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Ein Vorwort ist fiir ein Buch so wichtig und so hiibsch wie der
Vorgarten fiir ein Haus. Natiirlich gibt es auch H&duser ohne
Vorgértchen und Biicher ohne Vorwortchen, Verzeihung, ohne
Vorwort. Aber mit einem Vorgarten, nein, mit einem Vorwort

sind mir die Biicher lieber. Ich bin nicht dafiir, dass die Besucher I n t ro d u Ct i O n

gleich mit der Tiir ins Haus fallen. Es ist weder fiir die Besucher
gut, noch fiirs Haus. Und fiir die Tiir auch nicht.

Erich Késtner, “Als ich ein kleiner Junge war”

This thesis is intended as a bridge between the two highly specialised domains of
phenomenology and experimental particle physics. The first part describes in detail a
next-to-leading-order (NLO) cross section calculation done by hand. Fully automated
tools for various parts of such calculations have become available nowadays and one can
obtain in a few clicks all the virtual diagrams, their reduction to the basic set of scalar
integrals, the real emission diagrams, and the subtraction terms. The actual size of the
different terms to be calculated and the difficulty in double—checking them makes the
emergence and use of these automated tools self-explanatory. We have, however, used
none of these things, relying on the fact that “An expert is a man who has made all the
mistakes, which can be made, in a very narrow field.”. Although the methods used for
the calculation are well-known to specialists, the aim of this document is to give as much
detail and be as plain as possible, in order to gather the experimentalist’s interest and
retain it to the end, while, at the same time, put theorists into confidence that they’ll
continue reading through the detector and analysis chapters. We present the calculation
of the NLO quantum chromodynamic corrections for charged Higgs boson production
in association with a top quark at the LHC, using a special kind of subtraction method.
Building an independent NLO code enabled us to cross—check the implemented version of
MCQ@NLO [1], and a few studies have been made which focus on different contributions
to the theoretical uncertainty attached to the NLO calculation. The actual implemen-
tation was performed for another NLO event generator, POWHEG [2]|. Considering the
small production cross section of H*¢ production*, an analysis of this channel using the
35 pb~! of data collected with the ATLAS [3] detector in 2010 from the pp collisions
of the LHC, makes no sense, and we switch to a very similar SM channel, namely Wt
production. We set-up a dedicated analysis for semileptonic Wt and focus on the eval-
uation of the PDF systematic uncertainty, following the PDF4LHC recommendation.
The electroweak single top production cross section via Wt at the Tevatron is so low
that it hasn’t been observed until today, so we are able to set the world’s first limit on
its production cross section and include the most important systematic uncertainties in
our analysis.

3Quote attributed to Niels Bohr.

4Through this document, you will find charged Higgs production referenced as H*t in the experimental
parts, since this is what we are looking for, and as tH ~ in the theoretical part, for consistency issues
on the presented diagrams.



2 Contents

Chapter 1 gives a brief account of our current understanding of the building blocks
of matter by introducing the Standard Model of Particle Physics through its basic prin-
ciples. Special focus is put on mass generation via the Higgs mechanism. But since
the Higgs boson has not yet been observed, the exact structure of the Standard Model
scalar sector remains unknown and there is still some room for speculation. We present,
a possible extension with the two Higgs doublet model, for which there are three neural
Higgs bosons and two charged ones. We review current direct and indirect searches of
these charged Higgs bosons. Since an important property of Higgs particles is their cou-
pling to other particles proportional to their mass, the top quark plays a very important
role in connection with Higgs searches. Therefore, we review its historical discovery
and comment on its production at hadron colliders, as well as studies on its general
properties.

Keeping in mind that we want to deal with hadron colliders, we explain the evolu-
tion of the strong coupling constant in Chapter 2. We’ll see that, if we are at high
enough energies, the quantities we are interested in may be developed into a perturba-
tive expansion with respect to the coupling. This allows to go from hadronic to partonic
cross sections via the use of parton distribution functions (PDF). We list the general
philosophy of gaining knowledge on the hadron structure and present the different ex-
periments dedicated to assemble hadronic data. This information is gathered by various
collaborations, and we present their parametrisations and fitting techniques, along with
their quantification of their results’ uncertainties. The special treatment of heavy quark
flavours is introduced and leads us to a few general remarks on the concept of mass in
particle physics, with special focus again on the top quark.

Chapter 3 concentrates on the partonic cross section calculation. The complexity of
NLO calculations is presented, while keeping in mind that, in order to be useful for
data comparisons, the process needs to be implemented into an event generator. NLO
calculations involve different contributions, which all have to be calculated: the virtual
and real contributions, as well as a method to combine them. The virtual emission, or
loop, diagrams, need dedicated integral calculations, and the general formalism is in-
troduced. The regularisation procedure makes the divergencies explicit and it becomes
clear that there are two different types of poles, stemming from the low and high energy
limits in the integral. The high energy divergencies are removed through renormalisa-
tion. The real emission diagrams are another contribution which has to be calculated
and exhibit low-energy and collinear divergencies. But since the final state phase space
of both the virtual and the real contribution are not the same, they cannot be added
in a straightforward fashion. The Catani-Seymour subtraction formalism [4, 5] will pro-
vide the necessary bridge. It is in this point where the novelty of our work comes in,
since we compute H*t production with this new subtraction formalism and build an
independent NLO code which gives the NLO hadronic cross section. Finally, the case
where the charged Higgs boson mass is lower than the top quark is investigated and
a method to separate NLO H*t production from tf is presented. We have now at our
disposal enough elements to help for checks and do an implementation into an MC event
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generator ourselves.

In Chapter 4 we detail the different aspects of Monte Carlo event generators, with
special focus on steps after the hard scattering. The general concept of partons showers
is explained, along with the hadronisation process and underlying event. We introduce
a list of the most frequently used generators, divided according to multipurpose or ma-
trix element generators. This small section is concluded by a rapid review of charged
Higgs specific codes. The general way of coupling a NLO matrix element calculation
to a parton shower is explained and we concentrate on two specific codes: MCQNLO
and POWHEG. The MCQNLO coupling to the parton shower Herwig is presented. We
use our independent NLO calculation to check the MC@QNLO implementation, which
is strongly based on the previously available Wt process. A few studies are presented
which address the issue of systematic uncertainty evaluation. These are contributions
from the difference of handling the NLO interference of H*t with tf in the diagram
removal and diagram subtraction scheme. A second study focuses on the influence of
the PDF fit input bottom mass on the hadronic cross section. Also, a comparison be-
tween the four- and five-flavour-scheme calculation, i.e. using either massive or massless
b quarks in the kinematics of the calculation, is presented. Finally, we perform the im-
plementation of NLO H*t production in POWHEG. After explaining how POWHEG
may be coupled to any parton shower, we detail the H*t code structure and show
plots of kinematically relevant variables obtained with POWHEG. At this point, we can
go no further on the theoretical side and need real data to compare our predictions with.

In Chapter 5, we begin our journey from large to small scales with the Large Hadron
Collider and its entire acceleration chain. We will zoom in on one of the multiple purpose
detectors situated on a crossing point of the 27 km long ring where protons circulate in
two opposite beams. The ATLAS detector is a collection of several sub-detectors, each
dedicated to a specific task. The detector and its operation are presented from the run
control shifter’s point of view. The data trigger and acquisition chain are presented.
We finally describe the simulation and reconstruction chain in Athena [6], the general
computing framework of the ATLAS collaboration. At this point, we briefly mention
the difference between the fast and full simulation, whose comparison has been part of
the service task performed during this thesis.

The focus of Chapter 6 lies on the amount of data collected during the 2010 proton-
proton collisions by the ATLAS detector. After describing the different periods of data
taking and the associated collected luminosity, we comment on the consequences this
low amount has on an eventual H*t analysis. We explain our need to change our physics
focus on a process which is, from the NLO point of view but also from the detector sig-
nature, very similar to our original process, namely Wt production. Since this will be
an important background for charged Higgs production, it needs to be studied and thor-
oughly understood. After detailing the relevant objects included in the Wt signature, we
turn to the needed Monte Carlo events samples for the signal and its major backgrounds.
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In Chapter 7, we finalise our project by performing the Wt analysis in the semilep-
tonic channel. We put a very first limit on its production cross section, by ultimately
combining our results with the dilepton channels. The study is completed using all
sources of systematic uncertainties. We extend our comments particularly for uncer-
tainties due to the use of parton distribution functions, which were computed by our
group. The knowledge of the extraction of parton distribution related systematics, as
well as the evaluation of different systematics for H*¢, which have their analogue for
Wt, have proven extremely useful in that context.



The starting point is a question.

Outside theology and fantastic literature, few can doubt that the main features of
our universe are its dearth of meaning and lack of discernible purpose. And yet, with
bewildering optimism, we continue to assemble whatever scraps of information we can
gather in scrolls and books and computer chips, on shelf after library shelf, whether
material, virtual or otherwise, pathetically intent on lending the world a semblance of
sense and order, while knowing perfectly well that, however much we’d like to believe
the contrary, our pursuits are sadly doomed to failure. Why then do we do it? Though
I knew from the start that the question would most likely remain unanswered, the
quest seemed worthwhile for its own sake. This book is the story of that quest.

Alberto Manguel, Foreword to “The library at night”

The Standard Model of particle
physics

1.1 Basic principles

Before plunging into the heart of matter, we briefly recall the very basic principles on
which the modern mathematical description of Nature is build. E. Zeidler summarises
them as follows [7]

- The infinitesimal principle of Newton and Leibniz states that the laws of Nature
are to become simple on an infinitesimal level of space and time.

- The principle of least action asserts that physical processes develop in such an
optimal way that their action is extremal, and these processes are governed by
ordinary or partial differential equations, the Euler-Lagrange equations.

- Einstein’s principle of special relativity brings to attention that physics does not
depend on our choice of inertial system.

- Einstein’s principle of general relativity states that physics does not depend on
the observer’s local space-time coordinates.

- Noether’s symmetry principle states that symmetries of the action functional imply
conservation laws for the corresponding FEuler-Lagrange equations.

- The gauge principle and Levi-Civita’s parallel transport link the fundamental
forces to underlying symmetries of the action functional.

- Planck’s quantisation principle asserts that Nature jumps.
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- Dirac’s unitarity principle states invariance of quantum mechanics under unitary
transformations.

The infinitesimal principle and the principle of least action are at the very core of our
understanding and describe how we are to find the mathematical laws. But they remain
on a classical level. The concepts of special and general relativity give a whole new
framework as to how the mathematics behind our ideas are to look like, and put an em-
phasis on the concept of symmetry via the geometrisation of physical laws. The notion
of symmetry becomes even more important with Noether and the gauge principle and
it is now central to our current description of the building blocks of matter. Finally,
Planck’s quantisation principle and Dirac’s unitarity principle bring us to the desired
small scales, where quantum mechanics takes over.

The first success of a unifying procedure for physical laws can be traced back to the
end of the 19th century with Maxwell’s theory of electromagnetism, which combined
for the fist time the laws of electricity and the magnetic interactions. Both phenomena
appeared now as inseparable parts of a more general interaction. The emergence of
quantum mechanics, however, rendered the picture more complicated. There was need
of a theoretical framework which could translate these conceptual developments into the
new quantitative calculation scheme. Very early in the 1930s, quantum electrodynam-
ics emerged as the theory describing the electromagnetic interactions of electrons and
photons, and it had the desired features: it was quantised and relativistically invariant.
The attempt of unifying the known forces took another step forward in the 1960s when
Glashow, Salam and Weinberg elaborated the electroweak theory. Only a few years
later, it was realised that even the strong force could be put into a gauge theoretical
formulation. This lead up to the modern formulation of the Standard Model (SM) of
particle physics, for which the major discoveries of the early twentieth century, quantum
mechanics and special and general relativity, are the foundations. The global Poincaré
symmetry, which consists of the familiar translational symmetry, rotational symmetry
and the inertial reference frame invariance central to the theory of special relativity,
is postulated for all relativistic quantum field theories. Then, three different internal
symmetries, the local SU(3)c x SU(2);, x U(1)y gauge symmetries, give rise to the three
fundamental interactions. Today we know of a total of four fundamental interactions
between elementary particles: the gravitational, the electromagnetic, the weak and the
strong interaction. Gravity set aside, the description of the elementary particles and
their interactions is done via quantised, relativistic, locally interacting fields. The link
between the structure of conserved charges and the symmetry groups of the fields is
of paramount importance. In the formalism of gauge theories, electromagnetic inter-
actions result from an U(1) symmetry, weak interactions between left-handed fermions
from an SU(2) symmetry and strong interactions from an SU(3) symmetry. Since these
symmetries do not act on space-time coordinates, they are called internal symmetries.
The construction of the Standard Model proceeds following the modern method of con-
structing most field theories, which consists in first postulating a set of symmetries of
the system, and then writing down the most general renormalisable Lagrangian from
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its field content that conserves these symmetries. The fermionic particle content of the
SM as well as their quantum numbers, which dictate how the particle behaves under
a certain symmetry, are listed in Tab. 1.1. The fields of the interacting particles are
obtained from the fermion fields by imposing local gauge invariance.

Table 1.1: The fermion fields of the SM and their gauge quantum numbers. 7" and T3

are the total weak-isospin and its third component, and () is the electric charge.

SUB)c | SUQ2)L [ UML)y | T | T3 Q
i uy, Cr, tL +1/2 +2/3
o= ) () G| oo | o | e e B TR
i Ver, Vup, Vrr _ +1/2 0
L = (eL) (m) <TL) | 2 |z gz |
ety = er LR TR 1 1 -1 0 0 —1
v = v v Vg 0 0 0 0 0 0

In the SM, all vector bosons are massless. While this is true for the gluon and the
photon, it does not apply to the electroweak W and Z bosons, whose masses have been
measured to be my = 80.399+0.023 GeV and 91.1876 £0.0021 GeV [8]. Also, fermions
are observed to be massive, but since the SU(2); symmetry couples differently to left
and right spinors, these mass terms are forbidden in the Lagrangian. This means that
the SM as such is incomplete, and has to be altered to account for this observation. In
the 1960s, the Higgs mechanism came as an attempt to complete the SM picture and
the hunt for the Higgs boson has been going on ever since.

1.2 Mass generation in the Standard Model and
beyond

1.2.1 The Standard Model scalar sector

Experimentally, the weak bosons are massive. Disregarding the fact that we cannot
introduce directly a mass term in the Lagrangian without breaking gauge invariance,
we can try to see what happens if we try to use massive bosons in calculations by brute
force.

1.2.1.1 W scattering

Assuming for the moment that we found a way to incorporate vector boson masses
into the Lagrangian in a gauge-invariant way, we can take a look at the scattering of
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longitudinally polarised W bosons [9, 10, 11]
W (py) + W (p-) = WH(ky) + W (ko) (1.1)

which are the leading terms at high energies for WWW scattering.

Figure 1.1: The two Wp scattering diagrams in the s- and t-channel contributing to the
amplitude A; and the 4-vector boson vertex for amplitude As.

The contributing diagrams of this purely conceptual process, since we do not have a
W boson collider, are shown in Fig. 1.1. The kinematics in the centre of mass reference
frame are given by

p+ = (F,0,0,+£p) for incoming and (1.2)
kr = (FE,0,£psind,+ cosf) for outgoing bosons,

with £ — p? = mj, and where 0 is the scattering angle in the centre of mass reference
frame. The Mandelstam variables are given by

s = (py+p) (1.4)
t o= (py — k)% (1.5)

Since we only consider scattering of longitudinal polarisations, they are given by

erp) = (p/muw,0,0,£E/my). (1.6)
er(k£) = (p/mW,O,:i:Esine/mW,:i:Ecos@/mW>. (1.7)
They are normalised using €2 = —1 and respect the Lorentz condition ¢(q) - ¢ = 0. We

can now take a look at the high energy behaviour. Summing the amplitudes of both the
s- and the t-channel scattering of photon and Z-boson exchange, and keeping only the
dominant terms in p*/m3,, we have

2

4 9 11
A = g3y [%(3 —6cos — cos® ) + %(5 — ?cosﬁ — 2 cos® 6)] (1.8)

The dominant terms for the four-boson vertex are

4 2
Ay = ggv [2—4(—3 + 6 cos 6 + cos® f) + rs—2(_4+ 6 cos 0 + 2 cos? 9)] (1.9)

w w
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Adding both terms together cancels out the p*/mg;, term. However, the term p*/m%, =
s/m3;, is still present and grows indefinitely with the centre of mass energy, which is
unacceptable. This shows that the SM as such is incomplete and needs a UV regulator
for longitudinal W boson scattering. This situation has an antecedent in quantum chro-
modynamics (QCD), the theory of strong interactions. In QCD, pions can be described
as Goldstone bosons associated to SU(2), x SU(2)r/SU(2)v, where the pion-pion scat-
tering amplitude is given by .

A(s, t,u) = -, (1.10)
with f, = 93 MeV. This leads to a unitarity bound of \/s ~ 4/7 f, = 660 MeV, meaning
that this calculation is only valid up to this scale. At that point, another mechanism has
to take over to regularise the scattering amplitude. This is exactly what the p meson
with its mass of m, = 770 MeV does. And it turns out that the Higgs boson plays
exactly that role for the SM W boson scattering issue.

1.2.1.2 The Higgs mechanism

In order to confer a mass term to the three vec-
tor bosons W¥* and Z in a proper way, which is
needed for the non-abelian SM, the Higgs mech-
anism is introduced [12, 13]. Mass terms in the
Lagrangian are generated from the kinetic energy
term of a scalar doublet field that undergoes spon-
taneous symmetry breaking. The choice of a scalar
doublet is motivated via our need for three degrees
of freedom to become the three masses. The fourth
boson, the photon, should remain massless. The
Figure 1.2: The characteristic mexi- Simplest choice is to add a SU (2) doublet of com-

can hat Higgs potential. plex scalar fields
Jr
P = <i0> ; (1.11)

with hypercharge Y, = +1, so that the scalar Lagrangian reads

L, = (D*o)'(D,®) — V(®). (1.12)

The covariant derivative is given by

o1
Wy —igi;B

T
D, =0,—1g:= 5B

5 (1.13)

where W# and B* are the gauge fields with couplings g, and g; related to the Weinberg
angle cos Oy = g2/(g2 + g?)"/?. The potential

V(®) = 120 + A (2T P)” (1.14)
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has a minimum, which is not located at ¢ = 0 if u* < 0, as shown on Fig. 1.2. In this
case, the neutral component' of ® will develop a vacuum expectation value (vev)

1 /0
(P)o = (0]®]0) = NG (v) : (1.15)
where

112

We now develop ® into four fields, one of them being the Higgs bosons H, around the
minimum at first order

O(z) = (U%{{Jr 23‘193) eXp(w)% (v+H(x)), (1.17)

and perform a rotation via the following gauge transformation

O(z) — exp<M>®(x) =

. (v+ H(x)). (1.18)

1
V2
We rewrite the fields W and B, in terms of the vector bosons Wj, Z,, and the photon
A, using
92W3 — 1B, o gzwfj’ +a.B,

f Va+a Tt Vara

and expand the first term of the scalar Lagrangian, Eq. (1.12). The terms bilinear in
the new fields are identified as mass terms

(W1 TWD, Z, (1.19)

1 1
My, WiEW = + §M§Z“Z“ + iMjAHA“, (1.20)
for which the masses are given by

2 2
My = "2, 0, = ”7”’1;92 and M, = 0, (1.21)

Thus, we managed to introduce a mass term for the experimentally massive vector
bosons and keep a massless photon by spontaneously breaking the SU(2), x U(1)y
symmetry down to U(1)g. The three Goldstone bosons have been reabsorbed by the W
and Z bosons.

If we now return to the W scattering problem, we need to add additional contributions
due to Higgs exchange, as depicted in Fig. 1.3.

'Tt cannot be the charged component, since we want to preserve the U(1) symmetry of QED.
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I
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Figure 1.3: The two Wy, scattering diagrams contributing to the Ay amplitude via Higgs
boson exchange in the s- and t-channel.

Adding the amplitudes where a Higgs boson exchange occurs in the s- and in the
t-channel, we get

2 2

AHZQ%[%(—E—ECO%)_ M ( s _ 4t 2)] (1.22)

2\ 22 dmi, \s —m?%  t—m%

By summing this amplitude with the ones calculated in Eq. (1.8) and (1.9), the high-
energy behaviour of the scattering amplitude becomes well-defined:

5 9
Iw ™y S t
A _ ( ) 1.23

it 4m?, \s —m? i m? (1.23)

The Higgs mechanism has thus enabled us to confer masses to the electroweak bosons.
A second interesting feature of the Higgs mechanism is that it may also be used to
generate mass terms for fermions. Also in this case, the couplings of the Higgs boson to
the particles are proportional to the masses and are free parameters of the theory.

A unitarity bound using the optical theorem places an upper limit on the Higgs boson
mass around 700 GeV. If this limit is exceeded, weak interactions become strong and
perturbative calculations are not valid anymore. This implies that studying W boson
scattering at hadron colliders in the high energy regime should either reveal a novel
behaviour of the electroweak force or the Higgs boson should somehow be seen?.

The Higgs mechanism has been introduced out of a necessity of a UV moderator of
electroweak interactions, but is only the simplest of an important quantity of possibili-
ties that have been proposed over the years, like little Higgs [14], Composite Higgs [15]
or higgsless models [16], to name only a few. Since the Higgs boson is intimately linked
to the masses of the elementary particles, it is very tempting to think that the Higgs
is somehow responsible for these masses. However, up to now all the masses are free
parameters of the theory which can only be determined from experiment and cannot be
deduced from first principles. Certainly the missing connection between gauge theories
and gravity still hides something.

2Tt is also important to note that only a scalar exchange may cancel the growing amplitude in this
straightforward way. A vector exchange would already have to be much more fine-tuned to achieve
cancellation.
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Since the existence of the Higgs particle as the last cornerstone of the SM has not
yet been confirmed by experiment, the exact structure of the SM scalar sector is still
up to speculation. We shall investigate the simplest extension of the sector we just
presented, the 2 Higgs Doublet Model (2HDM), which is obtained via the addition of a
second scalar doublet. Models with Higgs doublets and singlets possess the property of
conserving, up to finite radiative corrections, the ratio of the W mass and the Z boson
mass multiplied with the cosine of the Weinberg angle 6y,

mw

= —=1. 1.24
mycosty, ( )

1.2.2 The 2 Higgs Doublet Model

The problem with the Higgs particles as it was just presented, other than its non-
observation so far, is that its mass is not stable when quantum corrections are included.
Indeed, its mass m?, receives enormous quantum corrections via virtual effects from
every massive particle in the theory, giving huge corrections Am?,, which have to be
cancelled somehow. A possible way out would be the physicist’s favourite trick [17]:
The systematic cancellation of the dangerous contributions to Am?; can only be brought

about by the type of conspiracy that is better known to physicists as a symmetry.

1.2.2.1 Supersymmetry as a motivation for a type Il 2HDM

Poincaré symmetry is realised in Nature, but one can ask the question if it is possible
to extend the Poincaré group with internal symmetries. The first answer came in 1967
by Coleman and Mandula via their no-go theorem [18], proving that any Lie group
which contains both the Poincaré group P and an internal symmetry group G must be
a trivial direct product P x G. Since this means that the generators commute, nothing
interesting happens. There is however a possibility to bypass the no-go theorem. In
1975, Haag, Lopuszanski and Sohnius [19] were able to extend the Coleman-Madula
theorem by allowing not only commuting, but also anti-commuting generators. They
proved that not only is there a non-trivial extension of the Poincaré algebra, but it is also
unique, and called it superalgebra. What is now called the Minimal Supersymmetric
Standard Model (MSSM), is the minimal extension to the Standard Model that realises
supersymmetry. Due to its structure, supersymmetry turns fermionic into bosonic states
and in the supersymmetric extension of the SM each of the known fundamental particles
has a superpartner with spin differing by half a unit. The single-particle states of a
supersymmetric theory fall into irreducible representations of the superalgebra, called
supermultiplets. Each supermultiplet contains an equal number of fermionic and bosonic
degrees of freedom. It turns out that only one supermultiplet for the Higgs to reside in
is not enough. Two main reasons can be brought forth. The first is that were there only
one, the electroweak gauge symmetry would suffer a gauge anomaly. The conditions for
cancellation of gauge anomalies include that

Tr([T;Y] =Tr [Y?] =0, (1.25)



1.2 Mass generation in the Standard Model and beyond 13

where T3 and Y are the third component of the weak isospin and weak hypercharge, so
that the electric charge is given by

Q=T +Y/2. (1.26)

This is the case in the SM for the known quarks and leptons. In supersymmetry, a
fermionic partner of a Higgs chiral supermultiplet must be a weak isodoublet with weak
hypercharge Y = +1 or —1. If there’s only one case, such a fermion will contribute to
a non-zero contribution to the traces and spoil the anomaly cancellation. This may be
fixed if there are two Higgs supermultiplets, one with hypercharge (+1) and the other
with (-1), so that the total contribution to the anomaly traces from the two fermionic
members of the Higgs chiral supermultiplets vanishes. The second argument for two
Higgs doublets is that the structure of supersymmetric theories imposes a particular
Yukawa coupling. Only a Y = +1 Higgs chiral supermultiplet can be coupled to charge
(+2/3) up-type quarks and only a ¥ = —1 Higgs can gives masses to charge (—1/3)
down-type quarks and charged leptons.

The 2HDM is the most straightforward extension of the SM scalar sector. People are
interested mostly in its type II version, since this is the one fitting in supersymmetry,
but is is important to keep in mind that the 2HDM can be constructed without any
reference to supersymmetry. In that case however one can relax assumptions and a
plethora of different 2HDM types can be constructed. The general 2HDM extensions
are classified according to their Yukawa structure, the hermicity of the Yukawa matrices
and the way the bosonic sector behaves under CP transformations. In the type I 2HDM,
only one Higgs doublet is responsible for the gauge and fermion mass generation, while
the second doublet is only aware of this via mixing. The 2HDM type II has natural
flavour conservation. Its phenomenology is similar to that of type I, although in this
case the couplings to the SM particles occur not only through mixing but also through
the Yukawa structure. Finally, there also exist type III, IV and even V models, each
with their advantages and disadvantages. Although very interesting from the model
building vantage point, we will not list the different versions but focus on type II. A
thorough review can be found in [20].

1.2.2.2 The general 2HDM

The most general potential V' for two identical doublets ®; and ®, with hypercharge
Y = 1is given by [21]

A 2 ) 2
V = m?,®] 0, + mZ,old, [mg@{% + h.c.} +3 ((ﬂ@l) = (q%cbz)

+
n Ag(qﬂcbl) (cb;@z) n M(cb}%) <<I>£<I>1>

n {% (@{@2)2 + [A6<q>{q>1) Ty (@5%)} (@}@2) + h.c.}. (1.27)



14 The Standard Model of particle physics

Since complex phases may be present in the parameters \s 6 7 and m3,, the most general
model has 14 free parameters. If however it is restricted to cases without CP-violation,
all the parameters become real and the number of free parameters shrinks down to 10.
Electroweak symmetry breaking requires at least one negative eigenvalue in the scalar
mass matrix and at the minimum, m?%, and m2, can be eliminated in favour of the vevs
of the scalar fields (®;) = v;/v/2. The overall scale is given by v? = v?+v2 = (246 GeV)?2.
The 2HDM is invariant under unitarity transformations and a basis in the doublet space
is chosen by specifying the ratio of the two vevs, defining the parameter

tan 3 = vy /vy. (1.28)

1.2.2.3 The Higgs potential of the MSSM

If the 2HDM is to describe the Higgs sector of the MSSM, further restrictions on the
parameters are [22]

2, 2 2 _ 2 2
+ —

)\1 — )\2 — 92 4 gl )\3 = 92 4 gl )\4 - —9—22 (129)

s =X =A7=0 m2, = m?% cos 3sin 3. (1.30)

To break the electroweak symmetry in the MSSM, the two doublets of complex scalar
fields have to be of opposite hypercharge

0 +
Hy = ( gl_ ) with Yy, = —1 , Hy = ( Ié% ) with Yy, = +1. (1.31)
2

1

The scalar potential involving the Higgs fields is given by
Vi = (uf® +miy [ + (|ul® +miy, )| Hal? — uBey; (H{H3 + h.c.)
9 + g 2 22, Lot 2
AT P + S H P, (1.32

where p is a mass parameter. Expanding the Higgs fields in terms of their charged and
neutral components and defining the mass squared terms

m; = |uf* +miy, , ™3 = |ul* +mY,, m3=Bp (1.33)
we obtain

Vi = my(|[HY]P + [H{ ) + (| Hy |* + | Hy [?) — w3 (Hy Hy — HYHy + hee.)
2 2 2
_l’_
+ R HYP + [H P = [HSP = |5 ) + 2| B HY + HHP(1.34)
Just as in the SM Higgs mechanism, we require that the minimum of the potential Vy
breaks the SU(2);, x Uy group while preserving the electromagnetic symmetry U(1)q.
At the minimum of the potential V" the vev of the field H; can be chosen equal to
zero, (H, )=0, because of SU(2) symmetry, and at 9V /9H; =0, we also have (H, )=0.
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There is therefore no breaking in the charged directions and the QED symmetry is pre-
served.

The neutral components of the two Higgs fields develop vevs

(HY) = NG and (Hy) = NG

Minimising the scalar potential at the electroweak minimum, OV /OHY = 0V JOHS =
0, and using the relation

(1.35)

2 o o 4Mj 2
(v] +v2)° =0v° = i (246 GeV)=, (1.36)
2 TG
we obtain:
By = (m3;, —mj;,) tan 23 + M7 sin 25”2 _ m3;, sin® 3 — m3, cos® 3 M

2 cos 23 2

These relations show explicitly that if my, and my, are known together with tan 3, the
values of B and p? are fixed while the sign of x stays undetermined.

To obtain the Higgs physical fields and their masses, the two doublet complex scalar
fields Hy and H, are developed around the minimum into real and imaginary parts

1 . _
H = (HY H) = NG (vi + HY +4iP) , Hy)
1 :
where the real parts correspond to the CP-even Higgs bosons and the imaginary parts
corresponds to the CP-odd Higgs and the Goldstone bosons. We can now diagonalise

the mass matrices evaluated at the minimum

PV

1
2 OH,0H, | 40

2
O)=u1 /V/3, (H)=vs/v/2,(Hi5) =0

(1.38)
One eigenvalue of the mass matrix is zero and corresponds to the Goldstone boson
mass, while the other corresponds to the pseudoscalar Higgs mass and is given by

2m’
sin 23

M3 = —mj(tan 3 + cot3) = — (1.39)

The mixing angle which gives the physical fields 3

G° _ cos sinf PO
( A ) B (—Sinﬁ cosﬁ) (P;O) (1.40)
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and in case of the charged Higgs boson, the charged fields are obtained with the same

rotation matrix
G* B cos3 sinf HE
( H* ) n ( —sinf3 cosf3 ) ( HE |- (1.41)

The charged Higgs boson mass is related to the W boson mass via
M} = M3 + M;,. (1.42)

The CP-even Higgs case boson masses are given by

1
M?y = 3 {Mi + MZ F \/(Mi + M2)% — 4M?% M? cos? Zﬁ} . (1.43)

The physical CP—even Higgs bosons are obtained from

H - cosa  sino HY
( h ) N (—sina cosa) (Hg)’ (1.44)

where the mixing angle « is given by

M3 — M2 M + M}

——= , sin2a = —sin 28 ———=. 1.45
M%—M,f’sma SmﬁMEI—M,% (1.45)

cos2a = —cos 20

Thus, the supersymmetric structure of the theory has imposed very strong constraints
on the Higgs spectrum. Out of the six parameters which describe the MSSM Higgs
sector, My, My, My, M+, 3 and «, only two parameters, are free parameters at the
tree-level. In addition, a strong hierarchy is imposed on the mass spectrum, which
reads at tree-level

My > max(My, My), (1.46)
Mgy > MW and (147)
My, < min(Ma, Myz) - |cos28| < My (1.48)

The Higgs boson couplings to the gauge bosons are obtained from the kinetic terms of
the fields H; and H, in the Lagrangian

Lign. = (D"H\)' (D, Hy) + (D" Hz)' (D, H), (1.49)
and the Yukawa Lagrangian with the notation of the first fermion family is
Lyac = —MJuPruHY —aPpdHy| — N\g|dPpdH) — dPruH; | + (h.c.). (1.50)

The fermion masses are generated when the neutral components of the Higgs fields
acquire their vevs and they are related to the Yukawa couplings by

\/ﬁmu \/ﬁmu \/ﬁmd \/ﬁmd
Ay = = and \; = =

Uy vsin 3 v, wvcosf’

(1.51)
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Expressing the fields H; and Hs in terms of the physical fields, one obtains the Yukawa
Lagrangian in terms of the fermion masses

Ly = —% [au(H sin o + h cos ) — itirysu A cos 3]
_% [dd(H cos a — hsina) — idysd Asin 3]
92

+mvud {H*a[mg tan B(1 + 75) + mycotB(1 — v5)]d + h.c. } (1.52)

with V,,4 the CKM matrix element which is present in the case of quarks. The additional
interactions involving the neutral and charged Goldstone bosons G° and G* can be
obtained from the previous equation by replacing A and H* by G° and G* and setting
cot =1 and tan § = —1. The MSSM Higgs boson couplings to fermions are given by

Ghuu - Z.%Cf)sa > GHuu - Z.%S%na > GAuu - % COtB’YB
v sin (3 v sin v
Ghia = —2220 Gy =i 220 Gy = 4 tan (75
v cos 3 v cos 3 v
7: *
Gr+gg = —EVud[md tan G(1 + 75) + mycot5(1 — v5)]
1
Gyowi = _va[md tan G(1 — 75) + mycotS(1 + v5)] (1.53)
Thus, for tanf > 1, the cou-
: — plings of the charged Higgs bosons
R H* are enhanced to isospin down—
BR(H") ] type fermions, while the couplings to

1gf=15 up—type fermions are suppressed. So
for large values of tanf, the cou-
plings to b quarks, o mytang, be-
come very strong while those to the
top quark, oc m;/tan 3, become rather
weak.

.

The resulting branching ratios of the
charged Higgs boson at tan(3 = 1.5 are
shown in Fig. 1.4 as a function of the
boson mass. They imply that searches
' . . for light charged Higgs bosons, i.e. with
100 200 300 500 masses lower than the top quark mass, will

M * [GeV] focus on 7v and cs decays, whereas heavy
charged Higgs bosons searches will have to
be performed in the b channel.

-~
A 11 a111

Figure 1.4: Branching ratios of the charged
Higgs boson as a function of its mass mg+. [23].
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1.2.3 Current charged Higgs boson searches

Current mass limits on the charged Higgs boson come from two distinct sources: direct
charged Higgs boson searches are mainly performed at hadron colliders, the Tevatron
and the LHC, whereas B factories provide limits on charged Higgs bosons through
indirect searches.

1.2.3.1 Direct searches

The covered mass range for charged Higgs boson searches at the Tevatron is cur-
rently 60-300 GeV. Direct searches for mass resonances are performed as well as indirect
searches in the form of deviations from SM branching ratios. The decay modes of the
charged Higgs are dependent on its mass; if this is below the top and b quark mass
mp+ < my + my, the analysis focuses on H* — 71v,., cs, AW+ ROW®* and H* —
t*b — W=*bb final states. If however the charged Higgs boson is heavier, i.e. respecting
mpy+ > my + my, then the most important decay is H*+ — tb. The most recent publica-
tions from DO (including the DO ratio method [24], the global fit method [25] and the
high mass search [26]) as well as those from CDF (direct search [27]) show no evidence
of a charged Higgs below 300 GeV, irrespective of the value of tan (.

1.2.3.2 Indirect searches

For the moment, the indirect searches at b quark factories give the most stringent
constraints on the charged Higgs boson parameters. The search channels distinguish
between the leptonic, semileptonic and the inclusive radiative decay of B hadrons.

e Leptonic decay mode

b T b T
w- H~
u Ur U Vr

Figure 1.5: Feynman diagrams for the leptonic decay mode.

In the SM, the B — 7v, decay occurs via W boson mediation only, as shown
with the diagram on the left of Fig. 1.5. In general, the B meson decay branching
fraction BF into [Ty is given by its SM value times an additional factor r, which
encodes an eventual charged Higgs contribution, on the right in Fig. 1.5,

BF(B — l+1/l) = BF(B — l+Vl)SM X TH. (154)

For a type II 2HDM, ry depends on the B meson and charged Higgs boson mass
and tan (§ via
m% tan? (3 ) 2

mpg+

ri = (1 - (1.55)
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Measurements from the Belle (in blue) and Babar (in green) collaborations with
hadronic tags (in light colours) and semileptonic tags (in dark colours), sum-

marised in Fig. 1.6(a), give the average value (in red) [1.64 + 0.34] x 107 [28],

and an rg coefficient of rg = 1.37 £ 0.39 compatible with unity. This translates
into an excluded region for the tan 3/mpy+ ratio, see Fig. 1.6(b), leading to the
exclusion of the orange regions in the (my+,tan ) plane, as depicted in Fig. 1.9.

—_
—
2
S 15 I 95 % C.L.
1 T
—_— v
0
0 0.05 0.10 015 020 025 030 035
L L L L L L

3 4 tan beta/mH
BFx10*
(a) (b)

Figure 1.6: BF measurements for the leptonic B — 7v, decay and inferred rp values
as a function of tan 3/my+, together with the exclusion bands.

e Semileptonic mode The exchange of a charged Higgs boson may also alter the
BFs for B — D™7u, decay. The observed BFs in the different channels exclude

Figure 1.7: SM (figure (a)) and charged Higgs exchange (figure (b)) Feynman diagrams
for the semileptonic mode B — D™ 7.

another region in the (my+, tan 3)-plane, which is quite complementary to the one
obtained via the B — 7v decay, as it covers the leftover gap (in green) in Fig. 1.9.

e Inclusive radiative decay Charged Higgs boson exchange alters the BF for the
B — X, v decay, shown in Fig. 1.8, placing a bound on the charged Higgs boson
mass my+ > 295 GeV at 95 % C.L., independently of the value of tan 3, (in red)
in Fig. 1.9.
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b H~ s

Figure 1.8: Feynman diagrams for the inclusive radiative decay.

The results for the three decay channels are compatible with the SM expectation values
within their error bands, but the measured values are systematically higher than the
predictions, which might be an indication of new physics and needs further investigation.

M, [GeV]

700 g

600

500

400

300

200

100

95%

I R

- 50 - Xy)
[ B(B - )
[ B(B - Dtv)/B (B - Dev)
— =B(K - uv)/B (11> pv)
B(B - pv)

—— Combined fit (toy MC)

LI B e
CL excluded regions

- NS 1
PR L exclusior
B SRR

e
E

¢

Figure 1.9: Excluded regions in the mp+,tan § plane due to B physics observables [29]

1.3 The top quark

1.3.1 Historic review

The quest for the top quark was triggered in 1977 by the discovery of the bottom
quark at the Fermi National Accelerator Laboratory (Fermilab)[30]. To understand
what the situation was at that particular moment, we need to go back to the year 1974.
At that time, an unexpected, short-lived, massive resonance was found: the J/VU, a c¢
bound state. This didn’t just prolong the ever-growing list of quarks as the fourth mem-
ber, but was an essential confirmation of the unified theory of electroweak interactions,
freshly developed at that point [31]. The GIM-mechanism states that quarks have to
exist in pairs, and thus the ¢ quark came to complete the doublet for the s quark. In
1975, the discovery of the 7, a third type of charged lepton, was a clear indication for
a third generation of fundamental particles. This third copy of charged lepton came in



1.3 The top quark 21

handy, since Kobayashi and Maskawa had just worked on CP violation in kaon decay
and needed three quark pairs for their theory to be renormalisable. Now physicists
turned to look for the third generation quarks. The first of them, the bottom quark,
showed up in 1977 as a bb-bound state, called the T resonance. This meant that the
quest for its doublet partner had begun.

The way leading up to the actual discovery of the top quark was long and tortuous,
and lasted for 14 years. A lot of initial searches were unsuccessful, forcing particle
physicists to consider two options. Either the SM had to be rejected as a viable theory
or the bottom quark was somehow a weak interaction singlet. This last statement was
definitely ruled out at DESY in 1984 with the measurement of the forward-backward
asymmetry in ete~ — bb collisions [32]. If the bb production proceeded only via pho-
ton exchange, no asymmetry would be observed; the b quark would be produced in
the positron direction as often as the electron direction. If however the b is part of an
electroweak doublet, weak interaction is interfering with electromagnetic production.
Since weak interactions were known to violate some fundamental symmetries, as parity
for example in this case, there had to be a substantial forward-backward asymmetry.
The expected value, computed assuming the validity of the SM, was about 25 % and
would be zero for an isospin singlet. The outcome of the measurement gave 22.5+6.5%,
confirming the status of the b quark as a member of an electroweak doublet. Since the
doublet, partner is also mandatory to leave the theory anomaly-free, the search for the
top quark could and should be continued.

Top mass estimates relying on a natural progression in the mass scale of the different
quarks pointed to a value of about 15 GeV. This meant that it could be observed at
the running eTe~ colliders, as for example at PETRA at DESY at the end of the 1970s.
As nothing showed up in the data analysis, the top mass limit was pushed up to 23
GeV. The 1980s saw the limit go further up to 30 GeV with the TRISTAN collider in
Japan, and finally SLC at SLAC and LEP observed no Z decay into tt, so that a top
with a mass lower than 45 GeV was ruled out. The search would have to be continued
at hadron colliders.

