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specialité: Physique des Materiaux, par

Goran PAVLOVIC

Master

Exciton-Polaritons in Low-Dimensional
Structures

Soutenue publiquement le 17/11/2010, devant la comission d’examen:

WHITTAKER David rapporteur

KAVOKIN Alexey rapporteur

RICHARD Maxime examinateur

SHELYKH Ivan Prèsident

MALPUECH Guillaume directeur de Thèse
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Introduction

Excitons-polaritons are the eigenmodes of system consisting of semiconductor excitons

coupled to photons in the case, when strength of this coupling overcomes the losses in-

duced by excitonic or photonic modes (strong coupling regime). They have been theoreti-

cally predicted independently by Hopfield [1](1958) and Agranovich(1959) [2], after Pekar

(1957) [3] explained in terms of additional waves (or Pekar’s waves) a series of experi-

ments on optically pumped excitons. Thirty years later Ulbrich and Weisbuch measured

polariton dispersion in GaAs [4].

The interest for polaritons is both fundamental, for the studying of interaction of light

with the matter, and applied, because the modern-era technologies are based on semi-

conductor materials. The term polaritons will be used throughout this thesis, referring

always to exciton-polaritons, but it should be noted that polaritons can also arise from the

coupling of other type of quasiparticles with light, like phonon-polaritons, for example.

Polaritons, emerging from mixing of matter and light, as composite particles possess

very interesting properties inherited from their components.

First, they obey the Bose-Einstein statistics, undergoing at low temperatures a phase

transition to Bose-Einstein condensation (BEC). It is a new collective state of matter

in which we cannot anymore distinguish individual entities. This collective behavior is

characterized by coherence and occurs at the lengths smaller than the coherence length.

After a long search for the experimental evidence of BEC (seven decades), Cornell and

Wieman reported in ref. [5] on the atomic Bose-Einstein condensate at nanoKelvin tem-

perature (and received the Nobel Prize for this discovery, together with Ketterle a few

years later). Such a small temperature, coming from the high mass of the atomic species

(this dependence will be the subject of section on Bose-Einstein condesation), prohibits

any room-temperature applications. Contrary to atoms, polaritons are quasiparticles of

ultrasmall effective mass: compared to atoms, their mass is typically eight orders of mag-

nitude smaller. Such a light mass leads to high temperatures at which polaritons condense

in the Bose-Einstein sense. BEC of polaritons was the first time proposed by Imamoglu

in a form of low-pumping inversionless polariton laser [6]. At room-temperature polariton

lasing has been predicted in GaN-based microcavity by G. Malpuech in 2002 [7].

Second, to organize polariton regime one needs to confine the light, and the efficiency of
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this confinement determines the polariton life-time being several tens of picoseconds. The

finite life-time of polaritons in another striking difference of a polariton BEC comparing

to an atomic BEC.

Third, interaction of polaritons governed by their excitonic part is responsible for

variety of nonlinear behaviors, the most important being the blue shift effect of polariton

dispersion. Parametric oscillations [8], bistability and multistability [9] are also effects

arising from nonlinearity of polariton system under study.

The last but the most fundamental property of polaritons is their pseudospin. Total

angular momentum of a polariton state has two projections on the structure growth

axis: +1 and −1. Polarization of emitted or absorbed light determined by the polariton

pseudospin [10].

In this thesis these properties will be analyzed in several situations and for structures

of low dimensionality: quantum dots, quantum wires, and planar microcavities.

In Chapter 1 will be given a brief overview of 0D, 1D, and 2D structures. General

theoretical introduction to polaritons will be made by original approach used by Hopfield

[1]. The mathematical tools necessary to analyze the physics of BEC , including the Gross-

Pitaevski (GP) equation will be considered in this chapter also. Pseudospin formalism as

an useful representation of polariton polarization degree of freedom will be detailed.

Chapter 2 is devoted to quantum wires. The so-called whispering gallery modes,

having momentum in the plane containing wire’s cross-section, are analyzed and main

effects are addressed in the general case of anisotropic systems described by some index

of refraction. Further we are going to treat the case of polariton formation in ZnO wires

introducing excitonic dielectric response of this material. The experimental results, as we

will see, are very well reproduced by this model.

In the Chapter 3 Bose-Einstein condensation is analyzed for spinor condensates which

is the case of polaritons. Josephson-type dynamics in which two subsystems of a large

one couple and exchange particles by tunneling from one to another is discussed. The

concept of coupled spinor components in GP-like equations is used to consider Josephson

effect of polaritons.

Chapter 4 starts with an introduction to Aharonov-Bohm effect, as the best known

representation of geometrical phases. Another geometrical phase - Berry phase, occurring

for a wide class of systems performing adiabatic motion on a closed ring, is main subject

of this section. It is intuitively very similar to the Aharonov-Bohm effect, but Berry phase

is a more general concept and one could see Aharonov-Bohm effect like a kind of Berry

phase. We will present a proposal for an exciton polariton ring interferometer based on

Berry phase effect.

In Chapter 5 will be considered a 0D system: strongly coupled quantum dot exciton to

cavity photon. Here a novel nonlocal effect, quite different from the Aharonov-Bohm effect
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(which is one typical example of nonlocality), will be studied. This effect is called quantum

entanglement. The modern quantum mechanics and disciplines like quantum computation

and quantum communications emerged after the effect of entanglement inspired a fruitful

debate among the fathers of the Theory. We will see how one can obtain entangled states

by embedding a quantum dot in a photonic crystal. This recovers the degeneracy of

biexciton cascade, the system in subject in this chapter, naturally destroyed by splitting

of the intermediate states of the cascade.
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Chapter 1

Exciton-polaritons

In this chapter a general introduction to the field of excitons-polaritons will be given to-

gether with few basic theoretical concepts of its phenomenology. A review of excitons in

structures of low dimensionality will be useful to compare their binding energies and wave

functions in these different structures, namely quantum dots, quantum wires, and planar

microcavities. Two possible scenarios depending on the confinement strength - strong and

weak confinement will be overviewed. Then we will consider quantization of an optical

mode and how its interaction with light depends on the quantization volume. Polaritons,

arising from strong coupling regime (interaction energy of photon with excitons overcomes

the losses for both) will be considered in bulk materials and microcavities, the last being

the most studied type of confined structures. Bose-Einstain condensation phenomena and

pseudospin formalism will be equally treated here.

Contents
1.1 Low dimensional semiconductor structures: excitons . . . . . . . . 12

1.2 Optical mode confinement . . . . . . . . . . . . . . . . . . . . . . . . . 16
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1.3.1 Bulk polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.2 Cavity polaritons . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.3 Polariton-polariton interaction in microcavities . . . . . . . . . 24

1.4 Bose-Einstein condensation . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.1 Bose-Einstein condensation of ideal Bose gas . . . . . . . . . . 26

1.4.2 Bose-Einstain condensation in weakly-interacting gases . . . . . 29

1.4.3 Bose-Einstain condensation in non-uniform systems . . . . . . 32

1.5 Pseudo-spin of exciton-polaritons . . . . . . . . . . . . . . . . . . . . . 34

1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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1.1 Low dimensional semiconductor structures: ex-

citons

Semiconductor systems of low dimensionality are the subject of this thesis. They are

systems which motion is ’frozen’(or trivial) in some (or all) spatial dimensions, contrary

to the bulk materials, where motion is allowed in all directions.

Elementary excitations of semiconductors are called excitons. It is a quasiparticle [11]

arising from many body formalism [12], for which the vacuum is defined by full valence

band and empty conduction band separated by the band-gap energy Eg. They are formed

by a Coulomb-correlated conduction band electron and a valence band hole. When the

distance between exciton components, electron and hole, is larger than lattice parameter,

which is true for semiconductor excitons we have so-called Wannier-Mott excitons for

which the effective mass approximation can be used. Even at room-temperature concept

of excitons is valid as their thermal energy is still much smaller than the binding energy

of exciton components.

Conduction band symmetry is of s type and has no degeneracy (orbital momentum

L=0) while valence band state is p symmetric (orbital momentum L=1) and has three

different projections of angular momentum on some arbitrary axis: l = −1, 0, 1 [13]. If we

account for spin degree of freedom we will have for the total angular momentum operator

J = L + S and corresponding eigenvalues will take the values |l − s| ≤ j ≤ l + s .

Conduction band electrons therefore have j = 1/2 and valence bend holes j = 1/2, 3/2.

Hole states j = 1/2 and j = 3/2 can be characterized in the sense of effective mass

approximation by two different effective masses. One is called light hole and another

called heavy hole state, respectively. This leads to heavy and light hole excitons.

Exciton two-particle envelope function Ψ(r⃗e, r⃗h), in the bulk and without taking into

account the spin degree of freedom is given by Schrödinger equation [14]

HexΨ(r⃗e, r⃗h) = EΨ(r⃗e, r⃗h), (1.1)

where the exciton Hamiltonian has the form

Hex = He +Hh + Eg −
e2

4πε |r⃗e − r⃗h|
(1.2)

with He.h = −~2k2e,h
/
2me,h being the single particle Hamiltonian of free electrons (holes)

of effective mass me(me). The last term of equation 1.2 stands for Coulomb interaction of

two particles having opposite charges: e and -e, interacting in surrounding described by a

dielectric constant ε. Changing to relative and center of mass coordinates: r⃗ = r⃗e− r⃗e and
R⃗ = (mer⃗e +mhr⃗h)/(me +mh) one can decouple wave function in this two directions:

Ψ(r⃗e, r⃗h) =
1√
V
φnrl(r)e

iK⃗R⃗ (1.3)
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with nr being radial, l orbital quantum number and K⃗ center of mass wave vector. The

wave function φnr(r⃗) describing relative motion satisfies the Wannier equation [14] which

for l = 0 reads

Enrφnr(r) =

(
−~2∆r

2µ
− e2

4πε |r⃗|

)
φnr(r). (1.4)

Here µ = memh/(me +mh) denotes reduced mass. The equation 1.4 has the same form

as Schrödinger equation of hydrogen atom. For Enr < 0 we have bound states, the ground

one (nr = 1 and l = 0) is given like in the case of hydrogen atom by

.φ1s(r) =
e−r/aB√
π(a3DB )

3
. (1.5)

The exciton Bohr radius a3DB = ~2ε/e2µ tells us the length after which exciton wave

function rapidly goes to zero. The binding energy of electron and hole in exciton ground

state is inversely proportional to it: EB = ~2/2µ
(
a3DB
)2
. Typical values for bulk GaAs,

one of the most studied semiconductor material are : EB = −4.8meV and a3DB = 11.6nm.

The larger Bohr radii and the smaller binding energies of excitons in semiconductors with

respect to atoms reveal that analogy with atoms is only formal. Due to absence of any

confinement in z-direction the bulk envelope function 1.3 is simply multiplied by plane

wave eikzz with wave number kz taking any real value.

2D structures possess confinement of motion in one spatial direction. The structure

which will be studied in this thesis is a quantum well (or several quantum wells) embedded

in the antinodes of electromagnetic field formed in a microcavity made by distributed

Bragg reflectors. The electron and hole confinement in semiconductor quantum wells is

provided putting two semiconductors in contact and creating a potential barrier due to

energy difference of the valence and the conduction bands in growth direction. Due to

this we have to add in the exciton Hamiltonian 1.2 extra terms corresponding to the

confinement of electron and hole motion in structure growth direction - z-axis: Ve(ze)

and Vh(zh). Depending on the ratio of quantum well thickness a and the exciton Bohr

radius, we can distinguish two limiting cases, so called weak confinement regime for which

a/aB >> 1 and strong confinement regime for which a/aB << 1. The first one is very

similar to bulk semiconductor case, except that instead of eiK⃗R⃗ we have eiK⃗∥R⃗∥ cos(νπZ/a)

in exciton envelope function for odd ν and eiK⃗∥R⃗∥ sin(νπZ/a) for even ν. Z is z-component

of center of mass radius vector. Quantization in the z-direction includes exciton as a whole,

and relative motion has both in-plane and confinement direction components. The effect

of confinement is present only through the modification of the center of mass motion but

not the relative one.

In strong confinement regime electron and hole are quantized separately because of

very thin well. The wave function part which describes relative motion from the same
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Figure 1.1 | GaAs/AlGaAs heterostructure (left) with the conduction-valence band energy offsets

(right)

reason depends not on whole relative radius vector r but on its in-plane component

ρ = ρe − ρh. The total wave function of the ground state is given by

Ψ2D(r⃗e, r⃗h) =

√
2

Sπ

4

aa2DB
eiK⃗∥R⃗∥ cos(πze/a) cos(πzh/a)e

−2ρ/a2DB . (1.6)

The binding energy is 4 times the bulk value E2D
B = 4EB if the motion is completely

two dimensional. That means an infinitely narrow QW (which then has to be infinitely

high to keep the bound state). 2D Bohr radius is half of it in a bulk a2DB = a3DB /2. This

is how the strong confinement regime influences the exciton properties.

In quantum wires confinement is realized in two spatial dimensions while the motion in

third dimension is unrestrained. In weak confinement regime relative motion of electron

and hole rests unaltered and like in microcavities one should replace bulk plane wave eiK⃗R⃗

by eiK⃗zZ⃗ϕ(X)ϕ(Y ) for the case of quantum wire. Function ϕ depends on wire shape. For

example in rectangular wires it is a product of sines or cosines (for an even or an odd

harmonic in x or y direction, respectively). For circular cross-section wires one should

replace this product by Bessel functions. In the strong confinement regime the relative

motion is restrained in the cross-section of wire and relaxed along z-direction and following

the same reasoning like for QWs one can write the wave function:

Ψ1D(r⃗e, r⃗h) = CeiK⃗zZ⃗ϕ(xe, ye)ϕ(xh, yh)e
−z/a1DB (1.7)

It was shown that in an ideal quantum wire, for which we take xe = xh and ye = yh,

binding energy E1D
B diverges [15]. But if we take into account the displacement of electron

from hole in the cross-section by introducing a small parameter δ Coulomb interaction

is regularized to V1D(z) = (|z|+ δ)−1 giving a finite value of E1D
B satisfying following
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Figure 1.2 | Binding energy E1D
B for a GaAs quantum wire (full blue line) vs electron hole displacement

δ. Dashed line is bulk exciton binding energy while green line represents E2D
B = 4EB .

expression [13]:

δ

a3DB
=

1

2

√
E3D

B

E1D
B

exp(−1

2

√
E3D

B

E1D
B

). (1.8)

Controlling parameter δ by tuning confinement potential it is possible to tune exciton

binding energy up to very high values for small δ. Differently from microcavities where

an upper limit for binding energy E2D
B = 4EB exists, in wires such limit does not exist

(the Fig. 1.2). High binding energies are advantageous from the point of view of excitonic

physics at room temperature.

Quantum dots are strained in all spatial directions thus quasi-0D structures. They

are constituted of hundreds or only of a few atoms, having different shapes. Quantum

dots of rectangular or spherical geometry are very well studied both theoretically and

experimentally. As the motion is fully quantized energy spectrum of excitons is discrete.

Exciton concept in quantum dots is valid until the exciton Bohr radius exceeds the dot

size, otherwise system prefers to form uncorrelated electron hole pairs than excitons.

Weak confinement occurs for confinement energy lower than binding energy of exciton

in quantum dot while strong confinement establishes in the opposite case. In the first

scenario exciton is more similar to bulk exciton, like it was a case for 2D and 1D structures,

with the difference that center of mass motion is quantized while in the last situation the

exciton wave function becomes product of single particle functions of electron and hole:

Ψ0D(r⃗e, r⃗h) = ϕe(r⃗e)ϕh(r⃗h). (1.9)

Discrete nature of QD spectra is the reason why the dots are usually called ’artificial

atoms’.
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1.2 Optical mode confinement

The quantization procedure of electromagnetic field leading to quanta of light - photons

will be briefly discussed here following more rigorous treatment of reference [16]. We will

concentrate on the case of light confinement in an optical cavity. In general, Lagrangian

density of electromagnetic field L is

LEM =
1

2
(ε0E

2 +
1

µ0

B2), (1.10)

The fields E⃗ and B⃗ can be expressed in terms of electromagnetic four-potential Aα =

(ϕ/c, A⃗)

E⃗ = −∇ϕ− ∂A⃗

∂t
, (1.11)

B⃗ = ∇× A⃗. (1.12)

One can show that Maxwell’s equation follows directly from Lagrangian 1.10 making

replacement given by 1.11, 1.12 and then performing usual variational procedure with

respect to components of four-potential Aα. The result is:

∇× E⃗ = −∂B⃗
∂t
, (1.13)

∇× B⃗ =
1

c2
∂E⃗

∂t
, (1.14)

∇E⃗ = 0, (1.15)

∇B⃗ = 0. (1.16)

where the total charge and current are set to zero as we are interested in a such kind

of problems. We will consider that electromagnetic field is confined within a rectangular

volume of space L3 with dielectric constant ε0. In Coulomb gauge: ∇A⃗ = 0 vector

potential A⃗ satisfies (from Maxwell’s equations) an ordinary wave equation

∇2A⃗− 1

c2
∂2A⃗

∂t
= 0, (1.17)

Thus one can make the Fourier expansion of A⃗ in propagating plane waves, which are the

proper modes in the case of a very large volume

A⃗(r⃗, t) =
1√
ε0L3

∑
k⃗

A⃗k⃗(t)e
ik⃗r⃗, (1.18)

where summation over k⃗ means summation over ni, i = x, y, z and ni = 0, 1, ... being

quantum numbers associated to each k⃗-component: ki = 2πni/L. Each plane wave

component A⃗k⃗ is perpendicular to its wave vector

k⃗A⃗k⃗ = 0, (1.19)
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i.e., the field is transversal. This can be easy shown by plugging 1.18 into Coulomb gauge

condition. From equations 1.17 and 1.18 time-dependent amplitude A⃗k⃗(t) reads

A⃗k⃗(t) = u⃗k⃗(0)e
−iωt + u⃗∗−⃗k

(0)eiωt. (1.20)

As the field is transversal, one can decompose vectors u⃗k⃗ into two orthogonal states of

circular polarization forming a right-hand Cartesian basis together with k⃗/|⃗k|

u⃗k⃗ =
2∑

s=1

uk⃗,sϵ⃗s. (1.21)

Bearing in mind that ϵ⃗sϵ⃗
∗
s′ = δs,s′ we can express now the vector potential A⃗ as follows

A⃗(r⃗, t) =
1√
ϵ0L3

∑
k⃗,s

(uk⃗,s(t)⃗ϵse
ik⃗r⃗ + u∗

k⃗,s
(t)⃗ϵ∗se

−ik⃗r⃗). (1.22)

where uk⃗,s(t) = uk⃗,s(0)e
−iω

k⃗,s
t. Using expressions 1.11 and 1.12 we expand the electric and

magnetic fields in terms of new amplitudes uk⃗,s(t)

E⃗(r⃗, t) =
1√
ε0L3

∑
k⃗,s

iωk⃗,s(uk⃗,s(t)⃗ϵse
ik⃗r⃗ + h.c), (1.23)

B⃗(r⃗, t) =
1√
ε0L3

∑
k⃗,s

(uk⃗,s(t)(k⃗ × ϵ⃗s)e
ik⃗r⃗ + h.c). (1.24)

The Hamiltonian of the field from the general expression

H =
1

2

∫
L3

(ε0E⃗
2(r⃗, t)) +

1

µ0

B⃗2(r⃗, t))d3r. (1.25)

takes after some algebra the simple form

H = 2
∑
k⃗,s

ω2
k⃗,s
|uk⃗,s(t)|

2. (1.26)

Introducing canonical variables

qk⃗,s(t) = (uk⃗,s(t) + u∗
k⃗,s
(t)) (1.27)

pk⃗,s(t) = −iωk⃗,s(uk⃗,s(t)− u∗
k⃗,s
(t)). (1.28)

it becomes

H =
1

2

∑
k⃗,s

(p2
k⃗,s
(t) + ω2

k⃗,s
q2
k⃗,s
(t)). (1.29)

The expression 1.29 represents a sum over independent harmonic oscillators each with a

wave vector k⃗ and a polarization s oscillating with frequency ωk⃗,s.
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From this expression the usual canonical quantization procedure consists of introduc-

ing commutation relations:

[q̂k⃗,s(t), p̂k⃗′ ,s′ (t)] = i~δk⃗k⃗′δs,s′ , [q̂k⃗,s(t), q̂k⃗′ ,s′ (t)] = 0, [p̂k⃗,s(t), p̂k⃗′ ,s′ (t)] = 0, (1.30)

where operators q̂ and p̂ are associated to classical variables p and q. From obvious

analogy with quantization of harmonic oscillator for which we define annihilation and

creation operator in terms of coordinate and momentum operator we proceed by defining

âk⃗,s(t) and â
∗
k⃗,s
(t)

âk⃗,s(t) =
1

(2~ωk⃗,s)
1/2

(ωk⃗,sq̂k⃗,s(t) + ip̂k⃗,s(t)), (1.31)

â†
k⃗,s
(t) =

1

(2~ωk⃗,s)
1/2

(ωk⃗,sq̂k⃗,s(t)− ip̂k⃗,s(t)). (1.32)

Operators â and â† are quantum mechanical analogs of the complex amplitudes u and u∗

to the factor (~/2ω)1/2. We then write the quantum version of the Hamiltonian 1.29

Ĥ =
∑
k⃗,s

~ωk⃗,s(â
†
k⃗,s
(t)âk⃗,s(t) + 1/2). (1.33)

The product of annihilation and creation operators n̂k⃗,s = â†
k⃗,s
âk⃗,s gives the number of

photons in the mode (k⃗, s): n̂k⃗,s|nk⃗,s >= nk⃗,s|nk⃗,s >. As the Hamiltonian 1.30 is a many-

body Hamiltonian, the space in which it is acting is given by∏
k⃗,s

|nk⃗,s >= |n > (1.34)

being the direct product of single particle states. The vacuum state is defined as the

state without photons in any mode: |vac⟩ = |0 >. In second quantization electric and

magnetic fields become operators
ˆ⃗
E(r⃗, t) and

ˆ⃗
B(r⃗, t) defined in terms of â and â† which

follows straightforwardly from expressions 1.11,1.12 and 1.22.

Therefore for a cavity of volume L3 the electric field
ˆ⃗
E(r⃗, t) reads

Ê(r⃗, t) =
∑
k⃗,s

(i

√
~ωk⃗,s

2ε0L3
âk⃗,s(t)fk⃗,s + h.c.). (1.35)

In free space instead of proper functions of our cavity fk⃗,s whose specific form depends on

the cavity geometry, one should put plane waves into above formula. Since the expected

value of electric field in vacuum state is zero: < vac| ˆ⃗E(r⃗, t)|vac >= 0, fluctuations in a

single cavity mode described by function fk⃗,s are:

< vac| ˆ⃗E2(r⃗, t)|vac >= ~ω
2ε0L3

|fk⃗,s|
2. (1.36)
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they are inversely proportional to quantization volume L3 and for very small volumes,i.e.

strong confinement, they are much more pronounced compared with the fluctuations in

free space. The amplitude of these fluctuations Ecav being the square root of the latter

expression is an important quantity describing interaction of an optical mode with an

electric dipole through the relation

ΩR =
µEcav

~
. (1.37)

The relation is valid no matter what is the nature of the electric dipole - it certainly

holds for atomic and excitonic dipoles with µ being the dipole matrix element. As the

confinement is stronger, vacuum fluctuations Ecav increase, resulting in higher values of

the coupling ΩR. It is usually refereed as Rabi frequency - the frequency at which an

optical and an atomic/excitonic mode exchange energy thus performing oscillations.

