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UNIVERSITÉ DE MARNE-LA-VALLÉE
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Arturo Carpi - Università di Perugia
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Abstract

This thesis describes the theory and some applications of minimal forbidden

words, that are the most little words that do not appear as factors of a given word.

In the first part of this thesis, we describe the properties of minimal forbidden

words and we show some particular cases, as that of a finite word, a finite set of

finite words, and a regular factorial language. We also present the procedures for

the computation of the theoretical results.

Then we generalize the minimal forbidden words to the case of the existence of a

period, which determines the positions of occurrences of the factors modulo a fixed

integer. These are called minimal periodic forbidden words. We study their basic

properties and give the algorithms for the computation in the case of a finite word

and of a finite set of finite words.

In the second part we show two applications of minimal forbidden words.

The first one is related to constrained systems. We give a polynomial-time

construction of the set of sequences that satisfy a constraint defined by a finite list

of forbidden blocks, with a specified set of bit positions unconstrained. We also

give a linear-time construction of a finite-state presentation of a constrained system

defined by a periodic list of forbidden blocks.

The second one is a problem issued from biology: the reconstruction of a genomic

sequence starting from a set of its fragments. We show that a theoretical formal-

ization of this problem can be solved in linear time using minimal forbidden words.

We also prove that our algorithm solves a special case of the Shortest Superstring

Problem.
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Résumé

Dans cette thèse nous traitons des mots interdits minimaux, qui sont les plus

petits mots qui n’apparaissent pas comme facteur d’un mot donné, et de leurs ap-

plications.

Dans la première partie de la thèse nous exposons les propriétés des mots interdits

minimaux, et nous considérons quelques cas particuliers, comme celui d’un mot fini,

d’un ensemble fini de mots finis, et d’un langage factoriel régulier. Nous présentons

aussi les procédures pour le calcul des objets considérés.

Ensuite, nous généralisons les mots interdits minimaux au cas de l’existence d’une

période, qui détermine les positions des occurrences des facteurs modulo un entier

fixé. Ceux-ci sont appelés mots interdits minimaux périodiques. Nous étudions leurs

propriétés principales et avec des algorithmes de test de ces propriétés.

Dans la deuxième partie de la thèse nous montrons deux applications des mots

interdits minimaux.

La première est reliée aux systèmes contraints. Nous donnons une construc-

tion en temps polynomial de l’ensemble des séquences qui satisfont la contrainte

définie par une liste finie de blocs interdits, avec un ensemble spécifié de positions

de bit sans contrainte. Nous donnons aussi une construction en temps linéaire d’une

présentation à états finis d’un système contraint défini par une liste périodique de

blocs interdits.

La deuxième application est relative à un problème de biologie : la reconstruction

d’une séquence génomique à partir d’un ensemble de ses fragments. Nous donnons

une formalisation théorique de ce problème qui le rend résoluble en temps linéaire

en utilisant les mots interdits minimaux. Nous prouvons aussi que notre algorithme

résout un cas particulier du “ problème de la plus petite sur-séquence ” (Shortest

Superstring Problem).
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Résumé v
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Chapter 1

Introduction

A standard method in mathematics consists in investigating the properties of

an object by looking at its complement. The result is often surprising. A lot of

properties of an object can be described by setting out what that object does not

be. It is almost the same marvellous surprise that one can experience by watching

the Rubin’s vase (Figure 1). In this way, the study of the complement of an object

can lead to a vast theory. This is the case of the minimal forbidden words.

In the context of symbolic dynamics, the shift spaces (or symbolic dynamical

systems) are sometimes described as the sets of bi-infinite sequences that avoid a

set of forbidden blocks [34]. This is an example of an object defined by “what it

does not be”. Furthermore, in order to get a better description of the shift space, it

can be useful to find the set of minimal forbidden blocks which defines it. A block

is a minimal forbidden block (or minimal forbidden word) of the shift space if it is

forbidden (i.e., it never appears as a factor of a sequence of the shift), but all its

proper factors are not forbidden.

Shift spaces described by minimal forbidden blocks (or words) model some physi-

cal systems [2], and also some constrained channels in the area of coding theory [34].

For instance, the 0-1 sequences of a track in a compact disk are sequences that have

at least two and at most ten symbols 0 between two symbols 1. Hence, these se-

quences are sequences of a shift described by the following set of minimal forbidden

blocks {11, 101, 00000000000}. These sequences are an example of a finite-state con-

strained system with finite memory. Such a system can be described by a finite set

of forbidden blocks.

3



4 1. Introduction

Figure 1.1: The Rubin’s vase.

One can also define minimal forbidden words in the context of formal languages.

Given a factorial language L over an alphabet A (that is, a subset of A∗ such that

each factor of a word in L belongs to L), the complement A∗ \ L is an ideal of A∗.

The basis of this ideal is the set of minimal forbidden words for the language L.

Minimal forbidden words have been studied for finite and infinite words [42,45] and

for regular languages [4].

Crochemore et al. [28], presented a text compression algorithm based, unlike

many text compression algorithms, on an anti-dictionary of the text. This anti-

dictionary is the set of minimal forbidden words of a single word (the text itself).

This method uses an effective construction of the set of words that avoid a given

anti-factorial set of finite words [26]. An anti-factorial set of words is a set of words

such that each proper factor of a word of the set does not belong to the set. A set

of minimal forbidden words is always an anti-factorial set. It has been shown [26]

that the computation of the language of words avoiding a finite anti-factorial set of

words can be done in a linear time in the size of the finite set. This language is

regular and the result of the computation is a finite-state automaton accepting the

language. It can happen that this language is exactly the set of factors of a single

word. In this case, the minimal forbidden words are the minimal forbidden words

of a single word w, and the result of the computation is the minimal deterministic

automaton accepting the factors of w, called the factor automaton of w.

A generalization of the notion of minimal forbidden words consists in defining

an analogous in higher dimension, called minimal forbidden pattern. It can be used,
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for example, for describing new properties of multi-dimensional shift spaces [5].

Minimal forbidden words have also been used to construct a topological invariant

for shift spaces [6].

In this thesis, we continue the theoretical developments of minimal forbidden

words and give a survey of known results. Then, in a second part, we exhibit two

applications of minimal forbidden words.

The first one is an application to coding for recording systems. Recently, Wijn-

gaarden and Immink proposed a coding scheme to encode an unconstrained sequence

of bits into a constrained sequence in which certain bit positions are reserved for

error correcting code (ECC) parity [59] (see also [11]). The bit values in these posi-

tions can be flipped (or not flipped) independently without violating the constraint.

These positions are called unconstrained positions. Therefore, ECC parity infor-

mation can be inserted into the unconstrained positions of the modulation-encoded

sequences without making them out of the constrained channel. In [11], the authors

study different approaches to build such codes. One of them is based on the con-

struction of the set of all constrained sequences such that every position in a given

subset U of integers modulo some integer T (the period), is unconstrained. These

sequences define a subsystem of the initial constrained system.

We focus on the construction of this subsystem for a finite-state constrained sys-

tem with finite memory. It appears to be a natural example of Periodic-Finite-Type

system (PFT) introduced by Moision and Siegel [47]. This new kind of constrained

channels can be described by a finite list of periodic forbidden blocks for each posi-

tion i modulo an integer T . This is a generalization of a set of forbidden blocks to

the periodic case. A bi-infinite sequence belongs to the channel if, up to some shift,

it contains no forbidden factors at any position i modulo T .

Our contributions are the following. We present a polynomial-time construction

of the set of sequences which satisfy a finite-memory constraint defined by a finite

list of forbidden blocks and have a specified set of bit positions unconstrained. This

construction is based on a linear-time algorithm for constructing a finite-state au-

tomaton accepting the sequences avoiding a list of periodic forbidden words for a

given period. This algorithm can be compared to the construction in [11] of the

same set of sequences from a finite-state automaton defining the finite-memory con-

straint. Our algorithm runs in time O(T × n log n) in general, where n is the size of
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the list, while the latter is exponential in the size of the automaton representing the

constraint. Hence the use of the list of forbidden blocks to describe the constraint

provides an improvement of the time complexity of the channel construction.

If we fix a period T , we can also wonder what kind of factors appear in a position

modulo T of a given finite word. Minimal periodic forbidden words for a single finite

word w and a given position i modulo the period T are in fact those words that do

not appear as factors of w in a position i mod T , but such that their longest proper

prefix appears in some position i mod T and their longest proper suffix appears

in position i + 1 mod T . We present a linear-time algorithm for constructing the

minimal periodic forbidden words of a finite sequence for a given period.

All these results are contained in [3].

A second problem in which minimal forbidden words have found an application

is a problem issued from biology, called the Fragment Assembly Problem. It is

known that it is not possible to read the entire sequence of basis of a DNA molecule,

but only factors of small length. The reconstruction of the original DNA sequence

starting from these factors can be formalized in a theoretical problem, called the

Fragment Assembly Problem, and is the object of several results in bio-informatics

(the most frequent technique used is linked to the search of eulerian paths in a graph,

see [33], [50] and [51] for more details). A theoretical simplification of the problem

consists in considering a finite word as the target of the reconstruction and a set

of its factors as the input of the problem. This problem has been treated by Carpi

et al. (cf. [12–23]), who showed that a finite word can be uniquely reconstructed

starting from some particular sets of its factors.

An approach based on minimal forbidden words has been introduced by Mignosi

et al. [43,44,46]. Let m(w) denote the length of the longest minimal forbidden word

of w. Starting from a set I of factors of a finite sequence w such that I contains

all the factors of w up to the length m(w), it is possible to reconstruct w under the

condition that the value m(w) if known [43,44,46].

We improve this result by removing the a-priori knowledge of the value m(w),

while keeping the linear-time complexity. The word w has to satisfy a condition

called I-compatibility. Furthermore, it is decidable in linear time whether there

exists a word that is I-compatible. Finally, we derive an application to the shortest

superstring problem.
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These results have been published in [30]. A preliminary version can be found

in [31].

This thesis is organized as follows.

Part I is devoted to the minimal forbidden words theory. In Chapter 2 we intro-

duce basic stuff on words, languages and automata, and describe the suffix automa-

ton and the factor automaton. In Chapter 3 we introduce minimal forbidden words

and their properties. We also describe some algorithms about minimal forbidden

words in the case of a single word, a regular language and a finite set of finite words.

In Chapter 4 we introduce minimal periodic forbidden words, and we describe some

algorithms about minimal periodic forbidden words in the case of a single word and

of a finite set of finite words. In Part II we describe some applications of minimal

forbidden words. In Chapter 5 we show some applications to constrained systems

and periodic finite type shift spaces. In Chapter 6 we deal with the Word Assembly

Problem, that is a theoretical simplification of the Fragment Assembly Problem is-

sued from biology. In an appendix section we present some examples of computation

with the Word Assembly Algorithm presented in Chapter 6. The thesis ends with

a conclusion section devoted to work in progress and open problems.





Part I

Minimal Forbidden Words Theory
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Chapter 2

Words, Languages and Automata

We recall here basic stuff about combinatorics on words and basic language

theory and automata theory. We also describe some important data structures, as

the suffix automaton and the factor automaton.

Introduction

Formal languages theory is one of the most important area of theoretical com-

puter science. To get an idea of the variety of different covered topics one can see

the three volumes of the Handbook of Formal Languages [54–56].

We want to focus here on words, their basic combinatorics, and the data struc-

tures to handle them.

The first part of this chapter is devoted to the theory of words and their relations

with languages and automata. We only introduce basic stuff. For further details on

these topics one can see Lothaire’s books [35–38], among the others.

In the second part of the chapter we introduce two important data structures

for handling finite words: the suffix automaton and the factor automaton. They

are useful in string comparison and pattern matching theory. For a more complete

description of their properties one can see [24, 25, 33,52].

In Section 2.1 we recall the background about basic combinatorics on words and

we fix the notation.

In Section 2.2 we deal with languages and we recall the basic automata theory

used in combinatorics on words.

11



12 2. Words, Languages and Automata

In Section 2.3 we introduce the suffix automaton of a finite word, and we describe

its construction.

In Section 2.4 we briefly recall another data structure for finite words: the factor

automaton.

2.1 Words and Factors

An alphabet, denoted by A, is a finite set of symbols (called letters). The size of

A is constant and it is denoted by |A|. A word over A is a sequence of letters from

A. The length (or size) of a finite word w is denoted by |w| and is the number of its

letters. The set of all finite words over A is denoted by A∗; the set of all words over

A having a length exactly equal to n is denoted by An, while the set of all words

over A having a length smaller or equal to n is denoted by A≤n. The empty word

has length zero and is denoted by ε.

Let w = a0a1 . . . an be a nonempty finite word.

A prefix of w is any word v such that v = ε or v is of the form v = a0a1 . . . ai,

with 0 ≤ i ≤ n. A suffix of w is any word v such that v = ε or v is of the form

v = aiai+1 . . . an, with 0 ≤ i ≤ n. A factor (or substring) of w is a prefix of a suffix

of w (or, equivalently, a suffix of a prefix of w). It is straightforward that the empty

word ε is a prefix and a suffix (so even a factor) of every finite word w. We say that

a factor v of a word w is a strict factor of w if v 6= w.

We denote by Pref(w), Suff(w) and Fact(w) respectively the set of all prefixes,

suffixes and factors of the word w.

We denote by w[i], for i = 0, 1, . . . |w|−1, the letter at the position i in the word

w.

A period for the word w is a positive integer p, with 0 < p ≤ |w|, such that

w[i] = w[i+ p] for every i = 0, 1, . . . |w| − p− 1. Since |w| is a period for w, we have

that every nonempty word has at least one period. We can unambiguously define

the period of the word w as the shortest of its periods. For example the period of

w = aabaaba is 3.

A border u of a finite word w is a strict factor of w (i.e. u 6= w) such that u is

a prefix and a suffix of w. We can unambiguously define the border of the word w

as the longest of its borders. For example the border of the word w = aabaaabaab
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is aab.

There is a close relation between the notions of border and period of a word, as

it is shown in the Proposition 1.4 of [25]:

Proposition 1 Let w be a nonempty finite word and p an integer such that 0 ≤

p ≤ |w|. Then the following statements are equivalent:

1. The integer p is a period of w.

2. There exists two unique words m ∈ A∗ and r ∈ A+ and an integer k > 0 such

that w = (mr)km and |mr| = p.

3. There exists three words z, u, and v such that w = zu = uv and |z| = |v| = p

(in particular u is a border of w).

In particular Proposition 1 shows that the border of w has length |w| − p, where

p is the period of w.

2.2 Languages and Automata

A language L is a subset of A∗, i.e. a collection of finite words over A. A

language is finite if it contains a finite number of words. For a finite language L the

size of L is the sum of the lengths of the words in L.

A language L is said factorial if it contains all factors of its words, i.e. it satisfies

∀u, v ∈ A∗ uv ∈ L⇒ u, v ∈ L.

A language M is said to be anti-factorial if for every u, v ∈M such that u 6= v,

one has that u is not factor of v.

An automaton over the alphabet A is composed of a set Q of states, a set

E ⊂ Q×A×Q of edges or transitions and two sets I, T ⊆ Q of initial and terminal

(or final) states. The transition function of an automaton A is a partial function

δ : Q×A→ Q, which associates to a state p ∈ Q and a letter a ∈ A the state q ∈ Q

if there exists a transition (p, a, q). A path in the automaton A is a sequence

(p0, a1, p1), (p1, a2, p2), . . . , (pn−1, an, pn)
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of consecutive transitions. Its label is the word w = a0a1 · · · an. The path starts

at p0 and ends at pn.

An automaton is deterministic if for each state p and for each letter a there

exists at most one state q for which the transition (p, a, q) is defined.

An automaton is finite if its set of states is finite.

The set of initial states of an automaton can be reduced to a single initial state

denoted by i. So we denote an automaton by A = (Q,A, i, T, δ).

The language recognized by the automaton A = (Q,A, i, T, δ) is the set of labels

of the path starting at i and ending at a state q ∈ T .

A language L ⊆ A∗ is recognizable (or regular) if it can be recognized by a finite

automaton.

A language L ⊆ A∗ is rational if it can be obtained from the finite subsets of A

and a finite number of operations of union, product and star.

The well-known Theorem of Kleene asserts that, over a finite alphabet, a lan-

guage is rational if and only if it is recognizable.

2.3 The Suffix Automaton

The suffix automaton of a finite word w over the alphabet A is the minimal

deterministic automaton A(w) that recognizes the language Suff(w). We briefly

recall its construction and its basic properties (more details can be found in [9, 25,

52]).

We denote by u−1 Suff(w) the right context (or future) of the word u in the

language Suff(w), that is the language u−1 Suff(w) = {u−1y : y ∈ Suff(w)}.

We define the equivalence relation ≡Suff(w) by

u ≡Suff(w) v ⇔ u−1 Suff(w) = v−1 Suff(w).

Its equivalence classes are the states of A(w). We can also identify the states of

A(w) with the sets of indices of the right positions of equivalent factors in w.

The function sw : Fact(w) \ {ε} → Fact(w) defined by

sw(v) = the longest u ∈ Suff(v) such that u 6≡Suff(w) v
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is called the suffix function for the word w. One can prove that if u, v ∈ Fact(w)\

{ε} are such that u ≡Suff(w) v, then sw(u) = sw(v).

Let p be a state (different from the initial one) of A(w), and let u be a word in

the class of p. The suffix link of p is the equivalence class of sw(u). The function

s : Q \ {i} → Q which associates to a state of A(w) different from the initial one its

suffix target is called suffix function of the suffix automaton A(w). The transitions

belonging to some longest path from the initial state to some other state are called

solid while the other ones are called weak.

If p is a state of the automaton, the sequence of states p, s(p), s(s(p)), . . . is finite

and ends at the initial state i of A(w). This sequence is called the suffix path of

p. If p is the class of w, the states of its suffix path are the terminal states of the

automaton.

The algorithm Suffix-Automaton builds the suffix automaton of a finite word

w over the alphabet A in linear time O(|w|× log |A|). It is an incremental algorithm

that computes successively a minimal automaton accepting Suff(w[0 . . i]), for i going

from 0 to |w| − 1. This procedure calls procedures Extension and Split. Proce-

dure Extension performs the transformations needed to get a minimal automaton

accepting Suff(w[0 . . i]) from a minimal automaton accepting Suff(w[0 . . i− 1]).

Suffix-Automaton (word w)

1. create an initial state 0

2. set s(0) = nil

3. let p = 0

4. for i from 0 to |w| − 1 do

5. p = Extension(p, wi)

6. let f = p

7. while f 6= nil do

8. set f final

9. set f = s(f)

10. return automaton (Q,A, 0, {final}, δ)
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Extension (state p, letter a)

1. create a new state q

2. create a new solid transition (p, a, q)

3. let r = s(p)

4. while r 6= nil and there is no transition a going out of r do

5. create a weak transition (r, a, q)

6. set r = s(r)

7. if r = nil

8. set s(q) = 0

9. else

10. let s = δ(r, a)

11. if the transition (r, a, s) is solid

12. set s(q) = s

13. else

14. set s(q) = Split(r, a, s)

15. return q

Split (state p, letter a, state q)

1. create a new state q′

2. for each transition (q, a, r)

create a weak transition (q′, a, r)

3. change the (weak) transition (p, a, q) into a solid

transition (p, a, q′)

4. set s(q′) = s(q)

5. set s(q) = q′

6. let t = s(p)

7. while t 6= nil and the transition (t, a, q) is weak do

8. change (t, a, q) into (t, a, q′)

9. set t = s(t)

10. return q′

Example 1 The suffix automaton of the word w = aabbabb over the alphabet

A = {a, b} is shown in Figure 2.1.
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Figure 2.1: The suffix automaton of the word w = aabbabb. There have been three
splits during the construction.

