, Herbert L. Becker, Irene and Frédéric Joliot-Curie
was actually due to a neutral particle of about the same mass as the proton, that he called
the neutron. These discoveries immediately led theoritical physicists of that time to suggest the
existence of a new interaction, stronger that the electromagnetic repulsion, which was able to
bind proton and neutron together inside the nucleus. One of the first to propose a theory which
explains this interaction between nucleons was Yukawa in 1935 [2] by introducing a new particle,
latter called pion. The concept of strong interaction was born.

1.1.1 The Birth of Elementary Particle Physics

During the same period, cosmic rays experiment detecting charged particle trajectories were used
to test the Yukawa model. After a complicated story that we will not describe here, the pion was
finally found in 1947. Before that, in 1944, Louis Leprince-Ringuet and M. Lhéritier [3] working
in a laboratory built on the top of Aiguille du midi (French Alps), measured what is presently
known as the first strange particle (kaon) with a mass of about ~ 500 = 10% MeV . After these
pioneering experiments, physicists found other neutral and charged particles having masses close
to those found by Leprince-Ringuet. They decayed apparently into pions, it was the V' particle
(the name comes from the shape of the decay) , the 6 and the 7. In a modern language, this
particles are of course the three kaons (K+, K, K~), but it took years to establish that  and 7
were two opposite charge states of the same particle and that the V0 was its neutral counterpart.

In 1947 Rochester and Butler observed the associated production of a pair of unstable parti-
cles, and soon after it was proved experimentally that the masses of the two particles of the final
state were different, one of them was about 500 MeV, the other greater than that of the nucleon.
The heavier one was observed to decay into a pion and a nucleon. These particle were the first
hyperons - the so-called A and ¥s- that we will meet often along this work.

At that time several facts were astonishing physicists and that’s why these particle were called
“strange particle” : why were they always produced in pairs? why they decayed so ’slowly’ (with
lifetime typical of weak interaction ) although they are produced by a strong interaction process.
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In an attempt to answer these questions, Gell-Mann [4] and Nakano & Nishijima [5] , intro-
duced independantly a new additive quantum numbers S, the ’strangeness’, which is conserved
by strong and electromagnetic interaction but not by weak interaction. Furthermore, a bulk of
observation led theoriticians to introduce the concept of baryonic quantum number, which is
so far always conserved in all processes observed in Nature, and which allows to explain why
a family of particles heavier than the proton always decays into a proton. These states where
called baryons. The remaining states involved in strong interaction processes were called mesons.
Altogether mesons and baryons constitute the familly of hadrons. It is worthwihe to note that
during the fifties and sixties, hundreds of hadrons were found in the first accelerators, leaving
the community with a question : “Are all these particles fundamental 77

1.1.2 Quark Model

During the fifties several theoritical efforts [6] where undertaken to explain such a proliferation
of particles. The decisive step in classifing the physical baryons p,n, A ¥ and E (or Cascade
baryons) was realized by Gell-Mann [7] and Ne’eman [8]. The underlying idea was that the
strong interaction is symmetric under a symmetry group which can explain that the eight baryons
belong to the same multiplet of an irreductible representation. If the symmetry would have been
exact, the masses would be degenerate and because the symmetry is only approximate, the
masses are splitted. Gell-Mann [9] and Zweig even came one step further : they suggest that
hadrons were not elementary particles, but composite objects having an internal structure built
up from smaller particle named quarks (taken from a James Joyce’s novel Finnegan’s Wake ).
It turned out that this approximate symmetry is SU(3)¢, the group of unitary transformations
acting on a three-dimensional vector space. In the quark model, quarks are in the fundamental
representation 8 while antiquarks are in the conjugate representation 3. The three “’flavours” of
quarks nowadays known as the 'up’ (u), "down’ (d) and ’strange’(s) quarks . In this framework,
mesons are bound states of quark-antiquark that can be classified decomposing in irreducible
representations the tensor product 3@ 3 = 148 . The mesons in the SU(3)¢ octet are identified
with the eight pseudoscalar mesons of negative parity and are represented in Fig. [l

K° K+

Figure 1.1: Octet of pseudoscalar mesons.

Concerning the baryon they are bound states of three quarks, a similar analysis show that
the product 3®3 ® 3 can be decomposed in 108 H 8@ 1. One of the octet parts constitutes the
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spin 1/2 baryons of positive parity shown in Fig.[[J, while the decuplet are the spin 3/2 baryons
of positive parity shown in Fig. The decomposition in sum of irreducible representation of
the tensor product of fundamental representation of SU(3)¢ can be summarized by:

Meson 3®3
Baryon 3J®3I®3

8d1
10p808d1 (1.1)

An important assumption of this model is the exactness of the SU(3); symmetry between
quarks. In Nature it was observed that the masses of the low lying states of mesons and baryons
were not degenerate. It appeared that the SU(3); was only an approximation and that the SU(2)s
symmetry which relates for instance proton and neutron was a better approximation. From this
observation it was deduced that the strange quark had a mass significatively larger than the
mass of the up and down quark. Treating the difference of mass between the strange and the two
light quarks as a perturbation, Gell-Mann [10] in 1961 and Okubo [11] in 1962 derived relations
among masses of the isospin multiplets. More details on the so called Gell-Mann Okubo relation
can be found for instance in [12]. They found that for the octet of spin 1/2 baryon the relation

Mz + My  3Mp + My,

= (1.2)

which is experimentally very well satisfied. Indeed the left-hand side ~ 2.23 GeV and the right-
hand side ~ 2.25 GeV.

For the spin 3/2 decuplet of baryons the Gell-Mann Okubo relation predict an equal mass
difference among two consecutive (AS = 1) isospin multiplets:

Msye — Ma = M=+ — My = Mg — M=- (1.3)

Note that the equality Eq. ([3) was used to predict correctly the 2~ mass. A third relation
exists that connects the octet and decuplet of baryon and reads:

3My — My, — 2My = 2(Mg. — Ma) (1.4)

n P g

I

| |
T 1
1 3
3 1 B

1
1
-1 0

o

l= ——
—_

|
ol ——

|

—_

Figure 1.2: Octet of low lying baryon. Figure 1.3: Decuplet of low lying baryon.
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1.2 Quantum Chromodynamics

The development of Quantum Chromodynamics as a theory of the strong interaction was made
possible by tremendous progress on the phenomenological and theoritical side. From the purely
theoritical point of view, one of the main steps forward was realized by Yang and Mills in 1954 [13]
which generalizes the concept of gauge invariance under abelian U(1) to non-abelian SU(N) . At
that time, non abelian gauge theories were studied as a curiosity, but together with the sucesses
of the quark models in hadron spectroscopy - describing hadrons as bound states of quark - and
of the parton model in deep inelastic scattering experiments played a major role in the birth of
QCD.

We review here some basic facts about the present formulation of the theory starting from
the classical Lagrangian and going through the properties of the quantum field theory.

1.2.1 The QCD Lagrangian and its symmetries

The modern formulation of QCD is given in terms of a relativistic quantum field theory involving
quarks and gluons on a four dimensional space-time. The spin 1 gluon field 4, is the Yang-Mills
gauge field which takes its values in su(3), the Lie algebra of SU(3). generators.

The quarks are described by Ny Dirac fields

Y=v3%), f=1...Np, c¢=1,...3, ands=1,...4 (1.5)

In Nature, six quarks have been discovered so far, and at the classical level the full QCD
Lagrangian can be written :

1 — .
Lqcp = —ETI“ {.7:“1,]:‘“/} + ’lﬁ(l@ — M)’lb, (1.6)
with 1) = 1’4y and the Yang-Mills field tensor

Fop = O Ay — 0y A, +iglAu, A, (1.7)

A, (and F,,, ) can be expanded on the basis formed by the generators of su(3), in such way that
Ay = AT (a=1,...,8). Properties of this group are listed in The covariant derivative

Dy, = 0, +igAy, (1.8)

is diagonal in flavor space. The mass matrix M contains the mass of the six quarks on the
diagonal, and g is the strong coupling constant. Lagrangian () has the fundamental property
of insuring the invariance of the theory under the local gauge transformation :

b= =, P - =g0f

1 1.9
Ay — A =QA,0" + EQé),uQT, (1.9)

where  is an element of the group SU(3). which can be parametrized by a set of real-valued

functions w®(z) such that 4
Q=) =e @ cSUB).. (1.10)

The classical field theory is then completly defined by the following action :

SacplA, ¥, 9] = /d4CUEQCD- (1.11)
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We come now to the question of the symmetries of this action, which play a central role in
the current understanding of the theory. The Lagrangian is invariant under Lorentz transforma-
tions and phase redefinition of the fermion fields, respectively related to the energy momentum
conservation and to the charge conservation. Note that the action is invariant under the discrete
symmetries C, P and T which are defined in Appendix In principle, relaxing the hypothesis
of CP symmetry allows an additional term in the Lagrangian, the so-called 6 term, which is very
close to zero in experiment. This fine tuning problem is the so-called strong CP problem.

Additional symmetries appear in some peculiar limit of QCD parameters. They lead to
interesting conclusion in the quantum version of the theory. First of all, for the sake of concretness
consider the limit of a mass degenerate doublet of quarks u and d, which is close to be realized
in nature. The action is invariant under the transformation :

o= (4) = =vw F=@ -V = (112)

where U belongs to SU(2),,, the set of unitary two by two matrices of determinant one. This
symmetry, named isospin symmetry, will be of central importance in this work. Furthermore, let
us consider the massless limit of the doublet of quark also called the chiral limit. The Lagrangian
density becomes invariant under two classes of symmetries of special interest. The axial symmetry
defined by :

wz(g)ew'zw, G=(u d) -y =90, (1.13)
where U belongs to the set of transformation called SU(2) , which can be parametrized by
U=e"™%  q=1,...3 (1.14)

where 7% are the Pauli matrices defined in appendix [Al and a® real numbers. The flavour singlet
counterpart of this symmetry is then defined by a phase redefinition of the quark and anti-quark
fields as follows :

Y Y =Y, Y P = el (1.15)
The last classical symmetry of the theory is the dilation symmetry also called scale invariance.
Scale transformations are defined by

r— 2 =e %

Ay — A, =" A, (1.16)
o @ = et PyY) P = P = e ()

where a is a real number, and the canonical dimension of the fields are d4 = 1 and dy, = 3/2.
Scale invariance is related to the fact no dimensionfull parameters appear at the classical level
in the massless limit. These last two symmetries are broken at the quantum level by anomalies
(see for instance [14] and references therein).

1.2.2 Quantization

In this work, we will use the functional integral formalism introduced by Feynman [15], since
it provides a way to formulate non perturbatively the theory. Gauge theory quantization is a
delicate question and requires additional material that will not be needed in this work. A careful
treatment of the gauge symmetry, lead to introduce a new term called the gauge fixing (GF)
term S[A]gr. It breaks gauge invariance but gives a meaning to the formal expression of the
path integral. We will see later that this problem is naturally solved for lattice gauge theories
when one consider only gauge invariant correlation functions.
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It is convenient to define the correlator of a general functional of the field O[A, ), ] to be:

<O[A,'¢),E]> = %/DADlZ)’DEeiSQCD[A’w’a]+iSGF[A]O[A7u%EL (117)

where the partition function Z defined by :
Z = / DADYDeSacolAv vl+iSarA] (1.18)

The correlation function can then be related to the vaccuum expectation value of a T-product
of the corresponding operator (denoted with a hat) on the Hilbert space of state as :

(O[A, 4, 3]) = (O|TOLA, 4, )|0) (1.19)

The functional integral has to be understood as an integral over all the classical fields config-
urations of the fields A, and 1) over a four dimensional space-time.. Note that in order to give
the right statistic to fermions, the classical fermion field in the integral have to be represented
by anti-commutting variables. This is realized by representing fields in a Grassmann algebra.
The integral over such Grassmann valued numbers can be defined, in such a way that we can
formally perform the integration analytically :

/ DyDget S VoMY o det M (1.20)

Note that this completly defines the theory. This is a consequence of the reconstruction theo-
rem of Wightmann [16,17], which states that once known all the vaccuum expactation values of
the theory the quantum field theory can be fully determined. The path integral formalism is
often used in perturbation theory and gives rise to the famous expansion in terms of Feynman
diagrams. We will not consider this approach here, because it is not relevant for the physics we
are interested in. It is however worthwhile to note that this approach gives spectacular results
in its domain of validity, and is at the origin of QCD as a theory of strong interaction (parton
model in deep inelastic scattering). It is well known that divergences appear when calculating
pertubative expansions of Green functions. This apparently prevents any calculation beyond
tree-level, but it was realized by H.A. Kramers [18] that the divergences can systematically be
absorbed into a redefintion of parameters according to the renormalization techniques(for an
historical account see [19]). If this procedure allows to define order by order the perturbative
expansion without adding new parameters the theory is said to be renormalizable. Fortunately
this is the case of QCD as it was first shown by 't Hooft in [20,21] using dimensional regulariza-
tion [22]. As a consequence the physical quantities are no longer parametrized in terms of the
parameters entering in the Lagrangian (bare parameters) but rather in terms of renormalized
couplings and masses. Furthermore these renormalized parameters loose in general their status
of “physical quantities” because they depend on an energy scale u, unavoidable and inherent of
the renormalization procedureﬂ. The scale p is in principle arbitrary, but in practice has to be
chosen in such way that the perturbative expansion is valid. The dependence of the renormalized
coupling constant (respectively renormalized masses)on the renormalization scale is called the
running of the coupling constant (respectively running masses).

n the so called on shell (OS) scheme, the mass m® satisfies u% = 0 and are thus renormalization group
invariant (RGI). This renormalization scheme is particularly convenient for theory without confinement, i.e when
the fundamental degrees of freedom are asymptotic states of theory. For instance, it is used to define the mass
of the electron or of the W and Z bosons. It has the advantage to provide a physical meaning to the mass
parameter [23].
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1.2.3 Illuminating tools

In this section, we recall two general non perturbative properties of QFT, that relate vaccuum
expactation value of T ordered green function to the physical contents of the theory. This
can be done through two famous equations. The first one is the so-called Kallén-Lehmann
representation [24,25] which provides a method that will be used all along this work. Consider
a composite operators . The spectral representation of the vaccuum expactation value of the
two-point function is :

0IT0w0w)I0) = [ " dMpo (M?)Dp (e — v M?) (1.21)

where Dp(x —y; M?) is the Feynman propagator associated to the state of mass M and pe(M?)
is a positive spectral density function,

po(M?) = (2m)6(M? — m})|(0|0(0) n)|? (1.22)

n

The spectrum of the theory can be recovered by studying two-point functions, and by constructing
the spectral density. It contains information about single bound states and multiparticle states
that have a continuous spectrum.

1.2.4 Perturbation expansion and asymptotic freedom

One of the major reason that led QCD to be a serious candidate as a theory of strong interaction
[26,27] is the property of asymptotic freedom of non abelian gauge theory discovered in 1973 in a
series of seminal paper of Gross and Wilczek and Politzer [26,28-30]. This property explains the
validity of perturbation theory for high energy processes, such as the one observed in colliders. Let
us introduce one more important concept which is believed to belong to the small set of “beyond
the perturbative level tools” : the renormalization group. It was first discussed in [31,32] .

In order to apply renormalization techniques, one has to regularize the theory, and to identify
the divergences of Green functions by introducing a scale A. Then, to renormalize, one absorbs
into a parameter redefinition the divergent part of the function at one scale . A renormalized
Green function and the renormalized parameters g, and m,. depend therefore on the substraction
point pg. We could have chosen another renormalization point p, and it would have led to other
value of the renormalized parameters. For a renormalizable theory, both Green function are
related by a finite multiplicative renormalization which depends of p and po. For a general
Green’s function in momentum space one can write :

Gr(p, gr (1), mr (1), 1) = R, po) Gr(p; gr(10), mr(p0), o) (1.23)

To be consistent, the functions R (i, po) have to form an abelian group called the renormalization
group. Note that, by definition, physical observables are quantity that are invariant under such
transformation.

The renormalization group equation implement that the un-renormalized Green’s function
does not depend on the renormalization scale p if all parameters called here go,mo and A are
fixed.

d
0= ,ud—G(p7 Jo, Mo, \) (1.24)
i
Assuming that G renormalized multiplicatively :

m
Gr(p7 9r, m?“7/j/) = ZG(QO; %a TO)GO(paQOa m07A)5 (125)
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we deduce the following relation

0 0
a. rYm r = 1.2
( 8u+ﬁ v 4 myy amT)G 0 (1.26)

where

my dg.

s (gr, —> = u 1.27a
m o ( )
my :U/ dmr

Ty - — 1.2
Tm (9 1 ) me du ( 7b)
my dIn ZG

Y\ Grs — = M 1.27¢

( Iz ) dp (1:27¢)

We can choose a mass-independent renormalization scheme and the renormalization group
functions do not depend of m,. We can write explicit solutions of the renormalization group
equation Egs. (LZ7). In particular we have

m gr (1)

gr(u)
B exp{ dh } (1.29)

Ho grﬂo)ﬂ

The Egs. (C2¥) and [C2ZY) gives the running of the renormalized parameters in terms of the
renormalization group functions. Unfortunately, only a finite number of terms in the perturbation
series of the renormalization functions are known. For example in the QCD case, the 3 function
expansion can be written in the following way :

B==> Bugi*? (1.30)

n>0

with By > 0. Expanding § to its first order in Eq. ([2]), we obtain

ge(1) = e{pto) (1.31)

1+ Boge(o) In (1)

While ¢, (po) and g.(u) are small; this equation gives us a good approximation of the running
coupling constant. Note that one has g,(u) — 0 for p — oco. This is the asymptotic freedom
property. It explains why, in QCD, pertubative expansions can be used at large momentum.
Conversely, at low energy, the coupling constant increase, and non pertubative phenomena occur.

