Y. Shen, The principles of nonlinear optics, p.16, 1984.

C. Klingshirn, Semiconductor optics, p.87, 2005.

R. Jain and R. Lind, Degenerate four-wave mixing in semiconductor-doped glasses, Journal of the Optical Society of America, vol.73, issue.5, pp.647-653, 1983.
DOI : 10.1364/JOSA.73.000647

P. Becker, H. Fragnito, C. Cruz, R. Fork, J. Cunningham et al., Femtosecond Photon Echoes from Band-to-Band Transitions in GaAs, Physical Review Letters, vol.61, issue.14, pp.1647-1649, 1988.
DOI : 10.1103/PhysRevLett.61.1647

D. Miller, D. Chemla, D. Eilenberger, P. Smith, W. Gossard et al., Degenerate four???wave mixing in room???temperature GaAs/GaAlAs multiple quantum well structures, Applied Physics Letters, vol.42, issue.11, pp.925-941, 1983.
DOI : 10.1063/1.93802

L. Schultheis, M. Sturge, and J. Hegarty, Photon echoes from two???dimensional excitons in GaAs???AlGaAs quantum wells, Applied Physics Letters, vol.47, issue.9, pp.995-1011, 1985.
DOI : 10.1063/1.95955

M. Webb, S. Cundiff, and D. Steel, Observation of time-resolved picosecond stimulated photon echoes and free polarization decay in GaAs/AlGaAs multiple quantum wells, Physical Review Letters, vol.66, issue.7, pp.934-937, 1991.
DOI : 10.1103/PhysRevLett.66.934

D. Kim, J. Shah, T. Damen, W. Schäfer, F. Jahnke et al., Unusually slow temporal evolution of femtosecond four-wave-mixing signals in intrinsic GaAs quantum wells: Direct evidence for the dominance of interaction effects, Physical Review Letters, vol.69, issue.18, pp.2725-2728, 1992.
DOI : 10.1103/PhysRevLett.69.2725

T. Saiki, M. Kuwata-gonokami, T. Matsusue, and H. Sakaki, Photon echo induced by two-exciton coherence in a GaAs quantum well, Physical Review B, vol.49, issue.11, pp.7817-7820, 1994.
DOI : 10.1103/PhysRevB.49.7817

G. Bongiovanni, A. Mura, F. Quochi, S. Gürtler, J. Staehli et al., Coherent exciton-photon dynamics in semiconductor microcavities:The influence of inhomogeneous broadening, Physical Review B, vol.55, issue.11, pp.7084-7090, 1997.
DOI : 10.1103/PhysRevB.55.7084

A. Huynh, J. Tignon, O. Larsson, P. Roussignol, C. Delalande et al., Polariton Parametric Amplifier Pump Dynamics in the Coherent Regime, Physical Review Letters, vol.90, issue.10, pp.106401-106417, 2003.
DOI : 10.1103/PhysRevLett.90.106401

URL : https://hal.archives-ouvertes.fr/hal-01399148

R. Schoenlein, D. Mittleman, J. Shiang, A. Alivisatos, and C. Shank, Investigation of femtosecond electronic dephasing in CdSe nanocrystals using quantum-beat-suppressed photon echoes, Physical Review Letters, vol.70, issue.7, pp.1014-1017, 1993.
DOI : 10.1103/PhysRevLett.70.1014

T. Krauss and F. Wise, Coherent Acoustic Phonons in a Semiconductor Quantum Dot, Physical Review Letters, vol.79, issue.25, pp.5102-5105, 1997.
DOI : 10.1103/PhysRevLett.79.5102

P. Borri, W. Langbein, J. Hvam, F. Heinrichsdorff, M. Mao et al., Time-resolved four-wave mixing in InAs/InGaAs quantum-dot amplifiers under electrical injection, Applied Physics Letters, vol.76, issue.11, pp.1380-1396, 2000.
DOI : 10.1063/1.126038

D. Birkedal, K. Leosson, and J. Hvam, Long Lived Coherence in Self-Assembled Quantum Dots, Physical Review Letters, vol.87, issue.22, pp.227401-227417, 2001.
DOI : 10.1103/PhysRevLett.87.227401

M. Ikezawa and Y. Masumoto, Ultranarrow homogeneous broadening of confined excitons in quantum dots: Effect of the surrounding matrix, Physical Review B, vol.61, issue.19, pp.12662-12665, 2000.
DOI : 10.1103/PhysRevB.61.12662

M. Salvador, M. Hines, and G. Scholes, Exciton???bath coupling and inhomogeneous broadening in the optical spectroscopy of semiconductor quantum dots, The Journal of Chemical Physics, vol.118, issue.20, pp.9380-9396, 2003.
DOI : 10.1063/1.1568733

M. Graham, Y. Ma, and G. Fleming, Femtosecond Photon Echo Spectroscopy of Semiconducting Single-Walled Carbon Nanotubes, Nano Letters, vol.8, issue.11, pp.3936-3941, 2008.
DOI : 10.1021/nl802423w