2.4 The Factor Automaton

The factor automaton of a finite word w ∈ A∗ is the minimal deterministic

automaton recognizing the language of the factors of w.

Making all states of the suffix automaton of a word w terminal ones we obtain

an automaton that recognizes the factors of w, but it may not be the minimal one,

since the states of the factor automaton are in fact the equivalence classes of the

right syntactic congruence associated with Fact(w), while in the suffix automaton it

was associated with Suff(w).

Nevertheless, the factor automaton of the word w can be obtained from the suffix

automaton of w, by a standard minimization procedure.

Example 2 The factor automaton of the word w = aabbabb is shown in Figure

2.2

For a word w over A and a symbol $ not belonging to A, we have that the factor

automaton of the word w$ is in fact the suffix automaton of w$. This suggests a

method for building the suffix automaton of w from its factor automaton (see [24]).

Actually, one can first build the factor automaton of w$ on the alphabet A ∪ {$},

then set as terminal those states from which an edge labelled by $ outgoes, and

finally remove all edges labelled by $ and the states they reach.

Deeper discussions about the factor automaton, its construction, and its links
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0 1 2 3 4 5 6 7
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b
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Figure 2.2: The factor automaton of the word w = aabbabb. States 3′′ and 3 and
states 4′′ and 4 of the suffix automaton have been merged, and all states are terminal.

with the suffix automaton can be found in [24] and [10]. We only recall, here, that

the factor automaton of the word w can be constructed in linear time on the size

of w, and that one can obtain the factor automaton of a word w from its suffix

automaton and vice versa always in linear time on the size of w.



Chapter 3

Minimal Forbidden Words

This chapter is devoted to the presentation of the minimal forbidden words

theory. We introduce the minimal forbidden words and their basic theory. Then we

show recent theoretical results about minimal forbidden words.

Introduction

Minimal forbidden words have been introduced as a tool for the investigation

of combinatorial properties of words. The basic idea is the following: in order to

understand what kind of factors do appear in a word, determinate the “most little

object” that determines what does not appear in that word.

Words and their factors are the basic stuff of the formal language theory, in-

cluding the related area of string processing, symbolic dynamics, genomic sequences

treatment, and so on. Hence, minimal forbidden words can appear in different

context of theoretical computer science.

A necessary condition for obtaining a consistent theory is to build a solid alge-

braic frame on the background. Hopefully, we have got a solid algebraic theory from

which to start: the formal language theory. This will be our start lane.

Another suitable aspect of a combinatorial theory is the fastness of the procedures

and of the algorithms created for their practical implementation. This problem is

related to (and often a consequence of) the right choice of the data structures. We

will show in this chapter how powerful are in fact the data structures we introduced

in the previous chapter.

19
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For all these reasons the introduction of the notion of minimal forbidden words

(or minimal forbidden factors) is followed by the algebraic characterization of the set

of the minimal forbidden words for a factorial language (that is the natural context

in which words appear).

Then, some basic algorithms are described. First, we must be able to pass from

the “positive” point of view (the words and their factors) to the “negative” one (the

minimal forbidden words), and vice versa.

Moreover, these two operations can be realized in a “fast” way (i.e. in linear

time on the input size of the algorithms).

Finally, we describe the methods and the procedures for the computation of the

minimal forbidden words in some specifical case, as a single word, a regular language,

and a finite set of finite words.

In Section 3.1 we give the definition of minimal forbidden word and we set the

algebraic frame.

In Section 3.2 we introduce the L-automaton, which builds the language of the

words that avoid a given set of words.

In Section 3.3 we investigate the properties of the minimal forbidden words for a

single finite word and we give the automata for constructing the set of the minimal

forbidden words for a word and for retrieving a word from its set of minimal forbidden

words.

In Section 3.4 we generalize the minimal forbidden words to the case of a factorial

regular language, and we give the automaton for constructing the set of the minimal

forbidden words for a factorial regular language.

Finally, in Section 3.5, we extend previous algorithms to the case of a finite set

of finite words.

3.1 Definitions and Basic Properties

3.1.1 Definition of Minimal Forbidden Words

Let w be a word over an alphabet A. A finite nonempty word v = a0a1 . . . an is

a minimal forbidden word for w (or a minimal forbidden factor of w) if

• the word v is not a factor of w,
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• the strict prefix of maximal length of v, a0a1 . . . an−1, and the strict suffix of

maximal length of v, a1a2 . . . an, are factors of w.

Equivalently, one can say that a finite word v is a minimal forbidden word for

the word w if and only if v is not a factor of w but every strict factor of v is factor

of w.

We denote by MF(w) the set of all minimal forbidden words for w. By the

minimality of its words we have thatMF(w) is an anti-factorial language.

Example. Let w = aabbbaa over the alphabet A = {a, b}. The minimal forbid-

den words for w are those of the setMF(w) = {aaa, bbbb, aba, abba, bab, baab}.

Example. Let w = 0000 over the alphabet A = {0, 1}. The minimal forbidden

words for w are those of the setMF(w) = {00000, 1}.

3.1.2 An Algebraic Characterization

From an algebraic point of view the setMF(w) of the minimal forbidden words

for a finite word w over the alphabet A is uniquely characterized by the equation:

MF(w) = AFact(w) ∩ Fact(w)A ∩ (A∗ \ Fact(w)).

Conversely, every finite word in A∗ that do not contain any factor ofMF(w) is

a factor of w, i.e.

Fact(w) = A∗ \ A∗MF(w)A∗,

so MF(w) uniquely characterizes Fact(w) and Fact(w) uniquely characterizes

MF(w).

3.1.3 The Bad Minimal Forbidden Words

We introduce here a new definition that will be useful in Chapter 6. A minimal

forbidden word v for a finite word w is called a bad minimal forbidden word for w if

1. the strict prefix of maximal length of v appears just once as factor of w, and

it is a suffix of w,



22 3. Minimal Forbidden Words

2. the strict suffix of maximal length of v appears just once as factor of w, and

it is a prefix of w.

Example. Let w = aabbbaa. Then v = baab is a bad minimal forbidden word

for w.

3.2 The L-automaton

We now introduce an algorithm which will be useful in almost all the further

procedures. This is the reason why it is described in a stand-alone section.

We denote by L(M) the (factorial) language avoiding a given finite anti-factorial

language M , i.e. the set of all the words that do not contain any word of M as

factor.

For any finite anti-factorial language M , the L-automaton of M is the minimal

deterministic automaton that recognizes the language L(M).

L-automaton (trie T = (Q,A, i, T, δ′))
1. for each a ∈ A
2. if δ′(i, a) defined
3. set δ(i, a) = δ′(i, a);
4. set f(δ(i, a)) = i;
5. else

6. set fδ(i, a) = i;
7. for each state p ∈ Q \ {i} in width-first search and each a ∈ A
8. if δ′(p, a) defined
9. set δ(p, a) = δ′(p, a);

10. set f(δ(p, a)) = δ(f(p), a);
11. else if p /∈ T
12. set δ(p, a) = δ(f(p), a);
13. else

14. set δ(p, a) = p;
15. return (Q,A, i,Q \ T, δ);

We describe below the algorithm L-automaton that builds the L-automaton of

an anti-factorial language M . It has been introduced by Crochemore et al. in [26].

It runs in linear time on the size of M . If M is the set of the minimal forbidden

words for a finite word w, then the L-automaton of the language M is the minimal
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deterministic automaton accepting the set Fact(w) of the factors of w. The input

of L-automaton is the trie1 recognizing the anti-factorial language M .

The following two results are proved in [26].

Proposition 2 Let T be the trie of an anti-factorial language M . Algorithm L-

automaton builds a complete deterministic automaton accepting L(M).

Proposition 3 Algorithm L-automaton runs in time O(|Q| × |A|) on input T if

transition functions are implemented by transition matrices.

3.3 Minimal Forbidden Words of a Finite Word

3.3.1 The Value m(w)

For a finite word w, we denote by m(w) the length of the longest minimal for-

bidden word for w. Mignosi et al. have proved (see [44]) that for a word w randomly

generated by a memoryless source, the parameter m(w) approximates O(logd(n)),

where n is the length of the word w and d is the cardinality of the alphabet A.

The largest value that m(w) can take is |w|+1, since the prefixes and the suffixes

of a minimal forbidden word for a word w are factors of w. The words w having

a minimal forbidden word of length |w| + 1 are all and the only ones of the form

w = an for a symbol a ∈ A and a positive integer n. Indeed, if a minimal forbidden

word u for w has length |w|+ 1, it must be u = aw = wb for some a, b ∈ A. But in

this case it is well known by the elementary theory of combinatorics on words that

the only possibility is a = b and w = a|w|.

On the other hand, it is shown in [45, Theorem 13]) that

m(w) ≥ ⌈log|A|(|w|+ 1)⌉.

Moreover, if the word w has period p, the following inequality holds (see [45,

Theorem 14]):

m(w) ≥ |w| − p+ 2.

1Recall that a trie is a tree for storing a set of words in which there is one node for every
common prefix and in which the words are stored in the leaves.
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For a finite word w, the repetition index r(w) is the length of the longest factor

of w that has at least two occurrences in w. For example the word w = aabbbaa has

r(w) = 2. There is a close relation between repetition index and minimal forbidden

words. Actually, we will prove in Chapter 6 that

r(w) = m(w)− 2.

3.3.2 Computing the Minimal Forbidden Words for a Finite

Word

Now, we describe the procedures for computing the minimal forbidden words of

a finite word, and for retrieving a finite word from the set of its minimal forbidden

words.

Given a finite word w, one can construct the setMF(w) of the minimal forbidden

words for w in linear time on the size of w. Actually, algorithm MF-trie, described

in [26], builds the trie of the setMF(w), having as input the factor automaton of w,

that is the minimal deterministic automaton accepting the factors of w. Algorithm

MF-trie runs in linear time O(|w|× |A|). Moreover, the states of the trie of the set

MF(w) are the same as those of the factor automaton of w, plus some sink states,

that are the terminal states of the minimal forbidden words.

MF-trie (factor automaton A = (Q,A, i, T, δ) and its suffix function s)

1. for each state p ∈ Q in width-first search from i and each a ∈ A

2. if δ(p, a) undefined and (p = i or δ(s(p), a) defined)

3. δ′(p, a)← new sink;

4. else

5. if δ(p, a) = q and q not already reached

6. δ′(p, a)← q;

7. return (Q,A, i, {sinks}, δ′);

The following two propositions are proved in [26].

Proposition 4 Let A(w) be the factor automaton of a word w ∈ A∗. Algorithm

MF-trie builds the trie accepting the set of minimal forbidden words for Fact(w),

that isMF(w).
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Figure 3.1: The trie of minimal forbidden words for the word w = aabbabb.

Proposition 5 Algorithm MF-trie runs in time O(|w| × |A|) on input word w if

transition functions are implementd by transition matrices.

Example. Let w = aabbabb. We have MF(w) = {aaa, aba, baa, bbb, babba}.

The trie of minimal forbidden words for w is shown in Figure 3.1. Note that the

states of the trie are the same as those of the suffix automaton of w (we do not

represent here states 3 and 4 because they are not accessible nor co-accessible) plus

the sink states representing the minimal forbidden words for w, which are in number

of |MF(w)| = 5.

3.3.3 Retrieving a Word from its Set of Minimal Forbidden

Words

Conversely, given a finite set MF(w) representing the set of the minimal for-

bidden words for a finite word w, we can reconstruct the word w in linear time on

the size of the trie representing the set MF(w). The algorithm performing this

operation is w-Reconstruction and it is described in [44] and [45] (see also 6.1).

We only outline here its description. The algorithm first constructs the L-

automaton of the trie of the minimal forbidden words for w, that is the trie recog-

nizing the setMF(w). After deleting the sink states of the obtained automaton, it



26 3. Minimal Forbidden Words

finds the longest path starting from the initial state, by using a classical topological

sort procedure. This path corresponds to the word w.

This construction is a consequence of the following result (Theorem 7 of [26]):

Theorem 6 If the input of the algorithm L-automaton is the set of the minimal

forbidden words for a single finite word w, then its output is the minimal deter-

ministic finite automaton accepting the factors of w, i.e. the factor automaton of

w.

3.4 Minimal Forbidden Words of Regular Facto-

rial Languages

In [4] authors give a quadratic-time algorithm to compute the set of minimal

forbidden words of a factorial regular language. We give here an outline of this

result.

3.4.1 An Algebraic Characterization

Let L ⊆ A∗ be a factorial language. The complement language Lc = A∗ \ L

is an ideal of A∗. By denoting by MF(L) the base of this ideal we have that

Lc = A∗MF(L)A∗. The set MF(L) is called the set of minimal forbidden words

for L. A word v ∈ A∗ is forbidden for L if v /∈ L, which is equivalent to say that v

occurs in no word of L. In addition, v is minimal if it has non proper factor that is

forbidden. Remark that

L = A∗ \ A∗MF(L)A∗. (3.1)

It is also straightforward that a word v = a1a2 . . . an belongs toMF(L) if and

only if the two following conditions hold:

• v is forbidden.

• both a1a2 . . . an−1 ∈ L and a2a3 . . . an ∈ L.

The setMF(L) is an anti-factorial language, and by the definition one can see

that
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MF(L) = AL ∩ LA ∩ (A∗ \ L). (3.2)

As a consequence of both equalities 3.1 and 3.2 we obtain the following:

Proposition 7 Given a factorial language L, L is regular if and only ifMF(L) is

regular.

3.4.2 Computing the Minimal Forbidden Words for a Reg-

ular Factorial Language

The following algorithm MF-automaton presented in [4] computes in polyno-

mial time a deterministic finite state automaton recognizing the set MF(L) from

a deterministic finite state automaton recognizing the set L. This generalizes the

algorithm MF-trie of [26], in which L was the set of the factors of a finite word,

that we presented in the previous section.

We recall that an automaton is trim if each state is accessible from the initial

state and coaccessible from a final state.

Assume that a trim automaton A recognizing the factorial language L is given.

The automaton A is in the form (Q,A, i, Q, δ) because all states are necessarily

terminal states. The algorithm MF-automaton below computes from A a deter-

ministic automaton A′ = (Q′, A, i′, T ′, δ′) recognizingMF(L) where

• the set Q′ of states is the set Q × Q ∪ {(−, i)} ∪ {p, $)|p ∈ Q}, (“−”,“$” are

symbols that do not belong to A),

• A is the current alphabet,

• the initial state i′ is the state (−, i),

• the set T ′ of terminal states is the set of states (p, $) for p ∈ Q.

The pairs (p, q) considered in the algorithm are such that p = δ(i, w), q = δ(i, aw)

for some letter a ∈ A and some word w ∈ A∗. Note that δ(p, a) is well defined at

line 10 when δ(q, a) is defined since it is assumed that the language L is factorial

and A is trim.
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MF-automaton (automaton A = (Q,A, i,Q, δ))

1. i′ ← (−, i), T ′ ← {(p, $) | p ∈ Q};

2. Q′ ← Q×Q ∪ {i′} ∪ {T ′};

3. for each a ∈ A

4. if δ(i, a) defined

5. δ′((−, i), a)← (i, δ(i, a));

6. else

7. δ′((−, i), a)← (i, $);

8. for each pair of states (p, q) accessible by δ′ from i′

with p, q ∈ Q, p 6= q and each a ∈ A

9. if δ(q, a) defined

10. δ′((p, q), a)← (δ(p, a), δ(q, a));

11. else

12. if δ(p, a) defined

13. δ′((p, q), a)← (δ(p, a), $);

14. return automaton A′ = (Q′, A, i′, T ′, δ′);

The following two propositions are proved in [4].

Proposition 8 Let A be a deterministic trim automaton which recognizes a fac-

torial language L. Algorithm MF-automaton computes from A a deterministic

automaton that recognizesMF(L).

Proposition 9 If the transition function is implemented by a transition matrix,

then the algorithm MF-automaton runs in time O(|Q|2×|A|) on input automaton

A = (Q,A, i, Q, δ).

For a discussion about the tightness of the quadratic bound in the last Proposi-

tion 9 see [4].

3.5 Minimal Forbidden Words of a Finite Set of

Finite Words

In [4] authors also give a linear-time algorithm computing the set of minimal

forbidden words for a finite set of finite words. This is another extension of algorithm

MF-trie of [26].
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3.5.1 The Multi-Suffix-Automaton

Let P = {w1, w2, . . . , wr} be a finite set of words of cardinal r. We denote by

|P | the sum of the lengths of the words of P and by Suff(P ) and Fact(P ) the set

of suffixes and factors of P respectively, i.e. the union, for 1 ≤ j ≤ r, of the sets

Suff(wj) and of the sets Fact(wj) respectively.

The construction of a suffix automaton of a single finite word can be extended

to a finite set of finite words P (see [8, 9], and also [52]). This construction can be

performed in linear time on the size |P | of the set P . The automaton obtained is

not necessarily minimal, but it can be minimized in linear time by using classical

minimization algorithms, as that of [53]. A direct construction of the minimal

deterministic finite automaton recognizing Suff(P ) is not known so far.

As in the single-word case, one can obtain an automaton recognizing the factors

of the words in the set P , that is the set Fact(P ), by setting all the states terminal

in the suffix automaton of P .

Let us denote by A(P ) = (Q,A, i, T, δ) the suffix automaton of P . The states of

A(P ) are the equivalence classes of the right invariant equivalence ≡Suff(P ) defined

as follows. If u, v ∈ Fact(P ),

u ≡Suff(P ) v iff ∀i, 1 ≤ i ≤ r, u−1 Suff(pi) = v−1 Suff(pi),

and there is a transition labelled by a from the class of a word u to the class of

ua. The automaton A(P ) has a unique initial state, which is the class of the empty

word. Note that the syntactic congruence ∼ defining the minimal automaton of the

language is

u ∼ v iff
r⋃

i=1

u−1 Suff(pi) =
r⋃

i=1

v−1 Suff(pi),

which is not the same as the above equivalence. This explains why A(P ) is not

always the minimal automaton recognizing the suffixes of the words in P .

The algorithm building the suffix automaton of the set P is called Multi-

Suffix-Automaton and is described below. The words of the set P are added in

a sequential way. Adding the word wj consists in adding its letters wj
i one after the

other. The procedure realizing this operation is called Multi-Extension and is
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Figure 3.2: The multi-suffix automaton of the set P = {abbab, abaab}.

slightly different from the Extension one because it must consider the edges and

the suffix links builded for the words previously added. Nevertheless it calls the

same procedure Split as in the construction of the suffix automaton for a single

word.

Example. Let P = {abbab, abaab}. The suffix automaton A(P ) of the set P is

shown in Figure 3.2.

Final states are determined only at the and of the whole procedure, when all

words of the set P have been added, by following the suffix links relative to the set

P .

The following Proposition is straightforward.

