5.1. For any term t and base term b in ? CA , ?(t ,
We proceed by structural induction over t ? ? CA ? t = x. Then ?(x[b/x]) = ?(b) = x[?(b) ,
(?y : U.t ? [b/x]) and this is equal to ?y : U.?(t ? [b/x]) which by the induction hypothesis is equal to ?y, (t ? ))[?(b)/x] = ?(?y : U.t ? )[?(b)/x] ,
r[b/x]) = ?X.?(r[b/x]) which by the induction hypothesis is equal to ?X.?(r)[?(b) ,
Then ?(r@U = ?(r[b/x]@U ) = ?(r[b/x])@U which by the induction hypothesis is equal to ?(r)[?(b), @U = ?(r)@U [?(b)/x] = ?(r@U )[?(b)/x] ,
= ?(r[b/x])+?(u[b/x]) which by the induction hypothesis is equal to ?(r)[?(b) ,
For any terms t 1 , t 2 in ? add ,
Notice that the only case where these terms are different is when one of the addends reduces to 0, in such case, their normal forms coincides, making it possible to compare in this way ,
We proceed by structural induction over t ?? CA ,
By the induction hypothesis ?(r)? A ?(r?), so ?(?X.r)? A = ?X.?(r)? A ?X.?(r?) = ?(?X.r?) ,
Rule by rule analysis. Elementary rules ? Rule 0 ,
? (t) u + (r) u. (t + r) u = (t + r) u ? v (t) u + (r) ,
Analogous to previous case Beta reductions ? Rule (?x : U.t) b ? t[b/x]. (?x : U.t) b = (?x.t) b. Since base vectors are translated into base vectors ,
A functional quantum programming language, Proceedings of LICS-2005, pp.249-258, 2005. ,
A System F accounting for scalars, Logical Methods in Computer Science, vol.8, issue.1, 2011. ,
DOI : 10.2168/LMCS-8(1:11)2012
URL : https://hal.archives-ouvertes.fr/hal-00924944
Scalar System F for Linear-Algebraic ??-Calculus: Towards a Quantum Physical Logic, Proceedings of QPL-2009 ,
DOI : 10.1016/j.entcs.2011.01.033
URL : https://hal.archives-ouvertes.fr/hal-00924890
A Computational Definition of the Notion of Vectorial Space, Proceedings of WRLA-2004, pp.249-261, 2004. ,
DOI : 10.1016/j.entcs.2004.06.013
URL : https://hal.archives-ouvertes.fr/hal-00940931
Linear-algebraic ??-calculus: higher-order, encodings, and confluence., Proceedings of RTA-2008, pp.17-31, 2008. ,
DOI : 10.1007/978-3-540-70590-1_2
URL : http://arxiv.org/pdf/quant-ph/0612199v1.pdf
Measurements and confluence in quantum lambda calculi with explicit qubits, Proceedings of QPL/DCM-2008, pp.59-74, 2011. ,
URL : https://hal.archives-ouvertes.fr/hal-00924875
A Type System for the Vectorial Aspect of the Linear-Algebraic Lambda-Calculus, Proceedings of the 7th International Workshop on Developments of Computational Methods (DCM 2011) ,
DOI : 10.4204/EPTCS.88.1
URL : https://hal.archives-ouvertes.fr/hal-00924926
Completeness of algebraic CPS simulations, Proceedings of the 7th International Workshop on Developments of Computational Methods, 2011. ,
DOI : 10.4204/EPTCS.88.2
URL : https://hal.archives-ouvertes.fr/hal-00932770
Lambda calculi with types, volume II of Handbook of logic in computer science, 1992. ,
Lambda-Calculi for (Strict) Parallel Functions, Information and Computation, vol.108, issue.1, pp.51-127, 1994. ,
DOI : 10.1006/inco.1994.1003
URL : https://hal.archives-ouvertes.fr/inria-00075174
Rewriting Logic and Probabilities, Proceedings of RTA-2003, pp.61-75, 2003. ,
DOI : 10.1007/3-540-44881-0_6
URL : https://hal.archives-ouvertes.fr/inria-00099620
Confluence via strong normalisation in an algebraic ?calculus with rewriting, Proceedings of the 6th Workshop on Logical and Semantic Frameworks, with Applications (LSFA 2011), 2011. ,
URL : https://hal.archives-ouvertes.fr/hal-00924938
An Unsolvable Problem of Elementary Number Theory, American Journal of Mathematics, vol.58, issue.2, pp.345-363, 1936. ,
DOI : 10.2307/2371045
A formulation of the simple theory of types, The Journal of Symbolic Logic, vol.1, issue.02, pp.56-68, 1940. ,
DOI : 10.2307/2371199
The Coq proof assistant reference manual. INRIA, 8.2 edition, 2009. ,
Non deterministic extensions of untyped ?-calculus, Information and Computation, vol.122, issue.2, pp.149-177, 1995. ,
Review of Isomorphisms of Types:, ACM SIGACT News, vol.28, issue.4, 1995. ,
DOI : 10.1145/270563.571468
Probabilistic ??-calculus and Quantitative Program Analysis, Journal of Logic and Computation, vol.15, issue.2, pp.159-179, 2005. ,
DOI : 10.1093/logcom/exi008
Agregando medición al cálculo de van tonder, 2007. ,
Sums in linear algebraic lambda-calculus, 2010. ,