1.3 Strongly coupled excitons and photons: polari-

tons

1.3.1 Bulk polaritons

Polaritons were theoretically studied for the first time in reference [1] by Hopfield. In

this seminal paper, optical properties of excitons in bulk isotropic materials, were ana-

lyzed using quantum-electrodynamical approach from which in the second quantization

procedure excitons-polaritons appear as normal modes of EM field interacting with po-

larization induced by excitons. This approach starts with classical Lagrangian density L,
classical in the sense that no relativistic effects are present, which takes into account the

above-mentioned interaction

L = Lexc + LEM + Lint (1.38)

The first term represents Lagrangian density of free excitons Lexc. It originates from an

oscillating polarization field P⃗ induced by excitons due to presence of the electric field

E⃗. The simplest equation for this induced polarization, neglecting damping and spatial

dispersion is an equation of driven harmonic oscillator [1]:

∂2P⃗

∂t2
+ ω2

0P⃗ = εbωLTω
2
0E⃗, (1.39)

where ω0 is exciton resonance, ωLT splitting of transverse and longitudinal mode of EM

field and εb dielectric constant. From here Lagrangian density Lexc in terms of field P⃗ is

Lexc =
1

2β

1

ω2
0

(
∂P⃗

∂t
)2 − 1

2β
P⃗ 2. (1.40)
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where parameter β equals 2εb(ωLT/ω0). Photon field, vectors E⃗ and B⃗, as we have seen,

is given in terms of components of the electromagnetic four-potential Aα by expressions

1.11 and 1.12. Plugging those in Lagrangian density of free electromagnetic field 1.10 we

obtain

LEM =
εb
2
(−∂A⃗

∂t
−∇ϕ)2 − 1

2µ0

(∇× A⃗)2. (1.41)

The interaction part Lint comes from coupling of four-current Jα = (ρ/c, j⃗) due to

presence of excitons with the four-potential Aα of electromagnetic field

Lint = JαA
α. (1.42)

As ρ describes density of induced charge given by ρ = −∇P⃗ and j⃗ induced current

j⃗ = ∂P⃗ /∂t Lint becomes

Lint = ∂P⃗/∂tA⃗+ (∇P⃗ )ϕ. (1.43)

The same second quantization procedure we performed in previous section leads to

operators
ˆ⃗
A and

ˆ⃗
P of following form

ˆ⃗
A =

∑
k⃗,s

√
~

2εbV ωk⃗

(âk⃗,sϵ⃗se
ik⃗r⃗ + h.c.), (1.44)

ˆ⃗
P =

∑
k⃗,s

√
~ω0

2εbV
(b̂k⃗,sϵ⃗se

ik⃗r⃗ + h.c.), (1.45)

with âk⃗,s and âk⃗,s being photon and exciton annihilation operators, respectively. The

resulting second quantization Hamiltonian is

Ĥ =
∑
k

~ck
√
εb
(â†kâk +

1

2
) + ~ωk(b̂

†
kb̂k +

1

2
) + iGk(âk + â†−k)(b̂−k − b̂†k). (1.46)

where summation goes over k = (s, k⃗). One can include dispersion of excitons by letting

~ωk = ~ω0 +
~2k2
2M

, with M being exciton mass. The first coefficient Gk describes exciton-

photon coupling and in most situations is many times larger than an extra term coming

from photon-photon coupling due to the presence of atoms. The latter will therefore be

neglected. To find the normal modes we have to diagonalize the Hamiltonian 1.46. To do

this we use a transformation of operators in which new operator p̂k is given as a linear

combination

p̂k = Xâk + Cb̂k + Y â†−k + Zb̂†−k. (1.47)

New operators p̂k defined by above Hopfield-Bogoliubov transformation describe the nor-

mal modes of the Hamiltonian, called exciton-polaritons. They are a mixture of exciton

and photons as it’s obvious from the transformation 1.47. Since the normal mode operator

p̂k satisfies eigen-problem

[p̂k, Ĥ] = Ekp̂k. (1.48)
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Figure 1.3 | Dispersion of transverse polaritons in an infinite crystal (solid lines). Dashed curves

represent uncoupled photon and exciton dispersions (green and gray line, respectively). Parameters used

in the plot correspond to bulk ZnO values.

we find the dispersion relation

E4(k)− ~2(v2k2 + ω2
k + 2ωLTω0)E

2(k) + ~4v2k2ω2
k = 0, (1.49)

with v = c/
√
εb. On the Figure 1.3 is shown the dispersion in an ideal bulk material. There

are two eigenmodes - upper and lower polariton, as follows from 1.49. Strong interaction

between photons and excitons manifests itself in the repulsion of polariton eigenmodes, so

called anti-crossing. In the absence of coupling in this point the dispersion is degenerate

and exciton and photon mode cross each other. This degeneracy is removed by strong

coupling.

Due to the momentum conservation in an infinite structure each photon oscillator of

wave vector k⃗ couples to one exciton oscillator of the same wave vector. The energy

exchanges between them at Rabi frequency ΩR. The result of above concept is a simple

model of two coupled harmonic oscillators, which can be generalized to include the damp-

ing of exciton and photon modes. Strong coupling regime (polariton picture) is valid as

far as energy of coupling,e.g. Rabi frequency ΩR exceeds the dumping of both modes.

Otherwise the system is in the regime of weak coupling, which is not the subject of this

thesis.

1.3.2 Cavity polaritons

In confined structures 1.6, the momentum conservation is relaxed in directions in which

confinement is imposed. An exciton oscillator with wave vector k⃗ = (k∥, kz), where k∥

is in-plane component and kz = nzπ/L is the component along the growth direction of



22 EXCITON-POLARITONS

Figure 1.4 | Reflectivity of a microcavity with seven GaAlAs QWs observed in the experiment of

reference [4].Different curves stand for different values of exciton-photon detuning.

microcavity of length L, couples to the photon of the same in-plane wave vector because

of the absence of in-plane confinement. In z-direction there is no momentum conservation

and exciton couples to photons of different kz. Energy exchange between one exciton mode

and set of photon modes therefore occurs at different Rabi frequencies which leads, for

a weak coupling, to enhancement of cavity emission (Purcell effect). Instead of a simple

modification of emission, in the case of strong coupling a reversible exchange between

exciton and photons modes is established. Due to this, cavity line-width becomes smaller

what was experimentally observed in [4] inspecting reflectivity of cavity containing several

GaAlAs QWs. The dip in the reflectivity (the Fig. 1.4) is a clear sign of strong coupling

and of the establishing of polariton regime when the energy is rather transferred between

exciton and photon components than radiated from the cavity. A multiple QW cavity

structure was used in this experiment to enhance the Rabi oscillations by factor
√
N with

respect to Rabi frequency of a single QW structure.

Differently from the bulk case where the photon dispersion is a linear function of 3D

wave-vector k, photon dispersion in microcavities is rather a function of 2D in-plane wave

vector k∥. Taking into account the decay rate ΓC , in first approximation it reads

~ωC(k∥) = EC(k∥ = 0) +
~k2∥
2mph

− i~
2
ΓC(k∥). (1.50)

where we associate the mass mph = h
√
(εb)nz/(cL) to photon of quantum number nz in

microcavity of length L and background dielectric constant εb. Dispersion law 1.50 has

the same form as dispersion of electrons in effective mass approximation. This inspires

writing of an equation analogous to Schrödinger equation for photons of ”mass” mph.
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2D dispersion of excitons with decay rate ΓX is

~ωX(k∥) = EX(k∥ = 0) +
~k2∥
2M

− i~
2
ΓX(k∥). (1.51)

The interaction term of the bulk Hamiltonian 1.46 using rotating-wave approximation

(EC−EX << EC+EX), which neglects the products of only annihilation or only creation

operators of exciton and photon, becomes in microcavity case

Ĥint =
∑
k∥

i~ΩR(â
†
k∥
b̂k∥ − âk∥ b̂

†
k∥
) (1.52)

where coupling ΩR is given by

ΩR(k∥) =
µ

2πa2DB

√
EX(k∥)

εBL
(1.53)

and µ is exciton dipole. Solving the eigenvalue problem of this Hamiltonian we find the

eigenvalues

E+(−)(k∥) =
EC(k∥) + EX(k∥)

2
± 1

2

√
(EC(k∥)− EX(k∥)2 + 4~ΩR(k∥)2 (1.54)

and eigen-vectors

v+(k∥) =

(
X+(k∥)

C+(k∥)

)
, v−(k∥) =

(
C+(k∥)

−X+(k∥)

)
(1.55)

which corresponds to the upper(+) and lower (−) polariton mode. Hopfield’s coefficients

X+(k∥) and C+(k∥) satisfying |X+(k∥)|2 + |C+(k∥)|2 = 1, are exciton and photon fraction

in the mixed polariton state. They are

X+(k∥) =
E+(k∥)− E−(k∥)√

~2ΩR(k∥)2 + (E+(k∥)− E−(k∥))2
, (1.56)

C+(k∥) =
~ΩR(k∥)√

~2Ω(k∥)2 + (E+(k∥)− E−(k∥))2
(1.57)

Linear transformation defined on the exciton and photon operators similar to those of the

bulk case 1.47

p̂+(k∥) = X+(k∥)â(k∥) + C+(k∥)b̂(k∥) (1.58)

diagonalizes the Hamiltonian written on exciton and photon basis giving the dispersion

relation 1.54 we have obtained. The former reads

Ĥ(k∥) =
∑
k∥

E+(k∥)p̂
†
+(k∥)p̂+(k∥) + E−(k∥)p̂

†
−(k∥)p̂−(k∥). (1.59)
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Figure 1.5 | Dispersion of exciton-polaritons in microcavity with GaN QW at zero detuning and

ΩR = 30meV .

Figure 1.5 shows theoretically calculated polariton dispersion for a GaN based microcavity.

In vicinity of k∥ = 0 we can use effective mass approximation to obtain the polariton mass

m+,− = ~2(
∂2E+,−(k∥)

∂k∥
2 )−1. (1.60)

At resonance m+ = m− ≃ 2mph, which is extremely small: about five orders of magnitude

smaller than the exciton mass. An important consequence of this ultra small mass is that

polaritons efficiently average out the random potential, thus having smaller line-widths

[17] than bare excitons and photons.

1.3.3 Polariton-polariton interaction in microcavities

It has been pointed out that polaritons are quasi-particles formed by photons and excitons

which are itself composite particles. Experimentally it is known that excitons show bosonic

behavior up to high densities [18], though there are some theoretical works [19] putting in

question the treatment of excitons like bosons. Nevertheless, based on the first heuristical

argument there exists an agreement that (at least at not very high densities) they can be

considered like pure bosons obeying usual bosonic commutation relation

[b̂k, b̂
†
k
′ ] = δk,k′ (1.61)

(we condense the subscript || in k to shorten the notation). Polariton-polariton interac-

tions is due to the mutual interaction of excitons. Neglecting the spin degree of freedom

it is

Ĥint = Ĥexc−exc + Ĥsat, (1.62)
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Figure 1.6 | A sketch of a typical microcavity (from private communication with Dr. Dmitry Sol-

nyshkov). An semiconductor QW is embedded between the Bragg mirrors in the anti-nodes of the cavity

field providing an efficient overlap of exciton and photon

where

Ĥexc−exc =
∑
k,k′ ,q

vexc−exc(k, k
′
, q)b̂†k+q b̂

†
k′−q

b̂k′ b̂k, (1.63)

is the term including exciton-exciton scattering due Coulomb interaction and Pauli ex-

clusion principle in which two excitons exchange momentum ~q and

Ĥsat =
∑
k,k

′
,q

vsat(k, k
′
, q)â†k+q b̂

†
k′−q

b̂k′ b̂k, (1.64)

is the saturation term coming only from Pauli exclusion. It is a process in which the

scattering of two excitons of momenta ~k, ~k′
produce a photon with momentum ~(k+ q)

and an exciton of momentum ~(k′ − q). The first term 1.63 is always positive referring to

repulsive interaction between excitons of the same spin. Interaction of opposite spins is

an open question [20, 21] although, it is usually considered to be much smaller than those

of the same spins.

Contrary to this, the sign of interaction of the excitons with the photon field in Hsat is

always negative. The exact calculation of matrix elements vexc−exc and vsat determining

the magnitudes of two interactions is a cumbersome task and not entering in details we will

use the result obtained in [22, 23]. The matrix elements vexc−exc(k, k
′
, q) and vsat(k, k

′
, q)

in zero-momentum limit read

vexc−exc =
3Eb(a

2D
B )2

S
, (1.65)

vsat = − ~ΩR

nsatS
, (1.66)
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where S is the quantization surface and nsat is the so-called saturation density. In mean-

field approximation b̂†kb̂
′

k ∼ δk,k′n
exc
k , where nexc

k is the exciton density in the state k thus

giving for Ĥsat

Ĥsat ∼ −
∑
k

nexc

nsatS
~ΩR(â

†
kb̂k + h.c.), (1.67)

which in fact reduces linear exciton coupling ~ΩR, since exactly at nexc = nsat exciton-

photon coupling vanishes (nsat ∼ (a2DB )−2).

Starting from the interaction written on the exciton-photon basis one may obtain

an effective polariton-polariton interaction Hamiltonian. This prescription is obtained

as previously by linear Hopfield transformation. Restricting ourselves to only the lower

polariton branch, as population of upper polaritons is in most of situations very small,

polariton-polariton interaction in the new basis takes the form

Ĥ+
int =

1

2

∑
k,k′ ,q

V (k, k′ , q)p̂†k+qp̂
†
k′−qp̂k′ p̂k. (1.68)

where the effective interaction term now includes both contributions. The matrix element

is

V (k, k′ , q) = vexc−excX
−
k+qX

−
k′−qX

−
k X

−
k′ + vsatX

−
k′−q(C

−
k+qX

−
k +X−

k+qC
−
k )X

+
k . (1.69)

with X−
k and C−

k being the exciton and photon fraction defined by expressions 1.57 and

1.57. In what follows we will neglect saturation term assuming that n+
sat >> nexc,+. Then

all polariton-polariton interactions come from the interaction of excitons with excitons.

It is why in polariton basis the matrix element for this interaction in exciton-photon basis

is multiplied by Hopfield’s coefficient X+
k which describes the excitonic contribution to

polariton state.

1.4 Bose-Einstein condensation

1.4.1 Bose-Einstein condensation of ideal Bose gas

Indistinguishability of quantum mechanical particles reflects the properties of many-

particle wave function under permutation symmetry. Interchanging two coordinates in

wave function ψ(r1, ..., rN) should give the same physical state which differs from the

initial one only to a phase factor α [24]

ψ(r1, ..., rj, ..., rk, ..., rN) = αψ(r1, ..., rk, ..., rj, ..., rN) = α2ψ(r1, ..., rj, ..., rk, ..., rN).

(1.70)

It is obvious that α = ±1. The particles which wave function transforms symmetrically

under interchange of coordinates are called bosons (α = 1) whereas anti-symmetric wave
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function describes fermions (α = −1):

ψ(r1, ..., rj, ..., rk, ..., rN) = +ψ(r1, ..., rk, ..., rj, ..., rN)(bosons), (1.71)

ψ(r1, ..., rj, ..., rk, ..., rN) = −ψ(r1, ..., rk, ..., rj, ..., rN)(fermions). (1.72)

For given temperature T bosons obey Bose-Einstein and fermions Fermi-Dirac statistics

[25].We write both in the short notation

ni(T ) =
1

exp β(ϵi − µ)∓ 1
(1.73)

where ni denotes the most probable occupation number in thermodynamic limit (V →
∞,N → ∞).The factor β = 1/kT and −(+) stands for bosons (fermions). ϵi are the

eigen-values of single-particle Hamiltonians and the chemical potential is defined by nor-

malization

N =
∑
i

ni(µ, T ) (1.74)

fixing the total number of particles N . Satyendra Nath Bose was the first to propose what

is now called Bose-Einstein statistics which Einstein used as a photon statistic to explain

the Planck distribution. This preceded the famous paper [26] of Einstein on the subject

of this section but also the Fermi statistics. Fermions and bosons show quite different

properties. For fermions holds the Pauli principle which forbids two identical fermions to

occupy the same state. It is clearly seen putting rj = rk in equation 1.72. Contrary to

fermions, it turns out that bosons have the tendency to fill the same quantum state by

condensing in the Bose-Einstein sense.

To see this let’s consider non-interacting bosons with dispersion ϵk = ~2k2/2m and

change summation over i in 1.74 by k

N =
∑
k

1

exp β(ϵk − µ)− 1
. (1.75)

Substituting x = k/(
√

2m/β~2) and taking thermodynamic limit we get expression

nλ3 = g3/2(z), (1.76)

where λ = ~/
√
2πmkT is thermal de Broglie wavelength and z = exp(βµ) is fugacity.

The RHS is integral representation of Bose function

gk(z) =
∞∑
l=1

zl/lk. (1.77)

The series 1.77 converge for z ≤ 1 and is bounded by value g3/2(z = 1)

g3/2(1) =
∞∑
l=1

l−3/2 = ζ(3/2) = 2.612.... (1.78)
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Figure 1.7 | Condensate fraction showing that at T = TC particles undergo transition to the from Bose

gas to BEC condensate state with k = 0

The last denotes famous Riemann zeta function ζ(z). Equation 1.76 has a solution if

nλ3 ≤ ζ(3/2). (1.79)

Once the condition is fulfilled nλ3 = ζ(3/2) we can easily imagine a situation when we

either increase n or decrease T and by doing this violate the last inequality. This, in fact,

does not happen as the expression 1.76 is obtained in thermodynamic limit replacing

1

V

∑
k

→
∫

d3k

(2π)3
(1.80)

in which the term for k = 0 vanishes. Removing thermodynamic limit the expression for

large but finite volume V reads

N

V
=

1

V

z

1− z
+

∫
k

d3k

(2π)3
1

z−1 exp (β ~2k2
2m

)− 1
, (1.81)

where the first term corresponds to k = 0 and the second one for the states with k ̸= 0.

Instead, violating the condition 1.79, particles prefer to condense into k = 0 state which

thus becomes macroscopically occupied. This is what is called Bose-Einstein condensation.

During the process of condensate forming z stays fixed at z = 1 and in the limit V → ∞
the first term of 1.81, being the condensate density n(k = 0) is indeterminate, otherwise

for z ̸= 1 it is zero. This critical point defines the temperature TC of BEC at a given

density n or vice versa:

kTC =
2π~2

m
(

n

ζ(3/2)
)2/3, (1.82)

nC = ζ(3/2)(
mkT

2π~2
)2/3. (1.83)
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Figure 1.8 | Distribution of particles in the momentum space. Temperatures are 400 nK, 200 nK, and

50nK (from left to right)[5]. Macroscopical occupation occurs for T < TC (central and right distributions)

Using the definition of critical temperature and relation 1.76 we find the fraction of par-

ticles being in Bose-Einstein condensate:

N0

N
= (1− (

T

TC
)3/2). (1.84)

The condensate fraction is zero below TC . Lowering the temperature, thermal part 1 −
N0/N decreases and at T = 0K all particles are forced to condense (the Fig. 1.7). For

the first time BEC was observed by E. Cornell,C. Wieman et al. [5] seventy years after

Einstein’s paper [26]. The experiment consist in cooling rubidium-87 atoms below the

critical temperature TC = 170nK. The Figure 1.8 shows the distribution of particles at

three different temperatures of this experiment. It’s clearly seen that at the temperatures

far below the critical one, most of the particles occupy the ground state k = 0.

1.4.2 Bose-Einstain condensation in weakly-interacting gases

The previous section was dedicated to BEC in an ideal Bose gas in three dimensions. As

we have seen, cavity polaritons are 2D objects. It is interesting to see how BEC depends

on the dimensionality of the system in the question. Coming back to expression 1.81, one

can easily check that the thermal part which we denote like

nT =

∫
k

d3k

(2π)3
1

z−1 exp (β ~2k2
2m

)− 1
, (1.85)

shows infrared divergence in 1D and 2D, and converges to some definite value nc
T for

3D in the limit z = 1, which we is said to be the fugacity value during occurrence of

BEC phase transition. In this manner in three spatial dimensions all particles N − N c
T
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at finite temperatures T < TC are obliged to descent into condensate, as the capability

to accommodate new particles in the thermal part is exhausted by reaching nc
T . This is

not true for 1D and 2D situations - the integral 1.85 is infinite due to contributions at

k⃗ ≈ 0 and the condensation at finite temperature can’t take place. Adding new particles

we will increase the density of thermal part but not that of the condensate as in this case

nT is an unbounded function. For one-dimensional Bose gas this holds also at T = 0.

This is the consequence of one ”no-go” theorem [27] under name of Mermin, Wagner,

and Hohenberg. It forbids that a continuous symmetry could be spontaneously broken

in dimensions less then three. The spontaneous symmetry breaking means that there is

some physical observable which was zero before BEC transition and which takes a non-

zero value in the condensed phase. This observable is called the order parameter. BEC is

a second order phase transition in which at T = TC U(1) symmetry,representing the phase

freedom of normal Bose gas and being continuous, spontaneously disappears at T = Tc.

BEC formed in this transition fixes its phase to some particular value and following

mentioned theorem it is not in principle possible in 1D and 2D. But this restriction refers

exclusively to the spontaneous symmetry breaking of a continuous symmetry and not to

phase transitions in general.

It is well known that in 2D systems another kind of thermodynamical phase transition

occurs - Berezinskii-Kosterlitz-Thouless (BKT) phase transition [28] to a superfluid phase.

’Spontaneous’ binding of thermally excited vortices of opposite directions establishes at

some temperatures T = TBKT , while a free vortex could be observed at T > TBKT . BKT

phase transition is not a second order phase transition - there is not an order parameter

vanishing as soon as the last condition is fulfilled. Instead of disappearance of the order

parameter the change is more qualitative and one can speak about ”quasi-condensate”.

In finite systems 1D and 2D, the convergence of the expression 1.85 is recovered. But

in a finite system z cannot reach one. This means that the particle number in condensate

is not macroscopically but rather significantly larger than the particle number in thermal

part.

If we want to consider BEC of polaritons as we have seen before, we have to include

polariton-polariton interaction. To do this we introduce one-body density matrix

n(r⃗, r⃗
′
) =< ψ̂†(r⃗)ψ̂(r⃗

′
) >, (1.86)

where ψ̂†(r⃗), ψ̂(r⃗
′
) are creation and annihilation operators of our Bose field satisfying

ψ̂(r⃗) = ϕ0(r⃗)â0(r⃗) +
∑
i

ϕi(r⃗)âi(r⃗). (1.87)

The field operator is expanded over single particle states defined in general case by eigen-

problem of density matrix 1.86∫
dr⃗

′
n(r⃗, r⃗

′
)ϕi(r⃗

′) = Niϕi(r⃗). (1.88)
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The density matrix describes correlations of Bose field in two space points r⃗ and r⃗
′
.

Equation 1.87 allows us to write the density matrix in the form

n(r⃗, r⃗
′
) = n0(r⃗, r⃗

′
) + ñ(r⃗, r⃗

′
) = N0ϕ

∗
0(r⃗)ϕ0(r⃗

′) +
∑
i̸=0

Niϕ
∗
i (r⃗)ϕi(r⃗

′). (1.89)

The first term represents occupation of BEC and the second one occupation of thermal

reservoir. The density matrix of the latter decays exponentially with distance s = |r′ − r|
with characteristic length λT =

√
2π~/mkBT . Correlations are present only on this

scale whereas for s > λT thermal part of the system is uncorrelated, independent of

the temperature. However, the density-matrix n0(r⃗, r⃗
′
) below the critical temperature

T < TC shows finite correlations in the limit s→ ∞ contributing to the finite correlations

of total density matrix. This should be supported, as its Fourier transform is equal to

k⃗-distribution n(k⃗), by particle distribution below T < TC of the form

N(k⃗) = N0δ(k⃗) + Ñ(k⃗). (1.90)

The above distribution recovers the condition of the macroscopical occupation of the

ground state for finite systems. Finite correlations in the long-range limit (s → ∞)

or off-diagonal long-range is called Penrose-Osanger criterion of BEC [28] which is a

well-defined criterion not only in an ideal Bose gas, but also in a weakly interacting

nonuniform system. In what follows we will assume that interaction between particles

can be characterized by s-wave scattering length a which enables witting the condition of

diluteness in the form: a << n1/3 and apply Bogoliubov approach. The approximation

consists of replacing the creation and annihilation operators, â0 and â†0, in Hamiltonian

of weakly-interacting bosons

Ĥ =
∑
k

E0
k⃗
â†
k⃗
âk⃗′ +

g

2V

∑
k⃗,⃗k′ ,q⃗

â†
k⃗+q⃗

â†
k⃗
′−q⃗
âk⃗âk⃗′ . (1.91)

by complex numbers

â0, â
†
0 →

√
N0. (1.92)

which is applicable always when the density of ground state remains finite and depletion

is not very strong N − N0 << N , in thermodynamic limit. The interaction constant

g ≈ 4π~2a/m. For fixed number of particles number operator N̂

N̂ =
∑
k⃗

â†
k⃗
âk⃗ ≈ N0 +

1

2

∑
k⃗ ̸=0

(â†
k⃗
âk⃗ + â†

−k⃗
â−k⃗). (1.93)

can be replaced by its eigenvalue N . After some straightforward calculation, which in-

cludes keeping the terms of order N and N2 only, one obtains:

Ĥ ≈ gN2

2V
+

1

2

∑
k⃗ ̸=0

(Ek⃗0 + ng)(â†
k⃗
âk⃗ + â†

−k⃗
â−k⃗) + ng(â†

k⃗
â†
−k⃗

+ âk⃗â−k⃗). (1.94)
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which is reasonable as has been pointed out in the case of small depletion. Introducing

Bogoliubov transformation of operators

âk⃗ = uk⃗α̂k⃗ − vk⃗α̂
†
−k⃗
, (1.95)

â†
−k⃗

= uk⃗α̂
†
−k⃗

− vk⃗α̂k⃗, (1.96)

where coefficients uk⃗ and vk⃗ satisfies

v2
k⃗
= u2

k⃗
− 1 =

1

2
(
E0

k⃗
+ ng

Ek⃗

− 1) (1.97)

the Hamiltonian 1.94 in terms of new quasi-particle operators reads

Ĥ =
1

2
gn2V − 1

2

∑
k⃗ ̸=0

(E0
k⃗
+ ng − Ek⃗) +

1

2

∑
k⃗ ̸=0

Ek⃗(α̂
†
k⃗
α̂k⃗ + α̂†

−k⃗
α̂−k⃗), (1.98)

where

Ek⃗ =
√

(E0
k⃗
)2 + 2ngE0

k⃗
. (1.99)

It is the famous Bogoliubov dispersion law of elementary excitations of the system as

it refers to states with k⃗ ̸= 0. The obtained Hamiltonian makes possible to describe

the excited states of an interacting Bose gas like the ones of the non-interacting gas of

Bogoliubov quanta. The dispersion law in long-wavelength and short-wavelength limit is

Ek⃗ =

{
ck⃗ (k⃗ → 0)

E0
k⃗
+ gn (k⃗ → ∞)

(1.100)

The former corresponds to sound waves - phonons with velocity c =
√
gn/m and the latter

gives the dispersion of free particles. Transition from phonon to free particle dispersion

occurs when E0
k⃗
≈ gn defining healing length

ξ =
1√
8πna

. (1.101)

1.4.3 Bose-Einstain condensation in non-uniform systems

The first observation of the BEC phase transition of Cornell group 1.8 was done for a

trapped atoms - an non-uniform system. As in practice this is rather a rule than exception,

this section will be dedicated to BEC in non-uniform gases. In the spirit of Bogoliubov

approximation we replace the field operator of the spatial coordinate r⃗ in time instant t

with a classical field

ψ̂(r⃗) = ψ0(r⃗) + δψ̂(r⃗). (1.102)

In mean-field approximation ψ0(r⃗) =< ψ̂(r⃗) > and as < δψ̂(r⃗) >= 0 we will neglect

all terms ∼< δψ̂(r⃗) >. The wave function ψ0(r⃗) plays the role of the condensate order
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parameter. For a weakly interacting dilute Bose gas in some external potential Vext(r⃗)

from Hamiltonian 1.91 given in k⃗-space we can write second quantization Hamiltonian in

real space

Ĥ =

∫
d3r⃗(

~2

2m
∇ψ̂†∇ψ̂ + ψ̂†Vext(r⃗)ψ̂) +

∫ ∫
d3r⃗d3r⃗

′
(ψ̂†ψ̂

′†V (r⃗ − r⃗
′
)ψ̂ψ̂

′
) (1.103)

As interaction is constant in k⃗-representation: g = 4π~/m in r-representation it will have

contact interaction V (r− r′) = gδ(r− r′) which assumes scattering of hard spheres of the

radius a. From the previous Hamiltonian we write an energy functional as follows

E =

∫
d3r⃗(

~2

2m
|∇ψ0|2 + Vext(r⃗)|ψ0|2 +

g

2
|ψ0|4), (1.104)

bearing in mind that we neglected ’fluctuations’ by performing the mean-field approxi-

mation. Variational procedure with the above energy functional gives an equation for the

order parameter

i~
∂

∂t
ψ0(r⃗, t) = (

~2∇2

2m
+ Vext(r⃗) + g|ψ0(r⃗, t)|2)ψ0(r⃗, t). (1.105)

The obtained equation is the famous Gross-Pitaevskii (GP), a non-linear Schrödinger-

type equation, with an exception that it is its quantum version (contains ~) describing

one nonclassical quantity - the probability amplitude ψ0(r⃗, t). As ψ0(r⃗, t) is no more

operator but rather a complex number in each r⃗ and t one has:

ψ0 = |ψ0|exp(iχ); N0 = |ψ0|2; v⃗ =
~
m
∇χ. (1.106)

The last two expressions describe number of particles in BEC (in a dilute system N0 ≈ N)

and velocity.