Proposition 10 Algorithm Multi-Suffix-Automaton runs in time O(|P |), where

|P | denotes the sum of the lengths of the words in P .
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Multi-Suffix-Automaton (set P = {w1, w2, . . . , wr})

1. create an initial state 0

2. set s(0) = nil

3. for j from 1 to r do

4. set p = 0;

5. for i from 0 to |wj | − 1 do

6. p = Multi-Extension(p, wj
i )

7. let f = p

8. while f 6= nil do

9. set f final

10. set f = s(f)

11. return automaton A(P ) = (Q,A, 0, {final}, δ)

Multi-Extension (state p, letter a)

1. if δ(p, a) is defined

2. set q = δ(p, a)

3. if the transition (p, a, q) is weak

4. q ← Split(p,a,q)

5. else

6. create a new state q

7. create a new solid transition (p, a, q)

8. let r = s(p)

9. while r 6= nil and there is no transition a going out of r do

10. create a weak transition (r, a, q)

11. set r = s(r)

12. if r = nil

13. set s(q) = 0

14. else

15. let s = δ(r, a)

16. if the transition (r, a, s) is solid

17. set s(q) = s

18. else

19. set s(q) = Split(r, a, s)

20. return q
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3.5.2 Computing the Minimal Forbidden Words for P

Now, we can construct a procedure for computing the minimal forbidden words

for the set P .

We denote by DAWG(P ) (Direct Acyclic Word Graph) the automaton recogniz-

ing the factors of the words in P obtained from A(P ) by setting all states terminal.

We recall that DAWG(P ) may not be the minimal deterministic automaton recog-

nizing Fact(P ) (see 2.4), but the important fact, in this context, is that DAWG(P )

comes out with the suffix function s for the set P , defined during the construction

of A(P ).

Since the graph of A(P ) is an acyclic graph, so is the graph of DAWG(P ).

Thus algorithm MF-trie of [26] can run on the input DAWG(P ), obtaining the

trie recognizing the set of the minimal forbidden words for the language Fact(P ),

that isMF(Fact(P )).

MF-trie (automaton DAWG(P ) = (Q,A, i,Q, δ) and its suffix function s)

1. for each state p ∈ Q in width-first search from i and each a ∈ A

2. if δ(p, a) undefined and (p = i or δ(s(p), a) defined)

3. δ′(p, a)← new sink;

4. else

5. if δ(p, a) = q and q not already reached

6. δ′(p, a)← q;

7. return (Q,A, i, {sinks}, δ′);

The following two propositions are proved in [4].

Proposition 11 Algorithm MF-trie builds the trie recognizing the set of minimal

forbidden words for Fact(P ), that is denoted byMF(P ).

Proposition 12 Algorithms Multi-Suffix-Automaton and MF-trie together

run in time O(|P |× |A|) on the input P , if the transition functions are implemented

by transition matrices.

Example. Let P = {abbab, abaab}. The automaton DAWG(P ) is shown in

Figure 3.3.



3.5 Minimal Forbidden Words of a Finite Set of Finite Words 33

0 1 2 3 4 5

6 7 8

9 10

a b b a b

a

a

a b

b

a

b b
a

Figure 3.3: The DAWG of the set P = {abbab, abaab}.

Example. The set of the minimal forbidden words for P over the alphabet

A = {a, b, c} is MF(P ) = {c, aaa, bbb, aaba, aabb, abab, baba, babb, bbaa}. The trie

representingMF(P ) is shown in Figure 3.4.
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Figure 3.4: The trie of minimal forbidden words for the set P = {abbab, abaab}.



Chapter 4

Minimal Periodic Forbidden

Words

In this chapter we define the notion of minimal periodic forbidden words and we

study the problem of computing the minimal periodic forbidden words of a finite

word and of a finite set of finite words.

Introduction

Repetitions, and especially consecutive repetitions, play an important role in the

analysis of molecular biology sequences. Some of them are even related to known

diseases. From this point of view it is interesting to consider periodic forbidden

words according to a single word. This may be used to discover combinatorial

properties of the sequence and identify subsequence motifs either in coding regions

and in “junk DNA”, and then to derive statistical features on them.

We introduce the definition of the minimal periodic forbidden words of a given

finite word. We give a linear-time algorithm to compute the set of the minimal pe-

riodic forbidden words of a finite word. This represents an extension to the periodic

case of algorithm MF-trie of [26] presented in 3.3.

As in the non-periodic case, we can generalize this construction to the case of a

finite set of finite words. We are able to compute the set of the minimal periodic

forbidden words for a finite set of finite words P with a fixed period in linear time

on the size of P .

35
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These results have been obtained very recently, and we hope that they will be

the basis for further developments. One can try, for instance, to generalize other

results obtained in the non-periodic case.

In Section 4.1 we introduce the minimal periodic forbidden words and we describe

their basic algebraic properties.

In Section 4.2 we give a method to compute in linear time the set of minimal

periodic forbidden words for a finite word with a fixed period.

Finally, in Section 4.3, we generalize previous algorithms to the case of a finite

set of finite words with a fixed period. We describe an algorithm to compute in

linear time the set of minimal periodic forbidden words in this case.

4.1 Definition of Minimal Periodic Forbidden Word

Let w be a finite word over a finite alphabet A of fixed constant size. Let T be a

positive integer, called the period. The set of minimal forbidden words in a phase k

of the word w, with 0 ≤ k ≤ T − 1, is the set of finite blocks v that never appear at

a position k mod T of w, and such that there is no strict factor v′ of v with v′ ≺i v

appearing at a position k + i mod T of w.

In the sequel, we fix a positive integer T as period. If w is a finite word we denote

by Suff(k)(w), for 0 ≤ k ≤ T − 1, the set of suffixes of w beginning at a position of

w equal to k modulo T . Thus,

Suff(k)(w) = {w[i . . |w| − 1] | i = k mod T}.

We denote by Fact(k)(w) the set of prefixes of Suff(k)(w), that is, the set of factors

of w that occur in w at positions k modulo T . In this section, we also denote by

F (k)(w) the set of finite blocks that are not factors of w at a position k modulo T .

Thus F (k)(w) = A∗ − Fact(k)(w).

The collection of minimal periodic forbidden words of w for a period T is defined

as the finite collection of setsMF (k)(w), with 0 ≤ k ≤ T − 1, where
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MF (k)(w) = F (k)(w)−F (k)(w)A+ − (AT )+F (k)(w)A∗

−
T−1⋃

i=1

(AT )∗AiF (k+i mod T )(w)A∗.

Thus, the above collectionMF (k)(w) is periodic and anti-factorial. It is minimal

in the following sense: if u ∈ F (k)(w), then u has a factor at some position i

that belongs to MF (k+i mod T )(w), and any other collection of finite sets of blocks

G(k) satisfying this condition verifies MF (k)(w) ⊆ G(k). Although this notion of

minimality refers to a finite word w, it is similar to the notion of periodic first

offenders defined in [47] for constrained systems.

We now give a simpler expression of the set F (k)(w) used to derive the next

algorithm.

Proposition 13 The set MF (k)(w) of minimal periodic forbidden words of w for

a period T satisfies

MF (k)(w) = (AFact(k+1 mod T )(w))

∩ (Fact(k)(w)A) ∩ (A∗ − Fact(k)(w)).
(4.1)

Proof Let u be a block of (AFact(k+1 mod T )(w))∩ (Fact(k)(w)A)∩ (A∗−Fact(k)(w)).

Then u ∈ F (k)(w). Since u ∈ Fact(k)(w)A, then u /∈ F (k)(w)A+. Since u ∈

AFact(k+1 mod T )(w), then u ∈ Ai Fact(k+i mod T )(w) for 1 ≤ i ≤ |u|. Hence u /∈

(AT )+F (k)(w)A∗, and u does not belong to
⋃T−1

i=1 (A
T )∗AiF (k+i mod T )(w)A∗ either.

Conversely, let u be a block ofMF (k)(w). Then u ∈ F (k)(w). If u /∈ Fact(k)(w)A,

then u = va, with a ∈ A, and v ∈ F (k)(w). Hence u ∈ Fact(k)(w)A. Let us

now assume that u /∈ AFact(k+1 mod T )(w). Then u = av, with a ∈ A and v ∈

F (k+1 mod T )(w). Then v has a factor at position i belonging toMF (k+1+i mod T )(w).

This contradicts the fact that u does not belong to
⋃T−1

i=1 (A
T )∗AiF (k+i mod T )(w)A∗∪

(AT )+F (k)(w)A∗. HenceMF (k)(w) satisfies (4.1). ✷

Thus we can think of the elements ofMF (k)(w) as the finite words v = a1a2 . . . an

such that:

1. v = a1a2 . . . an /∈ Fact(k)(w),
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2. a1a2 . . . an−1 ∈ Fact(k)(w),

3. a2 . . . an ∈ Fact(k+1 mod T )(w).

4.2 Minimal Periodic Forbidden Words of a Fi-

nite Word

We now describe an algorithm for computing the collection MF (k)(w) of the

minimal periodic forbidden words in phase k of the word w. The design of the

algorithm is based on (4.1).

4.2.1 The Periodic-Suffix-Automaton

A preliminary step of the algorithm consists in computing, for any 0 ≤ k ≤ T−1,

a minimal deterministic automaton accepting Suff(k)(w). This operation can be

performed in time O(T × |w| × log |A|).

First, the computation of a minimal deterministic automaton accepting the set

Suff(k)(w) is reduced to the computation of a minimal deterministic automaton ac-

cepting the set Suff(0)(w[k . . |w| − 1]). Hence, we will assume, without loss of gener-

ality, that k = 0. The computation of a minimal deterministic automaton accepting

Suff(0)(w) is an extension of the known computation of the minimal automaton of

the suffixes of a word, also called the directed acyclic word graph (DAWG) of a word

(see for instance [7, 8] or [25, section 5.4 pp. 179-192]).

The states of this automaton are the equivalence classes of the syntactic con-

gruence associated with the language Suff(0)(w) defined as follows: if u ∈ Fact(w),

we denote by Fw(u) the future of u relative to Suff(0)(w). Thus Fw(u) = {v | uv ∈

Suff(0)(w)}. Note that Fw(w) is reduced to the empty word, and that Fw(u) is

the empty set if u /∈ Fact(0)(w). The words u and v are equivalent if and only

Fw(u) = Fw(v).

Moreover, the automaton has a transition labelled by a from the class of a word

u to the class of ua. If u ∈ Fact(w), we define its image s(u) by the suffix function

s as the longest suffix v of u in Suff(0)(u) such that Fw(v) 6= Fw(u). In this case,

Fw(u) ⊆ Fw(v).
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The algorithm generating the minimal deterministic automaton accepting the

set Suff(0)(w) is described in Procedure Periodic-Suffix-Automaton. It is an

incremental algorithm that computes successively a minimal automaton accepting

Suff(0)(w[0 . . i]), for i going from 0 to |w| − 1. This procedure calls procedures Ex-

tension and Split. Procedure Extension performs the transformations needed to

get a minimal automaton accepting Suff(0)(w[0 . . i]) from a minimal automaton ac-

cepting Suff(0)(w[0 . . i−1]). Some dummy states are added during the construction.

The suffix link is not defined for these dummy states. The transitions belonging to

some longest path from the initial state to some other state are called solid while

the others are called weak. If p is a state of the automaton, the sequence of states

p, s(p), s(s(p)), . . . is finite and ends with a dummy state. This sequence is called

the suffix path of p. If p is the class of w, the non-dummy states of its suffix path

are the final states of the automaton.

Proposition 14 Algorithm Periodic-Suffix-Automaton computes the mini-

mal deterministic automaton accepting Suff(0)(w) for a given period T .

Proof The proof is an extension to the periodic case of the correctness proof of the

computation of the minimal deterministic automaton accepting the set of all suffixes

of w (see [25, section 5.4 pp. 179-192]). We omit the proof but we mention below

the main differences needed to take the period into account. If p is a state such that

l(p) < T , the suffix link s(p) is the dummy state −T + l(p). Let us assume that

we are at step i, lines 5-6 of Procedure Periodic-Suffix-Automaton(w, T ). Let

us denote w[0 . . i − 1] by w. Let r be the state obtained at the end of the loop in

lines 4-6 of Procedure Extension(p, a). If r is a dummy state, for any word u in

Suff(0)(w), either Fw(u) = Fw(w) = {ε} or ua /∈ Fact(0)(w). ✷

Proposition 15 The size of the minimal automaton accepting Suff(0)(w) for a given

period T is linear in the size of w. Algorithm Periodic-Suffix-Automaton runs

in time linear in the size of w.

Proof The proof is similar to the proof in the aperiodic case [25, section 5.4 pp. 192].

✷

Making all states final in the minimal deterministic automaton accepting the set

Suff(k)(w) gives a deterministic automaton accepting Fact(k)(w). Note that this new
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Periodic-Suffix-Automaton (word w, period T )
1. create T dummy states −1,−2, . . .− T
2. create an initial state 0
3. set s(0) = −T
4. let p = 0
5. for i from 0 to |w| − 1 do

6. p = Extension(p, wi)
7. let f = p
8. while f ≥ 0 do

9. set f final
10. set f = s(f)
11. return automaton (Q,A, 0, E, {final})

Extension (state p, letter a)
1. create a new state q
2. create a new solid transition (p, a, q)
3. let r = s(p)
4. while r ≥ 0 and there is no transition a going out of r do

5. create a weak transition (r, a, q)
6. set r = s(r)
7. if r < 0
8. set s(q) = r + 1
9. else

10. let s = δ(r, a)
11. if the transition (r, a, s) is solid
12. set s(q) = s
13. else

14. set s(q) = Split(r, a, s)
15. return q
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Split (state p, letter a, state q)
1. create a new state q′

2. for each transition (q, a, r) create a weak transition(q′, a, r)
3. change the (weak) transition (p, a, q) into a solid transition (p, a, q′)
4. set s(q′) = s(q)
5. set s(q) = q′

6. let t = s(p)
7. while t ≥ 0 and the transition (t, a, q) is weak do

8. change (t, a, q) into (t, a, q′)
9. set t = s(t)

10. return q′

automaton may not be the minimal one. An example is given in Figure 4.1.

4.2.2 Computing the Minimal Periodic Forbidden Words

for a Finite Word

We now describe the Periodic-MF-tries algorithm, that computes the mini-

mal periodic forbidden words for a word w, with a fixed period T .

We denote by Ak = (Qk, A, ik, Qk, δk) a deterministic automaton accepting

Fact(k)(w), that is the set of blocks, factors of w, beginning at a position equal to

k modulo T . From the automata Ak, the algorithm outputs the tries Tk accepting

the setsMF (k)(w).

An example of this computation is described in Figure 4.2.

Proposition 16 Algorithm Periodic-MF-tries computes from the automata Ak

accepting Fact(k)(w) the set of tries accepting the minimal periodic forbidden words

of w.

Proof Again, the proof is an extension of the correctness proof of the computation

of the minimal forbidden words of a word from the factor automaton of w (see [25,

section 6.5 pp. 182] or [26]). ✷

Proposition 17 Algorithm Periodic-Suffix-Automaton, followed by algorithm

Periodic-MF-tries, runs in time O(|w| × T × log |A|).
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Figure 4.1: Deterministic automata A0 and A1 accepting Fact(0)(w) and Fact(1)(w)
respectively, with the period T = 2 and w = abbab. The suffix links are represented
by dashed edges.

Periodic-MF-tries ( factor automata
Ak = (Qk, A, ik, Fk, δk))0≤k≤T−1, integer T )

1. for each a ∈ A
2. if δk(ik, a) defined
3. set δ(ik, a) = δk(ik, a)
4. set f(δ(ik, a)) = ik+1 mod T

5. else

6. set δ(ik, a) = new sink
7. for each state p ∈ Qk in width-first search from ∪k{ik}

and each a ∈ A
8. if δk(p, a) undefined and δk+1 mod T (f(p), a) defined
9. set δ(p, a) = new sink

10. else if δk(p, a) = q and q not already reached
11. set δ(p, a) = q
12. set f(δ(p, a)) = δ(f(p), a)
13. return (Tk = (Qk, A, ik, {sinks}, δ))0≤k≤T−1;
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Proof The complexity is straightforward. ✷

0 1 2 3

3′

4 5

7 8 9 10 11
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c a a a

b

a

Figure 4.2: Output tries T0 and T1 of Algorithm Periodic-MF-tries for the input
tries A0 and A1 described in Figure 4.1. The sink states are double circled. The
tries T0 and T1 accept MF (0)(w) = {c, aa, bb} and MF (1)(w) = {c, ba, aa, aba}
respectively.

4.3 Minimal Periodic Forbidden Words of a Fi-

nite Set of Finite Words

In this section we generalize the results of the previous section to the case of a

finite set of finite words.
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4.3.1 The Periodic-Multi-Suffix-Automaton

Let P = {w1, . . . , wr} be a set of finite words and let T be a positive integer,

called the period. We note by Suff(k)(P ) the set of suffixes in phase k mod T of all

words in P , that is:

Suff(k)(P ) =
r⋃

j=1

Suff(k)(wj).

The following algorithm Periodic-Multi-Suffix-Automaton computes the

set Suff(0)(P ). It is an incremental algorithm that computes successively an automa-

ton accepting Suff(0)(wj[0 . . i]), for i going from 0 to |wj|−1, and from j going from

1 to r.

This procedure calls procedures Periodic-Multi-Extension and Split. Pro-

cedure Periodic-Multi-Extension performs the transformations needed to get

an automaton accepting the set Suff(0)(wj[0 . . i]) from an automaton accepting the

set Suff(0)(wj[0 . . i − 1]). It calls procedure Split, which is the same as in the

single-word case.

Periodic-Multi-Suffix-Automaton (P = {w1, . . . , wr}, period T )
1. create T dummy states −1,−2, . . . ,−T
2. create an initial state 0
3. set s(0) = −T
4. for every word wi, from i = 1 to i = r, do
5. let p = 0
6. for j from 0 to |wi| − 1 do

7. p = Multi-Extension(p, wi
j)

8. let f = p
9. while f ≥ 0 do

10. set f final
11. set f = s(f)
12. return automaton (Q,A, 0, E, {final})

4.3.2 Computing Minimal Periodic Forbidden Words for P

In an analogous way as we did in the non-periodic case, we shall denote by

DAWG(k)(P ) the automata obtained from AP
k by setting all states terminal. These
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Periodic-Multi-Extension (state p, letter a)
1. if there is a transition a going out of p
2. set q = δ(p, a)
3. if the transition (p, a, q) is weak
4. set p = Split(p, a, q)
5. else

6. create a new state q
7. create a new solid transition (p, a, q)
8. let r = s(p)
9. while r ≥ 0 and there is no transition a going out of r do

10. create a weak transition (r, a, q)
11. set r = s(r)
12. if r < 0
13. set s(q) = r + 1
14. else

15. let s = δ(r, a)
16. if the transition (r, a, s) is solid
17. set s(q) = s
18. else

19. set s(q) = Split(r, a, s)
20. return q
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automata recognize the sets Fact(k)(P ), even if they may be not the minimal ones.

Now, we can extend algorithm Periodic-MF-tries to the set P , simply by

giving it as input the automata DAWG(k)(P ). This is possible since the graphs of

the automata AP
k , and hence those of DAWG(k)(P ), are in fact acyclic graphs. So,

on the inputs DAWG(k)(P ), the algorithm Periodic-MF-tries outputs the tries

T P
k accepting the minimal periodic forbidden words in phase k for the set P , i.e.

the setsMF (k)(P ).

