T. Goddard, C. Huang, and T. Ferrin, Visualizing density maps with UCSF Chimera, Journal of Structural Biology, vol.157, issue.1, pp.281-287, 2007.
DOI : 10.1016/j.jsb.2006.06.010

S. Birmanns, M. Rusu, and W. Wriggers, Using Sculptor and Situs for simultaneous assembly of atomic components into low-resolution shapes, Journal of Structural Biology, vol.173, issue.3, pp.428-435, 2011.
DOI : 10.1016/j.jsb.2010.11.002

X. Siebert and J. Navaza, 2.0: an interactive tool for fitting atomic models into electron-microscopy reconstructions, Acta Crystallographica Section D Biological Crystallography, vol.65, issue.7, pp.651-658, 2009.
DOI : 10.1107/S0907444909008671

URL : https://hal.archives-ouvertes.fr/in2p3-00016363

F. Tama and Y. Sanejouand, Conformational change of proteins arising from normal mode calculations, Protein Engineering Design and Selection, vol.14, issue.1, pp.1-6, 2000.
DOI : 10.1093/protein/14.1.1

I. Bahar and A. Rader, Coarse-grained normal mode analysis in structural biology, Current Opinion in Structural Biology, vol.15, issue.5, pp.586-592, 2005.
DOI : 10.1016/j.sbi.2005.08.007

W. J. Schroeder, K. M. Martin, and W. E. Lorensen, The design and implementation of an object-oriented toolkit for 3D graphics and visualization, Proceedings of Seventh Annual IEEE Visualization '96, p.93, 1996.
DOI : 10.1109/VISUAL.1996.567752

J. E. Grayson, Python and Tkinter programming, 2000.

B. Meyer, Conception et programmation par objets, Informatique Intelligence Artificielle. InterÉditionsInter´InterÉditions, 1991.

G. Kleywegt and T. Jones, ??? Programs for Reformatting, Analysis and Manipulation of Biomacromolecular Electron-Density Maps and Reflection Data Sets, Acta Crystallographica Section D Biological Crystallography, vol.52, issue.4, pp.826-828, 1996.
DOI : 10.1107/S0907444995014983

H. Berman, K. Henrick, and H. Nakamura, Announcing the worldwide Protein Data Bank, Nature Structural Biology, vol.10, issue.12, p.980, 2003.
DOI : 10.1038/nsb1203-980

J. Navaza, On the computation of structure factors by FFT techniques, Acta Crystallographica Section A Foundations of Crystallography, vol.58, issue.6, pp.568-573, 2002.
DOI : 10.1107/S0108767302016318

L. F. Eyck, Efficient structure-factor calculation for large molecules by the fast Fourier transform, Acta Crystallographica Section A, vol.33, issue.3, pp.486-492, 1977.
DOI : 10.1107/S0567739477001211

E. E. Castellano, G. Oliva, and J. Navaza, Fast rigid-body refinement for molecular-replacement techniques, Journal of Applied Crystallography, vol.25, issue.2, pp.281-284, 1992.
DOI : 10.1107/S0021889891012773

C. L. Lawson, M. L. Baker, C. Best, C. Bi, M. Dougherty et al., EMDataBank.org: unified data resource for CryoEM, EM- DataBank.org : unified data resource for CryoEM, pp.456-464, 2011.
DOI : 10.1093/nar/gkq880

URL : http://doi.org/10.1093/nar/gkv1126

T. Baker, N. Olson, and S. Fuller, Adding the Third Dimension to Virus Life Cycles: Three-Dimensional Reconstruction of Icosahedral Viruses from Cryo-Electron Micrographs, Microbiology and Molecular Biology Reviews, vol.64, issue.1, 1999.
DOI : 10.1128/MMBR.64.1.237-237.2000

W. Delano, The PyMOL Molecular Graphics System, 2002.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera?A visualization system for exploratory research and analysis, Journal of Computational Chemistry, vol.373, issue.13, pp.1605-1612, 2004.
DOI : 10.1002/jcc.20084

T. Jones, M. Bergdoll, and M. Kjeldgaard, O : A macromolecule modeling environment Crystallographic and Modeling Methods in Molecular Design, pp.189-199, 1990.