H. Kim, T. Sheps, P. Collins, and E. Potma, Nonlinear Optical Imaging of Individual Carbon Nanotubes with Four-Wave-Mixing Microscopy, Nano Letters, vol.9, issue.8, pp.2991-2995, 2009.
DOI : 10.1021/nl901412x

P. Becker, H. Fragnito, J. Bigot, C. Brito-cruz, R. Fork et al., Femtosecond photon echoes from molecules in solution, Physical Review Letters, vol.63, issue.5, pp.505-507, 1989.
DOI : 10.1103/PhysRevLett.63.505

K. Matsuda, K. Ikeda, T. Saiki, H. Tsuchiya, H. Saito et al., single quantum dot at room temperature investigated using a highly sensitive near-field scanning optical microscope, Physical Review B, vol.63, issue.12, pp.121304-121320, 2001.
DOI : 10.1103/PhysRevB.63.121304

J. Gérard, J. Génin, J. Lefebvre, J. Moison, N. Lebouché et al., Optical investigation of the self-organized growth of InAs/GaAs quantum boxes, Journal of Crystal Growth, vol.150, pp.351-356, 1995.
DOI : 10.1016/0022-0248(95)80234-4

K. Asaoka, Y. Ohno, S. Kishimoto, and T. Mizutani, Microscopic photoluminescence study of InAs single quantum dots grown on (100) GaAs Jpn

D. Gammon, E. Snow, B. Shanabrook, D. Katzer, and D. Park, Fine Structure Splitting in the Optical Spectra of Single GaAs Quantum Dots, Physical Review Letters, vol.76, issue.16, pp.3005-3008, 1996.
DOI : 10.1103/PhysRevLett.76.3005

C. Kammerer, G. Cassabois, C. Voisin, C. Delalande, P. Roussignol et al., Quantum Dots, Physical Review Letters, vol.87, issue.20, pp.207401-207417, 2001.
DOI : 10.1103/PhysRevLett.87.207401

URL : https://hal.archives-ouvertes.fr/hal-00546648

W. Moerner and L. Kador, Optical detection and spectroscopy of single molecules in a solid, Physical Review Letters, vol.62, issue.21, pp.2535-2538, 1989.
DOI : 10.1103/PhysRevLett.62.2535

S. Kühn, C. Hettich, C. Schmitt, J. Poizat, V. Sandoghdar et al., Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy Interferometric correlation spectroscopy in single quantum dots, Journal of Microscopy Applied Physics Letters, vol.202, issue.87, pp.2-6, 2001.

J. Lefebvre, J. Fraser, P. Finnie, and Y. Homma, Photoluminescence from an individual single-walled carbon nanotube, Physical Review B, vol.69, issue.7, pp.75403-75419, 2004.
DOI : 10.1103/PhysRevB.69.075403

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, Acoustic phonon broadening mechanism in single quantum dot emission, Physical Review B, vol.63, issue.15, pp.155307-86, 2001.
DOI : 10.1103/PhysRevB.63.155307

I. Favero, G. Cassabois, R. Ferreira, D. Darson, C. Voisin et al., Acoustic phonon sidebands in the emission line of single InAs/GaAs quantum dots, Physical Review B, vol.68, issue.23, pp.233301-86, 2003.
DOI : 10.1103/PhysRevB.68.233301

URL : https://hal.archives-ouvertes.fr/hal-00546643

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande et al., Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot, Nature Physics, vol.22, issue.11, pp.759-764, 2006.
DOI : 10.1103/PhysRevB.68.233301

URL : https://hal.archives-ouvertes.fr/hal-00105812

I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande et al., Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment, Physical Review B, vol.75, issue.7, pp.73308-78, 2007.
DOI : 10.1103/PhysRevB.75.073308

URL : https://hal.archives-ouvertes.fr/hal-00284909

M. Levenson and A. Schawlow, Hyperfine Interactions in Molecular Iodine, Physical Review A, vol.6, issue.1, pp.10-20, 1972.
DOI : 10.1103/PhysRevA.6.10

L. Bloomfield, H. Gerhardt, T. Hansch, and S. Rand, Nonlinear UV-laser spectroscopy of the 2 3S???5 3P transition in 3He and 4He, Optics Communications, vol.42, issue.4, pp.247-250, 1982.
DOI : 10.1016/0030-4018(82)90026-8

M. Sorem and A. Schawlow, Saturation spectroscopy in molecular iodine by intermodulated fluorescence, Optics Communications, vol.5, issue.3, pp.148-151, 1972.
DOI : 10.1016/0030-4018(72)90053-3

R. Lowe, H. Gerhardt, W. Dillenschneider, R. Jr, and F. Tittel, Intermodulated fluorescence spectroscopy of BO2 using a stabilized dye laser, The Journal of Chemical Physics, vol.70, issue.1, pp.42-59, 1979.
DOI : 10.1063/1.437207

F. Foth, Hyperfine structure of the R(98), 58-1 line of 127I2 at 514.5 nm, Chemical Physics Letters, vol.65, issue.2, pp.347-352, 1979.
DOI : 10.1016/0009-2614(79)87079-7