The W and Z bosons were discovered at the proton-antiproton collider Spps at CERN,
with a centre of mass energy of 450 GeV. In 1985 the UA1 collaboration found 12 can-
didate events in the leptonic channel whereas the expected background was 1.6 events,
from hadrons misidentified as electrons. Since a 40 GeV top would produce 10 events,
first papers were published assuming a top with a mass ranging between 30 and 50 GeV.
This momentum was stopped just short of claiming a discovery. A more thorough anal-
ysis on a larger data sample with improved background models (particularly concerning
Wqq production) showed that there was no 40 GeV top quark and, in 1988, the mass
limit was at 44 GeV.

The advent of the Tevatron, a proton-antiproton collider at Fermilab with centre of
mass energy of 900 GeV, started the competition between the american CDF and eu-
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ropean UA2 collaborations. The years 1988 and 1989, known as The Race for the Top,
have been a period filled with rumours swinging to and fro. The UA2 exclusion of a
top with a mass lower than 69 GeV put an end to the frenzy, since this was the highest
limit attainable at the Spps. Another problem seemed to be dawning: if the top mass
were higher than 85 GeV, the top would decay into a real W and a b, thus altering com-
pletely the ev, resp. pr mass distribution, which would then be indistinguishable from
W production! A way out of the conundrum was finally found with the presence of two
additional b jets in the ¢t events, which would help increase the signal over background
ratio. These analyses placed the mass at 91 GeV.

The first estimation for the top quark mass came not from direct observation at col-
liders, but through electroweak precision measurements. Computation of the so-called
T-parameter predicted a top mass between 145 < m; < 185 GeV.

° ToF First observations were finally reported in
| o W 1994 [33] with the CDF detector, and its discov-

5. igo L ery was claimed by both experiments located at
ab Top Mass (Gev the Tevatron collider in 1995 [34, 35|. Fig. 1.10

shows the reconstructed mass distribution for
events with an identified b quark and at least four
additional jets (solid histogram). Also shown are
the background shape (dotted histogram) and
the sum of background and ¢ Monte Carlo esti-
ol LLLL el ] mation for a top quark mass M, = 175 GeV /c?

Reconsiructed Mass (Gedc (dashed histogram), with the background con-
strained to the calculated value, 6.9723 events.
The inset on the right shows the likelihood fit
used to infer the top mass. Due to its large mass
compared to the other five quarks, the top plays
a special role since it has a very short lifetime compared to the hadronisation time,
which can be defined as the time the colour field needs to cover the distance R}, which
separates two adjacent partons. Considering this to be of the order of a few femtometers,
hadronisation time is of the order 7,44 = Rpaa/c, i.e. 10~2%s. If one considers top decay
purely into Wb, the top quark has a width of about 1.5 GeV using a top mass of 173
GeV. This means that its lifetime is given by 7., = h/(2m)I ! = 5 x 10~ *s, indicating
that the top quarks decays before even hadronising. As a consequence, there shouldn’t
be any top-antitop bound states, and no spin-depolarisation by chromomagnetic inter-
actions occurs, allowing studies of spin dependence of the top’s decay products. This
riddance of the usual complications associated with the strong interaction and the large
top mass make this quark an extremely interesting probe.

Events/(10 Gevft)
w
T

Figure 1.10: Reconstructed top mass
distribution.

From then till the present day, the Tevatron has gathered information on various top
quark properties such as its mass, decay width and charge. Besides pair production,
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single top production via the s- and t-channel have also been observed two years ago by
both experiments [36, 37|. Until 2010, the Tevatron has been the only machine allowing
the direct of the heaviest member of the SM and its properties. However, many of those
have either not been tested or are less known. With the start of the LHC, a second
source of information has now become available to study the subject in depth.

1.3.2 Production at the Tevatron and at the LHC

At hadron colliders, top quark production occurs in what is separated into two differ-
ent modes, because the event topology and thus research strategy will differ. The first
possibility is to produce top quarks in pairs, as shown on Fig. 1.11, with a production
cross section of ~7 pb at the Tevatron® and 160 pb at the LHC with the current setup?,
or even more than 800 pb at 14 TeV. How exatly such a cross section can be measured at
a hadron collider will be presented in detail in Chapter 7. The influence of the collider
type and maximum centre of mass energy on the production proportions is best seen in
the following comparison.

Considering a scattering of particles into two final state particles a and b, the phase
space integration places a limit on the Mandelstam variable s of the hard process. The
integration starts with the value which permits to produce the two final state particles
at rest, i.e. the energy that has to be made available is the mass energy

me +mb)2
Y

5 (1.56)

Smin = T1X25H = 4(
where x; and zo are the momentum fractions of the incoming partons. Considering
tt—production, m, = m; = my, under the assumption that both incoming partons carry
the same fraction x; = x5 = z, we get a rough idea of the mean value of x contributing

to the production
2mt

e
We see that the higher the collider energy, the smaller the values of  can be. For the
Tevatron Runll (y/s = 1.96 TeV) the mean z value is around 2 x 107!, while for the
current LHC collisions (/s = 7 TeV) deeper values around 5 x 1072 are probed, and
even half of this could be attained if the design centre of mass energy of 14 TeV is some
day reached. Of course our assumption that both momentum fractions are the same is
not true in general, but if one value goes up, the other is permitted to go even further
down. Since PDFs are dominated at low = by the gluon, all gluon fusion processes will
be enhanced at the LHC with respect to the Tevatron.

< >=

(1.57)

3The NLO cross section is o7 = 6.710% pb for pp collisions at /s = 1.96 TeV for m; = 175 GeV [38].
4The approximated NNLO cross section is ;7 = 164.57 4+ 11.45 — 15.78 pb for pp collisions at /5 =
7 TeV for my = 172.5 GeV [39].
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; t Since the Tevatron i§ a proton-antiproton collider, at
19.6 TeV for Run II, ¢t production occurs via ¢q initial

. % : f states in 85 % and gg in the remaining 15 %. The fact
that the LHC is a proton-proton collider which may

9 oo £ attain the higher center of mass energy of 14 TeV rad-
B ically alters the proportions of tf production to 10 %

9000 —— £ in the ¢g and 90 % in the gg channel [38]. In t¢ events

both tops will decay into a W boson accompanied by a
Figure 1.11: The tt production b quark. The different research channels are classified
diagrams [40]. in relation to the decay products of the W : dileptonic
refers to both Ws decaying into a lepton and a neutrino, semi-leptonic points to events
in which one W decays into a lepton plus a neutrino and the other into quarks and fully
hadronic specifies that both W bosons decay into quarks.

The second category of top production processes is single top production, which can
be further separated into t-channel, Wt associated production and s-channel, as shown
in Fig. 1.12.
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Figure 1.12: Single top production diagrams: the t-channel, the electroweak and the s-
channel [40].

The production hierarchy is the same at the LHC and the Tevatron. Single top
production at the Tevatron occurs with a cross section of 250 pb in the t-channel, 60 pb
via Wt and 10 pb in the s-channel [38]. The evolution of the ¢¢ cross section at the LHC,
including lepton and acceptance cuts of the ATLAS detector, can be seen in Fig. 1.13.
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Figure 1.13: Comparison between the three single top production mechanisms. The NLO
cross sections are shown as a function of the LHC center of mass energy [41].
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Tevatron results The most recent results on the ¢ production cross section from CDF

are summarised in Fig. 1.14(a). The recent cross section measurements for single top
can be seen in Fig. 1.14(b).
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etoma 5 Vog, oo st (008 Assume m=1725 GeVic For M, = 175 GeV/c®
[0 Moch & Uwer, 2794 (2008) S-Channel
. Likelihood, Function 0.9
Dileplon o1 7.40 +0.58 £ 0.63 + 0.45 @2m) 152 o3
(L=5.11")
Lepton+ijets (topological
(L=46") 782£0.38+0.37+0.15 Neural Ne;)work ] 1.8+0.6
(32fb e
——
Lepton+jets (b-tagged) Matrix El it 0.7
VRS 7.32+0.36+0.59+0.14 atix Elenen 251+ 07
. Likelihood Function 1.6+ 0.8
A 7.21£0.50 £ 1.10 £ 0.42 @210 07
: Boosted Decision Tree 2.1+ gg
) @21 4% 0
MEZ\:’:?J.;‘?B‘) 7.99+0.55+0.76 + 0.46 Corr(\gg\fa;ign (Lepton+Jets) - 2.1+ gg
j BS54 26
MEL R 7.1+ 0.49  0.96 + 0.43 MY 249453
| | | | | (Stal)‘i(syst)t (I‘umi) COT:??%‘?" @i Cha‘nnels) —— % 234 8 g
4 5 6 7 _ 8 9 10 11 12 5 0 5
o(pp — tt) (pb) Single Top Production Cross Section (pb)
(a) Top pair production (b) Single Top production

Figure 1.14: Recent top production cross sections at the Tevatron.

From these production modes, top quark properties can be studied. The top mass has
been extracted from data with two main techniques. The first is the templates method,
which relies on the construction of templates that depend on the top mass. These tem-
plates are then fitted to the data. CDF has analysed 4.8 fb=! of their data with this
technique and obtains a top mass m; = 171.9 £ 1.1(stat.JES) +0.9(syst.) GeV [42]. The
second mass determination relies on the Matrix Element (ME) technique, in which a per-
event probability P(x, m;) is calculated, where = denotes the final state parton momenta.
This probability is obtained via a leading order matrix element calculation. Finally, the
likelihood of the product of the probabilities is minimised, yielding the measured tf cross
section. The DO collaboration mass result is m; = 173.7£1.3(stat. JES)+1.4(syst.) GeV
using 3.6 fb~! of data [43], and the CDF collaboration has analysed 4.8 fb~! and pub-
lished a mass of m; = 172.8 & 0.9(stat. JES) £ 0.8(syst.) GeV [44]. The most precise
result on the top mass comes from the latest CDF and DO combination [45]. Additional
comments about the top mass measurements will be made in Section 2.3.1.

The SM states that the mass of a particle and its corresponding antiparticle should
be the same. D0 has performed a study on the mass difference between top and antitop
using the ME method, with a modified probability term P(x,m;, mz), using 1 fb~! and
finds a resulting mass difference of m; — my = 3.8 £ 3.7 GeV [46], compatible with the
SM. This measure is still dominated by statistical uncertainties and will become very
interesting once more data is available and at the LHC. The top width I'; is also under
study by the CDF collaboration, which has analysed 4.3 fb~! of data with the template
method and this time fitted the width. They obtain a range of 0.4 < I'; < 4.4 GeV at
68 % CL, and an upper limit of I'; < 7.5 GeV at 95 % CL [47|. The top charge has been
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confirmed to be (2/3), in opposition to the (-4/3) predicted in exotic models [48, 49|,
and spin correlations have also been studied [50, 51].

LHC results After the first successful LHC run in 2010 and a total amount of about
35 pb~! of collected data, the ATLAS and CMS collaborations have started seeing top
quarks.

The measurements of tt cross sec-
-—_ tions [52| at hadron colliders is sum-
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STy A f\;;’ricﬁ,jf?(p clusive top quark pair production

cross section obtained with AT-
LAS by combining the semileptonic
and dilepton final state analyses is
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6 (lumi.) pb [53]. Current prelim-
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. and a first limit on Wt production has
Figure 1.15: Production cross section of ¢t at the peen set. This will be detailed in the

LHC and at the Tevatron compared to higher- ..ong part of this thesis.
order calculations.

The LHC resumed 7 TeV collisions in March 2011, promising a tremendous amount
of data for further investigation in 2011. Ongoing analyses in ATLAS are performed
using 150 pb~! of data and at total of 700 to 1000 pb~! should be available this summer.
Beyond the scope of production cross section and mass measurements, subjects which
will be investigated are:

the top quark charge [54],

top spin correlations and W polarisation [55],

anomalous Wb vertex couplings [56],

rare top quark decays and FCNC [57], and

- tt resonances [58].

History teaches us one thing: discovering new particles at unprecedented energies
certainly is a very exciting quest, but the major effort should go into understanding
thoroughly the backgrounds. For processes such as charged Higgs boson production,
this backgrounds are SM events. Especially in the startup phase of the LHC which we
are in now, it is important to focus on understanding the output of the detector an
rediscover the SM properly, before even thinking about looking for deviations from it.



Ponder Stibbons was one of those unfortunate people cursed with the belief that if
only he found out enough things about the universe it would all, somehow, make
sense. The goal is the Theory of Everything, but Ponder would settle for the Theory
of Something and, late at night, when Hex appeared to be sulking, he despaired of
even a Theory of Anything.

Terry Pratchett, “The last continent”

From hadronic to partonic collisions

In the previous Chapter we briefly introduced the evolution of particle physics up to
it’s modern formulation, the Standard Model, and saw a possible extension of the SM
scalar sector. In order to shed some light on a remaining dark corner, our aim is now
to calculate charged Higgs boson production at colliders as precisely as possible, so as
to have a reliable reference for comparisons to real collider data. The current Chapter
reviews the main tools and formalisms which will be needed.

Fig. 2.1 sketches the main steps in-
volved in the simulation of a hadronic
collision.

L

.

\ 1. Partons from the incoming
X hadron beams interact at high
energies and produce many dif-
ferent particles, according to
their production cross sections.

This is the hard scattering.

A0l
0

Yo

o)
o)
o)
o)
O
/)

:."

2. The energetic coloured particles
emit a plethora of radiated glu-
ons and quarks, until the low
energy limit is reached and per-
turbation theory is no more ap-

Figure 2.1: Schematic hadronic collision.
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3. We then enter the domain of hadronisation where only effective models tuned on
data are available at the moment.

4. The same is true for other low energy physics phenomena involved, as the distri-
bution of the momentum sharing inside the hadron among the different partons
or the beam remnant, for example.

5. It is possible that more than one hard scatter occurs in a hadron-hadron collision,
and these multiple interactions render the event structure even more complex.

2.1 The strong coupling constant

In general, the parameters con-
tained in the Lagrangian of a the- 0.5

July 2009
ory do not have a fixed value a(Q)
but may evolve with the energy » a Deep Inelastic Scattering
) eep Inelast
of the considered process. For 04| oe €€ Annihilation ]

o= Heavy Quarkonia

hadronic collisions, it is therefore
important to know the evolution
of the strong coupling constant, 03|
and see in which domain per-
turbative calculations are valid.
The decrease of the strong cou- 02l
pling constant as a function of
the energy () can be seen in
Fig. 2.2. This is very different
from the electromagnetic force,
who shows the exact opposite be- h n

haviour. In QED, there’s only Q [GeV]
one charge, the electric charge

e, and the electromagnetic cou- Figure 2.2: Evolution of the strong coupling constant
pling constant increases with the with the energy. The straight line is calculated in per-
photon probe scale Q. The pho- turbative QCD, the dots are measurements by various
experiments. [59]

01t

= QCD ag(Mz) =0.1184 + 0.0007
100

ton itself is not charged under
U(1).

The physical reason for this behaviour is the screening effect. If the energy () is small,
it can only resolve large structures and the photon sees the central charge shielded by
vacuum polarisation, like depicted on the left in Fig. 2.3. This reduces the effective
charge seen by the photon probe. In terms of Feynman diagrams, these contributions
arise from a virtual electron-positron exchange, as shown on the right of Fig. 2.3.

In QCD, the situation is somewhat different, since there are three different colour
charges, R, G and B. If we take a B charge for example, the same shielding effect
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(&
Figure 2.3: Vaccum polarization due to lepton exchange.
as in QED takes place, as shown on Fig. 2.4. This has an analogue Feynman graph

representation, where now the gluon materialises for a short time into a quark-antiquark
pair and gives a positive contribution to the coupling evolution.

Figure 2.4: Vaccum polarisation correction due to quark exchange.

The difference with respect to QED is that in QCD the force carriers are also charged
under SU(3) and may alter the central charge. For example, a B quark may change into
a R quark via gluon emission, as shown on the left in Fig. 2.5. We have to take into
account the additional Feynman graph in which the gluon emits and reabsorbs another
gluon.

Figure 2.5: Vaccum polarization correction due to gluon exchange.

This contribution is negative and outweighs the positive one if the number of active!
quarks is Ny < 17, as is the case for the SM.

So the coupling strength depends on the energy of the considered process. The de-
pendence of the strong coupling with respect to the scale is logarithmic and is given by
the renormalisation group equation (RGE)

28%(@2) _ 2
Q To0r B(as(@%)), (2.1)

By active quark, one means quarks which masses Mg can be neglected with respect to the considered
energy Q.
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where the ( function encodes the Feynman graph contributions we just reviewed. If the
considered energy is high enough, the coupling becomes small and allows for a pertur-
bative treatment of the quantities involved. Currently, the 3 function can be calculated
up to the fourth order [59], but we will truncate the series at the first coefficient, since
this is enough to support the argumentation.

Bas(@) = —6al(Q%) + O(al) (2:2)
_ _(7331‘273%)@3(@2”0(&2). (2.3)

The number of active quark flavours at the energy scale @) is given by N;. The Ny < 17
quoted previously comes from the requirement of the leading order term of the beta
function By to be positive.

The solution of the truncated differential Eq. (2.1) is given by

. (0?) = O‘S(N2> 9 4
)= (.

This enables us to calculate the value of the coupling at a scale @), if we have as reference
a measured value of g at another scale p. Another feature of QCD can be seen through
this evolution, namely asymptotic freedom. Assuming (3, to be positive, the coupling
constant will indeed tend asymptotically to zero for very large scales. This means that if
we consider processes taking place at high energies, not only will the coupling be small
enough to allow a perturbative expansion of the considered quantities, but coloured
particles can be treated as free from the point of view of the strong interaction. As @)
decreases, the strong coupling constant grows, until it hits a singularity for

Qil/{gCD as(Q) = oo. (2.5)
The exact value of Agep depends on the perturbative expansion of the 3 function which
has been used, but it generally is of the order of 1 GeV. A coupling of order one means
that the perturbative formalism cannot be applied anymore and energy scales roughly
below 1 GeV are therefore regarded as the nonperturbative region where confinement
sets in.

The convergence problem of the pQCD series We have just mentioned that if
the coupling is small enough, quantities of interest may be developed into a perturba-
tive series. However, due to long-distance, non-perturbative effects, this series is not
convergent. If we compute a physical quantity in terms of the small coupling

flag) =) faal, (2.6)
n=0

the coefficients f,, exhibit a factorial growth with respect to their order. Only in a free
theory, where oy = 0, the series becomes a simple Taylor expansion. For (a; — 0)
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however, the series can at best be asymptotic to f(«s), but does not uniquely define
f(as). Now one may wonder what the meaning of perturbation theory may be when it
does not converge. But asymptotic convergence is not totally unsatisfactory, because if
a is sufficiently small, the difference between f(«;) and and another expression g(as)
may be numerically small and perturbation theory may give a well-approximated answer.

Factorisation The evolution of the coupling constant defines two regimes, one for
which perturbative QCD (pCQD) is valid, an one in which we have to model non-
perturbative effects. Those two regimes can be clearly separated in virtue of the the
factorisation theorem. The hadronic cross section for two incoming hadrons with mo-
menta p; o can be computed by using the factorisation formula [60]

o(pr1,p2; Q) = Z/dﬂ?1d£172fafb5ab + O((Agen/Q)P), (2.7)
a,b

where the parton distribution functions (PDFs) f, = fa/n, (21, @?) encode the probabil-
ity of finding a parton a in hadron h; with momentum fraction x; at scale (). The term
Gab = Oap(T1P1, TaPa; Q; as(Q)) stands for the partonic cross section and O((Agep/Q)F)
encodes non-perturbative contributions such as hadronisation effects, multiparton in-
teractions and contributions from the underlying event. The PDFs f, /5, q2) at a fixed
scale () are not computable in perturbation theory but their scale dependence can be
controlled perturbatively via the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
equations [61, 62, 63]. The structure of the right-hand side of Eq. (2.7), i.e. the shar-
ing out in terms of perturbative process-dependent partonic cross sections and non-
perturbative process-independent PDFs is subject to some degree of arbitrariness, called
factorisation-scheme dependence. Since physical quantities cannot dependent on the un-
physical factorisation scales, perturbative corrections beyond leading order of the par-
tonic cross section are factorisation-scheme dependent, in order to compensate for the
corresponding dependence in the PDFs. If the perturbative series of the partonic cross
section and the PDFs is truncated, this compensation is not exact and the theoretical
prediction will be tainted with uncertainties. The renormalisation scale pg is the scale
at which the strong coupling is evaluated. The factorisation scale on the other hand
separates the nonperturbative effects in the PDFs from the perturbative interactions in
the partonic cross section. It is common use to take ur = ur = @, since on physical
grounds these scales have to be of the same order as (), but their values cannot be
unambiguously fixed. If the quantities that enter Eq. (2.7) are calculated at the n-th or-
der in perturbation theory, the final result exhibits a residual ppg, pg-dependence of the
(n+1)-th order, reflecting the absence of the missing higher-order terms. Varying those
scales estimates the theoretical uncertainty caused by the truncation of the perturbative
series. This is generally done to give an error band on the theoretical predictions.
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2.2 Parton distribution functions

We will now take a look at the first ingredient we need which cannot be calculated
from first principles but needs experimental input: the parton distribution functions.
There are several methods which allow insight into the structure of hadrons. We will
mainly concentrate on deep inelastic scattering. This section is intended only as a
brief glance over a subject which fills quantity of excellent textbooks and dedicated
reviews |9, 64]. But it is important to keep in mind that different sets of PDFs currently
exist, each may implement theoretical quantities at different levels of precision. There
are also differences in the considered input data, the ad-hoc parametrisations and the
fitting method, resulting in different albeit complementary uncertainties. Since this has
a notable impact on predicted cross sections as well as the data analysis we will carry
on later, it is important to investigate where these uncertainties come from.

2.2.1 Measuring structure functions and cross sections
Deep Inelastic scattering (DIS)

The parton model is based on
the idea that a hadron can be
described as a collection of inde-
pendent partons with small trans-
verse momentum. In DIS, a lep-
ton scatters off a parton via vec-
tor boson exchange, as displayed in

X Fig. 2.6.

2

The characteristic kinematical vari-

Figure 2.6: DIS of a lepton probe on a hadron. ables of DIS are

e the momentum transfer

Q*=—¢*=—(k— k), (2.8)
where k(k’) is the momentum of the incoming (outgoing) lepton,

e the Bjorken scaling variable

) (2.9)
where p is the hadron momentum,

e and the energy fraction y which the lepton has lost in the scattering process, given

in the nucleon rest frame
_q-p

4P 2.10
V=0, (2.10)
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The momentum transfer () can be seen as the magnifying power of the lepton probe,
since it allows resolve distances of the order of d ~ zilrzg ~ % fm, where @) is to be given
in GeV.

Depending on the nature of the lepton probe, different interactions come into play
which are sensitive to different constituents of the hadron. For charged current interac-
tions (CC), where a W boson is exchanged, the probe which scatters on the free nucleon
N can either be a lepton [N — [X or a neutrino vN — [X. X is any kind of hadron
system. If the exchanged particle is a virtual photon v or a Z boson, it is a neutral
current (NC) interaction [N — [X. If the lepton probe is a positron, the exchanged W
has positive charge and the cross section is sensitive to down-type quarks and up-type
antiquarks. At leading order, the differential cross-sections can be written in terms of

structure functions F*
202 2

d*o’  4Ama? 22y’ M . , y A

— N1-y- 5 ) B+ yer F (y-5)ar), 2.11
where M is the mass of the nucleon, and ¢ can be either CC or NC. The minus sign
is valid if the incoming lepton is a positron or an antineutrino, a plus sign stands for
incoming electrons or neutrinos. For unpolarised electron /positron beams, n¥¢ = 1 and

ncc = (1+ A)%(Gifr‘i% ﬁ){ where the sign is given by the electron charge and
A is its helicity. The CC and NC cross sections tend to the same behaviour at high
energy, exhibiting the unification of weak and electromagnetic interaction, which can be
observed in Fig. 2.7. For low Q? values photon exchange dominates and thus the NC
cross section is several orders of magnitude larger than the CC, whose contribution is

dampened due to the W boson propagator.
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(\l‘—| E T L T T T L ‘ E|
% r Y H1le'pNC (prel.) E
o 10 A H1ep NC (prel) E
€ O ZEUS e'p NC 06-07 (prel.)
o E o ZEUS ep NC 05-06 =
(04 E SM €'p NC (HERAPDF 1.0) ]
% 101 —— SMep NC (HERAPDF 1.0) _|
R =) E
& S 3
= b —
103 E * Hle'pCC (prel.) =
E A HlepCC(prel) 3
L~ = ZEUSe'pCCO06-07 —
E e ZEUS ep CC 04-06 3
10 L SM e'p CC (HERAPDF 1.0) ]
E SM ep CC (HERAPDF 1.0) 3
E y<0.9 T =
E RO :
-7 =1 1 11 1111 l 1 1 1 11111 l 1 1 4

10 3 4
10 10 ) )
Q° [GeV1]

Figure 2.7: Differential CC and NC inclusive cross sections as a function of Q?, measured at
HERA [65].
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The structure functions are not calculable in pQCD. At lowest order, they can be
given directly in terms of nonperturbative PDFs f, as F3 for example:

Fy(x, Q%) = xZegfq/p(:p), (2.12)

where e, is the electric charge of quark g. What is observed in general is that in the
Bjorken limit, i.e. for (Q? v) — oo and fixed z, the structure functions obey an approx-
imate scaling law, depending only on the dimensionless variable x

Fi(z, Q%) — Fi(). (2.13)

This Bjorken scaling indicates that the probe is scattered-off from point-like constituents.
If this wasn’t the case, the structure functions would exhibit a dependence on the ratio
@/, where 1/\ would be the characteristic length of the constituents’ size. QCD,
however, violates Bjorken scaling trough power-corrections which induce logarithms of
@Q?. Since the parton transverse momentum inside the hadron is not restricted to be
small, but can eventually get large via gluon emission with probability proportional to
a dk%/k; 2. in which the integral extends to the kinematic limit k% ~ Q?, these types
of emissions can give rise to terms proportional to o, In Q? which break scaling. These
violations are a particular property of renormalisable gauge theories involving point-like
interactions between fermions and vector bosons. Thus, taking into account higher-order
contributions, the structure function F, now reads

Fy(z, Q%) —ZL‘Z [ +—/x1%qo(x)(P(x/z)lng—22+C(x/z))+---] (2.14)

where the structure functions F; parametrise the structure of the target as seen by the
virtual probe at scale () via the bare PDFs ¢y = f. Here we are exactly in the same
situation as with the strong renormalisation coupling, which we will detail in section,
namely that g¢o(z) can be seen as an unmeasurable, bare distribution into which the
collinear singularities can be absorbed at some scale y. The functions P are the Altarelli-
Parisi splitting functions and give the probability of a particle to disintegrate further.
Their exact expressions will be used in the dipole formalism later on and can be found
in App. B. The C terms are the coefficient functions. The structure function F' cannot
be calculated from first principles in pQCD since it receives contributions from long-
distance effects, but it can be measured in structure function data. Of course, as we will
see in the chapter about renormalisation, some arbitrariness exists as to how the finite
contributions are treated during the renormalisation procedure and the outcoming PDFs
are renormalisation-scheme dependent. The higher-order terms involve the splitting
functions, which favour collinear emissions. Thus the majority of the emissions which
modify a parton’s momentum are collinear and it is then natural to see these emissions
as a modification to the structure of the proton, rather than including it in the coefficient
function of the parton’s interaction with the vector boson coming from the probe. It is
this separation which is somewhat arbitrary and is given by the factorisation scale jp.
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Emissions above the scale pp are included in the coefficient functions, below pupr they
are considered as being part of the PDFs. Since Eq. (2.14) must be independent of the
arbitrary scale p?, we can establish a renormalisation group equation for the evolution
of the structure functions. This will lead to DGLAP evolution equations for the PDFs
with respect to Q%. They can be written as a matrix system

9 (qi(x,t)) _ as(t) Z/l dz (Pqiqj(fﬁ/z,as(t)) Pqig(w/zaas(t))) (qj(z,t))
ot \ g(x,t) 2w e z PQQj(x/Z7a8(t)) ng(:p/z,as(t) 9(z,1)
(2.15)
where t = InQ? and g = f,,q; = f,, are the PDFs for the gluon and i-flavoured quark.

DIS experiments are used to extract physical quantities like cross sections or structure
functions, from which one can then infer parton distributions, depending on the pertur-
bation series and the factorisation schemes. The PDFs are thus effective quantities and
can be used for predictions if the same theoretical scheme and order of perturbation is
used.

Main DIS experiments The HERA accelerator (Hadron-Electron Ring Accelerator)
at DESY in Hamburg has collided protons with electrons or positrons during 15 years
and operations have stopped in 2007. The centre of mass energy of the collisions was 318
GeV. A large quantity of useful data on the hadron structure has been obtained, which
are used in most PDF fits. The main experiments located on the accelerator were H1 and
ZEUS. Although the accelerator itself has been shut down, both collaborations recently
published combined results in order to reduce the impact of systematic errors [65].
The BCDMS (Bologna-CERN-Dubna-Munich-Saclay) was a fixed-target experiment at
CERN where muons were scattered on hydrogen and deuterium atoms.

The CCFR (Chicago-Columbia-Fermilab-Rochester) collaboration collected data from
two fixed-target runs at Fermilab, Chicago, in 1985 (experiment E744) and 1987-88
(experiment E770).

Additional processes DIS experiments are not the only possibility to gain access to
the hadron constituents. In particular, DIS data are insufficient to determine accurately
some aspects of PDFSs, such as the flavour composition of the quark-antiquark sea or the
gluon distribution at large x. The DIS method can only indirectly determine the gluon
distribution, since the exchanged boson is only interacting with quarks at LO, i.e. it
probes valence quarks at large  and sea quarks at low x, and infers the gluon distri-
bution from them via the DGLAP equations. An alternative method would be to use
gluon-induced processes, as the measurements of jets or heavy meson production rates.
This can be done at NLO in DIS, or using hadron-hardon collision data (in inclusive jet
production).

Further insight in the proton structure can also be gained via Drell-Yan processes, in
which high-mass lepton pairs are produced from electroweak boson decay in hadron-
hadron collisions. The first observed Drell-Yan processes were electron-positron or
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muon-antimuon pairs from virtual photons, but since then the available energy in collid-
ers has increased and Drell-Yan data now includes contributions from W and Z boson
production. The main advantage of Drell-Yan processes are the colourless final states,
which has allowed to use it as a test for hadron-hadron collisions of the factorisation
approach used before in DIS.

Direct photon production in hadron-hadron collisions are used to constrain the gluon
distribution in the hadron at medium and large z, because they occur via QCD Compton
scattering g¢ — ¢y and annihilation processes q¢ — g at order o a.,,. The experimen-
tal advantage is that the energy resolution of photons is more precise than for jets. A
photon deposits all its energy in the electromagnetic calorimeter, whereas jets are com-
plex objects, extending over both the electromagnetic and the hadronic calorimeter, and
undergo fragmentation and hadronisation. The major drawbacks of this channel are the
relative low production frequency with respect to QCD jets, and the background from
misidentified pions.

Nowadays, one can classify experiments
loosely into two categories, depending on o
their relation to the PDFs. The first cat- = [ =LHC
egory are experiments whose main goal ¢  s[ TTeVafron M=10Tev
is the study of the hadron structure, las | mmpra
the two experiments at HERA or fixed 10?;_ :Ifiied Ti'jgs
target. The input data is obtained at E BCDMS  SLAC
low scales @2 and used to fashion PDFs. i R L)/ CEEEEy
The second category are the PDF users,
mostly the Tevatron and the LHC. They 10°F
need the PDFs as input, PDFs which have
been evolved perturbatively up to the 10" fromm e e
much higher Q? scale, and produce gen- ‘
eral physics results. Of course, they will 10°
also allow the direct study of the hadrons i
at those high Q? scales, but that is not 10"
their primary objective. The gap in en-

. 1 3
ergy scales between and the accessible z 10E
range at the two categories is illustrated N
. . 10
in Fig. 2.8. 10" 16° 16° 10* 16° 107 16t 1d
X

Figure 2.8: Range in x and @ for different col-
lider and DIS experiments [66].
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2.2.2 Constructing PDFs with global fits

Our knowledge of the structure of hadrons is not static, but consists of an active field
where new data sets become available over time and statistical treatments of global fits
evolve. Thus, the various PDF collaborations publish new PDFs on a regular basis,
and on average a new PDF set becomes available once a year. In the following section,
we will detail the general concepts of the PDF construction and briefly glance at the
most commonly used PDF sets, both in the theoretical and experimental community.
While for generator codes it is simpler to update production cross section values with
the newest PDF set, this is almost impossible to do for experimental Monte Carlo
samples, since the whole production and approval chain is long and tedious. We will
concentrate on CTEQ), in particular CTEQ 6 and CTEQ 10, MSTW2008 and NNPDF.
They globally rely on the same input data sets and the small differences are outlined in
their respective paragraphs. There’s some tradeoff between the size of the input data
sets and their consistency with sets from other experiments, which we will see clearly
for the latest CTEQ PDFs. A larger difference exists between (CTEQ, MSTW) and
NNPDF, since the first two rely on a Hessian approach for the fit while the latter makes
use of Monte Carlo pseudo-data replicas.

Global fit Parton distribution functions are obtained from a global analysis using a
best-fit method on parametrised, somewhat ad hoc functionals, by selecting the global
minimum of a x? function. A global fit of N, data points D; from experiment e to their
theoretical values T; given by the parametrisation, not including correlated errors, is
performed with the following x? function

N,
S (Di = T)?
X2 = Z Z . R (2.16)
=1 (]

e i=

where the first sum is to be taken over all experiments and the second over all data
points from each experiment, and where the error o/ is composed of the statistical error
o; and the point-to-point systematic error 3;, added in quadrature /> = o2 + X?. This
is the simplest way to look for optimal global fits but has only limited use in assessing
the uncertainties of the fit. If correlated errors are present between different types of
data, one could use the covariance matrix or, equivalently, an extended x? function.
The collaborations have been facing some practical problems due to the large number of
data points and instabilities in the inversion of the covariance matrix and have therefore
been forced to devise an alternative method.

The fit determines the optimal value of the parameters in the parametrisation. To
assess the uncertainty on these values, error set PDFs are constructed by shifting the
value for each parameter with a certain tolerance T, as depicted in Fig. 2.9.
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Figure 2.9: Example of the construction of an error set for some parameter. The central value
is given by the minimum of the x? fitting function. Error sets are constructed by shifting to
the left as well as to the right, since the x? function might in some cases be asymmetric.

Treatment of heavy quarks Various schemes for the treatment of heavy quarks exist
in global parton analyses. The simplest evolving procedure is by treating all quarks as
massless, but to turn on the distributions at the appropriate transition points, i.e. when
the scale reaches the quark mass Q? = mg. This implies that we assume that the heavy-
quark distributions evolve according to the splitting functions for massless quarks. This
is motivated by the observation that the massive quarks behave as massless partons at
high scales, corresponding exactly to the approximation we are doing in the calculation
of the partonic cross section, where we put the masses of the incoming quarks to zero.
In the MSTW2008 framework, this is referred to the zero-mass variable flavour number
scheme (ZM-VFNS), which is a somewhat misleading name because there actually is
a mass dependence included in the boundary conditions for the evolution. The parton
distributions are related to each other perturbatively in the different quark number
regimes through?

It ) = Y Apluin/mg) @ fit(u) (2.17)

when the number of active quarks is increased from n to n + 1 and the scale has been
fixed at the factorisation scale Q* = u%. The perturbative matrix elements A (p/m;)
contain logarithms of the form In(u%/mZ) and are known up to O(a3), resp.O(a?).

Exactly how many quarks are switched on as we pass by their transition point is indicated
in the second part of the scheme name. If only the light flavours are kept in the parton
distributions, it is the 3-flavour scheme (3FS). Likewise, including the charm quark is
included in the evolution above Q* = m? generates 4-flavour PDFs in the 4-flavour
scheme. The global MSTW parton analysis includes also the b-quark distribution above
Q* = mZ, but not the t-quark above Q? = m?. This is the set we are going to work
with for charged Higgs boson production, and it is a 5-flavour set of PDFs in a 5FS.
However, since the ZM-VFENS is well suited for energy scales way above the the mass
threshold and ignores corrections of the order of O(m?/Q?) to the coefficient functions,

2The symbol ® is shorthand for f ® g = le de’ (z)g(%).

' T
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it is not appropriate for low scale studies where Q? ~ mg. But this region is exactly
where the PDF input data comes from. We have seen that there exist two approaches
in which the treatment of heavy flavour is relatively simple, namely the 3FS or fixed
flavour scheme at low scale Q* < mZ, and the ZM-VFNS at higher scales Q* >> m{. For
parton analysis we need a scheme, called general mass variable flavour number scheme
(GM-VFNS), which smoothly connects these two different regions.

The bottom quark PDF The bottom PDFs is generated dynamically through the
DGLAP equations from the gluon distribution for scales larger than the bottom input
mass Q% > m7. Due to the large uncertainty on the gluon distribution and the fact that
different collaborations use different b masses my, the resulting bottom PDF can be
quite different, as is shown on Fig. 2.10(a). Since charged Higgs production is strongly
dependent on the bottom and gluon PDFs, it is important to assess these uncertainties.
The bottom mass uncertainty can be evaluated using dedicated PDFs, in which m,; has
been varied. Since the point at which the bottom PDF is turned on and since flavour
PDEFs are linked to each other through sum rules, this affects all PDFs in the global
fit. The standard bottom quark PDF for different PDF collaborations can be seen in
Fig. 2.10(a), whereas Fig. 2.10(b) compares the variable mass-PDFs from MSTW2008.
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Figure 2.10: Different bottom quark PDFs.

2.2.2.1 MSTW2008

The Martin, Stirling, Thorne and Watt PDF sets from 2008 [67], called MSTW2008,
incorporate leading order, next-to-leading order and next-to-next-to-leading order PDFs
and also include various sets for heavy flavour quarks.



40

From hadronic to partonic collisions

The new data sets that have become available are either entirely new types of data,
or others which supersede existing sets by improving the precision or extending the
kinematic range, or both. Tab. 2.1 lists the main processes which are included in the fit,
along with their dominant partonic subprocess, the primary partons which are probed
and the z-range constrained by this data.

Table 2.1: The tree main groups of processes included in the current global PDF analysis:
fixed-target experiments, HERA and the Tevatron.

Process Subprocess Partons x range
A{pn} -+ X T —q 44,9 x20.01

En/p — X v d/u— d/u d/u x 2 0.01

pp — pwp X wit, dd — y* q 0.015 <z <0.35
pn/pp — ptp= X (ud)/(utr) — v* d/u 0.015<2<0.35
v(io)N - = (phH) X Wrq—¢ q,q 001 <z<05
vN —pu put X W+s — ¢ s 001 <z<02
UN —putp~ X W*s — ¢ 5 001 <x <02
etp—etX vq — q 9,q,q 0.0001 <z <0.1
erp—-vX Wt{d, s} — {u,c} d,s x 2 0.01

efp —etce X v'¢—c, y'g—cc c¢g 0.0001 <z <0.01
efp —jet + X g — qq g 0.01 <z <01
pp — jet + X 99,q49,qq — 2j g,q 001 <x<05
pp— (W* — )X ud — W,ad - W  u,d,iu,d x20.05

pp— (Z =) X wu,dd— Z d x 2 0.05

The MSTW2008 parameterisation of the parton distributions at the input scale Q3 =

1 GeV? is given by

xuv(a: Q) =
€T, Qo)

=A_
WhereAEJ—ﬂ,q

sum rules:

/ldx uy(z,Q3) =
0

A, z™(1

— )P (L+ e vVo + v ),
Aga™ (1 —2)" (1 + €g /& + 74 1),
As 25 (1 — )" (1 + es Vo + 75 ),

AT (1 —2)"5 V(1 + ya 2+ 6a 27),

{L‘

g(l_

(1 —)"

S=2w+d)+s+35.
The input PDFs listed in Egs. (2.18)—(2.24) are subject to three constraints from number

/ldx dv(x,Qg) =

0

/ldaz sy(7,QF) =
0

2)" (14 eg /T +,) + Ag 2% (1 — )
A+x65(1—x)"+(1+65\/_+75x)
(1—l‘/l‘0),

q — ¢, and where the light quark sea contribution is defined as

(2.25)

(2.26)
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together with the momentum sum rule:

/0 dz z [uy(z, QF) + dy(x, Q7)) + S(z, Q7)) + g(z,QF)] = 1. (2.27)

These four constraints are used to determine Ag, A,, A; and z, in terms of the other
parameters. There are therefore potentially 34 — 4 = 30 free PDF parameters in the
fit, including ag. The resulting PDFs for various scales ? and the low z region can
be seen in Fig. 2.11. As we go to lower and lower values of momentum fraction x, the

MSTW 2008 NLO PDFs (68% C.L.)

1.2

xf(x,Q?)

Q? = 10* GeV? ]

g/10

0.8
0.6

0.4

Figure 2.11: NLO PDF distributions for two different scales Q.

gluon distribution rapidly becomes the dominant component. Also, it can be seen that
there is no bottom quark pdf at low scale (), since this is only switched on above the
bottom mass threshold.