T. Fujii, T. Kato, and K. Namba, Specific Arrangement of ??-Helical Coiled Coils in the Core Domain of the Bacterial Flagellar Hook for the Universal Joint Function, Structure, vol.17, issue.11, pp.1485-1493, 2009.
DOI : 10.1016/j.str.2009.08.017

A. Desfosses, G. Goret, L. F. Estrozi, R. Ruigrok, and I. Gutsche, Nucleoprotein-RNA Orientation in the Measles Virus Nucleocapsid by Three-Dimensional Electron Microscopy, Journal of Virology, vol.85, issue.3, pp.1391-1395, 2011.
DOI : 10.1128/JVI.01459-10

M. Stelter, I. Gutsche, U. Kapp, G. Bajic, G. Goret et al., Architecture of a Dodecameric Bacterial Replicative Helicase, Structure, vol.20, issue.3
DOI : 10.1016/j.str.2012.01.020

URL : https://hal.archives-ouvertes.fr/hal-00965868

M. E. Bakkouri, I. Gutsche, U. Kanjee, B. Zhao, M. Yu et al., Structure of RavA MoxR AAA+ protein reveals the design principles of a molecular cage modulating the inducible lysine decarboxylase activity, Proceedings of the National Academy of Sciences, vol.107, issue.52, pp.22499-504, 2010.
DOI : 10.1073/pnas.1009092107

W. Kunau, Two complementary approaches to study peroxisome biogenesis in Saccharomyces cerevisiae: Forward and reversed genetics, Biochimie, vol.75, issue.3-4, pp.209-224, 1993.
DOI : 10.1016/0300-9084(93)90079-8

F. Confalonieri and M. Duguet, A 200-amino acid ATPase module in search of a basic function, BioEssays, vol.9, issue.7, pp.639-650, 1995.
DOI : 10.1002/bies.950170710

T. Ogura and A. Wilkinson, AAA+ superfamily ATPases: common structure-diverse function, Genes to Cells, vol.4, issue.7, pp.575-597, 2001.
DOI : 10.1101/gad.864401

D. Leipe, E. Koonin, and L. Aravind, Evolution and Classification of P-loop Kinases and Related Proteins, Journal of Molecular Biology, vol.333, issue.4, pp.781-815, 2003.
DOI : 10.1016/j.jmb.2003.08.040

M. Ammelburg, T. Frickey, and A. Lupas, Classification of AAA+ proteins, Journal of Structural Biology, vol.156, issue.1, pp.2-11, 2006.
DOI : 10.1016/j.jsb.2006.05.002

J. Snider, G. Thibault, and W. Houry, The AAA+ superfamily of functionally diverse proteins, Genome Biology, vol.9, issue.4, p.216, 2008.
DOI : 10.1186/gb-2008-9-4-216

A. Neuwald, L. Aravind, J. Spouge, and E. Koonin, AAA+: A class of chaperonelike ATPases associated with the assembly, operation, and disassembly of protein complexes, Genome Res, vol.9, pp.27-43, 1999.

L. Iyer, D. Leipe, E. Koonin, and L. Aravind, Evolutionary history and higher order classification of AAA+ ATPases, Journal of Structural Biology, vol.146, issue.1-2, pp.11-31, 2004.
DOI : 10.1016/j.jsb.2003.10.010

T. Ogura, S. Whiteheart, and A. Wilkinson, Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases, Journal of Structural Biology, vol.146, issue.1-2, pp.106-112, 2004.
DOI : 10.1016/j.jsb.2003.11.008

P. Hanson and S. Whiteheart, AAA+ proteins: have engine, will work, Nature Reviews Molecular Cell Biology, vol.87, issue.7, pp.519-529, 2005.
DOI : 10.1074/jbc.274.37.26225

J. Snider and W. Houry, MoxR AAA+ ATPases: A novel family of molecular chaperones?, Journal of Structural Biology, vol.156, issue.1, pp.200-209, 2006.
DOI : 10.1016/j.jsb.2006.02.009