P. Roussignol, D. Ricard, C. Flytzanis, and N. Neuroth, Phonon Broadening and Spectral Hole Burning in Very Small Semiconductor Particles, Physical Review Letters, vol.62, issue.3, pp.312-315, 1989.
DOI : 10.1103/PhysRevLett.62.312

P. Palinginis and H. Wang, High-resolution spectral hole burning in CdSe/ZnS core/shell nanocrystals, Applied Physics Letters, vol.78, issue.11, pp.1541-1558, 2001.
DOI : 10.1063/1.1355666

P. Palinginis, S. Tavenner, M. Lonergan, and H. Wang, Spectral hole burning and zero phonon linewidth in semiconductor nanocrystals, Physical Review B, vol.67, issue.20, pp.201307-201324, 2003.
DOI : 10.1103/PhysRevB.67.201307

Z. Wang, K. Reimann, M. Woerner, T. Elsaesser, D. Hofstetter et al., Ultrafast hole burning in intersubband absorption lines of GaN???AlN superlattices, Applied Physics Letters, vol.89, issue.15, pp.151103-151120, 2006.
DOI : 10.1063/1.2360218

J. Berry, M. Stevens, R. Mirin, and K. Silverman, High-resolution spectral hole burning in InGaAs-GaAs quantum dots, Applied Physics Letters, vol.88, issue.6, pp.61114-61131, 2006.
DOI : 10.1063/1.2172291

W. Demtröder, Laser spectroscopy : basic concepts and instrumentation, p.19, 2003.

C. Fabre, Atomes et lumière -Interaction matière rayonnement, p.29, 2003.

A. Aspect, C. Fabre, and G. Grynberg, Optique quantique 1 : Lasers. Cours de Physique de l'Ecole Polytechnique, p.20, 2005.

M. Tchernycheva, Physique des transitions intersousbandes des hétérostructures de GaN/AlN pour l'optoélectronique à lambda = 1,3-1,55 micron, Thèse de doctorat, p.27, 2005.

F. Wang, G. Dukovic, L. Brus, and T. Heinz, The Optical Resonances in Carbon Nanotubes Arise from Excitons, Science, vol.308, issue.5723, pp.838-865, 2005.
DOI : 10.1126/science.1110265

J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi et al., Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Physical Review B, vol.72, issue.24, pp.241402-112, 2005.
DOI : 10.1103/PhysRevB.72.241402

S. Schmitt-rink, D. Chemla, and D. Miller, Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures, Physical Review B, vol.32, issue.10, pp.6601-6609, 1985.
DOI : 10.1103/PhysRevB.32.6601

L. Nevou, J. Mangeney, M. Tchernycheva, F. Julien, F. Guillot et al., Ultrafast relaxation and optical saturation of intraband absorption of GaN/AlN quantum dots, Applied Physics Letters, vol.94, issue.13, pp.132104-132133, 2009.
DOI : 10.1063/1.3114424

Y. Ma, M. Graham, G. Fleming, A. Green, and M. Hersam, Ultrafast Exciton Dephasing in Semiconducting Single-Walled Carbon Nanotubes, Physical Review Letters, vol.101, issue.21, pp.217402-142, 2008.
DOI : 10.1103/PhysRevLett.101.217402

G. Chartier, Introduction to optics, p.36, 2005.

D. Nguyen, W. Wüster, P. Roussignol, C. Voisin, G. Cassabois et al., Homogeneous linewidth of the intraband transition at 1.55?????m in GaN/AlN quantum dots, Applied Physics Letters, vol.97, issue.6, pp.61903-61940, 2010.
DOI : 10.1063/1.3476340

URL : https://hal.archives-ouvertes.fr/hal-00517737

C. Adelmann, J. Brault, D. Jalabert, P. Gentile, H. Mariette et al., Dynamically stable gallium surface coverages during plasma-assisted molecular-beam epitaxy of (0001) GaN, Journal of Applied Physics, vol.91, issue.12, pp.9638-59, 2002.
DOI : 10.1063/1.1471923

E. Monroy, E. Sarigiannidou, F. Fossard, N. Gogneau, E. Bellet-amalric et al., Growth kinetics of N-face polarity GaN by plasma-assisted molecular-beam epitaxy, Applied Physics Letters, vol.84, issue.18, pp.3684-59, 2004.
DOI : 10.1063/1.1739511

B. Min, C. Chan, and K. Ho, First-principles total-energy calculation of gallium nitride, Physical Review B, vol.45, issue.3, pp.1159-1162, 1992.
DOI : 10.1103/PhysRevB.45.1159

A. Rubio, J. Corkill, M. Cohen, E. Shirley, and S. Louie, Quasiparticle band structure of AlN and GaN, Physical Review B, vol.48, issue.16, pp.11810-11816, 1993.
DOI : 10.1103/PhysRevB.48.11810

S. Pugh, D. Dugdale, S. Brand, and R. Abram, Electronic structure calculations on nitride semiconductors, Semiconductor Science and Technology, vol.14, issue.1, pp.23-59, 1999.
DOI : 10.1088/0268-1242/14/1/003