Periodic-MF-tries (factor automata
AP

k = (Qk, A, ik, Fk, δk))0≤k≤T−1, integer T )
1. for each a ∈ A
2. if δk(ik, a) defined
3. set δ(ik, a) = δk(ik, a)
4. set f(δ(ik, a)) = ik+1 mod T

5. else

6. set δ(ik, a) = new sink
7. for each state p ∈ Qk in width-first search from ∪k{ik}

and each a ∈ A
8. if δk(p, a) undefined and δk+1 mod T (f(p), a) defined
9. set δ(p, a) = new sink

10. else if δk(p, a) = q and q not already reached
11. set δ(p, a) = q
12. set f(δ(p, a)) = δ(f(p), a)
13. return (T P

k = (Qk, A, ik, {sinks}, δ))0≤k≤T−1;

Proposition 18 Algorithm Periodic-MF-tries applied on the set P computes

from the automata DAWG(k)(P ), accepting the sets Fact(k)(w), the set of tries ac-

cepting the minimal periodic forbidden words for the set P .

Proof The proof directly follows from propositions 16 and 11. ✷

Proposition 19 Algorithm Periodic-Multi-Suffix-Automaton followed by al-

gorithm Periodic-MF-tries on the input set P runs in time O(|P |×T × log |A|).

Proof The complexity is straightforward. ✷
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Chapter 5

Applications to Constrained

Systems

In this chapter we show an application of minimal forbidden words to coding

for constrained systems, in particular for constrained systems with unconstrained

positions.

Introduction

Recording systems often use combined modulation/error-correction codes (ECC

codes). While error-correction codes enable the correction of a certain number of

channel errors, modulation codes encode the sequences into a constrained channel

that is supposed to reduce the likelihood of errors. Well known examples of such

channels are the maximum transition run systems MTR(j) [48], where the max-

imum run of consecutive 1’s is j, or the run length limited systems RLL (d, k),

where the maximum run of consecutive 0’s is k and the minimum run of consecutive

0’s is d. Among various schemes proposed to construct both error-correction codes

and modulation codes, one of them, called the Wijngaarden-Immink scheme [59]

(see also [11]), proposes to encode an unconstrained sequence of bits into a con-

strained sequence in which certain bit positions are reserved for ECC parity. The

bit values in these positions can be flipped (or not flipped) independently without

violating the constraint. These positions are called unconstrained positions. There-

fore, ECC parity information can be inserted into the unconstrained positions of the

49
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modulation-encoded sequences without making them out of the constrained channel.

In [11], the authors study different approaches to build such codes, one of them

being based on the construction of the unique maximal subsystem of a constrained

system S such that any position modulo T in U is unconstrained, where U is a

given subset of integers modulo some integer T . We call this system the (U, T )-

unconstrained subsystem of S. The knowledge of this maximal subsystem enables

the computation of the maximal possible rate of a code that both satisfies a given

constraint and is unconstrained in a specified set of positions. Indeed, this maximal

rate is the Shannon capacity of the maximal subsystem. It also enables to apply

standard modulation code constructions to this sub-channel [41]. Since these code

constructions work on a presentation of the sub-channel, it is worth to efficiently

compute a small presentation of this sub-channel.

We want to focus on the construction of this maximal subsystem for a finite-

state constrained system with finite memory. Our goal is to reduce the time and

space complexities of the general solution proposed in [11]. We consider a finite-

memory constrained system S defined by a finite list of forbidden blocks. Given

such a system and a subset U of integers modulo some integer T , we construct in a

polynomial amount of time and space a finite-state graph that presents the (U, T )-

unconstrained subsystem of S. The maximal subsystem appears to be a natural

example of periodic-finite-type systems (PFT) introduced by Moision and Siegel

in [47]. This was already noticed in [11, pp. 869].

In our process, we start with the construction of a periodic list of forbidden

blocks that defines the maximal subsystem from a finite list of forbidden blocks of

the finite-memory system. More precisely, if the input data is a trie T representing

a finite prefix-free list of forbidden blocks, the algorithm works in space and time

O(T × |A| × |T | × log |T |), where |T | is the size (the number of states) of the trie

and A is the alphabet. In a second step, we construct in linear time and space a

finite-state presentation of a periodic-finite-type shift defined by a periodic list of

forbidden blocks. The whole two-step process computes a finite-state presentation

of the maximal unconstrained subsystem. Moreover, our algorithm becomes linear if

the input trie has itself a linear structure. For instance, it runs in O(j) time for the

MTR(j) constraint, and in O(k) time for the RLL (d, k) constraint with the input

data d, k (d ≤ k), if the period T of the unconstrained positions is naturally assumed
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to be constant. We restrict ourselves to binary systems, but the results carry over

easily to constrained finite-memory systems over any finite set of symbols.

While our algorithm is polynomial and the algorithm given in [11] is exponential

in the general case, they cannot be compared directly for the following reasons. The

algorithm described in [11] works in an exponential amount of space and time for

all finite-state systems given by a finite-state presentation, and in quadratic space

and time for finite-memory systems with an additional condition called the gap

condition. The gap condition limits the number of unconstrained positions relatively

to the memory of the system. An efficient algorithm is also proposed in [11] for the

special case of MTR systems. We point out that, although our algorithm has a

better complexity for finite-memory systems, and no restriction similar to the gap

condition, it works with different input data. Indeed, it is possible to compute in

polynomial time an automaton accepting a list of forbidden blocks of a finite-memory

system given by a deterministic automaton with a single initial state [4]. But it is

not possible to do it in polynomial time from a presentation where all states are

initial ones. Thus our algorithm runs faster if the input data are a list of forbidden

blocks while the one presented in [11] is more efficient if both the input data are a

presentation of the constraint and the gap condition is satisfied.

In Section 5.1, we recall some background regarding constrained systems with

unconstrained positions, which are introduced in [11].

In Section 5.2 we give a linear construction of a finite-state presentation of a

periodic-finite-type shift defined by a periodic list of forbidden blocks.

In Section 5.3, we combine the algorithm given in Section 5.2 to a preliminary

treatment of the input trie presenting a list of forbidden blocks of the constrained

channel.

5.1 Background and Basic Definitions

We recall definitions that can be found in [34]. Let A = {0, 1, . . . , k} be a finite

alphabet, with k ≥ 1. We denote by A∗ the set of finite words on A, by AZ the set

of bi-infinite sequences x = · · · x−3x−2x−1x0x1x2x3 · · · drawn from A, and by AN

the set of right-infinite ones.

The shift map σ transforms a sequence (xi)i∈Z into the sequence (xi+1)i∈Z. If
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i ≤ j are integers, we denote by x[i . . j] the factor or sub-block xi . . . xj of a finite

or infinite word x. A finite word w is a sub-block of a finite or infinite word x at

position i if w = x[i . . i+ |w| − 1], where |w| is the length of w. We denote this fact

by w ≺i x. note that w = w[0 . . |w| − 1].

An automaton is a finite labelled multi-graph (or simply a graph). It is a tuple

(Q,A,E), where Q is a finite set of states, A is the labelling alphabet, and E is a

finite set of edges labelled with elements in the alphabet A. An automaton accepts

a set of finite words when initial and final states are specified. A finite word is then

accepted if it is the label of a finite path from an initial state to a final one. The set

of bi-infinite labels of paths in an automaton is called a constrained system, or also

a sofic shift in the symbolic dynamics terminology. The automaton is then called

a presentation of the shift. In that case, the initial and final states may not be

specified since all states are supposed to be both initial and final.

An automaton is deterministic if for any given state and any given symbol, there

is at most one outgoing edge labelled by a given symbol. A sofic shift is irreducible if

it has a presentation with a strongly connected graph. In an essential presentation

all states have at least one outgoing edge and one incoming edge. An automaton

has finite memory M (or also is M-local or M-definite) if whenever any two paths

of the automaton of length M have the same label sequence, they end at the same

state. Finite-memory systems or finite-type systems or shifts of finite type (SFT)

have a finite-memory presentation. Examples of such systems include the RLL and

MTR constraints.

Finite-type shifts are characterized by a finite collection of forbidden blocks. If

F is a finite subset of A∗, we denote by XF the shift of finite type defined by the

set of forbidden words F . A bi-infinite word x belongs to XF if and only if w ≺i x,

for some index i, implies w /∈ F . Any irreducible sofic shift has a unique minimal

deterministic presentation called the right Shannon cover of the shift.

Periodic-finite-type shifts are constrained systems with a time-varying constraint.

They have been introduced by Moision and Siegel in [47]. They provide suitable

representations of constrained systems that forbid the appearance of certain patterns

in a periodic manner.

Let T be a positive integer, called the period. Let F be a finite collection

of finite words over A, where each wi ∈ F is associated with an integer ni in
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the set {0, 1 . . . T − 1}, called the set of phases. The collection F is denoted by

F = {(w1, n1), . . . , (w|F|, n|F|)} and called a collection of periodic forbidden words.

For 0 ≤ k < T , F (k) denotes the subset of F associated with the phase k. We denote

by X{F ,T} the shift defined as the set of bi-infinite sequences having a shifted sequence

that does not contain a word (wj, nj) ∈ F starting at any index i = nj mod T . More

precisely, a bi-infinite word x belongs to X{F ,T} if and only if there is an integer k

such that σk(x) = y and, for each integer i, one has w ≺i y ⇒ w /∈ F (i mod T ). A

periodic-finite-type shift for a period T (PFT(T )) is a constrained system S such that

there is a collection of periodic forbidden words F with S = X{F ,T}. A periodic-

finite-type shift (PFT) is a PFT(T ) for some period T . An example is given in

Figure 5.1.

0 1

0

0

1

Figure 5.1: An automaton presenting a periodic-finite-type shift X. The shift X
admits the following list of periodic forbidden words, for T = 2, F (0) = {1},F (1) = ∅.

Note that a shift of finite type is of periodic-finite-type for any period.

Constrained systems with unconstrained positions are defined in [11] as follows.

Let S be a constrained system, T a positive period, and U ⊆ {0, . . . , T − 1}, called

the set of unconstrained positions. For any finite (resp. right-infinite, bi-infinite)

word x, a U -flip of x is a finite (resp. right-infinite, bi-infinite) word y such that

yi = xi whenever i mod T /∈ U . If A is the two-letter alphabet {0, 1}, a U -flip is

obtained by flipping (or not) the bit values in the unconstrained positions. The set

of all U -flips of words of a set X is called the U -closure of X.

We denote by SU,T the set of all infinite (right-infinite or bi-infinite according to

the context) sequences x of S such that

• all U -flips of x belong to S,

• xi = 1 for all positions i such that i mod T ∈ U .
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The unconstrained positions are forced to be 1 in order to fix a leader in each U -flip

class of a word. The important fact is that one can independently change the values

in the unconstrained positions without violating the constraint defined by S. Note

that the shifted sequence of a sequence in SU,T may not be in SU,T (i.e.SU,T is not a

shift). We denote the set of all these shifted sequences by Sσ
U,T . We also denote by

SU,T

σ
the set of all bi-infinite shifted sequences of Sσ

U,T .

Note that Sσ
U,T ⊆ SU,T

σ
.

An algorithm to compute a presentation of SU,T from a presentation of S is given

in [11]. The result is a deterministic automaton GU,T whose graph has a period that

is a multiple of T with the following properties:

• states of GU,T are partitioned according to T phases {0, . . . , T − 1} in such a

way that if a state has phase k, its successors have phase k + 1 mod T .

• the transitions beginning in a state of a phase in U are labelled by 1.

• SU,T is the set of right-infinite sequences of GU,T that are labels of a path

starting in a state of phase 0.

The link between constrained systems with unconstrained positions and periodic-

finite-type shifts is given in the proposition below which is stated in [11, p. 869]

without proof. We use the following notation: if U is a subset of {0, . . . , T −1}, and

k is an integer, we denote by U + k the set {u+ k mod T | u ∈ U}.

Proposition 20 Let S be a finite-type shift, T a period and U a set of unconstrained

positions. The shifts SU,T

σ
and Sσ

U,T are PFT(T ) shifts.

Proof Let F be a finite collection of finite forbidden words such that S = XF .

We define two collections of periodic forbidden words G and G ′ as follows. If k ∈

{0, . . . , T − 1}, then G ′(k) is the (U − k)-closure of F and SU,T

σ
= X{G′,T−1}. If

k ∈ U , then G(k) = {0} ∪ G ′(k). If k ∈ {0, . . . , T − 1} \ U , then G(k) = G ′(k). Then

Sσ
U,T = X{G,T}.

Let us detail for instance the equality SU,T

σ
= X{G′,T}. Let x be a bi-infinite word

of SU,T

σ
. Thus, there is an integer i with σi(x) = y, and y belongs to the U -closure

of SU,T . Thus y has a U -flip z in S. Let w a finite block with w ≺k y. There is a

(U − k)-flip of w that is not in F . Thus w does not belong to the (U − k)-closure
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of F . This proves that SU,T

σ
⊆ X{G′,T}. Conversely, let x be a bi-infinite word

of X{G′,T}. There is an integer i with σi(x) = y, and, for each integer k, one has

w ≺k y ⇒ w /∈ G ′(k mod T ). Let z be a U -flip of y. Let w′ be the block obtained from

w with the same U -flip. Then w′ ≺k z. Since w does not belong to the (U − k)-

closure of F , w′ does not belong either. It follows that w′ /∈ F . Thus any U -flip of

y belongs to S. Hence y belongs to the U -closure of SU,T , and X{G′,T} ⊆ SU,T

σ
. ✷

Note that the result of the previous proposition extends as follows if S is a

periodic-finite-type system for a period that is a multiple of T .

Proposition 21 Let S be a PFT(T ) shift, and U a set of unconstrained positions.

The shifts SU,T

σ
and Sσ

U,T are unions of PFT(T ) shifts.

Proof Suppose S = X{F ,T}. We first fix k0 ∈ {0, 1, . . . , T − 1}, and define the two

collections of periodic forbidden words Gk0 and G
′
k0 as follows. If k ∈ {0, . . . , T −1},

then G ′
(k)
k0

is the (U−k)-closure of F (k+k0 mod T ). Hence SU,T

σ
=

⋃
k0∈{0,1,...,T−1} X{G′

k0
,T}.

If k ∈ U , then G
(k)
k0

= {0} ∪ G ′
(k)
k0
. If k ∈ {0, . . . , T − 1} \ U , then G

(k)
k0

= G ′
(k)
k0
.

Hence Sσ
U,T =

⋃
k0∈{0,1,...,T−1} X{Gk0

,T}. ✷

Let F be a list of periodic forbidden words of a shift X for a given positive

period T . We say that F is periodic anti-factorial if for any 0 ≤ i ≤ T − 1, w ∈ F (i)

implies that, for any proper factor u of w with u ≺j w, u /∈ F (i+j mod T ). The notion

of periodic anti-factorial list generalizes the notion of anti-factorial language (see for

instance [26]). In the aperiodic case, an anti-factorial language means a language

where no word is the factor of another one, while a factorial language is a language

where each factor of a word of the language also belongs to the language (see [26]).

In particular, the sets F (i) of an anti-factorial list F of periodic forbidden words,

are prefix-free codes, i.e.sets of words where no word is a proper prefix of another

word of the set. The empty word never belongs to any F (i).

Example 1 The list F (0) = {00, 11},F (1) = {00, 11, 010} with T = 2 is periodic

anti-factorial while the list F (0) = {00, 11, 010},F (1) = {00, 10} with T = 2 is not.

Indeed, in the latter list, 10 ∈ F (1), 010 ∈ F (0), and 10 ≺1 010.

Proposition 22 Let F be a list of periodic forbidden words of a PFT(T ) shift X.

Then there is an anti-factorial list of periodic forbidden words F ′ of X with the same

period, such that F ′(i) ⊆ F (i) for any 0 ≤ i ≤ T − 1.
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Proof We define the list F ′ by

F ′(i) = F (i) −F (i)A+ − (AT )+F (i)A∗ −
T−1⋃

j=1

(AT )∗AjF (i+j mod T )A∗,

where A∗ denotes the set of all finite words over A and A+ the set of all non-empty

ones. Note that F ′(i) is obtained from F (i) by removing all words that contain a

strict factor in position k belonging to F (k+i mod T ). By construction F ′ is periodic

and anti-factorial, and X = X{F ′,T}. ✷

The notion of anti-factorial list is weaker than the notion of minimal list of

periodic forbidden words (see [47] for a notion of minimality, where minimal periodic

forbidden words are called periodic first offenders). This notion is however a key

point in the algorithms described in Section 5.2.

5.2 Computation of the Shift Defined by Periodic

Forbidden Words

In this section, we describe an algorithm that computes the shift X{F ,T} from a

finite list of periodic forbidden words F with period T . This algorithm extends to

the periodic case an algorithm of Crochemore et al. [26] that computes the language

avoiding the blocks defined by an anti-factorial language. We first assume that the

periodic forbidden list is anti-factorial, and show later how to remove this restriction.

We denote by B0(F , T ) the set of finite blocks w such that, for any integer

0 ≤ i ≤ |w|, u ≺i w ⇒ u /∈ F (i mod T ). The set of finite blocks or factors of X{F ,T}

is denoted by B(X{F ,T}). Note that B0(F , T ) ⊆ B(X{F ,T}). The inclusion is strict

in general. For instance, if F (0) = {010}, F (1) = {101} and T = 2, 010 /∈ B0(F , T )

since 010 ∈ F (0), and 010 ∈ B(X{F ,T}).

Moreover, if w ∈ B(X{F ,T}), there is a finite block u such that uw ∈ B0(F , T ).

Hence B(X{F ,T}) is included in the set of factors of B0(F , T ).

Let F be an anti-factorial list of periodic forbidden words with period T . We

associate with F the finite deterministic automaton D(F) described below. A finite

word is accepted by this automaton if it is the label of a path from an initial state

to a final one. As shown in Proposition 24, D(F) accepts the set B0(F , T ) of finite



5.2 Computation of the Shift Defined by Periodic Forbidden Words 57

blocks of X{F ,T} appearing in phase 0. An essential presentation of the PFT shift

X{F ,T} is obtained from D(F) by removing the states that have no outgoing edges

or no incoming edges.

The automaton D(F) is defined by the tuple (Q,A, i, F, δ) as follows:

• the set Q of states is
⋃

0≤k≤T−1 Qk, where Qk = {(w, k) | w is a prefix of a

word in F (k)},

• A is the current alphabet,

• the initial state i corresponds to the empty word (ǫ, 0),

• the set F of final states is Q \
⋃

0≤k≤T−1 Fk, where Fk = {(w, k) | w ∈ F
(k)}.

The states of
⋃

0≤k≤T−1 Fk are called sink states. The set of transitions T is

defined as follows:

• T = {((u, k), a, (v, k+ r mod T )) | (u, k) ∈ Qk \Fk, a ∈ A, and v is the longest

suffix (ua)[r . . |ua| − 1] of ua such that (v, k + r mod T ) ∈ Q}, (transitions

((u, k), a, (ua, k)) such that (ua, k) ∈ Qk are called forward edges while the

others are called backward edges).

The partial transition function defined by transitions is denoted by δ. If w is a finite

word and q a state, δ(q, w) is defined if and only if there is a path starting at q with

label w. In that case, this path is unique and δ(q, w) is its ending state. Note that

there is no transition going out of a sink state, but δ(q, a) is defined for any letter a

and any state q that is not a sink state.

Remarks One can easily prove from the definitions that

• If q ∈ Q \ (F ∪
⋃

0≤k≤T−1(ε, k)), all transitions arriving on state q have the

same label.

• If q ∈ Q, there is a path from q to a sink state in the automaton.