J. Snider, Formation of a Distinctive Complex between the Inducible Bacterial Lysine Decarboxylase and a Novel AAA+ ATPase, Journal of Biological Chemistry, vol.281, issue.3, pp.1532-1546, 2006.
DOI : 10.1074/jbc.M511172200

E. Krissinel and K. Henrick, Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions, Acta Crystallographica Section D Biological Crystallography, vol.60, issue.12, pp.2256-2268, 2004.
DOI : 10.1107/S0907444904026460

L. Holm, S. Kaariainen, P. Rosenstrom, and A. Schenkel, Searching protein structure databases with DaliLite v.3, Bioinformatics, vol.24, issue.23, pp.2780-2781, 2008.
DOI : 10.1093/bioinformatics/btn507

M. Bochtler, The structures of HsIU and the ATP-dependent protease HsIU-HsIV, Nature, vol.403, issue.6771, pp.800-805, 2000.
DOI : 10.1038/35001629

M. Fodje, Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase, Journal of Molecular Biology, vol.311, issue.1, pp.111-122, 2001.
DOI : 10.1006/jmbi.2001.4834

Y. Han, A Unique ??-Hairpin Protruding from AAA+ATPase Domain of RuvB Motor Protein Is Involved in the Interaction with RuvA DNA Recognition Protein for Branch Migration of Holliday Junctions, Journal of Biological Chemistry, vol.276, issue.37, pp.35024-35028, 2001.
DOI : 10.1074/jbc.M103611200

S. Lee, Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains, Genes & Development, vol.17, issue.20, pp.2552-2563, 2003.
DOI : 10.1101/gad.1125603

J. Shen, D. Gai, A. Patrick, W. Greenleaf, and X. Chen, The roles of the residues on the channel ??-hairpin and loop structures of simian virus 40 hexameric helicase, Proceedings of the National Academy of Sciences, vol.102, issue.32, pp.11248-11253, 2005.
DOI : 10.1073/pnas.0409646102

E. Jenkinson and J. Chong, Minichromosome maintenance helicase activity is controlled by N- and C-terminal motifs and requires the ATPase domain helix-2 insert, Proceedings of the National Academy of Sciences, vol.103, issue.20, pp.7613-7618, 2006.
DOI : 10.1073/pnas.0509297103

J. Erzberger and J. Berger, EVOLUTIONARY RELATIONSHIPS AND STRUCTURAL MECHANISMS OF AAA+ PROTEINS, Annual Review of Biophysics and Biomolecular Structure, vol.35, issue.1, pp.93-114, 2006.
DOI : 10.1146/annurev.biophys.35.040405.101933

M. Babu, Sequential Peptide Affinity Purification System for the Systematic Isolation and Identification of Protein Complexes from Escherichia coli, Methods Mol Biol, vol.564, pp.373-400, 2009.
DOI : 10.1007/978-1-60761-157-8_22

S. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

C. Cole, J. Barber, and G. Barton, The Jpred 3 secondary structure prediction server, Nucleic Acids Research, vol.36, issue.Web Server, pp.197-201, 2008.
DOI : 10.1093/nar/gkn238

C. Bond, TopDraw: a sketchpad for protein structure topology cartoons, Bioinformatics, vol.19, issue.2, pp.311-312, 2003.
DOI : 10.1093/bioinformatics/19.2.311

W. Rocchia, Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects, Journal of Computational Chemistry, vol.16, issue.1, pp.128-137, 2002.
DOI : 10.1002/jcc.1161

A. A. Albertini, Crystal Structure of the Rabies Virus Nucleoprotein-RNA Complex, Science, vol.313, issue.5785, pp.360-363, 2006.
DOI : 10.1126/science.1125280

D. Bhella, A. Ralph, and R. P. Yeo, Conformational Flexibility in Recombinant Measles Virus Nucleocapsids Visualised by Cryo-negative Stain Electron Microscopy and Real-space Helical Reconstruction, Journal of Molecular Biology, vol.340, issue.2, pp.319-331, 2004.
DOI : 10.1016/j.jmb.2004.05.015