M. Goano, E. Bellotti, E. Ghillino, G. Ghione, and K. Brennan, Band structure nonlocal pseudopotential calculation of the III-nitride wurtzite phase materials system. Part I. Binary compounds GaN, AlN, and InN, Journal of Applied Physics, vol.88, issue.11, pp.6467-59, 2000.
DOI : 10.1063/1.1309046

J. Wagner and F. Bechstedt, studies, Physical Review B, vol.66, issue.11, pp.115202-59, 2002.
DOI : 10.1103/PhysRevB.66.115202

URL : https://hal.archives-ouvertes.fr/in2p3-00125232

N. Christensen and I. Gorczyca, Optical and structural properties of III-V nitrides under pressure, Physical Review B, vol.50, issue.7, pp.4397-4415, 1994.
DOI : 10.1103/PhysRevB.50.4397

S. Nakamura, T. Mukai, and M. Senoh, High-power GaN pn junction bluelight-emitting diodes, Japanese Journal of Applied Physics, vol.30, p.60, 1991.

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures, Japanese Journal of Applied Physics, vol.34, issue.Part 2, No. 7A, pp.797-60, 1995.
DOI : 10.1143/JJAP.34.L797

S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, High???power InGaN single???quantum???well???structure blue and violet light???emitting diodes, Applied Physics Letters, vol.67, issue.13, pp.1868-60, 1995.
DOI : 10.1063/1.114359

A. Collins, E. Lightowlers, and P. Dean, Lattice Vibration Spectra of Aluminum Nitride, Physical Review, vol.158, issue.3, pp.833-838, 1967.
DOI : 10.1103/PhysRev.158.833

A. Barker-jr and M. Ilegems, Infrared Lattice Vibrations and Free-Electron Dispersion in GaN, Physical Review B, vol.7, issue.2, pp.743-750, 1973.
DOI : 10.1103/PhysRevB.7.743

W. J. Meng and J. H. Edgar, Properties of group III nitrides, Institution of Electrical Engineers, p.61, 1994.

J. Muth, J. Lee, I. Shmagin, R. Kolbas, H. Casey-jr et al., Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements, Applied Physics Letters, vol.71, issue.18, pp.2572-61, 1997.
DOI : 10.1063/1.120191

R. Hui, S. Taherion, Y. Wan, J. Li, S. Jin et al., GaN-based waveguide devices for long-wavelength optical communications, Applied Physics Letters, vol.82, issue.9, pp.1326-61, 2003.
DOI : 10.1063/1.1557790

F. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides, Physical Review B, vol.56, issue.16, pp.10024-10027, 1997.
DOI : 10.1103/PhysRevB.56.R10024

C. Adelmann, M. Arlery, B. Daudin, G. Feuillet, G. Fishman et al., Structural and optical properties of self-assembled GaN/AlN quantum dots, Comptes Rendus de l'Académie des Sciences-Series IV-Physics, pp.61-69, 2000.
DOI : 10.1016/S1296-2147(00)00105-0

C. Adelmann, E. Sarigiannidou, D. Jalabert, Y. Hori, J. Rouviere et al., Growth and optical properties of GaN/AlN quantum wells, Applied Physics Letters, vol.82, issue.23, pp.4154-63, 2003.
DOI : 10.1063/1.1581386

V. Fiorentini, F. Bernardini, and O. Ambacher, Evidence for nonlinear macroscopic polarization in III???V nitride alloy heterostructures, Applied Physics Letters, vol.80, issue.7, pp.1204-63, 2002.
DOI : 10.1063/1.1448668

V. Fiorentini, F. Bernardini, F. D. Sala, A. D. Carlo, and P. Lugli, Effects of macroscopic polarization in III-V nitride multiple quantum wells, Physical Review B, vol.60, issue.12, pp.8849-8858, 1999.
DOI : 10.1103/PhysRevB.60.8849

J. Simon, Direct comparison of recombination dynamics in cubic and hexagonal GaN/AlN quantum dots, Physical Review B, vol.68, issue.3, p.63, 2003.
DOI : 10.1103/PhysRevB.68.035312

R. Bardoux, T. Bretagnon, T. Guillet, P. Lefebvre, T. Taliercio et al., Radiative lifetime in wurtzite GaN/AlN quantum dots, physica status solidi (c), vol.73, issue.1, pp.183-186, 2007.
DOI : 10.1002/pssc.200673559

URL : https://hal.archives-ouvertes.fr/hal-00389911

Y. Kawakami, K. Nishizuka, D. Yamada, A. Kaneta, M. Funato et al., Efficient green emission from (112??2) InGaN???GaN quantum wells on GaN microfacets probed by scanning near field optical microscopy, Applied Physics Letters, vol.90, issue.26, pp.261912-63, 2007.
DOI : 10.1063/1.2748309

G. E. Dialynas, G. Deligeorgis, M. Zervos, N. T. Pelekanos, P. K. Kandaswamy et al., Internal field effects on the lasing characteristics of InGaN/GaN quantum well lasers, Journal of Applied Physics, vol.104, issue.11, pp.113101-63, 2008.
DOI : 10.1063/1.3021103