Lemma 23 Let w be a finite word. If δ(i, w) is defined, then δ(i, w) = (v, r mod T ),

where v is the longest suffix w[r . . |w| − 1] of w such that (v, r mod T ) is a state of

Q.



58 5. Applications to Constrained Systems

Proof We prove the lemma by induction on the length of w. If w is the empty

word, the claim is trivially satisfied. Otherwise w = ua, where a is a letter. Hence,

δ(i, w) = δ(δ(i, u), a). By inductive hypothesis, δ(i, u) = (u′, k mod T ), where u′ is

the longest suffix u[k . . |u| − 1] of u such that (u′, k mod T ) is a state of Q. Since

δ(i, ua) is defined, δ(i, u) is not a sink state and (δ(i, u), a, δ(i, ua)) is a transition of

T.

If δ(i, u) = (u′, k mod T ), δ(i, ua) = (v, k + r mod T ), where v is the longest

suffix (u′a)[r . . |u′a| − 1] of u′a such that (v, k + r mod T ) is a state of Q. Let v′ be

a nonempty suffix (ua)[r′ . . |ua| − 1] of ua such that (v′, r′ mod T ) is a state of Q.

Then v′ = w′a, and w′ is a suffix u[r′ . . |u| − 1] of u such that (w′, r′ mod T ) is a

state of Q. From the inductive hypothesis, we get that w′ is a suffix of u′, and thus

v′ = w′a is a suffix of u′a. Then v is the longest suffix (ua)[r . . |ua| − 1] of ua such

that (v, r mod T ) is a state of Q. ✷

Proposition 24 Let F be a finite anti-factorial list of periodic forbidden words with

period T . The automaton D(F) accepts B0(F , T ). It is also a presentation of X{F ,T}

after removing the sink states.

Proof We first prove that B0(F , T ) is included in the language accepted by D(F).

Let w be a finite block of B0(F , T ). If w is not accepted by D(F), δ(i, w) is not

defined. Thus there is a prefix u of w such that δ(i, u) = (v, k) is a sink state. Hence

v is a suffix u[n . . |u| − 1] of u, with k = n mod T , which belongs to F (k). This

implies that v ≺n w, and w /∈ B0(F , T ).

Conversely, let us assume that w /∈ B0(F , T ). There is an integer k with 0 ≤

k ≤ |w|, and a finite block u ∈ F (k mod T ), such that u ≺k w. We denote by z the

word w[0 . . k − 1]. Hence zu is a prefix of w. If w is accepted by D(F), δ(i, zu)

is defined. By Lemma 23, δ(i, zu) = (v, r mod T ), where v is the longest suffix

(zu)[r . . |zu| − 1] of zu such that (v, r mod T ) is a state of Q. Since (u, k mod T )

is a state of Q, |v| ≥ |u|. Since u, v are suffixes of zu, u ∈ F (k mod T ) is a suffix of

v that is a prefix of a word in F (r mod T ). The anti-factoriality of F implies that

k = r mod T , and u = v. Thus δ(i, zu) is a sink state, and therefore w is not

accepted by D(F), which is a contradiction. ✷

The above definition of the automaton D(F) turns into the algorithm below

called Periodic–automaton that produces it. We first consider the code of this



5.2 Computation of the Shift Defined by Periodic Forbidden Words 59

algorithm without the lines 3.a, 3.b, 3.c and the lines 11.a, 11.b, 11.c. It builds the

automaton D(F) from a finite anti-factorial collection of finite words. With all lines

included, it builds the automaton from any finite collection of finite words. The

input is thus a collection of T finite sets of finite words. Each finite set of words is

represented by a tree-like deterministic automaton, called a trie, defined as follows.

Periodic–automaton (tries Tk = (Qk, A, ik, Fk, δk)

accepting F (k), integer T )
1. set Q =

⋃
k Qk, F =

⋃
k Fk, i = i0.

2. for each a ∈ A and each k, 0 ≤ k ≤ T − 1
3.a if ik ∈ F , remove transition δk(ik, a) in Tk
3.b if δk(ik, a) is defined and ik+1 mod T ∈ F
3.c remove transition δk(ik, a) in Tk
4. if δk(ik, a) is defined
5. set δ(ik, a) = δk(ik, a)
6. set f(δ(ik, a)) = ik+1 mod T

7. else

8. set δ(ik, a) = ik+1 mod T

9. for each k, each p ∈ Qk \ {ik} in width-first search
from

⋃
k ik

10. and for each a ∈ A
11.a if p ∈ F , remove transition δk(p, a) in Tk
11.b if δk(p, a) is defined and δ(f(p), a) ∈ F
11.c remove transition δk(p, a) in Tk
12. if δk(p, a) is defined
13. set δ(p, a) = δk(p, a)
14. set f(δ(p, a)) = δ(f(p), a)
15. else if p 6∈

⋃
k Fk

16. set δ(p, a) = δ(f(p), a)
17. else

18. set δ(p, a) is undefined (or equal to p)
19. return automaton A = (Q,A, i,Q \ F, δ)

Let L be a finite language of finite words, a trie representing L is a finite deter-

ministic automaton accepting L, where

• the set of states is the set of prefixes of words in L,

• the initial state is the empty word ε,

• the set of final states is F ,
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• the set of transitions is {(u, a, ua) | a ∈ A}.

The size of a trie T is defined as its number of states and it is denoted by |T |.

The input of our algorithm is the set of tries Tk = (Qk, A, ik, Fk, δk) that accept

the finite sets F (k), for 0 ≤ k ≤ T − 1 (see Figure 5.2). The output is the deter-

ministic automaton accepting D(F). It is denoted by (Q,A, i, T, δ). An essential

representation of X{F ,T} is obtained from it by removing the states that have no

outgoing edges or no incoming edges, and by setting all states both initial and final.

The key point for the final efficiency is the use of a function f called a failure

function and defined on the set Q, the union of the sets Qk of states of the tries Tk,

as follows. A state of the trie Tk is identified with a pair (u, k), where u is a prefix of

a word in F (k). For a state (au, k) ∈ Q, f(au, k) is δ(ik+1 mod T , u). Note that f(ik)

is undefined for any k such that 0 ≤ k ≤ T − 1, which justifies a specific treatment

of the initial states in the algorithm. The failure function guarantees a good time

complexity of the algorithm.

The shift X{F ,T}, given in Figure 5.2, is presented by the deterministic automaton

of Figure 5.3. The doubled circled states can be removed. For each state p, the value

of the failure function is represented as the target of the dashed edge starting at p.

States can be divided into two subsets, the set of states in phase 0 (in white) and

the set of states in phase 1 (in gray). Note that all transitions go from a state in

phase 0 to a state in phase 1 or conversely.

0 1 2 3

4 5 6 7

0 1 0

1 0 1

Figure 5.2: Example of the two input tries for the collection F defined by F (0) =
{010},F (1) = {101} and T = 2. Final states are doubled circled.
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0 1 2 3

4 5 6 7

0 1 0

1 0 1

10

0

1

1

0

Figure 5.3: Presentation of the shift X{F ,T}, where {F , T} is defined by F (0) = {010},
F (1) = {101} and T = 2.

Proposition 25 Let (Tk)0≤k≤T−1 be the tries of a finite anti-factorial list F of pe-

riodic forbidden words for the period T . Algorithm Periodic-automaton builds

the deterministic automaton D(F).

Proof Since we assume that F is anti-factorial, we skip the lines 3 and 11 of the

code of the algorithm. The automaton computed by the algorithm has a set of

states Q which is the union of the set of states of the input tries. The automaton is

deterministic, by construction.

Let p = (u, k) be a state of Qk. We prove by induction on the length of u that:

1. if u 6= ε, f(p) = (v, k+ r mod T ), where v is the longest suffix u[r . . |u| − 1] of

u, distinct from u, such that (v, k + r mod T ) ∈ Q,

2. if a is a letter of A, and δ(p, a) is defined, δ(p, a) = (w, k+ s mod T ), where w

is the longest suffix (ua)[s . . |ua| − 1] of ua such that (w, k + s mod T ) ∈ Q.

Property 1 is trivially satisfied when u is a letter. Property 2 is trivially satisfied

when u is the empty word.
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Let u be a nonempty finite word, p = (u, k) ∈ Q. Hence u = u′a, where a is a

letter, and we denote by p′ the state (u′, k) of Qk.

By the inductive hypothesis of 1, since |u′| < |u|, either u′ = ε and Property 1

is satisfied for the state p, or u′ 6= ε, and f(p′) = (v′, k + r′ mod T ), where v′ is the

longest suffix u′[r′ . . |u′|−1] of u′, distinct from u′, such that (v′, k+ r′ mod T ) ∈ Q.

By the inductive hypothesis of 2, since |v′| < |u′| < |u|, δ(f(p′), a) = (w′, k +

r′ + s′ mod T ), where w′ is the longest suffix (v′a)[s′ . . |v′a| − 1] of v′a such that

(w′, k+r′+s′ mod T ) ∈ Q. Then f(p) = δ(f(p′), a) = (w′, k+r′+s′ mod T ). Thus,

the block w′ is a proper suffix of u′a = u. Let z be a proper suffix (u′a)[t . . |u′a| − 1]

of u′a such that (z, k+ t mod T ) ∈ Q. Then z = z′a and z′ is a suffix u′[t′ . . |u′| − 1]

of u′ distinct from u′, with (z′, k + t mod T ) ∈ Q. This implies that z′ is a suffix of

v′, and that z = z′a is a suffix of w′. Then Property 1 is satisfied for the state p.

We now consider two cases to prove property 2. Let a be a letter of the al-

phabet. Let us assume first that there is a transition δk(p, a). Then δ(p, a) is

defined as δk(p, a) = (ua, k) and Property 2 is satisfied. Otherwise, δ(p, a) is de-

fined as δ(f(p), a). Since Property 1 is satisfied for the state p, f(p) is the state

(v, k+ r mod T ), where v is the longest suffix u[r . . |u|− 1] of u distinct from u such

that (v, k + r mod T ) ∈ Q. Hence |v| < |u|. Then, by inductive hypothesis of 2,

δ(f(p), a) = (x, k + r + s mod T ), where x is the longest suffix (va)[s . . |va| − 1] of

va such that (x, k + r + s mod T ) ∈ Q. Thus x is a suffix of ua. If y is a suffix

(ua)[t . . |ua| − 1] of ua such that (y, k + t mod T ) ∈ Q, then y = y′a and y′ is a

suffix u[t . . |u|−1] of u such that (y′, k+ t mod T ) ∈ Q. Thus either y′ = u or y′ is a

suffix of v. The former case implies t = 0 and δk(p, a) exists, which is excluded. The

latter case implies that y = y′a is a suffix of va, and thus a suffix of x. It follows

that δ(p, a) = (x, k + t mod T ), where x is the longest suffix (ua)[t . . |ua| − 1] of ua

such that (x, k + t mod T ) ∈ Q. Since δ(p, a) is defined as δ(f(p), a), Property 2 is

satisfied for the state p.

Therefore, assuming that F is anti-factorial, it remains to check that the instruc-

tions implement the definition of D(F). ✷

Corollary 26 Let (Tk)0≤k≤T−1 be the tries of a finite list F of periodic forbidden

words for the period T . Algorithm Periodic-automaton builds a deterministic

automaton accepting B0(F , T ). It is also a presentation of X{F ,T} after removing

the sink states.
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Proof Now F is no longer anti-factorial. We keep the lines 3 and 11 of the code

of the algorithm. The algorithm detects in lines 3.a, 3.b, 3.c and 11.a, 11.b, 11.c, a

violation of the anti-factorial property of the collection F . Moreover, when F is not

anti-factorial, it builds a new anti-factorial collection F ′ with B0(F , T ) = B0(F ′, T ),

by eliminating the words w in a set F (i) that have strict factors u ≺j w in F (i+j mod T ).

✷

Proposition 27 If transition functions are implemented by transition matrices, al-

gorithm Periodic–automaton runs in time O((
∑

k |Qk|) × |A|) on input Tk =

(Qk, A, ik, Fk, δk), for 0 ≤ k ≤ T − 1.

Proof If transition functions δk and δ are implemented by transition matrices, access

to or definition of δk(p, a) or δ(p, a) (p state, a ∈ A) are realized in constant amount

of time. The result follows immediately. ✷

5.3 Presentation of Finite-Memory Systems with

Unconstrained Positions

In this section, we use results from Sections 5.1 and 5.2 to derive an algorithm for

constructing presentation of a finite-memory system with unconstrained positions

from a finite list of forbidden words characterizing the constraint. This construction

is an alternative to the construction given in [11].

Let S be a finite-memory system (or finite type shift), T a period and U a set of

unconstrained positions. Let F be a set of forbidden blocks such that S = XF . We

know from Proposition 20 that the shift Sσ
U,T is a periodic-finite-type system defined

by the collection G as follows. For k ∈ {0, . . . , T − 1},

• if k ∈ U , G(k) is the (U − k)-closure of F plus the word 0,

• if k /∈ U , G(k) is the (U − k)-closure of F .

We assume that the input data of our construction are the period T and the

trie T accepting a prefix-free set of forbidden blocks F of S. The construction

of a presentation of Sσ
U,T is composed of two steps. In the first step, we build T

tries Tk, 0 ≤ k ≤ T − 1, accepting finite sets G(k) such that X{G,T} = Sσ
U,T . In the
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second step, we compute a presentation of Sσ
U,T from the tries Tk accepting G(k).

Algorithm Periodic–automaton of Section 5.2 performs this second step.

We describe the first step for a two-letter alphabet A = {0, 1}, but the results

carry over easily to larger alphabets. In order to reduce the complexity of the

construction, we slightly change the sets G(k) defined in Proposition 20 to avoid the

generation of all U -flips of words in F .

If L is a set of finite words, we call prefix part of L the subset L − LA+ of

L, where A+ is the set of nonempty words over A. Hence, the prefix part of L is

obtained from L by removing the words that have a strict prefix in L itself.

If k /∈ U , we define G(k) as the set of words obtained by setting all symbols at

positions i, with i + k mod T ∈ U , to 1 in the words of F , and by keeping the

prefix part of this set. If k ∈ U , G(k) is obtained by adding the word 0 to the

above defined set, and by keeping again only its prefix part. It is easy to verify that

Sσ
U,T = X{G,T}. The result is a collection of prefix-free sets but it may not be an

anti-factorial collection.

Example 2 The RLL (2,7)-constraint is defined by the set of forbidden blocks

F = {11, 101, 00000000}. For T = 3 and U = {1} we have to construct three sets

G(k), for k = 0, 1 and 2.

First, for every word of F , we flip the symbols 0 in positions i such that i + k

mod T ∈ U . Hence, for k = 0, we get the words {11, 111, 01001001}, for k = 1

the words {11, 101, 10010010}, and for k = 2 the words {11, 101, 00100100}. The

sets G(k) are obtained by taking the prefix part of the sets above, and by adding the

word 0 to those G(k) such that k mod T ∈ U . We obtain:

G(0) = {11, 01001001},

G(1) = {0, 11, 101, 10010010},

G(2) = {11, 101, 00100100}.

Example 3 The constrained system MTR(3) is defined by the set of forbidden
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blocks F = {1111}. For T = 3, U = {1}, we obtain

G(0) = {1111},

G(1) = {0, 1111},

G(2) = {1111}.

We will use the following operation on tries accepting prefix-free sets of words. If

T and T ′ are two tries accepting prefix-free sets of words L and L′ respectively, we

denote by Prefix-free-union(T , T ′) a procedure that computes a trie accepting

the prefix part of L ∪ L′.

Prefix-free-union ( tries T = (Q,A, i, F, δ),

T ′ = (Q′, A, i′, F ′, δ′))

1. if one of the tries is empty return the other trie

2. if one of the tries is reduced to a final state return this trie

3. let l(T ), (resp. l(T ′)) be the sub-trie rooted at δ(i, 0)

(respectively δ(i, 0))

4. let r(T ), (resp. r(T ′)) be the sub-trie rooted at δ(i, 1)

(respectively δ(i′, 1))

5. (such a sub-trie is empty if the transition does not exist)

6. set δ(i, 0) = Prefix-free-union(l(T ), l(T ′))

7. set δ(i, 1) = Prefix-free-union(r(T ), r(T ′))

8. return the trie T .

The construction of the tries Tk accepting G(k) is then performed through Algo-

rithm Periodic–tries below.
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Periodic–tries(trie T = (Q,A, i, F, δ), integer T )

1. make T copies Tk = (Qk, A, ik, Fk, δk) of T

2. for each k ∈ {0, . . . , T − 1}

3. for each state p of Tk at distance d from ik

4. (for instance in a bottom-up order)

5. if (k + d mod T ∈ U) and p /∈ Fk

6. let l(Tk), (resp. r(Tk)) be the sub-trie rooted

by δk(p, 0) (resp. δk(p, 1)), eventually empty

if the transition does not exist

7. remove δk(p, 0), if it exists

8. set δk(p, 1) = Prefix-free-union(l(Tk), r(Tk))

9. if k ∈ U , set δk(ik, 0) = new sink state.

10. return the tries Tk

Proposition 28 Algorithm Periodic–tries runs in time O(|Q| log |Q| ×T × |A|)

on the input trie T = (Q,A, i, F, δ) and the input period T .

Proof The procedure Prefix-free-union(T = (Q,A, i, F, δ), T ′ = (Q′, A, i′,

F ′, δ′)) runs in time O(min(|Q|, |Q′|)). If p is a state of the trie T , we denote by

l(p) the (eventually empty) left sub-trie of p, i.e.the sub-trie rooted by δ(p, 0). Sim-

ilarly, we denote by r(p) the (eventually empty) right sub-trie of p. Thus Algorithm

Periodic–tries(T = (Q,A, i, F, δ)) runs in timeO(T×|A|×
∑

p∈Q min(|l(p)|, |r(p)|).

We now evaluate the sum s =
∑

p∈Q min(|l(p)|, |r(p)|). We say that a sub-trie of a

state p is small if it has the smallest size among the two sub-tries children of p. Then

each state belongs to at most log2 |Q| small sub-tries. It follows that s ≤ |Q| log2 |Q|.

✷

Wemention that other simplifications may be added in the procedure Periodic–

tries. For instance, if we are interested in computing bi-infinite words or right-

infinite words, any two words u0 and u1 accepted by a trie may be removed and

replaced by u. Indeed, in the case of infinite words, if u0 and u1 are forbidden in a

position i, then u is also forbidden. Nevertheless, this simplification does not reduce

the overall asymptotic complexity of the process.

Note that, if one considers |A| and T as constants, the |Q| log |Q| time-complexity

obtained in Proposition 28 becomes linear in |Q| when the input trie T is linear,
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i.e.accepts a single word. Note also that each output periodic trie has a size not

larger than the size of the input trie.

The second step of the construction uses Algorithm Periodic–automaton of

Section 5.2 for computing a presentation of Sσ
U,T from tries Tk accepting sets G

(k) such

that X{G,T} = Sσ
U,T . The output is an automaton A = (Q,A, i, Q \ F, δ) accepting

SU,T . If the sink states (i.e.states of F ) are removed, one gets a presentation of the

shift Sσ
U,T .

We now evaluate the overall time-complexity of the process and compare it

with the time-complexity of the construction given in [11]. Algorithm Periodic–

automaton runs on tries Tk in time O((
∑

k |Tk|) × |A|). Since |Tk| ≤ |T |, it is

O(T × |T | × |A|). Then the overall time-complexity for the input data T and a trie

T accepting a prefix-free set of forbidden blocks of S, is O(T × |A| × |T | log |T |).