J. M. Bourhis, B. Canard, and S. Longhi, Structural disorder within the replicative complex of measles virus: Functional implications, Virology, vol.344, issue.1, pp.94-110, 2006.
DOI : 10.1016/j.virol.2005.09.025

P. Calain and L. Roux, The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA, J. Virol, vol.67, pp.4822-4830, 1993.

M. Couturier, High affinity binding between Hsp70 and the C-terminal domain of the measles virus nucleoprotein requires an Hsp40 co-chaperone, Journal of Molecular Recognition, vol.272, issue.Pt 9, pp.301-315, 2010.
DOI : 10.1002/jmr.982

J. A. Cuff and G. J. Barton, Application of multiple sequence alignment profiles to improve protein secondary structure prediction, Proteins: Structure, Function, and Genetics, vol.6, issue.3, pp.502-511, 2000.
DOI : 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q

E. H. Egelman, The iterative helical real space reconstruction method: Surmounting the problems posed by real polymers, Journal of Structural Biology, vol.157, issue.1, pp.83-94, 2007.
DOI : 10.1016/j.jsb.2006.05.015

E. H. Egelman, A robust algorithm for the reconstruction of helical filaments using single-particle methods, Ultramicroscopy, vol.85, issue.4, pp.225-234, 2000.
DOI : 10.1016/S0304-3991(00)00062-0

J. Frank, SPIDER and WEB: Processing and Visualization of Images in 3D Electron Microscopy and Related Fields, Journal of Structural Biology, vol.116, issue.1, pp.190-199, 1996.
DOI : 10.1006/jsbi.1996.0030

T. J. Green, X. Zhang, G. W. Wertz, and M. Luo, Structure of the Vesicular Stomatitis Virus Nucleoprotein-RNA Complex, Science, vol.313, issue.5785, pp.357-360, 2006.
DOI : 10.1126/science.1126953

J. B. Heymann, G. Cardone, D. C. Winkler, and A. C. Steven, Computational resources for cryo-electron tomography in Bsoft, Journal of Structural Biology, vol.161, issue.3, pp.232-242, 2008.
DOI : 10.1016/j.jsb.2007.08.002

M. R. Jensen, Quantitative Conformational Analysis of Partially Folded Proteins from Residual Dipolar Couplings: Application to the Molecular Recognition Element of Sendai Virus Nucleoprotein, Journal of the American Chemical Society, vol.130, issue.25, pp.8055-8061, 2008.
DOI : 10.1021/ja801332d

URL : https://hal.archives-ouvertes.fr/hal-00337329

R. L. Kingston, W. A. Baase, and L. S. Gay, Characterization of Nucleocapsid Binding by the Measles Virus and Mumps Virus Phosphoproteins, Journal of Virology, vol.78, issue.16, pp.8630-8640, 2004.
DOI : 10.1128/JVI.78.16.8630-8640.2004

D. Laine, Measles virus nucleoprotein induces cell-proliferation arrest and apoptosis through NTAIL-NR and NCORE-Fc??RIIB1 interactions, respectively, Journal of General Virology, vol.86, issue.6, pp.1771-1784, 2005.
DOI : 10.1099/vir.0.80791-0

D. Laine, Measles Virus (MV) Nucleoprotein Binds to a Novel Cell Surface Receptor Distinct from Fc??RII via Its C-Terminal Domain: Role in MV-Induced Immunosuppression, Journal of Virology, vol.77, issue.21, pp.11332-11346, 2003.
DOI : 10.1128/JVI.77.21.11332-11346.2003

S. Longhi, The C-terminal Domain of the Measles Virus Nucleoprotein Is Intrinsically Disordered and Folds upon Binding to the C-terminal Moiety of the Phosphoprotein, Journal of Biological Chemistry, vol.278, issue.20, pp.18638-18648, 2003.
DOI : 10.1074/jbc.M300518200