The uncertainty on a quantity Xy, computed with the PDFs, is evaluated using the
up and down error sets Sii by recalculating X (Sf) The resulting uncertainty AX is
given by the asymmetric Hessian method

ATX = \ i maX(X(S;“) — Xo, 0)2 (2.28)
ATX = \ imax(Xo — X(Si),0>2, (2.29)

where Sy is the central value PDF.
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2.2.2.2 CTEQ 6, 6.6 and 10

The most commonly used PDF set for single top analysis studies at the LHC is
CTEQ 6 [68|. The data used in the CTEQ 5 fit (fixed-target DIS from BCDMS, NMC,
CCFR, Drell-Yann of E605, CDF W-lepton asymmetry and CDF inclusive jets) is sup-
plemented by

e greater precision data and expanded z and () range for

- neutral current DIS structure function measurements of H1 and ZEUS,

- inclusive jet cross section measurements of DO,
e an updated E866 measurement of the Drell-Yann deuteron/proton ratio,
e a reanalysed F, measurement of CCFR.

The extensive and precise DIS data from fixed-target and HERA experiments constitute
the backbone of the CTEQ parton distribution analysis. The nonperturbative input to
the global analysis are PDFs specified in parametrised form at a fixed low-energy scale
Qo = 1.3 GeV. The exact form of the functional and the exact value of )y are not crucial,
the parametrisation just has to be flexible enough to accommodate all the available data
at the level of accuracy of the data. After some testing, the functional form of the input
valence quark PDFs f which has been retained is

o f(w,Qo) = Aor™ (1 — 1) exp(Azz)(1 + x exp(Ag)) ™, (2.30)

where A; are the parameters determined from the fit. Independent parameters are used
for the parton flavour combinations v, = v — u,d, = d — d, g and u + d. An assumption
on intrinsic strangeness at )y is made by imposing

s=5§=02(u+d), (2.31)
and in order to distinguish @ and d, their ratio is fitted using
d(z, Qo) /u(z, Qo) = Agz™ (1 — )2 + (1 + Asz)(1 — )™, (2.32)

The poles of the functional (2.30) at x = 0 and x = 1 reflect the singularities associated
with Regge behaviour at small z and the quark counting rules at large = and the ratio of
linear polynomials describes the intermediate region in a smooth fashion. The general
parametrisation encapsulates some versatility in the sense that, for some flavours, it has
more freedom than currently needed, so that not all the parameters are constrained by
data. When this occurs, the parameters concerned are kept fixed during the fit. The
collaboration is positive that this may rapidly change once more data becomes available.
In total, 20 free shape parameters are used the model the CTEQ PDFs at ()g and the
resulting parametrisations constitute the standard set of PDFs. The value of the strong
coupling constant is fixed by ag(M,) = 0.118 and the charm and bottom masses (fixed
at m, = 1.3 GeV and m;, = 4.5 GeV) enter only through the scale at which the heavy
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quark flavours are switched on in the evolution kernels of the PDFs.

The CTEQ 6 PDFs were constructed by using a novel fit, taking into account corre-
lations between systematic errors. The modified y? function in presence of K sources
of correlated errors, reads

X* = Z{i Z, Bi(A kk’Bk/} (2.33)

where the error «; is now given by the statistical error and the uncorrelated systematic
erroru; added in quadrature o? = o? + u?, and where B is a k-sized vector and A is a

K. x K, matrix given by

; D T;)
B, = § BuilD: = T1) : (2.34)
o BB
Agr = O E 2.35
kk kk! 2 o? ( )
and (y;, - - - , Bk; are the standard deviations from the K sources of correlated systematic

errors.

In the CTEQ 6.6 PDF set the general mass variable number scheme has been
adopted, in contrast to earlier versions which were using the zero mass scheme. There
is also a change in the strange distribution, which is now parametrised by

s(x, o) = Agz™ (1 — 2)*2 P(x), (2.36)

where P(z) is a smooth function used in all sets to ensure that the ratio R, stays in
reasonable range.

The CTEQ 10 PDF sets include new data sets as well as several improvements to
the global fitting procedure. Now included in the fit is the HERA-1 combined data
set on e*p DIS from H1 and ZEUS which replaces eleven original independent sets for
which the correlations between systematic errors were neglected. Since many system-
atic factors are common to both experiments, the combined data set has a reduced total
systematic uncertainty. The fit now also includes the Run-II inclusive jet data and the
Z boson rapidity distribution from CDF and DO, as well as the Run-II W lepton asym-
metry, on which we will comment shortly later on.

For all previous CTEQ fits, some data sets® were assigned weights larger than one
to force good fits to these sets, especially during the procedure defining the eigenvector
PDF sets which delimit the uncertainty. Now, apart from the special treatment of the

3Typically, those sets with a small number of points.
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W lepton asymmetry data, all input data sets are on equal footage with weight equal
to unity, and an extra contribution the the x? function guarantees the quality of the fit
to each data set.

Also, a more flexible PDF parametrisation for some parton flavours (d, s and g) has been
adopted to reduce parametrisation dependence. This results in a global increase in the
uncertainty in the s and ¢ distributions, particularly affecting charged Higgs production.
The functional form of input PDFs for valence u and d quarks s is slightly altered with
respect to the CTEQ 6 version 2.30 and reads

@ (2, Qo) = q(x, Qo) — q(r, Qo) = agz™ (1 — 2)** exp(asr + asx® + as\/x). (2.37)

Whereas a5 = 0 in CTEQ 6.6, a5 is left as a free parameter now to have a more flexible
d(x) at large x.

Concerning the gluon PDF g(x), as = 0 still holds, but Eq. (2.37) is now proportional
to an additional factor exp(—agx~?7) for extra freedom at small z, where the currently
available data provides little constraint. Again, the input parameters of the strong cou-
pling constant and the quark masses are fixed at az(M,) = 0.118 and m,. = 1.3 GeV
and my, = 4.75 GeV. DIS and VBP processes are consistently treated at NLO accuracy,
as well as the inclusive jets and W lepton asymmetry. The global CTEQ 10 fit has 26
free parameters, and thus 52 eigenvector sets for uncertainty studies.

A comment is on order about the the Run-II W lepton asymmetry. At the Tevatron,
the major W boson production channel in the pp collisions is by the annihilation of u
and d quarks of the proton with d and @ quark from the antiproton. Since u-type quarks
carry on average more momentum than d-type quarks, the propagation of the produced
W is not isotropic. Positively charged W bosons will tend to follow the incoming proton’s
direction, whereas the negatively charged W bosons will tend to follow the antiproton’s
direction, producing a charge asymmetry in the rapidity distribution of the produced
W bosons. The asymmetry in the rapidity distribution of the charged lepton from W
boson decay in pp-collisions is given by

d0'+/dyl —dO'_/dyl

A pu—
W) = G0t & doJdy

(2.38)

where do®/dy, = do(pp — (W* — [*11)X)/dy,;. The semileptonic decay gives rise to
an experimental problem, since the longitudinal momentum of the neutrino cannot be
measured. Thus, the VW boson rapidity is inferred from the lepton rapidity, but since
the V' — A coupling structure of the decay vertex gives rise to an opposite charge asym-
metry effect, the W rapidity is somewhat diluted and statistically large data samples
are needed to assess its impact.

The interest for this quantity arose in the late 80s, when its measurement in pp-collisions
was proposed to resolve a controversy between constraints on the down versus up quark
distribution ratio d(z,Q)/u(z, Q) obtained in DIS experiments on hydrogen and deu-
terium targets. Since several theoretical and experimental issues limit the accuracy of
the ratio measurement by DIS experiments, the CDF result permitted to go further.
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The asymmetry observed by CDF was in agreement with PDFs from fits to the BCDMS
and NMC data and conflicted with those based on the EMC data, and the controversy
was assumed to be resolved in favour of the BCDMS and NMC experiments. Since then,
all three data sets (BCDMS, NMC and CDF) have been intensively used in PDF fits as
a self-consistent input. Recently, however, the high-luminosity Run-II from DO has put
the controversy back on the table. Since the data are precise and run into disagreement
with some previous data sets as well as exhibit some tension among themselves, the
high-luminosity Run-1T W lepton asymmetry data set from DO plays a special role in
the CTEQ 10 global fit. Two different PDF fits have been performed

- CT10: without the DO data on A,

- CT10W: in which the DO A; data have been moderately emphasised in the fit by
increasing the y? weights to ensure reasonable agreements.

The behaviour of the global fit function in the neighbourhood of the minimum in
the PDF parameter space is again given in 2N, sets of eigenvector PDFs, where N, is
the number of parameters in the fit. For each parameter 7, there are 2 corresponding
eigenvector sets Sf, depending on whether the shift has been performed to the left or
the the right side of the minimum, with a tolerance of 7' = 10. The eigenvector sets are
obtained by an iterative procedure of diagonalisation of the Hessian matrix. The final
uncertainty on a quantity X is given by the symmetric Hessian method

AX = % i(X(sj) — X(S7)) (2.39)

i=1

2.2.2.3 NNPDF

The NNPDF collaboration [69] has also developed PDF sets by using very similar
input data sets as those already mentioned for other collaborations. The input data,
whose = and ) extend can be seen in Fig. 2.12, includes the updated HERA-I set,
Drell-Yann production in fixed-target experiments (E605, E866 deuteron/proton ratio,
but not the deuteron E866 data which showed low compatibility with other data sets),
collider inclusive jet production and the DO and CDF Z boson rapidity distributions.
The CDF W boson asymmetry is taken into account only with the low luminosity data,
which is known to be compatible with the other data sets.

The novelty of the NNPDFs is not so much the large set of data they are fitted
to, rather the new methodology which was developed especially for that purpose. The
NNPDF methodology starts by generating a large sample, of the order of 1000, of Monte
Carlo replicas N, of the original experimental data. Consistent error propagation is
handled by the Monte Carlo sampling of the probability distributions given by the data.
The N,., artificial replicas are generated following a multi-gaussian distribution, centred
on each data point and whose variance is given by the experimental uncertainty. The
minimisation of the x? function is done using neural network techniques by training
of a set of PDF parametrisations on each of the replicas. The optimisation is stopped
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Figure 2.12: Input data for the NNPDF 2.0 data set, displayed in the (z,Q*/(M?p2)) plane.

dynamically to avoid overtraining, as the PDF sets should reflect the general underlying
laws but not be sensible to the statistical noise. Estimators are then applied to the
PDFs to assess their statistical consistency. The central value PDFs S° are given by the
average of the N, replicas

Nrep
> S (2.40)

i=1

&:<S>:N@

The resulting PDFs have been compared to CTEQ6 and CT10. The most noticeable
difference is for the small x gluon distribution, which shows significantly larger uncer-
tainties in NNPDF that CTEQG6, but comparable to MSTW2008, which includes an
extra parameter to describe the low = gluon region. A recent update of the PDFs, called
NNPDF 2.1 [70], includes now heavy quark mass effects, as was done for the MSTW2008
sets. The deep-inelastic charm structure function data has been added to the input data
sets. The update also includes now PDF fitted with varying charm and bottom masses,
permitting important uncertainty studies, especially for Higgs boson and single top pro-
duction. 3- and 4-flavour scheme PDFs are also part of the latest package.

A set of 100 replicas is available to assess the PDF uncertainties. The uncertainty on
an observable X is then given by one standard deviation

Nrep
1

MX=A K==\ Y= (Xi—X0)2. (2.41)

(2
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2.3 The mass mess

The special treatment of the bottom quark in the PDF modelisation leads us to a

more general problem on the concept of mass in quantum field theory. As experiments
thrive hard to extract physical observables from their data, the notion of mass seems to
lose its original clear meaning. In classical physics, the concept of mass has an absolute
meaning, be it for the inertial m; or the gravitational mass m, and it is an experimental
fact that both coincide m; = my. In special relativity, it stands for the rest/on-shell
mass as the norm of the four-momentum p? = m? and is a scalar in the tensor sense of
Lorentz transformation.
In quantum field theory however, particles are described by field-valued operators made
from creation and annihilation operators and the Lagrangian operators are constructed
using the correspondence principle. The poles in the propagators can correspond to the
classical particle poles, if the on-shell renormalisation scheme is applied. UV divergences
from quantum corrections have to be removed by renormalisation, because the fields,
couplings and parameters, such as the masses, in the classical action are bare quantities
and have, before renormalisation, no physical meaning.

But different mass definitions exist, de-

pending on what exact quantity one sub-

My = 104 Gev tracts in the particle self-energy. They
{ are all related through a perturba-
| tive series, but some are more suited
. than others, depending on which pro-
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Figure 2.13: Electroweak fit as a function of % change in the favoured Higgs mass
the SM Higgs boson mass [71]. my.
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2.3.1 The pole mass

Since quarks cannot be observed as free particles, the concept of quark mass becomes
somewhat different and the use of the pole mass may cause problems [72|. A special
formalism has been developed in order to address such questions: the Heavy Quark
Effective Theory (HQET) [73]. In this formalism, it has been shown that no precise
definition of the pole mass can be established in a full theory which incorporates non-
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perturbative effects. This results from the presence of an infrared renormalon generating
a factorial divergence in the higher order corrections of the strong coupling ;. Incorpo-
rating the running coupling constant in the pole mass M, the difference between the
pole mass and the scale dependent mass mq (1)

8 Bk a,(k?)
Mg — mg(uo) = / —. (2.42)
@ e 3 k| <po (2m)® k2

Using the the strong coupling series

o as (413) oy (s (18) | pEN”
as(k”) = — = a, () In=) (2.43)
1= (b (13)/(4m) ) n(a3/R?) nZ‘a( = )

and performing the change of variables x = k/ o, the mass difference 2.42 can be written
as

3

_ 40‘8 “0 i (bo‘zﬁ )n (2.45)

C, = /01 dx(ln %)" (2.46)

The integrals in the C,, coefficients can be repeatedly integrated by parts, and since the
part in between brackets always tends to 0, we have

C, = [(ln%)n};+2n/ dx(lnﬁyl_l (2.47)

= (20) x (2(n—1)) x (2(n —2)) - - /0 dx (2.48)
= 2"nl. (2.49)

8 [ pdda® o (1) =/ bag (13 1\~
Mg - mo(ud) = T [ FeEs el 5 (Rl ) (2.44)

with

This means that when higher order effects are taken into account the self-energy exhibits
a renormalon-like behaviour in the low-energy regime

Z my) & tha"“ (260)"n! (2.50)

where [y is the first coefficient of the J—function. So the linear sensitivity to infrared
momenta leads to factorially growing coefficients in pQCD. This non-perturbative am-
biguity is an issue relevant for heavy quarks because it results in an uncertainty of order
Am =~ Agcp on the heavy quark mass. Since QCD becomes non-perturbative in the
low energy regime, these long-distance effect besmirch the perturbative calculations and
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leftover uncertainties due to these effects cannot be gotten rid of. This becomes some-
what problematic at the moment, since experiments at the Tevatron, and some day at
the LHC, have been able to bring down their uncertainty limits on the measured top
mass to the theoretical limit of the mass definition. So even if we measure the top mass
as precisely as possible, we still don’t know exactly what we measure.

Although the pole mass is probably the easiest to grasp conceptually, it is not ap-
propriate in all situations and may lead to artificially large corrections in higher order
terms. In experiments where heavy quark masses need to be known with uncertainties
below O(1) GeV, short-distance mass schemes [74, 75| must be used, as is already done
in Quarkonium and B-physics.

2.3.2 Short distance mass schemes

The MS mass, which will be detailed in Section 3.2.4, is relevant in processes in
which the top quarks are off-shell and energetic. Logarithms of the form In(u?/m?)
are resummed in the running of m,(u), thus eliminating potentially large contributions
when the renormalisation scale is chosen of the order of the hard scattering scale () and
if Q >> m;. The M S mass is not suited however for ¢£ production at threshold, since
it exhibits a strong dependence on the top quark velocity v due to terms of the form
(as/v)* which are enhanced when v tends to 0. The generic form of a short-distance
mass scheme is [76]

Qs a2
m*d(R) = mP'e — R(mﬂ + a2<ﬂ> + .. ) (2.51)
where the a; coefficients are chosen so that the renormalon is removed, and the scale R
is of the order of the momentum scale relevant for the process. The MSbar mass is thus
a short-distance mass with R = m(u) and a; = 16/3 + 41n p?/m?.

Attempts [77] are ongoing to define a short-distance top mass which could in principle
be determined with an accuracy better than Agcp, by establishing a factorisation for-
mula in terms of jets and soft components in the framework of Soft Collinear Effective
theories (SCET), valid in the Q >> m; >>I'y >> Agcp regime. Other mass definitions
for heavy quarks have been proposed over the years. Threshold masses, like the 1S- or
the potential-subtracted mass, are useful for heavy quarks close to their mass-shell, as
in quarkonium bound states for example. Also, jet masses have been defined in col-
lider physics, where the scale is of the order of the quark’s decay width R ~ I'g. This is
useful for single quark resonances, where heavy quarks are very close to their mass-shell.

If we think about top mass reconstruction at hadron colliders, where the decay prod-
ucts form jets and those are summed m? = >~ p?, the measured quantity does not exist
a priori and is defined only through the experimental prescription. So the question
one has to address is how does the reconstructed top mass relate to the simulated MC
mass? In the pole mass scheme the quantum corrections down to 0 momentum are
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kept in the perturbative calculation. In the MC however, the perturbative contributions
in the PS are switched off by the shower cut-off. This means that the MC mass will
have no renormalon problem, but it won’t certainly be the pole mass. The MC mass
is thus in principle a short-distance mass. but it is difficult to identify it clearly with
a standard mass concept with leading order shower elements implemented, since it de-
pends on the structure of the perturbative part and on the interplay of perturbative and
non-perturbative parts in the MC. And since the standard Tevatron analyses, such as
the template or the matrix-methods, are driven by MC PS generators such as Herwig
and Pythia, this is clearly an issue. In those programs, top decays are matched to their
exact tree level t — bW g, but virtual corrections are only included in the soft/collinear
limit via the Sudakov form factor. There also remains an uncertainty due to the colour
flow and hadronisation models. In principle, higher-order corrections are available even
for top decays, but these are often too inclusive to be used by the experiments in a
straightforward fashion, as results are expressed in terms of the b quark energy frac-
tion in the top rest frame, and this is a very difficult observable to measure. Another
work [78] has recently become available, recomputing several quantities relying on top
decays at next-to-leading order using the pole mass but no comparison to data has yet
been performed.



"... yes, here, a mistake, a stupid mistake of four hundred and ten lire in an addition." At the
bottom of the page the total is ringed in red pen. "And nobody realized, only I know about
it, and you’re the first person I've told: keep it to yourself and don’t forget! And then, even
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NLO partonic cross section
calculation

We have seen that the factorisation theorem allows to separate a hadronic collision
into non-perturbative and perturbative terms by the use of parton distribution functions
and we can now concentrate on the partonic cross section. The calculations of higher
order terms in the perturbation series become more and more complex as the order
increases. Currently Next-to-Leading Order (NLO) processes for the most important
production channels have been implemented in Monte Carlo event generator codes. The
NLO term gives not only a more precise evaluation of the cross section, i.e. changes
the normalisation factor, but may also alter the shape of various distributions. Another
improvement over the Born approximation is the reduced sensitivity to unphysical scales.
For charged Higgs boson production in association with a top quark, this calculation
has already been performed several years ago [79, 80|, but in a fashion which does not
allow a straightforward Monte Carlo implementation. Therefore, we have recomputed
the calculation as a cross-check and used a different formalism. The different ingredients
of a NLO calculation, which will be presented in this Chapter, are:

1. the leading order (LO), also called Born or tree level, process,

2. the NLO contributions, which are split into two categories:

e the virtual contributions, which contain divergencies from the high energy as
well as the low energy regime. High energy poles are regularised and then
renormalised, while low energy poles are kept to be cancelled later on,

e and the real emission contributions, which also contain divergencies from the
low energy spectrum,

3. a method to cancel the divergencies between the virtual and real contributions.



52 NLO partonic cross section calculation

3.1 Partonic cross sections

Particles are described through Green’s functions. The practical meaning of Green’s
functions is that if we know the solution of a given differential equation in one specific set
of parameters, then we can have access to it in all the possible configurations. They are
not necessarily physical observables by themselves, but can be linked to cross sections.
The scattering matrix, or simply S-matrix, relates incoming particles with momentum
eigenstates to outgoing particles with momentum eigenstates, and can be derived from
Green’s functions via reduction formulas. It can be decomposed as an identity matrix
an a transition matrix 7,

S=1+iT, (3.1)

where the transition matrix contains a momentum-conservation delta-function as well
as the matrix element or Feynman amplitude M:

T[(pa,pb) = (p1, -+ ,pn)] =
—i(2m)%8* (P 1) = (o1 + -+ o) | M [ (Pas ) = (pre - o)) (32)

The squared matrix elements are related to the partonic cross section o via the integra-
tion over the differential phase space dPS,, for n final state particles

dPS, 1
| (Paspp) = (p1,- - ,pn)} = | —F C'S'IM[(pa,pb) — (p1,- - 7pn):|‘27 (3.3)

where the coefficient 1/(C;S;) averages over the initial state colours and spins and M
is the matrix element. The flux factor for two massless incoming particles is given by
F = 2s, and dPS,, contains now the momentum conservation constraint

n d3p
aPS, = [T (5rass ) Ni2m) 6" (b pu) = (pr -+ + 3.4
The amplitudes can be expanded in a perturbative series in the strong coupling g;

(M((pa:pr) = (s 5 p))I* = [9:Mp + geMp + giMy + -+ |7 (3:5)

Matrix elements with one additional coupling with respect to the Born diagram Mg
are called real emission corrections Mg and those including an additional g2 factor are
the virtual corrections My,. By squaring the matrix elements, the series can now be
expanded with respect to ay = g2/(47) :

oWEO) — o 01O 1 a20NLO 1 O(a?), (3.6)

in which the Leading Order (LO)/Born term consists of Mg M7. The Next-to-Leading-
Order (NLO) terms are the sum of the virtual and the real contributions,

oNLO = oV 4 o, (3.7)

where the virtual part is proportional to 2Re(My M7;) and the real part to Re(M g M7,).
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Leading order t i~ production At tree level and in the 5-flavour scheme with active
bottom (b) quarks as well as gluons (g) in protons and anti-protons, the production of
charged Higgs bosons (H ™) in association with top quarks (¢) occurs at hadron colliders
via the process

b(p1) + g(p2) — H™ (k1) + t(k2) (3.8)
through the s- and t-channel diagrams (S and 7°) shown in Fig. 3.1. The massive top
quark is represented by a double line, whereas the bottom quark is treated as massless
and represented by a single line.

b(p1) H~ (k1)

9(p2) t(k2)
t(k») 00000 ———

(a) S-channel (b) T-channel

9(p2)

Figure 3.1: Tree-level diagrams for the associated production of charged Higgs bosons and top
quarks at hadron colliders.

The associated Mandelstam variables are

s = (p+p2)? = (k1 + ko), (3.9)
t = (pp—ko)? = (k1 —p1)? (3.10)
u = (p2—k)*= (k2 —p1)?% (3.11)
and one of them can be replaced using
s+t+u=m?+mi. (3.12)

Since the incoming particles are a gluon and a quark, averaging over the spins gives a
factor S;S9, = 4 and the colour averages are C;, = No = 3 and C, = NZ — 1. The LO
amplitude squared contribution is given by

IMp|? = SS* + ST* +TS*+TT* = SS* +2ST* + TT*, (3.13)

or, in terms of the Mandelstam variables,

1
|MB|2 = 4\/§QS(A2 + BZ)GFT‘-CFNCWX

2my (m? —t) + 2m3, (t(s +1t) — mf) +(mi—s—1) (mt4 — smj +t(s+ t))], (3.14)

where A = my;/tan 3 and B = mytan 3. The 2-particle final state phase space can be
written as

dt

with integration limits

b jmin =M+ 3y = %\ /(s = m? = mi )2 — dmdmE.(3.16)
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3.2 Virtual corrections

In this Section, we concentrate on virtual diagrams and the different associated di-
vergencies. The calculation of loop diagrams involves complicated integrations and a
general approach is introduced, which ultimately leads to a set of useful analytic rela-
tions. After applying these to the virtual diagrams for tH~ production, we turn to the
concept of renormalisation in order to remove some of the bothering poles.

Virtual diagrams are characterised by the presence of an additional particle which is
emitted and then reabsorbed by particles contained in the Born diagram.
As an example, think of a quark emitting and re-

absorbing a gluon, as shown in Fig. 3.2. Accord- q

ing to quantum mechanics, the shorter the time of

the emission, the higher the energy of the emit- g@b@%

ted gluon. It also works the other way around,

the gluon can have very low energy and live quite D D+ q »

long. As every case has to be taken into account we

must to integrate over the unconstrained momen- Figure 3.2: Quark with four mo-
tum ¢. Since the momentum integration runs from mentum p emitting and reabsorbing a
zero to infinity, these boundary values can cause gluon with an unconstrained momen-
divergences. If they occur for the low-energy limit tum g.

(E — 0), they are called infrared (IR) divergencies.

If however the other integration end at high energies (£ — oo) diverges, the integral
contains an ultraviolet (UV) pole. The first step of virtual calculations thus consists in
taking control of these poles by regularising the integrals.

3.2.1 Regularisation methods

Over the years, different regularisation methods have been developed. As the problem
arises at the high-energy as well as the low-energy limit, the most intuitive method is
to cut the integral off at a scale A before the problem arises. Early calculations in
QED have been performed using this cut-off regularisation [81]. However, since this
is only applied on the energy-coordinate, the result is not Lorentz-invariant nor gauge
invariant anymore. An alternative method is the Pauli-Villars regularisation [82],
in which one introduces auxiliary fields with large mass in order to achieve convergence
of the integrals. The use of a Pauli-Villars regulator conserves translation and Lorentz
invariance, and gauge invariance is preserved in QED. Massless Yang-Mills theories
such as QCD can also be consistently treated by this method. If, however, one is
interested in massive Yang-Mills theories, like the Weinberg-Salam theory for example,
the Pauli-Villars regularisation method does not conserve gauge invariance anymore.
Other methods worth mentioning are the analytical regularisation [83|, the higher
covariant derivative method and the zeta-function method. A method which
has become very popular and which will be used in this calculation is dimensional
regularisation, where the space-time dimension D = 4 — 2¢ is kept different from 4 via
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the parameter ¢, supposed to be small. The idea behind dimensional regularisation can
be illustrated by a very simple example. The integration of the term 1/r? depends on
the dimension of the integration measure. Changing it converts the UV pole to an IR
pole or makes the integral convergent altogether, as shown in Tab. 3.1.

Table 3.1: Integration example with altering integration measure.

uv IR

oo {3 .

0 % Divergent  Convergent
2 . .

o <> Divergent  Divergent

0 dr .

o +z Convergent Divergent

Depending on the sign of €, we will deal with different divergencies: ultraviolet diver-
gencies for positive values and infrared divergencies when ¢ is negative, thus allowing us
to handle both types of poles with the same regularisation method. Simple poles can
now be collected as 1/e—terms, double poles will appear as 1/e*—terms.

Dimensional regularisation Dimensional regularisation has been introduced in 1972
by G. 't Hooft and M. Veltman to show that, contrary the the Fermi model, the elec-
troweak Standard Model is renormalisable. The advantage of this method over others
is that properties such as gauge invariance and unitarity are preserved. All objects are
continuated from 4 to D dimensions. The integral measure now reads

and the change in dimension of the integral and the coupling constant is compensated
by a multiplication with
(2mp)* 7, (3.18)

where p is the renormalisation scale and has the dimension of a mass. All four-momenta
become

=% " 0% p%) — (% pt PP (3.19)

and the metric tensor contraction now yields
g =4—gh=0D. (3.20)

The Dirac algebra is also extended to D dimensions, and the anticommutation relations
of the Dirac matrices obey

{7",7"} = 29"1p, (3.21)
where 1p is the identity matrix in D dimensions. We have
YW = D,
VY = (2= D),
VA Y Y = 4Ag" — (4 = D)y,
VY'Y e = =297 + (4 = D)y
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This will be particularly important in trace calculations, since it leads to e-dependent
terms, which need to be kept, since they produce finite terms when multiplied with a
pole. The definition of 5 cannot be given straight away. For D = 4, the Dirac matrix
vs5 is defined as

—i
Vs =~y Epno Vi Vo Vo (3.26)

where €,,,, is the totally antisymmetric tensor. This is a purely 4-dimensional object
which cannot be self-consistently continuated to D dimensions. For practical purposes,
one defines an object which satisfies the anticommutation relation {~s,~v*} = 0. In theo-
ries with anomalies®, the treatment is therefore different and is done via the dimensional
reduction scheme.

3.2.2 Relevant integrals for loop calculations
Generic integral

We will now investigate a very useful general integral to aid us in loop calculations.
In the simplest case we have to deal with integrals of the type

:mmz/fq !

(q2 —A +z’z—:)n'

(3.27)

Depending on the particles involved, more complicated expressions can occur, but
which can be related to this generic integral Z,,(A). It is therefore convenient to eval-
uate it once and for all. The poles of the function being integrated are located at

|
9, - A+ic=0

S @G- —-A+ie=0

Y

X\ N These are the wusual poles of the
7 7 Re(q) propagator and have nothing to do
° with IR or UV poles. Those will
only show up later. We may now
choose an integration contour along the
real and the imaginary axis, as de-
picted in Fig. 3.3 and use the Cauchy
Figure 3.3: Integration contour therorem.

! The symmetry of the Lagrangian is classical and there is no guarantee whatsoever that the symmetry
also hold on a quantum level. The case for which the classical symmetry of the Lagrangian does
not survive the process of quantisation is called an anomaly. If the anomalies do not cancel then
the gauge theory cannot be renormalised.
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The area defined by the contour C does not contain any poles and thus

/ﬁ%/&”mf—A+w)":0 (3.29)
C

Integrating along both arcs does not give a contributions and what is left is

/ dqo/dD_lq(QQ—AJrie)_" :/‘ qu/dD_lq(qz—A+i5)_". (3.30)

We now perform a Wick rotation exclusively on the energy coordinate and define a new
variable ¢, which allows us use a Euclidian metric

do = 19E,0, @k = 4B,k (3.31)
giving
2 o
¢ = —4g- (3.32)

Rewriting the integral using our new coordinate system yields
T,(A) =i / P gp(—1)" (% + A — ig)~". (3.33)

If we switch to polar coordinates to perform the integration we can write

o0 00 <q2 )D/2—1
/dDQE = /dQD/ dqpqy ' = /dQD/ dq%%, (3.34)
0 0

where (2p is the D-dimensional space angle

Q= % (3.35)
and T is Euler’s Gamma function?
Now Z,(A) yields
T.(A) = i(—l)”FZT;//ZQ) /OOO dq%%(q% +A—ig)™. (3.36)
With the change of variable .
yzﬁﬁ;f%, (3.37)

2The T function is given by
I'(z) = / t*~le~tdt.
0

A useful property for Taylor series developments around the poles is I'(z 4+ 1) = 2I'(2).
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the integral can be rewritten as

D/2 1
I.(A) = i(—l)"ir(D/Q) (A - i€)D/2_"/O dy(1 —y)P/2 -ty P
7P/2 n—
R S (el (3.39)
and the final formula yields
T, (A) = i(—l)"wDﬂw (A - i&?) e (3.39)

In this form, it can be seen in Fig. 3.4, that the divergence is caused by the gamma
function I'(n — D/2) if D > 2n.

=1

| --|-"..| L 1 L | s i |- .u- 1 L L s 1 L i

Figure 3.4: The gamma function I'(x) is divergent at the origin and for negative integers.

Thus, these divergencies may appear if n equals one or two, i.e. for virtual contri-
butions with one or two particles in the loop and they correspond to UV-poles. Since
integrals with three or more particles in the loop are convergent in the high energy limit,
those will be UV-finite. They may, however, still be affected by poles, but this time
from the IR regime, as may happen for some special argument set. Now that we have
a generic result, our next task will be devoted to link the general formula to concrete
examples of loop calculations.

Scalar integrals

The nomenclature of the basic set of scalar integrals is based on the number of particles
contained in the loop. This means that contributions which have only one propagator
involved in the loop are called an A-type integrals, while integrals with two propagators
are noted as B integrals and so forth, as illustrated in Tab. 3.2.
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Table 3.2: Nomenclature of the basic set of scalar integrals.

Notation Type Name Diagram
TN
I \
_____ ! ,
Ay 1-point-function | tadpole ol
TN
By 2-point-function | bubble s
i
/*\
RN
Co 3-point-function | triangle | - — /-~ s .
- T - - T - - -
f f
Dy 4-point-function box | -— _—_-<_ 4o

As an example, we will calculate the simplest scalar integral, the tadpole, by relating
its expression to the generic form we calculated before

2y _ (27W)4D/ D 1
Ag(m®) = e d qqZ—m2+i5 (3.40)
27TM 4—-D
— %h(m%. (3.41)

Replacing its definition, Eq.(3.39) we have

m? \(p-)/2,2— D
Ag(m?) = —m2(4w2) F(T). (3.42)

The pole of the scalar integral Ag(m?) becomes now apparent. It is encoded in the
gamma function, which becomes divergent for D — 4. Using

4—D
= = 3.43
(== (3.43)
as the gap between the number of dimensions D and 4, the scalar integral becomes
2
2y 2 " \—e
Ag(m?) = —m (47w2) I(e—1). (3.44)

To find the final form of Ay(m?), we expand
2 2

(m )76 = exp[—eln( n )] (3.45)

4 p? 4 p?
2

1
- 1- eln(4:’:u2) +0(&), (3.46)
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and by using I'(x + 1) = 2I'(z) twice, we can rewrite the Gamma function as

Fle—1)=

T 1>F(e +1). (3.47)

Using ﬁ =Y 2, «" for one term and a Taylor expansion for the Gamma function, we
have now

(e = 1)F(e +1) = %(1 +e+O())(T(1) +T'(1)e + O(e?)) (3.48)
= T -+ O (3.49)
= —(% +1—=75) +O(e) (3.50)

where the first derivative of the gamma function I'(1) = —yg = —0.5772 is called the
Euler-Mascharoni constant. By replacing those expansions we can collect the poles and
the constant coefficients

2

Ag(m?) = m2(% +1—7v+0(e)[1 - eln(!:MZ) + O(e?)] (3.51)
= m? [% —vg + Indr — ln(TIZ—j) + 1+ 0(e)]. (3.52)

As can be seen in this final expression, the Ay(m?) tadpole is proportional to the mass
of the particle in the loop. Thus tadpole contributions are zero for massless particles.
Another aspect which has been illustrated through this short example is the origin of
the mass logarithm, which depends on the renormalisation scale p. Additionally, and
we see where the factor —yg + In 47 comes from, which gets subtracted along with the
pole in the MS prescription (see below). For convenience, we therefore define

1
AUV = — —’)/E—i—h’l4ﬂ' (353)
€
Of course, the complexity of the calculation increases once there are more propagators

involved. If there are for example two propagators, we will use the following Feynman
trick® to bring the denominator into the suitable form:

1 L dx
ab /0 (a(1 — ) + bx)? (3:54)

3The general formula for the Feynman trick allows us to combine n propagators using

1 1 1 Tn—2
7:(71—1)!/ dml/ dxg---/ dx,—1
Hi:l,n @; 0 0 0

[a1Zn—1 + a2(Tn_2 — Tno1) + -+ an(l —a1)] "
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Further complications arise when one or more input values are zero, as some masses
for example, as they generate IR poles. A list of the special argument set that is needed
for top quark and charged Higgs production are found in App. C. This has been gathered
mostly by the more general list from reference [84].

Tensor Reduction

For the moment we have seen integrals in which the unconstrained momentum only
appears in the denominator. But depending on the particles involved in the loop, a quark
for example, it may also show up in the numerator, leading to a further complication. In

Figure 3.5: General loop with n external particles.

general, if we have n external particles and (n — 1) propagators, as shown in figure 3.5,
we can have tensor integrals of the form

%ﬂlmum (p17 Ly Pn—1yMo, * " 7mn71) -
(2mp)*—P /dD g - - g
T — q ; ; -
im? (¢> —mi + ze)((q +p1)2—mi+ zs) e ((q —pp)?—m2 |+ zs)

(3.55)

where ¢ appears in the numerator with p,, different indices. A way of making use of
all the work we did before on the scalar integrals is to use tensor decomposition to the
four basic scalar integral Ag, By, Cy and Dy. The disadvantage of this method is that
some special kinematic configurations can lead to linear equation systems that are not
invertible. But since this was no problem for the calculation of tH* production, we will
not detail this further.

As an example for tensor reduction, we will calculate a B class integral with one
momentum in the numerator. Again, this is a simple example; the higher the class
of the integral and the more momenta involved, the worse it gets. If one propagator
introduces a g-dependence in the numerator we have B*

Bt — M /qu 7" )
im? (¢* —md +ie) [(q + p1)? — m? + ie]

(3.56)
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We try to express this in terms of relevant four-momenta. Here, the only tensor available
is the momentum p;. The decomposition of B* can thus be written as

B*(pt;mg, m7) = p{ Bi(p}; mg, m7). (3.57)

To obtain the expression of By, we contract Eq.(3.57) with py,

27 )P P1-q
B*(p?:m?2,m?) = (7 /dD . (358
plu (pl 0 1) 'l7T2 Q(qz —m%+ZE> |:<q+p1)2 _m%_'_zg} ( )
and write the scalar product p; - ¢ as
1 . :
pr-q=5{lla+p)" —mi+ic] = (¢" —mg+ie) = (i —mi+mp)}.  (359)

Inserting this term into Eq.(3.58), we get a set of simpler integrals
2 2 o o (2mp)P1 (/ D / D 1
Bi(p7;ms,my) = ———— d N
piB(primo, my) = 5 Y —mi+ie Tt p)? —mi+ie

2 _ 2y 2 D 1
— 0)/d q<q2—mg+¢g>[<q+p1)2—m§+z’g>}>' (3.60)

Finally we can express B; using the scalar integrals Aq and B,

1
Bulpim,m) = o 5 [ Ao(md) — Ao(md) = (o = md -+ ) Bo(os )] (3.61)
1
Other terms may appear in the calculation, but they can all be decomposed using the
basic set of scalar integrals. It should however be noted that different decomposition
choices can be made.

3.2.3 Virtual contributions for tH~ production

We can now turn to the relevant virtual contributions for charged Higgs boson pro-
duction with a top quark. We need to calculate the self-energy contributions for the
external gluon, as shown on Figs. 3.6(a) to 3.6(d). The quark loop in diagram 3.6(a) can
be massless or massive in case of a top-antitop contribution. If the triple-gluon vertex
contribution of diagram 3.6(b) is calculated using the simple polarisation sum, the ghost
loop 3.6(c) has to be added to remove the unphysical gluon polarisations. Finally, the
tadpole contribution 3.6(d) gives no contribution, since it is proportional to Ay(0) = 0.
We also have to calculate self-energies for the massless and massive quarks, as shown
in Fig. 3.6(e). Bubble contributions are not the same if they occur on external legs or
on propagators, since in propagators the particle is off-shell. Thus we have different
contributions for the external b quark where p? = p? = 0, for the external top quark
where p? = p2 = m? and for the s- and t-channel propagators where p? = s and p? = {.
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Figure 3.6: Virtual corrections for tH~ production.
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There are also several vertex contributions to consider. In the s-channel, a gluon may
be exchanged between the two initial state partons, Fig. 3.6(f), or between the incoming
b quark and the b propagator, Fig. 3.6(g), or between the propagator and the outgoing
top, Fig. 3.6(h). For the t-channel, a gluon might be exchanged between the incoming
gluon and the external top, Fig. 3.6(i), between the top propagator and the outgoing
top, Fig. 3.6(j), or between the incoming b quark and the top propagator, Fig. 3.6(k).

Box contributions arise from the s-channel Born diagram if the top quark exchanges
a gluon with the incoming b quark, Fig. 3.6(1), or the incoming gluon, Fig. 3.6(m). In
the t-channel Born diagram, a gluon can be exchanged between the incoming b quark
and the top, Fig. 3.6(n), whereas the exchange of a gluon between the incoming b and
gluon gives the same contribution as we already constructed via the s-channel, so the
total amount of different box contributions adds up to three.

As an application of all we have seen so far, we will calculate the NLO contribution
to the bbg-vertex. As was already mentioned, these vertex corrections arise due to the
exchange of a virtual gluon between the b propagator with either the incoming b quark
or the incoming gluon. Both contributions have to be contracted with the s- and t-
channel Born diagrams. A first intermediate step gives the result as a function of the
basic scalar integrals

16a% (A? + B?) Cpr? "
s (mf —t)

2 ((m? =) mi + (m — s = 1) (mi(e = 1) = te)) Bo(0,0,0)

2|M‘/bngB‘2 =

+ <(e — D)my — ((2¢ + 1)mj — 3t + s(e — 1)) m3; + my (—26* + e+ 1)
—t(s+1) (224 1) +m2(2e + 1)(s(e — 1) + 126 — 1)))30(5,0,0)} (3.62)

for contribution 3.6(g) with the Born s- and t-channel, and

16a% (A* + B?) CpNEn? "

s(mi —1t)
[3 (my — (mf +s+t)mf —mi(e—1) —t(s +t)(e — 1) + mj(s(e — 1) + t(2e — 1))) By(0,0,0)
— (m3; —t) (m3; — s — t) €Boy(s,0,0)
+ s<—m‘}{ + (2m] + s) m3; + 2my (e — 1)

2|'/\/l‘/gbg'/\/lB|2 =

(s +1)(2e — 1)+ 2m2(s +t — (s + 2t)e)>00(0,0, 3,0,0,0)} (3.63)

for contribution 3.6(f) with the Born s- and t-channel. The O(e?) contributions in the
trace have been removed since they cannot give rise to finite contributions, as the max-
imum pole order is 2 for the Cj scalar function.
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After summing both contributions and replacing the scalar integrals, we can give the
final result ordered according to the poles

2(\vangB\2 + IMvgbgMB\Q) fovAuy + @ + fI—R + fo, (3.64)

where additional contributions to f, may still come from terms AUV /e =14 O(e), but
we will expand those only after renormalisation, since some terms will drop out.