The time-dependence of the ground state is given by: ψ0(r⃗, t) = ψ0(r⃗)exp(−iµt), where
µ is the chemical potential and GP equation becomes:

(
~2∇2

2m
+ Vext(r⃗)− µ+ g|ψ0(r⃗)|2)ψ0(r⃗) = 0 (1.107)

Immamoglu and Ram [6] were first to theoretically consider a polariton BEC in

frame of one novel type of laser: polariton laser. Besides the conceptual importance of

BEC in a solid state system very small polariton mass opens a way to study BEC at

higher temperatures, as the temperature of phase transition TC is inversely proportional

to mass of particles (see expression1.82). The first experimental observation of BEC for

microcavity polaritons was reported in 2006 [29]. Room-temperature polariton laser has

been proposed in 2002 by Malpuech et al. [7].

An important characteristic of polaritons it is their finite-life time. Polaritons in lower

dispersion branch in the k⃗∥ = 0 state have the life time much shorter than in excited
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(a)

(b)

Figure 1.9 | Bose-Einstein condensation of microcavity polaritons [29]: (a) Emission pattern vs excita-

tion powers at 5K (form the left to the right). (b) Energy resolved spectra of panel (a)

state, as the life-time is proportional to photon fraction which we have seen to decrease

with k⃗∥ . Then, if polariton population is is created somewhere on the lower polariton

branch k⃗∥ ̸= 0, one should have efficient relaxation mechanisms in order to thermalize

and reach a macroscopical occupation of ground state forming BEC. More details on this

interesting question concerning quantum kinetics and thermodynamics of polaritons can

be found in ref. [30].

1.5 Pseudo-spin of exciton-polaritons

In section 1.1 on excitons and quantum confinement, we have seen that a heavy exciton is

composed of an electron having a one half spin and a heavy hole state which due orbital

angular momentum L = 1 makes total angular momentum J = 3/2. The operator of

total angular momentum along quantization axis (growth axis)for excitons is thus given

by

Ĵexc
z = (shz + lhz )σ̂z ⊗ Î + Î ⊗ sezσ̂z. (1.108)

Î is 2×2 unity matrix and σ̂z z-Pauli matrix. For jhz = jhhz = shhz + lhhz = 3/2 and sez = 1/2

the z-component of total angular momentum operator for a heavy hole exciton is

Ĵexc
z =


2 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −2

 . (1.109)
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We are interested in only heavy hole excitons only as in confined system they form ground

state, being lower in energy than light hole excitons. In bulk samples at k⃗ = 0 the light

and heavy hole excitons are degenerate ( Kramer’s degeneracy ) due to possession of the

center of inversion, as there is no confinement (pg. 52-57 of ref. [13]).

The operator 1.109 has eigenvalues Jexc
z = ±1 called bright and Jexc

z = ±2 called

dark excitons. The former are dark states because they cannot be optically excited like

bright excitons. During the process of absorption of a photon by an exciton, the spin is

conserved as it was shown in ref. [31]. Thus, only bright excitons having Jexc
z = ±1 can be

excited by photons, as helicity (spin) of photon is either +1 or −1. It can be understood

as eigenvalues of operator

Ŝ =

[
0 −i
i 0

]
(1.110)

with eigenvectors

|R >=
1√
2

(
1

i

)
and |L >= 1√

2

(
1

−i

)
, (1.111)

corresponding to right and to left circularly polarized photon. All other states can be

described as some linear combination of basis vectors |R >, |L >. For example, x and y

linearly-polarized light can be expressed in this basis by combinations(
1

0

)
= |R > +|L > and

(
0

1

)
= |R > −|L >, (1.112)

for x and y polarization, respectively. The state is in general elliptically polarized:

aR|R > +aL|L > , where aR ̸= aL. As dark states are optically inactive (at least in

most of the situations of our interest), we will neglect them and treat cavity polaritons

as effective two-level system using the pseudospin formalism. For this, let’s consider a

quasi-monochromatic wave propagating in z-plane with wave vector k⃗ and whose x and

y components are given by

Ek
x(t) = Ek

x0(t)e
i(kz−ωt+αx(t)) and Ek

y (t) = Ek
y0(t)e

i(kz−ωt+αy(t)) (1.113)

write the coherence matrix

ρ̂k =

[
< Ek,∗

x (t)Ek
x(t) > < Ek,∗

x (t)Ek
y (t) >

< Ek,∗
y (t)Ek

x(t) > < Ek,∗
y (t)Ek

y (t) >

]
. (1.114)

The pseudospin components are directly related to Stokes parameters defined by

Sk
0 =< (Ek

x0)
2 > + < (Ek

y0)
2 >, (1.115)

Sk
x = 2 < Ek

x0E
k
y0cos∆(t) >, (1.116)



36 EXCITON-POLARITONS

Sx

Sy

Sz

Figure 1.10 | Poincaré sphere [32]. Red point represents an elliptically polarized state

Sk
y = 2 < Ek

x0E
k
y0sin∆(t) >, (1.117)

Sk
z =< (Ek

x0)
2 > − < (Ek

y0)
2 >, (1.118)

where ∆(t) = αx(t)−αy(t). The matrix 1.114 can be write in terms of Stokes parameters

and reads

ρ̂k =
1

2

∑
i=0,x,y,z

Sk
i σ̂i, (1.119)

where σ̂0 is unit matrix and σ̂x, σ̂y and σ̂z are usual Pauli matrices. From non-negativity

of 1.119 one has

(Sk
0 )

2 ≤ (Sk
x)

2 + (Sk
y )

2 + (Sk
z )

2. (1.120)

The last expression defines a sphere in Stokes parameter space (Sx, Sy, Sz). The inequality

holds in the case of partial polarization. This sphere is known as Poincaré sphere. The

states with pseudospin Sz = ±1 correspond to right- or left-circular polarization. The

states with Sx = ±1 correspond to x- and y-linear polarization, while the states Sy = ±1

correspond to diagonal linear polarization. Other points on the pseudospin sphere describe

the general case of elliptical polarization (shown on the Fig. 1.10).

Degree of polarization in the case of partial polarization is

P =

√
S2
x + S2

y + S2
z

S0

, (1.121)

and 0 ≤ P ≤ 1.
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1.6 Conclusions

In Chapter 1 we have introduced the basic concept and mathematical apparatus of the

exciton-polariton theory. We have discussed the effect of strong and week confinement in

different low-dimensional structures, namely quantum dots, quantum wires, and micro-

cavities. The quantization procedure for electromagnetic field and light-matter coupling

have been revisited in bulks and confined systems. We detailed on BEC in ideal systems

and represented the Bogoliubov theory of weakly interacting nonuniform Bose gas. The

accent have been given on the case of exciton-polaritons. Pseudospin formalism has been

introduced.
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Chapter 2

Exciton-polaritons in wires

In this Chapiter we will focus on the strong coupling in regime in (micro/nano)-wires.

In the first part of this chapter we will analyze the wires without taking into account

the frequency-dependent optical respones of particular materials [33]. We will be more

interested in general properties like energy and line-width dispersion in these quasi-1D

structures. Particular attention will be given to cylindrical and hexagonal wires, first, as

a simple theoretical model and second, as the usual geometry of Wurzite structures.

In the second part of this chapter we will concentrate on the ZnO microwires. The

work presented in Thesis has grown from the close collaboration with the Grenoble group.

We will model a PL (photoluminescence) spectra obtained for this type of wires, and

some comment on its linewidths will be given. Very high Rabi splitting measured in

experiment is reproduced by our theory, as well as small line-width of polariton modes at

room-temperature.
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2.1 Introduction

Nano-wires are the objects with cross-section dimension a reduced to nanoscale values,

several orders of magnitude smaller than their length L. The dynamics along wire axis can

be decoupled from the transverse one in case when L >> a and the system can be treated

as quasi one-dimensional. Low dimensional systems in general reveal novel phenomena

and are excellent candidates for applications in new technologies. NWs could be used in

communications [34], quantum computation [35], or biological sensors [36].

In the last years, significant progress has been achieved in the growth of semiconductor

NWs. Interesting novel optical effects have been reported for such structures, like ultravi-

olet lasing under optical pumping in ZnO NWs [37] and very recently, polaritonic effects:

1D exciton-polaritons [38] appear due to the strong coupling of excitons with photonic

whispering gallery modes (WGMs) [39]. These modes owe the name to their similarity

with acoustic resonances in real galleries. They propagate in the NW’s cross-section and

due to azimuthal momentum undergo multiple internal reflections. The number of these

reflections can be very high, resulting in a high quality factor.

The problem of resonant mode frequencies and their life-time in dielectric resonators

has been studied for the cylindrical and hexagonal cross-sections in mesoscopic (large

ka) [40] and microscopic (small ka) [41] regimes; where k is the wave vector of the inci-

dent light. NWs with cylindrical cross-sections are very well studied theoretically in the

isotropic case, being a textbook subject [42]. On the other hand, discrete cross-sections

symmetries are much less studied whereas they are of particular interest as real struc-

tures often have polygonal cross-sections. Wurtzite or diamond crystals (like ZnO or GaN)

generally form hexagonal NWs, but rectangular and triangular forms are also possible [?].

A remaining theoretical task in these systems with discrete symmetry cross-sections is

to calculate energy dispersion of WGMs (dependence of their energy versus the axial wave

vector), as well as their linewidth dispersion. The impact of the anisotropy in dielectric

response of wurtzite materials on the polarization eigenstates of the WGMs, has also not

been addressed so far. On the other hand, it is well known that semiconductors with

wurtzite structure possess birefringent optical anisotropy [?]. NWs fabricated from such

materials have directionally-dependent dielectric response characterized by two refractive

indexes - along the axis of anisotropy nz and perpendicular to it nr. Another source of

birefringence δn = nz −nr comes from axial variation of the NW radius due to inevitable

growth imperfections.

In this paper, we determine the optical eigenmodes of NWs of various cross-sections,

considering both isotropic and anisotropic materials. In the case of circular cross-section,

the solutions are cylindrical harmonics of particular azimuthal quantum number m. For

arbitrary discrete geometries, an appropriate linear combination of cylindrical harmonics
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Figure 2.1 | a) Hexagonal cylinder of finite height L and with a radius a of its circum-circle. The

arrows show the plane of S and P polarized light, θ is the angle of incidence. b) Tangential component

of the electric field on the surface of the hexagon at the point (rk, ϕk).

is used to fulfill the boundary conditions for tangential electric and magnetic fields on the

NW surface. The energy and linewidth dispersions are calculated using this model in an

anisotropic medium for the first time, to the best of our knowledge. Polarization and field

distribution of the modes versus the angle of incident light (longitudinal wave vector) are

also the novelties comparing to the previous works [40, 41].

In the case of a birefringent media, kz = 0 WGMs are either transverse electric (TE)

or transverse magnetic (TM) polarized. For the others longitudinal wave vectors, strong

mixing of polarization occurs in both isotropic and anisotropic NWs leading to forma-

tion of hybrid modes - EH and HE, depending on whether the electric or magnetic field

dominates in z-direction. Nevertheless, in this paper we will use the notation TE for the

former and TM for the later.

2.2 Cylindrical and hexagonal wires

2.2.1 Mode symmetries

We consider an infinitely long wire with its main axis along the z-direction and having

either circular or polygonal cross-section. The Fig. 2.1(a) shows a finite length hexagonal

cross-section wire. The presence of translational symmetry along the z-direction imposes

an additional factor in the wave functions having the phase form eikzz. kz is a good

quantum number taking any real value for an infinitely long wire.
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The axial symmetry of regular polygons are n-fold rotations Cn, where n is the number

of polygon sides. For a circular cross-section n = ∞, which corresponds to rotations by

infinitesimally small angles around the z-axis. The symmetry group C∞ is continuous

and, like in the case of translation, there is a good quantum number m ∈ Z. Then,

φ-dependence of eigenmodes for each m is given by a single angular harmonic eimφ.

For regular polygons, n is finite: triangle C3, square C4, pentagon C5, hexagon C6 etc.

These systems remain invariant for in-plane rotations by corresponding discrete angles

2πm/n. The existence of the minimal angle of rotation in these symmetries results in finite

number of irreducible representations of the group with m = 0,±1, ...,±(n− 2)/2, n/2 (n

even) or m = 0,±1, ...,±(n− 1)/2 (n odd) [43]. The transformation properties of higher

m-s appear to be equivalent to those of the first ”Brillouin’s zone” in m-space. The

eigenmodes behavior along φ coordinate is no more given by a single angular harmonic,

but rather by their linear combination.

Another important class of polygonal cross section symmetries are reflections - vertical

mirror symmetries. The hexagon, for example, is unchanged under reflections in the

six vertical planes: 3 containing large hexagon diagonals and 3 connecting the centers

of the opposite sides. These operations σd,i and σv,i transform in-plane rotations by

angle φ,R(φ), into rotations by opposite angles -φ, R(−φ): σv,dR(φ)σv,d = R(−φ). An

important physical consequence is the equivalence of m and −m. The whole symmetry

group describing the axial symmetry of polygonal cross-section NWs containing both

n-fold rotations and mirror reflections is denoted with Cnv.

The electric E⃗ = (Er, Eφ, Ez) and magnetic field H⃗ = (Hr, Hφ, Hz) transform dif-

ferently under reflections. The electric field is a polar (ordinary) vector and magnetic

field, being the cross-product H⃗ = (1/µ)∇⃗ × A⃗, is a pseudovector. Reflections change

an eigenmode (Er, Hr, Eφ, Hφ, Ez, Hz) to (Er,−Hr,−Eφ, Hφ, Ez,−Hz) . It is interesting

to see how the usual TE and TM eigenmodes for kz = 0 are modified under reflection.

TE modes transform from (Er, Eφ, Hz) to (Er,−Eφ,−Hz), i.e. their parity is opposite to

that of the scalar function Hz. TM modes transform from (Hr, Hφ, Ez) to (−Hr, Hφ, Ez)

after reflection, preserving the parity of the scalar function Ez.

2.2.2 Formalism

We start with the Maxwell’s equations written in the frequency domain

∇× H⃗(r⃗, ω) = −iω
c
D⃗(r⃗, ω) (2.1)

∇× E⃗(r⃗, ω) = i
ω

c
B⃗(r⃗, ω) (2.2)



CYLINDRICAL AND HEXAGONAL WIRES 43

−6 −3 0 3 6
0

0.2

0.4

0.6

0.8

1

m

E
ne

rg
y 

(e
V

)

0
1

E
z

H
z

n
r

Figure 2.2 | Modes of a cylindrical cross-section NWs versus the angular momentum m (large symbols).

The small symbols represent the perturbations of the cylindrical modes due to the imposed hexagonal

symmetry.
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to 1 for hexagonal wire.

∇ · D⃗(r⃗, ω) = 0 (2.3)

∇ · B⃗(r⃗, ω) = 0. (2.4)

Taking the curl of the second equation and using B⃗(r⃗, ω) = µH⃗(r⃗, ω) from Eq.(2.1) follows

the wave equation

∇×∇× E⃗(r⃗, ω)− ω2

c2
µD⃗(r⃗, ω) = 0. (2.5)

Displacement field is given by D⃗(r⃗, ω) = εE⃗(r⃗, ω), and we consider anisotropic permittiv-

ity ε given by tensor ε = diag(εr, εr, εz), where εr and εz are the permittivities in NW’s

cross-section and along the z-axis, respectively.
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The double curl of the electric field in Eq.(2.5) can be rewritten as

∇×∇× E⃗ = ∇ · (∇ · E⃗)−∆E⃗. (2.6)

In an isotropic medium Eq.(2.3) gives immediately∇·E⃗ = 0 and Eq.(2.6) reduces to−∆E⃗.

In an anisotropic medium, both terms of Eq.(2.6) are in general non-zero. However, one

still can decompose the waves into pure TE ones (for which Ez = 0 and ∇· E⃗ = k⃗ · E⃗ = 0)

and pure TM ones (for which Hz = 0 and ∇ · E⃗ = k⃗ · E⃗ ̸= 0).

Let’s now derive the equation for Ez for the TM wave from Eq.(2.6). Using Eq.(2.3) we

calculate ∇· E⃗ = ∂Ez/∂z (1− εz/εr) which is non zero in case of TM waves in anisotropic

materials. The z-component of Eq.(2.6) reads

∇ · (∇ · E⃗)
∣∣∣
z
=
∂2Ez

∂z2

(
1− εz

εr

)
. (2.7)

Inserting Eq.(2.7) in the wave equation (2.5) allows us to obtain the equation for Ez for

the TM wave:

∂2Ez

∂z2

(
εz
εr

− 1

)
+∆Ez +

ω2

c2
εzEz = 0. (2.8)

The equation for the Hz field for the TE wave has the form of the usual Helmholtz’s

equation for an isotropic problem:

∆Hz +
ω2

c2
εrHz = 0. (2.9)

So far we have considered infinite homogeneous media. The solution for the wires can

be obtained by matching the boundary conditions for the bulk waves on the wire surface.

These boundary conditions mix bulk TE and TM waves, making decomposition into pure

TE and TM modes only possible for kz = 0. Because of the non-separability of TE and

TM modes, we have to simultaneously solve Eq.(2.8) and Eq.(2.9). For cylindrical wires,

we search for the solution in the form RE,H(r)e
i(mφ+kzz−ωt), as it follows from the section

on the mode symmetry. The radial parts RE,H(r) satisfy

d

dr

(
r
dRE,H(r)

dr

)
+

(
rq2E,H − m2

r

)
RE,H(r) = 0, (2.10)

where

qH = qE(εr/εz)
1/2 = (εrω

2/c2 − k2z)
1/2 (2.11)

are in plane wave vectors of the magnetic and electric field within the wire. In the isotropic

case qH = qE. Outside the NW, the same equation (2.10) holds for the radial part with

qout = (εoutω
2/c2 − k2z)

1/2; εout is the dielectric constant of wire’s environment which is

assumed to be isotropic.
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Eq.(2.10) is a Bessel’s differential equation. The solutions inside the wire are linear

combinations of Bessel’s functions of the first kind Jm(x), whereas propagating solutions

outside are linear combinations of Hankel’s functions H1
m(x) of the first kind. Therefore

one can look for the solution for the fields inside (Ein
z ,H in

z ) and outside (Eout
z ,Hout

z ) the

wire in the following form:

Ein
z =

∑
m

AmJm(qEr)ϕm;H
in
z =

∑
m

BmJm(qHr)ϕm (2.12)

Eout
z =

∑
m

CmH
1
m(qoutr)ϕm;H

out
z =

∑
m

DmH
1
m(qoutr)ϕm (2.13)

where ϕm = exp(i(mφ+ kzz−ωt)). The transverse in-plane components of the fields can

be deduced from the z-components (Eq.(12) and Eq.(13)) from following equations:

q2E⃗T = i
ω

c
∇T × H⃗z + ikz∇T E⃗z, (2.14)

q2H⃗T = −iω
c
∇T × E⃗z + ikz∇T H⃗z, (2.15)

where q = qH,E for internal fields and q = qout for external field. Inside the wire we

directly find:

Ein
φ = −

∑
m

(
Am

mkz
q2Hr

Jm(qEr) + iBm
ω

cqH
J

′

m(qHr)

)
ϕm, (2.16)

Ein
r =

∑
m

(
iAm

kzqE
q2H

J
′

m(qEr)−Bm
mω

cq2Hr
Jm(qHr)

)
ϕm, (2.17)

H in
φ =

∑
m

(
iAm

ωεz
cqE

J
′

m(qEr)−Bm
mkz
q2Hr

Jm(qHr)

)
ϕm, (2.18)

H in
r =

∑
m

(
Am

mωεr
cq2Hr

Jm(qEr) + iBm
ikz
cqH

J
′

m(qHr)

)
ϕm. (2.19)

The outside fields read:

Eout
φ = −

∑
m

(
Cm

mkz
q2outr

H1
m(qoutr) + iDm

ω

cqout
H1′

m(qoutr)

)
ϕm, (2.20)

Eout
r =

∑
m

(
Cm

ikz
qout

H1′

m(qoutr)− iDm
mω

cq2outr
H1

m(qoutr)

)
ϕm, (2.21)

Hout
φ =

∑
m

(
Cm

ωεout
cqout

H1′

m(qoutr)− iDm
mkz
q2outr

H1
m(qoutr)

)
ϕm, (2.22)
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Hout
r =

∑
m

(
Cm

mωεout
cq2outr

Jm(qoutr) + iDm
kz
qout

J
′

m(qoutr)

)
ϕm. (2.23)

From these expressions one can check that it is not possible to have a pure TE mode

putting Am = 0 (no longitudinal electric field Ez = 0). For kz ̸= 0, the magnetic field is

also present in the transverse plane and the last two terms in Eq.(2.18) and Eq.(2.19))

are non-zero. Similar argumentation holds for the existence of a pure TM mode. In the

general case of kz ̸= 0 a sharp separation of TE and TM modes is no more possible and

the modes are mixed.