1.2.5 QCD in Euclidean space-time

The phase in the functional integral Eq. (LIQ) is difficult to estimate numerically. To circumvent
this problem, one performs an analytical continuation of the time component of the 4-vectors
to purely imaginary values. This is the Wick rotation. This rotation of the time coordinate

29 — —iz0 leads to a Euclidean 4-vector norm :

2= @) -2 - —ah=— (%) — |7 (1.32)
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It was shown by Osterwalder and Schrader [33] that under certain conditions one can recontruct

the whole quantum field theory in Minkovski space from Euclidean field theory. The most

important condition is the so called Osterwalder-Schrader positivity or reflection positivity, which

replace Hilbert space positivity and the spectral condition of the Minkowskian formulation.
The Euclidean QCD action then reads

SlA, 0. T] = —3 T {Fu P} + TP+ M) (139

and the correlation functions are obtained formally by integrating over the whole space of con-
figurations. In general one has:

(OLA, 4, F)) = Zi / DADYDTe S AV T O A, 4, T, (1.34)

using the notation introduced in [CZI and where O[A, 1, 1)] is a generic functional of the fields.
The partition function is

Zp = / DADYDpe5elA Y] (1.35)

1.3 QCD on the Lattice

In the numerical simulations of QCD that we are going to present we restricted ourselves to a
degenerate doublet of light quarks m,, = mgy (isospin limit). We will consider two ensembles of
simulations corresponding to Ny = 2 and to Ny = 2+ 14 1 flavor dynamical quarks. The 141
sector refers to the non degenerate heavy doublet of the strange and charm quarks with a mass
denoted by ms and m..

These two simplified versions of QCD are sufficiently accurate for our purpose.On one hand
because we will never consider observables involving correlation function which contains bottom
or top quarks and on the other hand because the loop corrections due to these quarks are
negligible in the observables we aim to compute. This is the decoupling theorem which states
that if we want to compute Green’s functions in multiple scale models, we can neglect masses
much heavier than the energy of proceses that we are considering. From this point of view, the
Ny =2 case is a particular version of the Ny = 2+ 1+ 1 one in the formal limit mg, m. — oo.

1.3.1 Lattice regularization

In order to simulate QCD numerically, we need to give a precise meaning to Eq. ([L3d). The
lattice formulation of QCD in a Euclidean space is a non perturbative regularization of the theory.
The idea is to replace the continuum variable z,, by a discrete coordinate on a four dimensional
hypercube with a lattice spacing a :

z, — nua, ne0,L—1]*x[0,T—1], (1.36)

and with volume V = L3 x T. The boundary conditions are chosen to be periodic for the gauge
field . The quark fields are periodic in space direction and anti-periodic in time.

The finite lattice spacing introduces an ultraviolet cutoff and the finite volume introduces an
infrared cutoff. All the divergences are then regularized.

Note that the momenta allowed in the spatial directions are :

- 21N
k:iLL”,with ni=1,...,L/2. (1.37)
a

In the next section, we show how the Yang-Mills part of the action can be written on a discretized
space-time, and how the integral over the gauge field is defined.
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Figure 1.4: A lattice

1.3.2 Lattice gauge theory

The first step in formulating the SU(3). Yang Mills theory on a lattice is to find a discrete lattice

action which tends to the continuun Yang-Mills action at the classical level when the lattice

spacing vanishes. The Wilson gauge action [34] has this property. It is constructed from an

elementary field U, () living on the links of the lattice and which belong to the SU(3). group.
Defining the so-called plaquette variable

U () = Up(2)Uy (2 + QU (z + 2)U] (2) (1.38)

the Wilson gauge action then reads :

s =533 (1 - %Re Tr {UW(X)}) (1.39)

x pu<v
where 6
8=— 1.40
7 (1.40)

is the unique parameter of the action and it is reated to bare coupling g. The Yang Mills
continuum action can be recovered up to O(a?) terms by setting :

U, = el@9Au (1.41)

and expanding in powers of a. The gauge transformation [CH for the A, becomes for the link
variables U, :
Unlw) — Ul (@) = @)U (2)2 @ + 1) (1.42)

It follows from this property that the Wilson gauge action preserves gauge invariance.
We can now define properly the measure of the functionnal integral over the gauge field:

/DA = /HdUH(m) (1.43)

T,
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where the product is over all lattice points x and directions . Unlike in the continuum the
lattice gauge fields belongs to the compact group SU(3) and are thus bounded. Therefore we can
use the standard definition of group integration measure, like the invariant Haar measure [35].
The number of variables of integration is finite and the path integrals free from any divergences.
The set of all the link variable U = {U,(x), V&, Vu} is called gauge field configuration.

1.3.3 Fermions on the lattice and the doubling problem

The lattice formulation of fermionic fields appears to be a more delicate issue. As Wilson first
noticed in [34], the naive discretization of the free field theory involving fermions gives rise to
2% = 16 fermions excitation rather than one even in the continuum. This problem is called the
doubling problem. In order to overcome it one introduces additional terms in the action which
vanishes in the continuum limit.

Unfortunately, even if there is a priori an infinite choice of such terms, they often break
relevant symmetries of the continuum action, like chiral invariance. This fact was summarized
by the Nielsen Ninomiya no-go theorem in [36-38] which states that a massless Dirac operator
D cannot fulfill at one the following properties :

e D(z) is a local operator (bounded by e~71?l)

e the Fourier transform of D(x) has the right continuum limit up to O(ap?) for p < 7/a
° ﬁ(p) is invertible for p # 0

e The action is invariant under chiral transformation, i.e {y5, D} =0

The so-called Wilson action breaks this last point by adding an operator of dimension 5 pro-
portional to some unphysical parameter r. In the continuum limit the Wilson term vanishes.
However the explicit breaking of chiral symmetry at finite lattice spacing, leads to many theo-
ritical and practical problems which continue to motivate physicists to find new actions having
better chiral properties.

To write the Wilson action one need to define the forward covariant difference operator

V@) = = [V (@) + o) — Y()] (1.44)

and the backward covariant difference operator

Vi) = - [9(e) - Uy (& — apyb(a — ap)] . (1.45)

The massless Dirac- Wilson operator in a given background gauge field then reads :

Dw[U] =) % v (Vy + V) —arViv,], (1.46)

where the Wilson parameter r can be chosen in —1 < r < 1. The corresponding action for a
massive quark is

N _
SV, 9, U] =t S (@) (DwlU] +mo) (). (147)

x
In order to have dimensionless quantities, we re-scale the field introducing the hopping parameter

k as follow :
V2K — V2K — 1

u) - a3/2 1/}) u) - a3/2 1/}) R = 2am0 + 87‘ (]"48)
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which leads to the hopping parameter representation of the Dirac-Wilson action :

S U= {E(x)w) — 5(2) D [Un@)(r +7,) (@ + afi)
v =0 (1.49)

+ U (e = a)(r = 3w — )|

1.3.4 Monte Carlo Integration

Putting together the results of the last two sections we can now write the correlation functions
of QCD regularized on a lattice. After integrating over the Grassmann variables we obtain:

(O, D, U)) = ZLE / [[ V() det (Dw[U] + mo) 56" VIO[U] (1.50)

Where @[U ] can be computed in terms of the inverse Wilson-Dirac operator summing over all
Wick contractions. The problem is to perform O(V) integrals over the gauge group. Since we
are interested in V as large as possible, the standard numerical integration fail. The solution
comes from Monte Carlo integration techniques which consist in generating a sample of a finite
number N of independant gauge configurations U with a probability distribution given by

P[U) = det (Dw[U] + mp)e 56" V] (1.51)

Correlators are then estimated by

N
(O, 3, U]) = O + O(\/Lﬁ),wi‘ch = %Z AU (1.52)

Generating such an ensemble of configuration is highly non trivial due to the presence of
the determinant of the Dirac operator and requires the development of sophisticated hybrid
Monte Carlo algorithms (HMC) running on supercomputers, and using massive parallelism. The
computation of the fermion determinant is by far the most time consuming part of the simulation.
More details will be given on this subject in Chapter E

1.3.5 Continuum limit

Quantities computed at finite lattice have to be extrapolated to the continuum. To be concrete let
us begin with one flavour QCD. The corresponding regularization on an infinite lattice depends
on two bare parameters (amg, go). Introducing the correlation length &(amo, go), which governs
the exponential decay of the correlation functions, the continuum limit is the ensemble of points
in the two parameters space (amg, go), where the correlation length £ become infinite. By using
the statistical mechanics language, it correspond to look for a second order phase transition in
the phase diagram. In this regime, long range phenomena occurs that are no more sensitive to
microscopic details of the discretized action. This definition is reasonable since the correlation
length correspond to the inverse of a mass in lattice units denoted by am and according to the
criteria that, £ — oo in the continuum, we expect am — 0. In that case, while a — 0 we can
have a a finite mass m.

In fact asymptotic freedom guarantees that this limit is achieved when the coupling constant
go(a) vanishes or conversely when ((a) — oo (see for instance [35]).

In practice, we have to work with a lattice a finite size and two strategies can be followed.
Either we have to take the limit 3 — oo keeping fix the physical size of the box. This can be done
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in practice by fixing first m/L, and then taking § — oo. This correspond to computing physical
observables in a continuum box of a finite size. Or, we can first extrapolate lattice data in the
infinite volume limit and then take the limit 3 — oo. The two limits are expected to commute.

Considering for instance ratio of masses, we expect them to be independent of 3 in the vicinity
of the continuum limit since for large 5. However the dependence as a function of 3 depend on
the discretized version of the theory. This is illustrated in Fig. [CH, where the behaviour close
to the continuum associated to two different discretized action S; and Ss is shown as a function
of the lattice spacing. The approach to the continuum of observables, will be refered to as the
scaling behaviour. The continuum limit is expected to be universal while the scaling behaviour
is not.

Several efforts and progress have been made in the lattice QCD community to improve the
scaling behaviour of discretized actions, in order to obtain a better control on this important
systematic effects of lattice calculations.

amy A

ams

S

>
0 a

Figure 1.5: Scaling properties of two discretized actions S; and S3. The ratio of two typical
hadronic mass in lattice units is shown as a function of the lattice spacing. The continuum limit
is universal while the scaling properties are not.

1.4 Octet and Decuplet of baryon : Presentation

Let us close this chapter by summarizing the current knowledge about the properties of the
baryon octet and decuplet. Tables [Tl and list the quantum numbers, the masses, the width
or lifetime as well as the main decay mode of the low lying states.

The proton is the only state stable on all the known interactions. All the other members of
the octet decay mainly through the weak interaction, involving the CKM matrix element V.
The main decay channels thus violate strangeness conservation. The only exception is the 3°
which decays via electromagnetic interactions to the A.

Concerning the decuplet, with the only exception of the 27, they are strong resonances of spin
3/2 with the following hierarchy of widths I'a > I's« > I'z«. They decay with a typical strong
interaction life time of ~ 10723 seconds to their AS = 0 octet partner emiting a pion. The 0~
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Particle | 1(J7) Mass (MeV) Mean life (s) Main Decay Modes

p 1(47) | 938272029 = 0.000080 > 2.1 x 10% stable

n L(37) | 939.565360 = 0.000081 885.7 4+ 0.8 pe” v (100)%

A 01" 1115.683 + 0.006 2.6314+0.02-1071° | pr~(63.9 + 0.58), nm(35.8+£0.5)
ot 1(3 1) 1189.37 + 0.07 0.8018 +0.0026 - 10710 | pm(51.57 £ 0.30), nrt(48.31 + 0.30)
0 131 1192.642 £ 0.024 74+£0.7-1072° A~(100)%

D 111 1197.449 £ 0.030 1.47940.011-1071° | nx—(99.848 £ 0.005)%

=0 1(1h 1314.83 £ 0.20 2.90 £0.09-1071° | A79(99.523 £ 0.013)%

S (1 1321.13 £ 0.20 1.639£0.015-1071° | Aw—(99.887 £ 0.035)%

Table 1.1: Octet properties taken from [39]

Particle | I(JF) | Mass (MeV) | Width (MeV) Mean life (s)
A ] 3(37) | 1231.88+0.29 | 109.07 +0.48

At | 3(3h 1231.6 111.2

A 3(31) 1234.35 117.58 +1.16

A5G

2 ?+

S 1(27) | 1382.8+04 35.8+0.8

20 [ 1(2T) | 1383.7+ 1.0 36 + 5

o 137 | 1387205 39.4+21

=0 | 1(37) | 1531.80+£0.32 | 9.1+0.5

= | L3N | 1535.0+06 9.9+ 1.9

Q| 0(27) | 1672.45+0.29 0.821 £ 0.011- 1071

Table 1.2: Decuplet properties taken from [39]

decays through the weak interaction to the = (no states of spin 1/2 have three s quarks).

The question of the mass splitting between the different isospin multiplet commponent is far from
trivial. It comes both from the isospin symmetry breaking (m, # mg) and from the different
charge of the u (+2) and d(-3) quarks. This question will not be raised in this work since all our
investigations are performed in the isospin limit and without electromgnetic interaction. In this
approximation one could expect an exact mass degeneracy in the multiplet. We will see however
that it is case only up to O(a?).

1.5 Aim of this work - Motivations

In this work all the steps going from the generation of gauge configurations to the computation
of correlators and their analysis have been covered. Our final analysis is devoted to the study of
the baryon spectrum which offers a rich variety of observables, without increasing the number of
parameters with respect to the predictions.

In Chapter Pl we will present the fermionic part of the action used in our simulations, namely
the twisted mass fermions. They can be used to simulate degenerate or non-degenerate quarks
and the two approaches will be described. The advantage and the drawbacks of this type of
fermions will be discussed in order to justify the analysis strategy followed in this work.

In Chapter Bl the theoritical framework to extract masses from suitable two-point correlators
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is explained. A general formula that allows to measure any baryonic two-point function is
derived. This constitutes an essential part of this work. Smearing techniques as well as the
analysis procedure are set up in the light of Chapter

In Chapter El we explain the gauge configuration production. This step is the most expensive
from a numerical point of view and is exclusively performed on supercomputers like BlueGene.
An important part of my Ph.D time has been devoted to manage, control and participate in this
task. In particular by measuring and tuning quantities of primary importance to understand the
physical parameters of the simulations.

In Chapter Bl we develop the essential aspects of chiral perturbation theory in the baryon
sector, which are an important tool to understand our lattice data.

The main results of this work are presented in Chapters [l and [ The raw baryon masses
computed in our lattice simulations are given. We analyze the artefacts due to our discretization
procedure (finite volume, finite lattice spacing effects), and compare with experiment.

All this work has been done in the framework of European Twisted Mass Collaboration
(ETMC) which involves about fourty member and eight European countries:

e Cyprus: Nicosia

e Germany : Berlin, Hamburg, Miinster

Italy: Rome, Trento

Netherlands: Groningen

Spain : Valencia

Switzerland: Bern

United-Kingdom: Liverpool
e France: Paris, Grenoble

This allow to share the computational resources and human ability to compute a large number
of physical observables.
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Wilson twisted mass QCD [40,41] is a lattice regularization that allows automatic O(a)
improvement [42]. One of the historical reasons why a twisted mass term was was introduced
to solve the so called problem of exceptional configurations. The Wilson-Dirac operator is not
protected against zero modes, whereas the twisted mass wilson operator is protected against
them. Interesting review are [43-45]

2.1 Continuum theory at the classical level

2.1.1 Degenerate fermions

The twisted mass (tm) fermion action in the continuum for a 2 flavour fermion field x:

Stm [XaYa U](mo,u) = /d4$¥ (@ +mo + iﬂ’7573) X (2'1)

where D,, is the covariant derivative, m¢ the usual mass term and p an additional parameter of
this model called the twisted mass. Note that the Pauli matrice 73 in the twisted mass term of
eq. Bl acts in flavour space. The isospin doublet field x is said to be in the twisted basis, and
the reason for that will become clear later. The standard Dirac action is recovered in the limit
p—0

Let us start by considering the properties of the twisted mass action at the classical level.
Under the axial transformations in flavour space with a real parameter w;

Wy 3
N 617757'
A (2.2)
X = Xe' 27
the form of the action is left unchanged, with the replacement
Mo — My = Mo cosw; + 1 Sin w; (2.3)

w— ' = —mgsinw; + pcoswy

Let us consider the particular case of the twisted mass action EZTlwith mg = 0 refered hereafter
as the maximally twisted mass (mtm) action:

Smtm[Xa X U] = Stm[Xa X U](O,;L) = /d4lﬂy (p + i,LL’YSTB) X (24)
Performing an axial rotation 3 with w; = 7, we find:

Stm[X; Xa U] 0,p) - Stm [Xa Ya U](p,,()) = SDirac [Xa Ya U] (25)

We see that the maximally twisted fermions are completly equivalent to the Dirac fermions at
the classical level and constitute an alternative formulation of “classical” QCD.

Our strategy for the numerical simulation of QCD will be the following: we will use the
twisted mass action at maximal twist angle and rotate back our correlators to the physical basis
1) defined by

p=erry, P oyeltnr (2.6)

From the classical field theory point of view, all the symmetry of the Dirac action are pre-
served in the maximally twisted mass action. They can however have a misleading form in the
twisted basis. For instance the axial transformation in the physical basis becomes the vector
transformation in the twisted one. This statement can be generalized at the classical level for an
arbitrary twist angle case showing that the two classical field theory are completly equivalent.

In practice, the quantization of twisted mass formulation allows to avoid numbers of problem
raised by other regularizations, as we will see in section
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2.1.2 Non-degenerate fermions

We will present now the generalization of this theory to the case of non-degenerate flavour
doublet, in order to simulate a theory closer to the real world and containing strange and charm
quarks in the sea. The aim is to build and action which, after a chiral rotation, gives the standard
Dirac action for two non degenerate flavours.

In this section we will concentrate on the so-called heavy sector. Consider a field x which
has two flavour components with the action

St 06T Ultmoaa i) = / A"aX (P + mo + ing st + ps7*) X (27)
with pu, and ps positive. Performing a chiral rotation of the form :
X e FEPT X xe EeT (2.8)
the action is left unchanged, with the replacement

mo — My = Mo Coswy, + psinwy,

fo — [l = —mosinwy, + pcoswy, (2.9)
i

Hs — Hs = Hs

We define the maximal twist as in the degenerate case setting mo = 0 in eq. EX1

St Do X, U] = /d4$Y (P +ipoyst" + ps7®) X, (2.10)

By performing a rotation of angle wy = 7, we find that :

Sr(rfttnl)[XaX’ U] - S](Dlljalc) = Stm[Xaiv U](,ug,p,(s) = /d4$¥ (@ + o + /~L5T3) X (2'11)
This suggest to identify the strange (ms) and charm quark (m.) mass to be :

ms =le — s

(2.12)
Me =g + s

As in the degenerate case the twisted mass action with non degenerate fermions is equivalent to
the standard Dirac action.

Note that in the twisted basis, the fields are coupled by non vanishing off diagonal terms in
flavour space. Its inversion is no longer factorized in flavour but requires to deal with a matrix
which is twice as big.