The coefficient of the UV pole is given by

o (A2 + B2 C
fov === (€= 3NE — e 1)mi
+ ((BNE = 1) (m] +s+1t) + (2mi — NZs+ s — 2NZt) €) m;
+my} (3(e—1)NZ —3e+1) +t(s+1t) ((4e — 3)N& — 2e + 1)

—m? (s (3(e = NE = 3¢+ 1) + £ ((6e — 3)NZ — de +1)) ). (3.65)

The IR double pole coefficient is given by
Oé?g <A2 -+ BQ) N¢
2s (m? —t)

(NG —1) (my; — (2mf + s) mi; +2m; —2mj(s+t) +t(s+1t)), (3.66)
the IR simple pole coefficient is
af (A*+ B*) (NZ —1)

2Ncs (m? —t)

(38NZmdy — ((3NZ —2) mi + 2t + 3N3(s + 1)) m,

—2my} + mi NE + NEt2 + 2m?s — m2NEs + 2m?t + m2Nit + NZst
— N& (miy — (2m; + s) m3; + 2my — 2mi(s + 1) + t(s + t)) log(s/mt)) (3.67)

fIR2 = -

fir=—

and the constant term is given by

Oz?g (A2 + Bz) CF
2s (m? —t)

fo=-

2
<N(% (mé, — (me + s) m? + me — me(s +t)+t(s+ t)) log <_%)
t

—2(=2mip+2 (—mf + s + 3t) my+3m{ Na+ (3NZ — 4) t(s+t)+m; (2t — 3N (s + 2t))
+(my + (mf — s = 3t)my; —mf (2NE+1) — (2NZ — 1) t(s + 1) + m] (2sNZ + 4NZ + 5+ 1))

log (mi%))) (3.68)

In order to have a complete result, all the diagrams of Fig. 3.6 have to be calculated
in this fashion, and the poles gathered as we just did. Once this is done, the UV poles
have to be removed via renormalisation.
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3.2.4 Renormalisation

Nowadays the term renormalisation is often straightforwardly associated with quan-
tum field theory, since it received a great deal of attention in this area in the 60s. But
this method is largely applied in other domains as well. The basic concept of renormali-
sation reaches far back, to 1877, where it was applied for the first time by Boussinesq to
turbulance diffusivity. Later, more concrete examples were the Weiss theory of ferromag-
netism in 1907 and the Debye-Hiickel theory of the screened potentials in electrolytes in
1922. Those examples are still classical physics. The process of renormalisation will re-
sult in replacing a bare quantity by a renormalised, i.e. an effective quantity, introducing
a scale dependence on it.

Electron in an electrolyte Consider a single electron in classical mechanics, with
electric charge e. Its potential at a distance r is given by Coulomb’s law
Vir) = <. (3.69)
r
If however this electron is surrounded by others, like in an electrolyte for example,
the induced charge is screening the Coulomb potential, which, according to the Debye-
Hiickel theory, can be expressed as
eexp(—
V(r)= 7(”7), (3.70)
r
Ip being the Debye-Hiickel length. The screened potential has the same form as the
Coulomb potential if we replace the bare charge e by the renormalised charge e exp(i),
which does now depend on the space coordinate r.

Renormalisation in QCD The previous section Section showed that in calculating
higher order corrections the different terms that we compute can have infinite values.
The ultraviolet divergencies came from the fact that we used inappropriate bare quan-
tities which have no direct relation to observables in an interacting theory. The renor-
malisation method consists in redefining multiplicativly new parameters by only a finite
number of redefinitions and thus eliminate all ultraviolet infinities. It is important to
note that renormalisation would have to be carried out in an interacting theory, even if
infinities were absent. In that case, physical quantities could be expressed through bare
quantities, but it is more convenient anyhow to express them in terms of experimentally
measurable quantities.

QCD is a non-abelian gauge theory* whose quark fields 1, with mass m, belong to the
fundamental representation of the SU(3) group. The generators T generators satisfy

4A passage from A. Zee’s book “Fearful symmetry” takes us back to the birth of the theory when it
was still only a mathematical appealing construct with no link to reality: “When Yang-Mills theory
first came out, the community of theoretical physicists agreed that it was indeed beautiful, but no
one, not even Yang and Mills, had the foggiest idea what is was good for. Most physicists simply
mumbled that it is too bad that we do not live in a non-abelian gauge world, shrugged, and went
on with whatever they were doing. ”
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the Lie algebra
[T, T%] =if*Te, (3.71)

where f¢ are the structure functions characterising the algebra. Gauge invariance gives
rise to the Af gluon gauge fields, belonging to the adjoint representation. The strong
coupling constant between the matter fields ¢ and the gauge fields A, is denoted gs. The
QCD Lagrangian can be decomposed into a free part £y and an interaction part L;,; [85]

Locp = Lo+ Lint. (3.72)
The free part reads explicitly

1 a a av v Aa 1 a . a a T 7
Lo = =7 (0u A5 =0, AL)(9" A = 0" A™) = o (" AL)*+1(9"X1) (9px5) + " (190 — )Y,
(3.73)
where the term proportional to 1/(2«) is the gauge-fixing term and y are the Faddeev-
Popov ghost fields. The interaction part is given by four terms, which are the three-

gluon, four-gluon, ghost-gluon and quark-gluon interactions
L. = — %fabc(a A — 9 Aa)AbuAcu o g_?fabefcdeAaAbAcuAdu

nt — 9 wty vily 4 IT”
— g5 (D" X)X A, + g T ¢ Ay,

In order to obtain the renormalised Lagrangian, the gluon, quark and ghost bare fields
are rescaled by the field-strength renormalisation constants Z;,

AL =24 A% b = N2y b, X =V Z X, (3.75)

and the bare masses and coupling are also expressed as parameter renormalisation con-
stants Z; and renormalised quantities

(3.74)

g = Zggra o = ZSQM m = mer- (376)

The renormalisation constants are expanded in infinite series, each term cancelling
the divergence of specific graphs. At one-loop, we only need the first term of the series

Z=1+6Z. (3.77)
By plugging this into the Lagrangian, Eq.(3.72), we obtain a new Lagrangian
L= ‘CO,T’ + Lint,r + ECa (378)

where the original Lagrangian is recovered Ly, 4+ L, but is this time expressed solely
via renormalised parameters. The additional part Lo gives rise to new contributions.
These counterterms have to be added to the calculation as they will ultimately cancel
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the ultraviolet divergencies. The counterterm Lagrangian is given by

1 : o o
Lo =—0Za7(0u A7, — OA7,) (AT — 0" AD) + 102, (9"X3,) (Dux3:)
+ 0 Zyn (i — M)ty — Zyd Zmy

2
3/2 Gsr abc a a cv gsr abe rcde pa c v
- (ZHZA/ - 1)7]0 ’ (aﬂArV - aﬂAr,u)AguAr - (ZSZEX - 1)?.]0 ’ f ¢ AruAguAruAg
~i(Zy 021 = D garf (O X)X ALy + (226217 = Vgt T 1A,
(3.79)
Again, we only keep terms of the first order here, which means that the counterterm for
the gluon-quark-quark vertex, for example, will be proportional to

Z, 202 =14+ 62,402, +1/2024 + O(52). (3.80)

Field and mass renormalisation A renormalised field is one whose propagator has
the same behaviour near its pole as a free field. The renormalised mass is defined by
the position of the pole. The Dyson series for the quark propagator is just
GO _ i 1 = 1 1 = 1 > i
< (p,—p) p—m+p—m2 @)p—erp—mZ (zﬁ)p_mZ (p)p_m
k
)
~1
)

k=0

= > <z’2(p)¢ —
P

= ﬁ(1+2(

| p

= T (3.81)

2

Figure 3.7: Contributions to the quark self energy Y(p): emission and reabsorption of a gluon
by the quark (left) and counterterm contribution (right).

The renormalised one-particle irreducible self-energy is the sum of the self-energy
contribution and the counterterm, Fig. 3.7. Tt reads

OésCYF

() = ==L (BW)p+ AW)) + (0Zup = (024 + 0Zn)m), (3.82)

where A and B can be given in terms of scalar integrals

A =m(4 — 2¢)By(p*;m?,0) (3.83)



3.2 Virtual corrections 69

and
B=(2—2) [Bo(p2; m2,0) + By (p%:m?2,0)]. (3.84)
We rearrange the terms for later convenience as
A
X(p) = p(B(p) +0Zy) + (% — 0Zy — 0Z,)m (3.85)

The mass counterterm 07,, will now be fixed by the pole condition. The residue
condition determines the expression for the fermion field counterterm 07,.

Different renormalisation schemes Renormalisation is a method to remove the UV
poles in loop calculations via counterterms, so the main focus lies on the UV divergence.
But the counterterms may remove more than just the pole. The different renormalisa-
tion schemes thus define which finite part is subtracted along with the pole.

When dealing with heavy particles, it is quite common to use the on-shell scheme,
since it is the most intuitive one. In this scheme, the pole of the propagator is at

p* = m2,,., where m?, _is the physical mass of the particle. The condition that the
pole occurs for p? = m;hys can be transcribed mathematically as
- -1
GO, ~p)|  up)lpome =0 (3.86)
& —Z(p —m+ E(p))u(p)\pzzmz =0 (3.87)

= (1 + B(]ﬁ) + 8Z¢)p — m(l — % + 8Zw + 8Zm) |p2:m2 =0 (388)

Since the particle is on shell, we can use the Dirac equation pu(p) = mu(p), giving

B! oS
0Z,, = S = B(m?) + m2A(m?), (3.89)
m
which reads explicitly
o oS 1 4 2
mn :—%3CF<——’YE—|—1H47T+——|—1HM—R). (3.90)
m 4 € 3 m?

This counterterm clearly includes finite parts. Other schemes may now be defined,
depending on which finite terms are subtracted.
The M.S scheme typically subtracts only the divergence

omM* Qg 1
_ %30 (—) 3.91
m 47" F e ( )
while the M S scheme also removes finite geometric terms,
omMs 1
T - %830, (— N ln47r). (3.92)
m A7 €
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3.2.5 Counterterms for tH~ production

The ultraviolet divergencies contained in the virtual cross section do" have been made
explicit using dimensional regularisation with D = 4 — 2¢ dimensions and are cancelled
against counterterms originating from multiplicative renormalisation of the parameters
in the Lagrangian. In particular, the counterterm for the strong coupling constant

Qg = gg‘/(4ﬂ->7

_as(pR) .. 2 2 pp
dgs = [AUV< Vo 3NF> In £ } (3.93)

is computed in the MS scheme using massless quarks with Ay = 1/e — g +In4n, with
N¢ = 3 and Nr = 6 being the total numbers of colours and quark flavours, respectively,
but decoupling explicitly the heavy top quark with mass m; from the running of a5 [86].
The top quark mass is renormalised in the on-shell scheme,

- _Oés(/ﬁz) é @
= A 3CF <AUV + 3 + In m2), (394)

t

0s
omy

my

where Cp = (N — 1)/(2N¢). On the other hand, we perform the renormalisation of
both the bottom and top Yukawa couplings in the MS scheme,

Oyt as(pf)
e~ = — 3CrAyy. 3.95
Yot (1) dm IOV (3.9
This enables us to factorise the charged Higgs boson coupling at LO and NLO, making
the QCD correction (K) factors independent of the 2HDM and value of tan 3 under
study. The Yukawa couplings in Eqﬁ%) are evaluated at the process energy scale
fixed at pp using the running quark M.S masses from an initial scale Mg

c(aulun)/7)

m (1) = m (Mg) (3.96)
e(as(Mq) /)
, where
93\ 12/23 ,
o(z) = <€x) (1+ 1.1752 + 1.50122) for My < g < M, (3.97)
and
7\ ,

c(z) = (533) (1+ 1.398z + 1.79322) for pp > m;. (3.98)

The starting values of the MS masses can be obtained from the on-shell masses M
through the relation

Mq
| 4 das(g) +KQ(aS<MQ>)2

mq(Mg) = (3.99)

3 T T
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with K, ~ 12.4 and K; ~ 10.9.
Wave-functions are renormalised in the M S scheme

2
07 = SR 30 A (3.100)
41

Thus, the complete bbg—, resp. ttg—, vertex counterterm contribution is given by

A

1 1
|:5Zg + §5ZA -+ 2§5Zw,b/t] B(D) = [471‘

(Ne + Cp) A] Bip). (3.101)
and the Hbi— vertex counterterm reads

1 1 1 1 Qs 3 (4 mt?

where B(p) is the Born term calculated in D dimensions

1 s 2V20a,(A*+ B)Gpr 1

By = <5lMsl* = N = Mo+ emy), (3.103)

with
2mi;(m? —t) + 2m?% (t(s +1) — mf) + (m? — s —1t) (m;l — sm? +t(s + t))
My = >
(mi — 1)

(3.104)
and

My =—(s+t—mj)> (3.105)

If (¢ — 0) we see that Eq. (3.103) indeed reduces to its 4-dimensional expression,
Eq. (3.14).

3.2.6 Renormalised virtual contributions for tH~ production

We have just seen that in order to compute a cross section that is UV-finite, we
have to calculate all virtual contributions with renormalised quantities rather than bare
quantities and add the counterterms. All renormalised contributions for t H~ production
are shown in Fig. 3.8, where the blob indicates the loop contributions added to the
counterterms.

If we turn our attention back to the vertex correction we calculated earlier, we see that
the renormalisation of this vertex is given by the counterterm contribution multiplied
with the Born matrix elements

a% (A* + B*) CrN¢ 5
a 3s(m? —t)
(myy — (mf +s+t)mf —mi(e—1) —t(s+t)(e — 1) + mj(s(e — 1) + t(2e — 1)))

2
(6(CF + No)Ayy + (11N — 2Np) log (i—g) —2(3Ng + 1) log (%)) (3.106)
t

2QAMeMp|* =
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Figure 3.8: Virtual renormalised contributions. The grey dot indicates the NLO virtual
contributions plus the counterterm.

and the sum of this term with Eq.(3.64) will yield no UV pole anymore but a remaining
finite term

o (A* 4+ B?) (Ng — 1) y

2Nes (m? —t)
((NZ =1)my + (2m§ — Nés + s — 2NZt) m3, — 2my +2m; (s +t) + (N& — 1) t(s —|—(t)) . |
3.107

2(| My, M + [ Moy, Ml + [MoMs?) = -

Independence of the wave function renormalisation When renormalising the QCD
Lagrangian, we redefined the parameters such as the masses and the coupling constants,
but also the wave functions. Since the final cross section can ultimately only depend
on physical quantities, the wave function dependence must drop out. Sketching rapidly
what happens, we see that it does indeed. For example, the dependence on the gluon
wave-function counterterm is only included in the external gluon leg and the vertex
corrections and we see that the leg contribution will be cancelled by the sum of the
vertex corrections:

Leg —%5Z9 2 Born
S-Channel vertex | 167, 2 (8§ + ST)
T-Channel vertex | 267, 2 (TS +77T)

‘ Sum ‘ 0 ‘

This means that one can avoid calculating all these contributions, since they sum up
to zero. It is nevertheless useful to compute the amplitudes including the wavefunction
renormalisation to check UV-finitness of the legs and vertices separately.
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Remaining IR poles

The renormalised virtual cross section still exhibits some IR poles

Ty = / dPS® [(% + %)B(D) +Gol. (3.108)

where the double and simple poles are given by
C = ﬁ _ gzvc, (3.109)

C = ﬁ@ —4In mzn; “)
+% (-7 + 121nmi% +12In mfn?_ t) + %Np. (3.110)

The constant term C is too long to quote here, but can be found in the Monte Carlo
event generator codes.

3.3 Real corrections

We have just gone through an extended Section concerning virtual contributions,
where special calculus techniques were introduced and the renormalisation procedure
to be defined. For the next part of the NLO calculation, which are the real emis-
sion diagrams, the situation will be completely different. These diagrams allow for a
straightforward calculation and may be implemented as such in the code. The divergen-
cies occurring in these contributions will be taken care of by the subtraction formalism.

Real emission diagrams are constructed on one hand from the Born terms in which
coloured particles may emit an additional particle, or on the other hand, the tH~ final
state may come from different incoming partons altogether. Since the energy involved in
the collision is bounded from above, we won’t run into UV divergencies in this Section.
However, the additionally emitted parton can have an energy tending to 0 or may be
emitted collinear to another particle, and this gives rise to IR poles. For illustration
purposes, we’ll see what happens to a quark emitting a gluon, as in figure 3.9.

The denominator of the quark propagator prior

Py to emission reads
0 p_ 1 _ 1
(pg +pg)? — mg 2E,E,(1 — (3, cos0)
Py (3.111)

with 8, = (1— g—é)lﬁ. E; is the energy of particle i
and @ is the anglé between the quark and the gluon.
This expression exhibits two singular regions (P —
oo) which may overlap:

Figure 3.9: Gluon emission by quark.
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If the energy of the emitted particle tends to zero (E, — 0), the divergence is called a
soft singularity. If however the emission angle tends to zero (6,, — 0), it is called a
collinear or mass singularity, the second denomination because this only occurs if the
quark is massless. The Kinoshita-Lee-Nauenberg (KLN) theorem [87, 88, 89] guarantees
that for inclusive quantities these contributions are exactly the same as the IR poles in
the virtual term, but with this time a positive prefactor, so that their sum will be finite.

Real emission contributions for {H~ production

The real emission can be grouped into four processes:

e Process(a) : b(p1) + g(p2) — H™ (k1) + t(k2) + g(ks)
These contributions, which are shown in Fig. 3.10, arise when coloured particles
of the Born s- and t-channel diagrams emit a gluon. The additional gluon can be
emitted by either the incoming b quark or gluon, by the outgoing top quark, or by
the b or top quark in the propagator.

e Process (b) : g(p1) + g(p2) — tH ™ (k1) + t(k2) + b(ks)
Process (b) can be obtained from (a) by crossing k3 with —p;, and multiplying the
matrix element squared by a factor (—1) to take into account the altered sign of the
quark impulse in the spinor sum. The real contributions for two incoming gluons
are shown in Fig. 3.11. Since we computed them using the simple polarisation
sum for the external gluons, ghost contributions, depicted in Fig. 3.12, have to be
added to remove the unphysical polarisation states.

e Process (c): q/q(p1) + b(p2) — H™ (k1) + t(k2) + q/q(k3)
Diagrams for process (c) are displayed in Fig. 3.13. They require an incoming b
quark and another quark or antiquark.

e Process(d) : q(p1) + q(p2) — H™ (k1) + t(k2) + b(k3)
This process describes ¢¢ annihilation, illustrated in Fig. 3.14, and is convergent
for incoming quarks ¢ = u, d, ¢ and s, but interferes with process (c) for incoming
b quarks. These contributions are, however, negligible due to the low b-quark
distribution function.
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Figure 3.11: Real emission contributions in the gluon-gluon channel.
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Figure 3.12: Ghost contributions for the gluon-gluon channel.
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Figure 3.13: ¢/@b initial state processes.
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Figure 3.14: ¢q initial state processes.
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3.4 Catani-Seymour dipole subtraction

In QCD calculations beyond leading order, analytic calculations are in general im-
possible for all but the simplest quantities because of the complicated phase space for
multi-parton configurations. The use of numerical methods is ubiquitous but far from
trivial since virtual and real contributions have a different number of final-state par-
tons and thus have to be integrated separately over different phase space regions. Two
different approaches can and have been used to cancel the infrared divergencies that
appear at intermediate steps of the NLO calculation, namely phase-space slicing and
the subtraction method. In both, only the small part of the calculations which gives
rise to these singularities is treated analytically. The feature of a NLO cross section
calculation that makes it possible to define a process-independent method is that, in
the soft and collinear limit, the real cross section do® is given by the process-dependent
Born-level cross section do” times process-independent singular factors. In that sense,
the IR contributions to the real cross section are universal. The additional single-parton
phase space describes the two-parton decay and thus contains the kinematical depen-
dence on the degrees of freedom that lead to the IR poles.

The general philosophy of the phase space slicing method [90, 91, 92| is to intro-
duce an arbitrary finite cut-off §, with § < 1, in order cut out the divergent part of the
real contribution in such a way that it can be added to the virtual

U dx O dx 1
= M M - M
rev = [ M)+ [ S+ 1y

U dx O dx 1
/5 x1+sM($)+/O x1+eMO+EM0

U de 1 e
— /6x1+EM(x)+ (1—6)M,

€

Q

Q

U dx
The KLN theorem guarantees that M (0) = M. The overall dependence on 0 naturally
cancels out for 6 — 0. In computer simulations however, the finite accuracy may lead
to incomplete cancellations for different regions of phase space. The method’s disadvan-
tage is introducing this slicing parameter, which should in principle be sent to zero at
the end of the calculation but in practice cannot be chosen too small. This may lead to
uncontrolled errors, rendering the slicing method ill-adapted for numerical implementa-
tions.

An alternative approach is the subtraction method [93, 94, 95|, in which a general
term is added and subtracted in a suitable form for the real and the virtual poles to be
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cancelled

1 1 1
dx dx dx 1

= M(z) — M, — My + — M,

IR+V /OxHe () /0x1+e 0+/0 plte 70T 200

Y M(x) — M, 11

0
1

Q

M(z) — M,
M) =My, O(1) M. (3.113)
0 x
The advantage of the dipole subtraction method consists in replacing cancellation be-
tween integrals by cancellation amongst integrands.

Another issue arises when dealing with massive final state partons. We have seen
that QCD radiation off such a parton is infrared finite. It can however lead to sizeable
contributions, since some may be proportional to powers of In Q?/M?, where M stands
for the parton mass and () is the scale of the hard scattering process. These contribu-
tions are logarithmically enhanced in kinematic regions where Q > M and may spoil
the numerical convergence of the calculation. This means that special care has been
taken with the construction of the dipoles, so that the instabilities that such terms can
produced are minimised.

The Catani-Seymour formalism  Although MC@QNLO and POWHEG use FKS dipoles [94],
which are constructed automatically in POWHEG, we have built a standalone NLO code
using Catani Seymour dipoles [4, 5|, for checking purposes. This implementation will
be detailed here. In the Catani-Seymour dipole formalism, the master equation for the
NLO cross section can be written as

O_NLO(

) — NroR2k( 4 o NLOB)(

plaPZQN% p17p2) p17p2)

1
+/ dx[aNLO{z}(af;xpl,pz;u%)+0NLO{2}(x;p1,xpz;u%) . (3.114)
0

We will start by introducing the general colour structures needed for tH* production
at NLO and then detail the different dipole contributions.

Colour Algebra In this formalism, we denote the colour matrices as T; - T; = T, - T;
and T? = C;, where C; is the quadratic Casimir operator in the representation of particle
i. C; =Cr=(NZ—1)/(2N¢) in the fundamental representation and C; = C4y = N in
the adjoint representation.

We have

T;,lt;b,9) = Cpand (3.115)
T,|t;b,g) = Ne. (3.116)
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Since the process we are interested in involves only three partons ¢, b, g, the color algebra
can be performed in closed form and color conservation imposes

> Tilt;b,g) =0. (3.117)
i=t,b,g

Using this fact, we can easily derive that

0 = <ZT) It: b, g)

i=t,b,g
= (T} +T)+T24+2T, - Ty +2T, - Ty +2T,-Ty) [t;b,9)  (3.118)

and
(T~ Ty + Ty - Ty) [t;b, 9) = =T}t b, g). (3.119)
Finally we have
2Ty Tylt;0,9) = (T7 — T — T;) |t:0, 9) (3.120)
2T - Tylt;b, g) = (T, — T; = T}) [t: b, g) (3.121)
2T, Tylt;b, g) = (T5 — T —T3) [t;0, 9) (3.122)
The color structures we need are
N, 1
T, Tolt;b,9) = <CF - —C) t;0,9) = T\t; b, 9), (3.123)
8,
N,
T - Tylt; b, g) = _7%; b, 9), (3.124)

using the normalisation Tg = 1/2.

Virtual dipole contribution In Eq. (3.114), the two-body final-state contribution is
given by

O'NLO{Q}(plap2) - / [do_v<p17p2) + dULO@lap?) ® I] e=0
2

= [0 2RE [ My M|+ atitg | 1) 10| (3129

e=0

The factor d®™®ar) regroups the final state phase space, the flux factor and the
average over the spin configurations

dD™ (g, py) = (D1 s P Pa + Db)- (3.126)

SS}"

After the renormalisation of the ultraviolet singularities has been performed as de-
scribed in the previous section 3.2, the virtual cross section contains only infrared poles.
These can be removed by convolving the Born cross section with the subtraction term

I(E) = 12(67 /~L2; {k27 mt}) +Ib(€7 /~L2; {k‘27 mt}apl) _'_Ig(Eu M2; {k‘27 mt}ap2) +Ibg(€7 u2;p1,p2),
(3.127)
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where in our case Iy(e, u?; {ko,mi}) = 0, since there are no QCD dipoles with a final
state emitter and a final state spectator. The dipoles depending on one initial state
parton (a = b, g) with four-momentum p; (i = 1,2) are

2. N as  (4m) 1 2 ﬂ_25 . _7T_2
Ia(‘E,IM 7{k27mt}7pl) - 27TF(1—€){T2Tt Ta Tt Sta Vt(staamtaou‘E) 3

2
+ (e, mys €) + 7 1n 5— + v+ Kt:|
ta

1 2\ € 2 .
¢ i (2) (uewomien- )

Sat €
12

+vIn—+,+ K, ]} (3.128)
Sat

at

where T, ; denotes the color matrix associated to the emission of a gluon from the
parton a or the top quark ¢, the dimensional regularisation scale y is identified with the
renormalisation scale pg, and s;, = 54t = 2p1ks. The kernels

Vilsiasme, 05€) = V& (s00,my, 05€) + VI (504, m4,0) (3.129)
Vilsor, 0,me: €,2/3) = V) (s, 0,my;€) + VIV (54,0, my) (3.130)
Vy(sg1,0,m15€,2/3) = V) (54,0,m45€) + VIV (50,,0,m;2/3)  (3.131)

consist of the singular terms

V(S) (staa my, 07 6) - V(S) (Sata 07 my; 6)

1 1 m2 1, ,m? @ 1. m?2_ s s
— —In—t — ~ In? t————ln t1 m——l LS (313
262 2 S 4 S 12 Q?, Qta Q?, ( )
with Q7, = Q2, = s +mi +m? and the non- s1ngu1ar terms
2 2
V) (6,0 my,0) = g e T —Liz(ﬁ) Cogqn S M M (3.133
! ( ' ' ) Tt2 Q%a 6 QtQa Qta Sta t2a ( )
V(NS)S ,0,my) = ﬂ{ln&—anth_mt—Q ki ]
(5 2 ) Q% Qe Qpe + My
72 ( Spt )
PN 3.134
5 o (3.134)
V) (5,,,0,m,;2/3) = ll St gy Qe ey e ] LT (Sgt)
ty Yy ty - - A 21 ~o
I ! T2 gt Qg Qge +my 6 Zt
4T — 4
+ iR {n Qo —mme | i —]. (3.135)
3 NC Qgt Qgt + my 3

The constant « is a free parameter, which distributes non-singular contributions between
the different terms in Eq. (3.114). The choice x = 2/3 considerably simplifies the gluon
kernel. For massive quarks, one has in addition

1 1. m?
r ) =Cpl =+ =-In—+% — 3.136
t(:uvmtve) F(€+2 n,u2 )7 ( )
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while
3 11 2
S | IV (3157
and
7 w2 67 72 10
k- (T_™\¢ Ky = (= -2 )Ne— =TpN;, (3138
q(2 G)F, 9(18 G)CQM (3.138)

with Tr = 1/2 and Ny = 5 the number of light quark flavours. The last term in Eq.
(3.127)

Qg (47T)€ ]. u r:[‘2 vy 2
Ibg(€7M2;plap2) = _%ﬁ {FT9~T5, [(?@) ( 2 + = RED ’:[‘2 93 + v, + K
9
+(g < b)} (3.139)

depends on both initial state partons.

Real dipole contributions The second term in Eq. (3.114) concerns the real emission
dipoles and is given explicitly by

oNEOBY (o) :/ de® {‘M3@]<klgk2ak37plup2)‘ — Z D<k17k27k3;p17p2>}

dipoles

(3.140)

includes the spin- and color-averaged squared real emission matrix elements

|M3,ij(k1’k2ak3;p1ap2)|2 (3141)

with three-particle final states, as detailed in Section 3.3, and the corresponding un-
integrated QCD dipoles D, which compensate the integrated dipoles I in the previous
section. Both terms are integrated numerically over the three-particle differential phase
space dP®). The sum over the dipoles in Eq. (3.140) includes initial-state emitters ab
with both initial- and final-state spectators ¢ (D¢ and D%) and the final-state emitter
ab with initial-state spectators ¢ (DS,). For the three divergent processes, we have

Y =D"94 D94 DY+ D + D) +Df, (3.142)
dipoles

> =Dt 4 Do L DI 4 DI and (3.143)
dipoles

(c) : > =D +Di (3.144)
dipoles

Denoting by a the original parton before emission, b the spectator, and ¢ the emitted
particle, the dipole for initial-state emitters and initial-state spectators is given by
1 1 b Taz

Db = — w(H, T ai,b
2pakz Li,ab Tiap b< CLZ | Taz

V| H, t; ai, b)y o, (3.145)
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where the momentum of the intermediate initial-state parton ai is p; = @ p* With
Tiap = (Palo — kiDa — kiDb)/(Dapp), the momentum p, is unchanged, and the final-state
momenta k; with j = 1,2 are shifted to

- 2%k (K + K -
g 2 ) ey ey
(K + K)?

2%k - K
KZ

K" (3.146)

with K* = p# + pl — k' and K* = §", + pi’. The necessary splitting functions V? for
{ai,b} = {49, 9; 99,4 94, 9;9q, ¢} can be found in App. B.

The dipole for initial-state emitters and a final-state spectator, which is in our case
the top quark ¢, is given by

| 11 S Ty Ty
DY = ———, -(H,Laib
L v

at

V& | H,t;ai,b) (3.147)

2.a1?

where the momentum of the intermediate initial-state parton ai is Pl = Ty aph with
Tita = (Daki + PaPt — kiDt)/(Daki + papr), the momentum py is unchanged, and the mo-
mentum of the final-state top quark p; is shifted to p}' = k' + p}’ — (1 — @iro)p#. Here
again, we list the necessary splitting functions V& for {ai,t} = {qg,t;99,t;9q,t;qq,t}
in App. B.

Finally, the dipole for final-state emitter (the top quark ¢) and initial-state spectator
a is given by
1 1 T, Ty

'Dtag —_ —m?m 2,a<H7 Zt,&,b ‘ TZVZ ‘ H,’l ,d, b>27a, (3148)

where the momentum of the initial parton a is shifted to pt = x;,pt with z;, =
(paki + papr — kipt)/ (Paki + Dapi), the momentum pj, is unchanged, and the momentum

of the intermediate final-state top quark p; is pl, = k%' + pi' — (1 — zy)p". The required
splitting function Vg, can again be found in App.B.

The last terms in Eq. (3.114) are finite remainders from the cancellation of the e-poles
of the initial-state collinear counterterms. Their general expressions read

€=

1 1
/ dr PO (i apy, pos i) = Z/ dfﬁ/[daﬁf? (zp1,p2) © (K +P)** (96)] (3.149)
0 w /0 2
1
= Z/ dx /dq)@) (zp1,p2) 2.a0(k1, ko xpr, po| K (2) + pe (; )| kr, s o1, ) 2.t
o 0

and similarly for (a < b) and (p; < po). It is important to note that for process (b),
both gb and bg Born processes are needed to construct the dipoles. The colour-charge
operators K and P are explicitly given in App. B.
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3.5 High and low charged Higgs mass: diagram
removal

All of the previously described calculations are valid in a straightforward fashion for
charged Higgs masses higher than the top mass my- > m;. If, however, the charged
Higgs mass is lower than the top quark mass m;, the top propagator of some amplitudes
can go on-shell, resulting in a drastic increase in the total cross section. This happens
for two amplitudes of process (b) on Fig. 3.11 and also for the second amplitude shown
in Fig. 3.14 for processes (d). Although this is what happens in Nature, one would
prefer having a way to separate at this stage the contributions coming from top anti-top
production and its interference with charged Higgs production. We will discuss here only
the case of diagram removal (DR) and leave the description of the diagram subtraction
scheme and the analysis of both up to a later point.

In DR, the top anti-top production is removed at amplitude level. If we separate the
amplitudes of a real process with colliding partons a and f into contributions which
proceed through tt-production, ﬁfﬁ, and those which do not, Ata%_,

Aap = Als + AL, (3.150)
squaring the amplitudes gives rise to three different quantities:

Aasl® = JAL P+ 2R (AL AL + 1AL (3.151)
= Sag +Zop + Dap. (3.152)

The term D,g contains neither collinear nor soft singularities. The interference term
7.5 contains infrared singularities when only the matrix element squared are considered,
but those are integrable when multiplied by the phase space factor. These terms are
therefore sometimes referred to as subleading with respect to the ones in S,3. So S,p
contains all the singularities which have to be regularised via the subtraction formalism.
Since diagram removal requires removing ¢t production at the amplitude level, the only
element which is kept is S,3. This contains all the leading divergencies and the dipoles
we used in the my- > my case are still valid and can be taken over as such.

Removing diagrams from amplitude level causes the loss of gauge invariance. A con-
siderable part of [96] has been dedicated to the analysis of this impact. They considered
different gauges for the gluon propagator and found differences of per mille order. One
aspect which has not been checked yet in previous papers, but which has drawn our
attention, is the impact of the polarisation sum of external gluons.

Consider an amplitude with an external gluon with four-momentum & and polarisation
vector € with polarisation A\. The easiest and quickest way of calculating the matrix
element squared is to replace the polarisation sum

PP (k) =Y e (k,N)e" (k) (3.153)

A=1,2
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by
P (k) = —gt . (3.154)

In doing this, we not only sum over the physical, transverse polarisations of the gluon,
but also over non-physical longitudinal ones. Usually we would add ghosts whenever
necessary to recover the right sum. In this case, individual matrix element squared
terms have no meaning and only their sum is gauge invariant. But since in DR a subset
of those diagrams is to be removed, there is no proper way to do this using the simple
polarisation sum. Of course the statement for the polarisations

(ke Neu(k, N) = =6,y (3.155)
is still valid, and we also have
e-k=0, (3.156)

but unfortunately this fixes the choice for the polarisation vector not completely if k% = (
as in our case. These conditions need to be supplemented with an additional statement,
introducing a new four-vector 7 such as

n-e=0. (3.157)

This will result in the following expression for the polarisation sum:

PH (k) = —g" — % (P kMK — k- (kP + k)], (3.158)
(k- )
where the sum is now really only over physical polarisations. Usually the n-dependence
drops out when calculating a gauge invariant quantity but this will not be our case as
we argued earlier. Since in the gg-channel we have to deal with two external gluons with
momenta k, and k;, and polarisation vectors €, and ¢,, we introduce two new four-vectors
1, and 7, and we choose

Na = ko, (3.159)
m = ka (3.160)

in order to respect the aforementioned constraints.
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Event generator implementation

Now that we have at our disposal a complete NLO calculation for tH~ production, we
can turn to the integration into Monte Carlo event generators. In a first part, we describe
different issues connected to event generators. We then comment on the MCQNLO
implementation, for which our NLO code provides a useful check. Additionally, we
perform different phenomenological studies using t H~ production in MC@NLO, focusing
on aspects which lead to contributions in systematic uncertainty evaluations. In a third
part, we describe in detail the implementation of NLO tH~ production in POWHEG
and discuss some relevant distributions.

4.1 Monte Carlo event generators

Monte Carlo event generators numerically implement the predictions of cross section
calculations. The calculation of the hard scattering often involves very complicated fi-
nal state phase space integrations, which can no longer be performed analytically, so
that specific Monte Carlo integration techniques have been developed to address this
issue. Also, comparing experimental data with theoretical predictions is simplified with
Monte Carlo codes, because eventual kinematic cuts can be applied trivially. Another
advantage of a Monte Carlo simulation is that it allows to simulate, to a certain degree
of accuracy, the real experiment and can be used for different tests and estimations
as, for example, a check of whether the real experiment would be feasible in a reason-
able amount of time. Modern research in particle physics is intimately linked to Monte
Carlo estimations, as they intervene in several steps: during the R&D phase to test
sub-detector performances, for data analysis in order to estimate the signal and back-
ground fraction and optimise their ratio, and to perform statistical tests. We will see
that dressing hadronic processes with low energy gluon radiation can also be done by a
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Monte Carlo code. Thus, the notion of Monte Carlo is very broad and can have several
meanings, depending on which action the attention is focused on.

Fixed-order Monte Carlo codes generate partonic final states according to the exact
matrix elements, to a given order in perturbation theory. They provide accurate descrip-
tions of well separated, hard jets, which correspond to parton configurations away from
the singular collinear and soft regions. In these regions, large logarithmic enhancements
imply the need to use resummed contributions and this can be done via another type of
Monte Carlo generators, the all-order event generators. This allows one to switch from
the theoretically well defined parton final states to the more realistic hadronic states
observed in particle physics detectors. The art lies in the connection of both regimes.
Today, there are two major codes for which it is possible to generate events with NLO
matrix elements for the hard process and that subsequently passes them over to an
all-order Monte Carlo code for showering and hadronisation. These are MC@QNLO and
POWHEG and will be discussed in more detail in dedicated sections. As we have seen
in Fig. 2.1, the structure of a simulated event is as follows: a primary hard process, cal-
culated to some fixed order in pQCD, is handed over to a parton shower, which dresses
incoming as well as outgoing partons with additional radiation. The generation of the
incoming space-like and the outgoing time-like parton showers is done using modified
versions of the DGLAP equations for PDFs and fragmentation functions. These shower
developments are still in the perturbative regime. Then, non-perturbative interactions
take over and convert the showers into outgoing hadrons, which may also decay. On top
of this, the beam remnants have to be taken care of, and secondary interactions may
give rise to an underlying event.

Since Monte Carlo generators for hadronic events are based on QCD, one would think
that there are in principle only a few basic parameters to be set, as the quark masses
for example. But due to the different necessary perturbative and non-perturbative
approximations, there are actually many more. The perturbative expansion depends on
the renormalisation and factorisation scales, the parton shower needs cut-off scales, not
to talk of all the parameters that come with the effective hadronisation and underlying
event models. Most of these input parameters are unphysical and are selected by either
sticking to the default values, often guestimates, or, more realistically, by tuning the
different programs to experimental data.

4.1.1 The parton shower

A parton shower Monte Carlo program is used to simulate QCD jets by performing
parton branchings in terms of the Sudakov form factor. The cross section of a hard
process og, which produces partons of flavour 7, can be linked to the cross section do, in
which the hard process is accompanied by a parton j with momentum fraction z, by

do~og Y == Pi(z)dz, (4.1)

partons j,k



4.1 Monte Carlo event generators 87

where P is a set of universal, flavour- and spin-dependent splitting functions. These
are valid only in the collinear limit, i.e. for 8 — 0, and they are independent of the
exact definition of the z variable, as for example the energy fraction or the light-cone
momentum fraction, of parton j with respect to parton 1.

This factorisation allows a quite straightforward implementation in a Monte Carlo
generator of the showering procedure by iteration: the hard process is used to generate
one collinear splitting and then this new final state can be used as input again to do
further splittings. This iterative process has to be stopped some time, which brings us
to the question of what a final state parton actually is. Since a physical measurement is
not able to distinguish between a pair of collinear partons and a single parton with the
same total momentum, we have to introduce some resolution criterion and generate only
the distributions of the resolvable partons. For example, one can say that two partons
are resolvable if their relative transverse momentum is above some cut-off ()y. So the
soft and collinear divergencies are cut off and the total resolvable emission probability
is finite.

In the leading-logarithmic picture, a parton shower can be seen as a sequence of 1 — 2
branchings, where the mother particle a produces two daughter particles b and c. Then,
each daughter is free to branch in its turn, giving ultimately something like a tree-like
structure. The kinematics of the branchings are given by two variables Q2 and z, which
often differ from one parton shower program to another. For example, in Pythia, the
default algorithm is called mass-ordered because it uses the squared effective mass of
the branching particle as scale Q> = m2.! A second algorithm uses the transverse
momentum as scale variable Q% = p% = z(l — z)m?. The z variable is just the energy
and momentum fraction taken by one of the daughters, so that the other one takes 1— z.
In Herwig, the scale association is done via Q% = m?/(2z(1 — z2)).

In this formalism, the differential probability for parton a to undergo a branching is
given by
dP, = Z o Papel(2)dtdz, (4.2)

where the variable t = ln%2 is linked to the energy scale of the process and can be
seen as an analogue of a time variable, with which the shower develops. A is the scale
at which ay is evaluated, and the splitting kernels for the different possibilities can be
found in App. B. Since for final state showers, all virtualities involved are time-like,
the maximum allowed virtuality starts at the hard scattering scale and evolves down to
the cut-off scale ()y. So the t parameter controls the development of the shower, and
each branching is associated with a fixed value of ¢. For a given t, the integral of the

'The effective branching mass is linked to the cut-off scale Qp by m, = Qo/2 for gluons and m, =

\/m2 + Q/4 for quarks.
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branching probability over all allowed z values z € [z_(t), z, ()] is given by
=) o
Lo pe(l) = dz=—"P,_p.(2). 4.3
o) = [ (4.9

The probability that a branching occurs during a small interval 6t is given by le I, 0t
and the probability of no branching is given by one minus this term. If ¢, is the starting
value, the probability of no branching between ¢, and ¢ can be derived by taking the
limit 6t — 0

t
Pao ve(to 1) = exp<— / dt'ZIa_,bc(t')> = Sa(1). (4.4)
to b,c
This is the Sudakov form factor.