To calculate the mode dispersion, one needs to write proper boundary conditions

for both electric and magnetic fields resulting in a system of equations for the fields

amplitudes. The tangential external and internal electric and magnetic fields should match

on the wire boundary. If we denote Fin,out = (Ein,out
z , Ein,out

t , H in,out
z , H in,out

t )T , boundary

conditions are fulfilled if δF = Fin − Fout is zero on the surface of the wire. In the

case of cylindrical wires of radius a, the fields for a single angular harmonics are proper

solutions, and the last statement is valid for each of them independently. Tangential

components on the boundary are φ-field (equations 2.16 and 2.18) and for a chosen m, on

the boundary r = a, we can write matrix equation Fm(ω, kz; a)Xm = 0. The vector Xm

being a set of partial amplitudes Xm = (Am, Bm, Cm, Dm) and the matrix Fm(ω, kz; a)

given by following expression:

Fm(ω, kz; a) =


Jm(qEa) 0 −H1

m(qouta) 0

−mkz
q2Ha

Jm(qEa) − iω
cqH

J
′
m(qHa)

mkz
q2outa

H1
m(qouta)

iω
cqout

H1′
m(qouta)

0 Jm(qHa) 0 −H1
m(qouta)

iωεz
cqE

J
′
m(qEa) −mkz

q2Ha
Jm(qHa) − iωεz

cqout
H1′

m(qouta)
mkz
q2outa

H1
m(qouta)

 .
(2.24)

Dispersion relation ωm(kz) is calculated from the condition that the determinant of

a homogeneous system of equations must be zero in order to have nontrivial solution

Xm ̸= 0. These dispersions can be found by an efficient iterative numerical procedure [?],

based on the linearization of the matrix Fm(ω, kz; a) with respect to ω.

Fig. 5.9 shows (large symbols) the calculated mode energies at kz = 0 for a cylindrical

NW. For each angular momentum m, and for each polarization (Ez, Hz), series of modes

characterized by their radial quantum number nr are showing up. For simplicity we show

only the modes nr = 0 and nr = 1 on Fig. 5.9, calculated for a radius a = 0.6µm and an

index of refraction n = 2.52.

Before discussing the details of the calculation procedure for non-cylindrical NWs, it

is helpful to consider qualitatively the expected modification of the mode spectra induced

by the deviation of the NW’s shape from the cylindrical geometry. When NW cross-
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section is just slightly deviated from a circle, the qualitative description of the modes can

be obtained by perturbative considerations. The approximations made within our model,

which we are going to consider in more details in the second part of this section, are based

on Rayleigh hypothesis for expansion of fields of modulated structures in cylindrical waves

[44]. In the last ref. it is demonstrated that such expansion is valid for the perturbation

of particular symmetry unless the ratio of the perturbation amplitude to the radius of

cylinder exceed some critical value making the expansion divergent. Convex polygonal

geometries, which we consider here to be cross-sections of NWs, fall deep below this critical

point, defined for each type of polygonal shape separately (see Ref. [44]) justifying the

validity of the method we use.

The small deviation of the boundary cross-section results in the mixing between the

cylindrical modes of different momenta. The physical reason of this mixing is the addi-

tional scattering of a cylindrical mode on a non-cylindrical boundary. The ’selection rules’

of this scattering obviously depend on the symmetry of the NW. In case of an hexagonal

perturbation e.g., that is invariant in respect to any rotation on multiples of 2π/6, the

changes of angular momentum are the multiples of 6. As a result, each cylindrical mode

acquires a ’tail’ of other harmonics whose amplitude depends on the energy mismatch

between the energy of the main mode and that of the member of the ’tail’. The less is the

energy mismatch, the stronger is the admixture of the other state to the initial cylindrical

mode. The states with opposite m are degenerate in the absence of magnetic field and

consequently can be strongly coupled by the surface perturbation, in case when angular

momentum difference corresponds to that of boundary perturbation.

To illustrate the mixing between the modes Fig. 5.9 shows the structure of the cylin-

drical modes for small angular momenta with superposed harmonics with the periodicity

of hexagon (calculations shown in Fig. 5.9 are performed using matrix (2.24)).

For the hexagon, a strong coupling of degenerate harmonics occurs form−(−m) = 6k,

and results in strong mixing of the modes with m = ±3. As a result, the m = ±3 doublet

splits into a pair of singlet states. The dependence of this splitting on the hexagonal

perturbation is illustrated on Fig. 2.3 for a set of cross-sections smoothly varying from

cylinder to hexagon for the same cross-sectional area. The radial position of the boundary

for each angle was obtained by linear interpolation between the cylinder (x = 0) and the

hexagon (x = 1), with x being the shape parameter

r(ϕ) = (1− x)rC(ϕ) + xrH(ϕ), (2.25)

where with r we denote the NW’s radius (subscripts C and H correspond to cylinder and

hexagon, respectively).

Let us now discuss in more details the calculation procedure for non-cylindrical NWs.

We assume that the solutions inside and outside the wire can be written as linear com-

binations of the cylindrical harmonics, according to the Rayleigh hypothesis. Boundary
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Figure 2.4 | Convergence of the modes m = 2(TE),m = 3(TM),m = 3(TE) and m = 4(TM) (modes of

Fig. 2.7) being in the energy range 3.1-3.8 eV versus the number of cylindrical harmonics M used in the

calculation. Vertical bars show imaginary part of each mode at given M

conditions in this case are more complicated. Single angular harmonics are no more

proper solutions because they cannot match the tangential field boundary conditions on

a boundary changing with the azimuth. The solution has to be written as an infinite

combination of cylindrical harmonics as shown in Eq.(2.16)-Eq.(2.23). Moreover, because

the normal to the boundary is not parallel to the radial vector, the tangential fields on

the wire’s surface contain both radial and azimuthal components (Fig. 2.1(b)):

E⃗in,out
t (rk, φk) = Ein,out

r (rk, φk) sin(τ⃗ e⃗r)e⃗r + (2.26)

Ein,out
φ (rk, φk) cos(τ⃗ e⃗φ)e⃗φ.

The matching of inside and outside fields should be realized at any angle 0 ≤ φk<2π/n

with corresponding radius rk = r(φk) along the wire boundary. The r and φ components

in the above expression are given by Eqs.(2.17,2.21) and Eqs.(2.16,2.20). The magnetic

field tangential to the NW surface is described in a similar way. In order to keep a con-

venient matrix description of the problem, we are going to consider boundary conditions

only for a finite number of points on the surface, and also to consider a finite number of

cylindrical harmonics in the expressions for the electric and magnetic fields. In this frame-

work, boundary conditions can be expressed through the matrix equation F̃ (ω, kz)X̃ = 0,

where the matrix F̃ (ω, kz) is given by:
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Figure 2.5 | The modes of hexagon in complex plane. The refractive index is n = 2.1 and the radius

of the same cross-section surface cylinder a = 300 nm. The upper branch (dark blue squares) shows

TM modes and the lower one TE modes (bright blue squares). Corresponding cylindrical modes, with m

increasing from left to right (Re(ka)-axis) are shown in both polarization with plus and x-signs.
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Figure 2.6 | Energy position of the hexagonal modes being in the chosen energy range (3.1-3.8 eV)

versus their angular momentum. The circles show the modes belonging to the second “Brillouin zone”.

F̃ (ω, kz) =



F11 · · · F1m · · · F1M

...
...

...

Fk1 . . . Fkm . . . FkM

...
...

...

FK1 · · · FKm · · · FKM


(2.27)

HereK is the number of points we take on the boundary andM is the number of harmonics

we sum up. Fkm stands for an analog of Fm(ω, kz; rk) - the matrices given by the expression

(2.24) with tangential φ-components replaced by Eq.(2.26). These sub-matrices describe

contribution of a single m-harmonic to the boundary condition in the surface point rk =
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Figure 2.7 | The four lower energy branches show the dispersion of TE and TM modes of circular cross-

section wires: TE, m = 8 (x symbols, blue) and TM, m = 9 (+ symbols, red) and of the corresponding

hexagonal modes: TE, m = 2 (dashed blue line) and TM, m = 3 (full red line). The four upper branches

are the same modes but replacing m by m+ 1.
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Figure 2.8 | Polarization degree of the lower energy modes of the Fig. 2.7: hexagon modes m = 2 (TE,

red full line) and m = 3 (TM, blue dashed line) and corresponding cylindrical modes.

r(φk). The vector X̃ is now a 4M -dimensional colon (X1, . . . , Xm, . . . , XM)T and Xm

is defined again like in the case of circular cross-section Xm = (Am, Bm, Cm, Dm). The

meaning of the matrix (2.27) is that, in any point rk on the NW’s surface, the same

linear combination of cylindrical harmonics allows to verify the boundary conditions in

these points. Taking the number of harmonics equal to the number of points on the

boundary K =M allows us to make the matrix (2.27) square. In this case the eigenmodes

ω(kz) are found as the solutions of the system F̃ (ω, kz)X̃ = 0. Each eigenmode of a n-

polygonal system contains in addition to the principal harmonic m all other harmonics

which add to it by rule m + sn, where s is an non-zero integer (for hexagon n = 6).

Such eigenmodes, resulting from summation over different harmonics, do not have a well
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Figure 2.9 | Linewidths of the lower energy modes of the Fig. 2.7. The index of refraction is n = 2.5

and the cross section area S = 0.09πµm2

defined angular momentum because of the fact that they are not eigenstates of angular

momentum operator. Nevertheless, we will associate a number m corresponding to the

angular momentum of the principal harmonic to each mode, like in the case of the cylinder.

The dispersion of these modes ω(kz) can be found solving det(F̃ ) = 0 or alternatively by

a more efficient numerical procedure [45, 46].

2.3 Numerical analysis

In this section we consider the important particular case of the hexagonal cross-section

and compare the eigenmodes with the ones obtained for the cylinder. The special case of

the hexagonal cross-section is of strong practical interest since it is realized experimentally

by wires made of wurtzite semiconductors such as GaN and ZnO. The comparison with

the cylindrical geometry is also particularly relevant since it is a much simpler problem

to solve. In practice, modeling of hexagonal NWs is often performed using cylindrical

description. In order to directly compare the properties of the modes in circular and

polygonal cross-section NWs we have to consider structures having the same cross-section

area. If the radius of the cylinder is a, then the large diagonal of the corresponding n-side

polygon can be found from the formula d = 2a(csc(2π/n)2π/n)1/2.

Fig.2.5 shows the energy of the eigenmodes of hexagonal and cylindrical NWs in the

complex plane, at kz = 0, calculated with the same parameters as the one used for the

Fig. 7 of Ref. [41]. In this last work, boundary element method (BEM) of Ref. [40] is

used. Both simulations are in good agreement which demonstrate the reliability of our

method.

We deduce empirically, how many cylindrical harmonics should be taken into account

in order to get a good precision in the finding of the energies of the eigenmodes. We
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Figure 2.10 | Splitting between the modes TE(m = 3) and TM (m = 4) of an hexagonal wire at kz = 0.
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Figure 2.11 | Radial distribution of energy density for the upper pair of hexagon modes: TE(m = 3)(full

red line) and TM( m = 4)(dashed blue line)

consider a NW with an hexagonal cross-section and circum-circle radius of 330 nm. For

Fig. 2.4, we consider an isotropic dielectric response with an optical index 2.5. We look for

the eigenmodes in the energy range 3.1-3.8 eV versus the number of cylindrical harmonics

M taken into account in our calculations. One can clearly see that the energy of the

modes converges for M large enough. In calculations which follows, we will use M = 15.

The energies of the modes are studied in the angular momentum space - m-space

(Fig. 2.6). The modes of the hexagonal NW with the circum-circle radius of 330 nm are

analyzed for m = 0, ...11, and the energies m = 6, ..., 11 are shown with some small shift

with respect to the first six harmonics in order to ease the comparison. The number of

modes and their energies repeat themselves with periodicity ∆m = 6 as expected from

the discussion on mode symmetries for hexagonal system. All relevant physical properties

of a hexagonal NW can be therefore deduced looking into the first ”Brillouin zone” placed
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between m = 0 and m = 5.

Next, we compare the energy position, energy dispersion, and polarization of hexagonal

and circular NWs. Such comparison has been already performed in Ref. [40], but only

from the point of view of the energy positions of the eigenmodes at kz = 0. We are

focused on the particular energies (3.1-3.8 eV, Fig. 2.7) corresponding to the energy

range in which semiconductor’s excitons couple to light, like for example in ZnO NWs

[39, 47]. The Fig. 2.7 shows the energy dispersions versus the angle of the incident light

θ = arcsin(kz/k) (Fig. 2.1(a)) of the modes of two NWs with circular and hexagonal cross-

section respectively, and having the same area. In both geometries the modes appear in

TE-TM polarization pairs in one narrow energy range. The upper mode of the pair is

characterized by an angular momentum m and is TM polarized, whereas the lower mode

has an angular momentum m− 1 and is TE polarized. The modes of the hexagon appear

at higher energies and have a bit changed dispersion compared to those of the cylinder.

Using slightly different index of refraction for the cylinder and the hexagon, it is possible

to match the dispersion of one eigenmode of the two different structures. This shows that

in practice the eigenmode of an hexagonal NW can be reasonably described by a simple

model assuming a cylindrical geometry.

Both in the cylinder and in the hexagonal wires, the modes are purely TE and TM

only at kz = 0. The Fig. 2.8 shows dependence of the polarization degree ρ = (ITE −
ITM)/(ITE + ITM) of the modes versus the incidence angle. In the case of cylindrical

wires ρ can be expressed directly through the coefficients of the external fields as ρm =

(|Dm|2 − |Cm|2)/(|Cm|2 + |Dm|2). The polarization degree of a TE mode decreases from

1 approaching zero value at higher angles. The polarization of a TM mode changes very

slowly, remaining close to −1 for all θ. The polarization mixing in hexagonal NWs has

a bit different behavior in comparison with the circular geometry case. This difference

is most obvious for TE modes. After being almost constant for a wide range of angles,

it starts to decrease significantly near θ ≈ 30◦ and becomes even slightly TM polarized

between 40◦ and 60◦. On the other hand, the evolution of TM modes is similar to the case

of cylindrical structure. Such behavior results form the mixing of the hight-m wispering

gallery harmonics with low-m ones with larger radial numbers.

While calculating the modes linewidths, the mechanism which we consider is the leak-

age trough the NW interfaces. This is the dominant mechanism of losses in both cylindri-

cal and hexagonal geometries. External waves are partially transmit at NW’s boundaries

due to difference of external and internal refraction indices. In our model this leakage

is given by the imaginary part of the modes found by solving the eigenvalue problems

Eq.(2.24) and Eq.(2.27). In the present analysis, we do not consider an excitonic contri-

bution to the linewidths as we have already done in Ref. [39]. An extra contribution to

the linewidths of the modes in hexagonal NWs related to the transmission exactly at the
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edges is equally omitted here. Linewidths extracted from our calculations at kz = 0, as it

has already been mentioned coincide with those obtained by BEM (see Fig. 2.5 and Fig.

7 of Ref. [41] ).

The main difference between the hexagon and circular cross-sections NWs lies in the

linewidths of the eigenmodes which is much larger for the hexagonal structure. This is

demonstrated by Fig. 2.9 which shows the mode linewidth versus angle for the 4 lower

modes shown in the Fig. 2.7. The linewidths of the hexagon modes are about 10 meV

which is more than an order of magnitude larger than in the cylinder. It is even much

larger at higher angles for which the linewidths of the modes of the hexagon remain

roughly constant whereas the ones of the cylinder drop by several orders of magnitude.

This is due to more efficient transmission on hexagonal border than on cylindrical one

resulting in larger linewidths for the hexagonal wire. In Ref. [40] mode-width dependence

versus rounding of corners of hexagon was considered demonstrating (numerically) that

transition from cylinder to hexagon is followed by an increase in linewidths. Another im-

portant feature of wurtzite materials is their optical birefringence. The optical index along

the main c-axis, corresponding to the z-axis of the hexagonal NW differs from the one

in the cross-section plane. The effect of the birefringence on the longitudinal-transverse

splitting ELT (energy splitting of TE and TM polarizations) is shown on Fig. 2.10 at

θ = 0◦. ELT depends linearly on δn and we show dependance for positive birefrigence as

it is the case in ZnO wires [39]. Even a small birefringence leads to a significant splitting.

It is therefore important to take the anisotropy into account in order to be able to repro-

duce realistic experimental situations. The radial dependence of the electromagnetic field

density is shown in Fig. 2.11 for the case of hexagonal NW.

We have developed a method which allows to solve Maxwell’s equations in NWs of dis-

crete symmetries, and even ones showing an anisotropic dielectric response. This method

can be applied to any system having the cross-section symmetry of regular polygons. It

allows finding the eigenmodes of the structure (whispering gallery modes) labeled by their

angular, or pseudo-angular momentum in the case of non-cylindrical structures. The dis-

persion (dependence of the energy on the wave vector along the wire axis), polarization,

linewidth, and radial densities of the modes are calculated for the cases of hexagonal

and circular cross-sections having the same areas. The modes in both cases appear to

be quite similar, except from the point of view of the linewidths, which is much larger

for hexagonal NWs. We have found some interesting polarization mixing effect with the

transformation of TE modes close to kz = 0 in modes mainly TM polarized.
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Figure 2.12 | a) Definition of the an-

gles θ and ϕ b) Scanning Electron Mi-

croscope (SEM) image of the microwire

under study in experiment

2.4 Room-temperature 1D polaritons

2.4.1 Introduction

Intense effort has been carried out over the last decade to realize photonic structures

using wide band-gap semiconductor materials like III-Nitrides or Zinc-Oxide, which offer

both large exciton oscillator strength and binding energy. However, the epitaxial growth of

microcavities of high structural quality is challenging with these materials, due to the lack

of adapted substrates and the large lattice mismatch within the same family materials:

for example, 4% of lattice mismatch between GaN and AlN and - 10% between GaN and

InN.

With an exciton binding energy of 60 meV and Bohr radius smaller than 2 nm, ZnO

appears to be one of the most adapted semiconductor materials for the study of bosonic

quantum degeneracy at elevated temperatures [48]. It is a direct wide bandgap semicon-

ductor with a Wurtzite crystal structure, featuring three types of excitons: by order of

increasing energy, A excitons are TE polarized (electric field E perpendicular to the wire

c axis), B excitons are strongly TE and weakly TM polarized (E//c), and C excitons

are weakly TE and strongly TM polarized [49]. In recent years, ZnO polaritons have

been observed in various photonic structures [50, 51, 52, 53, 54, 47]. The strong coupling

regime has been reported in Fabry-Perot bulk ZnO microcavities, which require the com-

plex fabrication of hybrid and dielectric mirrors [50, 51, 52, 53]. In the most advanced

structure, a quality factor of 500 and Rabi splitting of 80 meV have been obtained [52].

Much simpler photonic structures for ZnO polaritons are bulk microwires, which can

be grown in very simple ovens [55]. Single crystalline ZnO microwires of hexagonal cross-

section, with typical length of 50µm and diameter of 1µm, are grown by a vapor phase

transport method under atmospheric pressure at about 900◦C [55]. Surprisingly, this
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Figure 2.13 | Microwires are mechani-

cally detached from their substrate and

spread on a glass plate

rather simple growth method provides excellent regularity of the hexagonal shape and very

low surface roughness, as shown by the SEM image of the microwire used in experiment

on the Figure 2.12(b. In this system light can be highly confined and guided within the

wire in modes similar to whispering gallery modes in microdisks [56], and strong coupling

with the bulk exciton can be achieved [54, 47].

2.4.2 PL experiment

To get a deeper insight on the intrinsic properties of 1D polaritons in ZnO microwires, in

[39] space and angle resolved photoluminescence spectroscopy of single ZnO microwires

at various temperatures (5-300K) have been performed.

The ZnO microwires are spread on a glass substrate to which they remain loosely

attached by some electrostatic forces of Van der Walls kind. Wires of good spectral quality

have been selected for the experiments. The sample is placed into a variable temperature

(5-300K) cryostat of large optical aperture. For angle-resolved measurement, a long

segment (5µm length) of the microwire featuring constant diameter (like that shown

on the figures 2.12b) and 2.13 for L=40µm-45µm) needs to be found, in order for the

momentum kz to be well defined. This segment is excited by the 325nm line of a CW

He-Cd laser focused by an aspheric lens and passing through the rear side of the substrate.

The photoluminescence is collected by a 0.5 NA NUV enhanced objective. The Fourier

plane image is formed on the slit of a monochromator by a ”4f” setup. For θ-resolved

measurement, the wire axis is carefully set parallel to the slit by rotating the whole sample.

For ϕ-resolved measurement, the wire axis is set perpendicular to the slit. Over-heating

of the wire due the optical excitation is also checked spectrally: the laser intensity is set

low enough to prevent any redshift of the spectrum. Angle resolved photoluminescence

at room temperature are shown in 2.14 a) and 2.14 b) for two different orientations of
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Figure 2.14 | Room temperature photoluminescence (PL) of microwire 2.13 for TE (right) and TM

(left) polarizations. The emission intensity is color scaled (online) and increases from black to yellow. a)

PL in the (θ, energy) dispersion plane. The dashed and solid lines represent the calculated dispersion

of bare (uncoupled) cavity and exciton modes, respectively. The dotted lines represent the calculated

polariton modes. b) PL in the (ϕ , energy) dispersion plane.
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the detection angle θ and ϕ respectively (see 2.12a)). Due to the translational invariance

along the wire main axis z//c, the emission angle θ is related to the polariton scalar

momentum by kz = E sin θ/~c. Thus the Fig. 2.14 a represents also the dispersion of

polaritons in the (Momentum, Energy) plane. Several well defined branches are visible,

which can be separated into two families according to their linear polarization, i.e. mostly

TE with respect to the main axis of the wire (electric field E perpendicular to the wire

c axis, right side of the figure) or mostly TM (E//c, left side) at kz = 0 (θ = 0). They

correspond to different lower polariton branches, which result from the coupling between

A, B, and C excitons and different whispering gallery modes. Their dispersion features

are typical of free polaritons:

1)modes of high energy (i.e. closer to the exciton resonances) have smaller dispersion

than lower energy modes;

2)an inflexion point shows up at ∼ 40◦ − 50◦, which results from the onset of anti-

crossing between the involved WGM and the exciton level.

The dispersion and polarization properties of these polariton branches are well ac-

counted for, using a semi-classical calculation developed in the first part of this chapter

which, as we have seen, takes into account the finite momentum kz along the wire axis

and the strong excitonic anisotropy in ZnO . This will be discussed in more details in the

next section. Normal mode splittings about 200 meV are deduced from this modeling,

which is less then in the bulk material.

The Fig. 2.14 b shows the polariton dispersion measured versus the angle ϕ . Polariton

modes are now found to be strictly dispersionless, i.e. strictly monomode in the plane

perpendicular to the wire main axis. This is direct evidence of the 1D nature of polaritons

investigated here, rarely achieved before [57] and never with such a figure-of-merit, a

fortiori at room temperature. They differ from polaritons confined along the c axis in

ZnO wire cavities reported in [54, 58].

2.4.3 One-dimensional exciton-polaritons

Dispersion

We have already seen that we can quite reasonably describe energy dispersion of

hexagonal wires using simple model with cylindrical geometry. To reproduce the data for

this microwire, we solve Maxwell’s equations like in the first part of this chapter in the

cylindrical geometry, and take into account the anisotropy of the excitonic response. In

cylindrical coordinates, the permittivity reads:

εr(z) (ω) = εB

(
1 +

∑
t=A,B,C

ω
r(z)
t,LT

ωt,ex − ω − iΓ

)
(2.28)

Where ω
r(z)
t,LT are the longitudinal-transverse splittings along the microwire axis z and
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the radial direction r in the cross-section plane, εB and Γ are the background dielectric

constant and excitonic non-radiative decay rate, respectively, tex are the A, B and C

excitonic resonances.

We again solve the boundary value problem using the formalism developed in the

second section of this chapter, but now taking ZnO excitons into account with the per-

mittivity 2.28. As shown on the Fig. 2.14a, the main polariton characteristics of the

strong coupling are well reproduced by the model, and a general agreement can be found

between calculated and measured mode dispersions. The parameters used in the fit are:

a = 500 nm, εb=6.35;

~ωA= 3.297eV, ~ωr
LT,A= 2.7meV;

~ωB= 3.303eV, ~ωr
LT,B= 12.8meV;

~ωC= 3.343eV, ~ωz
LT,C= 16meV;

and the other LT splittings are taken to be 0, i.e. A, B, and C excitons are assumed to be

purely TE, TE, and TM polarized, respectively. The eight modes used in the modeling are

(in order of decreasing energy) 14TE01, 18TM00, 14TM01, 13TE01, 17TM00, 16TE00,

15TE00, 16TM00 (the first number stands form, the last for nr - radial quantum number).

The dashed and solid lines in the Figure 2.14a are the dispersions of the bare photonic

and excitonic modes, respectively. The first four modes are positively detuned, while

the last four ones are negatively detuned in energy with respect to the exciton modes.

Changing the microwire radius by ±20 nm would change indeed the mode quantum

numbers. However a similar overall fit as displayed in the Fig.2.14 a can be achieved

by adjusting the set of parameter values by less than ±10% percent. These values are

also in general agreement with those of Refs. [47, 59, 60].

Rabi splitting

It is not straightforward to determine an exact Rabi-splitting because polariton modes

at non zero θ result from the superposition between several excitonic and photonic modes.