H. Shen, M. Wraback, H. Zhong, A. Tyagi, S. P. Denbaars et al., Unambiguous evidence of the existence of polarization field crossover in a semipolar InGaN/GaN single quantum well, Applied Physics Letters, vol.95, issue.3, pp.33503-63, 2009.
DOI : 10.1063/1.3167809

J. J. Wierer, A. J. Fischer, and D. D. Koleske, The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices, Applied Physics Letters, vol.96, issue.5, pp.51107-63, 2010.
DOI : 10.1063/1.3301262

L. Nevou, F. Julien, M. Tchernycheva, F. Guillot, E. Monroy et al., Intraband emission at ?????1.48??m from GaN???AlN quantum dots at room temperature, Applied Physics Letters, vol.92, issue.16, pp.161105-66, 2008.
DOI : 10.1063/1.2913756

B. Daudin, F. Widmann, G. Feuillet, Y. Samson, M. Arlery et al., Stranski-Krastanov growth mode during the molecular beam epitaxy of highly strained GaN, Physical Review B, vol.56, issue.12, pp.7069-7072, 1997.
DOI : 10.1103/PhysRevB.56.R7069

F. Widmann, B. Daudin, G. Feuillet, Y. Samson, J. Rouviere et al., Growth kinetics and optical properties of self-organized GaN quantum dots, Journal of Applied Physics, vol.83, issue.12, pp.7618-63, 1998.
DOI : 10.1063/1.367878

C. Adelmann, N. Gogneau, E. Sarigiannidou, J. Rouviere, and B. Daudin, GaN islanding by spontaneous rearrangement of a strained two-dimensional layer on (0001) AlN, Applied Physics Letters, vol.81, issue.16, pp.3064-63, 2002.
DOI : 10.1063/1.1515114

J. Brown, F. Wu, P. Petroff, and J. Speck, GaN quantum dot density control by rf-plasma molecular beam epitaxy, Applied Physics Letters, vol.84, issue.5, pp.690-63, 2004.
DOI : 10.1063/1.1645333

E. Martinez-guerrero, C. Adelmann, F. Chabuel, J. Simon, N. Pelekanos et al., Self-assembled zinc blende GaN quantum dots grown by molecular-beam epitaxy, Applied Physics Letters, vol.77, issue.6, pp.809-64, 2000.
DOI : 10.1063/1.1306633

C. Adelmann, E. Martinez-guerrero, F. Chabuel, J. Simon, B. Bataillou et al., Growth and characterisation of self-assembled cubic GaN quantum dots, Materials Science and Engineering: B, vol.82, issue.1-3, pp.212-214, 2001.
DOI : 10.1016/S0921-5107(00)00763-7

S. Founta, F. Rol, E. Bellet-amalric, J. Bleuse, B. Daudin et al., Optical properties of GaN quantum dots grown on nonpolar (11-20) SiC by molecular-beam epitaxy, Applied Physics Letters, vol.86, issue.17, pp.171901-64, 2005.
DOI : 10.1063/1.1905807

F. Rol, B. Gayral, S. Founta, B. Daudin, J. Eymery et al., Optical properties of single non-polar GaN quantum dots, physica status solidi (b), vol.87, issue.89, pp.1652-1656, 2006.
DOI : 10.1002/pssb.200565406

URL : https://hal.archives-ouvertes.fr/hal-00394751

F. Rol, S. Founta, H. Mariette, B. Daudin, L. Dang et al., quantum dots by single-dot optical spectroscopy, Physical Review B, vol.75, issue.12, pp.125306-64, 2007.
DOI : 10.1103/PhysRevB.75.125306

URL : https://hal.archives-ouvertes.fr/hal-00263623

J. Simon, N. Pelekanos, C. Adelmann, E. Martinez-guerrero, R. André et al., Direct comparison of recombination dynamics in cubic and hexagonal GaN/AlN quantum dots, Physical Review B, vol.68, issue.3, pp.35312-64, 2003.
DOI : 10.1103/PhysRevB.68.035312

F. Guillot, E. Bellet-amalric, E. Monroy, M. Tchernycheva, L. Nevou et al., Si-doped GaN???AlN quantum dot superlattices for optoelectronics at telecommunication wavelengths, Journal of Applied Physics, vol.100, issue.4, pp.44326-69, 2006.
DOI : 10.1063/1.2335400

F. Guillot, E. Bellet-amalric, E. Monroy, M. Tchernycheva, L. Nevou et al., Si-doped GaN???AlN quantum dot superlattices for optoelectronics at telecommunication wavelengths, Journal of Applied Physics, vol.100, issue.4, pp.44326-65, 2006.
DOI : 10.1063/1.2335400

E. Sarigiannidou, E. Monroy, B. Daudin, J. L. Rouvieère, and A. D. Andreev, Strain distribution in GaN???AlN quantum-dot superlattices, Applied Physics Letters, vol.87, issue.20, pp.203112-66, 2005.
DOI : 10.1063/1.2123394

N. Gogneau, D. Jalabert, E. Monroy, E. Sarigiannidou, J. L. Rouvieère et al., Influence of AlN overgrowth on structural properties of GaN quantum wells and quantum dots grown by plasma-assisted molecular beam epitaxy, Journal of Applied Physics, vol.96, issue.2, pp.1104-66, 2004.
DOI : 10.1063/1.1759785