The actual probability that a branching occurs at time ¢ is then given by

t
daia _ _dPno l;irt(to, t) _ (; L;—»bc(t)) exp<— /;0 dt, ; Ia_,bc(tl)), (45)

where the first term on the right hand side is the naive branching probability and the
second term encodes the suppression due to the conservation of the total probability.

These are the evolution equations which govern the shower development. But there
are several ambiguities in the algorithm construction. First, whatever variable we chose
for Q? and z, it is correct in the collinear limit, but may have different extrapolations
away from that limit. Then, as the hard scattering matrix element contains on-shell
partons and the PS generates a virtuality for the partons, the energy-momenta have
to be shuffled between partons in some way to be conserved, but the collinear approx-
imation gives no specification as to how this has to be done. This means that all the
different methods on the market have the same leading collinear logarithmic accuracy
but differ in the sub-leading terms that they necessarily introduce. Also, the strong
coupling in the shower a4(A) is scale dependent. As the scale decreases, the coupling
becomes larger and it becomes easier and easier to emit further gluons until at small
enough scales the emission probability becomes of order one and phase space fills with
soft gluons. This means that we have to impose some cut-off scale Qo > Agep to
avoid the large-coupling region. This is not a mere theoretical quantity but has physical
relevance since it is affecting observables. The PS is thus not just a purely perturbative
description but induces power corrections, usually of the order /@, which contribute
to the non-perturbative structure of the final state.

The evolution we have just described is a final state evolution. In principle, initial
state evolution is very similar. In practice however, this proves to be extremely ineffi-
cient. The majority of partons have low energy and virtuality, and it would then be very
rare to produce the right kinematics to give the hard process of interest. Therefore, it is
more efficient to first select the hard process, and then dress it with additional radiation
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using backwards evolution: the probability distribution for a parton of given momentum
fraction and value of evolution scale to have come from one at higher momentum and
lower scale is generated and this procedure is iterated until the evolution scale reaches
the infrared cut-off. Then, the non-perturbative model of the remnant left behind takes
over. It is important to note that the classification into initial and final state emission is
arbitrary and only the sum of both is physically meaningful to reproduce the underlying
quantum mechanical amplitude.

We have seen in the real matrix element calculation that two different configurations
lead to divergencies: collinear and soft gluons. It turns out that soft gluon effects can
be correctly taken into account by a collinear PS algorithm provided that the open-
ing angle is used as evolution scale. For the mass-ordering algorithm, this is not the
case and additional requirements on allowed emissions have to be set. This leads to
angular-ordered or coherence-improved PS, like Herwig for example. The pp-ordered
shower however leads to the correct coherence effect without additional constraints. As
a consequence of angular-ordering, the first emission is often not the hardest one and
his can be troublesome for matching the PS to matrix elements.

A general comment about PS can be made for the very low x regime where logarithms
of the momentum fraction at each splitting can be very large and a different resumma-
tion technique is needed, as BFKL [97] or CCFM [98] for example. Since it seems very
likely that some processes at the LHC will have originated from momentum fractions
below the 10~ or event 10~° range, they will thus significantly be affected by them, and
alterations to the PSs will have to be made.

Additional aspects

Hadronisation models Since the earliest developments, the term hadronisation has
been used with different meanings, always referring to what happens after the PS stage.
Nowadays it refers to the model used in an event generator, which performs the transi-
tion from the showered coloured partonic final state to the complete colourless hadronic
final state. Again, since this is an IR process, the coalescence of gluons and quarks into
hadrons happens too late to have any effect on the hard interaction itself and the hadro-
nisation process can be decoupled from the hard scattering. But since this lies in the
non-perturbative regime of QCD, only effective models are available. The PS output is
a set of coloured partons with low virtuality around the PS-cutoff scale ()y. Ideally, Q)
should just be a parameter, and the hadronisation model should also have a parameter
(o, whose effect would cancel out the PS dependence when both codes are run one after
the other. It turns out however that this is not possible since model deficiencies retain
this dependence. Thus () is another parameter to be adjusted with data and whose
variation has to be taken into account in systematic uncertainty studies.

A general concept for hadronisation is the local parton-hadron duality, where one sup-
poses that the flow of momentum an quantum numbers at hadron level is dictated by
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and follows the underlying parton level. This means that, for example, the flavour of a
jet is that of a quark located near the jet axis, a fact which will become very important
for physical analyses based on the identification of b jets. There are three main streams
in fragmentation modelling: string models, independent fragmentation and cluster for-
mation, although various hybrid implementations also exists.

The principle of string fragmentation is based on the LLund model, in which a quark ¢
and antiquark ¢ are connected via a colour string. Under the assumption of linear con-
finement, the potential energy of the colour field increases linearly as the two particles
move away from each other. The potential energy stored in the colour flux tube being
stretched increases until a new ¢q pair is generated via quantum tunnelling. This string
break up process is iterised until only hadrons which are on their mass-shells remain.
Different string breaks are supposed to be causally disconnected. Gluon complicate this
picture a bit, they are modelled as kinks in the strings. The general string assignment
is not unique but in the leading colour approximation, the leading contributions come
from strings stretching between the closest partons having opposite charges. String frag-
mentation is the default hadronisation model used in Pythia, although other options are
also available.

Cluster models start by decaying all gluons non-perturbatively into ¢¢ pairs [99], and
then form an intermediate stage of colour-singlet cluster objects with a characteristic
mass scale of a few GeV. The clusters are seen as superpositions of meson resonances
which finally decay into hadrons. Herwig’s hadronisation model is based on cluster
fragmentation.

Underlying soft event In hadron-hadron collisions, typically only one parton from
each hadron participates in the hard scattering, leaving behind the rest of the hadron,
called beam remnant. The underlying event describes what happens with those beam
remnants. Since this is manly low pr scattering processes, perturbative calculation is
not adequate. This is a domain which is still poorly understood, different effective mod-
els are available. In Herwig, for example, the remnants are modelled via beam clusters.
The colour connection between the beam remnants and the partons which participate in
the hard interaction is broken by a forced emission of a soft ¢q pair, and the underlying
event is a soft collision between the two beam clusters. The implemented model is based
on a modified version of the minimum bias pp-event generator used in the UA5 collab-
oration. In PYTHIA, different multiple parton interactions are modelled and there are
attempts to keep the colour connection. The default version uses Poisson distribution
over the threshold scale p"", usually around 2 GeV, and switches to a simplified two
string model under this threshold.

In the next section, we review the major MC based event generators which are cur-
rently used [100]. We divide them according to the structure of their final output, but
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with the recent activity on all fronts, these boarders are not fixed, and some programs
evolve into another category by adding features to their initial purpose code.

4.1.2 Multiple purpose generators

There are a set of codes, called multiple purpose event generators, which are able
to perform one or more steps down to the generation of events. We will only review
here three multiple-purpose event generators which automatically combine LLO matrix
element generation with parton shower dressing and hadronisation to produce complete
hadronic final states.

e PYTHIA [101] [102] has been developed out of the Lund string model, and this
provides the default hadronisation scheme. The code contains a wide range of
hard subprocesses at LO and has relatively elaborate models for soft physics. The
basic parton cascades use virtuality ordering with colour coherence imposed in the
time-like cascades via a veto on opening angles. Many tunes to LEP and Tevatron
data exist.

e HERWIG [103] places its emphasis on the perturbative description of an event.
It uses sophisticated parton showers which build in colour coherence automati-
cally via ordering of suitable evolution variables and includes angular corrections.
Hadronisation is done using the cluster model.

e Sherpa [104] provides particle production at tree level in the SM and beyond. The
complete set of Feynman rules for the MSSM have been implemented, including
general mixing matrices for inter-generational squark and slepton mixing. Other
available models are the ADD model of Large Extra Dimensions, anomalous gauge
couplings, a model with an extended Higgs sector and a version of the 2HDM.

Due to their relatively evolved and much-tested parton shower and hadronisation models,
they are often coupled to other Monte Carlo codes which provide the matrix element
calculation.

4.1.3 Matrix element generators

Matrix Element (ME) generators provide events based on the computation of tree-
level matrix elements with a fixed number of partons in the final state and they generally
do not include any form of showering or hadronisation. The output final states thus
consist of bare quarks and gluons, which have to be used as input in a dedicated parton
shower code. This may however cause problems, because a kinematic configuration
with n final state partons can be obtained in different ways, by starting from n — m
partons generated by the tree-level matrix element generator and completing them by
m extra partons provided by the shower. Different strategies have been devised to deal
with this over-counting problem. Usually, the ME generators feature a predefined list
of partonic processes. If they provide multi-leg amplitudes, these codes additionally
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include powerful phase-space sampling algorithms which have been optimised for the
specific process, since they are strongly and irregularly peaked. We will focus on a
small set of existing ME generators, most of which are intensively used by the ATLAS
collaboration for signal and background process simulations.

e The AcerMC [105] event generator is dedicated to the generation of SM back-
ground processes in pp collisions at the LHC. The program provides a rather large
library of matrix elements and phase space modules to be used for generation of
a set, of selected processes, as for example Z and W associated with heavy jets
production with their decay. Also included are top and single top production, but

only incorporating part of the NLO corrections. The matrix elements have been
coded by the MadGraph/HELAS package.

e AIpGEN [106] is designed for the generation of SM processes in hadronic colli-
sions, with emphasis on final states with large jet multiplicities. It is based on
the exact leading order evaluation of partonic matrix elements, with the inclusion
of b and t quark masses, as well as ¢t quark and gauge boson decays with helicity
correlations.

e The JIMMY generator is a library of routines which are meant to be linked with
HERWIG. The original version of the JIMMY code [107] focusses on photopro-
duction.

e VECBOS is a LO MC program for inclusive production of a W-boson plus up to
four jets or a Z-boson plus up to three jets in hadron collisions. The correlations
of the vector boson decay fermions with the rest of the event are built in.

e The MCFM [108] program is designed to calculate cross-sections for various
femtobarn-level processes at hadron-hadron colliders. For most processes, matrix
elements are included at NLO and incorporate full spin correlations. Implemented
processes [109] focus on W and Z production with additional jets, diboson produc-
tion, as well as Higgs production in association with jets and processes concerning
heavy quarks, ¢, b and t, such as single top for example.

There are also automated matrix element generators where the user only has to specify
the initial and final state particles for the process he is interested in, and then the
program enumerates the different Feynman diagrams which contribute to that process
and writes the code to evaluate the matrix elements. These codes typically focus on
SM particles and couplings, but some SM extensions are also implemented. Since many
packages include phase space sampling routines, they are also able to generate partonic
events. The limiting factor for these codes is the user’s computing power.

e The CompHEP [110] code starts from the level of Feynman rules for a gauge
model Lagrangian and calculates the matrix element for any SM or MSSM pro-
cess defined by the user. It can then generate the Feynman diagrams and present
them in a graphical form with a Latex output, or compute the squared Feynman
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diagrams symbolically and then numerically calculate LO cross sections and distri-
butions. After numerical computation, unweighted events can be generated along
with their colour flow information. It allows for the computation of scattering
processes with up to six particles and decay processes with up to seven particles
in the final state.

e MadGraph [111] allows the generation of amplitudes and events for any process
with up to nine external particles in many different models, such as the SM, Higgs
effective couplings, MSSM and the general 2HDM. It provides a user-friendly in-
terface for the implementation of model extensions. MadGraph is part of the
MadEvent software, where events at the parton, hadron and detector level can
be generated directly from a web interface. It has a standalone running mode for
creating and testing matrix elements; generation of events corresponding to differ-
ent processes, such as signal(s) and backgrounds, in the same run; two platforms
for data analysis, where events are accessible at the parton, hadron and detector
level; and the generation of inclusive multi-jet samples by combining parton-level
events with parton showers.

Apart from MCFM, all the presented event generators are using LLO matrix elements.
The automatisation of NLO processes is under way, there are packages capable of gen-
erating virtual contributions, real contributions and dipoles, but the matching is still
not at automated level.

4.1.4 Charged Higgs specific programs

The following section briefly summarises tools available concerning charged Higgs
bosons [112], which are not primarily focused on event generation.

e FeynHiggs [113| concentrates on the MSSM Higgs section and can be used for
the calculation of mass spectra, mixings and a lot of other features.

e The 2HDM Calculator [114] is a relatively new general-purpose calculator for
the 2HDM, which allows different parametrisations of the Higgs potential. It fea-
tures a convenient specification of generic Yukawa sectors, includes the evaluation
of decay widths and is able to give theoretical constraints.

e Superlso [115] is a program for general calculations of flavour physics observables.
This can be done either in the Standard Model (SM), in the general 2HDM, in
the MSSM and next to minimal supersymmetric Standard Model (NMSSM).

e HiggsBounds [116] is a computer code which can be used to test theoretical
predictions of models with arbitrary Higgs sectors against the exclusion bounds
obtained from the Higgs searches at LEP, the Tevatron and the LHC. It needs
a selection of Higgs sector predictions as input and then uses the experimental
topological cross section limits from the various Higgs searches to determine if
this parameter point has been excluded at 95% C.L.
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e The Matchig [117] package has been available for some years, as a first step of
improvement of the LO calculation towards NLO. The strategy is the following:
both processes gb — tH~ and gg — tH b are produced with PYTHIA at LO.
The user can add them together and use MATCHIG to compute and subtract
the double counting term from b-parton densities which have originated from the
gluon splitting into bb-pairs. Although this is already an improvement over taking
into account only the LO ¢gb contribution to charged Higgs production, it is not a
complete NLO code.

4.1.5 Coupling a NLO event generator to a parton shower

The main difficulty of coupling a NLO calculation with a PS is that of avoiding over-
counting, since the PS already incorporates approximate NLO corrections. The general
ingredients are

e the Born cross section B,
e the exact virtual and real cross sections V and R,

e the radiation cross section of the PS R®, which is generally related to the Altarelli-
Parisi splitting kernels P(z) via
1o
RY = B-2P(z). 4.6
-2 P(2) (16)
e and the full phase space ®, which can be factorised into the Born phase space &g
times the phase space relative to the radiation variables of the PS @2 according
to the reshuffling procedure of the MC which yields ® from ®p and ®7.

The cross section of the hardest event is calculated according to

) RS(®
do = BS(®p)ddy [A;?O L astl >d<1>f] + [R(cp) ~ RS(®)|de, (4.7)
— B(®y) _—
event N - event

TV
MC shower

where the S- and H-event stands for the soft, resp. hard, event, and MC shower refers
to the shower-dependent term. A7 is the Sudakov form factor and B stands for

BS(®p) = B(®p) + [V(@B) +/RS(<I>)d<I>f], (4.8)
where the virtual and the real part are infinite, but their sum is finite.

At this point, we can verify that the expansion of do matches the exact NLO expres-
sion from analytic calculations. For this, we develop the Sudakov form factor and also
replace Eq.( 4.8) in the master expression, Eq.( 4.7), and obtain

RS

do = [B LV + /decpf] d® [1 - / %Sd@f + Edcbf] + [R - RS} 4o, (4.9)



4.2 MCQNLO 95

Now, keeping only terms up to NLO, we are left with

do = [B + V] ddy + / RSd®ddS + Bdd [%Sdcb; - / %Sd@f] + [R - RS} 4
B B

_ [B + V] Ay + [R - RS} d® + RSdD (4.10)

= [B+V]dop + Bday [R—Sdcbg + / %Sdcbf - / R—quﬂ + [~ - R do

which can finally further be simplified to
do = [B + V] Ay + Rdd (4.11)

which is the exact NLO expression. All shower-dependent terms have been cancelled
and are no longer present.

There exist several merging approaches. We shall investigate two, MCQ@QNLO and
POWHEG, stressing the differences and major advantages of each method.

4.2 MCOGNLO

The MC@NTLO approach [1] has been the first one to give an acceptable solution to the
over-counting issue, by subtracting from the exact NLO cross section the approximation
implemented in the PS to which the NLO calculation is matched. Thus this method
is dependent on which PS is used. The PS currently coupled to MCQNLO is Herwig,
although attempts are ongoing for processes to be matched with Pythia. A side-effect
of this method is that generally, the cross section minus the subtraction term need not
be positive, and the output event might be affected with a negative weight. This is not
a problem for general physics analysis which use distributions of variables, but might
become a problem when one uses multivariate methods which are fed one event at a
time and often do not accept negatively weighted events.

4.2.1 MCGNLO coupled to Herwig

The MC@NLO output events are infra-red safe observables which have NLO accuracy,
collinear emissions are resummed at the leading-logarithmic (LL) level and the double
logarithmic region (for soft and collinear gluon emission) is treated correctly by Herwig,
since it is based upon an angular-ordered branching.

In MCQ@NTLO, the phase space parametrisation has to be the one of the PS. S- and
H-events are computed by MC@QNLO, the MC shower event is computed by the PS
(usually Herwig) and the differential cross section is given by Eq. (4.7). In particular for
MC@NLO, the H-event is computed using the PS approximation in the collinear and
soft regions R7d®, = RMPdPMC So the event generation algorithm goes through the
following steps:
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e First, it computes the cross sections for S— and H —events according to

o5 = / |B%(®p)|dPp and o = / IR — RMC|d®. (4.12)

e Then, it chooses an S- or H-event with a probability proportional to the cross
sections og and og.

e If an S-event has been chosen, Born kinematics are generated with probability
|B%(®p)| and they are fed to the PS for subsequent showering, with associated
weight £1, according to the sign of B%(®g) which is mostly 1, except for a very
narrow region where the virtual contributions are strongest. This is “normal” and
has nothing to do with the negative weights problem of MC@NTLO.

e [f however an H-event has been produced, radiation kinematics are generated
with probability R — R¥ and they are given over to the PS for further showering,
with associated event +1, following the sign of R — R, where it can happen that
this term is negative. This is where the negative weights in MC@QNLO come from.
Another issue connected to this part is that the term R— R® must be non-singular,
i.e. the PS must reproduce exactly the soft and collinear singularities of the real
matrix elements, This is in fact not always the case, as some PS are not accurate
in the soft limit.

In the following, we will briefly review different aspects of charged Higgs production
that have been studied using the MCQNLO implementation.

4.2.2 Comparison of tH~ NLO versus NLO+PS production

The implementation of tH~ in MC@QNLO [118] has been largely based on the previ-
ously available Wt production [96]. We will discuss here some key variable distributions
for LHC collisions at 14 TeV. Input masses are m; = 172 GeV for the top quark and
mpg- = 300 GeV for the charged Higgs boson. The factorisation and renormalisation
scales have been put to pup = ur = (my + my-)/2, and the PDFs are the CTEQ5M1.
Fig. 4.1 compares the predictions before showering, (pure NLO, in plain), to those after
showering with Herwig (NLO+PS, in dashed). The py distribution of the pair formed
by the charged Higgs boson and the top quark shows the desired evolution: at values
of pr it is tending to zero, the pure NLO result becomes negative due to the virtual
contributions. This behaviour is regularised by the PS for which the small value of the
Sudakov form factor, i.e. the probability for no additional gluon emission, dampens the
distribution at zero. Thus the (NLO+PS) curve starts at zero and then evolves up to
the maximum value, before plunging down again at high pr values.
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Figure 4.1: Comparison between pure NLO against NLO coupled to the PS Herwig. The left
plot shows the pr distribution of the charged Higgs boson plus top quark, whereas the right
plot displays the pp of only the charged Higgs boson. Parameters are set according to the
values quoted in the text.

4.2.3 Systematic uncertainty studies

In this part, we will assess the impact different parameters can have on the tH~ NLO
cross section predictions. Their variation can be used to infer systematic uncertainty on
the theoretical cross section prediction, which is a vital input for any physics analysis.

4.2.3.1 Dependence on the PDF fit input bottom mass

In this section, we present a study [119] of the dependence of the tH~ production
cross section on the bottom mass used in the MSTW2008 PDF fit. Bottom parton
densities are based on the splitting of an off-shell gluon into a pair of massive bottoms.
While for light-flavour quarks the splitting threshold is of the order of Aqcp and hence
not numerically relevant, for bottoms it is in the range of perturbative QCD. This
makes it a relevant input parameter in the computation of bottom parton densities and
whose variation has to be accounted for in a systematic uncertainty evaluation. To first
approximation, a shift in the bottom mass changes the logarithmic parton densities by

M M o M 6
log—%logizlog——log(l—i—ﬂ):log——ﬂ. (4.13)
my my + 5mb my my my my

For well motivated applications of the bottom parton densities in which the kinematic
scale is much higher than the bottom mass (M > m;), the uncertainty due to the
bottom mass becomes increasingly irrelevant. Relative and absolute cross section values
for varying input bottom mass PDF sets have been computed and are given in Tab. 4.1.
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Table 4.1: Absolute and relative production rates for tH~ production at NLO, varying the
input bottom mass in the on-shell scheme. The coupling is fixed by tan = 30, and the
renormalisation scale is pu = (my + my)/2.

myg = 200 GeV my = 500 GeV my = 800 GeV
7 TeV 14 TeV 14 TeV 14 TeV
my cr[pb] 0/04.75 U[I)b] 0/04.75 U[pb] 0/04.75 U[I)b] 0/04.75

4.25 || 0.1845 | 1.055 1.279 | 1.049 0.1168 | 1.045 0.01989 | 1.044
4.50 || 0.1796 | 1.026 1.248 | 1.025 0.1142 | 1.021 0.01945 | 1.021
4.75 |1 0.1750 | 1.0 1.219 | 1.0 0.1118 | 1.0 0.01905 | 1.0

5.00 || 0.1708 | 0.976 1.192 | 0.978 0.1096 | 0.980 0.01868 | 0.981
5.25 || 0.1668 | 0.953 1.166 | 0.957 0.1074 | 0.961 0.01832 | 0.977

4.2.3.2 Diagram removal versus diagram subtraction

As was already seen in Chapter 3, interference between H ~t and ¢t production occurs

when mpy- < m,. In this case, diagrams where the H ¢ production occurs via tt give a
larger and larger contribution due to the intermediate top quark propagator going on-
shell. This is not permitted by the kinematics of the final state if my- > m;. Although
this is what happens at quantum level, both processes do interfere, and one needs
an artificial separation procedure. This will be an approximation forced by practical
purposes only, and it has to be checked whether the separation remains meaningful,i.e.
that the interference term remains small, depending on the final state cuts applied to
the analysis. Since this problem already arose for Wt production at NLO, two different
schemes were proposed: the diagram removal (DR) and diagram subtraction (DS). They
were designed in such a way that the difference between them measures the degree of
interference between H~t and tf production. This difference may then be used to give
an estimate of the systematic uncertainty due to interference effects.
We have seen that DR removes the problematic diagrams at amplitude level, leading
to a gauge-dependent calculation. In DS, the NLO H~t production cross section is
modified by a local subtraction term, which removes the contributions of the resonant
diagrams in a point-by-point fashion in phase space

doP, = doy— — dost?,. (4.14)
There are two requirements on the exact form of the subtraction term:

1. If the invariant mass of the H — b subsystem is equal to the top mass, the subtrac-
tion term should give exactly the fully exclusive ¢t cross section, with ¢t — Hb, so
a to cut-out the resonant region.

2. Away from the resonant region, the subtraction term should fall off rapidly, so as
not to alter the H~t NLO cross section.

This procedure has the advantage of being gauge invariant.
The H~t production cross section in both the DR and DS scheme as a function of the
charged Higgs boson mass can be seen in Fig. 4.2.
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Figure 4.2: Comparison between the DR and DS schemes. [119]

A change in the slope can be observed for the low mass region with respect to the high
mass region, both at 7 and 14 TeV. Due to the design of both methods, DS acting on
cross section level and DR on amplitude level, the interference term is still present in the
DS case but not for DR. Thus the difference between both measures the interference.
Since there is not much difference between the DR and DS cross section values, the
interference term is small. This might however not be the case in a physical analysis,
where cuts on selected event topologies are used. Of course, users have to keep in mind
that both evaluation methods present flaws. In particular, the DS result depends on
the exact form of the subtraction term, and the DR result is gauge-dependent. The
influence of the gauge-dependence from the gluon propagator and of the form of the
subtraction term have been investigated and found to be small [96].

4.2.3.3 Four- versus five-flavour-scheme

The NLO calculation of charged Higgs production, which was presented in Chap-
ter 3, was performed using an incoming b quark mass equal to zero. This defines the
five-flavour scheme (5FS). Potentially large logarithms In(up/my), which arise from the
splitting of incoming gluons into nearly collinear bb pairs can be summed to all orders
in perturbation theory by introducing bottom parton densities. The use of bottom dis-
tribution functions is based on the approximation that the outgoing b quark is at small
transverse momentum and massless, and the virtual b quark is almost on-shell.

This is however not the only way the calculation can be done. Several PDF collabora-
tions have published sets without b PDFSs, to be used for processes with a massive initial
state b quark. In the four-flavour scheme (4FS), the b is thus not considered massless
anymore. The lowest-order QCD production processes are now gluon—gluon fusion and
quark—antiquark annihilation, gg — tbH* and gq — tbH, respectively [120].

To all orders in perturbation theory the four-and five-flavour schemes are identical, but
the way of ordering the perturbative expansion is different, and since the series is trun-
cated at NLO, the results do not match exactly at finite order. It is therefore important
to compare the numerical results of both schemes. Fig. 4.3 shows that while the 5FS
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prediction (in red) has a central value above the 4FS cross section, but both calculations
agree within the theoretical error bands. Additionally, one can see that the error bands
are larger for the 4FS calculation than for the 5FS. As discussed before, this is due to
the explicit presence of the b mass logarithms and was to be expected.
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Figure 4.3: Comparison between the 4- and 5-FS cross section predictions at the LHC for 7
and 14 TeV. [121] Error bands are obtained by varying the factorisation and renormalisation
scales between p1/3 < po < 3p, with g = (my+my+my;)/3 for the 4FS and pg = (my+my)/4
for the 5FS.

4.3 POWHEG

An alternative to MC@QNLO is POWHEG |[2], which stands for Positive Weight Hard-
est Emission Generator. The major improvements over MC@QNLO are that this program

e yields only positive-weighted events
e and is PS independent.

Also, the POWHEG-BOX [122, 123| provides a user-friendly structure to add NLO
calculations for new processes.

4.3.1 POWHEG coupled to an arbitrary parton shower

The master equation for event generation of the hardest configuration in POWHEG
is still Eq. (4.7), but this time the H-event uses not the real emission of the PS but
rather

R°d®, = RF(®), (4.15)

where F'is a function of the total phase space ®, respecting
0<F(P) <1, (4.16)

and where F'(®) — 1 in the soft and collinear limit. This means that S-events, H-events
and also the MC-shower part are generated by POWHEG. Only then are they passed
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to the PS for subsequent showering by imposing no radiation for ¢ > tpowngrg. In this
way, the event generation is PS independent, since the hardest emission is always done
within POWHEG. Furthermore, since now the quantity

R—R°=R(1—F(®)>0 (4.17)

cannot be negative anymore, events generated with POWHEG have positive weights.

4.3.2 Code structure

We will now explain in detail the different parts of the POWHEG tH~ implemen-
tation [124]. The recently developed environment of the POWHEG-BOX allows an
almost straightforward implementation for NLO calculations, if the following elements
are provided:

1. the list of all flavour structures of the Born and the real processes,
2. the Born phase space,

3. the Born squared amplitudes B, the colour correlated ones B;;, spin correlated
ones B, and the Born colour structures in the limit of a large number of colours,

4. the real matrix elements squared for all relevant partonic processes, and

5. the finite part Vy;, of the virtual corrections

@ RGDEen] e

where B is the Born process computed in D = 4 — 2¢ dimensions.

For charged Higgs production, all these elements have been presented in Chapter 3,
and they have been implemented. In the POWHEG formalism, a process is defined by
its particle content and each particle is encoded via the PDG numbering scheme, except
for gluons which are assigned the value 0. The order of the final state particles has to
be respected: first are listed colourless, then heavy coloured and then massless coloured
particles. Thus the Born process becomes

(bg — Ht) — [5,0,—37,6]. (4.19)

The POWHEG code structure relevant for ¢~ production contains the following For-
tran files:

1. init _couplings.f
The init_processes subroutine has to start by defining the index of the first
coloured light parton in the final state. In our case, this is the additional jet
from the real emission, particle number 5 according to the classification code

flst_lightpart = 5.
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2.

Then, the possible Born subprocesses are to be referenced. There are two for tH~
production
flst_nborn = 2,

with a gluon coming from one hadron and b quark coming from the other one, or
vice versa:

[5,0,—37,6] and [0,5,—37,6]. (4.20)

Then, all real emission processes are assigned a number in the list. We have
flst_nreal = 30

processes in total. Our list is given in Tab. 4.2 according to the different initial
states.

Table 4.2: Process numbers of the different real emissions. Here ¢ = d, u, s, c.

Process number Initial state || Process number Initial state

1 bg 16-19 qb

2 gb 20-23 qq

3 qg 24-27 qq

4-7 bq 28 bb

8-11 qb 29 bb
12-15 bq 30 bb

Born phsp.f

In the born_ phsp subroutine, integration variables, named zborn (i), for the Born
phase space are generated between zero and one. The hadronic cross section can
be linked to the differential partonic cross section do via the integration

1 1 tmaz da.
o = [ dundna [y in [ (421)
0 0 tmin
Tmaz Ymax tmaz dé
= / dT/ dy fa/A fb/B/ Edt’ (4.22)
Tmin Ymin tmin

where f;/; is the PDF of parton ¢ inside hadron I with momentum fraction z;, and
we have performed the change of variables

Lq

y=In and 7 = x,Ty. (4.23)

VvV Laly

The integration limits are given in Tab. 4.3.

The Jacobian contribution due to the change of integration variables xborn(i) —
(7,y,1) is
Ajaw = (Tmax - Tmin) X (ymam - ymzn) X (tmax - tmzn)7 (424)
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Table 4.3: Integration limits for the hadronic cross section.

Variable V Vinin Vinaz
T (myg—tmo)® 1
SH
Y % InT —% InT
t St — ) S(t1 + o)
ti=mi+mi_ —s, to=1/(s—mi—m?%_)>—4dmim?_

which has to be multiplied with 27 for the integration over the azimuthal angle
¢, that will be randomly generated by POWHEG. Then the different kinematical
variables are built in the centre of mass reference frame and in the lab frame via
boosts.

This Fortran file also contains the subroutine set fac_ren_ scales, where the renor-
malisation and factorisation scales are to be set. The usual convention is to use

my + mpy-
HRr = HF = tTHa (4.25)

where k is to be varied for uncertainty studies.

3. Born.f
The subroutine setborn contains the factors for the colour-correlated Born am-
plitude. They are given in Section 3.4. In compborn the Born matrix element
squared is given as well as the spin correlated Born matrix element

B =~ (SuS, + ST + TS, + T,T,). (4.26)

It is the Born term before summing over the initial gluon polarisations, with
normalisation according to
B=—¢""B,., (4.27)

where g"” is the metric tensor.

The running Yukawa couplings are computed according to the discussion in Sec-
tion 3.2.5. The subroutine borncolour [h contains the colour flow of the Born
term in the large N¢ limit, shown in Fig. 4.4.

4. real ampsq.f
In this subroutine, the real emission matrix element squared results are assigned
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= )

Figure 4.4: Colour flow in the Born contribution [5,0,—37,6] and for switched incoming
partons [0, 5, —37,6] .

to the processes with the process number defined in the ini_ processes subroutine.
They are given by their straightforward calculation with all 5 momenta used.
While the different combinations are not independent and a subset of them have
to be used for comparison purposes to existing calculations, this is not a problem
here.

5. virtual.f
This file contains the finite term of the virtual contributions, as defined in Eq. 4.18.
The term is split according to the finite terms stemming from D,C,B functions
and leftover parts. General, non-divergent C-functions and Euler dilogarithms are
computed using functions contained in the loopfun.f file [125].

The POWHEG-Box does not need dipole calculations as input, since they are com-
puted automatically by the code in the FKS formalism. While running, the code pro-
duces a pwhg_checklimits file in which the ratio of the from the Born information gen-
erated dipoles and the real emission processes are given in the soft and collinear limit.
This provides a first and useful check of the consistency of the implementation.

4.3.3 Comparison of tH~ NLO versus NLO+PS production

As a consistency check, we show various normalised distributions, which compare the
pure NLO calculation (blue line), the POWHEG -+ Herwig result (red line) and the
MC@NTLO -+ Herwig output (black line) for a charged Higgs boson mass of my- = 300
GeV and tan 8 = 30, and a centre-of-mass energy of the LHC of VS = 14 TeV. The
left plots of Fig. 4.5 display the transverse momentum distribution of the charged Higgs
boson and the top quark. All distributions can be seen to agree within the statistical
precision. The same comment applies to the rapidity distributions of the charged Higgs
boson and the top quark, shown on the plots on the right in Fig. 4.5.

The normalised distribution of the transverse momentum of the system formed by the
top and charged Higgs boson is displayed on the left of Fig. 4.6. The pure NLO curve
is negative for the first bin and then reaches very high values. This typical behaviour
is seen to be smoothened by the PS for both the POWHEG and the MCQNLO result,
which are again in agreement with each other. A resummed calculation would also be
similar to the PS behaviour. The plot on the right shows the azimuthal angle between
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the top quark and the charged Higgs boson. Again, the PS regularises the behaviour of
the NLO calculation at ¢ = 7, and the MCQNLO and POWHEG output are consistent
with each other.
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Figure 4.5: Normalised distributions comparing the pure NLO calculation (blue line), the
POWHEG -+ Herwig result (red line) and the MC@NLO + Herwig output (black line) for the
charged Higgs and the top quark transverse momentum pr and rapidity y.
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Figure 4.6: Normalised distributions comparing the pure NLO calculation (blue line), the
POWHEG -+ Herwig result (red line) and the MC@NLO + Herwig output (black line) for the
pair transverse momentum pr ;0,4 g and the azimuthal angle ¢ between the top quark and the
charged Higgs boson.
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4.4 Conclusion

These four chapters have lead a long way up to a complete MC implementation
of NLO charged Higgs boson production. We have seen that diverse MC codes are
based on different assumptions and include unphysical parameters which have to be
optimised on data. We have listed a small set of studies, focusing on their effect for
systematic uncertainties. Such theoretical error bands are of paramount importance in
a comparison to real data. An additional factor, which should not be neglected, is that
the complexity of those MC codes implies that they almost inevitably contain bugs. All
these reasons imply the necessity to use different MC simulations whenever possible to
generate the processes one is interested in. The implementation in MC@QNLO along with
its counterpart in POWHEG accomplish exactly that goal and both have to be used to
evaluate this systematic uncertainty. Although the MC generation can already be used
for different phenomenological studies, it is not yet suited for a physical analysis. We
still need data to compare our predictions with, and a code which enables us to run
the generated events through the detector simulation to be able to compare both on an
equal footage.



Comme il est profond, ce mystére de I'Invisible. Nous ne pouvons le sonder
avec nos sens misérables, avec nos yeux qui ne savent apercevoir ni le trop petit,
ni le trop grand, ni le trop prés, ni le trop loin, ni les habitants d’une étoile, ni
les habitants d’une goutte d’eau... avec nos oreilles qui nous trompent, car elles
nous transmettent les vibrations de I’air en notes sonores. Elles sont des fées qui
font ce miracle de changer en bruit ce mouvement et par cette métamorphose
donnent naissance a la musique, qui rend chantante I’agitation muette de la
nature... avec notre odorat, plus faible que celui du chien... avec notre goiit,
qui peut a peine discerner ’age d’un vin! Ah, si nous avions d’autres organes qui
accompliraient en notre faveur d’autres miracles, que de choses nous pourrions
découvrir encore autour de nous!

Guy de Maupassant, “Le horla”

Startup of the Large Hadron
Collider

In this Chapter we will review the start of operation of the new proton-proton collider
installed in the LEP tunnel at the CERN research facility near Geneva. We will also
describe the ATLAS detector and see how the event information from pp collisions is
assembled. In the last section, we detail the software framework of ATLAS and look
at event generation in this context. It is the duty of every ATLAS member to perform
a certain amount of work useful to the whole collaboration, called service task. We
will have a brief glance at the service task performed during this thesis, a work which
involved comparing the complete simulation of events in ATLAS to a CPU-optimised
version.

5.1 The LHC

The Large Hadron collider (LHC), a 27 km long proton-proton collider, is the last step
in the accelerator chain [126] represented in Fig. 5.1. It starts with a duoplasmatron ion
source, where electrons form a cathode filament hit gaseous hydrogen atoms, liberating
the protons that will eventually end up in the high energy collisions. They are accel-
erated to 750 keV with a radiofrequence quadrupole. A second acceleration is given by
the LINAC where the protons reach 50 MeV and are given over to the booster, pushing
them up to 1.4 GeV. Next, several bunch trains are formed in the Proton Synchrotron
(PS), i.e. the protons circulate now in groups of 10!, called bunches, with a nominal
spacing in between the groups of 25 ns. After reaching 26 GeV in the PS, they are shoot
towards the Super Proton Synchrotron (SPS). Warmed up to 450 GeV in the SPS, they
are now knocking on the door of the LHC. Proton bunches are then injected stepwise
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into the LHC, up to a total of 2808 at nominal luminosity. The 40 MHz design collision
rate could theoretically allow up to 3564 bunches, but some holes are to be left in the
orbit for the kicker injection magnets.

CERN Accelerator Complex

piom  k nEutions ¢ plantprotan) s pedtrinos b electron

==+ protonfantipraton conversion

LHC Large Hadron Collider  SPS Super Proton Syn wchrotron PS. Proton Synchrotron
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Figure 5.1: The accelerator complex at CERN.

The first successful operation of the LHC was achieved on the 10th of September
2008, where proton beams were circulating in the whole circumference of the accelerator
for the first time. No proton-proton collisions were initiated, but experiments could
record collision events between beam protons and the low density gas present in the
beam vacuum and between protons and beam stop elements. Nine days later, on the
19th of September 2008, about 100 magnets were quenched [127]. The source of the
quench was a faulty electrical connection between two dipoles during a ramping test.
A resistive zone developed and triggered the quench protection system. In addition to
this, an electrical arc punctured the helium enclosure and a large amount of helium
escaped into the vacuum system. The valves could not handle the enormous pressure of
more than 0.15 MPa and the helium was released into the beam pipes, the neighbouring
sectors and finally the tunnel itself. During this sudden pressure release many magnets
became misaligned, some were even misplaced by several tens of cm. All operations had
to be stopped to allow repairs, the magnetic system had to be warmed up, 14 broken
quadrupoles and 39 dipoles had to be brought to the surface for repairs and the beam
pipe had to be cleaned on a length of 4 km. New safety systems were installed, above
all a new quench protection system with special detectors, better valves and stronger
magnet anchoring. During this time, the experiments went trough a long commission-
ing period with cosmic rays. The LHC finally came back to life the 20th of November
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Figure 5.2: The ATLAS control room.

2009 and reported the first collisions three days later at an injection energy of 900 GeV.
After a brief shutdown during the winter of 2009, the machine has been running with
a reduced centre of mass energy of 3.5 TeV, and finally powered up to 7 TeV in March
2010. It has been working extremely well ever since, progressively rediscovering the SM
while grading up in luminosity. The LHC will however still need a relatively long shut-
down, evaluated to last approximately one and a half year, to upgrade its magnets with
the safety requirements mandatory for 14 TeV collisions at nominal luminosity. This is
scheduled to happen in 2012 and 2013.

Among the different experiments located at the LHC, we will zoom in on one of the
two multipurpose detectors, the ATLAS (A Toroidal LHC ApparatuS) detector, situated
on the accelerator opposite of the CMS (Compact Muon Solenoid) detector.

5.2 Taking Control of ATLAS

The general idea of the ATLAS detector dates back to the year 1992, when the letter
of intent was published and proposed a general purpose pp experiment [128]. It took on
more shape two years later with the Technical Design Proposal [129] and assemblage
was accomplished in the beginning of 2008. Now that proton beams are circulating
and colliding in the LHC, taking data with the detector requires about twenty people
at all time in the Control Room. In this section we will take a walk through the
ATLAS Control Room, shown on Fig. 5.2, where the ATLAS sub-detectors are grouped
in desks according to their purpose. This is intended to give only a brief overview, since
a thorough description can be found in [130] (from 1999) and more recent information
(from 2008) is given in [131]. By walking into the ATLAS control room from the entrance
on the left, the first desk we encounter on our tour is responsible for the inner detector.
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5.2.1 The Inner Detector

When particles are produced in hadronic collisions, the first sub-detector they cross
is the Inner Detector (ID). Its purpose is to reconstruct tracks from charged particles
and measure interaction vertices. A precise track reconstruction, especially near the
interaction point, is mandatory to distinguish particles coming from the primary vertex
where the initial pp interaction happened, from eventual displaced vertices coming from
b quarks for example. Therefore, the ID combines high-resolution detectors near the
interaction point and continuous tracking elements at the outer region. At nominal
luminosity, about 1000 particles will be created at the collision point every 25 ns. Given
this enormous track density, the momentum and vertex resolution requirements put
stringent constraints on the detector technology, imposing fine-granularity detectors
such as semiconductor tracking detectors with silicon micro-strip and pixel technology.
The ID covers pseudorapidities of |n| <2.5, extends 6.2 m in length and 2.1 m in radius.
As can be seen on Fig. 5.3, it consists of three independent but complementary sub-
detectors:

End-cap semiconductor fracker

Figure 5.3: The ID is composed of three sub-detectors. Nearest to the interaction point, the
pixel detector is composed only of a cylindrical barrel, whereas the SCT and TRT are each
made of a barrel and two end-caps.