Depending on the mode label, normal mode Rabi splittings ranging from 170 to 200 meV

are deduced from our calculation. This value, smaller than that expected in bulk ZnO

( 300meV) [61] result from the evanescent part of the hexagonal WGMs which obviously

doesnt overlap excitons, and which is larger in the case of hexagonal cross section than

in the case of circular. To this should be added the non-perfectly homogeneous exciton

spatial distribution in the material, in particular in the vicinity of the semiconductor/air

interfaces where large electric field can be found [62].

Polarization
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Figure 2.15 | Angular dependence of the polarization degree of modes a) 14TM01 and b) 13TE01.

Angular dependence of the full width at half maximum of modes. Open symbols are the measurements,

solid and dashed lines are the calculations for polariton modes and bare (uncoupled) optical modes,

respectively.

The angular (θ ) dependence of the polarization degree of every mode in the strong

coupling regime is highly non-trivial. A measurement for modes 13TE01 and 14TM01 is

shown in Figures Ia and Ib. The most striking feature is the change in the polarization

observed with increasing emission angle the 13TE01 (14TM01) mode at θ = 0◦ completely

switches to TM (TE) mode at θ ∼ 40◦ (30◦). This polarization switching is mainly due to

the strong coupling, which mixes the cavity mode with each exciton state simultaneously.

It is satisfactorily reproduced by the model (solid lines in Figs.Ia and Ib) for the TE mode

but not for the TM mode. In fact a complete agreement on this point is more difficult to

achieve for two reasons:

1) the polarization mixing is sensitive to the geometry of the system (our model

assumes a circular and not hexagonal cavity);

2) the weak TM (TE) component of B (C) excitons have been neglected.

The first difference of two models we have discussed when we compared mode degree

of polarization as a function of θ for cylindrical and hexagonal wires (the Fig. ??).
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2.4.4 Interaction with phonons

The other striking feature of the Fig. 2.14 is the sharpness of the polariton lines, with

FWHM of 4 meV only for polaritons with half excitonic fraction (zero exciton-photon

detuning), leading to a record figure-of-merit of 75 for the strong coupling regime at room

temperature. This small line-width seems at first glance contradictory to the phonon

damping of 40 meV reported for bare excitons [63], since the polariton line-width is usually

assumed to scale as the mean value of the bare exciton and bare photon line-widths. In

fact this assumption, based on the coupling between two damped classical oscillators,

cannot properly account for the phonon contribution to the polariton line-width in ZnO

microwires, because the exciton-photon interaction dominates over the exciton-phonon

interaction by one order of magnitude [64]. In such a case, the phonon damping should

be directly evaluated in the polariton states, using the Fermi golden rule. To compute

the phonon contribution to the damping of a given polariton state at kz = 0, we then

apply Fermi golden rule including the scattering of the polariton (with the exciton/photon

detuning as a parameter), which includes all scattering events towards polaritonic (1D)

and excitonic states (3D) by absorption or emission of phonons. Interactions with acoustic

and optical phonons are considered. A similar calculation has been done in [65] for bulk

exciton-polaritons.

The results, assuming polariton scattering with a thermal bath of acoustical and op-

tical phonons, are shown on the Fig.2.16 (a) and (b) (red solid line) for low and high

temperatures (70K and 300K). The calculations show that phonon damping dramati-

cally increases upon increasing temperature only for polariton modes contained within

the energy range [EX , EX − ELO] (ELO ≤ 72 meV), while those below remain virtually

unaffected, regardless of their excitonic fraction.

This phenomenon clearly shows up in the measurements of the Fig.2.16a and 2.16b:

at T=300K, the polariton modes S3 to S5 are completely washed out by phonon damping

upon increasing the temperature. On the other hand, the S2 polariton mode remains

unaffected for large L (energy lower than EX −ELO) until it reaches the boundary energy

EX − ELO at position L=34 µm. Then, for lower L, i.e. energy larger than EX − ELO,

it is completely suppressed. This occurs in spite of S2 polariton mode excitonic fraction

exceeds 50%.

This behavior is due to LO-phonon scattering of these high energy polaritons toward

higher momentum free exciton states, a very efficient process owing to the very high

density of states of three-dimensional bare excitons outside the light cone. On the other

hand, phonon scattering of lower energy polaritons involves only one dimensional polariton

states. There, the phonon damping of polaritons is strongly reduced as compared to

excitons, because the polariton density of states, which scales as the polariton mass, is

lower by four orders of magnitude. From these considerations, a criterion can be drawn
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Figure 2.16 | Spatially resolved TE-polarized emission spectrum along 26 microns length of microwire

2 at temperature T=70K (a) and T=300K (b). In this place of microwire, the inhomogeneous diameter

(presently increasing from left to right) provides a natural way to continuously vary the exciton/photon

detuning. S1 to S5 are the labels of five visible polariton modes. The free A exciton level XA is

materialized by the blue dotted line and the green dotted line figures the A exciton energy minus 1

LO-phonon energy (ELO=72meV). The red plot shows a calculation of the phonon contribution to the

polariton line-width versus energy. At room temperature modes (b) S3, S4, S5 have vanished due to

the excessive broadening taking place in the region [XA, XA −ELO], while those at lower energy S1 and

a part of S2 (right side of the wire) remain virtually unaffected regardless of their significant excitonic

fraction. Interestingly, when S2 crosses the energy boundary E = XA −ELO at 300K (at position L=34

µm), it abruptly vanishes. (c) plots the homogeneous line-width of polariton mode S2 versus temperature

(red filled circles) extracted from angle-resolved emission measurement carried out in a region centered

on L= 43 µm. There, the S2 mode energy lies below EX − ELO. In agreement with the calculation,

although its excitonic fraction steadily increases from 50% at 10K to 76% at 300K, no measurable thermal

contribution to the line-width builds up upon increasing the temperature to 300K. The line-width of bare

A exciton is plotted versus temperature for comparison (hollow circles).
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for this phonon quenching to be achieved: half the normal mode splitting must exceed

the LO phonon energy, i.e.

~ΩR/2 > ELO (2.29)

In practice, this criterion is usually difficult to meet considering the large LO phonon

energy in most semiconductors. In ZnO microwires this criterion is met for the first time

thanks to the very large oscillator strength, particularly that of C exciton.

2.4.5 Conclusions

In the first section of this chapter we have developed a method which allows to solve

Maxwell’s equations in NWs of discrete symmetries, and even ones showing an anisotropic

dielectric response. This method can be applied to any system having the cross section

symmetry of regular polygons. It allows to find the eigenmodes of the structure (whis-

pering gallery modes) labeled by their angular, or pseudo-angular momentum in the case

of non-cylindrical structures. The dispersion (dependence of the energy on the wave vec-

tor along the wire axis), polarization, line-width, and radial densities of the modes were

calculated for the cases of hexagonal and circular cross sections having the same area re-

spectively. The modes in both cases appear to be quite similar, except from the point of

view of the line-width, which is much larger for hexagonal NWs. We have found some in-

teresting polarization mixing effects, with the transformation of TE modes close to kz = 0

in modes mainly TM polarized.

In the second part of Chapter 2 we have shown that the strong coupling between

whispering gallery modes and excitons in ZnO microwires results in the formation of 1D

exciton polaritons, with Rabi splitting of about 200 meV. We demonstrate experimentally

and theoretically that these 1D polaritons can be thermodynamically decoupled from

the phonon bath, a very advantageous situation to maintain high coherence at elevated

temperatures. Thus, with a record exciton binding energy of 60 meV, polaritons in ZnO

microwires appear as one of the most promising Bose gases for fundamental physics and

practical applications. For example, by adjusting the photon-exciton detuning with the

wire diameter, one can change the strength of the repulsive polariton interaction to address

the various 1D physics issues, e.g. quantum fluctuations and quasi condensation [66],

thermalization and quantum Newton’s cradle [67], fermionization in a Tonks-Girardeau

gas [68], etc... The demonstration of high quality polaritons in ZnO microwires also opens

new prospects for the fabrication in the near future of ultra compact and low cost polariton

”lasers” [48], ultrafast parametric amplifiers [69], or non classical source of photon pairs

[70] operating at unprecedented high temperatures.
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Chapter 3

Josephson effect of excitons and

exciton-polaritons

The first section of Chapter 3 will be devoted to Josephson effect named after B.D.

Josephson, who theoretically discovered a current across two weakly coupled supercon-

ductors separated by an insulator [71]. An brief review of DC and AC Josephson effects

will be given, following the reference [37]. The same theoretical approach will be ap-

plied for weakly coupled BECs leading to a system of two coupled equations for popu-

lation imbalance and phase difference. In the second part we consider Josephson effect

of exciton-polaritons accounting for the polarization degree of freedom. We will address

intrinsic and extrinsic Josephson dynamics, showing Josephson-like oscillations and the

so-called regime of macroscopic quantum self-trapping, depending on initial conditions.

An interesting effect of spatial separation of polarizations may occur for coupled BECs of

exciton-polaritons [72].
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Figure 3.1 | Superconductor Josephson junction: V denotes voltage and I denotes current

3.1 Superconductor Josephson junction - SJJ

After the theoretical prediction [71], Josephson effect was experimentally observed by

[73]. Cooper-pair Josephson junction consists of an insulator sandwiched by two super-

conductors 3.1. The particles pass through via quantum tunneling and the DC or AC

current across the insulator can be measured depending on the applied voltage V. Su-

perconductors are coupled linearly due to very weak tunneling. Thus, JJ (Josephson

junction) dynamics is governed by system of two coupled Schrödinger equations, one for

each superconducting subsystem

i~
dψ1

dt
= eV ψ1 − Jψ2 (3.1)

i~
dψ2

dt
= −eV ψ2 − Jψ1. (3.2)

The tunneling is given by J . The ψi is the order parameter and, being a complex

number, can be written as

ψi(t) =
√
Ni(t) exp(iθi(t)) (3.3)

where i=1,2 (see the Fig. 3.1). Ni(t) is the particle number and θi(t) is the phase.
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We should note here that the superconductor phase is described by Cooper pairs:

two-electron bound state with zero spin satisfying Ginzburg-Landau equation. The above

system of equations 3.1 and 3.2 arises when one neglects dissipation and non-linearity.

In the next part we will allow for nonlinearities to obtain a system of two coupled GP

equations to describe Boson Josephson junction (BJJ). The formal equivalence of Super-

conductor JJ (SJJ) and BJJ is a consequence of known similarity of superconducting and

superfluid phenomena. The trial function 3.3 transforms each of starting equations into

i~
2
√
Ni

dNi

dt
− ~
√
Niθ̇i = ±eV

√
Ni − J

√
Ni±1 exp (θi±1 − θi). (3.4)

The first sign corresponds to i = 1 and the second to i = 2. We omitted the t-dependance

to shorten notation and dot stands for time derivate. As the latter equation is complex,

the imaginary and real parts have to equal zero independently, giving

dNi

dt
= −2J

~
√
NiNi±1 sin θ, (3.5)

dθi
dt

= ∓eV
~

+
J

~

√
Ni±1

Ni

cos θ; (3.6)

where θ = θ2 − θ1 is phase difference between superconductors 2 and 1. After some very

simple algebra we obtain an equation for θ

dθ

dt
=

2eV

~
+
J

~

√
N1

N2

− N2

N1

cos θ. (3.7)

As N1 ≈ N2,since an external force due to applied voltage removes charge imbalance

[74, 75], equation 3.7 reads
dθ

dt
=

2eV

~
. (3.8)

and to get phase difference θ one has to know explicitly the time-dependance of voltage

V=V(t).

The total number of particles NT = N1 + N2 is conserved in non-dissipative sys-

tems.The current I is

I = e
dN1

dt
= I0 sin θ (3.9)

with amplitude I0

I0 = −2eJ

~
√
N1N2 ≈ −eJNT

~
. (3.10)

being constant due to conservation of total number of particles. The current-voltage

characteristic of SJJ is

I = I0 sin θ, (3.11)

V =
~
2e

dθ

dt
. (3.12)
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Figure 3.2 | Current (right) and voltage (left) of superconductor Josephson junction with V = V0

With no external field V = 0, we have a DC current I0 sinϕ0 across the insulating barrier

which can take values from [−I0, I0] depending on the initial phase difference of two

superconductors.

Applying a constant voltage V = V0, we have the phase difference which changes

linearly with time in addition to the constant factor ϕ0 we had in the case of absence of

external field

ϕ(t) = ϕ0 +
2eV0
~

t. (3.13)

and for the current I we have expression

I(t) = I0 sin (ϕ0 +
2eV0
~

t). (3.14)

This is AC current which we have obtained applying constant voltage. For typical values

of voltage ∼ mV (right panel of Fig. 3.2 ) it oscillates with very high frequency ∼ 1012Hz

and averages to zero

< I >= 0, (3.15)

where <> denotes averaging over time.

The next situation is to consider a time dependent voltage

V (t) = V0 + V1 cos (ωt), (3.16)

which we can understand as lowest order expansion of some periodic function in harmonic

series. Therefore, equation 3.12 takes the form

dθ

dt
= ω0 + ω1 cos (ωt), (3.17)

with

ω0 =
2e

~
V0, ω1 =

2e

~
V1. (3.18)
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The phase difference and the current are given by expressions

θ(t) = θ0 + ω0t+
ω1

ω
sin (ωt), (3.19)

I(t) = I0 sin (θ0 + ω0t+
ω1

ω
sin (ωt)). (3.20)

In order to compare the expression 3.20 for the current when we apply the voltage given

by 3.16 with the current in the case of constant voltage V0 we make the replacement

A = θ0 + ω0t and B =
ω1

ω
sin (ωt) (3.21)

and write

I(t) = I0 sin (A+B) = I0(sinA cosB + sinB cosA). (3.22)

In practice, ω0 >> ω1 so that B is very small number allowing us to make approximations

sinB ≈ B and cosB ≈ 1 and previous expression transforms into

I(t) = I0 sin (A+B) ≈ I0(sinA+B cosA). (3.23)

After some straightforward calculation we get the final expression for the current in the

case of alternating voltage

I(t) = I0 sin (θ0 + ω0t) + I0
ω1

2ω
[sin (θ0 + (ω + ω0)t) + sin (θ0 + (ω − ω0)t)]. (3.24)

If we compare this expression with equation 3.24 we see that the difference is in the last

term of the previous equation which adds due to harmonic change of the voltage with

time. An average over time gives a quite interesting result

< I >=

{
0 (ω ̸= ω0)

I0 sin θ0 (ω ≈ ω0)
(3.25)

Under an alternating voltage we obtain a DC current (in average) if the frequency

is in resonance with ω0. The current and voltage are shown on the Fig. 3.3, left and

right panel, respectively. To stress the non-linear effect of the time dependent term

of the voltage, an elevated value of frequency ω1 is used. We clearly see that current

oscillations becomes anharmonic, in comparison with the case of constant voltage. This

higher harmonic oscillation, observed when the voltage frequency is in resonance with the

frequency of lowest harmonic ω0, is known as Shapiro resonance effect [75].

To summarize: absence of voltage V = 0 gives a DC current - DC Josephson effect.

Constant voltage V = V0 gives an AC current of high frequency which averages to zero

in time, independently of the initial value of phase difference θ0 between the two super-

conductors. This is AC Josephson effect acting as a voltage-to-frequency converter. For

V of the form 3.16, at resonance, we obtain DC current I0 sin θ0. This is the so-called

inverse AC Josephson effect and it operates as a frequency-to-voltage converter. In the

literature one can find another classification, when the alternating (AC) and direct (DC)

are related to t-dependance of voltage applied to the Josephson junction.
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Figure 3.3 | Current (right) and voltage (left) of superconductor Josephson junction with with alter-

nating voltage V 3.16. Full line of right panel corresponds to θ0 = 0 and dashed line to θ0 = π/2
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Figure 3.4 | Boson Josephson junction with double-well potential: symmetric (red line) and asymmetric

double-well (blue line)

3.2 Boson Josephson junctions - BJJ

For bosonic system, the analogue of quantum tunneling through the insulator barrier

between superconductors in SJJ, is the transport of bosons through the barrier of a

double-well potential formed by some external means 3.4. We are interested in collective

behavior of bosons including coherent phenomena and the natural departure point for

this case is the GP equation. A double well trap can be created for example dividing

external potential by a far-off resonance barrier or by some other experimental technique

to make a BEC Josephson junction. The Josephson effect was observed not so long ago

for interacting atomic condensates [76]. Previously it was observed in a superfluid system:

two superfluid helium vessels connected by a nanoscale aperture [77].
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We start by expanding the order parameter ψ(r, t) in the time-dependent GP equation

1.102 on the eigenstates of double well potential Vext(r)

Ψ(r, t) = Ψ1(t)ϕ1(r) + Ψ2(t)ϕ2(r). (3.26)

where ϕ1(r) and ϕ2(r) are the ground states of well 1 and well 2, respectively. To simplify

notation here we drop the index 0 for the ground state. Using again the ansatz 3.3 for

amplitudes Ψ1(t) and Ψ1(t) like for the case of SJJ, we get the two-mode dynamical

equations [75]

i~
dψ1

dt
= (E0

1 + U1|ψ1|2)ψ1 − Jψ2, (3.27)

i~
dψ2

dt
= (E0

2 + U2|ψ2|2)ψ2 − Jψ1, (3.28)

where again, like for SJJ, we neglect damping but with allowance for inter-particle in-

teraction represented through non-linear terms. In two-mode approximation the thermal

part (excited states) are also neglected. E0
1 and E0

2 are the energies of ground states in

wells 1 and 2 respectively. For symmetric potentials (red line on the Fig. 3.4) E0
1 = E0

2 .

U1 and U2 represent inter-particle interactions and are given by

U1,2 = g

∫
d3r|ψ1,2(r)|4. (3.29)

where g = 4π~2a/m; a is s-wave scattering length and m is particle mass. Josephson

coupling J is

J =

∫
d3rψ∗

1,2(r)

(
− ~2

2m
∆+ Vext(r)

)
ψ2,1(r). (3.30)

In the basis of symmetric ψ+ = 1/
√
2(ψ1+ψ2) and anti-symmetric states ψ− = 1/

√
2(ψ1−

ψ2) we see that Josephson coupling J is the difference between the energies of symmetric

and anti-symmetric states

2J = E+ − E−, (3.31)

and is negative as the energy of symmetric state is below the energy of anti-symmetric

state E+ < E−. We are now going to write equations for population imbalance z(t)

z(t) =
N2(t)−N1(t)

NT

, (3.32)

and phase difference

θ(t) = θ2(t)− θ1(t), (3.33)

from the system 3.27-3.28. We have

dz(t)

dt
= −

√
1− z2(t) sin(θ(t)), (3.34)



72 JOSEPHSON EFFECT OF EXCITONS AND EXCITON-POLARITONS

0

1

2

2

3

3

4

4

-1.0 -0.5 0.0 0.5 1.0
-3

-2

-1

0

1

2

3

z

Θ

Figure 3.5 | Hamiltonian 3.37 in phase space (z,θ). Contour lines for H=0,1,2,3 and 4 are labeled

dθ(t)

dt
= Λz(t) +

z(t)√
1− z2(t)

cos(θ(t)). (3.35)

where normalization with respect to time t is introduced in this way: t→ 2tJ/~. An extra

term ∆E adds to second equation 3.35 in the case of non-symmetric double-well potential

and/or for U1 ̸= U2. Here we will concentrate on the case of a symmetric double-well.

The constants Λ and U equal

Λ =
UNT

2J
U =

1

2
(U1 + U2). (3.36)

The Hamiltonian of the system is

H(z(t), ϕ(t)) = Λ
z(t)2

2
− cosϕ(t)

√
1− z(t)2 (3.37)

and this Hamiltonian is an constant of motion which means that

H(z(t), ϕ(t)) = H(z(0), ϕ(0)) = Λ
z(0)2

2
− cosϕ(0)

√
1− z(0)2 (3.38)

the total energy is fixed only by initial values of variables z(t) and ϕ(t).

If two BECs have the relative phase at t = 0: θ(0) = 0 from phase plot (z,θ) of

Hamiltonian 3.37 (the Fig. 3.5) we distinguish two main regimes. The line H=1 separates

trapped from untrapped motion and is called separatrix.

In the region H < 1 the motion is oscillatory: population imbalance changes from z to

−z on the line H = const and the value of the constant depend on the initial conditions.
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This is the regime of Josephson oscillations between two linked condensates. They are

characterized with zero time-avered value of population imbalance:

< z(t) >= 0. (3.39)

As we fixed θ(0) = 0, there is some critical population imbalance zc defined for H = 1

at which system undergoes phase transition. Above this point we have a trapped motion:

population imbalance never fall to zero value. For a given system Λ , defined by relation

3.37 determines the value of zc by expression

Λ
z2c
2

− cosϕ(0)
√
1− z2c = 1. (3.40)

This phase is characterized by non-zero mean value of z

< z(t) ≯= 0. (3.41)

This is regime of so-called Macroscopic Quantum Self Trapping (MQST).

An analytical solution for the z(t) can be found in terms of Jacobian elliptic func-

tions given in reference [75]. The solution formally coincides with equation for polarons

(phonon-polaritons) [78].

z(t) =

{
Ccn[(CΛ/k)(t− t0), k] (0 < k < 1);

Cdn[(CΛ)(t− t0), 1/k] (k > 1).
(3.42)

First line corresponds to Josephson-like oscillation and the second one to MQST.

Jacobi elliptic functions are denoted by cn(x, k) and dn(x, k). Quantities C,k are defined

by expressions

C2 =
2

Λ2
(H0Λ− 1 +

√
Λ2 + 1− 2H0Λ). (3.43)

k2 =
1

2
(1 +

H0Λ− 1√
Λ2 + 1− 2H0Λ

). (3.44)

More details on expression for the shift t0 can be found in [75].

3.3 Josephson effect of exciton-polaritons

3.3.1 Introduction

Strictly speaking, being 2D objects, polaritons, and QW excitons can undergo BEC only

when confined in a potential trap. The latter can appear due to the intrinsic lateral pho-

tonic disorder in a cavity (as it was the case in ref. [29]) or can be created in a controllable

way by external laser beams [79], the application of stress [80] or using photolitographic

techniques [81]. The possibility of engineering of a spatial confinement opens a way to the
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Figure 3.6 | The model system for the
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investigation of the Josephson effects for excitons and polaritons, related to the tunneling

between two condensates possessing macroscopic phase coherence.

The important peculiarity of optically active 2D excitons and polaritons is linked with

their spin-structure: they have two allowed spin projections on the structure growth axis,

related to the right- and left- circular polarization of the counterpart photons. Moreover,

due to the effects of exchange, the inter-particle interactions are strongly spin-anisotropic

[82, 83]: particles with similar spin projections strongly repel, while particles with opposite

spin projections almost do not interact with each other [84]. All this makes exciton and

polariton condensates behave differently from atomic condensates or superfluids even in

the thermodynamic limit. The real-space dynamics of polariton droplets is qualitatively

different from those of atomic superfluids and reveals strong polarization effects [85]. The

crucial property of the condensates of cold atoms and the condensates of excitons and

polaritons, as compared to the superconductors, is the interaction between the tunneling

particles.

This leads to the striking nonlinear effects in Josephson dynamics, such as anhar-

monicity of the Josephson oscillations [86, 87] and macroscopic quantum self-trapping in

the case, when the initial imbalance between the two condensates exceeds some critical

value [88, 89, 75]. Here we will consider these effects applied to the condensates of exci-

tons and polaritons. With respect to the works published on a similar topic [90, 91, 92],

the novelty in the reference [72] we will follow in this section, is that we take into ac-

count the polarization degree of freedom which gives rise to much richer and original

phenomenology.

The system we will consider is a BJJ but the double well-potential is now filled with

two weakly linked BECs of exciton-polaritons (excitons) (the Fig. 3.6). We will analyze

how the results of previous section apply in the case of exciton-polaritons when we take

into account polarization degree of freedom.
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3.3.2 The Model

The starting point for the description of the Josephson effects is a model Hamiltonian for

interacting bosons with pseudospin, confined in two traps, R and L (the Fig. 3.6). In the

basis of circular polarized states ↑, ↓ it reads

Ĥ = E
∑

j=L,R;σ=↑,↓

ĉ+jσ ĉjσ + J
∑
σ=↑,↓

(
ĉ+Lσ ĉRσ + ĉ+Rσ ĉLσ

)
+ (3.45)

Ω
∑
j=L,R

(
ĉ+j↑ĉj↓ + ĉ+j↓ĉj↑

)
+
U

2

∑
j=L,R;σ=↑,↓

ĉ+jσ ĉ
+
jσ ĉjσ ĉjσ

where the first term corresponds to free particles, the second term describes the spin-

conservative tunneling of particles between the two traps, the third term describes the

possibly existing anisotropy of the QW in the direction of the structure growth axis [93],

anisotropy which is equivalent to the application of an effective in-plane magnetic field

able to provoke spin flip processes. The last term of the Hamiltonian corresponds to the

interactions between particles (we neglected the interactions between particles situated in

different traps and particles having opposite circular polarizations).