D, 0 Dss Dy,
Dlight = ( 0+ D) Dheavy = (D B Déc) (2'13)

2.2 Twisted fermions on the lattice

We present in this section the discretized version of the twisted fermions as well as the main
properties of the underlying quantum field theory. We will restrict ourselves to the two degenerate
flavours case, even if the fundamental properties can be generalized in the case Ny =2+1+1 of
a field theory containing a doublet of degenerate quarks and a doublet of non-degenerate quarks.
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2.2.1 Lattice action

The twisted mass formulation term does not prevent the doubling problem. To solve it, we will
combine it with a Wilson-Dirac operator. This is not the unique solution, and in principle any
other discretization of the Dirac operator removing the doubling problem can be used. The bare
discretized action for the light sector we will use in this work reads

S¢ X, Ul = a* Y X(@) (DwlU) + mo + ipnsm®) x(a) (2.14)

where Dy refers to the massless Wilson-Dirac operator defined in Eq. (CZH), mo and p are bare
mass parameters whose physical meaning will be clarified latter. This action can be rewritten in
terms of the hopping parameter (CZ9) in the form:

xT

3
SéNf:Q) x,x, U] = Z {X(:c)(l + 2ikpysT)x () — KX(2) Z {U#(Z)(T +u)x(z +afl)
pn=0

44@@—GMW—VMM$—Mﬂ}
(2.15)

which is implemented in our code.

2.2.2 Tuning to maximal twist

The main interest of using twisted mass regularization is automatic O(a) improvement achieved
at maximal twist angle. We will see in this section how this is realized in practice.
Our starting point is the bare discretized action :

Ni=2);, — _ .
Se' [, 9.U] = a* X (@) (DwlU] + mo + ips7®) x(a) (2.16)
z,p
A natural generalization of the maximal twist condition mg = 0 at the classical level is to impose
mp = 0. Wilson fermions in the massless limit explicitly breaks the chiral symmetry at finite

lattice spacing. One important consequence is that the quark mass is no longer multiplicatively
renormalizable but acquires an additive renormalization term mc, i.e

mpr = Zmmo — Mg = Zm(mo — me) (2.17)

where Z,, is the renormalization constant. This is why, at the quantum level, to set the bare
quark mass mg = 0 is not equivalent to tune the action to maximal twist.

To define properly maximally twisted QCD, one has to define the renormalized quark mass.
In order to do this, we give without proof that the partially conserved current relation obtained
at finite lattice spacing by performing a transformation of the form :

x — €Ty X — Xer™ a=1,2 (2.18)
is
(0]0,,.A% () O]0) = 2imo (0P (x)O|0) + ira(OW(:c)V#VTtx(x)@O} (2.19)
Aj, and P® are referred as the axial and pseudoscalar bilinear operator defined by:
Al = X7 75X

S (2.20)
P =XT"5x
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The two terms on the right hand side of Eq. 1) are due to the fact that the mass and the
Wilson term are not invariant under [ZI8). Note that this identity holds at finite lattice spacing
and that the second term on the right hand side contributes to the renormalization of the mass
and of the operator Af.

The renormalized fermionic action can be written as :

SI]X{SSD = /d%Y(ﬂU) [P +mp +iprysT’] (2.21)

Applying the transformation ([ZIH), one finds at the level of the renormalized correlation func-
tions that
(0]0,A7 r(2)O[0) = 2imr(0|P; g(x)O|0) (2.22)

Using the fact that the bilinear operators are multiplicatively renormalizable, we can deduce
the relation between the PCAC mass and the renormalized mass mg. To this purpose, let us
introduce Z, and Zp, the renormalization constant of the axial and pseudoscalar bilinear, in the
following way

Al = ZaAS, a=1,2

PL=ZpP* a=1,2 (2.23)
Defining the so-called PCAC mass mpcac, to be
-{0|0, A% (2)OI0
mrcse = S Ao 220
we conclude that the following relation must hold :
mp = Zp' Zampcac (2.25)
Recalling that our aim is to tune the action to maximal twist, namely to fulfill
mp =0 (2.26)
we deduce that this is satisfied by imposing that the PCAC mass vanishes.
We define the critical mass by the following equation:
mpcac(B8,mo = me, p) = O(apu) (2.27)

This defines by the same the so called critical line in the parameter space (3, mg, 1) on which
maximal twist is achieved.

To summarize, in our numerical simulation the action depends on the three bare parameters
(8, mo, 1) in the Np = 2 case and five (8, mo, i, tto, t5) in the Np =2+ 1+ 1 case.

As we have already explained in chapter [, 3 controls the lattice spacing and the continuum
limit is reached at g — oc.

Concerning the bare twisted mass p, on can show by performing the rotation to the physical
basis (), that it controls the physical light quark mass and consequently the pion mass. Its
denomination is thus somehow misleading since, the physical quark mass is not controlled by
mg but by the twisted quark mass p. The same happens in the non degenerate sector, where
(15, pts) control, according to Eq. (1), the strange and charm quark masses.

As discussed above the mass parameter myg is tuned in order to make the PCAC mass (Z2Z4)
vanish and to reach maximal twist. This has to be done for each set of (8, , tis, pt5) parameters.

The following remarks are in order.
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A careful theoritical study of maximally twisted fermions show that the criterium E2Z7) is
not unique and suffers from O(a) ambiguities. A detailed discussion of this particular fact can
be found in [46-48] .

In practice we will follow two different strategies depending on the Ny value. In the Ny = 2
case, mg is tuned to maximal twist only for the lightest quark mass p. In the Ny =2 +1+1
case, the PCAC mass is tuned to zero for each value of p. This choice is more expensive from a
numerical point of view.

It is worth noticing that mg together with the Wilson term are responsible for an isospin
and parity breaking in the physical basis. This fact has important consequences at finite lattice
spacing. For instance, the splitting of the 7% and 7%, which decreases with a, appears to be
large, although difficult to estimate precisely, in the current numerical simulations. A careful
theoritical study using the Symanzik expansion shows that this artefact is anomalously large in
the pion sector. A special effort has been devoted all along this work to study empirically the
isospin breaking in the computation of baryonic masses as we will see in chapter @ and [

2.2.3 Symanzik expansion - O(a) improvement

The Symanzik expansion, is a powerful theoritical tool to analyze the cutoff dependence in lattice
QFT. It has been proved that the cutoff effects can be modeled by writting the effective discrete
action on the form :

Seft = So + aS1 + (1252 + ..., (2.28)

where Sy is the continuum action :
So = /d4:cY(7D +ipys)X, (2.29)

and S, = [ da* Ly, are corrective terms that describe the finite lattice spacing effects. Dimensional
analysis shows that S has a mass dimension k£ or equivalently that the Lagrangians £; has a
dimension 4 + k. Following the well known rule of Weinberg which states that L is obtained by
listing exhaustively all the composite local operators of dimension 4 + k that are authorized by
the lattice symmetries. It can be shown in particular that S; reduces to a unique term:

_1
Sp = /d4ac CSWXZUWFWX (2.30)

The action is however not the only source of lattice artefacts. In order to consistently describe
the cutoff effects we have to expand the operator of interest as :

Oeﬁ[wv_] = OOW,@] + aéO[wvm +.. (2'31)

Here Oy is the continuum operator and O; is a linear combination of local fields.
The Green’s function on the lattice, can then be expressed as an expansion in terms of
continuum expectation values:

(Ot [10, 1)) = (Op[ah, ] ) — a/d4y (O L1)™ 4 a(50)°" + O(a?) (2.32)
Defining the R5 transformation to be
X = s X, X = T (2.33)
one can show that Sy and S; transform under R5 as:

SO — So, Sl — —Sl (234)
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Equivalently, given an operator O with a definite R5 parity, one can show that 6O has the
opposite R5 parity. This statement can be summarize by :

0 —+0, 60— F50 (2.35)

Since in the physical basis and in the continuum, Rj5 is a an exact symmetry that inter-
changes the two flavours, all observables are even under this transformation. Thus all continuum
expectation values odd under R are exactly zero. Therefore if O is an Rs5 even operator one
obtains that

(Oett [, 9]) = (Oo[v, P])*" + O(a®) (2.36)
and if O is R5 odd :

(Oeg[1h,]) = —a/d4y (09 L1)™ + a(50)°™ + O(a?) (2.37)

We conclude that, in the mtmQCD case, all physical observables are automaticly O(a) im-
proved. This fundamental property of maximally twisted mass fermions allows to have better
scaling properties than in the Wilson regularization. This formulation is thus a way to realize the
improvement of the Wilson regularization for all the physical observables avoiding the delicate
task of improving the action and each operator.
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Reproducing the experimentally observed spectrum of hadronic particles is one of the strongest
tests that QCD is the correct theory to describe energy at low energy. The first works on QCD
spectroscopy using lattice QCD go back to the very beginning of lattice simulations. The first
quenched studies were performed in 1981-1982 in [49-53].

First we derive the fact that the exponential decay of hadronic correlation functions is related
to hadron masses. Then we explains how to build the baryonic interpolating field and derive
a general formula that allow to evaluate any two-point baryonic function as a function of the
invert Dirac operator. We show in BE4lhow the overlap of creation and annihilation operators with
the ground state of the hadron can be improved by using extended source and sink operators.
Sections BO and B0 we discuss the technical issues related to the analysis and to the error
estimation of the lattice results. Finally we introduce the o-term that controls the dependence
of the hadron masses as a function of the quark masses.

3.1 Spectral representation of 2-point correlation
functions

In this section we will explain how to extract physical quantities, like masses, from two-point
functions, in a generic case, as well as the main sources of statistical and systematical uncertain-
ties.

We will assume that the Hilbert space of states of QCD is well defined and we will choose
a basis of eigenstates of the full interacting Hamiltonian, H. Since the momentum operator P
commutes with H, the theory is invariant under translation, we can diagonalize them simulta-
neously, and denote the common eigenstates by {|n, ¢)}. Because this is a fundamental point in
lattice QCD it is important to define clearly the completness relation :

LZ/ s (3.1)

the integration is over all the total three momenta that can have the state n, which can be a
multiparticle states. It immediatly lead to the question of unstable particles or resonances which
by definition never appear in asymptotic states.

We have already seen in Eq. ([LIH) that in the infinite time extension limit, the correlation
functions are the vaccuum expectation value of a 7-product of operator. However since we are
interested in working in finite volume with periodic boundary conditions, one can show that:

T[T e HTOLA, v, ]|
(O[A, ¥, ¢]) = o [T e_iHT} (3.2)

where the trace is over all the Hilbert space of states, H is the Hamiltonian and 7" is time extent
of the lattice.
Consider the following euclidean two-point function :

Ct,p) = Ze“’””<<f1 (2)J3(0)) (3-3)

where J; and J are for concretness two mesonic color singlet operators, and « = (t, Z)is a space-
time coordinate. J; and Js are called interpolating fields for reasons that will become clear in a
few lines.

Note that in Minkowski space this operator belongs to an irreducible representation of the
Lorentz group and can thus be written in terms of the translation operator P, as

Ji(z) = e g, (O)e_iPx (3.4)
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Expliciting the trace in Eq. 832), and insterting the complete set of states defined previously,
we get :
S e BT i) (3, Gy (0) s ) (1, P | TS (O) e, )
(J1(2)J(0)) = mA=m (3.5)

E 671E"T

n,qn

where p,, and ¢, are 4-momenta satisfying :

o (P g = (B 50

Pn dn

Performing the Wick rotation, we get in Euclidean space and for large T and 7 :

—Ei(p)r —Ey(§)(T—7)
T, 1—o0 € t € 1
C(r, VAN R — A 3.7
(7.7) 2E1(p) 192 2E1(p) 142 (3.7)
with
Z1 = (0]J1(0)]1,
1= (0[J1(0)|1, p) (3.8)

Zy = (0]J2(0)[1, p)

Note that the energy Ey of the vaccuum state |0) drops out and can thus be assume to vanish.
E is the state of the lowest energy. At finite time subdominant contributions appears but on a
finite lattice they are exponentially suppressed, since the energy spectrum is discrete.

In the special case of Jy = Ji, the coefficient in front of the forward moving and backward
moving state becomes equal and real and Eq. (BZ) becomes:

Tyrooo 2|24 [2e™ 2 E1(@)
2E1(p)

This is the general rule: two-point correlation functions are dominated for large time by the
smallest mass of states which have a non vanishing overlap with the two operators J; and Js.

The natural question to answer now is how to construct operators that have a maximal
overlap with the baryonic states that we are interested in.

C(r,p) cosh [El (P (% - T)} (3.9)

3.2 Baryonic correlators

In order to specify the most general interpolating field which have an overlap with a given member
of the octet and decuplet, we have to find the most general operator which belongs to an isospin
multiplet with a given I? and I, a given strangeness S and a given spin s.

To fix ideas, we give in tables and an exhaustive list of the quantum numbers of the
members of the baryon octet and decuplet. Then we construct the interpolating field, studying
the transformation under Lorentz and isospin symmetry.

3.2.1 Interpolating fields

As mentionned in section [CT2 the baryon interpolating field has to transform under the repre-
sentation 3 ® 3 ® 3 of SU(3)¢. It must have the general following form:

beyigk i b ek
Oase " = VR vs’dg (3.10)
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where a,b,c = 1,2,3 are the color indices, i, j,k = 1,2, 3,4 are the spinor indices and A, B,C =
u,d, s are the flavour indice. Because the state has to be a singlet under SU(3). transforma-
tion, the only way to construct a such object is to contract the operator with the completly
antisymmetric tensor of Levi-Civita :

Obe = e vy vy’ vt (3.11)

We have listed in Bl the possible isospin states of the three quarks depending of their
strangeness S =0, —1, —2.

S | Isospin content
T 1.3
0 29393
-1 0d1
1
_9 1
-3 0

Table 3.1: Isospin content of the possible three quark states for different values of S

Concerning the Lorentz transformation of Oapc the most general way to construct a baryonic
interpolating field with defined quantum numbers (S,.J,I) is to contract the first pair of quark
fields, and couple the resulting intermediate state to the third quark. The general spin structure
is:

OlhBo = €™ (VA*CTYR) Apg (3.12)
where I' and A stands for an arbitrary Dirac matrices in the set {1,7s, v, Y57, 0ur } and the
charge conjugation C' = i7y~2 matrice has been explicitly factorized for convenience. The relevant
properties of C' can be found in Appendix [AJl Notice that the Dirac indices of the intermediate
state (g/}{a C’Fw%) are implictly summed and the spinor indices of the baryon interpolating field
is carried by Avg.

The interest of factorizing C' in eq. becomes clear considering the behaviour of the
interpolating field under a Lorentz transform A. A Dirac spinor belonging to the representations
(3,3) transform as :

U(@) = Asp(AMz), P e— YA, Ay =TT (3.13)

where o#¥ = %[7“, ~*] and w,,, are the parameters of the transformation. Using the property

A;fy“A% = Aly¥ (3.14)
it is straightforward to show that
T QpTAg (3.15)
and to obtain:
A:g = CA! (3.16)
2

This give us to find the transformation law of OY%, which reads:
OjBc — ¢ (wfaCA;FA%%%) AALYE (3.17)

One can see from this equation that /7 CT'% transforms as ¢T't), which has well known transfor-
mation properties.
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Strangeness | Baryon Interpolating field 1 I,
S—0 P XP = €ape(ul Crysdy)u. 1/2 +1/2
n X" = €abe (X Crysup)d. 1/2 —-1/2
A XAS = %eabc{Q(uaTC'yg;db)sc + (ul' Cyssp)d. — (daTC'%sb)uc} 0 0
o1 »t V= €abe (Ul Cys8p)ue 1 +1
0 Y= = %eabc{(qu’%sb)dc + (df Cyssp)uc } 1 +0
- XE = €abe(dLCryssp)d, 1 -1
P =0 XEO = €ape(sL Cysup)se 1/2 +1/2
=" X = €ape(sq Cysdy)se 12 —1/2
Table 3.2: Interpolating fields and quantum numbers for the baryons in the octet representation.
Strangeness | Baryon Interpolating field I I,
ATT Xﬁ++ = €abe(ul Cryup)u, 3/2 +3/2
P At X&' = Jxeane{2(u] Cyudy)ue + (ul Cryup)de} 3/2 +1/2
A° X2 = Lcane {2(dL Cpuun)de + (df Cryudy e} 3/2 —1/2
A~ Xo = €abe(dl Cypdy)de 3/2 —3/2
St XEH _ \/geabc{(umcwub)sc + (uTeC,,s¥)us + (sT2Cy,ub)uc) 1 41
S=1 30 XE*O _ \/geabc{(umc%db)sc + (dTaCyyst)us + (sTaCy,ub)de ) 1 10
Sx & = \/geabc{(dTac,y#db)sc + (dT0 O, s®)de + (sT2C,d?)de ) 1 1
P Z+0 X5 = eabe(sT Crypup) s /2 +1/2
B Xa = €abe(st Cyuds)se /2 —1/2
S=3 Q- Xii = €ave(sT Crypsp)se 0 +0

Table 3.3: Interpolating fields and quantum numbers for baryons in the decuplet representation.

The usual interpolating fields for the baryon octet and decuplet are listed in Table and
They have been used in other works as for instance in [54-56].

It is worth noticing that this choice is not unique. For instance, in the nucleon case, it is also
possible to consider the following interpolating field:

x5 = e (ul Cdy)ysu. (3.18)

or some linear combination of them [57-59]. A systematic study of the various interpolating field
should allow to improve mass determination.
The basic object to consider is thus the baryon two-point functions,

C(t,9) =) _ e (Oxpc(x) Ok (0)) (3.19)
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which generalizes the mesonic case Eq. ).

In the case of twisted mass QCD, one has to evaluate this correlator in the physical base
defined in Chapter Bl Eq. [Z4). The interpolating fields given in Tables and do not have
a defined parity. One can project on physical states by means of the projector on positive or
negative parity:

1+
Pt = T% (3.20)
the projected correlators are denoted by
CE(t,p) = Tr {PEC(t,p)}. (3.21)

They are dominated for large Euclidean time by the ground state energy of a particle which has
the quantum numbers of O™ and a three momentum p.

3.3 Evaluation of correlators

The basic ingredient we need to compute correlators is the quark propagator for a given back-
ground gauge field defined by

ST DY (@, 2) S U] (2 y) = 6 (w — y)5ees™ (322)

where Dy is the Dirac operator of quark of flavour A, b, ¢ are colour indices, and s, t are spinor
indices.