The pixel detector was designed to provide a high-granularity, high precision set
of measurements as close as possible to the interaction point. The high-granularity re-
quirement is fulfilled via a total of 140 million detector elements and the implemented
system in three layers gives three precision measurements over the full acceptance. In
this way, the pixel detector determines the impact parameter resolution, and finds short-
lived particles such as B-hadrons or 7 leptons.

The semi-conductor tracker system covers the |n| < 2.5 region and is composed
of eight layers of silicon micro-strip detectors which perform precision measurements of
the charged particle tracks with a resolution of ~ 200um. It has a coarser granularity
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than the pixel detector because it is further away from the interaction point.

The transition radiation tracker allows to discriminate between electrons and
pions. Tt is made up of straw detectors of very small diameter (4 mm) and covers the
range within || < 2.0. It provides 36 measurements along a track. The spacial track
resolution is less than 0.15 mm for charged particles tracks of pr > 0.5 GeV. The TRT
is operated with a gas mixture of 70% xenon, 20 % CO, and 10 % CFj, with a total
volume of 3 m3. The xenon is used to add electron identification capability by detecting
transition-radiation photons created in a radiator between the straws. The TRT is
operated at room temperature, but the silicon sensors of the other two sub-detectors
have to be cooled down to —25°C.

5.2.2 The calorimetry

We continue our tour of the Control Room with the desk behind the ID group: here
we are in the Liquid Argon section. The purpose of a calorimeter is to measure the
energy deposit and its direction. This is done via a sampling technique, which consists
in alternating layers of passive dense material, where the metallic absorber interacts
with the incoming particles, and active layers of scintillator, which collect the deposited
energy and generate the signal. In ATLAS, the active medium of the calorimeter is liquid
argon, because of its excellent performance in terms of energy and position resolution.
The passive absorber is lead. By separating the calorimeter in small segments both
longitudinally and transversally, the particle track and its identity can be detected. All
elements of the ATLAS calorimeter can be seen in Fig. 5.4.

Tile barrel Tile extended barrel

LAr hadronic
end-cap (HEC)

LAr electromagnetic

LAr electromagnetic
barrel

Figure 5.4: The ATLAS calorimetry system.
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The electromagnetic calorimeter (ECAL)
Soan'Hiaisaos measures photons and electrons, and is com-
posed a barrel and two end-caps. While trav-
elling through dense matter, highly energetic
electrons lose their energy predominantly by
bremsstrahlung. For high-energetic photons,
the main process is ete™ pair production.
These two mechanisms combine to produce
an electromagnetic (EM) shower. The char-
acteristic amount of traversed matter is called

>

o .
37, Sty _ An=q, * . . . . _
LA&;@% N the radiation length X, with units ¢ em™2.
! This is the mean distance over which a high-

energy electron loses all but 1/e of its energy
Figure 5.5: The accordion geometry of the via bremsstrahlung!. This is an appropriate
ECAL absorber layers. length scale for the description of EM cas-

cades and the physical size of EM calorimeters

(ECALs) is usually of the order of 15 to 30 X,
so as to contain the whole shower. The accordion geometry for the ECAL absorber lay-
ers, shown in Fig. 5.5 has been retained because it provides naturally a full ¢ coverage
without any cracks and leads to a very uniform performance in terms of linearity and
resolution as a function of ¢. Over the region devoted to precision physics (|n| < 2.5), the
ECAL is segmented in three sections in depth. The first layer, composed of fine-grained
strips along the n direction, provides an excellent v — 7% discrimination. The second
layer has a lateran granularity of 0.025 x 0.025 in (7, ¢) space. This is where the most of
the electromagnetic shower of highly energetic electrons is collected. The third section
is the back layer which enables a correction to be made for the tail of highly energetic
EM showers. These three layers are complemented by a presampler layer (|| < 1.8)
placed in front to correct for energy loss in the material before the calorimeter. The
transition region between barrel and end-cap in the 1.37 < |n| < 1.52 region has poorer
performance due to the large amount of material in front of its first active layer.

Jets begin showering in the ECAL but continue to the hadronic calorimeter (HCAL)
parts: the tile barrel and extended barrel, and both end-caps. The HCAL in ATLAS
covers the range |n| < 4.9 with very different techniques. Over the range |n| < 1.7, the
barrel and extended barrel function using iron tiles as scintillating material and iron as
absorber. Over the range 1.5 < |n| < 4.9, LAr calorimeters were chosen: the hadronic
end-cap calorimeter (HEC) extends to |n|3.2, while the range 3.1 < |n]4.9 is covered by
the high-density forward calorimeter (FCAL), which has longitudinal segmentation in
three layers. An important parameter in the design of the hadronic calorimeter is its
thickness: it has to provide good containment for hadronic showers and reduce punch-
through into the muon system to a minimum. For hadronic calorimeters (HCALSs), the
equivalent of the radiation length is the nuclear interaction length A. The total thickness

'Here, e = 2.718 is the base of the natural logarithm and not the electric charge.
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is 11 A at n = 0, including about 1.5 A from the outer support. This is adequate to
provide good resolution for high energy jets. Together with the large n-coverage, this
will also guarantee a good missing transverse energy measurement, which is important
for many physics signatures, as single top for example.

5.2.3 The muon spectrometer

We now leave the LAr desk, pass the central desk where the shift leader overviews
the smooth flow of operations, and visit the muon boys on the left corner of the ATLAS
control room. They look after

e the Monitored Drift Tubes (MDT),

e the Thin Gap Chambers (TGC),

e the Cathode Strip Chambers (CSC) and
e the Resistive Plate Chambers (RPC),

which constitute the ATLAS muon system, displayed in Fig. 5.6. The muon system is
composed of two parts: the coarsely grained but fast triggering system and the detection
chambers which give an accurate measurement of the muon momenta. The muon spec-
trometer determines the overall dimensions of the ATLAS detector. The outer barrel
chambers are at a radius of about 11 m and the half-length of the barrel toroid coils
is 12.5 m. The third layer of the forward muon chambers, which are mounted on the
cavern wall, is located at about 23 m away from the beam crossing point.

Thin-gap chambers (TGC)
b » Cathode strip chambers (CSC)

Barrel foroid

Resistive-plate
chambers (RPC)

End-cap toroid
Monitored drift tubes (MDT)

Figure 5.6: The ATLAS Muon spectrometer.
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The conceptual layout of the muon spectrometer is based on the magnetic deflection
of muon tracks in the large superconducting air-core toroid magnets. Over the range
In| < 1.0, magnetic bending is provided by the large barrel toroid. For 1.4 < |n| < 2.7,
muon tracks are bent by two smaller end-cap magnets inserted into both ends of the
barrel toroid. Over 1.0 < |n| < 1.4, usually referred to as the transition region, mag-
netic deflection is provided by a combination of barrel and end-cap fields. This magnet
configuration generates a field that is mostly orthogonal to the muon trajectories, while
minimising the degradation of resolution due to multiple scattering.

The tracking system, arranged on three stations around the beam axis, is composed of
Monitored Drift Tubes (MDTs) and Cathode Strip Chambers (CSCs). CSCs are multi-
wire proportional chambers with cathode planes segmented into strips in the plane
orthogonal to the beam axis. The MDTs constrain the muon tracks in the z coordinate
with a precision of 35 um and cover a range of || < 2.7. At larger pseudorapidities and
close to the interaction point, the CSCs provide complementary track information in the
R coordinate with a precision of 40 ym and in the ¢ direction with a 10 pm precision.
Optical alignment systems ensure that the stringent constraints on the mechanical ac-
curacy of the precision chambers are met.

The trigger system, installed in the pseudorapidity range |n| < 2.4, is composed of
Resistive Plate Chambers (RPCs) in the barrel and Thin Gap Chambers (TGCs) in the
end-cap regions. Their intrinsic time resolution (1.5 ns for the RPCs and 4 ns for the
TGCs) is appropriate for triggering and to identify the bunch crossing.

5.2.4 LUCID and ALFA

LUCID( LUminosity measurement using Cherenkov Integrating Detector) is a detec-
tor primarily dedicated to online relative luminosity monitoring by counting Cherenkov
photons created by particles from minimum bias events. The detector consists of twenty

Figure 5.7: LUCID position in the ATLAS detector.

aluminium tubes which surround the beam-pipe and point toward the interaction point,



5.2 Taking Control of ATLAS 115

as shown on Fig. 5.7. The tubes are filled with CyFy and are kept at a constant pressure
of 1.2 — 1.4 bar, in order to provide a Cherenkov threshold of 2.8 GeV for pions and 10
MeV for electrons. Two detectors are installed, one in each end-cap region of ATLAS,
at a distance of 17 m from the interaction point and at 10 cm radial distance from the
beam-line. The flat surface of each tube which points back to the interaction point is
black to protect against beam background. The quartz window is however sensitive to
beam background, beam halo muons in particular.

The second detector dedicated to the luminosity measurement, ALFA (Absolute Lu-
minosity For ATLAS), is located at 240 m from the interaction point on both sides. The
luminosity measurement is done with scintillating fibre trackers located inside Roman
pots, which approach the beam as close as 1 mm.

5.2.5 ATLAS as a whole

We have assembled piece by piece the ATLAS detector, which can be seen in its full
extension on Fig. 5.8.
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Figure 5.8: The ATLAS detector

The whole detector has a length of 44 m and a diameter of 22 m, for a total weight
of 7000 tons. The primary goal of the experiment is to be able to operate at high
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Table 5.1: The general performance goals of the ATLAS detector. The units for the energies

FE and transverse momentum pp are in GeV.

Detector component Required resolution 7 coverage
Measurement Trigger
ID = 0.05% pr © 1% + 2.5
og _ 10%
ECAL = =50 0.7% + 3.2 + 2.5
HCAL
og __ 50%
Barrel and End-Caps F=g® 3% + 3.2 + 3.2
Forward 2z = L\/%% ® 10% 3.1< <49 |31<]n <49
Muon spectrometer % = 10% at pr =1 TeV + 2.7 + 2.4

luminosity and reconstruct as many signatures as possible. The ATLAS detector as it
is now has excellent detection characteristics, listed in Tab. 5.1. The general formula
for the energy resolution of the calorimeters [8] is

OR

a C
= 9bo—.
- ©ba

VE E
where the input energies F are given in GeV and the @ sign indicates that the terms
are added in quadrature. The a coefficient is called the stochastic term and includes
statistics-related fluctuations as for example intrinsic shower fluctuations, sampling fluc-
tuations and photoelectron statistics. Also accounted for in this term is the dead mate-
rial in front of the calorimeter. This coefficient is of order of a few percent for homoge-
nous calorimeters, but is more important, of the order of 10 %, for sampling calorimeters,
which is the case here. The b coefficient is the systematic or constant term, which in-
cludes effects from the detector non-uniformity, calibration uncertainties and radiation
damage to the active medium. This terms can be minimised if radiation-hard material
is used and submitted to frequent in situ calibration and monitoring. The ¢ coefficient
accounts for electronic noise.

(5.1)

The tracking quality of the ID and the muon spectrometer is indicated via the position

resolution - a
pPT
= —Ob.
VE

s (5.2)
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These numbers show that the original requirements listed in the ATLAS technical
report are met. The high luminosity and bunch crossing frequency at the LHC makes it
an extremely challenging experimental environment for the detectors, which need fast
and radiation-hard components and electronics, as well as high detector granularity to
be able to handle the high particle fluxes and be capable of distinguishing overlapping
events. The following points sum up the advantages of the whole detector:

e The ID provides a good charged-particle momentum resolution and reconstruc-
tion efficiency in the inner tracker. This is particularly important to distinguish
primary from secondary vertices, as required for b-tagging.

e Muons, electrons, photons and jets are the very core of most physics analysis chan-
nels. The good electromagnetic calorimetry for electron and photon identification
and measurements is complemented by full-coverage hadronic calorimetry for ac-
curate jet and missing transverse energy measurements. Good muon identification
and momentum resolution over a wide range of momenta is assured by the whole
muon system.

e Missing transverse energy can be reconstructed very precisely, due to a large ac-
ceptance in pseudorapidity with almost full azimuthal angle coverage.

5.2.6 The Root Controller

Now that we have put ATLAS together from the hardware point of view, we must
do the same for the software. So we come back to the center of the room to the Run
Control shifter. His task is to assemble in the Root Controller the sub-detectors which
participate in the data taking session, shown on Fig. 5.9, using the ATLAS partition.
Partitioning refers to the ability to provide the functionality of the system to use only a
subset of the ATLAS detector if necessary. While this is not recommended in the case of
a physics fill, it is necessary during intermediate testing stages. Other tasks of the Run
Control shifter include setting the prescale keys handed over by the DAQ shifter and the
parameters of the run, stop and start the runs and alert the corresponding sub-detector
shifter if any error messages disrupt the data taking process.
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Figure 5.9: Snapshot of the Root Controller software [132].

5.3 The Trigger and Data Acquisition Concept

The last desk we need to visit in the Control Room is responsible for trigger and
data acquisition issues. The nominal collision rate of the LHC will be of the order of
40 MHz. Out of all these collisions, only a mere 200 Hz will ultimately be recorded on
tape (CASTOR). So the job of the Trigger and Data Acquisition (TDAQ) system is to
reduce the bunch-crossing rate to the requested 200 Hz recorded events and transfer the
detector read-outs to the mass storage. The challenge lies in the required overall rejec-
tion factor of 107 against minimum bias events while retaining an excellent efficiency for
rare new physics processes. The ATLAS trigger setup is based on three levels of online
event selection, as shown in Fig. 5.10. Each trigger level refines the decision made at the
previous level and applies, if necessary, additional selection criteria. The level 1 (LVLI)
trigger is an inbuilt, hardware trigger. The high level trigger (HLT) is split into two:
the level 2 (LVL2) trigger and the event filter (EF).

The LVL1 trigger is responsible for the initial selection based on reduced granularity
information from a subset of detectors. High pr muons are identified using only the
trigger chambers, RPCs in the barrel and the TGCs in the end-caps. The calorimeter
selections are based on reduced granularity information. Objects searched for by the
calorimeter trigger are for example high-pr electrons and photons, jets and tau leptons
decaying into hadrons. They also include large missing and total transverse energy.
All those trigger information may be provided for a number of sets of pp-thresholds,
typically six to eight sets per object type. The maximum rate of the LVL1 trigger is
75 kHz. An essential requirement of the LVL1 trigger is to identify the bunch-crossing
of interest. Given the short bunch-crossing interval (25 ns at design luminosity), this is



5.3 The Trigger and Data Acquisition Concept 119

Interaction rate
~1 GHz CALO MUON TRACKING
Bunch crossing
rate 40 MHz
Pipeline
'II'_FIQEI\éEGLEJI-? memories

< 75 (100) kHz

Derandomizers

Regions of Interest | | | | | | E%Fsgg%l;t drivers
LEVEL 2 Readout buffers
TRIGGER (ROBS)
~1kHz

[ Event builder |

EVENT FILTER FuII-eventdbuffers
an
~ 100 Hz processor sub-farms

Data recording

Figure 5.10: The ATLAS trigger scheme.

a non-trivial consideration. For the muon trigger for example, the physical size of the
muon spectrometer implies times-of-flight comparable to the bunch-crossing period. For
the calorimeter trigger, the challenge lies in the pulse shape of the calorimeter signals,
which extend over many bunch-crossings. The LVL1 is composed of the Central Trig-
ger Processor (CTP) and exchanges signals with the detector via the Trigger Timing
Control (TTC) system. It sends the signal to either accept or reject the event to all
TTC partitions, and gives the ROI information over to the L2 system. The prescale is
a number N which is set by the TDAQ shifter and means that 1 out of N events of the
given type are accepted.

The HLT is composed of 160 Read-Out System (ROS) PCs. The LVL2 trigger makes
use of the region of interest (ROI) information provided by the LVL1. This is composed
of position reference (n and ¢) as well as pr information of candidate objects, and en-
ergy sums (missing E7 vector and scalar Ep value). The LVL2 selectively accesses this
information, moving only the data that are required in order to make its decision. It
has however access to all of the event data, including full granularity and precision. But
thanks to the ROI mechanism, only a small fraction of the event information is needed.

After the LVL2 trigger, the last stage of the online selection is performed by the EF,
which employs offline algorithms and even uses the calibration and magnetic field maps.
The EF makes its final decision on complete physics events. The ROS passes the event,
fragments to the Event Builder, which fashions complete events to pass over to the EF.
If the event passes the requirements of the EF, the event is copied from the SubFarm
Output (SFO) to CASTOR via a python script. Events accepted by the EF are divided
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into different streams, according to their trigger signature. This enables a quick access
to the data portion which is relevant for the different physics analysis. The streaming
structure was elaborated in reference [133| and its composition for the 2010 physics
data [134] is given by the following inclusive data streams:

e Egamma which contains electron and photon objects,

e JetTauEtMiss for jets, tau leptons and missing transverse energy,
e Muon for muons and

e minBias for minimum bias events.

The streams can be inclusive or exclusive. While an event containing an electron and a
jet would be in both the Egamma and JetTauEtMiss streams for the inclusive configu-
ration, it would enter a special overlap stream in the exclusive case.

One of the roles of the run control shifter is to regularly verify that the event re-
construction chain for the triggers is working smoothly. In problematic cases, i.e. if
one sub-detector experiences problems, the information flow gets stuck at some point,
blocking event recording. The system goes busy. The status of the different sub-detector
readouts can be seen on the busy panel in Fig. 5.11. In order not to lose precious col-
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Figure 5.11: The busy panel shows the occupation of the sub-detector read-outs.

lision data, the experts from the sub-detector have to resolve the problem as fast as
they can, to restore the optimal data taking configuration. Each data-taking session
is identified by a partition name and a run number (typically a few hours long), and
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further subdivided into different luminosity blocks (of a few minutes). Two different
clocks are used: LHC whenever the beam configuration is not changing (BC1), and
the internal one (BCref) whenever LHC is ramping, i.e. accelerating the bunches. The
acceleration process alters the beams revolving frequency and this shifting clock could
be troublesome for the detector. At those moments the triggers are automatically held
by the system. When the beam is dumped during or after the ramp, the whole system
has to ramp-down anyway because of the hysteresis-cycle of the magnets.

5.4 Event simulation and reconstruction

The ATHENA [135, 6] control framework is the ATLAS offline software which is
used to produce the full chain of simulated events, including the detector response and
trigger, and reconstruct simulated or real data in formats defined by the Event Data
Model. This section details these different steps.

5.4.1 Simulation chain

The simulation chain in the Athena framework is shown in Fig. 5.12.

Generalor HepMC Particle Filter MCTr Simulation
(Gen)
¥ v
ROD Emulation | ROD Input W : f MCTruth
Algorithm Digits Dighization i _ ( (Sim) )

MCTruth
(Pile-up)

-
ROD Emulation
(passthrough)

ByteStream

S—— :

Figure 5.12: Data flow for simulation and collision data. Processing stages are represented by
rectangles, rounded rectangles stand for EDM objects. Dashed rectangles are optional.
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The different steps of simulated event production are:

e Event generation is done using Monte Carlo generators, such as those described
in Section 4.1, which have been approved from the collaboration for the selected
physics process. The generation is run from inside Athena and the output is
converted into a common format by mapping into HepMC.

e The passage of particles through the detector is simulated with the GEANT4
ATLAS simulation (G4ATLAS). Provided functionalities include geometry
description, the propagation of particles through the different sub-detectors, the
description of materials and the modelling of physics processes. At this stage, it
is also possible to simulate pile-up, i.e. the overlaying of signal and background
events. As can be seen on Fig. 5.12, this is optional in the simulation processing
pipeline. The output of G4ATLAS is in form of hits, which are a record of the
interactions of particles in the detector.

e The next stage is digitisation. The hits produced either directly by G4ATLAS,
or from merged of pile-up events, need now to be translated into the output which
would actually be produced by the ATLAS detectors. This conversion is a very
detector-specific task since it should simulate the response of the readout elec-
tronics. For example, it needs information as the propagation of charges for the
tracking detectors and the LAr calorimeter. A package exists for each of the de-
tector subsystems and the design and operating conditions (like magnetic field or
voltage) of the detectors can be set using job-option parameters or taken from the
condition or detector description database. The final output of the digitisation
step are Raw Data Objects (RDOs or RAW) are identical to real detector data,
but may also contain truth information from the MC particle generation.

At this point, simulated and real collision data have the exact same form and can be
processed with the same algorithms in the reconstruction process.

5.4.2 Event reconstruction

Event reconstruction is done in several stages, where each step contains a subset of
the information available in the step before and objects may be formed by combination
of different pieces of information. The different file formats and their size are defined in
the Event Data Model.

The Event Data Model (EDM) defines a number of successively derived data formats,
which begin with either raw or simulated data and evolve through reconstruction into
more streamlined event representations, which become more and more suitable for a
physical analysis. The different formats are

e The RAW data contains the output of the ATLAS detector information coming
from the final trigger element, the Event Filter . The average event size is ~ 1.6
MB.
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e The Event Summary Data (ESD) consists of both the detector information
and the full output of the reconstruction process in object format as tracks (and
their hits), calorimeter clusters and cells, combined reconstruction objects etc.
The initial nominal size at this stage is about 1 MB/event, but is to decrease as
the understanding of the detector improves.

e The Analysis Object Data (AOD) is a reduced event representation which
contains a subset of the ESD information. It can be seen as a summary of event
reconstruction using objects such as electrons, muons, jets, etc. The nominal size
is 100 kB/event.

e The Derived Physics Data (DPD) are skimmed /slimmed /thinned events de-
rived from AODs and ESDs for specific physics channels. The data is reduced by
removing irrelevant containers and by selecting objects and dropping information
from those objects. Nominally the event size is about 10 kB on average but there
are large variations depending on the different physics channels.

Reprocessing As we have seen, it is a quite long way from RAW collision data to
the output format which allows a physical analysis. In addition to this, the detector
configuration changes over time, so that the most accurate description needs to be used.
Often, collision data will have to be reprocessed approximately two to three months after
acquisition using improved calibration and alignment maps, which have been obtained
from continued studies of the calibration stream data. This offline calibration process
sets the time scale for the reprocessing. In some cases it may be possible to reprocess
starting from ESD rather than going back to the RAW data format.

5.4.3 Fast vs Full Simulation

The simulation chain depends on what is used as input. For generated Monte Carlo
events, detector simulation is done via GEANT4 using a detailed model of the detector
geometry. Each particle is propagated through the detector material, generating hits
which are then digitised, reproducing the RAW data coming from ATLAS. But the use of
an extremely accurate detector description has one major drawback: it is very CPU time
consuming. Simulation can take up to several minutes just for one event, the greatest
time fraction being spent on the calorimeter section. Considering the size of samples
needed for physics analysis, the current full simulation setup of ATLAS will not be
possible for all physics requirements with sufficient statistics. Therefore an alternative
has been set up, the fast simulation AtlfastIl. The event reconstruction chain for full
simulation and fast simulation are shown in Fig. 5.13.
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Figure 5.13: Schematic comparison between the fast and full simulation of events.

In Atlfastll, there is the possibility of using fast simulation of either the calorimeter,
FastCaloSim [136], or of the inner detector, FATRAS [137]. The gain in CPU time in
the fast simulation comes from the use of parametrisations of the raw energy response
of the calorimeter, which replace the step by step calculation of the physical processes
of particle showers. In the initial stage of Atlfast, photons, charged pions and electrons
were simulated with the same parametrisation as photons. This was changed in Atl-
fastIl, where electrons have a parametrisation on their own. All other particles, except
neutrinos and muon, use the pion parametrisation. The parametrisation of AtlfastIl
has been derived from a very early version of the ATLAS full simulation. The energy
deposit in the calorimeter layers is based on parametric shape functions and electric
noise is added to each calorimetric cell in the final step. Due to this parametric nature
in which not all of the shower details and fluctuations are accounted for, it is important
to provide a clear check of AtlfastIl versus the full simulation. We give here an example
of such a consistency check.

A comparison between the full and the fast simulation of electron gun events, i.e.
events in which an electron was created at the interaction point and goes through the
detector, can be seen in Fig. 5.14. Due to the magnetic field in the ID, the electron emits
bremsstrahlung and arrives with different energies in the calorimeter in one event from
the other. Depending on the fraction of energy arriving in the calorimeter as electrons
and as photons, the AtlfastIl response has to be consistent with the full simulation.
Different control variables are used to test the adequacy of the fast simulation. On the
y-axis, we find the energy that has been reconstructed by the algorithm, normalised to its
generated value, the truth energy. The first plot shows the reconstruction as a function
of the sum of the energy of the photons in the event. For the second plot, we follow
the original electron through its bremsstrahlung process and record its energy when
reaching the calorimeter. Again, this quantity is normalised with respect to the input
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Figure 5.14: Comparisons between the FastCaloSim (in green) and full simulation (in black)
for 1000 electron gun events with an energy of 15 GeV shot in the 0.20 < n < 0.25 region.

value. The third plot displays as a function of the missing energy. For each interaction
vertex, the mother energy is compared to the energy sum of the daughters, and then this
is summed for all interaction vertices in the event. In general, this quantity is small, as
it should be. During this investigation, the only relevant problem which came up is for
a very small fraction of events which do not get reconstructed the same way in fast and
in full simulation. The problem is intuited to lie in the Geant4 simulation, which does
not propagate particle information for photons with an energy less than 100 MeV. In
order to clarify and solve this issue, a more complex analysis on the Geant4 simulation
level is required, which is behind the scope of this service task.
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Donald Crowhurst started to contemplate the insoluble mystery
of the square root of minus one and before long found himself
entering a “dark tunnel” from which he was never to emerge.
Most of us, thankfully, are luckier than that.

Jonathan Coe, “The terrible privacy of Mazwell Sim”

The 2010 pp physics run

The reprocessed data at our disposal for a subsequent analysis has been collected
during the 2010 physics run of the LHC. In this Chapter, we review the quantity of
available data, and evaluate if an analysis of charged Higgs boson production is feasible.
Since this is not be the case, we focus on important backgrounds to H*t production,
which are mainly ¢¢ and Wt. Because of the similitude between H*¢ and Wt and because
the task force is needed, we concentrate on semileptonic Wt. Therefore, we detail the
objects in Wt-like signatures and gather the necessary MC samples for the signal and
its backgrounds.

6.1 Data taking periods and consequences

6.1.1 Data taking periods

The 2010 physics run of the LHC with colliding protons at 7 TeV has been an event-
ful time. A small recapitulation of the data periods and subdivisions with relevant
improved collision conditions is listed in Tab. 6.1. The subdivisions will be important
in Section 6.4.1, since not the whole data taking period will be used for the analysis.
Throughout the different periods, the LHC has constantly been upgrading its run con-
ditions, progressively filling in more and more proton bunches and thus gaining each
time an important factor on the delivered luminosity. This rise is best seen in Fig. 6.1.
Out of a delivered integrated luminosity of almost 50 pb~!, the ATLAS detector has
recorded 45 pb~!, but only 35 pb™! pass the several data quality requirements. These
events have been reprocessed and can be used for physics analysis.
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Table 6.1: The 2010 data periods and subdivision with their collected luminosity and com-
ments on the major changes [138]. The amplitude function 3*, dictated by the LHC machine,
needs to be minimised to obtain maximum luminosity. The design value is §* = 55 cm.

Period | Subperiod Comment L (nb™1)

A — Unsqueezed stable beam data (* = 10 m), 0.4
typical beam spot width is (50 — 60)% pum?.

B B1-B2 First squeezed stable beams (5* = 2 m), 9
typical beam spot width is (20 — 30)* pum?.

C C1-C2 — 9.5

D D1-D6 Nominal LHC bunches (~ 0.9 x 10 p/bunch), 320
pileup now significant:
about 1.3 interactions per crossing
(was <0.15 before).

E E1-E7 Brand new trigger menu: 978
previous data were taken with the InitialBeams,
now taken with the Physics menu.

F F1-F2 36 colliding bunches in ATLAS 1980
G G1-G6 Bunch trains with 150 ns spacing from LHC. 9070
H H1-H2 233 colliding bunches in ATLAS. 9300

[ [1-12 295 colliding bunches in ATLAS. 23000
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Figure 6.1: Integrated (on the left) and peak (on the right) luminosity delivered by the LHC
and recorded by the ATLAS detector in 2010.

6.1.2 Consequences on the charged Higgs boson analysis

In the previous chapters, we have been preparing the very first step of the analysis of
a novel physics channel at hadron colliders by calculating a production process at NLO
and implementing it in Monte Carlo event generators. While charged Higgs studies
have been performed at the Tevatron for quite some time now, the prospect of the
LHC startup, with its design centre of mass energy of 14 TeV and nominal luminosity
of 10%* em~2s!, promised to quickly overrun the Tevatron findings. But things went
another way, and it is still not clear if the expected 14 TeV can be reached in the
coming years. The delay in the physics program due to the various shutdown periods
and the reduced energy of 7 TeV puts things in another perspective for charged Higgs
production. Charged Higgs production cross sections range up to at most a picobarn
for best case scenarios. Considering selection efficiencies of those topologically very
complicated events, a charged Higgs analysis simply makes no sense at this point. The
thing to do beforehand is to clearly identify the possible backgrounds to charged Higgs
production from the SM and be sure to understand them thoroughly. In Fig. 6.2, the
major SM backgrounds to H*¢ production, t£ and W, are classified according to their
resemblance to H*t as a function of the different number of b quarks in the signature.

Figure 6.2: At LO, these final state signatures differ only in the number of b quarks: H*t
production (left) has an additional b quark with respect to t¢ production (centre), which again
has one b quark more than Wt production (right).
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Assuming an acceptable mistag rate, current algorithms identifying b jets in ATLAS
have on average a 50 % tagging efficiency, which means that one out of two b quarks will
not be identified. Since the SM process cross sections are noticeably higher than H*t
production, whatever analysis selection is devised for H*t, it will suffer from SM top
production contamination via either ¢¢ or Wt. In the presented diagram, the charged
Higgs boson decays into a top and a b quark. Other relevant search channels will
be the decay to 7v and ¢s§, which are even more similar to Wt production. Due to
its large mass, the 7 lepton decays in the detector, leaving a jet-like signature and a
charged Higgs boson c¢s decay will resemble a W decay into light jets with a shifted
dijet mass. It is therefore mandatory to study and understand the SM backgrounds.
The Wt production is especially challenging, since it has not yet been observed. We
may still gain from the experience gathered in Chapter 3, since at NLO, Wt and H*t
production are very similar. Also, they involve the same problematic interference with
tt, and diagram removal and diagram subtraction MC samples will be needed.

6.2 Semileptonic electroweak single top production

Figure 6.3: Feynman diagrams for LO electroweak single top production in the s- and t-
channel.

Electroweak single top diagrams, shown
in Fig. 6.3, are very similar to H*t pro-
duction and are obtained by replacing the
charged Higgs boson by a W boson in the
s- and t-channel. Since the production
cross section at the Tevatron is too low to
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Figure 6.4: Relative fractions for events con-
taining two W bosons, classified according to
their decay type.

allow for a physical analysis of Wt events,
this process has not yet been observed, nor
is there any measured limit on its cross
section. The process will be enhanced at
the LHC, where it has a NLO produc-
tion cross section of oY = 14.6 pb at 7
TeV, since it comes from gluon and b par-
ton distribution functions. Also, a major
part of the NLO contribution comes from
gluon-gluon fusion. Since the branching
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of t — Wb is almost 100 %, Wt events contain two on-shell W bosons and their sig-
natures in the detector can be classified according to their decay. The branching ratios
for W boson decay are listed in Tab. 6.2, and the resulting proportions for the different
channels are displayed in Fig. 6.4.

The final state of semileptonic Wt is (v, b q¢’. This translates into a detector signature
of a lepton and missing transverse energy to account for the neutrino, a jet which is
identified as coming from a b flavoured quark and two additional jets. All these objects

now have to be identified through their interactions in the different sub-detectors of
ATLAS.

Table 6.2: Decay modes of the W boson in the SM. The different branching ratios are given
in percent [8].

W decay | branching ratios in %
etv, 10.75 £ 0.13
why, 10.57 + 0.15
Ty, 11.25 £ 0.20

i 67.60 + 0.27

6.3 Relevant objects for the semileptonic Wt analysis

We have left the last Chapter at the description of simulated events and have stopped
short after the Geant 4 detector simulation step. After digitisation, events are in the
same form as real events in data and we have to reconstruct physical objects from the
simulated or real readout of the sub-detectors. The reconstructed event objects are
stored in dedicated rootfile containers [139]. The top group collects the global object
definitions from the different performance groups, and these are taken over by the single
top group, sometimes with slight modifications. Since we are in a relatively early phase
of running and will be analysing the first data, with no prior experience of the detector
and its output, the analysis concentrates on the simplest objects of interest for the top
signature, i.e. electrons, muons, jets and missing transverse energy. We do not consider
top quark decay into taus, since they form complex jet-like structures in the detector
which have to be studied further.

6.3.1 Electrons

Definition The standard electron reconstruction algorithm is based on energy deposits
detected in the ECAL, called clusters, which are associated to tracks of charged particles
reconstructed in the ID. The electron reconstruction starts on a seed of energy greater
than 2.5 GeV with a sliding- window algorithm in the middle layer of the ECAL, where
most of the energy of high-energetic electrons is deposited. The size of this window has
been optimised to 3 x 5 cells. Then, a matching track to the cluster is searched for.
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Three cuts for the reconstructed electron quality are defined, depending on the signal
efficiency and jet rejection requirements [140]:

e The loose cut corresponds to simple shower shape cuts in the middle layer and
very loose matching criteria between the reconstructed track and the calorimetric
cluster.

e The medium cut uses additional information from the first ECAL layer and the
track quality cuts are similar to standard requirements.

e The tight cut has tighter track-matching criteria and cuts on the energy-to-
momentum ratio. Further electron isolation may also be required.

For the single top analysis, the electrons are required to pass even more stringent, quality
constraints. Additionally to those quality cuts, they must have a pr > 20 GeV and the
electromagnetic cluster position has to lie within |ng.s| < 2.47. Electrons which lie in
the calorimeter barrel-endcap overlap region, 1.37 < |nuus| < 1.52, are rejected, since in
this region there is only limited calorimeter instrumentation.

Background contamination With all the activity in the detector, it may happen that
the object reconstructed as an electron was not an electron at all in the first place. Fake
electrons can come from cases where a jet has a low energy deposit in the HCAL and is
reconstructed via the electron algorithm. A second possibility is that the electron which
was reconstructed comes from a heavy-flavour decay, and so it would belong to the jet
structure. Photon conversions constitutes a third important background. In order to
suppress contributions from these sources, the reconstructed electron is required to show
little calorimeter activity and only few tracks in an (7-¢) cone surrounding it. To this
purpose, two isolation variables are employed, a calorimeter isolation variable Etcone30
and a track isolation variable Ptcone30. Isolated electrons are then defined by imposing
Etcone30/pr < 0.15 and Ptcone30/ pr < 0.15.

MC to data corrections Electron identification efficiencies for well-isolated electrons
have been obtained on data using the tag-and-probe method. This method is applied on
a clean dielectron sample from W and Z to ete™ decays. In each event, the electron with
the best reconstruction criteria is defined to be the tag. Another electron is searched
for, constituting the probe, with this time less stringent isolation criteria, so that the
tag and probe ensemble give a reconstructed mass in the electroweak boson peak region.
The discrepancy between MC and data is quantified via correction factors, called scale
factors. These studies have shown that the scale factors depend on the n and the pr
of the electron and therefore the scale factors are provided in eight bins of n and six
bins of pr. They differ slightly from the top group standard due to the tighter isolation
requirement used in this analysis. They were approved by the ATLAS egamma group.
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Calibration and resolution
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Figure 6.5: The « correction factor applied to the elec- where a is shown as a function of

tron energy scale as a function of 7. n in Fig. 6.5.

Since MC events do not reproduce the electron resolution found in data, a smearing
procedure has to be applied to the MC samples via the EnergyRescalerTool. The
discrepancy is attributed to the constant term C' in the resolution parametrisation

7_ 5 50 (6.2)

E  VE
since the low energy domain is dominated by the sampling term S and J/v distribu-
tions are correctly reproduced. The constant term has been measured to be 1.1% =+
0.1(stat.) £ 0.2(syst.) for electrons in the barrel. Fig.6.6 shows the dielectron invari-
ant mass distribution in the J/1¢ and Z boson mass peak region after calibration and
smearing.
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Figure 6.6: The J/1¢ (figure (a)) and Z boson (figure (b)) mass peak regions for Z — ee
events in the barrel after calibration and smearing.
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6.3.2 Muons

Definition Muon candidates are reconstructed by matching the muon spectrometer
(MS) hits with the inner detector (ID) tracks, using the complete track information
of both detectors and accounting for material effects of the ATLAS detector structure.
Muons with transverse momenta between 3 GeV and 3 TeV can be reconstructed using
three different strategies:

e In the stand-alone mode, only information from the MS is used.
e The combined method uses ID and MS track combination.
e The segment tag uses information from the ID and the inner station of the MS.

The final candidates are required to have a transverse momentum greater than 20 GeV
and to be in the pseudo-rapidity region of |n| < 2.5.

Background contamination The muon fake rate is by no means as important as
the electron. It can nevertheless happen that, as was also the case for electrons, a
muon is reconstructed which stems from the decay of a heavy flavour quark. Again,
the muon should then be part of the reconstructed jet. Therefore, an isolation criterion
is applied. The transverse energy in a cone of R = 0.3 around the muon direction is
required to be less than 4 GeV. In addition, the scalar sum of the transverse momenta
of any additional tracks inside a cone of R = 0.3 around the muon must be less than
4 GeV. An overlap removal between jets and muons is applied, removing any muon
whose momentum direction is within a AR < 0.4 cone of a jet with pr > 20 GeV.

MC to data corrections The muon identification efficiencies have been measured in
a dimuon data sample at the Z boson mass peak and scale factors have been derived in
10 bins in n and ¢. The scale factor is of order unity for most bins with an uncertainty
of around 4%.

Calibration and resolution

A recent study on Z — ee events in
S 7 TeV collisions [142| gives the combined
ATLAS Preliminary™]
cpaa (CB) muon momentum measurement, de-
Simtaton] termined by the relative weights of the ID
and the MS. The corrected muon p/. is

given as a function of its original pr via
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Figure 6.7: Di-muon invariant mass compar-
ison in the Z boson mass range between col-
lision data and MC simulation for combined
(MS-+ID) tracks.
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values for the resolution at that py. An example of a combined muon p7 resolution curve
in the barrel is given in Fig. 6.8. The comparison between data and MC after correction
of the simulated muon p is shown in Fig. 6.7. The distributions are integrated over the
full range of 7.
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Figure 6.8: Muon resolution pp of tracks in the ID in the |n| < 1.05 range shown for the
collision data (blue solid line) and their extrapolation (blue dashed line). The results from
cosmic ray muons is superposed (light red dashed line) and the uncorrected MC simulation is
shown (red dashed line).

6.3.3 Jets

Definition The final topology of an outgoing parton is a group of collinear bundles of
partons in which the energy of the initial particle is contained. This is more commonly
referred to as a jet. So, a jet is not a fundamental object defined by theory, but rather
an effective description of what is seen in the detector and it is therefore mandatory
to specify which jet reconstruction algorithm has been used. The jet algorithm, i.e.,
the way the individual tracks are grouped together, has to satisfy certain properties
so as to be acceptable both the theoretically and experimentally. Since one wants to
match pQCD calculations at different orders to different jet topologies, we have to
be sure that the jet algorithm is well-defined, and this is only true for collinear and
infrared safe algorithms. This means that if in a partonic configuration we replace
a parton by a set of collinear and soft partons with the same total momentum, the
algorithm should reproduce the same result. The hadronisation procedure is seen to
preserve the jet structure, and the distribution of the total momentum of the jet’s
constituents can approximately be derived by pQCD calculations of partons with the
same total momentum. In ATLAS, jets are reconstructed using the infrared safe anti-kp
algorithm [143] with a width parameter 0.4. The inputs of the jet finding algorithm are
topoclusters constructed by the clustering algorithm. The jets then need to be calibrated
from the raw electromagnetic scale using a Monte Carlo based correction factor, which
on average brings the measured jet pr to the particle level in the simulations. Jets are
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required to have a pr > 25 GeV and |nget| < 5.0, where the jet is defined at EM+JES
scale.

Background contamination For a very small fraction of events with pathological
noise bursts in the calorimeter, it may happen that jets are incorrectly reconstructed
from a few noisy cells. These events are removed with special cleaning cuts if the jet
pr is > 10 GeV. Jet structures overlapping with identified electron candidates within a
cone of AR < 0.2 are removed from the list of jets, as the jet and the electron are very
likely to correspond the same physics object.