The geometry of the trap being known, the parameter J can be estimated as follows:

J ≈ 4V e−~−1
√
2mVD, (3.46)

where V is the depth of the trap, D is the distance between the traps. This estimation can

be easily obtained by calculating of the energy splitting between the symmetric and the

antisymmetric wave functions ( expression 3.31) resulting from the coupling between two

QWs separated by a distance much greater than the well-width. We assume that V and

therefore J are independent of the particle density, which is not exact, since the repulsive

interaction leads to the blue shift and to the reduction of the trap effective potential. The

effects of the blue shift, which has always been neglected in the consideration of nonlinear

Josephson oscillations, will be discussed later, together with the Gross-Pitaevskii equation

approach.

The interaction constant is

U ≈ EBa
2
B/S, (3.47)

with EB and aB being the binding energy and Bohr radius of the 2D exciton, S an area

of a trap [83].

The spin coupling parameter Ω is not easy to calculate (see ref. [93] for details), but

has been measured in the range 50− 100 µeV [94, 95].

Using the Heisenberg equations of motion for the operators ĉjσ

i~
dĉjσ
dt

= [ĉjσ, Ĥ] (3.48)
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and neglecting the effects of dephasing due to the finite number of the particles, one

obtains the following set of four coupled kinetic equations for a condensate order parameter

ψjσ = ⟨ĉjσ⟩:

i~
dψLσ

dt
=
(
E + U |ψLσ|2

)
ψLσ − JψRσ − ΩψL,−σ (3.49)

i~
dψRσ

dt
=
(
E + U |ψRσ|2

)
ψRσ − JψLσ − ΩψR,−σ (3.50)

If one of the tunneling parameters J or Ω is zero, the four coupled equations 3.49-3.50

separate into two independent pairs, equivalent to those 3.27 and 3.28 we considered in

the section on BJJ .

In the case of the absence of the effective in-plane magnetic field Ω = 0, one has

independent coherent tunneling of the condensates with opposite circular polarizations

between two traps, completely analogical to the conventional Josephson effect for atomic

condensates. For excitons and polaritons this will be referred to as extrinsic Josephson

effect.

On the other hand, if different traps are uncoupled J = 0, but Ω ̸= 0 in each of

the traps, we have coherent exchange of particles between the condensates with different

polarizations. This will be referred to as intrinsic Josephson effect. This latter effect

can be related with the oscillations of the circular polarization degree which have been

observed in the recent years [94] and which have been successfully described within a

semi-classical approach based on the description of the polariton pseudospin dynamics,

[96].

The nonlinear term plays a crucial role in Josephson dynamics. Once nonlinearity is

neglected, equations 3.49 and 3.50 give a well known expression 3.9 for the Josephson

current for both extrinsic and intrinsic Josephson effects

Ii,e = I0i,e sin θ (3.51)

where θ is the difference between the phases of the two condensates, I0e = NTJ~−1, I0i =

NTΩ~−1 with NT being the total number of particles. In this regime the occupancies of

the coupled condensates exhibit harmonic oscillations with periods given by J and Ω for

extrinsic and intrinsic Josephson effects respectively. The situation changes drastically

if nonlinear terms are taken into account. The oscillations of the occupation numbers

become anharmonic, their period depends on NT [86, 88]. Besides, if the initial imbalance

between the occupation numbers of the two coupled condensates exceeds some critical

value Nc, the effect of the MQST occurs [88]. In this regime the tunneling between the

condensates is suppressed and the particles remain in the state where they have been

created as it was recently observed for atomic condensates [76].
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Figure 3.7 | Intrinsic Josephson ef-

fects: ρc vs time t for the intrinsic

Josephson effect J = 0 and Ω = 50µeV .

Blue/dark gray line shows nonlinear os-

cillations and red/gray lineMQST.

3.3.3 Intrinsic Josephson effect and finite-life time effect

We consider polaritons in a GaAs microcavity. The exciton binding energy is taken as

Eb = 12 meV and the Bohr radius aB = 100 A. The detuning between the cavity photon

and the QWs exciton is zero and the Rabi splitting is taken as 7 meV. We consider either

an ideal case of very long lifetime for the polariton, or a more realistic one where it is

taken as 16 ps.

The Fig. 3.7 illustrates the intrinsic Josephson effect (J = 0). It shows the the time

oscillations of the circular polarization degree ρc(t)

ρc(t) =
N↑(t)−N↓(t)

NT

(3.52)

for two different initial values ρc(0) = 0.58 and ρc(0) = 0.71 .N↑,↓ denotes the number of

particles with spin ↑,↓, respectively. The critical value of ρc defined by equation 3.40 (re-

placing zc by ρcr) is 0.63. For ρc(0) < ρcr we have Josephson-like oscillations. Approaching

the critical value of polarization degree, oscillations become more and more anharmonic,

like in the case of black curve on the Fig. 3.7. Above this critical value regime of MQST

establishes ( red curve on the Fig. 3.7) and mean value < ρc(t) ≯= 0. It is characterized

by suppression of beats of ρc and by the onset of the self-induced Larmor precession which

is an oscillation of the linear part of the polarization about the effective magnetic field

created by the circular polarization degree [96, 97]. Such dynamical behavior including

transition from Josephson oscillations to MQST is a consequence of interaction in the

system.

It is an important problem when we discuss exciton-polariton Josephson junction to

allow for finite life time of exciton-polaritons. To do this we introduce one dissipative term

in pair of equations for polarization dynamics 3.49 and 3.50 of the form i~ψσ/2τ , where τ
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Figure 3.8 | Finite life time effect

on intrinsic Josephson effects: ρc(t) is

shown for finite lifetime τ = 16ps. The

other parameters are: J = 0 and Ω =

50µeV .
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is parameter with meaning of life time. The curve 3.8 is calculated considering a pulsed

resonant excitation and taking into account the decay of polaritons (τ = 16 ps). At short

times, the polarization oscillations are suppressed. However, the decay of the number of

particles leads to the increase of the critical value ρc and after 40 ps the oscillatory regime

is recovered.

The extrinsic Josephson effect takes place between two potential wells. We consider

Ω = 0, so that the two circular polarizations are uncoupled. Under the pure circular

excitation of one of the coupled wells, time behavior of the normalized population imbal-

ance z(t) coincides with polarization degree we have shown on figures the 3.7 and 3.8.

Both linear Josephson oscillations and MQST can be achieved, as well as the transition

between the two regimes, when the finite lifetime of particles is taken into account.

3.3.4 Spatial separation of polarization

The Fig. 3.9 shows the more complex and original situation of the dynamics of an el-

liptically polarized condensate, still assuming Ω = 0 for simplicity. The right potential

well is populated at t = 0 with a given circular polarization degree ρRc . On the figures

3.9a and 3.9c the two condensates of opposite polarization are oscillating regularly, but

with two independent frequencies, which gives a very specific oscillation pattern of the

population imbalance (the Fig. 1.2a) and of the circular polarization degree ρLc and ρRc
(the Fig. 1.2c) in the left and right well respectively. For the figures 3.9b and 3.9d, the

initial imbalance is higher, and the MQST effect occurs for the spin-up component, but

not for the spin-down component. In this case, the former remains confined to the initial

trap, while the latter exhibits Josephson oscillations between two traps, and the dynamic

spatial separation of two circular polarizations thus occurs (the Fig. 3.9d). The Fig. 3.10
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Figure 3.9 | Extrinsic Josephson effect and spatial separation of polarizations: a) Population imbalance

for the case of normal Josephson oscillations; b) population imbalance for the case of spatial separation

of polarizations; c) ρLc (black) and ρRc (red/gray) without spatial separation of polarizations; and d) ρLc
and ρRc for the case of spatial separation of polarizations

Figure 3.10 | Phase diagram for polar-

ization separation condition versus initial

polarization degree ρc and the number of

particles NT
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summarizes the range of parameters (ρc and NT ) where the effect of spatial separation of

polarization occurs.

To illustrate the spatial separation of polarizations we used the description of the

spinor polariton condensate by a system of coupled Gross-Pitaevskii equations for excitons

and Schrödinger-like equations for photons [85], which account for both realistic trapping

potential and inter-particle interactions,

i~
∂ψσ(r, t)

∂t
=

(
− ~2

2mex
∆+ V (r) + α|ψσ(r, t)|2

)
ψσ(r, t) + VRχσ(r, t) (3.53)

i~
∂χσ(r, t)

∂t
= − ~2

2mph
∆χσ(r, t) + VRψσ(r, t) + Pσ(r, t) (3.54)

where ψσ(r, t) is the exciton wavefunction with circular polarization σ, χσ(r, t) is the pho-

ton wavefunction with the same polarisation, VR is the Rabi splitting, V (r) is an external

potential of the two traps which we introduce only for excitons, as in [80], the parameter

α is the interaction constant. The equation 3.53 and 3.54 is an obvious generalization

of the system of the equations 3.49 and 3.50. The imaginary part of energy allows to

take into account the finite particle lifetime, and the pumping is introduced as a separate

term Pσ(r, t) for photonic component. We have considered a realistic trapping potential

for polaritons with a barrier of 1 meV height and 1 µm width between the two minima.

For such barrier, a tunneling period of about 10 ps is expected from the approximative

formula. From simulations, we find a period of 25 ps for this potential. However, in

non-linear regime the period of oscillations can be strongly reduced, which should allow

experimental observation of the effects under study for exciton-polaritons with a lifetime

of 16 ps.

The figure 3.11 shows the spatial distribution of the two circular-polarized components

σ+ and σ−. The latter is plotted with negative sign, in order to allow direct comparison

of both distributions. At t = 0 (the Fig. 3.11a), the maxima of the two polarizations

coincide in real space, whereas at some later moment of time t = 6 ps (the Fig. 3.11b) the

maxima are separated because of the different periods of oscillations for two components.

3.3.5 Conclusions

We analyzed the Josephson-type effects in condensates of spinor excitons and polaritons.

We distinguish the extrinsic effect related to coherent tunneling of particles with the

same spin between two spatially separated potential traps and the intrinsic effect related

to tunneling between different spinor components of the condensate within the same trap.

The Josephson effects in the nonlinear regime leads to nontrivial polarization dynamics

and produce a spontaneous separation of the condensates with opposite polarizations in

the real space.
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Figure 3.11 | Spatial images showing the intensity of emission for two circular-polarized components.

The σ− component is plotted with negative sign: a) No spatial separation; b)Spatial separation of

polarization during nonlinear oscillations.

The Josephson oscillations of polaritons condensates created by resonant excitation is

experimentally achievable, but it requires very high quality samples and a good design

of the in-plane potential. As for the bare excitons, they posses a longer lifetime, but

their heavier mass makes the period of oscillations longer, and, in the end, not easier to

observe. Increasing the particle density leads to a blue shift of the energy which gives

rise to two competing effects: the MQST, but also the decrease of the effective height

of the barrier, which increases the tunneling constant. This change makes decrease the

period of the Josephson oscillations and may eventually yield a complete delocalization

of the condensate [98]. It reduces the possibility to observe MQST, which requires high

occupation numbers in the condensates and which, to be observable requires deep potential

traps with steep walls. The Josephson coupling of two exciton-polariton condensates with

stochastic phases has been recently considered theoretically (Phys. Rev. B 81, 235315

(2010))

Among other interesting effects which appear when the polarization of polaritons is

taken into account, we can cite the chaotic Josephson oscillations, appearing in the sys-

tem described in this chapter (thanks to its sufficient complexity) under quasi-resonant

pumping. These oscillations promise original applications in the domain of chaotic cryp-
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tography [99]. In the reference [100] the Josephson type coupling of two exciton-polariton

condensates with stochastic phases has been recently considered theoretically.



Chapter 4

Berry phase of exciton-polaritons

In the following chapter we will study in detail the Berry phase of exciton-polaritons. It

is a quantum phase effect occurring in mesoscopic systems for a transport on a closed

path, theoretically predicted by [101]. It is a quite general concept for a large class of

quantum systems, just to mention for example the measurement of Berry phase using

nuclear magnetic resonance (NMR) in Ref. [102] under magnetic field precessing about z-

axis. To analyze Berry phase of polaritons we will consider in what follows the effects of an

external magnetic field applied perpendicularly on a polariton circuit already possessing

an (effective) extra magnetic field due to TE-TM splitting of polaritons. Since the well-

known Aharonov-Bohm effect for electrons [103] can be understood as an Berry’s phase

effect, we will start with electrons in an Aharonov-Bohm circuit. This analogy will be

used to introduce Berry phase. We will give an overview of TE-TM splitting for polariton

based on review before we finally analyze how it can serve for a novel type of polariton

based interferometry.
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Figure 4.1 | Scheme of electrons propagating in a circuit with external magnetic field B⃗ enclosed by

paths C1 and C2. r0 and R denotes entrance and exit points, respectively.

4.1 Aharonov-Bohm phase

We will consider adiabatic propagation of electrons through the arms C1 and C2 of closed

circuit as shown on the Fig. 4.1. Electrons are introduced at the entrance point r0 and

after the propagation, the electron beam is detected at the exit denoted by R. We are

interested to know how an internal magnetic flux applied perpendicular to the ring, which

we place in x-y plane letting magnetic field B⃗ = Be⃗z, influences the properties of electrons

detected in R. To see this we will assume that in absence of magnetic field the electrons

are described by a Hamiltonian

H0 =
~2k2

2me

(4.1)

where k is momentum and me is electron mass. Schrödinger equation with operator 4.1

reads

i~
∂ |ψ0⟩
∂t

= H0 |ψ0⟩ (4.2)

where with |ψ0⟩ we write eigenstate, associating index zero to eigenstate in absence of

magnetic field B = 0. In general, the presence of electromagnetic field B ̸= 0 alters the

momentum by relation

k⃗ → k⃗ − e

~
A⃗ (4.3)
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where A⃗ is vector potential of electromagnetic field. Therefore for B ̸= 0 we have to

modified H0 and write

H =
~2(k⃗ − e

~A⃗)
2

2me

(4.4)

which also satisfies Schrödinger equation 4.2 but with a new eigenstates |ψ >.
We are interested in adiabatic evolution and we include the vector potential due to

B⃗-field trough the contour as an extra phase phase factor φ in the new wave function,

|ψ⟩ = eiφ |ψ0⟩ (4.5)

which is given by integral

φ =
e

~

∫
γ

A⃗(r⃗)d⃗l (4.6)

where the γ is a loop and d⃗l being its vector element. Strictly speaking, the integral is

only defined for closed contours, whereas for open contours the potential A⃗ is ambiguous.

However, we can always close a trajectory with one curve orthogonal to A⃗(r⃗) and by this

definition it does not influence the phase [104]. In this way we defined the phase in each

point of some trajectory with respect to a chosen phase at some fixed point.

The infinitesimal phase gain being dφ→
−→
k
−→
dl the last relation follows simply from the

replacement 4.3. For an adiabatic transport the presence of magnetic field influences only

the phase of the wave function. The phase itself is not quantum mechanical observable

and cannot be measured, but one can measure the phase difference.

To observe the Aharonov-Bohm (AB) phase, we measure the phase difference of the

electrons propagating propagating on arms C1 and C2: entering the AB circuit at point

r0 and and leaving it at point R. The phases gain on lines C1 and C2 are

C1 : φ1 =
e

~

∫
C1

−→
A (−→r )d

−→
l (4.7)

C2 : φ2 =
e

~

∫
C2

−→
A (−→r )d

−→
l . (4.8)

Thus the phase difference ∆φ = φ1 − φ2 of the wave traveling in in arms at the entrance

point is

∆φ =
e

~

∫
C1

−→
A (−→r )d

−→
l − e

~

∫
C2

−→
A (−→r )d

−→
l =

e

~

∫
C1

−→
A (−→r )d

−→
l +

e

~

∫
−C2

−→
A (−→r )d

−→
l (4.9)

where in the last equality we change the direction of integration and in the same time

direction of contour C2 → −C2. Bearing in mind that
−→
B = curl

−→
A and transforming a

line in a surface integral we obtain

∆φ =
e

~

∮ −→
A (−→r )d

−→
l =

e

~

∫ ∫
Ω

−→
B (−→r )d⃗S (4.10)
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Figure 4.2 | Illustration of Aharonov-Bohm effect. LEFT: Experimental scheme for double-slit set-up

with solenoid. RIGHT: Normalized intensity for Φ = 0 (blue curve) and Φ ̸= 0 (red curve)

where d⃗S is the vector of surface Ω containing contour C. Then for AB phase we have

∆φ = 2π
Φ

Φ0

. (4.11)

The value Φ0 = e/~ is called flux quantum and Φ is magnetic flux.

According to the last formula, we can tune the phase ∆φ difference by changing the

magnetic flux Φ through the contour. An example, very well-studied, consists of placing

a solenoid between two slits in a set-up similar to those of famous Young experiment.

The magnetic flux is induced by this solenoid and we can change it by controlling the

current. The electrons (electron) passing through slits 1 and 2, like it is shown on the Fig.

4.2(left) arrive(s) to each point of M with the phase difference given by 4.10 or equally

by 4.11. This demonstrates how one can modify the interference picture on M changing

the current in solenoid (right).

For two coherent beams described by wave functions ψ1,2 =
√
I1,2exp(iϕ

(0)
1,2), the total

intensity reads

I = I1 + I2 + 2
√
I1I2 cos (∆ϕ

0 + 2π
Φ

Φ0

) (4.12)

and by means of this formula AB interferometer can be also use to measure the flux of

magnetic field Φ - a classical variable - using a quantum effect. Such kind of metrology is

named quantum metrology.

Being defined just by the integral parameter Φ,i.e. by one global quantity, the AB

phase does not depend on local properties of the system and different paths can have

equal ∆ϕ. Effects like this are called geometrical effects and the AB phase falls to class

of geometrical (topological) phases. Aharonov-Bohm effect is very often cited as an evi-

dence that vector potential A⃗, an auxiliary quantity in classical electrodynamics, contains

physical sense as the AB phase 4.10 can be non-zero even in the case when on particle
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trajectory magnetic field vanishes B⃗ = 0. Magnetic field is localized inside the contour

and ’non-locally’, via the A⃗-field, interacts with the moving electrons.

4.2 TE-TM splitting, Rashba spin-orbit interaction

and devices

We have already briefly discussed the effect of splitting of longitudinal and transverse

polariton modes in the frame of intrinsic Josephson effect. As magnetic field plays the

crucial role in AB effect for electrons, which we have taken to represent in some sense hole

class of geometrical effects where certainly falls and Berry phase effect which we want to

consider, it is very instructive to analyze an effective magnetic field in the exciton-polariton

system which appears we will see due to longitudinal-transverse, i.e. TE-TM splitting.

In order to compare the Berry phase effect for exciton-polaritons with the Berry phase

in a system with electrons, where another kind of effective magnetic field is present due

to Rashba Spin Orbit Interaction (SOI) here we are going to detail in Rashba SOI and

TE-TM polarization splitting.

These two effects concerning spin and pseudospin respectively are of particular im-

portance in mesoscopic physics, where the problem of spin dynamics is one of the most

interesting. The investigations in this field are stimulated by the possibility of creation of

nanodevices where the spins of the single particles could be objects of the precise manip-

ulation and control. The first device of this type, namely spin transistor, was proposed

in early 90ies in the pioneer work of Datta and Das [105], who used an analogy between

a precession of an electron spin provided by Rashba spin-orbit interaction (SOI) and

rotation of a polarization plane of light in optically anisotropic media.

However, the experimental realization of the Datta and Das spin transistor turned out

to be extremely complicated, due to the extremely low efficiency of the spin injection from

ferromagnetic to semiconductor materials. It was thus proposed to use mesoscopic gated

Aharonov-Bohm rings as a possible basis of various spintronic devices such as spin transis-

tors [106, 107], spin filters [108, 109, 110], and quantum splitters [110]. The configuration

which is usually considered, consists of a quantum ring with two symmetrically situated

electrodes. The conductance of such a structure depends both on the magnetic and elec-

tric fields applied perpendicular to the structure’s interface. The former provides the AB

phaseshift between the waves propagating in the clockwise and anticlockwise directions

thus resulting in the oscillations of the conductance.

The electric field applied perpendicular to the plane of the ring also affects the con-

ductance. It has a double effect. First, it shifts the subband’s bottom inside the ring

thus providing the change of the carrier’s wavenumber. Therefore the conductance of
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the system can exhibit the oscillations in the complete analogy to those observed in the

Fabry- Perot resonator. Second, it lifts the symmetry of the quantum well in the direc-

tion of the structure growth axis thereby inducing the Rashba SOI inside the ring that

is characterised by the SOI coupling parameter. The latter depends linearly on the gate

voltage and creates the dynamical phaseshift between the waves propagating within the

ring, consisting of Aharonov - Casher (AC) phaseshift arising from different values of

the wavenumbers for the waves propagating in opposite directions [107, 111] and a Berry

phase (geometric phase) term provided by an adiabatic evolution of the electron spin in

the inhomogenious effective magnetic field created by Rashba SOI and external magnetic

field perpendicular to a structure’s interface[106]. As a result, the conductance of the

mesoscopic ring exhibits oscillations [112] as a function of the perpendicular electric field

. We should mention that one important consequence of the absence of the AC phase for

polaritons is the absence of the weak antilocalization for them [113].

It was recently proposed that in the domain of mesoscopic optics the controllable

manipulation of the spin of excitons and exciton-polaritons can provide a basis for the

construction of optoelectronic devices of the new generation, called spinoptronic devices

[114]. The first element of this type, polarization- controlled optical gate, was recently

realized experimentally [115].

An important property of the cavity polaritons is their (pseudo)spin [116], inherited

from the spins of the QW exciton and cavity photon and directly connected with the

polarization of the emitted photons as we have seen in the Chapter 1 of this thesis. The

control of the spin of cavity polaritons thus opens a possibility of tuning the polarization

of the emission which can be used in optical information transfer, for example.

The analog of a Rashba SOI in microcavities is provided by a longitudinal-transverse

splitting (TE-TM splitting) of the polariton mode. It is well known that due to the long-

range exchange interaction between the electron and a hole for excitons having non-zero

in-plane wave-vectors the states with dipole moment oriented along and perpendicular

to the wavevector are slightly different in energy [117]. In microcavities, splitting of

longitudinal and transverse polariton states is amplified due to the exciton coupling with

the cavity mode (which is also split in TE- and TM- light polarizations) [118] and can

reach values of about ≈ 1meV .

TE-TM splitting results in the appearance of the effective magnetic field provoking a

rotation of polariton spin. It is oriented in-plane of the microcavity and makes a double

angle with X-axis in the reciprocal space,

B⃗LT (k) ∼ excos(2ϕ) + eysin(2ϕ) (4.13)

This is different from the orientation of the effective magnetic field provided by Rashba

SOI (see the Fig. 4.3), which makes a single angle with y-axis,
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Figure 4.3 | Orientation of the effective magnetic fields provided by Rashba SOI (black) and TE-TM

(red) splitting in the reciprocal space

B⃗SOI(k) ∼ exsin(ϕ)− eycos(ϕ) (4.14)

This peculiar orientation of B⃗LT results in different interference patterns for electrons and

polaritons in ring interferometers, leading in particular to an absence of AC phase for

polaritons as we shall see later on.

4.3 Berry phase

When an initial state of a quantum system after slow evolution through the set of inter-

mediate states comes to some final state which coincides with the initial one, the system

obtains a quantum adiabatic geometrical phase, known as the Berry phase. It is very

similar to AB phase which occurs for charged particles moving along the closed trajectory

due to enclosed magnetic field. The main difference is that the Berry phase is the result

of directional change of local magnetic field for the same type of evolution. An AB phase,

as we pointed out in the previous part, can be zero along the AB contour.



90 BERRY PHASE OF EXCITON-POLARITONS

Let’s consider like in the Berry paper [101](but adapting the notation to our purpose)

one system whose Hamiltonian depends on some parameter B⃗: H(B⃗). We suppose that

spectrum of H(B⃗) has at least one discrete and non-degenerate eigenvalue

H(B⃗)|Ψi(B⃗) >= Ei(B⃗)|Ψi(B⃗) > (4.15)

where the index i counts those states. The eigenvectors |Ψi(B⃗) > and eigenvalues Ei(B⃗)|
are dependent on parameter B⃗ as it is the Hamiltonian 4.15. The vector B⃗ is some

function of time B⃗ = B⃗(t) evolving adiabatically with it, around a loop such that

B⃗(0) = B⃗(T ), (4.16)

where the time T refers to the final time of cyclic evolution. Here we will concentrate on

this case as it was considered in the original paper on the Berry phase [101], although there

exist more general approaches on the same subject including analysis of non-adiabatic

evolution [119], degenerate states [120], and even partial cycles [121, 122]. The adiabatic

theorem (or Ehrenfest theorem) [123] states that the system will be in instant t from

interval [0, T ] in the state

exp (iϕ(t))|Ψi(B⃗(t)) > (4.17)

if it has been initially prepared in the eigenstate Ψi(B⃗(0)) > of the Hamiltonian H(B⃗(0)).