A. Andreev and E. O. Reilly, Theory of the electronic structure of GaN/AlN hexagonal quantum dots, Physical Review B, vol.62, issue.23, pp.15851-15870, 2000.
DOI : 10.1103/PhysRevB.62.15851

A. Andreev and E. O. Reilly, Optical transitions and radiative lifetime in GaN/AlN self-organized quantum dots, Applied Physics Letters, vol.79, issue.4, pp.521-66, 2001.
DOI : 10.1063/1.1386405

A. Andreev, Theoretical Study of Intersubband Transitions in GaN/AlN Quantum Dots, Proceedings of the 7th International Conference on Intersubband Transitions in Quantum Wells, pp.66-68, 2003.

V. Ranjan, G. Allan, C. Priester, and C. Delerue, Self-consistent calculations of the optical properties of GaN quantum dots, Physical Review B, vol.68, issue.11, pp.115305-66, 2003.
DOI : 10.1103/PhysRevB.68.115305

URL : https://hal.archives-ouvertes.fr/hal-00146611

G. Bastard, K. Moumanis, A. Helman, F. Fossard, M. Tchernycheva et al., Wave mechanics applied to semiconductor heterostructures Editions de Physique Intraband absorptions in GaN/AlN quantum dots in the wavelength range of 1, Applied Physics Letters, vol.82, pp.69-71, 1988.

M. Tchernycheva, L. Nevou, L. Doyennette, A. Helman, R. Colombelli et al., Intraband absorption of doped GaN???AlN quantum dots at telecommunication wavelengths, Applied Physics Letters, vol.87, issue.10, pp.101912-69, 2005.
DOI : 10.1063/1.2042540

L. Nevou, Emission et modulation intersousbande dans les nanostructures de nitures, Thèse de doctorat, p.69, 2008.

R. Bardoux, T. Guillet, P. Lefebvre, T. Taliercio, T. Bretagnon et al., : Spectral diffusion effects, Physical Review B, vol.74, issue.19, pp.195319-71, 2006.
DOI : 10.1103/PhysRevB.74.195319

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto et al., A gallium nitride single-photon source operating at 200???K, Nature Materials, vol.95, issue.11, pp.887-892, 2006.
DOI : 10.1038/nmat1763

J. Renard, Optical properties of GaN quantum dots and nanowires, Thèse de doctorat, p.71, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00475438

L. Nevou, J. Mangeney, M. Tchernycheva, F. Julien, F. Guillot et al., Ultrafast relaxation and optical saturation of intraband absorption of GaN/AlN quantum dots, Applied Physics Letters, vol.94, issue.13, pp.132104-132133, 2009.
DOI : 10.1063/1.3114424

E. Ippen and C. Shank, Techniques for measurement, Ultrashort Light Pulses, pp.83-122, 1984.

N. Bloembergen, E. Purcell, and R. Pound, Relaxation Effects in Nuclear Magnetic Resonance Absorption, Physical Review, vol.73, issue.7, pp.679-78, 1948.
DOI : 10.1103/PhysRev.73.679

P. Anderson, A Mathematical Model for the Narrowing of Spectral Lines by Exchange or Motion, Journal of the Physical Society of Japan, vol.9, issue.3, pp.316-339, 1954.
DOI : 10.1143/JPSJ.9.316

R. Kubo, Note on the Stochastic Theory of Resonance Absorption, Journal of the Physical Society of Japan, vol.9, issue.6, pp.935-78, 1954.
DOI : 10.1143/JPSJ.9.935

W. Ambrose and W. Moerner, Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal, Nature, vol.349, issue.6306, pp.225-78
DOI : 10.1038/349225a0

S. Empedocles, D. Norris, and M. Bawendi, Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots, Physical Review Letters, vol.77, issue.18, pp.3873-3876, 1996.
DOI : 10.1103/PhysRevLett.77.3873

H. Robinson and B. Goldberg, Light-induced spectral diffusion in single self-assembled quantum dots, Physical Review B, vol.61, issue.8, pp.5086-5089, 2000.
DOI : 10.1103/PhysRevB.61.R5086

V. Türck, S. Rodt, O. Stier, R. Heitz, R. Engelhardt et al., Effect of random field fluctuations on excitonic transitions of individual CdSe quantum dots, Physical Review B, vol.61, issue.15, pp.9944-9947, 2000.
DOI : 10.1103/PhysRevB.61.9944

I. Favero, A. Berthelot, G. Cassabois, C. Voisin, C. Delalande et al., Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment, Physical Review B, vol.75, issue.7, pp.73308-78, 2007.
DOI : 10.1103/PhysRevB.75.073308

URL : https://hal.archives-ouvertes.fr/hal-00284909

A. Berthelot, I. Favero, G. Cassabois, C. Voisin, C. Delalande et al., Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot, Nature Physics, vol.22, issue.11, pp.759-764, 2006.
DOI : 10.1103/PhysRevB.68.233301

URL : https://hal.archives-ouvertes.fr/hal-00105812

A. Berthelot, Diffusion spectrale et rétrécissement par le mouvement dans les boîtes quantiques, Thèse de doctorat, p.88, 2008.