It becomes linear for linear tries. The evaluation of the space complexity is similar

and gives O(T × |A| × |T |).

The construction of [11] enables the computation of a presentation of Sσ
U,T from a

presentation of finite-state constrained system S in an exponential amount of time in

general, and in quadratic time with a particular condition, called the gap condition

(see [11, pp. 875]). Although our algorithm is polynomial and that given in [11]

is exponential, the two algorithms compute similar presentations. But the input

data are different. In particular, the minimal set of forbidden words of a finite-

memory system can be computed in quadratic-time (see [4]) from a deterministic

presentation of the system when this presentation has a unique initial state. If the

system is given by a deterministic presentation where all states are initial, with

Q states and memory M , it can take in the worst case O(|A|M) amount of time

to compute a deterministic presentation that has a unique initial state. Thus the

complexities of the two algorithms cannot be compared directly and one can choose

one or the other depending on the way the constraint is defined.

Some constraints may be naturally defined by a list of forbidden blocks. For

instance, an MTR constraint is defined by a single forbidden block. The RLL (d, k)-

constraint is defined by d forbidden blocks of length at most d+ 1 and one block of

length k+1. With (d, k) = (2, 7) one gets the forbidden blocks {11, 101, 00000000}.

A trie accepting a finite set is built in time linear in the sum of the lengths of the

words of the set. In the particular case of the set of forbidden blocks of the (d, k)-



68 5. Applications to Constrained Systems

constraint, the trie is built in time linear in d+k, i.e.since d ≤ k, in time O(k) from

the inputs d and k. Moreover the trie has a size that is also O(k). Indeed, the trie

has the particular linear structure described in Figure 5.4.

1

k + 1

0

0

1

2

3

d

1

10

10

1

1

Figure 5.4: The trie of the RLL (d, k)-constraint.

It follows that Algorithm Periodic–automaton runs in time O(k) on this

input trie. Indeed, in the analysis of the complexity in the proof of Proposition 28,

s = O(|Q|) = O(k). Thus our algorithm works linearly on the MTR constraints, and

on the RLL constraints. An efficient algorithm for the MTR constraints is also given

in [11]. Figure 5.6 displays an example for the constraint MTR(3). The presentation

can be minimized with standard methods [34]. It leads to the minimal presentation

displayed in Figure 5.5.

A condition similar to the gap condition of [11, pp. 875] can be stated as follows.

We assume that there is at most one unconstrained position in {0, . . . ,M−1}, where

M is the maximal length of a minimal forbidden word of the system. If this condition

is satisfied, the complexity of our algorithm becomes linear, i.e., O(T × |A| × |T |).
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0
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Figure 5.5: The Shannon cover of Sσ
U,T for S = MTR(3), T = 3, U = {1}. It is the

minimal presentation of that of Figure 5.6.
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Figure 5.6: A presentation of Sσ
U,T for S = MTR(3), T = 3, U = {1}. It is obtained

by Algorithm Periodic–automaton on the input tries accepting the sets G(0) =
{1111}, G(1) = {0, 1111}, G(2) = {1111}. States in phase 0, 1, and 2 are colored in
white, light gray, and gray respectively.



Chapter 6

Applications to the Word

Assembly Problem

In this chapter we show an application of the minimal forbidden words to the

Word Assembly Problem, that is to reconstruct a finite word w over a finite alphabet

of constant size A starting from a set of factors of w.

Introduction

The problem of the reconstruction of a word from a set of its factors arises

from several fields, as biology or cryptography. An example is the mathematical

formalization of the problem of a genomic sequence reconstruction. It is known,

for instance, that it is not possible to read the entire sequence of basis of a DNA

molecule, but only factors of small length. The reconstruction of the original DNA

sequence is complicated by other constraints, as read-errors or unknown orientation

of the factors. This problem is known as the Fragment Assembly Problem.

A theoretical simplification of the problem consists in considering a finite word

as target of the reconstruction and a set of its factors as input of the problem. In

general, in order to reconstruct in a unique way a word from its fragments, one has

to introduce further hypothesis. We will deal with this theoretical problem, and we

will call it the Word Assembly Problem.

Carpi et al. [17, 23], showed that a finite word can be uniquely reconstructed

starting from a particular set of its factors. The factors needed for the reconstruction

71
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are called maximal boxes of the word.

Mignosi et al. in [43, 44, 46] introduced a hypothesis of non-repetitiveness and

gave two different algorithms for the sequence assembly that work in linear time.

Such algorithms avoid one of the most common step used in solving fragment as-

sembly problem that is the overlap phase in which every fragment is compared to

each other, giving rise to a quadratic number of comparisons.

One of these algorithms is based on the notion of minimal forbidden word. Given

a word w over a finite alphabet A, a minimal forbidden word for w is a finite word

v that is not a factor of w but such that every proper factor of v is a factor of w.

The length of the longest minimal forbidden word for w is noted by m(w) and it

is involved in the previously mentioned hypothesis of non-repetitiveness. Starting

from a set I of factors of w containing all the factors of w having length m(w), it

was described an algorithm able to retrieve w from the set I under the condition

that the value of m(w) is known. The authors showed in [43] that such a hypothesis

on the elements of I is statistically reasonable. Actually, they proved for a word

w randomly generated by a memoryless source with identical symbol probabilities,

that the probability that m(w) is O(log(|w|)) converges to 1 as |w| leads to infinity,

so it is very likely that any factor of w of length m(w) is covered by at least one

element of I.

In this chapter we introduce the definition of I-compatibility for a finite word.

Given an arbitrary finite set of finite words I we say that a finite word w is I-

compatible if all the words in I are factors of w and if I contains all the factors of

w having length m(w). By using this definition algorithms in [43,44,46] work under

the assumptions that there exists a word w that is I-compatible and that m(w) is

known.

Here we improve previous results by removing the a-priori knowledge of the value

m(w), i.e. we show that the only existence of a I-compatible word is a sufficient

condition for its unique reconstruction. Such a reconstruction can be done in linear

time in the size of the set I.

As another improvement, we show that it is possible to decide in linear time

whether there exists a word w that is I-compatible.

At the end of the chapter we study the well known Shortest Superstring Problem,

that consists, given a finite set of finite words I, in finding the shortest word that
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contains all the words in I as factors. This problem is NP -hard in general.

A greedy algorithm, that is called here the Greedy Algorithm, running in quadratic

time on the size of I, is used in order to find in a fast way words that are ”quite

close” to the shortest superstring. It repeatedly merges the two fragments of the set

I having maximum overlap until only one word remains. If there exists more than

one couple of fragments having maximum overlap it randomly chooses one of these

couples for the merging.

The ratio between the length of the shortest superstring and the length of the

Greedy superstring is the object of a deep study. More details about this discussion

can be found in [58].

We show that, under the hypothesis of the existence of a I-compatible word, the

Greedy algorithm outputs the shortest solution, i.e. it is deterministic. Moreover

our algorithm retrieves the same solution. This shows that our Word Assembly

procedure outputs in fact the shortest superstring for the set I and thus the shortest

superstring can be reconstructed in linear time in this case.

In Section 5.1 we recall all the needed background and we introduce some new

definitions.

In Section 6.1 we state the Word Assembly Problem and we recall the techniques

used in [44].

In Section 6.2 we show that for a given set of finite words I there exists at most

one I-compatible word.

In Section 6.3 we give a method that allows to retrieve the set of the minimal

forbidden words for the target word w starting from the input set I.

In Section 6.4 we give an algorithm for the reconstruction of the word w from

the set I under the hypothesis that there exists a I-compatible word and a linear

algorithm that decides whether there exists a word w that is I-compatible.

Finally, in Section 6.5 we compare the Word Assembly Problem with the Shortest

Superstring Problem, and we compare our algorithms with Greedy ones used for

solving this second problem. We show that under our hypothesis of existence of a

I-compatible word, these two problems have the same solution, and so we can solve

the problem in a deterministic way and in linear time.
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6.1 The Word Assembly Problem

Let I = {i1, . . . , in} be a set of fragments, i.e. a finite set of finite words over a

given finite alphabet A.

We say that a finite word w is I-compatible if

1. I ⊆ Fact(w),

2. for every u ∈ Fact(w) such that |u| ≤ m(w) there exists at least a fragment

ij ∈ I such that u ∈ Fact(ij).

If I is a set of factors of a finite word w, we have the following definition:

Definition 6.1 A set of factors I of a finite word w is a k-cover for w, for 0 ≤ k ≤

|w|, if every factor of w of length k is a sub-factor of at least one word in I. The

covering index of I, denoted C(I), is the largest value of k such that I is a k-cover

of w.

In general any set of fragments I can be a set of factors for many different words.

It will have, then, a cover index for any such word.

The point 2. of the definition of I-compatibility is equivalent to the fact that

the condition C(I) ≥ m(w) is verified for the word w (see [44]).

The Word Assembly Problem is here formulated as follows:

Word Assembly Problem. Given a finite set of fragments I, decide whether

there exists an I-compatible word w, and, if it exists, reconstruct it.

To end this section, we briefly recall the construction of the Assembly algorithm

given in [44]. The inputs of the algorithm are the set I and the value m(w), so the

algorithm works under the assumption that the value m(w) is known.

Starting from the set of fragments I = {i1, . . . , in} over the finite alphabet A, the

first step is the construction of the concatenation word w1 over the alphabet A∪{$},

that is the concatenation of all the strings in I, interspersed with the symbol $, that

is a special symbol not belonging to A, i.e. w1 = $i1$i2$ . . . $in$.

The second goal of the Assembly algorithm consists in the construction of the

trie of the minimal forbidden words for w1 having length smaller than or equal to



6.1 The Word Assembly Problem 75

m(w) and not containing the symbol $. Such a construction is consequence of the

following result (see [44] Proposition 5.3):

Proposition 29 Let w be a word over a fixed alphabet A and let I a set of substring

of w such that

m(w) ≤ C(I).

Then the set of minimal forbidden words for the word w is exactly the set of all

the minimal forbidden words for w1 that do not contain the symbol $ and that have

length smaller than or equal to m(w), i.e.

MF(w) =MF(w1) ∩ A≤m(w).

So we can retrieve the trie of the minimal forbidden words for w starting from

the factor automaton of w1 (coming with its suffix function h) and the value m(w).

This is operation is performed in linear time O(||I||) by theCreate-trie algorithm,

that computes the trie of the minimal forbidden words for w1 and keeps those having

length smaller or equal to m(w) and not containing the symbol $.

Create-trie (factor automaton F(w1) = (Q,A ∪ {$}, i, T, δ),
suffix function h, value m(w))

1. for each state p ∈ Q in breadth-first search from i and each a ∈ A
2. if δ(p, a) undefined and (p = i or δ(h(p), a) defined)
3. δ′(p, a)← new sink;
4. else if δ(p, a) = q and q is distant from i more than p
5. δ′(p, a)← q;
6. In a depth-first search with respect to δ′ prune all branches of the trie
T (w) not ending in a state that is sink and has depth smaller than or
equal to m(w);

7. return T (w) = (Q′, A, i′, {sinks}, δ′);

Finally, a linear algorithm, w-Reconstruction, which reconstructs the word w

from the setMF(w), is used. This algorithm calls a procedure Buildword which

finds the longest path in a DAG (Directed Acyclic Graph) by using a topological

sort.

The overall Assembly algorithm is thus
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w-Reconstruction (Trie T (w) representing the setMF(w))
1. A(w)← L-automaton(T (w));
2. Let F(w) be the automaton obtained by removing sink states of A(w);
3. w ← Buildword(F(w));
4. return w;

Assembly (set of fragments I = {i1, i2, . . . , in}, value m(w))
1. w1 ← $i1$i2$ . . . $in$;
2. F(w1) = (Q,A ∪ {$}, i, T, δ)←Factor-automaton(w1);
3. T (w) = (Q′, A, i, {sinks}, δ′)←Create-trie (F(w1), h);
4. w ←w-Reconstruction (T (w));
5. return w;

This algorithm runs in linear time O(||I||), where ||I|| denotes the sum of the

lengths of all the strings in I.

6.2 Uniqueness of the Reconstruction

The main result of this section is the following theorem:

Theorem 30 Given a finite alphabet A, and a set I of fragments over A, if there

exists a word w that is I-compatible, then w is unique.

We start with the following definition:

Definition 6.2 Given two finite sets of finite words M and M ′, we say that M

is strongly included in M ′ if M $ M ′ and moreover there exists at least one word

v ∈M ′ such that |v| > max {|u| : u ∈M}. If M is strongly included in M ′ we note

M � M ′.

In the rest of this section we suppose that there exists a word w that is I-

compatible. Let w′ be another I-compatible word.

By the construction of the word w1, concatenation of the fragments of I, and by

the Proposition 29, we have that

• MF(w1) ∩ A≤m(w) =MF(w)
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• MF(w1) ∩ A≤m(w′) =MF(w′)

If m(w) = m(w′), thenMF(w) =MF(w′), and so Fact(w) = Fact(w′). There-

fore w = w′.

If insteadm(w) 6= m(w′), we have a situation in which eitherMF(w) �MF(w′)

orMF(w′) �MF(w). The next Corollaries 33 and 34 show that this situation is

impossible.

We start with a Lemma whose proof is straightforward and which will be used

in the proof of the next Theorem 32.

Lemma 31 Let M be a finite anti-factorial set of words over a finite alphabet A,

and let l be the length of the longest word in M . If a finite word z over A has the

property that there exists an l′ ≥ l such that every factor of z of length l′ does not

contain any word of M , then z does not contain any word of M , i.e. z ∈ L(M).

The following theorem shows that the set of the minimal forbidden words for a

finite word has a very rigid structure:

Theorem 32 Let w be a finite nonempty word over a finite alphabet A, and X =

{v ∈ MF(w) : |v| = m(w)} the set of the longest minimal forbidden words for w.

Then the L-automaton that recognizes the language L = L(MF(w)\X) of the finite

words avoiding the anti-factorial languageMF(w) \X has some loops, so it cannot

be the factor automaton of a single finite word.

Proof We show that there always exists a non-empty factor of w that can be iter-

ated an arbitrary number of times without violating the constraints of the language

L(MF(w) \ X). Thus this language is infinite and then the L-automaton that

recognizes it must contain some loops.

Let v = aub ∈ X, with a, b symbols in a finite alphabet A (we can have a = b).

By the definition of minimal forbidden word we know that au and ub must appear

as factors of w, so we have three cases:

Case 1. The factors au and ub appear at the same position. In this situation

au = ub, so the only possibility is a = b and au = ub = an, for a positive integer n,

hence aub = an+1. We can then write w = s1a
ns2, with s1, s2 ∈ A∗.
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In this case we can iterate the factor an an arbitrary number of times without

violating the constraints of the language L = L(MF(w) \ X), i.e. s1(a
n)+s2 ⊆

L(MF(w) \X).

Actually, by the Lemma 31, with M =MF(w) \X, since the factors of length

m(w) of the language s1(a
n)+s2 are exactly the factors of length m(w) of w plus the

factor an+1 = v, that belongs to X, every factor of length m(w) of s1(a
n)+s2 does

not contain any factor ofMF(w) \X, so it belongs to L(MF(w) \X).

Case 2. The factor ub appears before the factor au.

We can consider several configurations:

i) If ub and au do not overlap, we can then write w = s1ubs2aus3, with s1, s2, s3 ∈

A∗. In this case we can iterate the factor bs2au an arbitrary number of times without

violating the constraints of the language L = L(MF(w) \X), i.e. s1u(bs2au)
+s3 ⊆

L(MF(w) \X).

Actually, by the Lemma 31, with M =MF(w) \X, since the factors of length

m(w) of the language s1u(bs2au)
+s3 are exactly the factors of length m(w) of w

plus the factor aub = v, that belongs to X, none of the factors of length m(w) of

s1u(bs2au)
+s3 contains any factors of MF(w) \ X, so all these factors belong to

L(MF(w) \X).

ii) If ub and au overlap over a single letter a = b, we can write w = s1uaus2,

with s1, s2 ∈ A∗. In this case we can iterate the factor ua an arbitrary number of

times without violating the constraints of the language L = L(MF(w) \ X), i.e.

s1(ua)
+us2 ⊆ L(MF(w) \X).

Actually, by the Lemma 31, with M =MF(w) \X, since the factors of length

m(w) of the language s1(ua)
+us2 are exactly the factors of lengthm(w) of w plus the

factor aua = v, that belongs to X, none of the factors of length m(w) of s1(au)
+us2

contains any factor ofMF(w) \X, so all these factors belong to L(MF(w) \X).

iii) If ub and au overlap over a two-letters factor (in particular u is not empty),

we have that u starts with the letter b and ends with the letter a, i.e. u = bua, for

a u ∈ A∗.

Note that we must have |u| > 1, because if |u| = 1, ub and au appear at the

same position, against the hypothesis that ub appears before au.

So we can write w = s1buabuas2, with s1, s2 ∈ A∗. In this case we can iterate

the factor u = bua an arbitrary number of times without violating the constraints
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of the language L = L(MF(w) \X), i.e. s1(bua)
+s2 ⊆ L(MF(w) \X).

Actually, by the Lemma 31, with M =MF(w) \X, since the factors of length

m(w) of the language s1(bua)
+s2 are exactly the factors of length m(w) of w plus the

factor abuab = v, that belongs toX, none of the factors of lengthm(w) of s1(bua)
+s2

contains any factor ofMF(w) \X, so all these factors belong to L(MF(w) \X).

iv) If ub and au overlap over a sub-factor u′ of u, such that |u′| > 0 (in particular

u is not empty), then u′ is a border of u. Note that |u| > 1, because if not ub and

au should appear at the same position.

So we can write w = s1w
′s2, where s1, s2 ∈ A∗, and w′ is the non-empty factor

of w that starts with ub and ends with au. In particular w′ can be written as

w′ = zu = uv, with |z| = |v| = p, for a positive integer p < |u|.

By the Proposition 1, p is a period of the word w′. Moreover, there exists two

unique words m ∈ A∗ and r ∈ A+, and an integer k > 0, such that w′ = (mr)km

and |mr| = p.

So we have w = s1w
′s2 = s1(mr)kms2.

Since u is a border of w′ longer than the half of the length of w′ (because

|z| = |v| < |u|), we can suppose k > 1. Actually, if k = 1, since p = |mr| < |u|, we

should have

|u|+ p = |w′| = |mr|+ |m| < 2|mr| = 2p < |u|+ p,

that is a contradiction.

Note that since w′ = zu = (mr)km and |z| = |mr| = p, we have z = mr, hence

u = (mr)k−1m. Let us note r = ctc′, with t ∈ A∗ and c, c′ ∈ A ∪ {ε}, not both

empty (if |r| = 1 we assume t = ε and c = c′).

Thus we can iterate the factormr an arbitrary number of times without violating

the constraints of the language L = L(MF(w) \X), i.e.

s1(mr)k(mr)+ms2 ⊆ L(MF(w) \X).

Actually, by the Lemma 31, with M =MF(w) \X, since the factors of length

m(w) of the language s1(mr)k(mr)+ms2 are exactly the factors of length m(w) of

w plus the factor c′(mr)k−1mc = c′uc and since c′u and uc are factors of w, we have

that if c′uc is a forbidden factor for w, then it is a minimal one, and so it belongs

to X. Hence none of the factors of length m(w) of s1u(au)
+s2 contains any factors

ofMF(w) \X, so all these factors belong to L(MF(w) \X).
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Case 3. The factor ub appears after the factor au.