The initial eigenstates which depend on the parameter B⃗ just gain an extra phase ϕ(t)

instead of jumping into another eigenstate for non-adiabatic cyclic evolution. The state

4.17 satisfies time-dependent Schrödinger equation

i~
d

dt
exp (iϕ(t))|Ψi(B⃗(t)) >= H(B⃗(t)) exp (iϕ(t))|Ψi(B⃗(t)) > . (4.18)

After projecting it on the state exp (iϕ(t))|Ψi(B⃗(t)) > it reads

d

dt
ϕ(t) = i < Ψi(B⃗)|∇B⃗|Ψi(B⃗) >

dB⃗

dt
− ~−1Ei(B⃗). (4.19)

From here the phase ϕ(t) is

ϕ(t) = i

∫ B⃗(t)

B⃗(0)

< Ψi(B⃗)|∇B⃗|Ψi(B⃗) > dB⃗ − ~−1

∫ t

0

Ei(B⃗)dτ . (4.20)

defined to an arbitrary constant ϕ(0).

The last part in the formula 4.20 is usual dynamical phase. The first term on the RHS

of the same equation is the phase acquired due to the change of the parameter B⃗ along

the trajectory. As it is itself a function of time, it can be written in the form

ϕB(t) = i

∫ t

0

< Ψi(B⃗(τ))| d
dτ

|Ψi(B⃗(τ)) > dτ. (4.21)
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The integrand

A⃗B = i < Ψi(B⃗)|∇B⃗|Ψi(B⃗) > (4.22)

is known as Berry connection.

We choose that the system evolves cyclically by paths C1 and C2 (same like in the Fig.

4.1) where we fix initial time t = 0 in the point ro and final t = T in the point R such

that for both paths condition 4.16 is satisfied. Using the same technique as in derivation

of AB phase in formulae 4.7-4.10 we can write the loop integral

φB(C) = i

∮
C

A⃗BdB⃗ (4.23)

where again C = C1 − C2 and φB(C) = ϕB,1(T )− ϕB,2(T ). The last expression is Berry

phase. It is formally equal to formula for AB phaseshift 4.10 except that the circulation of

the vector potential is now replaced by circulation of Berry connection in the parameter

space - B⃗.

The classical analogue of the Berry phase is anholonomy angle. It occurs for cyclic

transport of a vector on some non-flat surface, during which the vector stays in tangent

plane without being rotated around the surface normal (parallel transport). After com-

pletion of the cycle C (1 → 2 → 3 → 1) the initial vector orientation has been rotated

by an angle ϕC [124], called anholonomy angle. The initial and final vector τ⃗ do not

coincide at position 1 (the Fig. 4.4). The well-known example of dynamical system which

possesses such behavior is the rotation of the oscillation plane of the Foucault’s pendulum

or gyroscope, whose rotation axis is transported on the closed contour.

The anholonomy angle for the vector transported on the closed surface on the sphere

equals the solid angle Ω described by it and can be calculated by simple integral

Ω(C) =

∫ ϕmax

ϕmin

dϕ

θmax∫
θmin

sin θdθ (4.24)

which for a vector circumscribing the full cycle in x-y plane ϕ ∈ [0, 2π] reads

Ω(C) = ±2π(1− cos θmax) (4.25)

where the sign depends on the direction of motion along the contour C. The Berry phase

for particles of spin S is related to the solid angle [106] described by (pseudo)spin by

φB(C) = −SΩ(C), (4.26)

i.e. it is half the solid angle for particles of spin 1/2 and the full solid angle for the

particles of (pseudo)spin 1.

To summarize this comparison between AB and Berry effect we point out that AB

effect is a purely quantum effect for which a classical analogue like aholonomy angle for
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the Berry phase does not exist. Furthermore, AB phase has a non-local character while

the directional change of parameter vector is a local property essential for Berry phase.

From the experimental point of view, Berry phase observation usually needs much higher

values of magnetic fields. An AB phase shift can be obtained at lower values of it.

4.3.1 Berry phase based interferometry with polaritons

The system we are going to consider is an optical ring interferometer placed in the external

magnetic field perpendicular to its interface 4.5. The polaritons are injected in the ingoing

lead by a laser beam, propagate in the ring and finally the intensity into the outgoing

lead is detected. To make the polaritons propagate along the desirable path, one needs to

engineer the corresponding confinement potential, which can be achieved by variation of

the cavity width [125], putting metallic stripes on the surface of the cavity [126] or applying

a stress [127]. The other option is to produce the waveguide structure by lithography, as

in the case of micropillar cavities [128]. The narrow waveguide for polaritons has its own

TE-TM splitting, which is inversely proportional to waveguide dimensions [57] and which

can dominate over the cavity splitting (for a waveguide of 1 µ m width this splitting can

be as high as 1→2 meV [129]).

To calculate the intensity of the outgoing beam, we consider the polariton states inside

the 1D ring, and take into account the TE-TM splitting (of both origins) and the Zeeman

splitting, the latter provided by an external magnetic field perpendicular to the cavity

plane. With such geometry the averaging of the full Hamiltonian to 1D is valid since
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Figure 4.5 | Possible design of the microcavity waveguide. Letters mark the scattering amplitudes for

particle propagation. Ellipses show the rotation of the pseudospin. Gray (red) arrows show the direction

of light propagation; light gray (yellow) arrow shows the direction of the magnetic field

the energy splitting between two successive confined TE modes is much larger than the

TE-TM splitting. The corresponding Hamiltonian in the basis of circular polarized states

reads

Ĥ =

(
H0(k̂) +

∆Z(B̂)
2

1
2
[e−2iϕ,∆LT (k̂)]+

1
2
[e2iϕ,∆LT (k̂)]+ H0(k̂)− ∆Z(B̂)

2

)
(4.27)

where k̂ = −ia−1d/dϕ, a is a radius of a ring H0(k̂) is a bare polariton dispersion, ∆LT (k̂)

is a longitudinal-transverse splitting, ∆Z(B̂) is a Zeeman splitting provided by a magnetic

field perpendicular to a structure’s interface.

In our further consideration we use an effective mass approximation

H0(k̂) = ~2k̂2/2meff (4.28)

and assume the longitudinal-transverse splitting to be k-independent in the region of wave

numbers under study: ∆LT (k̂) = ∆LT . The off-diagonal factors e±2iϕ comes from dou-

ble ϕ-dependance of TE-TM splitting for polaritons (see expression 4.13). For electrons
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Figure 4.6 | Effective magnetic field

B⃗eff formed by field due to LT splitting

B⃗LT and Zeeman splitting B⃗Z .θ is the an-

gle which effective magnetic field makes

with z-axis.
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propagating on a ring one has a single angle dependance due Rashba SOI [130, 131]. The

solution of the Schrödinger equation with Hamiltonian 4.27 can be expressed as

Ψ+(ϕ) =
1√

1 + ξ2

(
ξe+iϕ

e−iϕ

)
eik+aϕ (4.29)

Ψ−(ϕ) =
1√

1 + ξ2

(
−e+iϕ

ξe−iϕ

)
eik−aϕ (4.30)

where the normalization factor reads

ξ =
∆LT/(2∆Z)

1 +
√
(∆LT/(2∆Z))2 + 1

. (4.31)

The wavenumbers k± can be straightforwardly found from the characteristic equation

of the Hamiltonian[
H0(k + a−1) +

∆Z

2
− E

] [
H0(k − a−1)− ∆Z

2
− E

]
− ∆2

LT

4
= 0 (4.32)

where E is a polariton’s energy.

Within the effective mass approximation and neglecting the curvature of the ring

(a >> k−1) the solution of this equation reads

k± =
2meffE

~2
± 2meff

~2
√

∆2
LT +∆2

Z . (4.33)

The eigenstates of the Hamiltonian 4.27, as it follows from equations 4.29 and 4.30

are elliptically polarized. Their pseudospin makes an angle θ with z-axis:

arctanθ =
∆LT

∆Z

, (4.34)

following direction of effective magnetic field Beff formed by TE-TM effective magnetic

field BLT and magnetic field perpendicular to plane of ring waveguide BZ (the Fig. 4.6).
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Figure 4.7 | Rotation of the pseudospin of polari-

tons propagating along the arms of the ring. For

clockwise and anticlockwise propagation the rotation

direction of the in-plane components of the pseu-

dospin is different

This angle depends on the ratio of an intensity of the LT splitting characterized by a

parameter ∆LT and the Zeeman splitting ∆Z(B). If

1) ∆LT ≪ ∆Z(B) or equivalently ξ → 0 and according 4.27,4.28 the polarization is

linear. The angle θ is zero for weak Zeeman splitting. (θ = 0).

2) ∆LT ≫ ∆Z(B) in opposite limit (ξ → ∞),i.e.for strong LT splitting, and polariza-

tion changes to circular for which (θ = π/2).

Now let us consider the intensity of the outgoing beam for a given intensity of the

incoming beam. First, let us note that the state of the incoming beam Ψin can be

decomposed by eigenstates of a Hamiltonian 4.27 states in the entrance point (i.e. for

ϕ = 0)

Ψin =
1√

1 + |ξ|2

[
A+

in

(
ξ

1

)
+ A−

in

(
−1

ξ

)]
(4.35)

Analogically, the state of the outcoming beam can be also decomposed by states 4.27 and

4.28, now at ϕ = π

Ψout =
1√

1 + |ξ|2

[
A+

out

(
ξ

1

)
+ A−

out

(
−1

ξ

)]
. (4.36)

The outgoing amplitudes can A±
out be found as a sum of the all terms corresponding

to the propagation of the particle between the ingoing and outgoing leads.

For a given pseudospin orientation the waves traveling in a clockwise and anticlock-

wise direction obtain a different Berry phase. This one can check inspecting the loop

integral 4.23 and changing the contour orientation. Indeed, the direction of the effective

magnetic field consisting of the in-plane TE-TM field and z-directed real field changes

along the polariton’s trajectory and follows a cone-shaped path (see Fig. 4.7). In the

adiabatic approximation the pseudospin of a polariton follows the direction of this field

and corresponding geometric phase can be found from the expression 4.26 putting S = 1.
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Figure 4.8 | Dependance of Berry phase ϕB (clockwise direction) on LT to Zeeman splitting ratio

∆LT /∆Z

The Berry phase is the full solid angle Ω which describes pseudospin following parameter

B⃗eff . As from the Fig. 4.6

cos θ =
∆Z√

∆2
Z +∆2

LT

(4.37)

where we changed notation from θmax → θ in corresponding formula 4.25, the Berry phase

reads

ϕB = ±2π

(
1− ∆Z√

∆2
Z +∆2

LT

)
(4.38)

where the sign depends on direction of propagation. One sees (4.8) that it depends on the

LT and Zeeman splittings and changes from zero for ∆LT ≪ ∆Z to 2π for ∆LT ≫ ∆Z .

It differs by a factor of 2 (coming from the equation 4.27) from geometric phase for the

electrons in gated AB ring with Rashba SOI.

Considering the processes with no more than one round trip inside the ring only, one

has for outgoing amplitudes

A±
out = A±

inϵ
2e−T/2τeiπk±a

[(
1 + r2e−T/τe2iπk±a

)
cos(2ϕB) + t2e−T/τe2iπk±acos(6ϕB)

]
(4.39)

where τ is the polariton lifetime,

T = πa
√
meff/

√
2E (4.40)

being the time of a propagation from ingoing to outgoing lead. ϵ is an amplitude of the

probability for a polariton traveling along one of the arms of the ring to quit the ring in

the conjunction with outgoing lead, r is an amplitude of the reflection into the same arm,

t is an amplitude of the transition to another arm (see the Fig.4.9). σ is the probability of
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Figure 4.9 | t and r are transmission and reflection amplitudes inside the ring waveguide.σ is the

reflection amplitude from the ingoing lead to itself,ϵ is transmission amplitude from the outgoing lead to

the ring

the backscattering and σ ≪ 1 for the structures with efficient injection. These parameters

depend on properties of the structure itself.

The expressions 4.35 and 4.36 allow us to determine the intensity of an outgoing beam

using relations:

r2 + t2 + ϵ2 = 1 (4.41)

σ2 + 2ϵ2 = 1

The more details on the method of quantum point contacts we used to calculate intensity

in the outgoing lead can be found in ref.[132]. It depends on a Berry phase ϕB, which

thus plays a role of the Aharonov-Bohm phase in electronic ring interferometers. The

difference of the device we propose from the classical electronic AB interferometer is that

it needs the presence of the magnetic field and not just of the vector potential in the region

of the particle propagation, as we have already pointed out. It also should be noted that

due to the peculiar orientation of the LT splitting for polaritons, there is no analogue

of the Aharonov-Casher phaseshift for electrons in a ring with Rashba SOI. Indeed, for

the electrons the AC phaseshift arises due to the distinct wavenumbers for the particles

traveling clockwise and anticlockwise inside the ring, as for them the mutual orientation

of the spin and effective magnetic field provided by Rashba SOI is different. On the

contrary, for polaritons the inversion of the direction of propagetion does not change the

direction of the effective magnetic field provided by TE-TM splitting (see the Fig.4.3),

and thus AC phaseshift is absent.

The Berry phase can be modulated by tuning the intensity of TE-TM splitting, e.g.,
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Figure 4.10 | The intensity of the outgoing polariton beam as a function of the Berry phase ϕB .

by variation of the detuning between the exciton and photon modes inside the ring (which

can be achieved, e.g., by variation of stress forming the ring interferometer) or by tuning

the external magnetic field. The dependence of the intensity of the beam on ϕB is shown

on the Fig.4.10. The parameters are: T/τ = 0.2, r = 0.15 and t = 0.9. One sees that

the intensity is maximal for ϕB = 0, 2π and in the region between these two points reveal

a local maximums at ϕB = π/2, π, 3π/2.This interesting oscillation pattern comes from

dependance on higher harmonics of ϕB.

To check the results of our analytical theory, we have performed a simulation of the

structure we propose using coupled Gross-Pitaevskii equations for excitons and Schrödinger

equations for photons taking into account their polarization.In this simulation we studied

pulse propagation through the ring interferometer of 16 µm diameter without magnetic

field as well as under a field of 35 T causing an exciton Zeeman splitting of 2 meV. This

value can be sufficiently reduced by the use of diluted semi-magnetic cavities [133] or by

choosing a different material system (e.g., CdSe/ZnSe [134]). Working at lower magnetic

field is possible with materials having higher values of Landé g-factor as the Zeeman

splitting scales with applied magnetic field BZ like

∆Z = gµBBZ , (4.42)

where µB Borh magneton. This Landé factor in GaInAs structures, for example, is of an

order of magnitude larger than in GaAs materials. Depending on In-dopping g = 2.9−4.4

is measured [135]. This can produce, for g = 3.8 Zeeman splitting ∆Z = 1.1meV at

BZ = 5T . At the same time TE-TM splitting of the waveguide itself (theoretically
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Figure 4.11 | Real-space images showing calculated emission intensity at Zeeman splitting 0 meV (a),(c)

and 2 meV (b),(d) at different moments of time after the injection t=15 ps (a),(b) and t=30 ps (c),(d).

Arrows show the direction of injection

predicted and measured in Ref. [129]) is about 0.25 meV for 2 µm cylindrical waveguide.

To estimate the value of ∆LT to this we should also add value of k-depenedent TE-TM

splitting and both usually do not exceed several meVs. It is then technically possible

to achieve regime of ∆Z ∼ ∆LT and experimentally observe Berry phase with exciton-

polaritons. The results of our simulations are shown on the Fig. 4.11. All images show

the spatial distribution of the emission intensity, which is directly proportional to the

local density of polaritons. The figures 4.11(a) and 4.11(b) show the initial stage of the

pulse propagation through the ring waveguide at time t= 15 ps after the excitation. The

figures 4.11(c) and 4.11(d) show the final stage of the pulse propagation (t=30 ps), when

the two beams interfere at the outgoing lead connection point. Without magnetic field

[the figs. 4.11(a) and 4.11(c)] the interference is constructive, and the output into the

outgoing lead has the highest value. Under a certain magnetic field [the figs. 4.11(b) and

4.11(d)] the interference is destructive and a dark spot is visible instead of a bright one.

This result corresponds to the predictions of the analytical theory and demonstrates that

such a waveguide can indeed operate as an optical interferometer.
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4.4 Conclusions

We have proposed an optical analog of the spin-interference device based on a mesoscopic

ring interferometer. We demonstrated that the Berry phase provided by the TE-TM and

Zeeman splittings for polaritons plays a role of AB phase for electrons and leads to a

variation of the intensity of the outgoing beam. On the other hand, there is no analogue

of the corresponding Aharonov-Casher effect because of the peculiar symmetry of the TE-

TM splitting. This system allows us to solve the main difficulties occurring in electronic

systems such as the low efficiency of spin injection from a ferromagnet to a semiconductor

system. The effect we propose cannot be observed for bare cavity photons, but is specific

of strongly coupled exciton polaritons because it requires a finite Zeeman splitting. The

use of exciton polaritons is also highly advantageous with respect to the bare excitons

[136], since the mean free path of exciton polaritons is much longer due to their photon

component



Chapter 5

Entanglement from a QD in a

microcavity

Quantum entanglement is hardcore of a novel science - quantum information which tries

to make a bridge between the fundamental ideas of quantum mechanics and new technolo-

gies. Entangled states are some kind of distant correlations in quantum systems rather

coming from the superposition principle of quantum mechanics than from some kind of

interactions, the latter being the reason of usual correlations. In this section we will see

how these quantum states can be formed from a quantum dot strongly coupled to a micro-

cavity. Biexcitons, or exciton molecules in QDs are known to possess two possible decay

paths. To use them as an entangled state these two channels should be indistinguishable

by any physical property. The principal problem is the splitting of the exciton levels in

biexciton cascade which violates this property. We propose a new approach based on

strong coupling to be used for recovering of the indistinguishability of biexciton decay

paths.
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5.1 Entanglement and quantum computing

Einstein, Podolsky, and Rosen (EPR)[137] in 1935. published a paper with the title ”Can

quantum mechanical description of reality be considered complete?” where they gave an

argument about the incompleteness of quantum mechanics. To see what is the content of

this argument we are going to consider a (thought) experiment.

A black box emits a pair of two particles of spin 1/2 in opposite directions in a singlet

state - with total spin angular momentum zero, originating for example from decay of one

particle with zero spin. To such a state one can associate a wave function

|Ψ12⟩ =
1√
2
(|1/2⟩1 |−1/2⟩2−|−1/2⟩1 |1/2⟩2) =

1√
2
(|1/2,−1/2 > −|−1/2, 1/2 >). (5.1)

This is an entangled state and we cannot factor it in the product of superpositions of

|1/2⟩ and |−1/2⟩ states for particles 1 and 2

(|1/2⟩1 + |−1/2⟩1)/
√
2⊗ (|1/2⟩2 + |−1/2⟩2)/

√
2 = (5.2)

=
1

2
(|1/2, 1/2 > +|1/2,−1/2 > +| − 1/2, 1/2 > +| − 1/2,−1/2 >),

like it is the case when we speak about an uncorrelated state. The measurement on the

particle 2 for two-particle state of the form 5.2 is not dependent of what we have measured

on particle 1. After we measure the spin of first particle to be 1/2 or -1/2 the state 5.2

collapses in

|1/2⟩1 /
√
2⊗ (|1/2⟩2 + |−1/2⟩2)/

√
2 (5.3)

|−1/2⟩1 /
√
2⊗ (|1/2⟩2 + |−1/2⟩2)/

√
2 (5.4)

respectively. The outcome of the measurement on the second particle is 1/2 or -1/2

irrespectively of the spin of the first particle.

On the other hand for the entangled state 5.1 if we were to measure the spin S
(1)
x of

the first particle in the x−direction, for example, and obtain the value ~/2, we would

know that the second particle is in an eigenstate of its spin operator S
(2)
x with eigenvalue

−~/2. This way performing measurement on particle 1 we instantaneously know the

state of particle 2 without performing any measurement on it. Furthermore, the spin

of particle 2 is determined by what we have measured on particle 1 no matter how far

are two particles and this is the reason why A. Einstein called this phenomena ’spooky’

action-at-a-distance. In literature it is frequently refereed to as distant correlations. Since

the direction of the spin is not defined before we have performed the measurement, we

could choose to measure S
(2)
y on the second particle and obtain the value −~/2 for its spin.

Automatically we would determine the value of the y-component of the spin of the first

particle: ~/2. This means that observable S
(1)
x and S

(1)
y are compatible having the same
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Figure 5.1 | Illustration of the EPR-

paradox: two measurements made at

the same time give a full set of spin com-

ponents of the two entangled particles,

which contradicts the basics of quantum

mechanics, where the spin components

do not commute.

eigenvectors and thus commuting. But S
(1)
x and S

(1)
y according to the Heisenberg principle

of uncertainty they do not commute and they cannot both have definite values. This

paradox arises, because we tend intuitively to think in classical terms, i.e. to associate

an objective physical reality with each particle and its variable, whereas in quantum

mechanics a dynamical variable does not have actually a value until it is measured -

becoming an observable.

This situation is known as EPR paradox: the subject of one of the most interesting

scientific (certainly philosophic as well) debates in previous century [138, 139, 140, 141,

142, 143, 144, 145, 146, 147, 148].

It was proposed later that the incompleteness of quantummechanics arising in the EPR

paradox can be resolved by one complete theory which should in order to account for all

’elements of reality’ include the hidden variables or unmeasurable parameters [139]. Bell

theoretically and after him the others (theory and experiment) [140, 141, 149, 142, 144,

145] showed that the EPR state violates an inequality - Bell’s inequality which applied

for large class of hidden variable theories. In particular, for local and counter-factual

definiteness theories, the latter meaning the inclusion of all possible values of conjugate

variables in consideration besides those which has been measured. Thus nonlocal effects

are fundamentally quantum mechanical, and that no realistic local theory can account for

the correlations quantitatively.

The entanglement forms the central part in new disciplines - quantum computing and

quantum information. The idea itself comes from R. Feynman [150] who proposed it to

simulate some quantum mechanical effects which cannot be simulated with classical com-

puters. Quantum properties are used to represent data and quantum transformation are

used as algorithms to work with these data. Instead of classical bits quantum computers

use qubits. A single qubit is linear superposition

|ψ⟩ = c1 |0⟩+ c1 |1⟩ (5.5)

where the basis vector |ψ⟩ , |ψ⟩ in complex Hilbert space are represented with column-

vectors (0, 1)T , (1, 0)T ; T stands for matrix transposing and |c0|2 + |c1|2 = 1. Real appli-
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cations needs manipulating of a register on n-qubits having 2n-dimensional computational

basis [151]. In the case of n=2, for example, the basis reads

|00⟩ = |0⟩ ⊗ |0⟩ = (0, 0, 0, 1)T , (5.6)

|01⟩ = |0⟩ ⊗ |1⟩ = (0, 1, 0, 0)T ,

|10⟩ = |1⟩ ⊗ |0⟩ = (0, 0, 1, 0)T ,

|11⟩ = |1⟩ ⊗ |1⟩ = (1, 0, 0, 0)T .

The 2-qubits register can be prepared in any superposition of above states similarly like

in the expression for the 1-qubit state

|ψ⟩ = c0 |00⟩+ c1 |01⟩+ c2 |10⟩+ c3 |11⟩ . (5.7)

The qubits 5.5 and 5.7 are vectors in Hilbert spaces C2 and C2⊗C2, respectively.One can

operate on this states by applying unitary operators - which are called quantum gates.

Some common quantum gates used to realize quantum circuits (analogues of classical

digital circuits) operating on single qubit state 5.5 are

I : |0⟩ → |0⟩ X : |0⟩ → |1⟩ Z : |0⟩ → |0⟩
|1⟩ → |1⟩ |1⟩ → |0⟩ |1⟩ → − |1⟩

(5.8)

where I is identity quantum gate, X is negation and Z is phase shift gate. If we want for

example to perform a qunatum gate on a 2-qubits state such that we apply not-gate on

the first qubit and phase shift gate on the second one we should act with operator X⊗Z.
Generalization to an n-qubit state is straightforward.