Jet Energy Scale (JES) Calibration Hadronic showers are by no means as regular
as EM showers. In addition, an important fraction of the partons initial energy is not
measured because it is either used in the fragmentation process or escapes the calorime-
ter in form of neutrinos or muons. Therefore, an electron e and a pion 7 of the same
energy detected in the calorimeter will have different reconstructed energies. Thus jets
are measured at the EM scale, which accounts correctly for the energy deposit in the
calorimeter by EM showers, but not hadronic showers. This implies that the jet en-
ergy evaluation has to be carried out via correction factors. Low signal densities in the
calorimeter cell indicate a hadronic signal and a correction factor will have to be applied,
while this is not the case for high signal densities which are generated by EM showers.
The hadronic JES is on average restored via data-derived correction and calibration
constants, obtained by comparing the reconstructed jet kinematics to the ones of the
truth level jet in MC simulations. The JES calibration is then validated with in situ
techniques.

The calibration scheme applied in ATLAS for the 2010 data is called EM+JES. It applies
jet-by-jet corrections as a function of the jet’s energy and n location. It proceeds in three
steps:

1. The average additional energy due to pile-up is subtracted from the measured
energy in the calorimeters. The correction constants for this procedure have been
extracted from an in situ measurement.

2. The jet position is corrected. The jet axis points now to the interaction vertex.

3. The JES factors are applied. This jet calibration, based on the H1 method, is done
by application of cell signal weighting. All calorimeter cells with four-momenta
(E;, pi), where E; = |p;| of the tower or cluster jets are summed with weighting
functions w to give the reconstructed jet four-momentum

cells cells

(Erecm r(:g;o) - <Z w(pza XZ)EH Z w(pl, Xz)@) . (64)

7 7

The weights w depend on the signal density p; = E;/V, where V' is the volume of
the considered cell, and on the module and layer identifiers encoded in Xj.



6.3 Relevant objects for the semileptonic Wt analysis 137

Since the startup of the LHC, constant progress is being achieved on the JES measure-
ment and its systematic uncertainty [144|. The validation using tracks [145] and finer
effects such as the influence of other close tracks [146] have been studied. A recent
analysis [147] evaluated the JES correction using the 7 TeV data collected in 2010. The
average jet energy scale correction is shown as a function of calibrated jet transverse
momentum pr for three jet n intervals in Fig. 6.9.
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Figure 6.9: Average jet energy scale correction as a function of the calibrated jet transverse
momentum pp for three representative n-intervals.

B jets One of the most important selection criterion of events containing top quarks
is the identification of jets stemming from b quarks. This is done by taking advantage of
several of b quark jet properties which allow to distinguish them from jets which contain
only light quarks. These features are:

e Hard fragmentation. The b hadron retains about 70% of the original b quark
momentum.

e Large b hadron mass. The invariant mass of b hadrons is usually greater than
5 GeV, enabling their decay products to have a large transverse momentum with
respect the jet axis. Separation from light jets may then be done by measuring
the greater opening angle of the decay products.

e Long lifetime. The feature which is most used in b-tagging algorithms is the
relatively long lifetime of hadrons containing a b quark, which is of the order of
1.5 ps. This means that a b hadron in a jet will have a significant flight path
length, on average about 3 mm in the transverse plane, before decaying. A first
discriminating variable can be constructed using the tracks’ impact parameter.
The transverse impact parameter dg is the distance of closest approach of a track
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to the primary vertex point, in the r, ¢ projection. The longitudinal impact pa-
rameter zg is the z coordinate of the track at the point of closest approach in 7, ¢.
Since tracks reconstructed from b hadron decay products tend to have rather large
impact parameters, they can be distinguished from tracks stemming from the pri-
mary vertex. The second, more demanding option is to reconstruct explicitly the
displaced vertex. These two approaches, using the impact parameters of tracks or
reconstructing the secondary vertex, are referred to as spatial b-tagging.

e Semileptonic decay. The semi-leptonic decays of b hadrons can be used by
tagging the lepton in the jet. Also in this case, the reconstructed tracks of the jet
cross in a displaced, secondary vertex.

Based on those properties, there exist several b-tagging algorithms at the moment, all
more or less refined.

e Impact Parameter (IP) algorithms. Methods using the IP are JetProb and

TrackCounting [PxD, where x = 1,2,3 is the number of dimensions. They
were studied with the first 15 nb~! of data. The JetProb algorithm starts by
computing the probability of a track to come from the primary vertex, based on
the signed transverse impact parameter. It then combines the probabilities of all
tracks belonging to the jet to give a jet probability ranging between zero and one.
Jets from light quarks have a flat distribution, whereas b jets peak at zero.
The TrackCounting algorithm requires at least two good quality tracks with a
signed transverse impact parameter significance above a given threshold. It uses
the significance distributions of b and light jets to calculate a jet weight via a
likelihood approach.

e Secondary vertex taggers. These tagging methods reconstruct the secondary
vertex from tracks associated with the jet. The SVO tagger gives a jet weight
from a likelihood ratio based on distributions like the vertex mass and the energy
fraction. Tt has been studied with 3 pb™! in [148]. The JetFitter algorithm uses
a Kalman filter approach' to fit the b decay chain.

e Soft lepton taggers. The soft muon tagger uses a one-dimensional likelihood
ratio of the muon relative transverse momentum pr,.; to give a jet weight. An-
other, simplified version, is already used for early data analysis. The soft electron
algorithm is a more sophisticated likelihood ratio combining input variables from
the ID and the calorimeter.

The tagger used for the single top analysis is SVO [149], where within a given jet, the
two-track vertices that are significantly displaced from the primary vertex are recon-
structed. Those that are consistent with K9 or A® decays, v — eTe™ conversions, or
material interactions are removed.

!'The Kalman filter algorithm can be used to obtain the optimal parameters in either track or jet
reconstruction, by progressively removing either hits or tracks with large contributions to the x?
function.
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A secondary vertex fit is performed on
the remaining tracks, iteratively removing the
track with the highest contribution to the y?
until an acceptable x? is obtained. The weight
is the three dimensional signed decay length
significance, L/o(L), of the secondary vertex
position with respect to the primary vertex.
The sign is given by the sign of the projec-
tion of the decay length vector on the jet axis,
i.e. it is positive if tracks cross the jet axis af-
ter the primary vertex, as shown on Fig. 6.10.
The jet axis can be determined accurately from
the calorimeter information. On Fig. 6.11, the
different signed decay length significance dis-
tributions for data as well as MC b, ¢ and light
jets in an inclusive jet sample can be seen.

secondary
vertex

Figure 6.10: The jet cone starts from the
primary vertex and is centred on the jet
axis. Tracks belonging to the secondary
vertex have a positively signed IP.

In the single top analysis, the SVO tagger weight cut is applied at 5.85, which corre-
sponds to a b-tagging efficiency of 50% and a light quark jet rejection factor of 2712
This working point has been derived from ¢ MC simulations. The performance of the
SVO tagger was evaluated in [150] and further details about the measurement of the
b-tagging efficiencies and mistag rates can be found in [151].
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Figure 6.11: The signed decay length significance for the SVO b-tagging algorithm in data
(points) and simulation (stacked histogram) for an inclusive jet sample. The vertical line is a

possible cut at 5.72 for b-tagging. [148]

2The rejection factor R means that 1/R light jets will pass the cut, so that R = 271 translates into a

mistag rate of about 0.4 %.



140 The 2010 pp physics run

6.3.4 Missing transverse energy

Since single top event signatures include a neutrino from the W boson decay, the
signature in the detector is missing transverse energy that the escaping neutrino took
away. But missing transverse energy can also come from other effects. If for example a
fraction of the particle energy is badly reconstructed, due to a non instrumented region
or miscalibrated part, this will lead to the mismeasurement of the true Et of the final
interacting objects. The missing transverse energy is calculated as the vector sum over
all calorimeter energy clusters in the event, and is further refined by applying object
level corrections for the contributions which arise from identified photons, leptons and
jets.

6.4 Data and MC samples

The last step we need to take before the actual analysis is assemble the portion of
the 2010 collected data relevant for W+t production. Also, we gather the MC samples
for the signal and all possible backgrounds. The ATLAS geometry tag for data and MC
events is ATLAS-GED-16-00-00 and the reconstruction software version is 16.0.3.3.3.

6.4.1 Data samples

The data samples used in this analysis are those of periods E4 to I, defined in Tab. 6.1.
The very first data from runs A to E3 have not been used due to a problem with the
muon trigger timing, but those periods have only negligible integrated luminosity, as
has already been shown on Fig. 6.1.

Single Top trigger signatures Wt-like events are selected via the unprescaled sin-
gle electron and muon triggers in the muon trigger, Egamma and JetTauEmiss trigger
streams. For single top events in the electron channel, the trigger requirement con-
sists of one high pr electron. At L1 an electromagnetic deposit with Er > 10 GeV is
required, and the HLLT has full information on the whole granularity of the calorimeter
and the tracking. The calorimeter cluster is matched to a track and the trigger electron
object is required to have a energy deposit Er > 15 GeV where the energy is measured
at the EM scale. The single muon trigger requires at L1 a muon chamber track with a
10 GeV threshold, matched by a reconstructed muon in the precision chambers at the
EF level, this time with a 13 GeV threshold.

In order to be accepted, events have to be part of the Good Run List, i.e. they occurred
during a period in which there were stable beams in the accelerator and the parts of the
detector and the trigger system were working. The total number of events corresponds
to an integrated luminosity of 35.3 pb~!. They have undergone the event reconstruction
process described in Section 5.4 and the final analysis was performed on top group spe-
cific DPDs in root trees.
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6.4.2 MC simulation samples

The major backgrounds to the semileptonic single top Wt signature are in great part
related to the b-tagging issues. A signature with one additional b quark which can be
missed is ¢ production. Then, since the signature is mainly a W and jets, W +jets is
also an important background. Events might also get picked up from purely QCD like
multijet production. Also taken into account are Z plus jets and diboson production,
and s- and t- channel single top production. Signal and background processes have been
simulated using different Monte Carlo event generators and a complete list is given in
Tab. 6.3, along with their hadronic production cross section and the number of gener-
ated events.

For the single top quark and ¢t samples, generation has been done with MC@QNLO
coupled to Herwig for the parton showering and hadronisation of events, using CTEQ6.6
as PDFs. Renormalisation and factorisation scales have been set at the top quark mass

HR = [fp = M.

W -jet events are the dominant background after ¢f production. All W-jets Monte
Carlo samples, have been generated at LO with ALPGEN, coupled to Herwig for show-
ering and the normalisation is done via K-factors, following the NNLO recommenda-
tion [152]. Different jet multiplicities and flavours have been generated. As the history
of the top quark discovery has shown, understanding the W +jets background is ex-
tremely important. Since the different multiplicities are generated individually, special
care has to be taken in combining the different ALPGEN samples, since radiation from
one multiplicity may migrate the event into another multiplicity bin. The various flavour
samples are combined using the MLM matching procedure implemented in ALPGEN.
The different flavour samples are then combined with the heavy flavour overlap removal
tool specific to the ATLAS analysis [153, 154]. In this method, the removal criterion is
the distance AR between two heavy-flavour quarks. Additional details on this issue can
be found in App. D.

The Z-+jet samples have been generated at LO with ALPGEN, again combined with
Herwig for the parton showering and normalised to NNLO K-factors [152].

Dibosons in which one of the bosons decays leptonically are also a background contri-
bution to Wt production and the different channels are WW, W Z and ZZ production.
They have been simulated with Herwig at LO and normalised to the NLO cross section
values of MCFM.
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Table 6.3: MC signal and background samples used in the Wt analysis.

Cross-section [pb] Generator Generated Events

Wt all decays 14.58 MCQNLO+Herwig 200,000
t-channel (lepton-jets) 7.15 MC@NLO-+Herwig 200,000
s-channel (lepton-jets) 0.468 MC@NLO-+Herwig 10,000
tt no fully hadronic 89.02 MCQNLO+Herwig 1,000,000
W — fv + 0 parton 8,400 ALPGEN-+Herwig 1,306,000
W — lv + 1 partons 1,580 ALPGEN-+Herwig 552,000
W — lv + 2 partons 460 ALPGEN-+Herwig 188,000
W — lv + 3 partons 123 ALPGEN-+Herwig 50,000
W — v + 4 partons 31 ALPGEN-+Herwig 12,990
W — lv + 5 partons 8.5 ALPGEN-+Herwig 3,500
W — v +bb + 0 parton 55.6 ALPGEN +Herwig 182,000
W — (v +bb + 1 partons 41.1 ALPGEN-+Herwig 67,000
W — (v +bb + 2 partons 20.4 ALPGEN +Herwig 33,000
W — lv +bb + 3 partons 7.7 ALPGEN-+Herwig 13,000
W — v + c¢ + 0 parton 155.6 ALPGEN-+Herwig 255,000
W — lv + c¢ + 1 partons 125.9 ALPGEN-+Herwig 206,000
W — lv + c¢ + 2 partons 63.1 ALPGEN-+Herwig 103,000
W — lv + c¢ + 3 partons 20.6 ALPGEN-+Herwig 34,000
W — lv + ¢ + 0 parton 526.2 ALPGEN-+Herwig 742,780
W — v+ ¢ + 1 partons 195.3 ALPGEN-+Herwig 290,000
W — v + ¢ + 2 partons 51.8 ALPGEN-+Herwig 84,900
W — lv + ¢ + 3 partons 12.1 ALPGEN-+Herwig 20,000
W — lv + ¢ + 4 partons 2.8 ALPGEN-+Herwig 5,000
Z — Ul + 0 parton 807.5 ALPGEN-+Herwig 304,000
Z — 0l + 1 partons 162.6 ALPGEN-+Herwig 63,000
Z — 0l + 2 partons 49.2 ALPGEN-+Herwig 19,000
Z — (0 + 3 partons 13.7 ALPGEN-+Herwig 5,500
Z — Ul + 4 partons 3.3 ALPGEN-+Herwig 1,500
Z — 0l + 5 partons 1.0 ALPGEN-+Herwig 500
WWw 17.9 Herwig 250,000
W2z 5.4 Herwig 250,000
77 1.2 Herwig 250,000




Now it’s full night, clear, moonless and filled with stars, which are not eternal as
was once thought, which are not where we think they are. If they were sounds, they
would be echoes, of something that happened millions of years ago: a word made of
numbers. Echoes of light, shining out of the midst of nothing.

It’s old light, and there’s not much of it. But it’s enough to see by.

Margaret Atwood, “Cat’s eye”

Wt analysis in the semileptonic
channel

This Chapter is dedicated to the semileptonic Wt analysis in the 2010 LHC collision
data. Our effort has been focused on the final analysis strategy, described in Section 7.2
and the elaboration of the PDF systematic uncertainties, given in Section 7.3.1. Addi-
tional details to the analysis can be found in the internal note [155].

7.1 Preselection and background estimates

We have seen that Monte Carlo simulation contains several input parameters which
have to be adjusted to data and some processes are not modelled well enough to permit a
stand-alone contribution to the analysis. This means that for a large class of processes,
the most reliable estimation of background shapes and/or normalisation is obtained
through data driven methods. If the Monte Carlo distributions are taken over and are
normalised with data, one speaks of scale factors to adjust the normalisation. In this
section, we will define the general preselection for single top events and the specific Wt
selection. We will also detail the modelisaiton of the different background processes.

7.1.1 Preselection

The single top group has defined a preselection for all single top like events, which
filters samples from data and MC that have a single top signature. The preselection is
applied on all events from the good-run list from the top group, where events with badly
reconstructed jets have been taken out. Equally rejected are events with no primary
vertex reconstructed from at least five tracks. Then tight selection cuts are applied in
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order to isolate the single top signal. For the semi-leptonic single top channel, events
are required to have exactly one lepton, either electron or muon, with py greater than
20 GeV and missing transverse energy superior to 25 GeV to account for the leptonic
decay of a W boson. In addition to this, events must have at least two jets with pr
greater than 25 GeV. This defines the pretag sample. The tag sample is a subset of
the pretag sample which contains events where exactly one of the jets is b-tagged. Due
to the difficulty of modelling correctly the huge QCD multijet background at the LHC,
a dedicated multijet veto is constructed.

QCD multijet rejection QCD multijet events have a production cross section several
times that of Wt and may create a fake electron signal. The single top preselection picks
up these events when a jet deposits a high fraction of its energy in the electromagnetic
calorimeter and gets misidentified as an isolated electron. Typical candidates for fake
electrons are ¥ in jets, which loose their energy mainly via photons. It might also be
that electrons are reconstructed from events with non-prompt electrons, from the decay
of a b-quark for example, which appear isolated. This is very difficult to model via a
Monte Carlo generator. But in this case, one can exploit the kinematic properties of
those events by looking at the missing transverse energy EF* and the transverse mass
Mz defined by the (lepton, EXSS)-system

MT7W - \/QPTJEIH—:HSS(:[ - COS(gbl - ¢E¥iss)). (7].)

The principle relies on the simulation of real W bosons, depicted in Fig. 7.1(a), which
can be modelled very accurately. Those are then subtracted in the real data distribu-
tions shown on Fig. 7.1(b). Then, by supposing that this removes the real W boson
contribution in the data distribution, all that is left are the fake electrons, Fig. 7.1(c).
Now that we know where they are, we can cut them out. This is done via a triangular cut
in the (E®®, Mryy) plane, also called QCD multijet veto. As can bee seen on Fig. 7.1,
the white line removes the majority of the fake electrons, which are concentrated in the
low ERi and low Mz region. The applied triangular cut is given by

My > 60 — ESs, (7.2)
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Figure 7.1: Scatter plots of the W boson transverse mass M7 (W) versus the missing transverse
energy Ejniliss in the electron + 2 jets dataset. Figure (a) are the simulated W+jets events, figure
(b) the observed distribution in data, and figure (c) shows the distribution for the fake electrons
obtained by taking the difference between the observed distribution and the expectation for
W +jets events.

Data cut flow The number of data events and the fraction of Wt signal which pass
the selection cuts is given in Tab. 7.1 in form of a cut flow. The initial numbers are
those contained in the trigger streams Egamma, Muon and JetTauEtMiss, which were
defined in Section 5.3. The sample composition after all the preselection cuts are given
according to jet multiplicities in Tab. 7.2.

Table 7.1: Event count in data after each of the preselection cuts and signal acceptance for
the Wt signal samples. The MCQNLO event weights (+1 or -1) are included, but no other
event weights. The lepton line also includes all event cleaning cuts. Each row includes all cuts
of the previous row, except for the last row which does not include a 2-jet cut.

Cut data Wt
i e 1 e

Initial events 1.1308e+07 1.98788e+407 | 504 504
Exactly one lepton 286017 202570 | 68 52
Missing Er 164753 107151 | 58 43
Trigger 158866 106253 | 47 43
Triangle cut 153608 102614 | 45 40
Exactly two jets 5591 4112 | 13 12
Exactly three jets 1521 1212 15 14
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Table 7.2: Event count in data after preselection cuts.

data set 1-jet 2-jets 3-jets >4-jets
pretag e 13566 4112 1212 667
pretag u 19508 5591 1521 820
pretag total | 33074 9703 2733 1487
tag e 185 163 141 179
tag 251 265 170 203
tag total 436 428 311 382

7.1.2 Background estimations
7.1.2.1 QCD multijets

After applying the mutlijet veto cut, the pretag sample still contains contributions
from purely QCD events and these have to be modelled correctly in shape and nor-
malisation. The shapes of the kinematical distributions are constructed using an QCD
enriched sample orthogonal to the signal sample. This is obtained by applying all of
the selection criteria, except for the lepton identification requirement, which has been
inverted. In the muon sample, the muon is still required to pass all muon ID cuts but it
has to fail the muon isolation requirement. The normalisation is done using the matrix
method, which is a data driven technique for estimating the number of fake leptons
in a sample. One defines two event selections, which differ only on the lepton quality
criteria. The tight selection now refers to the same criterion used in the analysis. The
loose selection relaxes the lepton selection criterion, so that the tight sample is a subset
of the loose sample. For the loose muon, the hit and isolation requirements are relaxed.
A linear system of two equations can be written and by solving it, the method gives the
number of fake leptons passing the tight requirement. The event yields for the QCD
muon channel obtained via the matrix method are listed in Tab. 7.3 according to the
jet structure of the event.

Table 7.3: Event yields of the QCD-multijet background in the muon-jets channel for
different jet bins of pretag and tagged events using the matrix method.

Pretagged events Tagged events
Jet bin | QCD  QCD fraction | QCD  QCD fraction
1-jet 583 + 88 3.0% 22+4 8.8%
2-jet 314 + 30 5.6% 42+5 15.9%
3-jet 154 £+ 15 10.2% 22+4 13.3%
>4-jet, | 69+£9 8.4% 13+£3 6.4%
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The situation is somewhat different for the electron+jets sample. As has been
discussed in the preselection definition 7.1.1, the electron channel suffers from contam-
ination of fake as well as non-prompt electrons. Since the relative magnitude of the
non-prompt and fake components depends on the fraction of QCD multijet events with
non-prompt electrons in the final state and on the details of electron misreconstruction
effects that are impossible to model perfectly via simulation, it is not well known. Also,
the ratio varies with the event kinematics, and thus the matrix method, which relies on
a representative control region to measure the input values, is not well suited for the
electron channel. Therefore, the template used for the fit of the QCD-multijet back-
ground is obtained using the jet-electron model. The method consists in choosing the
Emiss distribution of a QCD enriched region orthogonal to the signal sample. This is
done by selecting events for which all the criteria of the preselection are applied, but
where the electron requirement is replaced by a jet requirement. This jet must have
a pr > 25 GeV, the same acceptance in 1 as the electron and 80 — 95% of its energy
should have been deposited in the electromagnetic section of the calorimeter. Additional
requirements are that the jet must have been reconstructed from at least four tracks,
in order to reduce contributions from converted photons. For top, W-jets, Z+jets and
diboson processes, the templates have been obtained with the Monte Carlo samples.

The normalisation is determined by fitting the data in the low EX < 25 GeV region
and then extrapolate to the signal region. The fit is performed after applying all selec-
tion cuts, including the triangular cut, but leaving out the cut on E¥. The results of
the fit on the ENS distributions at pretag and then at tag level are shown on Fig. 7.2.
An advantage of using a binned likelihood fit is that it directly provides an uncertainty
on the result. The matrix method has also been applied in the electron channel as a
cross-check and to estimate the systematic uncertainties.

The event yield of the QCD multijet events in both the electron and the muon channel
is summarised in Tab. 7.4. There’s a tendency for higher QCD fractions in the muon
channel. A possible explanation is that the isolation requirement on the electron is
already more efficient in removing QCD contributions than the isolation cut applied for
the muon. This tendency is event stronger in the tag than in the pretag sample, since
the b-tagging requirement enrichens the sample in events from cé and bb background
contributions, where one jet has been identified as b and the other may have produced
a reconstructed lepton.
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Figure 7.2: ER distribution for the electron two-jet pretag and tag data sets. A binned
likelihood fit is performed to determine the fraction of QCD-multijet events and W + 2
jets in the sample. Events with EM® greater than 120 GeV are contained in the last

bin.

Table 7.4: Summary of the QCD-multijet background in different jet bins of pretag and tagged
events in the electron+jets and muon+jets data sets using the final uncertainty.

Pretagged events Tagged events

Jet bin | e channel g channel | e channel g channel
1-jet 310 £ 310 580 £ 290 5+5H 22411
2-jet 260 £ 130 310 &£ 160 6+6 42 + 21
3-jet 80£80 150 £ 150 5+5H 22411
>4-jet 60 £ 30 70 £ 70 DE5H 13£7

7.1.2.2 WH+jets

The estimation of the W+jets background is relying on Monte Carlo samples for
the shape of the distributions and the flavour composition and overall normalisation is
derived from data. This scale factor is a product of a global W+ jets normalisation times
the flavour-specific scale factor. The total W -+jets sample is normalised to the data in

the pretag sample by event counting. The number of pretag W +jets events Ngﬁej;is is

obtained by subtracting from the data count N2'*® all other backgrounds NBja®

pretag pretag pretag
NW+jets - Ndata o NBKG ) (7-3)

where the background composition is given by the QCD multijet contribution Ngggg

determined just before in section 7.1.2.1 and the Z-+jets, single top, tf and diboson
processes given by the Monte Carlo samples N

pretag pretag pretag
NBKG _ NQCD + NMC ' (74)

The resulting global scale factors are given in table 7.5. Since consistent results have
been obtained in both channels, the combined result is used in the analysis.
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Table 7.5: W+jets pretag scale factors obtained with the event counting method for the muon
and electron samples and their combination. They are listed together with the uncertainty due
to data statistics and systematics.

Pretag Sample Data/MC
e channel 1 channel Combined
W1jet 1.04£0.014£0.21  1.0240.01£0.22 1.03£0.0140.22
W+2jet 1.004£0.02£0.32  0.98+0.02£0.33  0.9940.0140.32
W+3jet 0.98+0.0440.48 0.90%0.034+0.47  0.9340.0240.46
W +4jet 0.91+0.10+0.74  0.9240.0840.78  0.924+0.0640.74

As a cross-check of the obtained global W +jets scale factors, a second estimation is
provided using the event ratio of positively and negatively charged leptons. Since the
LHC is colliding protons, the u quark PDF is more important than that of the d quark.
This results in a charge asymmetry in the produced W boson, whose measurement can
be used to check the normalisation factors obtained earlier. The resulting scale factors
for the electron channel are 0.92 + 0.13 in the 2-jet bin and 1.07 £ 0.2 in the 3-jet bin.
For the muon channel, the 2-jet bin scale factor is 0.98 £+ 0.09, and 0.99 + 0.16 for the 3-
jet bin. These scale factors are consistent with those given by the event counting method.

Now that we have cross-checked global scale factors for W-jet production, we still
need the individual flavour-dependent normalisation factors. Therefore, tagged control
samples of the flavour contributions Wbb+W e, Wej and W55 are compared to the pre-
tag sample. The fraction of each flavour contribution with respect to the total W -jets
background are obtained by comparing the Monte Carlo samples to the data, where
the other backgrounds (Z-+jets, single top, ¢t and dibosons) have been subtracted. The
comparison is done for the 1-jet pretag, 1-jet tag and 2-jet pretag events, and leads to a
linear system of three equations, from which the three fractions can be extracted. The
resulting scale factor for each flavour decomposition is given in Tab. 7.6.

Table 7.6: Scale factors SF for each W-jets flavour for the muon and electron samples
combined, given with statistic and systematic uncertainties.

Sbe,cc Sﬂjj SFC
W + 1jet | 0.71£0.10+£0.62 0.9940.014+0.18 1.56+0.16+0.72
W + 2jet | 0.684+0.09+0.64 0.95+0.02+0.25 1.5040.16+0.66
W + 3jet | 0.65+0.09+0.65 0.914+0.024+0.34 1.43+0.16+0.65
W + 4jet | 0.654+0.09+0.76  0.90+£0.04+0.53 1.434+0.17+0.78

7.1.2.3 Other background normalisation

Single top s- and t-channel, ¢¢ backgrounds and the contributions of the electroweak
Z+jets and diboson productions WW, W Z and ZZ are simply normalised to the NLO
theoretical cross sections given in Tab. 6.3 and the relevant scale factors for leptons
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and b-jets are included. Additionally, the ¢f normalisation has been validated with a
data-driven estimation.

7.1.2.4 Event yields

An event yield recapitulation of all signal and background processes after the prese-
lection and the background estimations is given in App. E for the electron and the muon
channel.

7.2 Cut-based analysis

7.2.1 Final selection

The final Wt selection selects a subset of each jet multiplicity bin, which has been
defined previously in the preselection, by requiring only central jets, i.e. respecting
In| < 2.5. This tightened jet multiplicity is consistent with the preselection as it will only
reject events in each jet multiplicity bin but not allow migration between multiplicities
(i.e. a two jet event in the preselected sample remains a two jet event in the Wt tight
selection). The data is splitted into three multiplicity bins, which are defined as

e Two jets: exactly 2 central jets with pr > 25 GeV,
e Three jets: exactly 3 central jets with pr > 25 GeV,
e Four jets: exactly 4 central jets with pr > 25 GeV.

Further restrictions apply to the jets stemming from b quarks, which are identified by
the SVO algorithm with a cut at 5.85 and are required to have a transverse momentum
pr > 35 GeV. We retain only events containing exactly one b-tagged jet, as this seems to
be the most efficient discrimination against the ¢¢ background we can reasonably impose
with the current amount of data. Further tightening of the b-tag pr cut will augment
the W +jets rejection but lower the overall signal as well as increase the relative ¢t back-
ground contribution. Further discrimination will have to be achieved with multivariate
techniques, once more data becomes available for this to make sense.

As a first and simple approach to further reduce the background without removing too
much of the signal, we choose to perform a cutbased analysis using a robust variable
with some discriminating power against the W+ jets background: the difference in R
between the first and the second jet AR(Jy, J3). In order to ensure that the variable on
which we will cut is well understood, data-background comparisons of those variables
can be seen in Fig. 7.3.
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We retain the cut which optimises the signal over square root of background ratio

S

NG

7.2.2 Event yields

Optimised cut values and event yields after the cut-selection are summarised in

Tab. 7.7, for which the last entry contains the sum over all systematic uncertainties
squared X2 = > Syst?,

Table 7.7: Event yields after cut on AR(Jy,.J2) at 2.5. Errors include all systematic
effects detailed in section 7.3.

Electron Muon

2 jets 3 jets 4 jets 2 jets 3 jets 4 jets
Wt 23+05 27+£04 1.2+£0.2 24+05 28404 1.2+£02
Multijet 35+35 124+13 05+£05 57+34 55433 12£1.0
Wtjets 75+38 244+15 08+0.7 8.6+40 25416 1.0£09
Wetjets 19.7+103 48+26 154+09|228+11.8 64+35 1.7+1.1
W ec+jets 21420 09+10 02+03 27+26 134+14 04+£05
Whb-+jets 3.8+36 124+13 06+£038 4.7+44 214+21 08=£1.0
s, t-channel 3.7+£05 12402 03+£0.1 44+06 13+02 03=£0.1
tt 1144+40 246453 232+£31| 125+41 275+£6.0 256+3.8
\AY 1.0£02 04+£01 0.14+0.0 1.2+02 05+01 0.140.0
Z-+jets 1.3+413 05405 0.6=£0.6 1.2+12 06+06 02402
Background | 54.0 £ 129 373+6.5 27.74+35|63.8+14.6 47.74+82 314444
Expected 56.3+12.9 40.0£6.5 29.0+3.5|66.24+14.6 50582 326444
Data 49 55 29 74 50 37
S/B 0.04 0.07 0.04 0.04 0.06 0.04
S/vB 0.31 0.44 0.23 0.30 0.41 0.21
S/VB + 32 0.15 0.30 0.19 0.14 0.26 0.17

7.3 Systematic uncertainties

To complete the analysis of Wt production, we will investigate the systematic uncer-

tainties which affect the cross section limit. These uncertainties are evaluated according
to the common top group prescription and standard ATLAS procedures [156]. In this
document, special emphasis is put on the PDF systematic uncertainty, since this was
elaborated by our group.

7.3.1 The PDF systematic uncertainty

Parton distribution function (PDF) systematic uncertainties are computed following
the PDF4ALHC recommendation [157] which followed the interim report [158]. Its con-
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crete form in the ATLAS framework [159] has already been used for the ¢t cross section
measurement [52] and part of this computing effort can be taken over. We evaluate
the systematic uncertainties within the context of the Wt analysis. Since we find that
these uncertainties are small, we apply the uncertainties that we find to the not only
the Wt analysis but also the single top t-channel analyses.

The Wt PDF systematic uncertainty is evaluated using as input reweighed events,
which are obtained with new selection efficiencies. A new selection efficiency is evaluated
for each error set, both for signal and background processes. Reweighed events have been
calculated for the ¢t analysis and are accessible in ntuple form at [160]. These have to be
retrieved and matched to the events before and after the selection cuts. The new weight
w of an event which has been generated initially with PDF set f, for two incoming
partons with momentum fraction x, and z; is given by

fi(wa) fi(xs)
fo(l’a)fo(fb’b) ’

where f; stands for the i-est error set PDF. In this way, new event numbers before (tot)
or after (sel) selection can be computed

NPt = N (7.6)

tot, sel events

(7.5)

w; =

This has to be done for all error sets within a PDF collaboration, and repeated three
times by selecting different PDF types: CTEQ 6.6, MSTW 2008 and NNPDF. An error
band for each type is given by using the symmetric Hessian method for CTEQ 6.6, the
asymmetric Hessian method for MSTW 2008 and the standard deviation for NNPDF,
as discussed in Section 2.2.2. Input processes are split into four main categories: signal
(Wt), background normalised on data (W/Z+jets), top background (single top s- and
t-channel, ¢) and dibosons. As an example, we show results for events which contain
three jets and an electron (EM3J channel) in Fig. 7.4. Reweighed events are plotted
for each error set shift and the resulting error band for each type of PDF is also displayed.

We use the most conservative approach to give an overall uncertainty by selecting
the envelope, i.e. the largest deviation from the central value, as the systematic uncer-
tainty. Since the resulting errors are small, this is totally sufficient for the moment. The
resulting uncertainty on the selection efficiencies for each process is given in Tab. 7.8.



154

Wt analysis in the semileptonic channel

z Zt
5.05 5125 e
51;

£ L. - Central - Central
[ < NF < N'
e T N 49.8 N
= Y o
470 s 49.61 s
-] S N EAE I R B 4940 o Lo L L
0 20 40 60 80 100 0 20 40 60 80 100
PDF error set i PDF error set i
4 r 4
0.68[~
0.67F
0.66]

- Central - Central
o N N
0.64 N N
[ A a0l LA
063 | B
0 20 40 60 80 100 0 20 40 60 80 100
PDF error set i PDF error set i

Figure 7.4: Examples of variations in the expected numbers of events for the EM3J channel,
as a function of the error set PDF. The CTEQ 6.6 sets are shown for ¢ = 0 to 21, MSTW2008
for i = 22 to 42 and NNPDF for ¢ = 43 to 93.

Table 7.8: Selection efficiency uncertainties due to PDF variation in the Wt analysis.

Electron Muon
Two jets Three jets Four jets Two jets Three jets Four jets
Wt
AvTe/e 3% 4% 3% 2% 2% 2%
A~¢/e -2% 2% -1% -2% -2% -1%
tt, s-, t-channel
AvTe/e 1% 1% 2% 1% 1% 1%
A~¢/e -1% 2% 2% -1% -2% -2%
W, Z+jets
AvTe/e 3% 3% 4% 2% 1% 4%
A~ €/e -2% -3% -4% -2% -3% -4%
Dibosons
AvTe/e 1% 1% 3% 2% 2% 2%
A~¢/e -1% -1% -1% -1% -1% -1%
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7.3.2 Other sources of systematic uncertainties

Since the analysis relies partly on Monte Carlo generated events, systematics related
to the theoretical calculation and modelling have to be considered in addition to the
PDF systematic uncertainty.

e MC Generator and Parton shower modelling

A brief summary of the MC samples used to derive the systematic uncertainties
due to the MC generator and the Parton shower model can be found in Tab. 7.9.
They are listed with their corresponding cross section and the number of generated
events Ny;c. To assess the impact of Monte Carlo event generator modelling, tf
event samples have been generated using MCQNLO as well as Powheg, associated
with Herwig. This systematic uncertainty, given by the relative difference of events
obtained with the two generators, is about 5 %. The same value is then taken
over for the other single top samples. The parton shower effect can be studies by
comparing Powheg samples showered with Herwig to those showered with Pythia.
The effect is of the order of 2 % and is equally assigned to the other single top
samples. Finally, the impact of initial state radiation (ISR) and final state radi-
ation (FSR) can be studied with the dedicated ACERMC with Pythia samples,
where various ISR/FSR tunes have been used. Variations are observed to be of
the order of 2 %. These results are again taken over for all other MC generated
processes.

Table 7.9: Top quark event Monte Carlo samples used for the determination of system-
atic uncertainties due to event generator and parton shower effects. The cross-section
column includes K-factors and branching ratios.

o [pb] Generator Ny
tt no fully hadronic 89.4 POWHEG+Herwig 200,000
tt no fully hadronic 89.4 POWHEG+Pythia 200,000

tt no fully hadronic ISR up 89.029 ACERMC+Pythia 200,000
tt no fully hadronic ISR down | 89.029 ACERMC+Pythia 200,000
tt no fully hadronic FSR up 89.029 ACERMC+Pythia 200,000
tt no fully hadronic FSR down | 89.029 ACERMC+Pythia 200,000

e Theoretical cross section normalisation
Since the event yields from the t¢, Z+jets and diboson background processes are
estimated using the acceptance from MC, we have to consider the uncertainty due
to the theoretically predicted cross-sections. The cross section uncertainty on the
tt cross section is (164.57-15.7+11.4) pb. An uncertainty of 5% is applied to the
diboson background, and an uncertainty of 100% to the Z+jets background in all
jet multiplicity bins.
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MC statistics
The uncertainty due to the limited size of the Monte Carlo samples is taken into
account by assuming a Poisson distribution.

There are also uncertainties coming from object modelling and reconstruction, as well
as from the background estimation.

Lepton energy scale/resolution

The correspondence between the readout of the energy deposit from the EM
calorimeter and the real energy of the lepton is subject to calibration and im-
plies an uncertainty on the lepton energy scale. This uncertainty is evaluated by
scaling the pr of the lepton up or down by 1o and re-applying the event selection.
Following the prescriptions of the performance and the top group, the uncertainty
due to the lepton energy resolution is evaluated by smearing the lepton energy in
data. This has an effect of less than 1% on the signal and backgrounds.

Lepton ID and trigger efficiency scale factors

A scale factor is applied to the MC lepton trigger/ID efficiencies in order to repro-
duce the efficiencies seen in data and these scale factors have associated uncertain-
ties. They are evaluated by recomputing the predicted MC event yields and signal
acceptance using shifted scale factors. The resulting scale factor uncertainties are
around 4%.

Jet energy scale

The jet energy scale is marred by an uncertainty of 3-5%, depending on the pr
and 7 of the reconstructed jet. The JESUncertaintyProvider tool can be used
to scale the energy of each jet up or down by 1lo. This change is then propagated
to the missing transverse energy calculation and the event selection is reapplied to
assess the effect. The resulting alteration in event yield is between 10% and 30%
for the signal and background samples.

B-tag heavy flavour and light flavour scale factor uncertainty

The uncertainty on the b-tagging data/MC scale factor is evaluated separately for
heavy flavour (b, ¢ quarks) and light flavour quark jets in the MC. The flavour-
specific SF per jet are used to give a global SF per event. Since error contributions
may come from tagging as well as mistagging, the two effects are varied separately
and their effect combined quadratically.

QCD background normalisation

As described in Section 7.1.2.1, the QCD background is normalised to data through
the fitting method in the electron channel and through the matrix method in
the muon channel. The evaluation of the systematic uncertainty is based on the
comparison with alternative QCD estimates and adds up to 100% in the electron
channel and 50% in the muon channel.

W+jets background normalisation and flavour composition
The different W +jets flavour components are normalised to data samples which
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are either orthogonal to the signal sample or a super-set of the signal sample
with negligible signal. An uncertainty is due to limited data statistics in those
normalisation samples. Also, the change in scale factors due to various system-
atic uncertainties is taken into account and propagated to the final analysis. The
W +jets background normalisation uncertainty is the quadratic sum of the statis-
tical and systematic uncertainties. The W +jets flavour uncertainties are treated
as fully correlated between Wbb and Wee and uncorrelated with Wej and with
Wij.

e WV +jets shape uncertainty The shape uncertainty of the W-jets background is
obtained by varying several parameters in the generation of the WW-+jets samples.
W-jet MC events are reweighed according to each of these parameters and the
largest variation is taken as a systematic uncertainty. This amounts to 4%.

Additional sources of systematic uncertainties are

e Pile-up
The pile-up uncertainty is evaluated by reweighing the MC primary vertex number
distribution. The impact of the pile-up reweighing on the signal acceptance with
respect to the nominal approach (no pile-up) is 2 % or less. Therefore, a 2%
deviation is assigned to all MC signal and background sources.

e Luminosity
The uncertainty on the integrated luminosity measurement is 3.4%. This value is
applied to the MC-driven background estimates as well as the final cross-section
measurement.

The exact values for all those systematic uncertainties in the different analysis channel
are listed in appendix F.

7.4 Statistical analysis

In this section we concentrate on the statistical data analysis technique used to set a
limit on the Wt cross section [161]. We must interpret the observed number of events
by giving it a statistical significance. Usually this is done via a p-value. This is the
probability, under assumption H, of finding data of equal or greater incompatibility
with the predictions of hypothesis H. The hypothesis can be regarded as excluded if its
p-value is below a certain threshold. In our analysis, as it is very common, we chose
this threshold to be p = 0.05, thus giving a 95 % confidence level upper limit on the
production cross section.

7.4.1 Semileptonic channels

One can establish limits on a new physics processes via a significance test using a
profile likelihood ratio as test statistic. This is well-adapted to our purpose, since this
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method takes into account the systematic uncertainties in form of nuisance parameters.

The measurement of the Wt channel cross-section is treated as a counting experiment
modelled by the likelihood function

L(ogga5) =[]  Pois (NP [ Nim(a@) x ] Glay), (7.7)

i€{channel} jEsyst

which is a product of i different analysis channels. For now, these are the electron an
muon channels for the three jet multiplicities. Later on the product will also include the
dilepton channels to give a combined result. For each channel, the likelihood includes
a Poisson distribution Pois in the observed number of events N the data, with

expectation value N7

(Niexp)NiObs eXp(_Niexp) .