We can consider several configurations.

i) If the factors au and ub do not overlap, we can then write w = s1auys2xubs3,

with s1, s2, s3 ∈ A∗ and x, y ∈ A ∪ {ε}. Suppose that |ys2x| > 0 (in particular

if |ys2x| = 1 we assume s2 = ε and y = x). In this case we can iterate the factor

ys2xu an arbitrary number of times without violating the constraints of the language

L = L(MF(w) \X), i.e. s1au(ys2xu)
+bs3 ⊆ L(MF(w) \X).

Actually, by the Lemma 31, with M =MF(w) \X, since the factors of length

m(w) of the language s1au(ys2xu)
+bs3 are exactly the factors of length m(w) of w

plus the factor xuy and since xu and uy are factors of w, we have that if xuy is a

forbidden factor for w, then it is a minimal one, and so it belongs to X. Hence, none

of the factors of length m(w) of s1u(bs2au)
+s3 contains any factor ofMF(w) \X,

so all these factors belong to L(MF(w) \X).

If instead |ys2x| = 0, then w = s1auubs3. Observe that in this case |u| > 0,

because ab cannot be at the same time a forbidden factor and a factor of w. So

let us note u = dzd′, with z ∈ A∗ and d, d′ ∈ A ∪ {ε} but not both empty (if

|u| = 1 we assume z = ε and d = d′). In this case we can iterate the factor

u an arbitrary number of times without violating the constraints of the language

L = L(MF(w) \X), i.e. s1au(u)
+bs3 ⊆ L(MF(w) \X).

Actually, by the Lemma 31, with M =MF(w) \X, since the factors of length

m(w) of the language s1au(u)
+bs3 are exactly the factors of length m(w) of w plus

the factor d′dzd′d = d′ud and since d′u and ud are factors of w, we have that if d′ud

is a forbidden factor for w, then it is a minimal one, and so it belongs to X. Hence,

none of the factors of length m(w) of s1au(u)
+bs3 contains any factor ofMF(w)\X,

so all these factors belong to L(MF(w) \X).

ii) If au and ub overlap over a sub-factor u′ of u, then u′ is a border of u (note

that |u′| < |u| because aub is a forbidden word for w), and the proof is the same as

that of Case 2, iv. ✷

Example. Let w = abababa over the alphabet A = {a, b}. We haveMF(w) =

{aa, bb, bababab}, so X = {bababab} and thanMF(w) \X = {aa, bb}. The minimal

forbidden word v = bababab has a strict maximal prefix and a strict maximal suffix

that overlap as factors of w. We are in the situation described in Case 2, iv.
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We observe that the words (ab)n belongs to L(MF(w) \ X) for every positive

integer n.

Corollary 33 Let w be a finite nonempty word over a finite alphabet A, and M =

MF(w) the set of its minimal forbidden words. Then for every anti-factorial finite

set of finite words M ′ such that M ′ � M , the L-automaton that recognizes the

language L(M ′) has some loops, so it cannot be the factor automaton of a single

finite word.

Proof If M ′ � M , in particular we have M ′ ⊂ M \ X, then every finite word

avoiding the set M \ X must avoid a fortiori the set M ′, so L(M \ X) ⊆ L(M ′).

Thus, since by the Theorem 32 L(M \X) is infinite, then L(M ′) is infinite too, and

so the L-automaton of M ′ must contain some loops. ✷

Corollary 34 Let M =MF(w) be the (anti-factorial) set of the minimal forbidden

words for a finite nonempty word w over a finite alphabet A. Then for every anti-

factorial finite set of finite words M ′ such that M � M ′, the L-automaton that

recognizes the language L(M ′) cannot be the factor automaton of a single finite

word.

Proof If the L-automaton of L(M ′) were the factor automaton of a single finite

word, it should exist a finite word w′ such that M ′ =MF(w′). But in this case, by

the Theorem 32, the L-automaton that recognizes the language L(M) could not be

the factor automaton of a single finite word, against the hypothesis. ✷

6.3 Finding the Minimal Forbidden Words for w

We now suppose to have a set of fragments I and that there exists a (unique)

I-compatible word w. So we know that there exists a finite word w such that the

fragments of I are factors of w and the condition C(I) ≥ m(w) is verified, and we

want to reconstruct the word w.

In particular, we are interested in finding the minimal forbidden words for the

word w. This will allow us to reconstruct the word w using the w-reconstruction

procedure.
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In this section we find a way to deduce the set MF(w) from the set MF(w1)

without the explicit knowledge of the value m(w).

The following two Propositions are given in [44] without proof (Remarks 3.3 and

5.4).

Proposition 35 Let w be a finite word over a finite alphabet A. Then

r(w) = m(w)− 2

where r(w) is the repetition index of w and m(w) is the length of the longest minimal

forbidden word for w.

Proof Let m = avb be a minimal forbidden word for w of maximal length |m| =

m(w). So av and vb are factors of w.

If av is a suffix of w, then, since vb is a factor of w, we have that v is a factor of

w appearing at least twice (maybe overlapping).

If av is not a suffix of w then avx is a factor of w for a letter x ∈ A different

from b. Since vb is a factor of w, v is a factor of w appearing at least twice (maybe

overlapping).

So there exists a factor v of length m(w) − 2 of the word w appearing at least

twice, and thus r(w) ≥ m(w)− 2.

Conversely, if v is a factor of the word w having length r(w) (so it appears at

least twice in w, maybe overlapping), then we want to prove that |v| ≤ m(w) − 2.

To do this, it is sufficient to show that there exists a minimal forbidden word for w

of the form avb, with a, b ∈ A. We have several cases:

Case 1. The factor v is not a prefix nor a suffix of w. So the word w contains

at least two factors containing v as central factor, say x1vy1, with x1, y1 ∈ A, and

x2vy2, with x2, y2 ∈ A.

In this case we have that x1 6= x2 and y1 6= y2. If not there should exist a factor

of w longer than v appearing at least twice, against the hypothesis that |v| = r(w).

Moreover, for the same reason, x1vy2 cannot be a factor of w. So, since x1v and vy2

are factors of w, x1vy2 is a minimal forbidden word for w.

Case 2. If v appears as prefix and as suffix of w, let b be the letter following

the prefix v and a the letter preceding the suffix v (note that such a and b must
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exist since |v| < |w|). Then av and vb are factors of w. Moreover, they appear only

once as factors of w, if not there should exist a factor longer than v appearing at

least twice as factor of w. So avb cannot be a factor of w, and then it is a minimal

forbidden word for w.

Case 3. If v appears as prefix but not as suffix of w, let a be the letter following

the prefix v. The second time that v appears in w it must be followed by a letter b

different from a, if not there should exist a factor longer than v appearing at least

twice in w. Let x be the letter preceding the factor vb. So xv is a factor of w and it

appears only once in w, since it is longer than v. Thus xva is a minimal forbidden

word for w.

Case 4. If v appears as suffix but not as prefix of w, the proof is analogous to

that of the Case 3. ✷

We focus now on the structure of the set (MF(w1) ∩ A∗) \MF(w), i.e. of the

minimal forbidden words for w1 not containing the symbol $ that are not minimal

forbidden words forMF(w).

Remark. Since by the Proposition 29 we have that MF(w1) ∩ A≤m(w) =

MF(w), every word belonging to (MF(w1) ∩ A∗) \ MF(w) has a length greater

than m(w).

Let S be the set of the minimal forbidden words for w1 not containing the symbol

$, of the form v = aub, such that

• the words au$ and $ub are factors of w1,

• the words aux and xub are not factors of w1, for every x ∈ A.

We will show that the knowledge of this set allows us to retrieve the setMF(w)

from the setMF(w1).

Proposition 36 If w is a I-compatible word, then the following equality holds:

MF(w) ∪ S =MF(w1) ∩ A∗.

Proof The inclusion S ⊆ MF(w1) ∩ A∗ follows by the definition of S. In order

to prove that MF(w) ∪ S ⊆ MF(w1) ∩ A∗, it remains to show that MF(w) ⊆
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MF(w1). Actually, let v = aub be a minimal forbidden word for w. By definition,

it follows that both au and ub are factors of w and hence, by the second condition

of I-compatibility, they appear in some fragment of I. Therefore they appear in w1.

If v = aub was in w1, then it should appear in some fragments of I and so, by the

first condition of I-compatibility, it should be a factor of w.

Let us consider now a word v = aub inMF(w1) ∩ A∗. We show that if it does

not belong toMF(w), then it has to belong to S. Actually, aub is not a factor of

w1, while au and ub are, and so, by the construction of the word w1, au and ub are

factors of w too. If moreover aub /∈MF(w), then we know by the previous Remark

that |aub| > m(w), and so |au| = |ub| > m(w) − 1. Since aub is not a minimal

forbidden word for w, but au and ub are factors of w, we conclude that aub must be

a factor of w. By the Proposition 35, we know that au and ub appear exactly once

as factors of w. So, in the word w, au can only be followed by b and ub can only be

preceded by a. Thus, in the word w1, the factor au can only be followed by $ and

ub can only be preceded by $, aub being a minimal forbidden word for w1. ✷

The following two propositions show that the setsMF(w) and S are “almost”

disjoint.

Proposition 37 Let w be a I-compatible word, and B(w) be the set of the bad

minimal forbidden words for w. Then the following equality holds:

MF(w) ∩ S = B(w).

Proof The set B(w) is included in MF(w) by definition. Let v = aub be a bad

minimal forbidden word for w. Then, by the second condition of I-compatibility, it

is a minimal forbidden word for w1. Moreover, since au is a suffix of w and it does

not appear elsewhere in w, and since |au| ≤ m(w), it appears in w1 and every time

it appears it must be followed by the symbol $. By the same reasoning ub appears

in w1 and every time it appears it must be preceded by the symbol $.

We now show the other inclusion. Let v = aub be a minimal forbidden word

for w. By the second condition of I-compatibility, it is a minimal forbidden word

for w1 too. Suppose that it also belongs to S. This implies that au is a suffix of w

and it does not appear elsewhere in w. Actually, if aux was a factor of w for some

letter x ∈ A, then, since |aux| ≤ m(w), aux should be a factor of w1 too, against
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the hypothesis that it belongs to S. Analogously one can prove that ub is a prefix

of w and it does not appear elsewhere in w. Thus v = aub belongs to B(w). ✷

Proposition 38 For a finite word w over a finite alphabet A it can exist at most

one bad minimal forbidden word, i.e. |B(w)| ≤ 1.

Proof Let v = aub be a bad minimal forbidden word for w, and suppose that

v′ = xu′y is another bad minimal forbidden word for w longer than v, i.e. |u′| > |u|.

By the definition of bad minimal forbidden word, u′ and ub are prefixes of w, so

u′ = ubs for some s ∈ A∗. But xu′ = xubs must be suffix of w, and ub cannot appear

as central factor of w. The only possible case is therefore s = ε and so u′ = ub. In

this case ub is a suffix of w. Since v is bad minimal forbidden word, au is a suffix

of w too, so the unique possibility is a = b and u = an for some integer n, and then

v = an+2 (and v′ = xan+1y, with x and y different from a).

So, if w is the word an+1, for a letter a ∈ A, then for w it exists just one bad

minimal forbidden word, that is v = an+2; else, if w 6= an+1, the factor an+1 appears

twice as factor of w, that is a contradiction since v is a bad minimal forbidden word

for w and so, by the definition, its prefix and its suffix must appear just once as

factors of w.

Thus, it cannot exist a bad minimal forbidden word for w longer than v. ✷

Remark. The previous propositions allow to find out the elements ofMF(w)

starting from the set MF(w1). In fact, we only need to remove from the set

MF(w1) ∩ A∗ the elements of S \B(w), i.e.

MF(w) = (MF(w1) ∩ A∗) \ (S \B(w)).

Unfortunately, since we do not know the word w a priori we cannot know whether

the set B(w) is empty. However we can solve the problem by taking in account the

lengths of the shortest elements of the set S. In the next section we will show that

the set MF(w) is completely determined by the knowledge of the following two

values without the explicit knowledge of the value m(w):

l1 = min{|v|, v ∈ S},
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l2 = min{|v|, v ∈ S and |v| > l1}.

We conventionally define l1 = l2 =∞ if S = ∅ and l2 =∞ if S contains just one

element.

6.4 A New Algorithm for the Word Assembly Prob-

lem

We start with the construction of a procedure that computes in linear time

O(|A|2 × ||I||) the values l1 and l2 starting from the factor automaton of w1 and its

trie of the minimal forbidden words.

We recall that if S contains a bad minimal forbidden word for w, it is the only

element in S having length smaller than or equal to m(w). So, if there exists a

bad minimal forbidden word v for the word w, then its length is l1. Thus, every

word in MF(w1) ∩ A∗ having length smaller than l2 is a minimal forbidden word

for w. If instead no bad minimal forbidden word for w exists, then every word in

MF(w1) ∩ A∗ having length smaller than l1 is a minimal forbidden word for w.

The first algorithm is the S-construction. It labels the sink states of the trie

of the minimal forbidden words for w1.

The algorithm uses a FIFO (First In First Out) file F , of which the entries are

couples of states, the first one corresponding to a breadth-first-search on the factor

automaton of w1, and the second one corresponding to a breadth-first-search on the

trie of the minimal forbidden words for w1.

The behavior of the algorithm is the following. First it fixes a symbol x ∈ A∪{$}.

Then it fixes a letter a ∈ A and starts a breadth-first-searches on the trie of the

minimal forbidden words for the word w1. At the end of the exploration of the trie

it labels with the symbol x the sink states corresponding to the minimal forbidden

words v = aub verifying:

1. v does not contain the symbol $

2. xub is a factor of w1

3. in the word w1 the factor au can only be followed by the symbol $
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To perform this operation, the algorithm does at the same time a breadth-first-

search on the factor automaton of w1, to ensure that the factor xub is indeed a factor

of w1.

At the end of the procedure, the sink states labelled only by the symbol $ are

the states corresponding to the words of S.

In the worst theoretical case, if we note k = |A|, the algorithm does k(k + 1)

breadth-first-searches (k + 1 possibilities for the letter x at line 1., and k for the

letter a at line 2.) on the trie MF(w1). Since the set of the states that are not

sink of the trieMF(w1) is a subset of the set of the states of the factor automaton

F(w1), and since a breadth first search is a linear standard procedure, the algorithm

is linear on ||I||, where ||I|| denotes the sum of the lengths of all the strings in I.

S-construction (Factor Automaton F(w1) = (Q,A ∪ {$}, i, F, δ),
MF-Trie T (w1) = (Q′, A ∪ {$}, i′, {sinks}, δ′), FIFO file F )
1. for each x ∈ A ∪ {$} do
2. for each a ∈ A do

3. if δ(i, x) and δ′(i′, a) both defined and δ′(i′, a) not sink then

4. F ← {(δ(i, x), δ′(i′, a))};
5. while F is not empty do

6. (p, p′)← HEAD (F );
7. DEQUEUE (F );
8. for each b ∈ A do

9 if δ′(p′, b) is a sink state then

10. if δ(p′, $) defined but for every
c ∈ A δ(p′, c) is not defined then

11. LABEL (δ′(p′, b), x);
12. else if δ′(p′, b) and δ(p, b) both defined then

13. ENQUEUE (F, (δ(p, b), δ′(p′, b)));
14.return T ′(w1) = (Q′, A, i′, {labeled sinks}, δ′);

The second algorithm, l1, l2-finding, does a breadth-first-search on the labeled

trie T ′(w1) using a FIFO file F having two entries: the first one is a state and second

one is the distance of this state from the initial state.

The algorithm returns the lengths l1 and l2 respectively of the shortest and of

the second shortest minimal forbidden words for w1 whose label in the trie T ′(w1)

is only the symbol $, i.e. the shortest and the second shortest elements of S. If S is

empty, then the algorithm sets both l1 and l2 equals to infinity. If S contains juste
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one element, then the algorithm sets l2 equal to infinity.

The linear time complexity of the l1, l2-finding procedure follows from the linear

time complexity of the standard breadth-first-search procedure on a finite graph.

l1, l2-finding (labeled MF-Trie T ′(w1) = (Q′, A, i′, {labeled sinks}, δ′),
FIFO file F )
1. l1 ←∞;
2. l2 ←∞;
3. F ← {i′, 1};
4. while F is not empty do

5. (p′, d)← HEAD (F );
6. DEQUEUE (F );
7. for each a ∈ A do

8. if δ′(p′, a) is a sink state and its label is {$} then
9. if d < l1 then l1 ← d
10. else if d < l2 then l2 ← d
11. else if δ′(p′, a) defined but not sink then

12. ENQUEUE (F, (δ′(p′, a), d+ 1));
13.return l1, l2;

Now, we describe the Word Assembly 1 algorithm. It reconstructs the word

w from a set of fragments I under the hypothesis that there exists a I-compatible

word w.

The first step of the procedure is the construction of the concatenation word w1,

that can be easily done in linear time O(||I||)).

Then we can construct the factor automaton of w1. Remember that the factor

automaton of a word v over the alphabet A can be computed in linear time O(|v| ×

|A|) and has no more than 2|v| states, see for instance [26].

Now, we can construct in linear time O(|w1|) = O(||I||) the trie T (w1) of the set

MF(w1), by using the MF-Trie algorithm.

Once we have constructed both the factor automaton and the trie of the minimal

forbidden words for w1, we can use the two algorithms S-construction and l1, l2-

finding to find the values l1 and l2.

Now we apply the Create-trie algorithm with the value l1 − 1 instead of the

value m(w) at the line 6, and we obtain the trie T (l1 − 1) that represents the set

M1 =MF(w1)∩A
≤l1−1 (we use the convention that A≤∞ = A∗). If no bad minimal

forbidden word exists for the I-compatible word w, then M1 = S =MF(w), so we
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can easily reconstruct w by using the w-Reconstruction procedure applied to

the trie T (l1 − 1).

If instead there exists a bad minimal forbidden word for the I-compatible word

w, then the L-automaton applied to the trie T (l1 − 1) will give, by the Corollary

33, an automaton F(l1 − 1) with some loops 1. Note that checking whether a finite

directed graph contains loops or not is a standard linear procedure (by using for

example a depth-first-search).

So, if F(l1 − 1) contains some loops, and since by the hypothesis there exists a

I-compatible word w, then we can state that there exists a bad minimal forbidden

word for w, and so, by the Remark at the end of Section 6.3, the Create-trie

algorithm, with the value l2−1 instead of the value m(w) at line 6, will produce the

trie of the minimal forbidden words for the word w, that so can be reconstructed by

using the w-Reconstruction procedure applied to the trie T (l2 − 1).

Word Assembly 1 (set of fragments I = {i1, i2, . . . , in},
existence of a I-compatible word)
1. w1 ← $i1$i2$ . . . $in$;
2. F(w1) = (Q1, A ∪ {$}, i1, Q1, δ1)←Factor-automaton(w1);
3. T (w1) = (Q2, A ∪ {$}, i2, {sinks}, δ2)←MF-trie (F(w1), h);
4. T ′(w1) = (Q2, A, i2, {labeled sinks}, δ2)←S-construction(F(w1), T (w1));
5. (l1, l2)←l1, l2-finding (T ′(w1));
6. T (l1 − 1) = (Q3, A, i2, {sinks}1, δ3)←Create-trie(F(w1), l1 − 1);
7. F(l1 − 1) = (Q4, A, i4, Q4 = Q3 \ {sinks}1, δ4)←L-automaton (T (l1 − 1));
8. if F(l1 − 1) contains loops then
9. T (l2 − 1) = (Q5, A, i5, {sinks}2, δ5)←Create-trie(F(w1), l2 − 1);
10. w ←w-Reconstruction(T (l2 − 1));
11. return w;
12. else

13. w ←w-Reconstruction(T (l1 − 1));
14. return w;

We are now quite close to the solution of the Word Assembly Problem as for-

mulated in Section 6.1. The last step consists in eliminating the hypothesis on the

existence of a I-compatible word.