In the twisted mass case the Dirac operator depends of the flavour index A so we have to do
one inversion for each flavour (contrary to the pure Wilson case) .

Wick’s Theorem allows to perform the integration on fermion field and express any correla-
tion functions as an average over the gauge ensemble in terms of quark propagators on a fixed
background. The goal of this section is to obtain an explicit form of the general two-point
correlator.

3.3.1 Mesons two-point functions
Let us consider the mesonic two-point function of two interpolating fields of the form:
J' =AY,  J? = al%yPp (3.23)

where the tensorial indices of Dirac matrices are implicit.
The straightforward application of Wick’s theorem gives

(J' ()72 (0)) = (GapTr {S¥(0,0)T" } Tr {sgé’(x,x)ﬁ} ~Tr {sgS(o,x)ﬁsg’“(x, 0)r1}> (3.24)

with B
2 = %y, (3.25)

Note that for twisted mass fermions, we have
Sa(0,2) = 755k (2,0)75 (3.26)

where A is the flavour index partner of flavour A in the twisted mass doublet. One has for
instance,

Su(0,z) = 755’2(30,0)75 (3.27)
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Equation becomes thus:

(01 ()72 (0)10) =(SaBTr {SK"(0,0)T" } T { S5 (&, ) } s
= Te {155} (2,075 T285 (2,01 ) |

The evaluation of disconnected contributions requires to compute the propagator S3°(z,z). As
we will see at the end of Chapter B, evaluation of such diagrams is extremely noisy and responsible
for large statistical errors.

B
z Y+ dup

A x Yy

Figure 3.1: Contraction of a general mesonic correlation function.

3.3.2 Baryons

Let us now consider the contractions for a baryonic two-point function with interpolating fields
of the general form:

T =€ SN (VST A T = e N AL (G T)  (329)
where:

{[\f/ = ’YOAf/T’Yo (3 30)

fﬁ =yl 0
As for the mesonic correlator we can work out the Wick contractions and obtain :

<Jp,u(x)jpo' (0)> _ <Zeabcea'blcl)\i)\;Af/{(sA"idj |:5]§‘]§

4]

66,5,55 (ri SY' T )T) !

j i
cb’ (i obe 73T | caa’
£,5.06,5,5¢ (Fu‘sﬁ I }5&
T
. b (i obe 7T
Set 53&5@@%{3& (Fuséf Iy ) }
cc’ iT cab' Tvj T ba’
6,5, (il sy s
ca’ ac’ i obb TN T AJ
—05,8,96,6, 56, TY{S& (rhsy'T) H}Ag
3

(3.

T
s gb' T qc'~jT b~a'
05,6,06,5, 58 (FM S%'Td ) Sta

1)
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Some comments are in order:

e The matrices A and A do not play any role in the contractions. They are simply factorized
out to the left and right

e Contrary to the meson case, there are no disconnected terms nor changes of flavour in the
propagators.

3.3.3 Some particular cases.

We now treat some special interesting cases of two-point function, writting them explictly in
terms of the quark propagators and structure Dirac matrices I' and A. We will show that the
particular form of the latter allows for substantial simplifications.

Let us begin with the nucleon correlators which will be the building blocks of of the analysis
in this work.

Nucleon

A direct application of the formula Eq. (31 to the nucleon interpolating field given in Table B2
gives:

(X (2)XP(0)) = —ebeea'e <{sgc’ (T, SYP'T,) 8% — 82T {536’ (T, ST, " } }> (3.32)

with I' = Cvys = —T. The two terms are reprensented graphically in Fig. The gray blob
reprensent the structure 1" T'yp. When the contractions involve only these parts of the interpo-
lating field, a trace appears in the contraction. The term containing the trace is thus depicted
by the first diagram.

Figure 3.2: Contraction of the two-point nucleon correlation function.

Delta

In that case we have
Iy =Cry, (3.33)

Using that Cv,C~1 = f'yf, it is straightforward to show the relation

T T -
r’=r,, I7T=T,

(3.34)
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The formula Eq. (B3] then gives :

1%

(Xﬁ++ (I)XA++ (O)> _ _2€abc€a’b'c' <{ _ 2866' (F;LSbb/fu)TSaa/ + Sca'Tr {Sac' (Fltsbb,fu)T }}

(3.35)
It is an interesting point to compare it to the two-point function of the A™ since in the continuum
limit, the two correlators should be stricly equal. We get, using Eq. (B31) that

+ At 2 abe _a’'b’c’ ca’ ac’ T- / ce! T- / aa’
O @8 (0)) = —getee <{2511 Tr{Sﬂ [,STee r#}fzs*u s, s

+ST, ST, S — ST, ST T, Sh
+83T, S, 80 — ST, ST'T, 84

+85 Ty {Sgc/fysf Wru} }>

(3.36)

Now in the continuum limit S, = Sy = S, and we obtain the following expression :
A (@)x2 T (0) = _zeabcea/b/c/<{sm’ﬂ {s°T, 8™, } - QSCC’stTbb’rMsaa/}> (3.37)

We find that in the continuum, the two-point functions of the A*" and of the AT are degenerate,
as expected. Note that at finite lattice spacing the expression of the two-point functions in terms
of the quark propagators differs. The difference between the two-point functions is an O(a?)
effect due to the breaking of the isospin symmetry by the twisted fermions.

3.4 Extended source and sink operators

In order to improve the overlap between the hadronic interpolating field and the desired state,
one can make use of extended quark fields. To implement this in practice we use the so-called
smearing techniques. The idea is to build a non local interpolating field, which has defined
quantum numbers and preserves gauge invariance. To this aim, one builds an effective extended
quark field iteratively, in the following way:

SW(@ ), = F@5,6) 0 (5,1); (3.38)
g
where 1
F(Z,9,t)" = 1T 6a ((5 0(Z — 9) + aH(Z,y,t) ) (3.39)
with s
H(&,§,t) = 3 (U@ 0.5 + U (@ — i, )3.34:) (3.40)
i=1

This is the Gaussian smearing.

The gauge links entering in F' are highly fluctuating quantities. One can smooth them by
replacing each gauge link by an average over its neighboors. This procedure can be implemented
in various ways. We use here the so-called 3D APFE smearing, which is also defined iteratively.
For one iteration we have :
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U, — U, = Psugs) (Uu ta Y Suul@)+ Su,_l,(x)> (3.41)
v#u#0
Where S, . (x) is the forward staple:

Spu(x) = Uy (z)Uy(x + U (x + p) (3.42)
and S, (z) is the backward:
Sy () =Ul(x —v)U,(x —v)U,(x — v+ p) (3.43)

We average the links only in the spatial directions, i.e . = 1,2,3. Psy(z) maps an arbitrary 3 x 3
matrix to the gauge group SU(3). This “projection” is however not unique.

Our choice consists in two steps. The first step is based on the polar decomposition which
states that an arbitrary matrix M can be written in a unique way in the form

M = HU (3.44)
with H hermitiean and positive definite given by H? = MM and

H

= 4
U= (3.45)

unitary. The second step consists in ”projecting” U in SU(3) dividing by the third root of its
determinant. One finally has:

U

Mproj = Psu(a) (M> =P U

(3.46)
Note that the third root is defined in the complex plane with a branch cut, we choose the first
determination which has the minimal Schur norm.

One can show that the Wick contraction obtained with the extended quarks keep the same
structure than the one obtained with local field, provided the quark propagator is replaced by
an effective quark propagator associated to the extended source. This leads to the following
definitions:

(Wa(y)by(Z,t2))
bi(Z,t.)) (3.47)

(y, 2, U(t=)) =(s (y)v,
(W3 ()
(Ws()h(Z.L2))

st
ab
ab(y, 2, U(t2))
ab(y, 2, U(t2))

] %l &)

They are named the smeared-local SL (g)7 local-smeared LS (g)) and the smeared-smeared
SS (?) propagators. These propagators together with Eq. (B28) and Eq. B31)) are the building
blocks to compute hadronic correlators with smeared quarks.

We will detail in what follows how to compute them in practice. One can show that the
local-smeared propagator is the solution of the equation

> Doz y)Sik(y, z,t.) = C (, 2) (3.48)

Y

which is the equivalent to Eq. (??) with an inhomogeus source term C (") defined by the recursion
formula:

Crt(w,2) =Y F(2,2 )" Cn I (w27, t.]) (3.49)
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where
Ct(z};)rt (I, Z) = F(E, f, tz)t’,‘(sacétx,,tz (350)

and n stands for the iteration number of Gaussian smearing. Equivalently one can show that
the smeared-local propagator, is related to the local-local propagator by the relation

Sy, 2, U(t:)) =Y F(& 7,t,)" Sk (12 t], ) (3.51)

The smeared-smeared propagator is obtained by replacing in Eq. (B1]) the local-local prop-
agator by the local-smeared one:

Sy, 2, U(t) = Y F(@2,t,)" S (7 4] y) (3.52)

Note that to smear a quark field at the sink, does not require additional inversion since we can
apply directly the smearing to the propagator.

3.5 Resampling methods for statistical error estimates

The numerical estimation of any correlation function, in particular the hadron correlator intro-
duced in the last section, requires a sum over a finite number of gauge configuration according
to Eq. (C22).

Several methods exist to evaluate statistical errors on quantities that are estimated via finite
samples of N measurements. This vast subject is very important in our case since a careful
estimate of statistical errors is needed to make reliable predictions. One additional difficulty
in the statistical analysis of the lattice data is due to the inherent correlation between differ-
ent configurations, between different timeslices for a given configuration, or generally between
measurements due to the HMC algorithm used to generate the gauge configurations.

In this section, we present the most common methods that are useful in this context : the
so-called Jackknife, the Bootstrap, and finally the I'-method. The first two methods use the
concept of resampling, which consist in building virtual ensembles of data from the original one.
In order to introduce them we consider a random variable X, and a set of measurements of X :
{X;,i=1,...,N}. We note :

1 X
X== ; X; (3.53)
the estimator of the mean.

3.5.1 Jackknife

Let us divide the ensemble of N measurements of X into Ny;, subsets obtained by retrieving p
elements from the initial set. The standard case correspond to Nyp;, = N and p = 1. Averaging
on each subset provide Ny, estimates of the average X from which we can deduce the Jackknife
estimation of the variance ox. One way to implement it is to define the average on each Jackknife
set by:

1 p+k
Xe=X--) X, 3.54
P (.59
i=k
The Jackknife estimation of the variance is then :
Now— I~ o
0% = 2 (X — X)? (3.55)
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This method can be generalized to secondary observables which are either a function of the
primary variable or a more complicated relation denoted by Y = f (X). We build a set of Npip
estimates of Y for each sample k:

Yi = f(Xy) (3.56)
The variance of Y can then be estimated using as in the primary observable case the relation
Npin — 1 -
2 bin 2
= — E Y. —-Y 3.57
Oy Nom - (Y ) ( )

The number of bins is the only parameter of the method. It has to be chosen carefully. Indeed,
if it is large one obtain small errors, but they are underestimated because of the correlation
between measurements. If one decrease the number of bins, correlation between the bins is small
but the dispersion will be large and the variance will be overestimated.

3.5.2 Bootstrap

The bootstrap method has some similarities to the jackknife method. It makes a random selection
to build a new set with M values, so it is possible that the new set has repetitions. In fact we
could even have M > N. The statistical analysis is then performed on the bootstrap sample.
This process is repeated a large number of times Npoot and one can construct an estimator of
the variance using the distribution of the variance on each bootstrap sample.

3.5.3 [ Method

This third method is not based on resampling our data set but rather on a careful study of the
variance of a correlated set of measurements. One of the main advantages of this method is that
it allows to estimate the integrated autocorrelation time of secondary quantities. In particular
the I'-method will be extensively used in chapter Hl to analyse integrated autocorrelation times
of plaquette variables, pseudoscalar masses, or PCAC masses. For a detailed discussion of this
method see [60].

To illustrate this techniques let us first consider the case where X is a primary variable. One
can show that an estimator of the ensemble variance ox is

w
1
0% = ~ > T'x(n), (3.58)
n=—W

where I'x (n) is the estimator of the autocorrelation function defined by:

N—|n|
> (X - X) (XM - X)), (3.59)

4

1

I'sx(n) = ———

KO =N

and W is a parameter that refers to the number of consecutive measurements satisfying 2W+1 <

N. Note that I'x (0) = 6% is the naive estimator of the variance. The integrated autocorrelation
time is defined for an infinite set of measurements by

7 (X)—l+irx(n) (3.60)
int - 2 — FX (0) ) .
and an estimator of it is given by
w
1 No?
in X)= I = X . 61
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One of the central interests of the I'-method is its generalization to secondary observables.
We have in mind for instance the case of correlators, effective masses or ratios of correlators. To
this aim, let us consider a non-linear function of several primary observable F[X] where X stands
for a set of primary random variable X = {X;,...}. Each element X; is realized by a set of
measurement {X;,l =1,...N}. In the particular case of a correlator analysis C is the ensemble
of primary random variables {C(t1),...,C(7),...,C(t2)} with t; < 7 < t2 and where #; and ¢,
fix the fit window. The main idea in generalizing the I'-method to secondary observables is to
estimate the deviation from the true value, by expanding F(X) arround F(X). Defining

IFIX]

Xp=) ——X, .62
1= 2y, (3.62)
the deviation 0% is estimated using BB1] with:
1 N—|n| 4 - . -
) = o 3 (6 = XX - X (3.63)
i=1

3.6 Correlator analysis

3.6.1 Two-point correlators

To extract baryon masses in the rest frame, we generalize Eq. () to fermions. The picture is a
bit more involved in this case, indeed in general the simplest operators used for the description
of baryons are coupled to both parities. The asymptotic behaviour of the correlator contains
contributions of both parities.

Let us define a correlation function between two generic fermionic interpolating field J; and
Jo.

C(r,p) = D _(Ji(x)J>(0)) (3.64)
z
One can show the following equation, in the case of antiperiodic boundary conditions of the

quark fields

Clr,p) 2= p, {Z£+)Z2(+)67E§+)(;5‘)7— B Zf)Zé’)e*EY)(ﬁ)(Tfr)}

3.65
+P- [Zf_)Zg(_)e‘EY)@T - Z£+)ZQ(+)@—E§+)(§')(T—T)} (3.65)

with the following definition:

2y = (0111(0)[1, +, 7)
77 = (1, =, §1J1(0)|0)
Z‘“ (1, +,71.22(0)[0) o
<0|j2(0)|1a7aﬁ>
and 14
P = T% (3.67)

We are thus lead to the following definition of the parity projected correlators at zero mo-
mentum Cx (t) for large Euclidean time with 5= 0

-,

1 _
C):E( ) Ci( 0) —TI'(]. + '70) Z <JX (Xsink; tsink)JX (Xsourcea tsource»a t= tsink - tsource (368>

Xsink
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Space-time reflection symmetries of the action and the anti-periodic boundary conditions in
the temporal direction for the quark fields imply, for zero three-momentum correlators, that
CE(t) = —Cx (T —t). In order to increase statistics we average correlators in the forward and
backward direction and define:

Cx(t)=CE(t) - Cx(T —t). (3.69)

To minimize correlations between measurements, we choose randomly on the whole lattice the
source location Tgource for each configuration.

All the computed correlators presented in this work have been obtained following the above
described procedure.

3.6.2 Effective Mass
The effective mass of a given hadronic state X is defined by
m(t) = —log(Cx (t)/Cx (t — 1)) (3.70)

Assuming a correlator of the form
Ct) = coe ™! (3.71)
n

one has - At
14+ >0 ciet
X _ i=1 "1
mig(t) = mx + log (1 Ty Ci@Ai(t1)> Tomx (3.72)

where A; = m; — mx is the mass difference of the excited state i with respect to the ground
state mass mx. The effective mass exhibits a plateau for large time that has to be fitted in order
to extract the mass. This is illustrated in Fig. by the nucleon effective mass computed on a
L =24 for = 3.9 and p = 0.0085 with 1817 measurements. The errors are estimated using the
Jackknife method.

It is worthwhile to note that the error on the effective mass increases exponentially with the
time as shown in Fig. B4l A careful theoritical analysis of the two-point function variance show
that such is the general behaviour. One can estimate that in the case of the nucleon the error
behaves ,

Am(t) ~ e~ (mn=gmn)t (3.73)

This result constitutes a severe limitation in computing baryon masses. Indeed, on one hand, and
in order to suppress excited contribution, the mass has to be measured at large euclidean times.
On the other hand, the signal to noise ratio grows exponentially and thus sully the interesting
region with error bars. This is a serious drawback known as the signal to noise ratio problem.

As a further check of our statistical error calculation, we can test the dependence of the
effective mass relative error computed at a fixed time as a function of the number of measurements
N. In Fig. B3 we show that the error decrease like 1/v/N as expected from Eq. (C52). One
can also estimate from this figure the size of the error on the correlator we can expect in our
simulation: a ~ 1% error is obtained with ~ 1500 configurations.
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Figure 3.3: Nucleon effective mass as a function of the time in lattice units on a 242 x 48 lattice
with 6 =3.9 4 = 0.0085 and 1817 measurements.
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Figure 3.4: Error on the nucleon effective mass as a function of the time in lattice units on a
243 x 48 lattice with 8 = 3.9 u = 0.0085 and 1817 measurements. An empirical fit of the form
OM. ;5 (t) = AetBa gives A ~ 0.0004 and B ~ 0.311. The dotted red curve show the best fit to

the data.



40 Chapter 3. Spectroscopy in Lattice QCD

-12)/ Mgt
0.025 0.030 0.035
| | |

GMeﬁ (t
0.020
|

0.015
1

0.010
1

T T
500 1000 1500

Nconf

Figure 3.5: Scaling of the error on the effective mass at t/a = 12 measured on L = 24 lattice
with 3 = 3.9 and p = 0.0085. The red dotted curve show a fit of the form o, () = \/_AN’ the
best fit value of A is ~ 0.3807

3.6.3 Automatic Fitting Procedure

One of the problems in extracting the physical mass myx from the computed effective mass
meyy(t) is to determine an approximate plateau region. This is achieved by optimizing a constant
fit between two timeslices t; and to > t.