Equivalence of algebraic ?-calculi, Informal proceedings of HOR-2010, pp.6-11, 2010. ,
Call by value, call by name and the vectorial behaviour of algebraic ?-calculus, 2011. ,
Adding algebraic rewriting to the untyped lambda calculus, Information and Computation, vol.101, issue.2, pp.251-267, 1992. ,
DOI : 10.1016/0890-5401(92)90064-M
On Köthe sequence spaces and linear logic, Mathematical Structures in Computer Science, vol.12, issue.5, pp.579-623, 2003. ,
Finiteness spaces, Mathematical Structures in Computer Science, vol.15, issue.4, pp.615-646, 2005. ,
DOI : 10.1017/S0960129504004645
URL : https://hal.archives-ouvertes.fr/hal-00150276
A Finiteness Structure on Resource Terms, 2010 25th Annual IEEE Symposium on Logic in Computer Science, pp.402-410, 2010. ,
DOI : 10.1109/LICS.2010.38
URL : https://hal.archives-ouvertes.fr/hal-00448431
The differential lambda-calculus, Theoretical Computer Science, vol.309, issue.1-3, pp.1-41, 2003. ,
DOI : 10.1016/S0304-3975(03)00392-X
URL : https://hal.archives-ouvertes.fr/hal-00150572
Lambda calculus schemata, Proceedings of ACM conference on Proving assertions about programs, pp.104-109, 1972. ,
DOI : 10.1145/942580.807077
URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.8355
Interprétation fonctionnelle et élimination des coupures dans l'arith-métique d'ordre supérieure, 1972. ,
Linear logic, Theoretical Computer Science, vol.50, issue.1, pp.1-102, 1987. ,
DOI : 10.1016/0304-3975(87)90045-4
URL : https://hal.archives-ouvertes.fr/inria-00075966
Proofs and Types, volume 7 of Cambridge Tracts in Theoretical Computer Science, 1989. ,
Probabilistic Asynchronous ??-Calculus, Proceedings of FOSSACS-2000, pp.146-160, 2000. ,
DOI : 10.1007/3-540-46432-8_10
URL : http://arxiv.org/pdf/cs/0109002v1.pdf
Quantum information: An overview, 2007. ,
Completion of a Set of Rules Modulo a Set of Equations, SIAM Journal on Computing, vol.15, issue.4, pp.1155-1194, 1986. ,
DOI : 10.1137/0215084
Lambda-calcul: types et modèles. Études et recherches en informatique, 1990. ,
Quantum Computation and Quantum Information, 2000. ,
Solvability in Resource Lambda-Calculus, Proceedings of FOSSACS-2010, pp.358-373, 2010. ,
DOI : 10.1007/978-3-642-12032-9_25
Parallel Reduction in Resource Lambda-Calculus, Proceedings of APLAS-2009, pp.226-242, 2009. ,
DOI : 10.1007/978-3-642-10672-9_17
URL : https://hal.archives-ouvertes.fr/hal-00699013
A Polymorphic Type System for the Lambda-Calculus with Constructors, Proceedings of TLCA-2009, pp.234-248 ,
DOI : 10.1007/978-3-540-71389-0_23
Call-by-name, call-by-value and the ??-calculus, Theoretical Computer Science, vol.1, issue.2, pp.125-159, 1975. ,
DOI : 10.1016/0304-3975(75)90017-1
Towards a theory of type structure, Programming Symposium: Proceedings of the Colloque sur la Programmation, pp.408-425, 1974. ,
DOI : 10.1007/3-540-06859-7_148
A reflection on call-by-value, ACM Transactions on Programming Languages and Systems, vol.19, issue.6, pp.916-941, 1997. ,
DOI : 10.1145/267959.269968
URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.7398
Lectures on the Curry-Howard Isomorphism, of Studies in Logic and the Foundations of Mathematics, 2006. ,
Intensional interpretations of functionals of finite type I. The Journal of Symbolic Logic, pp.198-212, 1967. ,
Algebraic Totality, towards Completeness, Proceedings of TLCA-2009, pp.325-340, 2009. ,
DOI : 10.1007/978-3-540-73449-9_28
URL : https://hal.archives-ouvertes.fr/hal-00440750
Semantics of a Typed Algebraic Lambda-Calculus, Proceedings DCM-2010 of Electronic Proceedings in Theoretical Computer Science, pp.147-158, 2010. ,
DOI : 10.4204/EPTCS.26.14
Coq proof, 2011. ,
Coq proof, 2011. ,
A Lambda Calculus for Quantum Computation, SIAM Journal on Computing, vol.33, issue.5, pp.1109-1135, 2004. ,
DOI : 10.1137/S0097539703432165
On Linear Combinations of ??-Terms, Proceedings of RTA-2007, pp.374-388, 2007. ,
DOI : 10.1007/978-3-540-73449-9_28
URL : https://hal.archives-ouvertes.fr/hal-00383896
The algebraic lambda calculus, Mathematical Structures in Computer Science, vol.12, issue.05, pp.1029-1059, 2009. ,
DOI : 10.1016/S0304-3975(03)00392-X
URL : https://hal.archives-ouvertes.fr/hal-00379750
A single quantum cannot be cloned, Nature, vol.15, issue.5886, pp.802-803, 1982. ,
DOI : 10.1038/299802a0