1In the general construction the L-automaton has the same states of its input trie, but we
always suppose to delete the sink states of the L-automaton after its construction. So we do not
consider loops on the sink states.
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So we start only with an arbitrary set I of finite words over a finite alphabet A.

The following Word Assembly 2 algorithm completely answers to the Word

Assembly Problem, and it produces its output in linear time O(||I||).

The first steps of the algorithm are the same as those of the Word Assembly

1 algorithm. Once we have constructed the automaton F(l1 − 1) we have to check

whether it is (after deleting the sink states) the factor automaton of a I-compatible

word.

If it contains loops, clearly it cannot be the factor automaton of a single finite

word.

If it does not contain loops, how can we decide whether it is the factor automaton

of a I-compatible word? First, the factor automaton of a single finite word always

contains a unique longest path from the initial state, and it is the path corresponding

to the longest factor of the word, that is the word itself. So if F(l1 − 1) contains

two or more paths of maximal length (one can check this in linear time by using a

simple adaptation of the topological sort procedure on a directed acyclic graph), we

can state that no I-compatible word exists; otherwise, by the Corollary 33, F(l1−1)

should contain loops. If instead F(l1− 1) contains just one path of maximal length,

set w this path. Now, one can construct in linear time on the size of w (and so on

||I||) the factor automaton of w, noted by F(w). We can now compare the automata

F(w) and F(l1 − 1) (it is well known that checking the equality between two finite

deterministic automata can be done in linear time).

If F(w) 6= F(l1 − 1), then we can state that no I-compatible word exists, if not

we should retrieve its factor automaton with F(l1 − 1) (or F(l2 − 1) if F(l1 − 1)

contains loops, that is not the case here).

If F(w) = F(l1−1) then we have found a I-compatible word, w, as the following

Theorem shows.

Theorem 39 If F(l1 − 1), the automaton that recognizes the set L(MF(w1) ∩

A≤l1−1), is the factor automaton of a finite word w, then w is a I-compatible word.

Proof The first condition to prove is that I ⊆ Fact(w). Let v ∈ I, then v ∈

Fact(w1) ∩ A∗, so v /∈ MF(w1) ∩ A∗. Therefore v ∈ L(MF(w1) ∩ A∗) and thus a

fortiori v ∈ L(MF(w1) ∩ A≤l1−1). Thus v is recognized by F(l1 − 1) = F (w).

The second condition to prove is that C(I) ≥ m(w). Suppose that k = C(I) <
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Word Assembly 2 (set of fragments I = {i1, i2, . . . , in})
1. w1 ← $i1$i2$ . . . $in$;
2. F(w1) = (Q1, A ∪ {$}, i1, Q1, δ1)←Factor-automaton(w1);
3. T (w1) = (Q2, A ∪ {$}, i2, {sinks}, δ2)←MF-trie (F(w1), h);
4. T ′(w1) = (Q2, A, i2, {labeled sinks}, δ2)←S-construction(F(w1), T (w1));
5. (l1, l2)←l1, l2-finding (T ′(w1));
6. T (l1 − 1) = (Q3, A, i3, {sinks}1, δ3)←Create-trie(F(w1), l1 − 1);
7. F(l1 − 1) = (Q4, A, i4, Q4 = Q3 \ {sinks}1, δ4)←L-automaton (T (l1 − 1));
8. if F(l1 − 1) contains loops then
9. T (l2 − 1) = (Q5, A, i5, {sinks}2, δ5)←Create-trie(F(w1), l2 − 1);
10. F(l2 − 1) = (Q6, A, i6, Q6 = Q5 \ {sinks}2, δ6)←L-auto-

maton (T (l2 − 1));
11. if F(l2 − 1) contains loops then
12. return ”No I-compatible word exists”;
13. else

14. if F(l2 − 1) has a unique path of maximal length
from the initial state, labelled by w, then

15. F(w)←Factor-automaton(w);
16. if F(w) = F(l2 − 1) then
17. return w;
18. else

19. return ”No I-compatible word exists”;
20. else

21. if F(l1 − 1) has a unique path of maximal length
from the initial state, labelled by w, then

22. F(w)←Factor-automaton(w);
23. if F(w) = F(l1 − 1) then
24. return w;
25. else

26. return ”No I-compatible word exists”;
27. else

28. return ”No I-compatible word exists”;
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m(w). This implies that there exists at least one factor v ∈ Fact(w) such that

|v| = k + 1 but v /∈ Fact(I), so v /∈ Fact(w1) ∩ A∗. Let v = a0a1 . . . ak. Since

k = C(I) we have that a0a1 . . . ak−1 and a1a2 . . . ak belong to Fact(w1) ∩ A∗, so

v ∈MF(w1) ∩ A∗.

We thus have two possibilities for v.

If |v| < l1, then v ∈MF(w1)∩A
≤l1−1, therefore v /∈ L(MF(w1)∩A

≤l1−1), so it

should not be recognized by F(l1 − 1) = F (w), that is a contradiction.

If instead |v| ≥ l1, we should have m(w) > l1−1. But this is impossible, because

in this case L(MF(w1) ∩ A≤l1−1) could not avoid the minimal forbidden words for

w having length m(w), against the hypothesis that F(l1 − 1) = F(w). ✷

The previous Theorem also shows that the algorithmWord Assembly 2 cannot

retrieve a finite word w that is not I-compatible.

If F(l1 − 1) contains loops, we can try with the automaton F(l2 − 1), obtained

from the Create-trie procedure with the value l2.

If it contains loops, we can state that no I-compatible word exists, otherwise we

should obtain an automaton without loops, as in theWord Assembly 1 algorithm.

If instead it does not contain loops, we can apply the same test as that we did for

F(l1 − 1).

The linear time complexity of the whole Word Assembly 2 algorithm follows

from the linear time complexity of all the used procedures.

6.5 Relation With the Shortest Superstring Prob-

lem

In this section we want to show that if w is a I-compatible word, then w is solution

of the Shortest Superstring Problem for the set I, that is finding the shortest word

w such that all the fragments in I are factors of w. This implies that for those sets I

for which there exists a (unique) I-compatible word, we are able to find the shortest

superstring for I in linear time on the size of I.

In the sequel we suppose that the input set of fragments I is an anti-factorial

set, i.e. there exists not two distinct fragments ij and ik in I such that ij is a factor

of ik.
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Given an arbitrary set I, it is possible to retrieve its anti-factorial part I ′ (that is

the set obtained from I by eliminating the strings that are factors of another string

of I) in linear time on the size of I. For instance one can perform this task by using

a generalized suffix tree (see [33]) of the fragments in I and eliminating fragments

that are factors of other ones.

It is easy to see that our algorithms Word Assembly 1 and Word Assembly

2 give the same output on the input I and on the input I ′.

Definition 6.3 For any couple of fragments ij, ik in I, an overlap between ij and

ik is a word uj,k ∈ Suff(ij) ∩ Pref(ik). The maximum overlap between ij and ik is

the longest overlap between ij and ik.

Definition 6.4 An arrangement Aσ(I) of I = {i1, . . . , in} is a word w obtained

by concatenating the fragments in I in an order given by a permutation σ over n

elements; so

Aσ(I) = iσ(1) · · · iσ(n).

Definition 6.5 An arrangement with overlap Aσ(I) of I is an arrangement in

which two consecutive factors can overlap. An arrangement with maximum overlap

A
m

σ (I) is an arrangement with overlap in which every overlap between two consecu-

tive factors is a maximum overlap.

Note that for every fixed permutation σ there exists a unique arrangement with

maximum overlap A
m

σ (I).

It is straightforward that a shortest word w such that the fragments in I are

all factors of w, i.e. a Shortest Superstring of I, is an arrangement with maximum

overlap A
m

σ (I) for a permutation σ which minimizes the length of the arrangement,

i.e. which maximizes the sum of the lengths of the overlaps.

Note that if w is a I-compatible word, then w in particular corresponds to an

arrangement with overlap of I, so we can associate to the word w a permutation σ

over |I| elements such that w = Aσ(I).

Proposition 40 If w is a I-compatible word corresponding to a permutation σ, then

all the overlaps between consecutive factors of I in the arrangement w = Aσ(I) have

length greater than m(w)− 2. In particular they appear just once as factors of w.
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Proof From the definition of I-compatible word, we know that every factor of w

having a length smaller than or equal to m(w) is contained in some fragment in I.

Suppose that in the arrangement corresponding to σ there exists two consecutive

fragments iσ(j), iσ(j)+1 such that their overlap uσ(j),σ(j)+1 has a length |uσ(j),σ(j)+1| ≤

m(w) − 2. Let a ∈ A be the letter preceding uσ(j),σ(j)+1 in w, and b ∈ A be

the letter following uσ(j),σ(j)+1 in w. Then auσ(j),σ(j)+1b is a factor of w having

length |auσ(j),σ(j)+1b| ≤ m(w) which is not contained in any fragment of I, that is a

contradiction.

So every overlap u between consecutive fragments of I in the arrangement cor-

responding to σ has length greater than m(w)− 2. By the proposition 35 we know

that u appears just once as factor of w. ✷

Lemma 41 If w is a I-compatible word then w is an arrangement with maximum

overlap of I, for a permutation σ over |I| elements.

Proof Let w be an arrangement with overlap Aσ(I) of I, for a permutation σ over

|I| elements. We want to prove that there exists not another choice of the overlaps

giving an arrangement with overlap A′
σ(I) shorter than Aσ. Actually, if there exists

such an arrangement, then there should exist at least two consecutive fragments

iσ(j), iσ(j)+1 with overlap u′
σ(j),σ(j)+1 longer than the overlap uσ(j),σ(j)+1 which they

have in the arrangement Aσ.

Since both u′
σ(j),σ(j)+1 and uσ(j),σ(j)+1 are prefixes of iσ(j)+1 by the definition, and

since u′
σ(j),σ(j)+1 is longer than uσ(j),σ(j)+1, we conclude that uσ(j),σ(j)+1 is a (strict)

prefix of u′
σ(j),σ(j)+1. Moreover, since u′

σ(j),σ(j)+1 and uσ(j),σ(j)+1 are by the definition

suffixes of iσ(j), we can state that the overlap uσ(j),σ(j)+1 appears in (at least) two

different positions as factor of the fragment iσ(j), and so in particular as factor of

the word w = Aσ(I). The contradiction follows then by the Proposition 40. ✷

Theorem 42 If w is a I-compatible word then w is a solution of the Shortest Su-

perstring Problem for the set I.

Proof Let w be a I-compatible word, where I = {i1, . . . , in}. We have to prove

that w is the shortest word such that I ⊂ Fact(w), i.e. the shortest arrangement

with maximum overlap of I.

So let w = A
m

σ (I). We want to prove that for every other permutation over n

elements τ one has |A
m

σ (I)| < |A
m

τ (I)|.
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We claim that for any couple of fragments ik and il which are consecutive in

A
m

τ (I) but not in A
m

σ (I) one has that their (maximum) overlap uk,l in A
m

τ (I) has

length smaller than or equal tom(w)−2. Actually, since ik and il are not consecutive

in A
m

σ (I) = w, uk,l is a factor which appears at least twice in w and the claim follows

from Proposition 35. Since τ is different from σ there exists two fragments which are

consecutive in A
m

τ (I) but not in A
m

σ (I). The thesis follows then by the Proposition

40.

✷

We end this section with a comparison between our algorithm Word Assem-

bly 2 and the well known Greedy one. The Greedy algorithm is an approximation

algorithm that repeatedly merges the two fragments of the set I having maximum

overlap until only one word remains. If there exists more than one couple of frag-

ments having maximum overlap it randomly chooses one of these couples for the

merging. Greedy is not linear, since it must compare every couple of fragments to

determinate the maximum overlaps.

Lemma 43 If there exists a I compatible word w for the set I, then for every

fragment ij in I which is not suffix of w there exists just one fragment ik in I such

that

|uj,k| > max
l 6=k
|uj,l|.

Proof Let ij be in I, and suppose that there exists two distinct fragments ik and ik′

in I such that the maximum overlaps uj,k between ij and ik and uj,k′ between ij and

ik′ have the same length. Since we supposed that I is an anti-factorial set we have

that uj,k = uj,k′ is a strict suffix of ij and a strict prefix of ik and ik′ . Thus, in the

I-compatible word w, the factor uj,k = uj,k′ should appear at least twice, and this

is impossible because we have shown in the Lemma 40 that the maximum overlap

between two consecutive fragments in w appears just once as factor of w. ✷

Corollary 44 If I is a set for which there exists a (unique) I compatible word w,

then the Greedy algorithm applied on the set I is deterministic, therefore it gives the

shortest superstring for the set I.

Remark. The output of the Greedy algorithm is the same of our algorithm

Word Assembly 2, since we showed that our algorithm too gives the shortest
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superstring for the set I. So Word Assembly 2 (that runs in linear time on the

size of I) improves the Greedy algorithm for those sets I for which there exists a

(unique) I-compatible word.



Appendix A

An example of calculus of Word

Assembly

We show here an example of how algorithm Word Assembly 2 works. We

start with the set I = {baa, aba}.

1. Construction of the concatenation word w1 = $baa$aba$ (line 1).

2. Construction of the factor automaton of w1, shown in Figure A.1, (line 2).

3. Construction of the trie of minimal forbidden words for w1, shown in Figure

A.2, line 3.

4. Construction of the set S, line 4.

5. Computation of the values l1, and l2, line 5. Here we have l1 = 3 and l2 = 4.

6. Pruning the trie of minimal forbidden words for w1 at length l1− 1, gives the

trie T (l1 − 1) shown in Figure A.3, line 6.

7. Computation of the L-automaton of the trie T (l1 − 1), as shown in Figure

A.4, line 7.

8. Test of loops on L(T (l1 − 1)), line 8. The automaton does contain a loop on

state 0.

9. Pruning the trie of minimal forbidden words for w1 at length l2− 1, gives the

trie T (l2 − 1) shown in Figure A.5, line 9.

10. Computation of the L-automaton of the trie T (l2 − 1), as shown in Figure

A.7, line 10.

11. Test of loops on L(T (l2− 1)), line 11. The automaton does not contain any

loops.
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Word Assembly 2 (set of fragments I = {i1, i2, . . . , in})
1. w1 ← $i1$i2$ . . . $in$;
2. F(w1) = (Q1, A ∪ {$}, i1, Q1, δ1)←Factor-automaton(w1);
3. T (w1) = (Q2, A ∪ {$}, i2, {sinks}, δ2)←MF-trie (F(w1), h);
4. T ′(w1) = (Q2, A, i2, {labeled sinks}, δ2)←S-construction(F(w1), T (w1));
5. (l1, l2)←l1, l2-finding (T ′(w1));
6. T (l1 − 1) = (Q3, A, i3, {sinks}1, δ3)←Create-trie(F(w1), l1 − 1);
7. F(l1 − 1) = (Q4, A, i4, Q4 = Q3 \ {sinks}1, δ4)←L-automaton (T (l1 − 1));
8. if F(l1 − 1) contains loops then
9. T (l2 − 1) = (Q5, A, i5, {sinks}2, δ5)←Create-trie(F(w1), l2 − 1);
10. F(l2 − 1) = (Q6, A, i6, Q6 = Q5 \ {sinks}2, δ6)←L-auto-

maton (T (l2 − 1));
11. if F(l2 − 1) contains loops then
12. return ”No I-compatible word exists”;
13. else

14. if F(l2 − 1) has a unique path of maximal length
from the initial state, labelled by w, then

15. F(w)←Factor-automaton(w);
16. if F(w) = F(l2 − 1) then
17. return w;
18. else

19. return ”No I-compatible word exists”;
20. else

21. if F(l1 − 1) has a unique path of maximal length
from the initial state, labelled by w, then

22. F(w)←Factor-automaton(w);
23. if F(w) = F(l1 − 1) then
24. return w;
25. else

26. return ”No I-compatible word exists”;
27. else

28. return ”No I-compatible word exists”;
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12. Test of the unique path of maximal length on L(T (l2 − 1)), line 14. The

automaton has got a unique path of maximal length, which label is w = abaa.

13. Construction of the factor automaton of w = abaa, shown in Figure A.7,

line 15.

14. Comparison between L(T (l2 − 1)) and the factor automaton of w = abaa,

line 23. They are the same, so there exists a (unique) I-compatible word, that is

w = abaa.

0 1 2 3 4 5 6 7 8 9

10 11

12 13

$ b a a $ a b a $

b

a

a $

a

a

$

b

a
a

Figure A.1: The suffix automaton of the word w1 = $baa$aba$.
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Figure A.2: The trie of minimal forbidden words for the word w1 = $baa$aba$.
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Figure A.3: The trie of minimal forbidden words for the word w1 = $baa$aba$ cut
at length l1.
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Figure A.4: Building the L-automaton of T (l2 − 1).
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Figure A.5: The trie of minimal forbidden words for the word w1 = $baa$aba$ cut
at length l2.
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Figure A.6: Building the L-automaton of T (l2 − 1).
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Figure A.7: The L-automaton of T (l2−1). It is the the same automaton as in figure
A.6 but without sink states.



Conclusions

In this thesis we explained different theoretical aspects of minimal forbidden

words and showed some applications to practical problems.

We now want to give an outline of possible further works on the subjects we

treated.

First, one can wonder whether it is possible to mix the results of Chapter 5 and

Chapter 6 in order to obtain an algorithm for the reconstruction of a finite word in

the periodic case, that is, fixed a period T , starting from T sets of minimal periodic

forbidden words, one for each phase. This is in fact a work in progress, but some

technical difficulties arose during the generalization of some theorems in 6.2, and

hence we decided to not include in this thesis the partial results we obtained so far.

Another work in progress is the extension of minimal forbidden words to the

bi-dimensional case. Even if some results have been obtained in the context of

symbolic dynamics [5], we hope that an analogous of minimal forbidden words for

a finite word shall be defined for bi-dimensional words. This could lead to new

algorithms for bi-dimensional pattern matching, and to other generalizations of the

results obtained in the single-word case to higher dimensions.

In a more general frame, we want to improve the results obtained in Chapter 6

and give a more realistic algorithm for the Fragment Assembly Problem based on

minimal forbidden words. Actually, we stress that the results presented in Chapter

6 are theoretical and concern the reconstruction of a finite word from a set of its

factors. But our results could be extended by including some other constraints, as

the orientation of the input fragments or the read-errors obtained during the shotgun

sequencing procedure (for example, the work of Gabriele et al. (cf. [32]) could be
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useful to treat the case of read-errors). An algorithm of practical interest should

output a solution (or a range of possible solutions) on every possible input (see [49,57]

for more technical details), for example even when the fragments obtained from the

shotgun do not cover the whole sequence.
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[5] M.P. Béal, F. Fiorenzi, and F. Mignosi. Minimal forbidden patterns of multi-

dimensional shifts. Internat. J. Algebra Comput., 15:73–93, 2005.
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