The determination of the optimal plateau range is a delicate issue, since we are faced with an
exponential decrease of the excited states contribution, which is responsible for the non-flatness
of the signal, and to an exponential increase of the signal to noise ratio. On one hand we want to
start to fit with a time ¢; as large as possible, on the other hand the statistical error dramatically
increase with the lattice time. To determine an optimal value of the interval [ty,t2], we must
find a compromise between statistical error and excitation contribution. The excitated states
contribute to the signal according to Eq. (BZ2) and a pertinent criterium to neglect them is to
see wheter or not they are smaller than statistical noise.

To illustrate the behaviour of the plateau fit, we plot as a function of ¢; the mass extracted
in Fig. B0 and this for several values of ts.

We first observe that the results (central value as well as the error bar) do not depend on
to. This is due to the fact that the statistical weight of the effective mass at large times is small
(large error bars). A first conclusion is that the difficult part of the problem is to fix the starting
fit point ¢;.

A second remark is that the measured mass decreases as t; becomes larger. As already
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mentioned this is due to the excited states contamination that introduce a bias which decrease
with time. One can conclude that whatever the plateau region is, the asymptotic mass will be
overestimated.

o
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Figure 3.6: Nucleon as a function of the starting point of fit ¢1/a for several values of t2/a. We
choose to/a = 17,18 and 19. Gauge ensemble with § = 3.9 u = 0.0085 and 1817 measurements
on a 243 x 48 lattice

We are now ready to define a criterium to fix the plateau. Denoting M (1, t2) the fitted mass
for a plateau range [t1,t2], an systematic criterium to determine an optimal value of ¢; is by
choosing the smaller value such that

dM(t,t2)

e
di, (3.74)

where ~ means here compatible within the Jackknife computed error bars. The value of 5 is
chosen as large as possible since the result does not depend strongly on it.

For instance, we show in Fig. B the derivative with respect to ¢; of the fitted mass. The
statistical error bars are computed using th Jackknife method. In that case, the optimal value
found is t; = 8 as indicated by a dotted line on the plot.

This criterium has the advantage to take into account the statistical error on the effective mass
and implement the idea that excited state contributions have to be smaller than the statistical
error. As a consequence, when the number of measurements increases, the statistical errors will
decreases, the condition Eq. (BZd) will become more stringent and the starting point ¢; will
increase.
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Figure 3.7: dMy/dt; as a function of the ¢;. Gauge ensemble § = 3.9 u = 0.0085 L = 24 and
1817 measurements.

Another appreciated advantage is that our criterium works in practice even if the signal is
not very clear. This way of choosing ¢ appears to be convenient to fit a large number of plateau
on a large number of gauge ensemble without any biased introduced “by eyes”. In practice we
obtain with this method a x?/d.o.f always close to one.

One of its drawbacks is that the correlations between timeslices tend to diminish the variation
of the effective mass between neighbooring timeslices. One can thus expect that the value of t;
obtained with could be too small. A conservative solution would have been to fit one or two
timeslice after the criterium is satisfied. However this strategy has not been chosen in this work.

We have illustrated in Fig. the possible bias introduced by this method by plotting the
value of the relative error on the fitted mass as a function of ¢;. The relative error ops,, /My
denoted by blue points increases rapidly as expected due to the exponential signa-to-noise ratio
problem. A double exponential fit of the correlator allows to estimate the excited states contri-
bution relative to the fitted ground state mass. This systematic bias becomes smaller than the
statistical error for t; > 9. We have filled in gray the t; region where excited states dominate.
Note however two important things. On one hand, the statistics is very large in this example,
and the relative error on the mass is thus of ~ 5% On the other hand the excited states
contributions do not depend on the statistics.

Furthermore, the determination of the double exponential fit parameters is even a more
challenging task, not only because it introduces additional parameters but also because their
values depend strongly on the starting point of the fit. This resutls into large error bars which
make uncertain estimation of the excited states contribution.
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Figure 3.8: Relative error on the nucleon mass as a function of the fitting window. Gauge
ensemble 3 = 3.9 = 0.0085 L = 24 and 1817 measurements. The region where excited state
contributions is bigger than statistical error is filled in gray. It has been estimated using a double
exponential fit to the correlator.

3.7 Quark mass dependence of hadron masses

We introduce in this section the concept of the sea quark mass and the valence quark mass. The
sea quark mass refers to the bare quark mass that enters in the gauge configuration production
through the determinant of the Dirac operator.

On a given set of configurations, one can however perform the contraction using a propagator
defined as the inverse of the Dirac operator with another mass value, this is the valence quark
mass.

In a lattice simulations - unlike experiment - it is possible to vary the sea and valence quark
mass independently. This technique allows to simulate for instance a strange quark on Np =
2 gauge ensembles. The strange quark contribution being neglected in the generation of the
gauge configurations, this approximation of QCD is named partially quenched. We will use this
approximation in chapter [

Another important information, provided by studying independently sea and valence quark
contributions, is to investigate the QCD matrix elements that control the dependence of hadron
masses in quark mass parameters. The idea is to take formally the derivative with respect to
the bare quark mass of suitable correlators (see for instance [61]). Equivalently this method has
been used to study dependence of correlation functions with respect to 3, see for instance [62].
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See also [63,64].

One can deduce from this analysis that the derivative with respect to the bare quark mass
of a hadron is determined by the scalar form factor at zero momentum transfer. This result was
first obtained by generalizing the Feynman Hellman theorem [65] in QFT . To summarize one
has

oMy,
op = mRE)mR (3.75)
with . - .
on = o(t = 0) = mg(h, 0|au(0) + dd(0)|h, 0) (3.76)

In our analysis of the baryon spectrum, the ¢ will be obtained as a by product of our analysis.
This an important quantity which is not well known experimentally. Lattice simulation should
improve the situation in the next years. In the case of the nucleon, the oy term can be related to
various quantities as the strangeness of the nucleon, the quark mass ratio, the m — IV scattering
amplitude. This is also an important quantity in the framework of dark matter direct detection
[66].
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In this chapter we present some aspects of the gauge configuration generation which is the
main building block of our Euclidean QCD simulations as well as the more expensive numerical
task. The problem is to estimate the high dimensional (real dimension = 4 x 8 x V') integral
over the gauge field (LRM). The hope is that, most of the contribution to this integral comes
from a small ensemble in the enormous functional space. Empirically it seems to be the case and
stochastic integration with importance sampling is an effective method to perform such integrals.

The main goal is to build an ensemble of configuration N = {U(l), LU } that has the
property to sample the space of all configuration with a probability density given by

1
p[U] = 3 det Dimqep|[Ule ¢! (4.1)

where S¢ is the gauge action, and Dimqep|[U] the twisted mass Dirac operator on the flavour
space, either in the Ny = 2 or Ny = 2+ 14 1 case. This gauge ensemble is such that any
correlation function on the lattice denoted symbolically by :

©) = [ IO (4.2)

can be approximated by
1
VN

where N is the number of measurements performed on a subset of X and p an integer parameter
chosen to decrease the correlation between two configurations.

To generate N one needs a stochastic process providing a dynamics in the configurations space
with a transition probability T'(U (1) — U+D) between two configurations U®) and U+ such
that Eq. [T is fulfilled. The sequence of configuration thus generated is called a Markov chain.
It is fully determined by U and the transition probability T'(U® — U+1),

In this work two gauge actions are used : the so-called tree level-Symanzik Improved action [67)
and the Twasaki action [68]. The tree level-Symanzik Improved action includes besides the
plaquette term U1*! . also rectangular (1 x 2) Wilson loops U1*?:

N
5 = %ZO[U(W] — (0) + O(—) (4.3)

T, L,V T,p,ve
ﬂ 4 4
tISym __ 1x1 1x2
giisym _ §Zx:<b0 tgl {1- e {22} bin 221{1 — ReTr {UL2, }) (4.4)
<<y i

with by = —1/12 and the normalization condition by = 1 — 8b;. Note that at b = 0 this action
becomes the usual Wilson plaquette gauge action.

The Iwasaki action has the same form with b; = 0.331.

The algorithm introduced in 1953 by Metropolis [69], was the first algorithm adapted to
simulate QFT on a lattice in 1980 [70,71]. However this algorithm becomes inefficient in the
case of dynamical simulations, and nowadays the most common algorithms used are based on
the Hybrid Monte Carlo Algorithm (HMC) [72]. A lot of progress has been made during the last
years to accelerate this algorithm. The goal is not to give a detailed review of them, but rather
to introduce the basic concepts of HMC.

4.1 Skectch of the HMC algorithm

In order to introduce the algorithm, we will restrict ourself to the case of Wilson’s twisted mass
formulation of lattice QCD with one doublet of mass degenerate quarks (Ny = 2). In this case
we have the following property :

det D[Ulymqep = det QTQ (4.5)
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with
Q = Dw|U] + mo + ipvs (4.6)
Note that @ does not act on flavour space, and that QfQ is positive definite and protected

against zero eigenvalues by 2.
Using a complex pseudo fermion field representation for the determinant we get :

det Q% / DpDleSerlU:067] (4.7)

where

Ser([U, ¢, 0'] = Zaﬂ* () (4.8)

is the so-called pseudo fermion action. Let us introduce the tracceless Hermitian field II,(x) as
conjugate of the gauge fields U, (z) and define the molecular dynamics Hamiltonian:

HIP.U,6,6') = 5 S TE(2) + SolU] + SeelU, 6. 0] (4.9)

z,

The underlying dynamical system evolves in a phase space of real dimension 64 x V. The
corresponding trajectories of the gauge fields are integrated by the computational function called
Molecular Dynamics update. The HMC algorithm then performs an accept/reject step with
respect to AH = H[U’,II'] — H[U, II] using the acceptance probability

P,. = min (1,e™) (4.10)

The momenta II are generated randomly from a gaussian distribution at the beginning of the
molecular dynamics evolution. The pseudo fermion fields are not evolved during the trajectory
and is obtained from a random gaussian field R by ¢ = QR.

The integration of the equations of motion are a crucial point of the algorithm. One can
show indeed that the HMC algorithm is exact if the integration scheme is reversible and area
preserving.

4.1.1 Molecular Dynamics

Introducing the so-called Monte Carlo time t, the Hamilton equations of motion read:

. dH

vt =""=-p

.() deH (4.11)
1(t) = Fiii —F[U]

where the forces are

FlU] = Fg[U] + Fer[U]

FelU] = %[U] (4.12)
Fslt] = SEL 0]

The easiest way to integrate these equations over a Monte Carlo time step € is to use the leap
frog (or Verlet) algorithm:

TU(G) : Ut — UtJre = GEHtUt

(4.13)
TH(G) : Ht — Ht+€ == Ht - GFt
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noticing that:
€ €
TH(§)TH(€)TH(§) i (g, Up) — (ese, Upse) + O(€?) (4.14)

Despite its simplicity, we use in our numerical simulation a more elaborated version of the
algorithm, which adapts the time step € to the intensity of the force.
4.1.2 Heavy sector
Let us denote by Dy [U] the twisted mass Dirac operator in the non degenerate case and define
Qn = v5Dp, [U] (415)

Note that one has det Dy[U] = det Qu[U]. Contrary to the light sector action, the fermionic
determinant in the heavy sector is evaluated using a pseudo fermions field doublet ®5,

—1/2
det Qu[U] o / Do~ (QQ) e (4.16)
—-1/2
We evaluate (QhQ;rl) using a polynomial approximation of the inverse square root: this is
the so-called Polynomial HMC(PHMC) [73]
A t
(@) " = Puc (@@} (4.17)

which uses a Chebysheff polynomial P, . of degree n, to approximate the function # on the

intervall [e,1]. It is constructed to ensure a desired overall precision R,, . on the interval [¢, 1]:
1
vX

In our HMC code, the polynomial is used in its factorized form

P e(X) {14 Rn.} (4.18)

Po(X)=c [H(X - zi)] (4.19)

%

where z; are the complex root of P, and ¢ is a normalization constant.

Note that in practice, in the HMC algorithm nothing prevents us from using different polyno-
mial in the molecular dynamics and in the metropolis test. We take advantage of this property
to use a polynomial of small degree (~ 100) in the molecular dynamics update and a polynomial
of high degree P (~ 1800) for the acceptance test. Manipulating polynomial of such degree is
challeging and requires some once and for all care. First, the roots and normalization constant of
P are computed and stored once at all before the production runs start. Second, they have to be
computed with a very high precision. We use a library called CLNI which allows to manage and
use numbers with arbitrary precision. We also use the Clenshaw algorithm which keep rounding
errors at a tolerable level [74]. To give an idea the roots are computed with ~ 1600 decimals.

For a given ¢, the degree of the polynomial has to be tuned in order to estimate correctly the
inverse of the square root for all the configurations that will be produced during the run. This
improbable estimation, which is only a small part of the PHMC savoir-faire, is crucial in order to
guarantee the exactness of the HMC algorithm. This is a posteriori achieved by checking online
that the lowest and highest eigenvalues of ) hQ;rl, suitably normalized, are always contained in the
range [¢, 1]. The degree of the polynomial has to be chosen in order to offer a good compromise
between time of computation and acceptance rate.

1Class Library for Numbers
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4.1.3 Practical implementation

The practical implementation of the HMC algorithm is summarized in Fig. Bl

The code starts by initializing a configuration U. Several choices are possible between a ran-
domly chosen U (hot start), a constant background U = 1, or by reading an existing configuration
from another run. Then the code generates the momentum II, according to a gaussian distri-
bution. Light and heavy pseudofermion fields are also generated from a gaussian distribution to
which is applied the operator @ or Q}/ 2

The molecular dynamics begins by computing the forces and uses an integrator to evolve the
system to an infinitesimal step. This process is repeated until Monte Carlo time 7 = 1. Note
that during the compuations of the forces, the estimation of heavy quark contributions is done
using the polynomial P which is not the most accurate.

At the end of the trajectory an acceptance test is performed, and the hamiltonian of the new
configuration is evaluated using the precise polynomial P. After this test the new configuration is
either the initial one or the new one, and the trajectory number is increased by one. Informations
on the configuration are then written in output.data and phme.data (informative relative to the
heavy sector). The configuration is written on the harddisk. According to the frequency of the
online measurements, light correlators are compute or not. Note that every ~ 40 — 50 trajectory
a reversibilty check is also performed by reversing the Monte Carlo time. This test allows to
check that no problem occurs on the machine, and is important since reversibility of the HMC
algorithm is a crucial criterium to guarantee its exactness.

The whole process is then started again, until the desired number of trajectories is achieved.
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START RUN
( Read or generate randomly a configuration U )

( IT Random from a Gaussian Distribution )
Generation of the Pseudo-fermions fields D :
4; = QR, R Gaussian . Note that P is used
Generation of the Pseudo-fermions for the heavy doublet
@}, = PBfQ,R, R Gaussian - to compute H

Heatbath Step :
R R : (IL,U)

Computation of the forces
Inversion needed , P used

Gauge| Update

Multiple time scale integrator )

Y
(I, u’)

Molecular Dynamics Update

( Accept/Reject test with P = min(1, exp(—AH)) ) Computation of H'

Write in output.data P time ...
Write in phmc.data informations relative to PHM(
\ Write configuration in conf.save )

if Niraj%mNonline measure = 0 then online measurement

L if Nitraj%mreturn check = 0 then do a return check

- Control Steps

Ntraj = Ntraj +1

( END JOB )

Figure 4.1: HMC algorithm
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4.2 Characterizing a run

In order to control that the evolution of the run goes smoothly online information is required.
The most common observables are the plaquette and AH measurements, and a logical variable
to control whether the configuration has been accepted or not. There is also informations on the
minimal and maximal eigenvalue of the heavy sector Dirac operator to check the consistency of
PHMC. We present in this section some of these results in the case of Ny =241+ 1 runs.

In a second part we present the analysis of the online measurement of correlators. These
measurements allow to tune the Wilson quark mass (mg) to its critical value, in order to be at
maximal twist. Other interesting quantities to measure online are the pseudoscalar mass and
decay constant.

4.2.1 Algorithm control

The first check to perform during the gauge configuration production is the thermalization of
observables. Indeed, starting from an existing configuration produced with another set of pa-
rameters, the first elements of the Markov chain have a memory of the initial state, and are
therefore irrelevant. The question is to estimate the number of configurations to be rejected i.e
the Monte Carlo time required for thermalization. Note that this characteristic time depends on
the observable chosen and on the parameters of the run. Moreover we have no idea a priori of its
value. The common criteria to decide that the observable is thermalized is to wait much longer
than the typically measured characteristic times. We show in Fig. the example of plaquette
thermalization for a L = 32, T" = 64 run with Ny = 24+ 1 + 1 flavours at 8 = 2.0. The light
quark mass is of apu = 0.0025 and the heavy doublet mass au, = 0.13 and aus = 0.16.

0.594 0.595

0.593
Il

P
0.592

0.590 0.591

0 10 20 30 40 50
Ntraj

Figure 4.2: Thermalization of the plaquette variable for a 323 x 64 lattice 3 = 2.0, ap = 0.0025,
ap, = 0.13, aps = 0.16
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As can be seen in this figure, the typical number of trajectories needed to reach a plateau
region is ~ 20. Such an estimation should be repeated in principle for each observable and
lattice action. In practice this is rarely done. We compensate this thoughtlessness by taking an
extremely conservative criterium: we drop out the first one thousand trajectories before starting
any physical analysis on a run, and we safely declare that the run is thermalized.

We show in Fig. a history of the plaquette measurements for nearly ~ 7000 8 = 1.95
thermalized trajectories, following our previous criterium. The light quark mass is au = 0.0025
and the heavy doublet masses are ap, = 0.135 and aus = 0.17

7 ~. “ M.. uﬂ I Hl u nN \ .IW ”WH, it M r | I“
l , |{ U‘ M‘ 1\1 "’M N'

Ty

T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000
Ntraj

0.5848 0.5850 0.5852 0.5854 0.5856 0.5858

Figure 4.3: Plaquette history for a L = 32, T = 64 run at 8 = 1.95 | with au = 0.0025,
ape = 0.135 and aps = 0.17

The corresponding histogram, displayed in Fig. EE4l gives us access to the variance of the
plaquette. Note however that the naive variance does not provide an estimation of the statistical
error due to the correlations between measurements. A precise estimation of this error would
require using the methods described in chapter Bl The effective statistics is in fact Nyeas/2Tint
where 7;,,+ is the integrated autocorrelation time defined in Eq. (B&1).

The gaussian distribution of the plaquette measurement is a necessary conditions for the
absence of a complicated phase structure of the statistical field theory.