A. Uskov, A. Jauho, B. Tromborg, J. Mørk, and R. Lang, Dephasing Times in Quantum Dots due to Elastic LO Phonon-Carrier Collisions, Physical Review Letters, vol.85, issue.7, pp.1516-1519, 2000.
DOI : 10.1103/PhysRevLett.85.1516

Z. Wang, K. Reimann, M. Woerner, T. Elsaesser, D. Hofstetter et al., Optical Phonon Sidebands of Electronic Intersubband Absorption in Strongly Polar Semiconductor Heterostructures, Physical Review Letters, vol.94, issue.3, pp.37403-79, 2005.
DOI : 10.1103/PhysRevLett.94.037403

R. Ferreira and G. Bastard, Phonon-assisted capture and intradot Auger relaxation in quantum dots, Applied Physics Letters, vol.74, issue.19, pp.2818-83, 1999.
DOI : 10.1063/1.124024

M. Giehler, M. Ramsteiner, O. Brandt, H. Yang, and K. H. Ploog, Optical phonons of hexagonal and cubic GaN studied by infrared transmission and Raman spectroscopy, Applied Physics Letters, vol.67, issue.6, pp.733-86, 1995.
DOI : 10.1063/1.115208

I. Gorczyca, Optical phonon modes in GaN and AlN, Physical Review B, vol.51, issue.17, pp.11936-11939, 1995.
DOI : 10.1103/PhysRevB.51.11936

A. G. Ni, Effect of pressure on optical phonon modes and transverse effective charges in GaN and AlN, Physical Review B, vol.64, issue.3, p.86, 2001.

L. Besombes, K. Kheng, L. Marsal, and H. Mariette, Acoustic phonon broadening mechanism in single quantum dot emission, Physical Review B, vol.63, issue.15, pp.155307-86, 2001.
DOI : 10.1103/PhysRevB.63.155307

I. Favero, G. Cassabois, R. Ferreira, D. Darson, C. Voisin et al., Acoustic phonon sidebands in the emission line of single InAs/GaAs quantum dots, Physical Review B, vol.68, issue.23, pp.233301-86, 2003.
DOI : 10.1103/PhysRevB.68.233301

URL : https://hal.archives-ouvertes.fr/hal-00546643

C. Klingshirn, Semiconductor optics, p.87, 2005.

C. Kammerer, G. Cassabois, C. Voisin, M. Perrin, C. Delalande et al., Interferometric correlation spectroscopy in single quantum dots, Applied Physics Letters, vol.81, issue.15, pp.2737-88, 2002.
DOI : 10.1063/1.1510158

URL : https://hal.archives-ouvertes.fr/hal-00546648

M. Bayer and A. Forchel, self-assembled quantum dots, Physical Review B, vol.65, issue.4, p.41308, 2002.
DOI : 10.1103/PhysRevB.65.041308

I. Favero, Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment, Physical Review B, vol.75, issue.7, p.141, 2007.
DOI : 10.1103/PhysRevB.75.073308

URL : https://hal.archives-ouvertes.fr/hal-00284909

O. Verzelen, R. Ferreira, and G. Bastard, Excitonic Polarons in Semiconductor Quantum Dots, Physical Review Letters, vol.88, issue.14, p.146803, 2002.
DOI : 10.1103/PhysRevLett.88.146803

URL : https://hal.archives-ouvertes.fr/hal-00018124

E. Zibik, T. Grange, B. Carpenter, N. Porter, R. Ferreira et al., Long lifetimes of quantum-dot intersublevel transitions in the terahertz range, Nature Materials, vol.419, issue.10, pp.803-807, 2009.
DOI : 10.1038/nmat2511

URL : https://hal.archives-ouvertes.fr/hal-00524229

T. Grange, Relaxation et décohérence des polarons dans les boîtes quantiques de semi-conducteurs, Thèse de doctorat, p.88, 2008.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, issue.6348, pp.56-58, 1991.
DOI : 10.1038/354056a0

R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical properties of carbon nanotubes. Imperial college press London, pp.97-104, 1998.

S. Reich, C. Thomsen, and J. Maultzsch, Carbon nanotubes : basic concepts and physical properties, pp.97-107, 2004.

R. H. Baughman, A. A. Zakhidov, and W. A. De-heer, Carbon Nanotubes--the Route Toward Applications, Science, vol.297, issue.5582, pp.787-792, 2002.
DOI : 10.1126/science.1060928

J. Lauret, Environmental effects on the carrier dynamics in carbon nanotubes, Physical Review B, vol.72, issue.11, p.97, 2005.
DOI : 10.1103/PhysRevB.72.113413

URL : https://hal.archives-ouvertes.fr/hal-00096347

M. O. Connell, S. Bachilo, C. Huffman, V. Moore, M. Strano et al., Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes, Science, vol.297, issue.5581, pp.593-97, 2002.
DOI : 10.1126/science.1072631

S. Berger, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol et al., Temperature Dependence of Exciton Recombination in Semiconducting Single-Wall Carbon Nanotubes, Nano Letters, vol.7, issue.2, pp.398-137, 2007.
DOI : 10.1021/nl062609p