S. J. Ludtke, P. R. Baldwin, and W. Chiu, EMAN: Semiautomated Software for High-Resolution Single-Particle Reconstructions, Journal of Structural Biology, vol.128, issue.1, pp.82-97, 1999.
DOI : 10.1006/jsbi.1999.4174

J. A. Mindell and N. Grigorieff, Accurate determination of local defocus and specimen tilt in electron microscopy, Journal of Structural Biology, vol.142, issue.3, pp.334-347, 2003.
DOI : 10.1016/S1047-8477(03)00069-8

J. Navaza, J. Lepault, F. A. Rey, C. Alvarez-rua, and J. Borge, On the fitting of model electron densities into EM reconstructions: a reciprocal-space formulation, Acta Crystallographica Section D Biological Crystallography, vol.58, issue.10, pp.1820-1825, 2002.
DOI : 10.1107/S0907444902013707

A. Pedretti, L. Villa, and G. Vistoli, VEGA: a versatile program to convert, handle and visualize molecular structure on Windows-based PCs, Journal of Molecular Graphics and Modelling, vol.21, issue.1, pp.47-49, 2002.
DOI : 10.1016/S1093-3263(02)00123-7

G. Schoehn, The 12?? Structure of Trypsin-treated Measles Virus N???RNA, Journal of Molecular Biology, vol.339, issue.2, pp.301-312, 2004.
DOI : 10.1016/j.jmb.2004.03.073

T. R. Shaikh, SPIDER image processing for single-particle reconstruction of biological macromolecules from electron micrographs, Nature Protocols, vol.6, issue.12, pp.1941-1974, 2008.
DOI : 10.1006/jsbi.1997.3845

M. S. Sidhu, Rescue of Synthetic Measles Virus Minireplicons: Measles Genomic Termini Direct Efficient Expression and Propagation of a Reporter Gene, Virology, vol.208, issue.2, pp.800-807, 1995.
DOI : 10.1006/viro.1995.1215

R. G. Tawar, Crystal Structure of a Nucleocapsid-Like Nucleoprotein-RNA Complex of Respiratory Syncytial Virus, Science, vol.326, issue.5957, pp.1279-1283, 2009.
DOI : 10.1126/science.1177634

URL : https://hal.archives-ouvertes.fr/pasteur-00457523

M. Van-heel, G. Harauz, E. V. Orlova, R. Schmidt, and M. Schatz, A New Generation of the IMAGIC Image Processing System, Journal of Structural Biology, vol.116, issue.1, pp.17-24, 1996.
DOI : 10.1006/jsbi.1996.0004

X. Zhang, Hsp72 recognizes a P binding motif in the measles virus N protein C-terminus, Virology, vol.337, issue.1, pp.162-174, 2005.
DOI : 10.1016/j.virol.2005.03.035

R. Aujourd-'hui and L. Cristallographie, Cependant, cette technique estparticulì erement difficilè a mettre en oeuvre dans le cas de complexes de taille importante La microscopié electronique permet, elle, de visualiser des particules de grande taille dans des conditions proches de celles in vivo. Cependant, la résolution des reconstructions tridimensionnelles obtenues exclut, en général, leur interprétation directe en termes de structures moléculaires, ´ etape nécessairè a la compréhension desprobì emes biologiques. Il est donc naturel d'essayer de combiner les informations fournies par ces deux techniques pour caractériser la structure des assemblages macromoléculaires. L'idée est de positionner les modèles moléculaires déterminés par cristallographiè a l'intérieur de reconstructions 3D issues de la microscopié electronique, et de comparer la densitédensitéélectronique associéè a la reconstruction 3D avec une densitédensitéélectronique calculéè a partir des modèles, de macromolécules produit couramment des modèles moléculairesmoléculairesà résolution atomique

. Le-logiciel-issu-de-ce-travail, nommé ???? est un environnement graphique convivial, intégrant la possibilité de recalage flexible, et un moteur de calcul performant (calcul rapide, traitement de symétries complexes, utilisation de grands volumes Testé sur des dizaines de cas réels, ???? est aujourd'hui pleinement fonctionnel et est utilisé par un nombre croissant de chercheurs, en France etàetà l'´ etranger