Another important information directly related to the acceptance of the algorithm is the
quantity e"2". As we have seen in Eq. @I0), if this quantity is smaller than one, it gives the
probability to accept the configuration or to reject it. Of course the aim is to accept as many
configurations as possible provided the price to pay is not too high. Indeed, if the integrator was
exact, the energy would be exactly conserved, and the acceptance rate would be one. However
the numerical cost will never compensate the number of configuration saved. A compromise is
thus needed. In practice, it is obtained when ~ 80% of the configurations are accepted. We
show in Fig. Ed e 2™ as a function of the Monte-Carlo time for the same run parameters than

in Fig.
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Figure 4.4: Distribution of the plaquette measurement for the same run as used in Fig.
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Figure 4.5: e~ 2™ history for the L = 32, T = 64 run at 3 = 1.95 , with ap = 0.0025,au, = 0.135
and aps = 0.17
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The acceptance rate for this run turns to be 74%. We observe that some configurations are
automatically accepted by the algorithm (e=27* < 1). The computed average is very close to
one (red lines on the figure) which guarantees the exactness of the algorithm.

As we mentioned before, the eigenvalue of the Dirac operator in the heavy sector, has to be
computed during a PHMC run, in order to be sure that the polynomial expansion of inverse of
the square root has the required precision. We checked along the run that a suitably normalized
operator has its eigenvalues in the interval [e,1]. Keeping the same run as in Fig. and
with € = 2.107°, we illustrate in Fig. EE6l and B4 the fluctuation of the minimal and maximal
eigenvalues as a function of the Monte-Carlo time.
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Figure 4.6: Minimal eigenvalue history for the run used in Fig.
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Figure 4.7: Maximal eigenvalue history for the run used in Fig.



4.2. Characterizing a run 95

We clearly see the fluctuations of the lowest eigenvalue, which stays above e. Conversely, the
highest eigenvalue remains smaller than 1 as needed, and we can safely use this ensemble without
suspecting a failure in the convergence of the algorithm.

4.2.2 Dependance on the light quark mass

We cannot close this part without showing the qualitative behaviour of some observables as a
function of the light quark mass. Actually, this will face us with one of the major problems of
lattice QCD when trying to compute physical observable at the physical pion mass. This issue is
of central importance since, as we will see in chapter Bl and [, the extrapolation procedure used
to reach this point is the most important source of systematic error in lattice QCD.

We will summarise this, by showing only two results which already give us a feeling of what is
happening when the light quark mass decreases. First of all we compare the time distribution on
a BlueGene/P needed to generate one configuration at maximal twist in Fig. for two different
value of the light quark mass. Keeping the same physical volume and the same local volume
on each processor of the computer (in this case one rack of BlueGene namely 4096 CPUs), we
observe that when dividing the quark mass by a factor three, the computation time increases by
30%. The order of magnitude of the physical time needed to generate 5000 trajectories is of 55
consecutive days of numerical computation on one BG/P rack. Note that we neglect here the
time needed to tune k., to maximal twist, although is was far from negligible !

In this case the lightest quark mass corresponds to a pion mass of ~ 270 MeV which is still
two times heavier than the physical value. In this regime, the HMC algorithm scales slowly as a
function of u. When approaching the physical value the time needed to produce one trajectory
increases dramatically.

0.20

— B=1.95p.=0.0025
— B=1.95.=0.0075
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1 1
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0.00
L
-

T T T T T 1
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Figure 4.8: Distribution of the time needed to produce one trajectory for two runs, L = 32,
T = 64 run at § = 1.95, au, = 0.135 and aps = 0.17 , the light quark masses are u = 0.0025
(blue) and g = 0.0075 (red).

We display in Fig. 9 the Monte Carlo history and the distribution of the plaquette for the
same runs than for the previous figure. We observe that fluctuations increase when the light
quark mass is decreased. The (normalized) plaquette distributions are also shown, and confirm
that dispersion of the results is larger for the light quark mass. The history also shows longer
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wavelength fluctuations over the Monte Carlo time for the smallest p value. This generates
large autocorrelation times which makes difficult the analysis and increases the statistical errors.
For some particular physical parameters one can even suspect that the HMC algorithm failed
to explore the whole configuration space because of the very large autocorrelation time. The
statistical errors are then underestimated, and it is therefore impossible in a reasonable amount
of time to perform physical measurements.

This effect can be quantified by estimating the integrated autocorrelation time for several
obseryable as the pseudoscalar mass is decreased.
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Figure 4.9: Comparison of the plaquette history and of the distribution of the measurement for
the two runs used in Fig.

The explosion of the computation time for light quark mass is due to a QCD property often
refered as the critical slowing down. Note, however, that substantial and encouraging efforts are
done in the community to improve the algorithm, and that the improvement realized during the
last years already yield significative progress. Note that first simulations “at the physical point”
have been performed during my Ph.D by the collaboration PACS-CS [75] and BMW [76].

4.3 Tuning and online measurements

Additional informations are provided by online measurements that compute significant correla-
tors during the run. They are performed with a frequency that can be changed, but in general
every two trajectories. They involve one extra inversion of one stochastic source [77] (see [78]
for a review). Using the one-end-trick [78,79] one can reconstruct three correlators of the light
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sector, namely (PP), (PA) and (PV) with

a

_ T
P* =Xs X
a -, Ta
Vil =X X (4.20)
Ta

Al = X575 X

From (PP) we can obtain the pseudoscalar mass together with the pseudo scalar decay constant
in the twisted mass case. From (PP) and (PA) we can measure the fundamental quantity that
allow to tune a run at maximal twist, namely the PCAC quark mass. Finally in the correlator
(PV) we can extract the renormalization constant Zy . Further details are given in [80].

These correlators are analysed using the I'-Method analysis, and the bootstrap is used to
cross check results.

Choosing the strategy to tune mpcac to zero at each value of the light quark mass insures
us that we are at maximal twist. The tuning is done using several hundreds of trajectory for
different value of the Wilson quark mass (mg) until the criterium

MmpCcAC — 0+ O.I;L (4.21)

is satisfied.

We show in Fig. L0, the maximal twist tuning plot for the 323 x64 run at 3 = 2.0, u = 0.0025,
to = 0.15 and ps = 0.16. The two dotted lines correspond to the bound of Eq. (2ZI). We show
the lattice results (empty circles) for four values of x and we indicate by a star the linearly
interpolated value of the optimal k... We see that our last trial gives a satisfactory well tuned
value and corresponds to £ = 0.159441. Note that the three other points have cost ~ 1500
trajectories which cannot be used to produce physics results. However the last value is well
tuned at maximal twist and guarantee automatic O(a) improvement.

Before closing this section, we show in Fig. EETTl the PP correlator for a 323 x 64 run at
B = 1.95 and p = 0.0025. A hyperbolic cosine fit allows to extract the pseudoscalar mass
together with the pseudoscalar decay constant (see Eq. (Bd)). Note that in practice, mesonic
two-points correlators are usually extremely precise. Their accuracy can be even improved by
using stochastic techniques that decrease the variance of the measurement.
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Figure 4.10: Tuning & for 8 = 2.0 and ayy; = 0.0025 on a 323 x 64 lattice. We show ampcac as
a function of k for 4 values of k (empty circle). We indicate by a star the linearly interpolated
value of the optimal k¢;.
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Figure 4.11: Pseudoscalar correlator as a function of ¢/a obtained with online measurements on
a 323 x 64 lattice at 8 = 1.95, ajy = 0.0025. A hyperbolic cosine fit is shown in the range [11,51]
to guide the eyes.
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4.4 N; =2 simulations

We present in this chapter the Ny = 2 gauge ensembles together with some selected physical
results that will be useful in my baryon analysis. Most of them are taken from [81].

4.4.1 Gauge configurations

In Table BTl we summarize the Ny = 2 gauge configuration ensembles generated by the ETM
collaboration. Simulations are performed at the four values § = 3.8, § = 3.9, § = 4.05 and
(B = 4.2. The lattice spacing is fixed using xPT based formaluae to fit our data for fpg and
mps using the physical value of f; and m, as input. The corresponding lattice spacings are
ag=3.8 ~ 0.1 fm, ag=3.9 ~ 0.079 fm,ag—4.05 ~ 0.063 fm and ag—4.o ~ 0.051 fm.
For each values of 3, we have several values of the bare twisted quark mass aj,. They have
been chosen such that they cover a range of pseudoscalar mass between 280 MeV and 650 MeV.
The physical box length L in most of the simulation is ~ 2fm. For all the runs we impose
the inequality
mpsL 2 3 (4.22)

This guarantees in principle that the volume effects are under control. Note that we use the
mass of the charged pseudoscalar meson to fulfill this criterium. As we will see latter, at finite
lattice spacing, the mass of the neutral pseudoscalar meson is substantially lower and condition
Eq. EZ) is far from being fulfilled. Taking as a reference mgs is however justified by the fact
that the splitting is a large O(a?) effect and by checking for anomalous volume effects in various
observables. So far, no large finite size effects have been observed. The box size in fermi together
with the mpgL value for our runs are shown in Table BTl

4.4.2 Main results

Until now we have explained how to compute physical observables on a lattice. However, in order
to make reliable and quantitative predictions, a careful study of systematic errors is mandatory.
One of the important systematic effects that we will be concerned in all this work are the lattice
discretization effects.

To this aim one needs to compare lattice data obtained at several 3 values. This cannot be
done without defining a system of units. Let us consider for instance a hadron mass measured in
lattice units. We denote it by aM. As we explained in chapter [l the continuum limit is obtained
for aM — 0, a regime in which the typical correlation length (or Compton wavelength) becomes
large compared to the lattice spacing. To define the continuum limit of the theory we need to
construct a finite non vanishing quantity in the limit ¢ — 0. In principle this can be achieved,
by choosing any QCD dimensionfull observable, denoted by A. If we assume that A has the
dimension of a length, then by computing, A/a one the lattice on can express at finite lattice in
units of A any other observable :

A
AM = =aM (4.23)
a

AM is a measurement of the mass “in units of A”. For instance A can be the Compton wavelength
of the pseudoscalar meson. All observables will be in this case expressed relatively to the pion
wavelength, or equivalently relatively to the pion mass.

It is important to understand that the theory predicts only dimensionless quantities and that
system of units are a convenient way to compare observables with the real world. Such a system
of units does not need to be in GeV. Units are only references to compare quantities, and they
are not contained in the model. To use the standard system of units we need to match as many
observables as parameters to find the conversion factors between the system of units. These two
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Ensemble (L/a)3 x T/a i) aflg Kerit Tint (P) Tint (amps) T
A, 21% x 48 38 0.0060 0164111 _ 190(4d) 802) 1.0
Ay 0.0080 172(80) 10(2) 1.0
As 0.0110 130(50) 6(1) 1.0
Ay 0.0165 10(12) 6(1) 1.0
As 20° x 48 0.0060 250(100) 5(1) 1.0
B4 243 x 48 3.9 0.0040 0.160856 47(15) 7(1) 0.5
Bs 0.0064 23(7) 17(4) 0.5
By 0.0085 13(3) 10(2) 0.5
Bi 0.0100 15(4) 7(2) 0.5
Bs 0.0150 30(8) 20(6) 0.5
Bg 323 x 64 0.0040 37(11) 2.8(3) 0.5
Br 0.0030 51(19) 7(1) 1.0
) 32% % 64 105 00030 0157010  18(4) ) 05
Oy 0.0060 10(2) 9(2) 0.5
Oy 0.0080 13(3) 7(1) 0.5
Cy 0.0120 5(1) 4.8(6) 0.5
Cs 243 % 48 0.0060 12(2) 11(1) 1.0
Cs 208 x 48 0.0060 10(2) 7(1) 1.0
Dy 483 x 96 4.2 0.0020 0.154073 13(2) <38 1.0
Ds 323 x 64 0.0065 6(1) <38 1.0

Table 4.1: Summary of (20) ensembles generated by ETMC. We give the lattice volume L? x
T and the values of (3, the twisted mass parameter ajg, the critical hopping parameter ket
as determined at pgmin and the trajectory length 7. The values of the lattice spacing that
correspond to the four values of 5 are a = 0.1fm (8 = 3.8), a &~ 0.079 fm (5 = 3.9), a ~ 0.063 fm
(6 = 4.05) and a =~ 0.051fm (8 = 4.2). In addition we provide values for the integrated
autocorrelation time of two typical quantities, the plaquette P and the pseudo scalar mass amps,
in units of 7 = 0.5. We refer to ref. [80] for details on the determination of the autocorrelation
time.

steps are often merged in one by choosing for instance A to be the inverse nucleon mass my in
GeV ™!, and thus by fixing directly the lattice spacing.

A good system of units is defined through an observable that can be computed on the lattice
with a good precision.

The Sommer parameter 7o, first introduced in [82], satisfies this last criterium and will be
extensively used in this work as a system of units convenient to compare lattice simulations.
The quantity ro/a is defined via the force between static quarks and is extracted from a purely
gluonic correlation function. It has the advantage of being accurately determined in lattice QCD
simulations. However the value of ¢ in physical units (r¢ ~ 0.45fm) is not well known.

The Sommer scale will be used in practice to study the continuum limit presented in chapter
and [l We thus briefly discuss here its measurement, for a more detailed explanation see [80].
We show in Fig. EI2 ro/a as a function of (ap,)? for 8 = 3.9 (a) and 3 = 4.05 (b). The mass
dependence is rather weak and consistent with a linear fit. Note that this small dependence
makes the extrapolation to the chiral limit (4, = 0) reliable and explains why 79/a defines a
convenient system of units. A precise study of the extrapolation procedure of ro/a leads to the
rY/a values shown in Table together with its systematical errors.

As explained in chapter B our strategy to reach maximal twist for Ny = 2 simulations, is to
tune amy, for the lowest bare twisted quark mass ap, such that mpcac defined in Eq. [Z24)
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Figure 4.12: 7o/a as a function of (apy)? for (a) 8 = 3.9 and (b) 3 = 4.05. The lines represent
a linear extrapolation in (au,)? to the chiral limit. Note that we have always used the largest
available volume for a given value of ay,, see table Bl

3 ry/a
38 | 4.462(15)
3.9 | 5.631(39)
4.05 | 6.727(48)
4..2 8.358(63)

Table 4.2: 7 /a extrapolate using a quadratic fit. The errors are statistical and systematical
added in quadrature. Results taken from [81].

vanishes. More precisely we demand to fulfill the conditiorfl
|ZAampcAc/apq| <0.1 (4.24)

with an error satisfying
A(|ZAampCAc/auq|) <0.1 (4.25)

Another condition is that the value of aj, chosen to make the tuning correspond to a pseu-
doscalar mass of ~ 300 MeV for all values of 3. We recall that the pertinence of this criteria,
which guarantees automatic O(a) improvement, is discussed in [80].

We show in Fig. our measurement of Z ampcac/apg as a function of (rouR)Q for our
gauge ensembles tuned to maximal twist. The value of the renormalized quark mass for which
the runs have been tuned is indicated by an arrow. Note that, in this region of pseudoscalar
mass and for the three largest 3 values, the measurements are compatible within the error. At

2Note that here we use the renormalized version of the criterium Eq. @ZI). This is possible since renor-
malization constant have been determined. The tuning has however been done without the knowledge of the
renormalization factors.
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0 = 3.8, large autocorrelation times were observed at the lowest quark mass. We include in
Fig. only the ensembles for which a reliable estimation of mpcac was possible.
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Figure 4.13: Renormalised ratio of the PCAC quark mass over the twisted mass against the
renormalised twisted mass pr = pq/Zp at the four values of 5. The statistical uncertainties
on Zp and Zu are not included. The data at g = 4.2 have been included by estimating the
renormalisation constants as described in the text. At 5 = 3.8, the data for the lightest quark
mass has not been included for the reasons explained in the text. The band indicates our
condition for tuning to maximal twist, which is clearly achieved to a good precision. The arrow
indicates the value of r§ ur where we tuned the PCAC mass to zero.

In order to compare the data of the pseudoscalar decay constant at § = 3.9, § = 4.05 and
[ = 4.2, three values of reference pseudoscalar mass have been chosen: rympg = 0.614 (which
correspond to the lightest pseudoscalar mass of the 3 = 4.2 ensemble), rimps = 0.900 and
rimps = 1.100. The corresponding values of fpg are obtained by (small) interpolation. The
data are also extrapolated using xPT to the same volume of reference r§ L = 5.0.

We show in Fig. the scaling of the pseudoscalar decay constant fpg in finite volume,
for a fixed pseudoscalar mass rimps, as a function of (a/rg)?. When possible, data points
obtained for § = 3.8 are shown but not included in the linear continuum extrapolation. They
are in good agreement with the fit obtained using § = 3.9, 8 = 4.05 and 8 = 4.2. The slope of
the curve is very small, indicating small lattice artefacts.

In Fig. [.14(b)] we show (r§mps)? as a function of (a/r)? for three values of the renormalized
quark mass. The data obtained with our smallest lattice spacing were not included because the
renormalization constant Zp is missing. The continuum extrapolation is flat, and proves that
twisted fermions offers a good approach to the continuum with small O(a?) artefacts, at least
for the charged pseudoscalar decay constant and mass.

As explained in the chapter B the twisted mass approach has the drawback of breaking
isospin symmetry at finite lattice spacing. The main consequence is that large cutoff effects are
observed in the difference between the neutral (mg) and charged (miy) pseudoscalar masses.
Note that, in view of Eq. (B2Z), the evaluation the two-point correlation function of neutral
mesons involves the computation of disconnected diagrams making difficult a precise estimation
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Figure 4.14: Scaling in finite, fixed volume for 7 fps at fixed values of rimpg (a) and for
(r¥mps)? at fixed values of r¥ur (b). In (b) we cannot include data at 8 = 4.2 due to the
missing value of the renormalisation factor Zp.

of its mass. Using stochastic techniques, disconnected contribution are nevertheless evaluated
with a reasonable precision.