Pois (N2 | Nfh(d)) = Nobs

(7.8)
This is the sum of the expected contributions from signal and all MC- or data-driven
backgrounds. Systematic uncertainties are grouped in uncorrelated sets and their effect
is parametrised using a set of nuisance parameters o, which are supposed to have a
Gaussian distribution centred at ap; and with standard deviation 9:

1 (aj — g )?
G(a;) = exp(——L——21). 7.9
(@) = s ep(— ) (7.9
The great advantage of this method is that the correlation of each systematic between
different sources and different analysis channels can be taken into account properly. To
estimate the effect of these uncertainties, one computes, for each fluctuation of the nui-
sance parameters, the cross section which maximises the likelihood function.

The profile likelihood ratio A is given by
Aowt) = L(owe, 7)) L(05g, ), (7.10)

where the double circumflex in the numerator refers to the values of the parameters
which maximise the likelihood function £ for a given value of the signal cross section
owe. 1t is therefore called the conditional maximum-likelihood. On the denominator
we find the maximal (unconditional) likelihood function, and parameters with a single
circumflex are the maximum-likelihood estimators. The measured cross-section is then
simply obtained by the maximum likelihood estimate. The presence of the nuisance
parameters broadens the profile likelihood, reflecting the loss of information due to the
statistical and systematic uncertainties.

From equation 7.10 we see that the limits of the profile likelihood are 0 < XA <1, and
so a A near unity implies good agreement between the data and the assumed SM cross
section ogg. A useful test statistic is

t = —21n Mow:) (7.11)



7.4 Statistical analysis 159

which, in the asymptotical limit, i.e. for large data samples, approaches a x?-distribution
with one degree of freedom [162]. Since a p-value of 0.05 translates into 3.82 for the
x2-distribution, the 95 % confidence level Wt cross section g is given by

—1In A(og5) = 1.92. (7.12)

The expected and observed profile likelihood distribution for the Wt analysis are
shown in figure 7.5. The log-likelihood, displayed in red, takes into account only sta-
tistical fluctuations. As was just explained, the profile log-likelihood, displayed in blue,
also incorporates systematic uncertainties. The expected curves are constructed by as-
suming that the measured number of events, i.e. cross section, is the SM value og,.
This is exactly the type of distribution people have been doing exclusively before there
was any data. But fortunately, we can now move one step further and give the observed
limit, because we have one realisation, namely the measured value Ny, in the 2010
data. The intersection of the observed profile-log likelihood function with the line at
1.92 gives the desired cross section limit ogjs.
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Figure 7.5: Log-likelihood ratio (dashed red) and profile log-likelihood ratio (plain blue) for
the expected (left) and observed (right) limit in the Wt analysis as a function of the ratio
owt/ Ua}‘f . The green lines indicate the 68%, 90% and 95% confidence levels.

With the standard model cross-section of 14.58 pb, the 95% confidence level expected
limit on the Wt cross section is oy, < 122.8 pb. The fit for the observed value gives
a cross section limit of o;<<196.0 pb. The minimum of the observed likelihood is at
almost five times the SM cross section value, which may seem quite high at a first glance.
But considering the large uncertainty from statistical and systematic effects, this comes
as no surprise. improving these uncertainties thus has to be one of the main objectives
for future analyses.

These results have been cross-checked using a Bayesian method with full integration
over the nuisance parameters, yielding extremely similar results, shown in Fig. 7.6.
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Figure 7.6: Bayes posterior density for the expected (left) and observed (right) in the Wt

analysis. The coloured region corresponds to the 68% HPD interval, and the black line to the
95% CL limit.

7.4.2 Combination with the dileptonic channels

Wt production can best be seen at the LHC in the dileptonic channel, where both W
bosons decay into either electrons or muons, giving three different analysis channels ee,
ey and pp. The analysis of the 2010 data is detailed in [163] and yields an upper bound
on the Wt cross section of oy < 110 pb for the observed and oy, < 112 pb for the
expected value. The combination with the semileptonic channel has been done using the
profile likelihood method by summing over all channels. The resulting 95 % confidence
limit on the cross section is oy, < 158 pb for the observed value and oy < 94 pb for the
expected value. This is an amelioration of the semileptonic result, worsens however the
observed value in the dilepton channel. But it ameliorates the expected value for both
cases, giving hope that in the future combination will yield the most stringent limit.
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Figure 7.7: Observed likelihood ratio (red dashed) and profile likelihood ratio (blue solid)
curves for the combined Wt-channel analysis. The horizontal green lines represent, from the
top, the 95%, 90%, and 68% confidence intervals on the extracted cross-section.
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7.5 Conclusion

The final result of this analysis has been approved by the ATLAS collaboration [164].
As was discussed in the previous section, a lot of effort will have to be put into reducing
the uncertainties in the Wt analysis. In 2011, the LHC has already made a tremendous
start, enabling ATLAS to collect almost 600 pb~! in the first six months of operation,
as shown on Fig. 7.8. Running with 1092 bunches per beam at the end of May, the
machine already provides a third of its design luminosity. An exciting times lies ahead,
with evidence and discovery of the electroweak single top production just within reach.
At that point, a consistent H*t analysis will surely be in the starting blocks.
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Figure 7.8: Integrated luminosity delivered by the LHC and recorded by the ATLAS detector
in the first half of 2011.
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Die Arbeit ist getan, das Buch ist fertig. Ob mir gelungen ist,
was ich vorhatte, weiss ich nicht. Keiner, der eben das Wort Ende
geschrieben hat, kann wissen, ob sein Plan gelang. Er steht noch
zu dicht an dem Hause, das er erbaut hat. Ihm fehlt der Abstand.

Und ob sich’s in seinem Wortgebdude gut wird wohnen lassen, CO n CI us i on

weiss er schon gar nicht.

Erich Késtner, “Als ich ein kleiner Junge war”

The Standard Model of particle physics encodes our current knowledge of the intimate
structure of matter. The particle content has been established during the last century
and all particles have been observed, but one. The Higgs boson is the last cornerstone
of the Standard Model and, although precision measurements point to a relatively light
mass, it continues to elude searches at colliders. Speculations have been ongoing as to
the exact structure of the Standard Model scalar sector. In this context, the two Higgs
doublet model provides a simple extension and gives rise to five physical Higgs bosons,
out of which two are charged. Investigating the existence of these particles requires
precise predictions as to the number of bosons being produced in hadron collisions, and

kinematic distributions of simulated events from Monte Carlo event generators are to
be studied.

In this thesis, I provide a detailed guide through the next-to-leading order (NLO) cross
section calculation of charged Higgs boson production in association with a top quark.
Although considered basic knowledge from specialists, the many aspects involved in the
calculation are less known outside this restricted community. I therefore tried to insist
on comments and examples concerning important concepts, as the renormalisation and
factorisation scales, the matrix element calculations and parton showers, to name only
a few. The NLO calculation of H*¢ has been performed using a method which permits
the implementation of the process in Monte Carlo event generators. My independent
NLO code provided useful checks on the process included in the MCQNLO generator
and a dedicated paper has been published on this topic. I then turned to the actual
implementation within the POWHEG event generator and this publication is in prepa-
ration. The availability of the NLO H*¢ process in two distinct generators is of great
importance to the experimental community, since now a generator-related systematic
uncertainty can be evaluated. The POWHEG implementation will also be useful for
analyses at the Tevatron and the LHC, since positively weighted events can be used
in multivariate techniques. T conclude this section with several studies of systematic
uncertainties related to the theoretical prediction.

Then, I take off my theorist’s hat an put a helmet on, since we will be following the
protons from the duoplasmatron all the way through the Large Hadron Collider and
the ATLAS detector, to the final histogram of an analysis plot. The LHC incident in
2008 resulted in a long shutdown, delaying the start of the machine and lowering the
available energy from 14 to 7 TeV. This means that ultimately there was not enough
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data to perform a charged Higgs boson analysis, which had been the original plan of
this thesis. We therefore switched to background characterisation for H*¢ production
by studying Wt-like events, which have a structure very similar to H*¢. In particular,
the same methods are applied to separate the process from ¢t in the NLO generation
step. We have been very fortunate to witness the start of the LHC, and thus this is one
of the first thesis to contain a physics analysis on real collision data, after a long period
of purely Monte Carlo events in Europe. It has been an extremely enriching experience
to live the excitation of new achievements and Standard Model rediscovery practically
on an every day basis. Since the Wt process has such a low production cross section
at the Tevatron that it hasn’t been observed yet, we were able to put a very first limit
on its cross section, by using the amount of data collected with the ATLAS detector in
2010. With o < 158 pb in the combined semileptonic and dileptonic analysis, this value
is roughly ten times the one expected in the Standard Model. This result will surely
quickly be improved with the 2011 LHC physics runs, due to the reduction of statistical
uncertainties and systematic uncertainties. Especially in the dileptonic channel, obser-
vation of Wt will be within reach, reopening the way to H*t searches. Our Wt analysis
has been approved by the ATLAS Collaboration. During the analysis phase, T also
performed a regular service task, composed of two contributions. The first consisted in
comparing the full simulation of events in the ATLAS framework to a CPU-optimised,
faster version. The second constituent of the service task were run control shifts in
the ATLAS control room. These tasks enabled me to gain improved knowledge on the
simulation of events and the data taking process. This work has earned me the title of
qualified author of ATLAS publications.

It has been interesting to experience the difference of operation in the two commu-
nities. On the one hand, the theorist, alone in his office, with pen and paper, books
and Mathematica. On the other hand, the experimentalist, a tiny link in the long chain
of the analysis, working as part of a physics group, depending on computing power to
handle the enormous amount of data. Hence the change in pronoun in the previous
paragraph... I hope I didn’t loose too many people in this document, on my way from
theory to experiment. And for those who stayed with me until the very end, I hope I
could share how much of an amazing journey it has been.



Borel summmation

The borel transform is a summation method for divergent series. It may be used to
investigate the behaviour of perturbative expansions, as for example in mass definition
issues tainted by renormalon contributions. If

y(z) = (A1)
k=0
is a power series in z, then the Borel transform B[y] is given by

Blyl(t) =

If the Borel transform converges to an analytic function near the origin which can be
analytically continued along the real axis, then the Borel sum 3 is given by

<

Tt (A.2)

-

i(2) = /0 " exp(—t)B(L2)dt. (A.3)

The following example shows how the Borel transform may be used to sum divergent
asympotic expansions. Consider the series

[e.e]

y(z) = (—1)Fkl2*. (A.4)

k=0

This series does not converge for z # 0. The Borel transform of the series is given by

Blyl() = Y1t = (A5)
k=0
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for |t| < 1. Now the Borel transform can even be analytically continuated to ¢ > 0.
Finally, the Borel sum is given by

i(2) = /OOO xXp(=t) eXp(l/z)F(o, é) (A.6)

14 2t z

where I" here is the incomplete Gamma function. We see that the integral is convergent
for all z > 0 so the original divergent series is Borel summable for all z > 0. The function
has an asymptotic expansion as z — 0 which is given by the original divergent series.



Formulas for the Catani Seymour
Dipole Subtraction

In this appendix we give additional details to the dipole calculation for the tH~ NLO
cross section using the Catani Seymour formalism, as presented in Section 3.4.

B.1 Splitting functions for the real dipole
contributions

The spin-averaged splitting functions, for initial state emitters with initial state spec-
tators, are given by

e for process (a)

- for gluon radiation of the quark (a = q,(p2),b = g(p1) and i = g(k3)):

(s | VI97 | ) = 87, C | < — (L + 200w, (B

— Tjab

- for gluon radiation of the gluon (a = g(p1),b = q»(p2) and i = g(k3)):

Liab
11— Li ab

1—Zia  DPapb ( kipq kipa
+ R Gt A R
Tiah  KiDa KiDb PoDa Pola (B2)

(| VI21 | v) = 167r,u2€ach{—g””[ + 2 (1 — xi,ab)}
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e for process (b) gluon radiation off the gluon (a = g(p1),b = g(p2) and i = g(ks)
and a = g(p2),b = g(p1) and i = g(k3)):

(s | V979 | &) = 8mp* T |1 — 22 (1 — xi,ab)} Osst (B-3)

e and for process (¢) (a = q/q(p1),b = q(p2) and i = ¢q/q(k3)):

1 —Ziab  DaDb kipa kipa
V1 | 1) = 8rp*aC {—g‘“’xi a2 : (k‘f— pu) (kzy— p”) }
] V) a r O i kiDa Kipe Palb " Palb "
(B.4)

The splitting functions V&, for initial state emitters and the top as final state spec-
tator, are

e for process (a)

2
(s | V7| s) = 87TM25(ISCF{—~ -1- $it7a}5851 (B.5)

2 — Tita — 2t

and

(| V7| ) =

1 L— i, ziZe (K PPN (KD P
167TM26%NC{—9W[ - —1+$it,a(1—$it,a)}+7x " ﬁ(%—@) (—ZJi)},

Z_xit,a_zt Lit,a kipe Nz % Zi 2

(B.6)
e for process (b)

(| VT | ) = 872 T [1 = 2001 = )], (B.7)

e and for process (c)

L—wuq ZiZ (k] DN (K DY
(| V| vy = 8w2€ascF{—gm,a 4o Tita Zi%t (Tz . %—t) (—@ - &) }.

Tit,a kipe \ % Zt Z; 2t
(B.8)
The splitting function V{,, for the top as final state emitter and initial state spectators,
is given by
(s |V | 5/} = 8mp%a CF{#q—z —ﬂ?}(s , (B.9)
gt ° 2 — Tita — 2t ' Kip: o .
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B.2 P and K colour charge operators

B.2.1 General expressions

The most general P-term is given by

/ o / 1 ¥ ¥
P ooy Do XD 2) = = paa T, Tyln——L  +T, -Tyln—
(p17 y Pm; TPas Pbs X, :uF) o (SU) TZ/ ; J n pra D + 1y n 2:Epa -y )
(B.10)
in which P (z) are the regularised Altarelli-Parisi probabilities
1+ (1—x)?
puy) = cpifd=o” (B.11)
x
PY(z) = Tg[z>+(1-2)%], (B.12)
1 2
l—x ),
1 1—
P9(z) = 20,4 K ) T 141 -2)
l—z) T
11 2
where ¢ can be replaced by ¢ without any further change.
The general expression for the K-term is
K(rlncib (z; {ki, mi}, Pas Db) =
a.a Qg 1 a.a a.a 111(1 — ZU) 7'('2
K@ (x; {kiym; } ,pa)—%Tb.Ta/ {T—z,Pre’g () In(1 —z) + 6% {2 (ﬁ)_i_ — 35(1 — x)} } :
(B.15)
where
K (w5 {kiymi} . pa)
s [ aa’ aa’ a,a’ (.
= %{K (z) — K — ZT]‘ ) T(I”Cj (; $ja, mj, {mr})
J
1 , (1—1)s
— T, - Ty | P (x)] 2
T?L/ Z J [ reg( ) (1 —$)Sja+m?
j
/ Sia — 2Mjy/Sja +m2 + 2m? 9
+740° 6(1 — ) (In R il } (B.16)
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The regular parts of the auxilirary functions P2 (x) in Eq. (B.15) and Eq. (B.16) are
given by
P (z) = —Cp(1 4 x), P (x) =Tg [2* + (1 —2)*] (B.17)
1+ (1—2)?
x

P (.T) = CF

reg

and P9 (z) = 2C4 [ L lta(1- x)} . (B.18)

The term K% () in Eq. (B.16) is given by

1—=x

K (z) = P2 (z) In + P (1)
, 2 1—x 5
aa’ |2 ] —5(1— K, — —m2T? B.1
+0 [ “(1—ajn » )+ &( :c)(’ya+ a =g a)], (B.19)
where
PU(z) = PY(1 —z) = Cp(1l — ), (B.20)
P9(z) = 2Txrz(1 — ) and (B.21)
P9(z) =0 (B.22)
and
7T w2 67 w2 10
Ko=(-——)Cp, K, = ——"—)C4— —TxrN B.23
q(z 6)F’g<18 6)A9Rf (B.23)
3 11 2
Yo = 5CF, % = 5 Ne — 3TNy (B.24)

Since we have only a quark in the Born final state, we list the relevant IC terms in
Eq. (B.16):
K9 (5 84, my) = 0, (B.25)

In(1 — x) In(2 — z) m;

qaq (. . N — S _\= = a 7

ICq (x,sja,m]) 2[( 1—» >+ 1—2 + 1 Jdgq | T VAN

2 | e o(1 — 2 4+ - JIn—— L B.26
* (1—x)+n(2—x)sm+m§+ ( x)[(sja—i_Z) nsja+m§ Cr|’ ( )

where [Jo,(z, MQ)L stands for

[J; (l‘,MQ)Lr = (2(1 —11’_—|—x,u2Q)2 B 131, [1+1H(1 —$+H2Q)]>

+

+( 2 )+1n(2+u22—x) (B.27)

11—z
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with pg = \/WS%,

m2 m2
Cr m; In ! and (B.28)

K29 (2 850, m;) = 2—L
7" (5 Sja;m;) Nc¢ x84 (1—x)sja+m?

Ne¢
K (@5 5o, my) = Kg 4 5 -KG7. (B.29)

B.2.2 tH~ specific expressions

Process (a) Concerning process (a), two possible configurations contribute: gluon ra-

diation off the gluon: a = ¢g,a’ = g and gluon radiation off the b quark: a = g, a’ = q.
Thus the P-term is given by

2

Hr
TS

O 1 u
Pgiqb = %ng(l') Tz/ Tg/ . th ln m

+T, T, (B.30)

and the K- term reads
¥

K, = o2 [5(1 — ) AK9 + K% + K%, (B31)

sten 265 - e+ ) - G+ )

Nep 3 1 m? ) m?
Nep 3 (1 | |
+2[ 2+(2+mf—t Nom2 —¢
1/11 2 2t —2my\/2m? —t +2m? 2
+ 2 (—NC - _TRNf> <ln i I ! nzt + 2my m

+ ‘ )
V2m2 —t +my

(B.32)

ln(l—ac)+ 1 l—x]
1—=x 11—z o
1 } (2 —z)(m? — 1)
In
1—als (2—x)(mi—1t)+m?

+%[<2<1 j;;fﬂéP — 1333 [1+1In(1 —x+ué)}> +<%)+ln(2+ué—x)],

: (B.33)

+NC|:
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l—x 1 1 (1 —x)(m? —1t) l1—=z
Kgg:2N[ —1ta(l- H—l 1—z)+-1 t 1 ]
¢ +e(l-2) 211( x>+2n(1—x)(m§—t)+m?+n T
In(2 — z) m? m;
No|- L ! | (B34
e 11—z x(m?—t)n(l—x)(m?—t)+m? (B:34)
For gluon radiation off the b-quark, the P-term reads
pue _ Qpuy L[ o L T, T, In "t B.35
24+g(k) — % CU)? @ Ta nx(m? — u) + 1y g HE ) ( : )
b
while the K-term is given by
K90 = 20 [5(1 - ) AK® 4 K 4 K9] (B.36)

where

4

Aquqb:&<_7T—2> 1(1nm?—u—2mt\/2m?—u+2mf N 2my )
2
2 m —u N

3
1 /1 m? m? 3
SRS B |
F(5 =) 2N¢ 2+m?—u n2m%—u 2

(B.37)

qv9b __
K+ _<NC 1—1‘_+CF1—;L'1H "
1 11’1(1—1‘) 1—2x )
- 2 - 14 In(1 —
2NC< 1—2x +2(1—1‘+,u22)2 1_1,( + In( x+NQ)))>+
1 1 (2 = 2)(mf —u) )
- 2 1 2 In(2 - B.
2NC[ (1—$)+n(2—x)(m§—u)+mg+ (1_x>+ n(2 + pg x)} (B.38)
and
Ne 1 (1 —x)(mf —U) 1—=x
K®® — (1] 2O — ) — 1 1
(+x)(2 n(l —z) 2N0n(1_$)(m?_u)+m%+(]pn )
1 In(2 —x)
1- — = (B.
+ Cr( x)+NC T (B.39)

Process (b) For process (b), only one type of radiation is involved: gluon splitting
into ¢, and ¢, so that this time a = ¢, a’ = ¢, The P-term reads

, Qg 1 Wi o
i R A = (P40
b
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The K-term is given by

Qg N¢ 1—x 1 (1 —z)(m? — u)
K31, = 52 { Pl (@) |52 (1—2)+1 - 1 t | +2re(1-2)
29 op reg () 20CF n(1—z)+In r  2CpNe " (1—2x)(m? —u)+m? +2Tre(1-)
(B.41)
Process (¢) For process (c), the P- and K-terms are given by
: N ) 1 117
pa/as — s pajag ( (1 F 1 —F) B.42
2t og (z) 2 ! z(m? —t) o xs ( )
and
. . 1 l—z 1 (1 —z)(m? —1)
K39 — %{Pq/qg [—1 1— ) +1 -1 t }
2 = o \Freg” (@) [ 10l =) I e
m? m?
Cp + Cp—at—1 t b (B3
o Fa(m?2 —1) n(l—x)(m?—t)vLm? (B43)
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Basic set of divergent scalar
integrals

We list a set of useful scalar integrals needed in the tH~ NLO calculation. They are
expressed using the Mandelstam variables defined in Section 3.1, and include Gamma
functions and dilogarithms, as defined in Section 3.2. The relevant tadpole integral is

2

Ao(m?) = (N )6 (47)° m2(1+1).

m2) T(1 —e¢) €

Several B functions are needed, which are

2

Bo(0:0,0) = (£5)° (dm)° (1 - 1),
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4r)c 1
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)
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The relevant vertex functions are
2
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The two divergent box contributions are
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Combining W+ jets samples by
Heavy Flavour Overlap Removal

In this section, we give additional details as to how a global W +jets sample is fash-
ionned out of several individually generated LLO Alpgen samples. These samples are
classified according to their heavy flavour quark content.

e The W+light jets are named W — [v + Np. There are individual samples for
N =0,1,2,3,4 or 5 partons. These partons are hard jets (from gluons, u, d, s and
¢ massless quarks) included in the ME. The b-quarks contained in those samples
can only come from the PS and thus their pr distribution peaks at low values
(usually they have a pr < 15 GeV). Samples with 0 to 4 partons are exclusive,
i.e. contain events were exactly this number of partons has been generated in the
ME. The 5 parton sample is inclusive, which means that it contains events with
have been generated with 5 partons or more.

e The W+heavy quarks—jets are either W — v +bb+ Np or W — lv+cc+ Np
samples, where again those with 0 to 2 partons are exclusive, and the 3 parton
sample is inclusive. Concerning the W — [v + ¢+ Np samples, the ones with 0 to
3 partons are exclusive, the 4 parton sample is inclusive.

The simulation of the W+jets is far from trivial and its evaluation thus relies as much
as possible on data. However, in several steps MC samples are needed and they are
constructed as best as one can do at the moment.

The first approach has been to take only into account the W-light jets sample. In
order to get a consistent sample, the different event multiplicities have to be added while
carefully avoiding over-counting, since for example a process with N final state partons
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may arise not only from the 2 — N ME, but also from a 2 — (N — 1) ME where one
additional jet is produced by the PS. In order to avoid double-counting these events,
Alpgen incorporates a matching tool based on the MLM matching prescription [165].
In this algorithm, the final state light flavour parton multiplicity has to match the jet
multiplicity after the PS (called exclusive matching), except in the highest multiplicity
sample, where unmatched parton shower jets are allowed (called inclusive matching).

The next step consists in producing Wbb-+ Np samples, where this time the b jets have
the correct kinematic behaviour since they are coming from the ME. Such an accurate
description is mandatory since tagged jets are hard by definition of the tag. Again,
the MLM matching procedure can be used to combine the different Wbb + Np samples
with each other to give one Whb + j sample, but the problem arises in combining it
with the W-+light jets sample. The overlap between events from the inclusive W -+light
jets and the Wbb+ jets sample depends on the generator level cuts, and was evaluated
in dedicated studies to be approximately 4 % [166]. The first attempt to reduce this
overlap was based on a simple phase space cut between the b quark pair, where the cut
values are identical to the MLM matching requirements: a b quark pr > 20 GeV and
AR(bb) > 0.7 allowed to minimise the amount of overlap between the samples. This is
usually referred to as the MCO08 method.

Since the major culprit of mistagging is the ¢ quark, individual W 4 c+light jets and

W ee samples were generated to take into account this background properly. However,
in presence of c-quark jets the overlap will be even larger since the W + Np samples
contain massless charm quarks already in the ME. To achieve combination of all those
samples the Heavy Flavour Overlap Removal (HFOR) Tool has been elaborated. This
alternative method is based on the distance separating two heavy flavour jets and it
draws advantage of both the ME and PS respective strengths. For the following, keep
in mind what we have seen in Chapters 3 and 4: the ME correctly describes events
with large opening angles between the quarks, whereas the PS is adequately modelling
collinear gluon splittings.
Remains the question if the matching procedure should be done according to the opening
angle between the quarks or between the jets. Both approaches have been tested and
will be detailed. It turns out that, when using the matching procedure on jets, it
happens that some quarks are unmatched to any jet and these events are lost. This
does not happen with the method based on quarks and thus this one is chosen for the
final analysis.

The Jet-Based Overlap Removal

In this approach, heavy flavour quark pairs from ME generation are required to be
matched to different reconstructed jets, whereas heavy flavour quark pairs from PS
generation should lie in one reconstructed jet. If this is not the case, the event is thrown
away. The actual matching of the different samples is done with a geometric cut AR on
the distance between the jet axis and the b-quark in the (7, ¢) plane. The chosen cut
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value is the same as the jet cone size Ry = 0.4 of the algorithm that has been used for
the jet reconstruction. This leads to a choice of a subsample in each sample according
to

e W+ Np
The tool removes all events where heavy flavour pairs have been produced with
the ME. Now there can only be events where ¢ and b quarks have been produced
by the PS. Those are correctly described if they lie within one jet, thus the tool
removes events for which this is not the case, i.e. where the heavy quark pairs are
matched to two different jets.

e W+c+ Np
All events in which the heavy-flavour quark-pairs are not matched to one recon-
structed jet are removed.

e W+cc+ Np
In this sample, both ¢ quarks were given by the ME. Thus the tool removes all
events, in which bb pairs are not matched to one reconstructed jet and all events,
in which cc pairs are matched to one reconstructed jet.

o W +0bb+ Np

Events in which bb pairs are matched to one reconstructed jet are removed.

However, this algorithm experiences problems with events where some quarks are not
matched to a jet. For example, in the inclusive and the Wbb sample, the fraction of
b-quarks that lie within a jet cone of 0.4 is only about 50 %. To take these events into
account in a correct fashion, another matching criterium has been chosen and the new
algorithm works at quark-level and not at jet-level anymore.

The AR-Based Overlap Removal

The AR-, or Angular-Based Overlap Removal method performs the matching of the
different samples according to the distance in R which separates two heavy flavour
quarks. Again, the matching distance has been chosen equal to the jet cone distance
Ry = 0.4. This means that events where AR < R are taken into account if both heavy
quarks have been generated by the parton shower. FEvents where AR > R; should
have heavy quarks described by the ME. This definition allows for migration of events,
because events originally generated in the lighter quark sample can be reclassified in the
heavy quark sample. The resulting distributions of the merging procedure for the cc
and bb quark pairs are shown in Fig. D.1. These distributions, which are normalised to
the standard model predictions, show a smooth transition between the part taken from
the PS and the one from the ME.
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Figure D.1: The AR distributions between bb (a) or c¢ (b) quark pairs for the matched
sample obtained with the AR-based overlap removal method. The distributions are
normalised to the number of expected events where the transverse momentum of the
heavy quark is pt > 25 GeV.

In Fig. D.2 we show the conceptual difference between the matching procedure based
on the MLM algorithm (figure (a)) and the two alternative schemes based on the angular
distance between two heavy quarks or jets (figure (b)).
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Figure D.2: Schematic illustration of how the different final W+jet samples (in plain text)
are build from the Alpgen samples (boxes on the left) so as to avoid over-counting as much
as possible [159]. Figure (a) shows the early attempts to match the W-light jets with the
Whb+jets samples a simple phase space cut, based on the MLM procedure. In figure (b), the
more complicated jet or angular based removal scheme is applied to take into account the ¢
jets contribution. Overlapping boxes indicate that some events may have been removed.
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We conclude this section with a general comment on the heavy flavour composition
of the MC samples. At a first glance, one may wonder at the absence of a W + b+ jets
sample as an analogue of the W + c+jets. Since the production mechanism is different
between W + b-+jets and W + c+jets, which can be obtained via s — We, it turns out
that this process cannot be produced within Alpgen at the moment. While this was not
the case for the Tevatron, W + bj + X production is the dominant production process
compared to W + bb+ X at the LHC [167]. The predicted cross section of W + bj + X
is actually twice the cross section of the W + bb + X process. These comments and this
whole section show that, in order to understand the W-+jets background as best as we
can, there is still some work to do and combined input form both the theoretical and
experimental community is mandatory.



Preselection event yield

In this appendix, we list the event yields after the preselection and background es-
timations, detailed in Section 7.1.1, for the pretag sample in the electron channel in
Tab. E.1 and for the muon channel in Tab. E.3, and for the tag sample in the electron
channel in Tab. E.2 and for the muon channel in Tab. E.4.

Table E.1: Event yield for the electron channel after the preselection and background esti-
mations in the pretag sample. All W +jets samples are scaled by the factors determined from
data. The QCD fake event estimation is from the fitting method. All the other expectations
are derived using theoretical cross sections and their uncertainties are also theoretical.

Electron pretag sample

1-jet 2-jets 3-jets >4-jets
Wt 3.9+0.4 11.5+1.2 13.6+£1.4 12.0+1.2
s-channel 1.34+0.1 2.5+0.3 1.140.1 0.4+0.1
t-channel 19.8+£2.0 45.6+4.6  17.3+£1.7 6.2+0.6
tt 9.1+0.7 53.24+4.4 123+10.1 260+21.3
W +jets 106361987 2635708  598+224 1834107
We+tjets 17464826 619+£278 158+74 50428
Wbb+jets 88478 60456 24424 12414
Wec+jets 2764245 156+147 56456 25429
Diboson 43.1+2.2 43.7+2.2  14.9£0.7 4.940.2
Z+jets 210.1£105.1 187.9+£94.0 86.74+43.3 50.4+25.2
Multijets 3104310 260+130 80480 60430
TOTAL Exp | 13343+£2192 40744793 1173+260 664+123
DATA 13566 4112 1212 667
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Table E.2: Event yield for the electron channel after the preselection and background estima-
tions in the tag sample.

Electron tag sample

1-jet 2-jets 3-jets >4-jets
Wt 1.1£0.1  4.54£0.5 6.0£0.6  5.640.6
s-channel 0.5£0.1  1.240.1 0.6%0.1 0.2£0.1
t-channel 5.240.5 19.7£2.0 8.0+0.8  2.94+0.3
tt 3.3+£0.3 23.54+1.9 584+4.8 125410.3
W tjets 324+5.9 19+5 8+3 4+2
Wetjets 113+54 55£25 17+£8 6+3
Whb+jets 11+10 15+14 T+7 445
Wee+jets 7+6 10.4£9.8 5+5 3+4
Diboson 1.240.1  2.240.1 0.940.1 0.4+0.1
Z+jets 0.8£0.4 3.0£1.5 1.941.0 2.9+1.5
Multijets 5+5 66 5+5 5t5
TOTAL Exp | 180455 159431 116+14 159414
DATA 185 163 141 179

Table E.3: Event yield for the muon channel after the preselection and background estimations
in the pretag sample. All Wjets samples are scaled by the factors determined from data.
The QCD fake event estimation is given by the matrix method. All the other expectations are
derived using theoretical cross sections and their uncertainties are also theoretical.

Muon pretag sample

1-jet 2-jets 3-jets >4-jets
Wt 4.54+0.5 12.941.3 15.3+1.5  12.6+1.3
s-channel 1.840.2 3.54+0.3 1.540.2 0.6+0.1
t-channel 25.942.6 57.3+5.7  21.6+2.2 7.4+0.7
tt 10.540.9 60.8+5.0 1424+11.6 302+24.8
W tjets 15403£2878  3795+£1020  829+310  260+152
Wetjets 241341142 795+358 203495 63135
Whb-+jets 1294115 81£76 32432 16+18
W ee+jets 4014356 2234210 T4+74 31437
Diboson 57.842.9 58.942.9  18.54+0.9 5.7£0.3
Z+jets 665.6+332.8 222.9+111.5 71.2+35.6 27.7£13.8
Multijets 5804290 310+160  150+£150 70£70
TOTAL Exp | 1969243150  5621+£1121 15584369  795+178
DATA 19508 5591 1521 820




185

Table E.4: Event yield for the muon channel after the preselection and background estimations

in the tag sample.

Muon tag sample

1-jet 2-jets 3-jets >4-jets
Wt 1.3+0.1  4.940.5 6.740.7  5.840.6
s-channel 0.7£0.1  1.7£0.2 0.74£0.1  0.3£0.1
t-channel 7+0.7 24.6+2.5 10.0+£1.0  3.440.3
tt 3.9£0.3 26.8£2.2 66+5.4 145+11.9
W tjets 38+7 27T£7 9+3 5+3
Wetjets 152£72 68+31 22+10 8+4
Whb-+jets 1614 20+19 10+10 67
Wee+jets 948 12411 6+6 445
Diboson 1.5+0.1  2.7+0.1 1.240.1  0.440.1
Z+jets 4.342.2  5.0£2.5 2.0£1.0 1.5£0.7
Multijets 22+11 42421 22+11 13+£7
TOTAL Exp | 256+77 235444 155420 192417
DATA 251 265 170 203
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Tables of systematic uncertainties

This section contains details about the systematic uncertainties for the ¢-channel and
Wt analysis. We quote relative uncertainties for the signal, as well as for the different

backgrounds:
e Tops, which includes t¢, t-channel and s-channel,
e VV, standing for diboson production,
e W-jets, summed over all flavours and
e QCD.

Tables F.1 to F.6 show the systematic uncertainties after the Wt analysis cuts. All
values quoted as relative errors.
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Table F.1: Relative systematic uncertainties (in %) in the electron 2-jets channel.

Wt s, t tt VV  W+jets Multijet
-17.7 —-19 —-24.0 +29 +1.6
Jet Energy Scale 131 401 +261  -27  —16 -
Jet Energy Resolution +04 £0.3 £03 £1.0 — —
Jet Reconstruction +7.8 +£1.5 +£14.3 £2.1 — —
B-tagging +12.4 +£86 +9.1 +17.3  +I8.1 -
Mistag < 0.1 +0.1 +0.1 +1.6 +3.7 —
Lepton Scale Factor +39 +41 +39 +4.1 — -
Lepton Resolution <10 <10 <10 <1.0 — -
+3.0 +1.0 +1.0 +1.0

PDE -20 -10 -10 -1.0 B B
ISR/FSR +3.0 +£3.0 4+11.0 — — —
MC Generator +3.0 £3.0 +£50 - +4.0 -
Parton Shower Modeling  £2.0 £2.0 £8.0 — - —
Pile-Up +2.0 +2.0 +2.0 — — —
Normalization to data — — — — +54.4  4+100.0
Normalization to theory —  +10.0 82 — — —
Luminosity — +3.2 +3.2 +£3.2 — -
MC/Data statistics +3.0 £3.7 +£21  +4.3 +6.3 +11.6

Table F.2: Relative systematic uncertainties (in %) in the muon 2-jets channel.

Wt s, t tt VV  W+jets Multijet
-159 -1.8 -21.1 +1.3 +3.4
Jet Energy Scale +135 —18 4297 —18  —34 -
Jet Energy Resolution +0.3 +£0.7 +1.8 +£1.1 — —
Jet Reconstruction +2.3 F2.0 =£10.5 +1.9 - —
B-tagging +11.9 480 +8.6 +16.2 +17.7 -
Mistag <01 <01 <0.1 +1.8 +3.1 —
Lepton Scale Factor +1.2 +1.2 +1.2  +1.2 - —
Lepton Resolution <10 <10 <10 <1.0 — -
+20 +1.0 +1.0 +2.0

PDE -20 -10 -1.0 -1.0 B B
ISR/FSR +3.0 +3.0 =£13.0 — — —
MC Generator +3.0 +3.0 +2.0 — +4.0 —
Parton Shower Modeling ~ +£2.0 £2.1  +£3.0 — — —
Pile-Up +2.0 £2.0 +£2.0 — — —
Normalization to data - - - - +54.2 +50.0
Normalization to theory —  +10.0 8.2 — — —
Luminosity — +3.2 +3.2 +3.2 — —

MC/Data statistics +2.8 £34 £20 39 +5.8 +31.6




189

Table F.3: Relative systematic uncertainties (in %) in the electron 3-jets channel.

Wt s, t tt VV  W-jets Multijet
-0.5 +10.5 —-11.9 +5.8 +4.4
Jet Energy Scale 24 —155 +11.7 —17.5  —44 -
Jet Energy Resolution +1.1  +44 +£01  +1.8 — —
Jet Reconstruction +2.7 F3.4 +1.3 +3.2 - -
B-tagging +10.7 +59 152 +£175  +16.6 -
Mistag <01 F01 <01 +14 +4.1 —
Lepton Scale Factor +4.0 £4.0 +4.0 £3.9 - —
Lepton Resolution <10 <10 <10 <10 — —
+4.0 +1.0 +1.0 +1.0
PDE -20 -20 -20 -1.0 B B
ISR/FSR +3.0 £3.0 +14.0 — — —
MC Generator +3.0 £3.0 +£3.0 — +4.0 —
Parton Shower Modeling  4+2.0 £2.2  +£2.0 — — —
Pile-Up +2.0 +2.0 +2.0 — — —
Normalization to data — — — — +63.1  4+100.0
Normalization to theory —  £10.0 £8.2 — - —
Luminosity — +3.2 +3.2 +3.2 — —
MC/Data statistics +2.8 £6.3 £14 £7.0 +11.8 +18.0

Table F.4: Relative systematic uncertainties (in %) in the muon 3-jets channel.

Wt s, t tt VV  W-jets  Multijet
-3.2 +84 -—158 +9.0 +2.6
Jet Energy Scale —08 —95 4124 -—184  —26 -
Jet Energy Resolution +0.5 +£23 +0.2 458 — —
Jet Reconstruction +1.2 F4.8 +1.6 +5.6 — —
B-tagging +10.6  +5.7 £51 +15.9 +17.3 —
Mistag +0.1 +£0.1 <01 423 +3.2 —
Lepton Scale Factor +1.2 £1.3  +1.2 +1.1 — —
Lepton Resolution <10 <10 <10 <10 — —
+2.0 +1.0 +1.0 +2.0
PDE -20 -20 -20 -10 B B
ISR/FSR +3.0 £3.0 +12.0 — — —
MC Generator +3.0 +3.0 +1.0 — +4.0 —
Parton Shower Modeling  4+2.0  £2.0 +4.0 — — —
Pile-Up +2.0 +2.0 +2.0 — — —
Normalization to data — — - - +64.6 +50.0
Normalization to theory —  £10.0 £8.2 — - —
Luminosity — +3.2 +3.2 +3.2 — —

MC/Data statistics +2.7 £6.1 £14 +£6.2 +10.0 +33.3
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Table F.5: Relative systematic uncertainties (in %) in the electron 4-jets channel.

Wt s, t tt VV  W-jets Multijet
+13.0 +28.7 —0.5 +46.1 +4.1
Jet Energy Scale ~139 -112 —46 -11.3  —4.1 -
Jet Energy Resolution +29 £95 +£19 218 — —
Jet Reconstruction +4.4 F6.6 +2.8 +6.3 — —
B-tagging +8.0 +38 +28 +149  +168 -
Mistag <01 F03 F0.1 +£27 +2.8 —
Lepton Scale Factor +4.0 £4.0 +40 £38 - —
Lepton Resolution <10 <10 <10 <10 — —
+3.0 +2.0 420 430

PDE -1.0 -20 -20 -1.0 B B
ISR/FSR +7.0 £7.0 47.0 — — —
MC Generator +0.5 +£0.5 +0.5 — +4.0 —
Parton Shower Modeling ~ £2.0 +2.0 £2.0 — — —
Pile-Up +2.0 +2.0 4+2.0 — — —
Normalization to data — — — — +80.4  +100.0
Normalization to theory — £10.0 8.2 — - —
Luminosity — +3.2 £3.2 +3.2 — —
MC/Data statistics +4.2 +13.0 +£1.5 +£15.3 +20.0 +40.8

Table F.6: Relative systematic uncertainties (in %) in the muon 4-jets channel.

Wt st tt VV  W+jets  Multijet
+3.7 +24.7 —-13 4279 —6.2
Jet Energy Scale ~12.6 —17.5 —2.9 -—24.1 +6.2 -
Jet Energy Resolution +1.1  +£53 +0.5 +£6.1 — —
Jet Reconstruction +4.7 F6.8 +3.3 +2.2 - -
B-tagging +8.2 +43 43.0 +14.8 +16.3 —
Mistag <01 F0.2 F01 +338 +3.4 —
Lepton Scale Factor +1.2  +£1.1 +1.2 +1.3 — —
Lepton Resolution <1l0 <10 <10 <10 — —
+2.0 +1.0 +1.0 +2.0
PDE -1.0 -20 -20 -1.0 B B
ISR/FSR +10.0 +£10.0 +10.0 — — —
MC Generator +3.0 +£3.0 +£3.0 — +4.0 —
Parton Shower Modeling  +3.0 +£3.0 43.0 — — —
Pile-Up +2.0 +2.0 +2.0 — — —
Normalization to data - - - - +82.8 +50.0
Normalization to theory —  £10.0 £8.2 — — —
Luminosity — +3.2 +3.2  +£3.2 — -

MC/Data statistics +4.2 +124 +£14 =£13.9 +18.0 +70.7
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