A very important transformation is the Hadamard gate given by matrix

H =
1√
2

[
1 1

1 −1

]
. (5.9)

Its action on the vector |1, 1⟩ of the basis 5.6

H ⊗H |1, 1⟩ = H |1⟩ ⊗H |1⟩ = 1

2
(|0⟩+ |1⟩)⊗ (|0⟩+ |1⟩) (5.10)

which is the superposition state 5.7 in the factor form. Possibility of making an such state

from one classical state is the reason of importance of the Hadamard gate. Superposition

5.5 and 5.7 in 1-qubit and 2-qubits states plays a key role in quantum computation. Any

action on a superposition of states renders the superposition of that operation on each

state individually. This is not the case for classical computers and to see the importance

of superposition principle for a quantum computing let’s like in [151] consider an unitary
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transformation Uf corresponding to a classical function f ,Uf : |x⟩ |y⟩ → |x⟩ |y ⊕ f(x)⟩,
where ⊕ denotes exclusive-or. This transformation preserves the input and therefore is

unitary. The |y⟩ one can understood as hardware of a quantum computer. The action of

Uf on state 5.7 is

Uf (|ψ⟩ |0⟩) = Uf (
3∑

i=0

ci |i⟩ |0⟩) =
3∑

i=0

ciUf |i⟩ |0⟩ (5.11)

=
3∑

i=0

ci |i⟩ |0⊕ f(i)⟩ =
3∑

i=0

ci |i⟩ |f(i)⟩

where |i⟩ is one of the basis vector in the superposition 5.7, and the last expression

follows from 0 ⊕ f = f . f is simultaneously applied to all basis vector. Application

of Uf computes all 22 values of function f : f(0)...f(23 − 1) at once. This property is

called quantum parallelism. The advantage of quantum computing is this possibility

of computing 2n values from n-qubits. The problem is that if one wants to read-out

one computed value of f he has to make projection on measured state and all other

information is lost. To extract such kind of information present in the superposition form

one can use quantum teleportation [152, 153]. Quantum teleportation defined through

various different communication protocols is essentially based on entanglement [154]. The

first experimental realization of quantum teleportation has been done by Jennewein et

al. in 2000 [155]. To guarantee the security of communications a new field quantum

cryptography [156] is established based on idea that any ’eavesdropping’ (measurement)

will lead to the collapse of the wave function.

In the following section we are going to discuss solid state sources of entangled photon

pairs based on single quantum dots as emitters.

5.2 Quantum dots as EPR-photon emitters

In the context of solid state physics, QDs as quantum emitters have drawn a strong

attention when it has been proposed to realize entangled photon pair sources based on the

biexciton decay[157]. The ideal decay paths are illustrated in the Fig.5.2. The biexciton

decays emitting either first a σ+ and second a σ− polarized photon or vice versa, and the

photons are fully polarization-entangled. In principle this idea is ingeniously simple, as

it allows to implement such sources on a very small length scale and rises hope for the

on-chip sources of entangled photon pairs, which could be easily implemented on nano

chips for computing purposes.

Unfortunately, this proposal turned out to be hard to implement mainly because the

intermediate exciton states of a typical QD are not degenerate due to the anisotropic
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Figure 5.2 | Biexciton decay of an ideal quan-

tum dot takes place from the biexciton state

EXX via two degenerate exciton states, which

couple to different polarization of light. The

final state is the ground state of the quantum

dot.
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Figure 5.3 | Quantum correlations for selected quantum dots [161]: Selected quantum dots with (a)

non-zero finestructure splitting and (b) zero splitting. The corresponding reconstructed density matrices

for the selected quantum dots are also shown.

electron-hole interaction [158, 159]. Also the environment (i.e. the strain induced by the

substrate) of the quantum dot can effect the transitions.

This interaction couples degenerate exciton states which split into two resonances

coupled to two orthogonal linear polarizations called horizontal (H) and vertical (V), re-

spectively. The resulting photons for the two decay channels are therefore distinguishable

and the degree of entanglement becomes zero. The quantum correlations become hid-

den in time integrated measurements because a QD with split intermediate exciton levels

emits photons into a time-evolving entangled state.[160]

Several proposals have been made to overcome this splitting of the exciton lines. The

simplest one is of course to grow arrays of quantum dots and select only those, which show

no fine structure splitting. This has been published in several reports [162, 161, 163]. The

Fig. 5.3 shows the photoluminescence spectra of two quantum dots with either non-zero or
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(a) (b)

Figure 5.4 | Entanglement and spectral filtering [165]: (a) Shows the photoluminescence spectra,

together with a schematic picture of the decay. (b) shows the reconstructed density matrix with a non-

zero off-diagonal element for a large width of the spectral windows (upper panel) and for narrow spectral

windows (lower panel).

zero splitting. The corresponding reconstructed density matrices show clearly an non-zero

off-diagonal element for the zero splitting case, which corresponds directly to a non-zero

degree of entanglement [164]. The disadvantage of this method is that the fabrication

process of the quantum dot takes place almost without possibilities of controlling. Thus,

it is always necessary to discover among a huge number of QDs those, which show no

splitting. This makes future industrial implementation much more complicated because

a huge effort is needed to fabricate one entangled photon source.

To avoid this, one needs other techniques to overcome the splitting. One, developed

by Akopian et al. [165], is to introduce spectral filters in the experimental setup which

select only the overlapping part of the transition. This procedure is illustrated in the

Fig.5.4 together with the results for the reconstructed density matrix.

Depending on the splitting, the overlap of the transitions may be very small. This

requires very narrow spectral windows to obtain entangled photon pairs. The disadvantage

here is that the quantum efficiency (the number of detected photons), is very low, which

restricts the possible applications of this technique in communication protocols. The third

possibility we want to discuss here, is the use of external fields to shift the intermediate

states to degeneracy. This has been shown for electrical fields [166, 167] and for magnetic

fields [162, 163]. The latter work is illustrated on the Fig.5.5. The dependence of the

fine structure splitting on the magnetic field is shown on the left hand side, showing the

degeneracy of the exciton states for a given magnetic field. Three density matrices for

different magnetic fields are shown on the right hand side, where the middle figure of the
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(a) (b)

Figure 5.5 | Reduction of the finestructure splitting using external magnetic field [160]: (a) shows the

fine structure splitting versus magnetic field. (b) shows the density matrices for different fields, where

the matrix in the middle corresponds to a zero finestructure splitting.

lower panel corresponds to degeneracy. Both techniques together allows one to use almost

arbitrary quantum dots and engineer them to work as EPR-sources.

Nevertheless, the degree of entanglement remains relatively low, due to the imperfec-

tions, dephasing [168] and other effects. This implies the need of new ideas and proposals

to transform the simple idea of Benson et al. [157] to a real working device, which will

be discussed in the next sections.

5.3 Strongly coupled dot-cavity system

The biexciton decay scheme for an ideal quantum dot is shown in the Fig.5.2. The inter-

mediate exciton states are degenerate and they couple to circularly polarized light. In a

real QD the Fig.5.6(a, left part) the exciton resonances coupled to H and V polarized light

modes are typically split by an energy δX . We consider that such a QD is embedded within

a photonic crystal, slightly anisotropic, which shows two confined optical modes polarized

along H and V directions and split by a quantity δC (see the middle of the Fig.5.6(a)).

Each of the two non-degenerate exciton states strongly couples to one resonance of the

photonic crystal with either vertical (red) or horizontal (blue) polarization, respectively.

This coupling gives rise to two polariton doublets polarized H and V. The resulting decay

paths of the strongly coupled dot-cavity system can be seen on the Fig.5.6(a, right part).

There are now two possible decay channels for each polarization using either lower

or upper polariton state. In Ref.[169] we have shown that for any constant values of δX

and δC , the adjustment of the energy detuning between the group of exciton resonances

and the group of photon resonances allows to make one polariton state with horizontal

polarization degenerate with one polariton state with vertical polarization. This alignment

makes the two possible decay paths of the biexciton using these two intermediate states
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(a)

(b)

Figure 5.6 | Scheme 1: (a)

biexciton decay of a real

quantum dot (left), photonic

crystal resonances (middle)

and resulting decay scheme

for the quantum dot embed-

ded in the photonic crystal

in the strong coupling regime

(right). The blue arrows

correspond to horizontal (H)

polarization and the red ar-

rows correspond to vertical

(V) polarization. (b) shows

the calculated photolumines-

cence spectra.

distinguishable only by their polarization which results in the generation of entangled

photon pairs showing a maximum degree of entanglement.

The energy of the polariton states EH,V
± can be calculated using [170]

EH,V
± =

EH,V
C + EH,V

X

2
± 1

2

√
(EH,V

C − EH,V
X )2 + 4~2Ω2

H,V , (5.12)

where H and V indicate the different polarizations, EH,V
C are the cavity resonances, EH,V

X

are the exciton energies, and ΩH,V are the values of Rabi splitting, proportional to the

exciton oscillator strength which we assume to be equal for H and V polarized modes.

In an isotropic QD, the oscillator strength of the polarized exciton modes can differ by a

few percent and can provoke shifts of the polariton energy by a few µeV, which will be

discussed later. It follows directly from Eq.(5.12) that the energies of the intermediate

polariton states can be tuned by changing the energy of the photonic resonances.

The pairs of polariton states are degenerate(EH
± = EV

± ) if EH = EV
C and EV = EH

C ,

which means that each resonance for V and H polarized light is adjusted to the energy

of the exciton state coupled to the perpendicular polarization. In the same time, the

biexciton transition is not strongly interacting with the cavity modes because the binding

energy of the biexciton is at least one order of magnitude larger than ~Ω . This resonance

can of course interact with another photonic mode, but we do not want to address this

case here and we therefore assume that the biexciton emission energy is not perturbed by

the presence of the optical cavity. The right hand side of Fig.5.6(a) shows the resulting

distribution of the energy levels. There are four possible decay channels for the biexciton.
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Figure 5.7 | Scheme 2: (a) Calculated energies of the polariton states for different detuning δC−X

with , δx =0.1 meV, δC = - 0.5 meV, and 2ΩR =0.22 meV. Different polarizations are indicated with red

(vertical) and blue (horizontal). (b) Distribution of the energy levels for δC−X =0. (c) Photoluminescence

spectra for both polarizations.

The two decay paths using the UP as an intermediate state produce polarization entangled

photon pairs, which is also the case for the decay paths using the LP. This configuration

is particularly original and probably useful, since it allows producing two independent

EPR pairs. The calculated photoluminescence spectra are shown in Fig.5.6 (b). The

technological requirements for this scheme are however quite strong. The first condition

is that the Rabi splitting should be larger than the splitting between the H and V exciton

states 2~ΩR > δx . The second condition is that the splitting between the optical modes

is exactly equal to the splitting between the QD modes with an opposite sign δx = −δc.
The first condition is usually well fulfilled. In InAS based structures δx is of the order

of 0.05-0.1 meV, whereas 2ΩR ≈ 0.15-0.25 meV. The second condition, because it is an

equality, and because of the small value of δx , seems quite demanding, and would, in

practice, require the growth and study of many structures.

We therefore propose another configuration, conceptually less ideal, but which should

allow an easier experimental implementation. We propose to use an anisotropic photonic

crystal showing a splitting δC substantially larger than δx. Neither the exact value, nor

even the sign of δC play a crucial role in this scheme. This splitting should not be a

problem, since it is difficult rather to fabricate photonic crystals without it. In ref. [171],

for instance, the splitting measured is about 0.5 meV for a cavity with quality factor

Q > 10000. Figure 5.7 (a) shows the eigenenergies versus the exciton-photon detuning

δC−X =
EH

C −EV
C

2
− EH−EV

2
, keeping δx and δC constant. This kind of tuning of the

exciton resonance energy can be performed experimentally, for example by changing the

temperature of the sample [172, 173]. We consider here the case where δx and δC have
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Figure 5.8 | Scheme 3: (a) Calculated energies of the polariton states for different detuning δC−X with

, δx =-0.1 meV, δC = - 0.5 meV, and 2ΩR =0.22 meV. Different polarizations are indicated with red

(vertical) and blue (horizontal). (b) Distribution of the energy levels for positive δC and negative δX . (c)

Photoluminescence spectra for both polarizations at δC−X=-0.275 meV.

the same sign. For a wide range of detuning, the H-polarized LP and the V-polarized UP

are almost degenerate. The decay channels of the biexciton are shown on the figure 5.7

(b). The luminescence spectra in two polarizations for positive detuning are shown on the

figure 5.7 (c). The spectrum for each polarization consists of two groups of two peaks. The

group with the lower energy corresponds to the biexciton decay to the polariton states.

The group with the higher energy corresponds to the decay of the polariton states toward

the ground state. For each polarization, the peak with the higher energy and the lower

energy belong to the same decay cascade. The two central peaks belong to the same decay

cascade as well. One can clearly see that the decay channel involving the H-polarized UP

and the decay channel involving the V-polarized LP cannot be distinguished by energy

measurements, but only by their polarization.

As said before, this degeneracy can also be found if δx and δC have opposite signs.

Fig.5.8 (a) shows the eigenenergies versus δC−X in that case. The energy degeneracy now

occurs at negative detuning between the LP states (H and V), and at positive detuning

between the UP states (H and V). The decay channels of the biexciton for the negative

detuning case are shown on the Fig.5.8 (b). The luminescence spectra for negative detun-

ings are shown on the Fig.5.8 (c). Note the difference in the degeneracy of the peaks in

Fig.5.7 (c) and Fig.5.8 (c): in first case LP is degenerate with UP of different polarization,

and in the second case LP is degenerate with LP.
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5.4 Degree of Entanglement

To describe the full decay scheme analytically we write the two-photon wavefunction in

the following way neglecting cross polarization terms and using the notation UP for the

upper and LP for the lower polariton state of the doublet:

|Ψ⟩ =
(
αLP

∣∣pLPH ⟩+ αUP

∣∣pUP
H

⟩)
|HH⟩+ (5.13)

+
(
βLP

∣∣pLPV ⟩+ βUP

∣∣pUP
V

⟩)
|V V ⟩ ,

where we extract the coordinate part
∣∣∣pLP (UP )

H(V )

⟩
from the polarization part of the wave-

function |HH⟩ (|V V ⟩). The amplitudes α and β are the weights for the possible decay

paths satisfying

|αLP |2 + |αUP |2 + |βLP |2 + |βUP |2 = 1. (5.14)

After tracing out over all possible degrees of |p⟩, the corresponding 2 photon density

matrix in the basis of HH,HV,VH and VV for scheme 1 of the previous section reads

ρ = |Ψ⟩ ⟨Ψ| =


|αLP |2 + |αUP |2 0 0 γ

0 0 0 0

0 0 0 0

γ∗ 0 0 |βLP |2 + |βUP |2

 , (5.15)

where

γ = αLPβ
∗
LP

⟨
pLPH |pLPV

⟩
+ αUPβ

∗
UP

⟨
pUP
H |pUP

V

⟩
. (5.16)

In case of scheme 2, the off-diagonal element transforms to

γ = αLPβ
∗
UP

⟨
pLPH |pUP

V

⟩
(5.17)

We select only the degenerate intermediate states using spectral windows, represented

by a projection P , around the biexciton emission energy EXX and the polariton energy

EP . One can neglect those scalar products ⟨pH |pV ⟩ which show no overlap assuming that

the separation (in the case where two are degenerate) by at least the Rabi splitting Ω is

much larger than the width of the wavefunction. This width is mostly governed by the

lifetime of the polaritons. It can be more justified by the use of spectral windows where

the parts outside of them are not collected and thus do not contribute to the off-diagonal

element.

The use of spectral widows, which select only the degenerate LP-polariton states in

scheme 1, can be performed by the application of a projection P. The wavefunction has

to be retyped by P ||Ψ⟩ /|P ||Ψ⟩ |2 which yield
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γ =
αLPβ

∗
LP

⟨
pLPH |P |pLPV

⟩
+ αUPβ

∗
UP

⟨
pUP
H |P |pUP

V

⟩
.

|P |Ψ⟩ |2
. (5.18)

. Once again, the scalar product αUPβ
∗
UP

⟨
pUP
H |P |pUP

V

⟩
can be neglected, because the

spectral windows are centered to detect only the transitions via the lower polariton state.

The final equation for the off-diagonal element of scheme 2 reads

γ =
αLPβ

∗
UP

⟨
pLPH |P |pUP

V

⟩
|P |Ψ⟩ |2

. (5.19)

Within the dipole and rotating wave approximations, the perturbation theory [165, 174]

gives for the two photon function

ALP
H ≡ αLP

⟨
k1, k2|pLPH

⟩
=

xH,LP
ex

√
ΓXXx

H,LP
ph

√
ΓLP
H /2π

(|k1|+ |k2| − ϵXX
H )(|k2| − ϵLPH )

, (5.20)

where k1 and k2 are the momenta of the photons and ΓXX(LP ) is the line width of the

biexciton (lower polariton). Furthermore, ϵXX(LP ) = EXX(LP )+iΓXX(LP )/2 is the complex

energy of the biexciton (lower polariton). The exciton (photon) Hopfield coefficients of

the polariton state are denoted by xH,LP
ex(ph) and the polariton lifetime is given by the ratio of

the square of the photon Hopfield coefficient and the cavity lifetime ΓLP = |xH,LP
ph |2/τC . A

similar expression of the eq. (5.20) can be obtained for the upper polariton state and the

perpendicular polarization. The final equation for the off-diagonal element of the density

matrix reads for scheme 1 (scheme 2)

γ′ =

∫ ∫
dk1dk2A

LP∗
H WA

LP (UP )
V∫ ∫

dk1dk2ALP∗
H WALP

H +
∫ ∫

dk1dk2A
LP (UP )∗
V WA

LP (UP )
V

. (5.21)

The function W corresponds to the spectral windows at the energies EXX and EH
LP .

Finally, to estimate the quantum correlations of the emitted photons we use the Peres

criterion for entanglement [164], which states that the emitted photons are entangled for

γ = 1/2 and not entangled for γ = 0 (see appendix).

The density matrix of the system is in the so-called ”x-form”, containing only diagonal

and anti-diagonal elements and thus another measure of entanglement – the concurrence

C [175] – is simply two times the absolute value of the off-diagonal element of the density

matrix [176, 177].

The degree of entanglement is strongly correlated with the line shape of the transitions

as it follows from the eq.(5.20)and eq.(5.21): the better the overlap of the detected emis-

sion lines, the higher the off-diagonal element. The photoluminescence spectra for each

transition can be calculated by integration of the eq.(5.20) either over k2 to obtain the

biexciton-polariton emission line or over k1 to obtain the polariton-ground state emission

line [174].
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Figure 5.9 | Photoluminescence spectra for equal splittings (upper panel) at δC−X = 0 and for splittings

ΩH = 0.11 meV, ΩV = 0.05 meV at δC−X = −0.2 meV (lower panel). The blue (red and dashed) line

corresponds to horizontal (vertical) polarization.

The Fig.5.9 shows the complete spectra of emission resulting from the biexciton decay.

The upper panel is calculated for ΩH = ΩV=0.11 meV which corresponds to the experi-

mentally measured value of [178] and the lower one for ΩH=0.11 meV and ΩV=0.05 meV.

The relative position of the cavity resonance δC−X = (EH
C + EV

C )/2 − (EH
X + EV

X)/2 is

chosen to degenerate the intermediate polariton states for both cases. The complicated

complete spectra shows 4 Lorentzian lines for the biexciton-polariton transitions with a

line width (ΓXX + ΓP ) and 4 Lorentzian lines with ΓP for the polariton-ground state

transitions. The line width depends strongly on the photonic fraction of the polariton

because the cavity photon lifetime is typically 100 times shorter that the QD exciton

lifetime. One should note that this type of spectra resulting from the biexciton decay in

a strongly coupled microcavity has been recently measured but only for one polarization

[179]. One can see on the upper panel, that the resonance condition between the two

polariton states H and V also corresponds to equal line width of the states and therefore

to a high degree of entanglement γ′ = 0.49. On the other hand one can see on the lower

panel of the figure that the nice symmetry of the scheme is broken when the oscillator

strengths of the two resonances are different. The degree of entanglement is much lower

γ′ = 0.09 in this last case, which we are going to analyze in details in the next section.

In [180] the authors have refined our initial proposal improving the calculation of the

emission spectra of the transitions by the use of the Weisskopf-Wigner approach. In

the large coupling constant (g) case, the improvement with respect to the simple picture



EXPERIMENTAL IMPLEMENTATION 115

Figure 5.10 | Degree of en-

tanglement: Dependence of

the off-diagonal element γ′ on

the relative position of the

cavity resonances δC−X for

the schemes presented on the

Fig. 5.6 5.7 and the Fig. 5.8.

using Lorenzian lines is not significant. Some changes arise in the small g case, where

even without filtering a higher degree of entanglement is predicted with respect to our

approach.

Furthermore, more complex approaches for the spectra of strongly coupled quantum

dots have been published [181].

To finish this section we compare the degrees of entanglement, which can be obtained

for the different schemes. We keep the Rabi-splitting constant for both polarizations.

The Figure 5.10 shows the numerically obtained off-diagonal element |γ| versus δC −X.

The maximum value of |γ| for scheme 3 is not optimal, due to the difference between the

exciton and photon fractions of the degenerate polariton states. The asymmetry of the

curves comes from the small lifetimes for negative detuning δC−X . Consequently, the line

width is larger than the energy difference between the two polariton states, which yields⟨
PLP
H |P |PLP

V

⟩
> 0. On the other hand, the degree of entanglement achieved within the

schemes proposed in Figs. 5.6 and 5.7 reaches almost the maximum value 1/2, which

makes these configurations quite favorable.

5.5 Experimental implementation

As mentioned already in the first chapter, one dimensional polaritons have been observed

recently for various cavity designs [172, 173, 182, 183]. In our proposal we focused on

photonic crystal cavities. In general, the quantum dot is placed as an defect state into

the lattice of holes. The structure of suited cavities with quality factors above 104 [184]

is shown in Fig.5.11 on the left hand side. The placement of the dot is now well under

control. What we need are split photonic modes for the linear polarizations. In fact,

normally one tries to avoid this splitting and the photonic crystal community has made

a huge effort to create degenerated photonic modes [171]. The right hand side of the Fig.



116 ENTANGLEMENT FROM A QD IN A MICROCAVITY

Figure 5.11 | High quality photonic crystal structures with mode splitting [171]: (left) Specifications

of fabricated QD-embedded PC nanocavity. SEM image of the PC structure with the corresponding

reciprocal lattice space. (right) Typical spectrum of the dipole modes with Q > 10000. The small local

fabrication error breaks the degeneracy of modes A and B to make a 0.7 nm split. Inset: polar plot of the

polarization dependence of short (open squares with line) and long (filled circles with line) wavelength

modes.

5.11 shows the photoluminescence of such a structure with non-degenerate cavity dipole

modes. We use now this splitting, which comes from any small fabrication imperfection

of the holes in the photonic crystal [171].

Once the quantum dot is embedded into the crystal, the resonances have to be adapted

carefully if has not been done before, during the fabrication of the crystal. This can

be done by AFM nano-oxidation of the cavity surface [178]. The Fig. 5.12 shows the

application of this technique to shift the photon modes to the desired position. The

technique provides nearly continuous tuning of a single mode over several nanometers and

is in principle applicable to all photonic crystal based cavity structures. This powerful

tool makes our proposal more realistic because the cavity resonances can be modified

after the fabrication of the quantum dot. This means the properties of the crystal can

be adjusted perfectly to the properties of the embedded dot. Once the cavity modes are

precisely tuned to the exciton levels in a QD, efficient nonclassical photon sources can be

achieved for quantum information processing.

Finally, a strongly coupled biexciton requires additional resonances in the crystal. This

can in principle provided by higher resonances. In the previous picture, we discussed dipole

modes of the crystal, with a maximum of the electric field in the center of the quantum

dot. The Fig. 5.13 shows the electric field distribution of different resonances of the

quantum dot together with the energy distribution depending on the crystal parameters.

For example the second dipole modes (i and j in the figure) could be the candidates

for strongly coupled biexciton devices.
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Figure 5.12 | Tuning of photonic crys-

tal resonances [178]: PL spectra show-

ing the detuning of the dipole-mode pair

in one cavity resonant at 950 nm. The

detuning of a DX mode is reduced from

2 to 0.1 nm as the cavity is sequentially

AFM oxidized according to the insets

on the left, where the oxide is depicted

in red.

Figure 5.13 | Cavity mode frequencies and electric field inside a photonic crystal [171]: (left) Normalized

cavity-mode frequencies as a function of ∆r/a. The solid (dashed) lines correspond to doubly degenerate

(nondegenerate) cavity modes. The ten modes are referred to as modes A-J in order of frequency. (right)

Calculated electric field distributions in the slab center for ten cavity modes with δr/a = 0.11. The

modes in (a)(j) correspond to modes A-J on the left hand side, respectively.
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Of course the coupling between the dot and the cavity depends strongly on the position

of the dot in the cavity, and the dot should may be not centered in the defect state because

the electric field maxima are not centered.

All these techniques together confirm the possibility to realize the proposal of a en-

tangled photon source, as discussed in this chapter.

Possible other cavity configurations are micropillars. Recently, new fabrication tech-

niques have been developed to place a quantum dot exactly in the center of a micropillar

[185]. Extending this techniques, one may fabricate slightly elliptic micropillars to obtain

a split of the linear polarized cavity modes. Secondly, the spatial profile of the emission

is the same for both polarizations. (By the way, this is not the case for photonic crys-

tals, which make the realization based on crystals a bit more challenging.) Thus, also

micropillars with embedded quantum dot can be a promising candidate for the present

proposal, beside the exciting results on single photon sources [186, 187]. Nevertheless,

this structures are in the process of development and several problems are not solved, i.e.

the extraction of the biexciton-exciton photon is still not possible, because it is in the

photonic gap. May-be lateral detection can solve this problem.

5.6 Summary and conclusions

We conclude that the control of the electronic resonances through their strong coupling to

confined cavity modes opens new perspectives and is from many points of view extremely

advantageous for the fabrication of a solid source of entangled photon pairs emitted on

demand.
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