We show in Fig. EETH the mass splitting between the charged and neutral pseudo scalar
mesons as a function of (a/rg)? for two different masses of m%s. We observe that mQg is
contaminated with large O(a?) effects since m%s has a flat continuum scaling (Fig. {.14(b)]).
Note that (rimps)? ~ 0.5 for 8 = 3.9 and aptg = 0.004, we thus have an isospin breaking
~ 35% in our Ny = 2 simulations. Note that curiously, in dynamical simulations the neutral
pseudoscalar mass is smaller than the charged one, unlike in the quenched approximation [83].

i) alPs (fm)
3.8 0.0998(19)
3.9 | 0.079(2)(2)
4.05 | 0.063(1)(2)
4..2 0.05142(83)

Table 4.3: Lattice spacing fixed using fpg, statistical and systematical error estimations are
discussed in [81]. Data at 8 = 3.8 are used only for cross check and therefore systematic errors
are not estimated. Systematic errors at § = 4.2 are not estimated at the time of the writing
because of the unknown value of Zp(3 = 4.2).

4.5 N;=2+1+1 simulations

The ETM Collaboration stopped to produce Ny = 2 configurations, and all the computational
efforts are now devoted to Ny =2+ 1+ 1. As explained in chapter [, our strategy to tune to
maximal twist is to impose simultaneously mpcac = 0 with mg; = mg  and with an accuracy
mpcac/p < 0.1. As explained in [84], the tuning of the PCAC mass is performed independently
for each value of ;. It guarantees automatic O(a) improvement. Two additional parameters
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Figure 4.15: The difference of the squared charged and neutral pseudo scalar masses as a function
of a? in the Ny = 2 twisted mass formulation of lattice QCD at two different values of the charged
pseudo scalar mass. A significant O(a?) lattice artefact is observed. The circles (triangles)
correspond to a value of the charged pion mass of about 330 (430) MeV. The open circle is
a larger physical volume. The lines are only to guide the eye and some points are slightly
horizontally displaced for better visibility. Note that ré‘mgs was not held fixed for this plot,
however, due to the large uncertainties on m$g the picture should not significantly depend on
this approximation.

that control the strange and the charm quark mass are needed compared to the Ny = 2 case.
These parameters require additional tuning. Let us recall the relation between the renormalized
strange (ms) and charm quark mass (m.) and the bare parameters p, and s:

(Mms,c).r = ZLP(NJ F 2—2#5) (4.26)
Because of the flavour mixing, the tuning of the renormalized strange (respectively charm) quark
mass cannot be done independently of the renormalized charm (respectively strange) quark mass.
In practice we fix the couple (i, f15) to their matching value (pmatehing, ug’amhing) by requiring
the following condition:

phys __ lat matching , matching
Mg~ =My (mm Mo ) Mg ) (4 27)
phys _ lat matching  matching :
mD =mp (mﬂ') :u’o- 7//1/5 )

where mlf}t p(mps, fio, is) is computed for several values of the parameters u;, pi, and ps and

then extrapolated to mpg = m, using xPT.

Compared to Np = 2 simulations, we use the Iwasaki action for the gluon instead of the tree
level Symanzik one as explained in chapter With this gauge action we observe a smoother
dependence of quantities sensitive to possible phase transition. The change of gauge action
explains why the 3 values are quite different (5 roughly divided by a factor 2 for the same lattice
spacing).

In Table L4l we summarize the Ny = 2 + 1 + 1 runs generated by the ETM collaboration.
Each run in the table has ~ 5000 thermalized trajectories. In order to convince ourself that
simulations were under control, our first goal was to study the systematic effects and to compare
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our results with our well established Nr = 2 case. That is why we have generated ensembles
for two values of the lattice spacing corresponding to 8 = 1.90 and to § = 1.95. To study
the finite volume dependence we also simulate three volumes at 7 = 1.90 at a pseudoscalar
mass of ~ 300 MeV corresponding to a bare light quark mass of y; = 0.004. Two runs have
been dedicated to the tuning of strange and charm quark masses. Note that simulations on a
two smaller lattice spacings corresponding to § = 2.0 and § = 2.1 and smaller quark mass are
running on the supercomputers.

Label I6; K apy afiy aps | L/a | T/a | mzL | |e/]
A40.20 1.90 | 0.1632700 | 0.0040 | 0.150 | 0.190 | 20 48 3.0 | 0.14(14)
A40.24 | 1.90 | 0.1632700 | 0.0040 | 0.150 | 0.190 | 24 | 48 | 3.5 | 0.07(14)
A60.24 1.90 | 0.1632650 | 0.0060 | 0.150 | 0.190 | 24 48 4.1 0.03(3)
A80.24 1.90 | 0.1632600 | 0.0080 | 0.150 | 0.190 | 24 48 4.8 0.02(
A100.24 | 1.90 | 0.1632550 | 0.0100 | 0.150 | 0.190 | 24 48 5.3 0.02(

A100.24s | 1.90 | 0.1632550 | 0.0100 | 0.150 | 0.197 | 24 | 48 | 5.3 | 0.35(

A30.32 1.90 | 0.1632720 | 0.0030 | 0.150 | 0.190 | 32 64 4.0 0.08(7

A40.32 1.90 | 0.1632700 | 0.0040 | 0.150 | 0.190 | 32 64 4.5 0.04(
A50.32 | 1.90 | 0.1632670 | 0.0050 | 0.150 | 0.190 | 32 | 64 | 5.0 | 0.05(
(
(
(
(
(

B25.32 | 1.95 | 0.1612400 | 0.0025 | 0.135 | 0.170 | 32 64 3.4 0.06
B35.32 | 1.95 | 0.1612400 | 0.0035 | 0.135 | 0.170 | 32 64 4.0 0.02
B55.32 | 1.95 | 0.1612360 | 0.0055 | 0.135 | 0.170 | 32 64 5.0 0.08
B75.32 | 1.95 | 0.1612320 | 0.0075 | 0.135 | 0.170 | 32 64 5.8 0.05
B85.24 | 1.95 | 0.1612312 | 0.0085 | 0.135 | 0.170 | 24 48 4.6 0.01

Table 4.4: Input parameters, m, L and |e/ ;| for all ensembles used in this paper. Every ensemble
has ~ 5000 thermalized trajectories of length 7 = 1. We have two main ensemble sets: A and
B, at f=1.90 and 3 = 1.95 respectively.

4.5.1 Selected non baryonic results

Our first attempt to fix the scale was done using the Sommer parameter ro/a. It has the
advantage to be a pure gauge quantity and can be accurately computed.

We show in Fig. EEI0, the variation of r/a as a function of (au;)? the bare light quark mass
squared. We compare one Ny = 2run at § = 3.9 and a Ny = 2+141 run at 3 = 1.95 normalized
at the lightest quark mass. The first observation is that the p; dependence is more pronounced
in the Ny = 2+ 1+1 case than in the Ny = 2 one. Since r0/a is very sensitive to x in the vicinity
of Kepit , the fact that we now tune to maximal twist at every value of au;, might, provide an
explanation for the observed change of slope. These differences tend to diminish when increasing
the value of j3.

Using a quadratic fit of the form

X
D10y aa2p? (4.28)
a a

one can extrapolate to the chiral limit 7 /a. Our first estimates of this important quantity is
then summarized in Table EEH which includes only statistical errors. We would like to emphasize
that despite the smallness of the statistical error in Table EERl our estimation of the Sommer
parameter is much weaker than in the Ny = 2 case. This is due to our present lack of control on
systematic errors.
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3 rX/a
1.90 | 5.24(2)
1.95 | 5.71(4)

Table 4.5: r} /a extrapolate using a quadratic fit. Only statistical errors are shown.
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Figure 4.16: Comparison between Ny = 2 and Ny = 2 + 1 + 1 of the variation of r¢/a as a
function of (aj;)? the bare light quark mass squared. Data have been normalized at the smallest
value of the light quark mass.

As we explained previously in this chapter, amps and afps can be determined during the
run using the online measurements. In order to improve the error bars, offline measurements are
performed that allow to extract them with smaller statistical error bars. We plot in Fig. EE11
T())(fps as a function of (rffmps)Q, for the 8 = 1.95 run and for several Ny = 2 runs. The data
does not include volume corrections.

In order to extract the lattice spacing from our data sets, we perform a next to leading order
SU(2) chiral perturbation theory fit of the computed mpg and fpg. We use continuum formulae
and correct for finite size effects both & la Gasser and Leutwyler [85], or with two additional
low energy constant l; and 3, as described in [86]. The results are listed in table EAl We have
performed these fits for the ensembles A and B separately, and also by combining them in a
single fit. In table EE6, we include a systematic error, estimated at 2 — 5%, coming from the
dispersion between NLO and NNLO fits.

Note that since the quark mass enters in the yPT expression, combining the two sets at
different lattice spacings requires the knowledge of the quark mass renormalization factor Z, =
1/Zp which is not yet available. To overcome this difficulty we consider the ratio of Zp at two 8
values as additional parameters of the fit. We use as inputs the physical f; and m,, and extract
fo, I3 and I;. A complete analysis (analogous to [87]) of the systematic effects is in progress.

The isospin breaking in the light pseudoscalar mesons sector has been estimated by Carsten
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Figure 4.17: Comparison between Ny = 2 and Ny = 2 + 1 4 1 of the variation of ryfpg as a
function of (romps)?.

set pts | fo(MeV) I3 Iy ag=1.90(fm) | ag=1.95(fm)
A& B[ 11| 121(4) |35(2) | 47(2) | 0.086(6) 0.078(6)

A |6 | 121(4) |3.4(2) | 48(2) | 0.086(7)

B 5 | 121(4) | 3.7(2) | 4.7(2) 0.078(7)

Table 4.6: Results from the NLO SU(2) xPT fits for combined, only set A and only set B
respectively. Errors are dominated by a systematic error of 2 — 5% due to performing an NLO
fit. The column ”pts” refers to the number of ensembles used in that fit.

Urbach for two gauge ensembles. We show in Fig. the relative difference between the
neutral and charge pseudoscalar states as a function of (a/ry)2. In order to compare with our
Ny = 2 data. we show, with empty triangle and for a fixed pseudoscalar reference mass, the
corresponding results. The isospin breaking is dramatically large in Ny = 2 + 1 + 1 simulations,
with for instance a neutral pseudoscalar meson mass of about ~ 50% of the charged one at
B = 1.90. This led us to the conclusion that we have to decrease the lattice spacing in order
to be in the same setup than in our well understood Ny = 2 simulations. This explain our
actual strategy which consists to run with § = 2.0 and § = 2.1. Note that the isospin breaking
at B = 1.95 is already comparable to the Ny = 2 case. Details concerning the analysis in the
light sector can be found in [88]. A paper concerning the analysis in the heavy sector is already
submitted [89].
We will come back to the isospin breaking issue in the baryon sector in chapters @ and [1
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Figure 4.18: Relative mass splitting between the neutral and charged pseudoscalar obtained

for Nf = 2+ 1+ 1 as a function of (a/rg)?, for two 3 values. The reference pion mass are
not the same. In order to compare with Ny = 2 the same observable is shown for a reference
pseudoscalar mass of rgmpg = 0.7.

L/a amﬁs ambg afps amg amp
A40.24 24 0.14527(39) 0.0762(49) 0.06541(33) 0.25779(43) 0.9400(107)
A40.60 24 0.17261(44) 0.107(7) 0.07169(23) 0.26695(51) 0.9298(117)
A40.80 24 0.19858(41)  0.131(9)  0.07623(22) 0.27706(60) 0.9319(93)
A100.24 24 0.22276(41) - 0.07924(19) 0.28807(33)  0.9426(99)
A30.30 32 0.12358(48) - 0.06483(40) - -
A40.32 32 0.14141(40) - 0.06767(26) ; -
A50.32 32 0.15720(42) - 0.07108(27) ; -
B25.32 32 0.10679(58) - 0.05714(34) 0.21239(49)  0.8354(68)
B35.32 32 0.12621(45)  0.077(1)  0.06052(24) 0.21835(28) 0.8286(84)
B55.32 32 0.15503(26) - 0.06590(17) : -
B75.32 32 0.18044(24) - 0.06902(12) 0.23753(33) 0.8361(126)
B25.24 24 0.1937(6) - 0.0700(3)  0.24476(44) 0.8650(76)

Table 4.7: Selected observables in the non baryonic sector for Ny = 2 4 1 + 1 simulations.
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Effective theories are a powerful tool to analyze lattice results. We have already mentionned
that the effective action a la Symanzik, permits to improve our understanding on the way that
the continuum limit is reached. Another interesting effective field theory, is the so-called chiral
perturbation theory (xPT) which was introduced by Weinberg [90-92] and systematically de-
veloped by Gasser and Leutwyler [93,94]. A large part of the following discussion is based on
lectures of [95] [96] [97] or Ph.D [98].

5.1 Chiral Symmetry in QCD

Let us consider the two degenerate flavour QCD Lagrangian. We saw in section that it is
symmetric under SU(2),, x SU(2) , x U(1)y in the limit of vanishing quark masses. Nature should
be approximately described in this limit. We expect that hadrons can be classified into degenerate
multiplets, labelled by the irreducible representation of the symmetry group. However, assuming
that the vaccuum state of QCD is invariant under vector and axial transformation leads to a
phenomenological contradiction. Indeed in this hypothesis, it can be shown that the vector and
axial conserved charged operator have opposite parity. As a consequence any state of positive
parity should have a degenerate negative parity partner. This is not observed in Nature. For
instance the J¥ = 1/2~ baryon octet is ~ 50% heavier than the J£ = 1/2% one. Moreover it was
shown in [99] that in the chiral limit the vaccuum is necessarily invariant under SU(2),, x U(1)v.

The way to solve this puzzle, is to assume that the vacuum is not invariant under axial
transformations. This spontaneous symmetry breaking gives rise to the appearance of massless
particles, the so-called Goldstone bosons due to Golstone’s theorem [100-103]. The numbers
of Goldstone bosons is equal to the dimension of the spontaneously broken group, so in the
particular case of two flavour it is equal to three. These bosons are identified with the three
pion states which are significantly lighter than any other particle of the QCD spectrum. Their
small masses are due to the fact that in practice SU(2) , is explicitly broken (softly) by the
non vanishing v and d quark masses. Anticipating on chiral perturbation theory results, we can
already guess that pion mass will vanish when the quark masses are sent to zero (chiral limit).
Note also that a non-vanishing scalar quark condensate in the chiral limit is a sufficient (but not
a necessary) condition for a spontaneous symmetry breaking in massless QCD.

Transformation properties of the Goldstone bosons field U can be worked out to obtain an
effective theory describing its dynamics. The result is the chiral Lagrangian.

In the two flavour case, let us define

U(z) = exp G%f)) (5.1)
with

¢= zz:(bm = (\/gi ﬂ;::) . (5.2)

L (¢
¢ = |2 (5.3)
®3

The most general chirally invariant lowest order effective Lagrangian density reads

We will sometimes denote

F2
L= TOTr{E)MUE)“UT} (5.4)
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where Fy = 132 MeV is the pion decay constant. One can then compute observables perturba-
tively, and obtain in this way the so-called chiral perturbation theory (xPT). It can be shown that
this Lagrangian is completely invariant under chiral rotations. The quark masses that explicitly
break chiral symmetry can however be taken into account in this formalism using the following
term :

F2 By

Ly 5

Tr {MU" + UM} (5.5)

where M is the mass matrix :
M = diag (my, mq) (5.6)

and an effective coupling constant By. The precise definition and properties of Pauli matrices 7;
are given in Appendix [Al

Computing the self energy of the pion provides a relation between the quark and pseudoscalar
mass. One obtain the following result, historically first derived using current algebra:

mbg = 2By(my, + ma) (5.7)

One can generalize this approach systematically including higher orders terms and obtain a
more accurate expansion around vanishing pion mass. It can be shown that this non renormal-
izable effective theory is valid in the limit of small momentum. However in practice its precise
validity range has to be determined using non perturbative ab initio calculation. Chiral per-
turbation theory allows to compute order by order the dependence of selected observables, like
pion scattering length [104] or decay constant, as a function of the pion or quark masses. Note
that effective chiral perturbation theory can also be generalized to describe finite size or finite
lattice spacing effects. Given our present range of simulated pion masses, YPT is an unavoidable
tool to interpret the dependence of the results on the quark masses and extrapolate to them to
the physical point. Conversely, once the improvement of algorithm and computers will allow us
to reach the physical point, we will dispose of a non perturbative determination of the validity
range of the chiral expansion.

5.2 Baryonic chiral perturbation theory.

In this thesis, we will focus on the baryonic sector. An extension of the preceding chiral expansion
taking into account the baryon degrees of freedom was first developed in [105]. However the power
counting of the corresponding Lagrangian was ill defined. A The solution was provided by the
so-called heavy-baryon chiral perturbation theory (HByPT), introduced in [106,107], which is not
only an expansion in terms of small pion masses and momenta but also in the inverse nucleon
mass 1/My.

We will follow here the first approach of [105], which gives at one loop, the same result as
HBxPT. In this section, 1) denotes the nucleon doublet under SU(2)y . They consider the lowest
order Lagrangian

Lo = @(UD —m+ %v’wwu)w (5.8)
where
Uy = i{uTé)Mu — u@uuq ) (5.9)

is the so-called wielbein, and

W2(z) = U(z) = exp (FLO (\/_;rjr_ ﬂgf*)) (5.10)

™

Lin practice , it is impossible to define what are the relevant terms at a given order in perturbation theory.
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contains the pion field.
The covariant derivative is defined in the following way :

D, = (0, +T ), (5.11)
where the so-called connection is given by
Lr,t i
r,= 3 [u Ouu + ud,u } (5.12)

The parameters m and g4 are respectively the nucleon mass and the axial coupling constant in
the chiral limit. Quark masses are included using the next-to-leading order 7N Lagrangian Ef},:

Efsz, = Tr {(xU" +Ux'} (5.13)

where
X = 2FgM (5.14)

and ¢ is a new low energy constant, related to the sigma term of the nucleon. The computation
of the nucleon self energy is done using the following effective Lagrangian

Lo = Lo+ LY + L2, (5.15)

Expanding the U field, and keeping only terms with one and two pion fields, we get the
following effective Lagrangian:

Lot = oo + L + O(6") (5.16)
with 1 B
Lo = 5610+ M)y + (i — m)y (5.17)
and
Cue = = T 60,0000 — e Tdla) 1 0,5(w) - 7 (518)

The mass term M? = 2Bg(m,, +mg) is the lowest order expression for the squared pion mass
in terms of the low energy coupling constant By and the quark masses.
Defining the Fourier transform as

@) = [ ze ™ot (519)

the Feynman rules in momentum space can be derived B and are:

2multiplying by i and replacing derivative by —ip,,
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—_——— 1
5.20
e s (5.20)
. 5.21
p p? — M? (5-21)
k,a ! g
ot — 22 Yy,
‘ 2F, WysT
Nk LN 1
4
N7 4—FOQ(/y+17/)eabcTC.
» v (5.23)
At this order the proton propagator can be written as
o) = e e il (5.24)

where the self energy is defined as the sum over the one particle irreducible (1 PI) Feynman
diagrams.

The nucleon mass is then given by the pole of the propagator i.e :

my —m—S(my) =0 (5.25)
The next-to-leading order 7N Lagrangian Esz, yields the constant contribution
niree — _4e) M? (5.26)

The one loop diagrams that contribute to the self energy of the nucleon are given in Fig.
BTl The first diagram gives a non zero contribution. The second one vanishes because of the

Feynman rule Eq. (223)) that imposes different pion isospin components due to the presence of
the completely antisymmetric tensor.
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Figure 5.1: One-loop contributions to the nucleon self energy.

Using dimensional regularization, the one-loop contribution to the nucleon self energy reads:

1 39% 4 d%k 7—F—m 1
o Zl loop _ YJA 4 d/ 1
! ) = Tp2 e =k —m2 e

(5.27)
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One can perform a convenient reduction of this integral to a sum of scalar loop integrals, and
get :

—loo 3 y % ddk 1
slrloor(y) = ng {W*mm4 dl/ (2m)e (p — k)2 — m2 +ic
o d% 1
WM s T
o d% ¥
+(p* = m?)ut d’/ (2m)T (k2 = M2 +ie)((p — k)? — m? + ie)
o d%
—pt dl/ (2m)d k2 — ]\IZQ 4 z‘e} ’ 52%)

The last term of this equation vanishes since the integrand is odd in k. The others are well
known one-loop scalar integral. Using the notation introduce in Appendix [Dl one can rewrite
the regularized self energy as:

R T {<ﬂ+ m)Ao(m) + (5 + m) M2 Bo(—p, M, m)
—(p?* = m*)YB1(=p, M, m)}. (5.29)

In the modified minimal substraction scheme MS all the terms proportional to

RMS:RM—S—Flzﬁ—VE—HogALﬂ'—i—l (5.30)
diverge when d — 4 and are absorbed in the definition of the renormalized coupling constants.
For the sake of simplicity we choose the renormalization scale y = m. In what follows, we will
implicitly renormalize the coupling constants g4, c; and m (the bare mass). A precise definition
of the infinite renormalization shift is given in [108]. We are left with the following expression
for the renormalized self energy :

3 1
() = j;; 5 {+ m)MBj(—p, M, m) — (0" — m?)yB] (~p, M,m)} . (5.31)
where the superscript 7 on the integrals means that the terms proportional to R have been
substracted. To solve Eq. (B2ZH), we have to evaluate the self energy arround the nucleon mass,
such that the difference my — m = O(p?) . One finally obtains :

3g> .
my =m — dey M? + 327Tg2,%2 mM? By (—my, M, m) (5.32)
0

Expanding around M ~ 0 and my ~ m using Eq. (O.10) we get :

3&24 2 38?4 3
mM* — M 5.33
322 F¢ 32mF} ( )

my =m — 4e; M? +

The fact that the third term of the right hand side is quadratic in the pion mass (i.e linear
in the quark mass) is a manifestation of the power counting problem that we have mentioned
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in the introduction. It can be solved formally performing another finite renormalization and we
finally obtain an expression for the nucleon mass at O(p®) which reads

3%,24 M3
327rF02

my =m — 4c; M? — (5.34)

This results was first obtained in [105]. Note that a systematic solution of the power counting
problem was found in [106]. The idea was to perform a 1/m expansion of the Lagrangian
Eq. (&ET3). This approach is thus named heavy baryon chiral perturbation theory (HBxPT) . To
the order O(p*), the results for the nucleon mass given in Eq. (B23) is unchanged.

The relation between the sigma term defined in B and the low energy constants is given at
O(p?) by the formula:

dmN QdmN

9g
~ — 4 2 _ A4 5.35
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5.3 SU(2) Heavy baryon chiral perturbation theory.

In this section we review the theoritical results that will be used in chapters @l and [ to analyze
lattice data. The previous section has already shown the philosophy and computation techniques
of baryonic chiral perturbation theory. We will focus here on the final results and on their physical
interpretation. All the chiral expansions given in this section have been obtained using SU(2)
HBXPT in the continuum [109].

5.3.1 Nucleon

Nucleon (N) mass is known to higher order within several expansion schemes. In each of them,
the N-A coupling gya appears at the level of the Lagrangian. Let us begin with a generic
parametrization of the nucleon mass :

my = mg\?) + mﬁ) + mg\?;)(A,u) + m%)(A, W)+ (5.36)

The parameter A is the A-N mass difference. It will be fixed to its physical value. The dependence

of A as a function the quark mass contributes to higher order terms. The terms ms\?) are of

§8) is the nucleon mass in the

order m} in the limit of vanishing A. The leading contribution m
chiral limit.

The leading order of the expansion is given by

mkP (my) = mg\?) - 405\}) m?2 (5.37)
with two fit-parameters, the baryon mass in the chiral limit mﬁ\?) and the quadratic coefficient

(1)
CxN -
We will also consider a cubic expansion of the following form

my(my) = mgg) - 4c§$)m72r + cg\%)mf’r (5.38)

treating cg\?) as an additional fit parameter.

As already mentioned, the O(p?) is given by

3 2
my(mg) =m'Q — 4D m2 — 16%2 m3 (5.39)
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To this order, the parameters are mg\(,)), 05\1,), ga and fr. In practice, given our present accuracy,

it is difficult to determine the coeflicient of the cubic term from our present lattice results. The
ga and f, values will be taken from experiment in our fits.
The next to leading order SU(2) HBxPT result [109] is given by

397 893
m%LO(mﬂ) = m%o(mﬂ) — 167TAf7%m§r - 3(?1\}?)2 f(mW,AAN,)\) (5.40)

with the non analytic function [110]

A+VAZ—m2+i4e) 3 m?> 4N?
(A2 2 s N\3/2 C9AL 2 A3
F(m, A, X) = (A*—m“+ie) log< - — 2+ie> 2Am log<)\2) A log<m2 )

(5.41)
depending on the threshold parameter Axy = mg/o) — m()?). This function is defined with a
branch cut on the real positive axe. Note the appearance of the coupling constant gay between
the nucleon, the A and the pion.
The next to next to leading order (NNLO) expression is
2 (1) 2 2
MmN (i) = mNEO () 4 |:ﬁN n 169ANC]2V _ (?gAN _ 4(;59,4 }
Arfx)?  amWrf)? 324mQ (anf,)?

1692ANC§\}) 2
— e SVAVDN
(47Tf7|—)2 mr j(m )

m4 m2 (1) 3aN 2792 5gAN
T__Jog [ == | |12¢y’ — — 4_ 5.42
(dnfr2 ( AQ) [ N T anf, 16m) 2mN(0)] (542)

+

+

where

A — VA2 —m?2 + e 4A2 m2
AN =2AVAZ — m2 4 e 1 2A%1og [ — Hog [ —
J(m, A, A) m? + ie og<A+\/m>+ og<m2>+m 0g

5.3.2 Baryon loops and the F function.

It is worthwhile to note that the F function appears at NLO when taking into account the
N — 7 — A vertex. Anticipating on the strange baryons, we can already mention that F will
appear at NLO when a pion is coupled to two different baryonic states X — 7 —Y # X. A
diagram corresponding to this contribution is shown in Fig. A baryon X with a mass mx
coupled to a baryon Y # X with a mass my = mx + Axy via a pion-baryon axial coupling,
contributes to the mass of X as:

2
Exy
My = - - Axy, 5.44
X + 167r2f,2rj:(m XY, 1) (5.44)
One can show that for A > 0, F(m, A, 1) is real and can be directly computed from Eq. (&Z1])
and satisfies the following properties :

£ A ) —F(m, A, p) +2im(A%2 —m?)2 m< A (5.45)
m,—AQ, = - )
: —F(m,A,p) + 27 (m? — A?)2 m>A

vl wjw

which corrects a typo in the sign of the second term in Ref. [111]. Notice that F(m, —A, ) has
an imaginary contribution below the threshold m < A, which correspond to the X — Y7 decay.
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X axy

b gxy X
Figure 5.2: General diagram generating the F functions. A state X is coupled to a state Y via
a pion-baryon axial coupling.

It is also straightforward to show that

im F(ma, A, ) = i (5.46)
for an arbitrary m > 0.

When analyzing the baryon masses with HBYPT expansion three different situations occur:
A >0 0<A<<mandA < 0. They are shown in Figs. EIEA BEH for A = 0.3,0.1 and
—0.3 GeV respectively. The scale p has been fixed to 1 GeV in all this work, but, in this
section, we show a gray band to indicate the envelop of the curve for u € [0.9,1.1] GeV.

In Fig. B3 F is compared to the limiting case A — 0 given by Eq. (EZ0). As expected their
difference becomes larger when the pion mass is increased.

On the contrary, we see in Fig. BE4 corresponding to a smaller threshold A = 0.1 GeV, that
F is very well approximated by mm3 in the pion mass region where the cubic term is relevant
(m > 0.2). Note however that for very small pion masses, well below the physical point, F tend
to zero slower than m2 and their ratio diverges.

The last important case, corresponding to A = —0.3 GeV, is shown in Fig. Bl They
describe the — real and imaginary — self energy contribution for a resonant baryon which decays
into a pion plus a lighter baryon. This will be the case for decuplet baryons, namely A — 7N,
¥* — 7%, and = — 7=, Since A < 0, F becomes complex below the threshold m < |A]. It
can be shown using the optical theorem [112,113] that the imaginary part of the self energy is
related to the partial width I'x .,y of the baryo

31 thank J. Debove to point out this fact.



78 Chapter 5. Relevant Aspects of Chiral Perturbation theory

o
AN 7
=
Te}
—
=)
23
s o
g
19}
O_ -
o
o
O_ .
© T T T T T
0.0 0.1 0.2 0.3 0.4
M [GeV]

Figure 5.3: The F function for a fixed value of A = 0.3 GeV as a function of M. The grey zone
is obtained varying the renormalization scale in the range [0.9,1.1] GeV.
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Figure 5.4: The F function for a fixed value of A = 0.1 GeV as a function of M. The grey zone
is obtained varying the renormalization scale in the range [0.9,1.1] GeV.
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Figure 5.5: Real and imaginary part of F for a fixed value of A = —0.3 GeV as a function of
M. The grey zone is obtained varying the renormalization scale in the range [0.9,1.1] GeV. The
imaginary part is scale independent.
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5.3.3 Convergence of chiral corrections

To estimate the contributions to the nucleon mass coming from the different terms in HBYPT ex-

pansion, we have fixed the two parameters mg\(])) and ¢; from a fit, and keep the remaining coupling

constants from Eq. (E08). We choose in this analysis mg\?) =0.880 GeV and 4¢; = —4.81 GeV™*
taken from Table BI0 which correspond to a O(p3) fit giving a satisfactory descriptions of the
lattice data as well as the physical point.

Following the notations of eq. we have at O(p?)

M (M, A 1) = Migee(ma) (5.47)
M (M, A 1) = Mz toop(ms) (5.48)
with
Miree(mz) = —dc)m? (5.49)
M —toop(Mn) = 127’237712 (5.50)

Mz, A, p) which reads:

Going to NLO, will require an additional contribution to m(g)(

8 2
mAﬂ'—lOOp(mﬂ') = _3 INA ]:(mTH AAN; :u) (551)

(4m fr)?

We will first consider an O(p?) fit. The various contribution divided by the nucleon mass at the
same order are separately plotted in Fig. Bl As can be seen the quadratic term (mgyee in red)
gives a positive contribution increasing with the pion mass. The loop contributions ( N-loop
in orange ) is negative and decrease the pion mass dependence of the correction, as shown by
the complete O(p?) chiral corrections indicated by the blue curve. We would like to stress that
at this level of approximation all the contributions are monotonous in the pion mass range of
interest (below 500 MeV). The relative contribution of the constant term decreases and the
chiral corrections increases and reach ~ 30% for mps = 0.4 GeV.

The corresponding NLO results are displayed in Fig. Bl The additional contribution coming
from A loop is indicated by a dotted magenta line. It is negative and very close to the N loop
indicating that a precise determination of the gya coupling would be very difficult even at
low pion mass. When including this term one finds a total NLO chiral corrections (shown in
green) which is non-monotonous and nearly constant. As a consequence, the relative constant
contribution (in black) start to increase above 350 MeV. The relative difference between the
solid curves indicates a poor convergence of the chiral expansion for pion mass > 200 MeV.
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Figure 5.6: Pion mass dependence of the relative contribution to the O(p?) nucleon mass
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Figure 5.7: Pion mass dependence of the relative contribution to the NLO nucleon mass
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5.3.4 Octet and Decuplet baryons
The preceding heavy baryon chiral perturbation (HBxPT) equations discussed in details in the

nucleon case can be extended to the octet and decuplet.
The leading order SU(2) results are given by

m5P (my) = mg?) - 40()§)m3r , (5.52)

with two fit-parameters, the baryon mass in the chiral limit mg?) and cgp, which gives the leading
contribution to the ox-term.

A natural generalization of the O(p?®) results for the nucleon and A to the rest of the octet
and decuplet baryons [114,115] is given by

397 :
my(mg) = mg\?) - 4c§\}) m2 — 16?}3 ms (5.53a)
2
0 1 9
ma(mz) = mg\) - 405\) m2 — ﬁ m3 (5.53b)
2g3 An/3
my(mz) = m(z?) - 4cg)m72r - % m3 (5.53c)
mz(m;) = m® — 4cPm2 — ﬁ ms (5.53d)
= = =0T lemf2 0"

for the octet baryons and

_ (0) a
ma(myz) = my’ —4dcy’ ms; — 37 16nf2
(0) (1) 10 g2* *
ms(Mmg) = my. —degim?2 — r 1(?7‘(‘?7% 3
=
mex(my) = m(zo*) — 40(:137713r _29ss fr
= = 3167f2
mo(m;) = mg) - 408)7713r , (5.54)
for the decuplet baryons.
In addition we consider what we call the cubic fit
mx(my) = m()?) - 4c();)m727 + c()?)mi (5.55)

treating cg?) as an additional fit parameter.

The next to leading order SU(2) xPT results [109] for the octet are given by

NLO Lo 33 3 897 A
my C(mg) = my (mg) — 167 £2 my — W F(maz, Ana, i)
NLO LO 912\2 4912\2*
LN (mﬂ') = My (mﬂ') - (47Tf )2 ]:(mTI')AAZ7/j/) - (47Tf )2 ]:(mTr)AAZ*)/J’)
NLO Lo 2935 3 Jis 4935+
my " (mg) = ms” (mg) — Torf2 "m 3. F(mg, —Aps, i) — 3 f.)? F(mz, Avys, p)
302- . 292, =
mYP(my) = mEO(mg) — 222 3 — 9= F(m,, Azs-, ) (5.56)

B 167 f2 Mx = (Am fr)?
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and for the decuplet baryons:

mNLO(m ) = mLO(m ) — ﬁ 92AA m3 — 292AN ) F(ma, —A )
A )= AT T o7 T6n 2 ' 3(dnfy )2 ™ TENA
mEO(mg) = mkO(me) VI i B (g2 Fme, A ) + g Flome, Bz, )
s (mg) = mgd (Mg 9 1672 my 3(dn S, )2 [92*2 M, s 1) T Gasx S (M, AE*?N]
mNLO(m ) = mLO(m ) — 5 9E=- m3 — 92z F(m Az=-, 1)
= o TERNT 3 16n 2 T (nfe)? m o oEEn
m(];lLO (mz) = mstO (M)

depending on the threshold parameter Axy = m§9) — m()?) and on the scale p of chiral pertur-

bation theory, fixed to u =1 GeV

In our fits, the nucleon axial charge g4 and pion decay constant f, are fixed to their experi-
mental values (we use the convention such that f, = 130.70 MeV). The remaining pion-baryon
axial coupling constants are taken from SU(3) relations [109]:

Octet : ga=D+F,  guy =2F, gz =D —F,  gax=2D
Decuplet : gan =H, geexs = 5H,  gmezme = % (5.58)
Transition : gan =C, = %Q == = %07 g = 7%0

As can be seen, in the octet case, and once g4 is fixed, the axial coupling constants depend
on the single parameter written as a = DL_iF. Its value is poorly known. It can be taken
either from the quark model (o = 3/5), from the phenomenology of semi-leptonic decays or
from hyperon-nucleon scattering. Note that its various determination are not compatible within
errors. We take the “educated guess” of Ref. [109] namely 2D = 1.47 or a = 0.58. The decuplet
coupling constants depend on a single parameter for which we again take the value H = 2.2 from
Ref. [109]. This value is not far from that predicted by SU(6) symmetry, H = %gA = 2.29 used
in our previous work [116] resulting in the same cubic term for the nucleon and A. For fixing
the octet-decuplet transition couplings we take the value C = 1.48 from Ref. [110] . This choice
neglects large systematic uncertainties, and an attempt to circumvent will be follow at the very
end of this work. (see section [T).

With the coupling constants fixed in this way, the LO, the O(p?) as well as the NLO fits are
left with the two independent fit parameters mg?) and cg). All mass parameters mgg) are treated
independently unlike what is done in Ref. [109] where a universal mass parameter was used for
all baryons with the same strangeness.

A noticeable result of this expansion is the absence of a cubic term in the expression for the
A and © masses given in Eqgs. (&B8) and (@2D). In the case of Q, it follows from the absence of
light valence quarks. However the absence of a cubic term in the NLO expression of A, although
a consequence of yPT, is nevertheless a questionable result, since it relies on the assumption
that m, < Ms — My. In the limit A — 0" the non analytic function F becomes

F(mg, A —0,) = mm? (5.59)

which generates a cubic term for the A and slightly modifies the one for ¥. The corresponding
expressions are given by

2
2 _9ax m3
o162

2685 + 935/3 m?
167 f2 T

ma(my) = mE\O) — 4053) m
ms(my) = m(zo) - 4cg)m3r (5.60)

in agreement with the results of Eq. (2h3)).

(5.57)
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The expressions for the strange baryon masses to NNLO in xPT given in Ref. [109] involve in
general more unknown low energy constants, but we found no advantage to use extrapolations
to such order.
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