URL : https://hal.archives-ouvertes.fr/hal-00123080

J. Lefebvre, D. G. Austing, J. Bond, and P. Finnie, Photoluminescence Imaging of Suspended Single-Walled Carbon Nanotubes, Nano Letters, vol.6, issue.8, pp.1603-1608, 2006.
DOI : 10.1021/nl060530e

J. Lefebvre, Temperature-dependent photoluminescence from single-walled carbon nanotubes, Physical Review B, vol.70, issue.4, p.97, 2004.
DOI : 10.1103/PhysRevB.70.045419

A. Hagen, M. Steiner, M. B. Raschke, C. Lienau, T. Hertel et al., Exponential Decay Lifetimes of Excitons in Individual Single-Walled Carbon Nanotubes, Physical Review Letters, vol.95, issue.19, p.197401, 1997.
DOI : 10.1103/PhysRevLett.95.197401

K. Matsuda, T. Inoue, Y. Murakami, S. Maruyama, and Y. Kanemitsu, Exciton dephasing and multiexciton recombinations in a single carbon nanotube, Physical Review B, vol.77, issue.3, pp.33406-143, 1997.
DOI : 10.1103/PhysRevB.77.033406

A. Högele, Photon antibunching in the photoluminescence spectra of a single carbon nanotube, Physical Review Letters, vol.100, issue.21, p.97, 2008.

F. Wang, G. Dukovic, L. Brus, and T. Heinz, The Optical Resonances in Carbon Nanotubes Arise from Excitons, Science, vol.308, issue.5723, pp.838-865, 2005.
DOI : 10.1126/science.1110265

F. Wang, G. Dukovic, E. Knoesel, L. E. Brus, and T. F. Heinz, Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes, Physical Review B, vol.70, issue.24, pp.241403-97, 2004.
DOI : 10.1103/PhysRevB.70.241403

G. Akselrod, Exciton-Exciton Annihilation in Organic Polariton Microcavities, Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, p.140, 2010.
DOI : 10.1364/IQEC.2009.IThN5

N. Hamada, S. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules, Physical Review Letters, vol.68, issue.10, pp.1579-1581, 1992.
DOI : 10.1103/PhysRevLett.68.1579

C. Journet, W. Maser, P. Bernier, A. Loiseau, M. Lamy-de-la-chapelle et al., Large-scale production of singlewalled carbon nanotubes by the electric-arc technique, Nature, vol.388, pp.756-757, 1997.

O. Jost, A. Gorbunov, W. Pompe, T. Pichler, R. Friedlein et al., Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy, Applied Physics Letters, vol.75, issue.15, pp.2217-119, 1999.
DOI : 10.1063/1.124969

P. Nikolaev, M. Bronikowski, R. Bradley, F. Rohmund, D. Colbert et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chemical Physics Letters, vol.313, issue.1-2, pp.91-97, 1999.
DOI : 10.1016/S0009-2614(99)01029-5

S. Bachilo, L. Balzano, J. Herrera, F. Pompeo, D. Resasco et al., )-Distribution of Single-Walled Carbon Nanotubes Grown Using a Solid Supported Catalyst, Journal of the American Chemical Society, vol.125, issue.37, pp.11186-11187, 2003.
DOI : 10.1021/ja036622c

L. Marty, A. Iaia, M. Faucher, V. Bouchiat, C. Naud et al., Self-assembled single wall carbon nanotube field effect transistors and AFM tips prepared by hot filament assisted CVD, Thin Solid Films, vol.501, issue.1-2, pp.299-302, 2006.
DOI : 10.1016/j.tsf.2005.07.218

X. Blase, L. Benedict, E. Shirley, and S. Louie, Hybridization effects and metallicity in small radius carbon nanotubes, Physical Review Letters, vol.72, issue.12, pp.1878-1881, 1994.
DOI : 10.1103/PhysRevLett.72.1878

J. Mintmire and C. White, Universal Density of States for Carbon Nanotubes, Physical Review Letters, vol.81, issue.12, pp.2506-2509, 1998.
DOI : 10.1103/PhysRevLett.81.2506

J. Wildoer, L. Venema, A. Rinzler, R. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature, vol.391, issue.6662, pp.59-62, 1998.
DOI : 10.1038/34139

S. Berger, Etude optique de la dynamique des interactions électroniques dans des nanotubes de carbone, Thèse de doctorat, p.114, 2007.

R. Saito, Trigonal warping effect of carbon nanotubes, Physical Review B, vol.61, issue.4, pp.2981-2990, 2000.
DOI : 10.1103/PhysRevB.61.2981

Y. Toyozawa, Optical processes in solids, p.110, 2003.
DOI : 10.1017/CBO9780511615085

E. Barros, A. Jorio, G. Samsonidze, R. Capaz, A. Souza-filho et al., Review on the symmetry-related properties of carbon nanotubes, Physics Reports, vol.431, issue.6, pp.261-302, 2006.
DOI : 10.1016/j.physrep.2006.05.007

J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi et al., Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Physical Review B, vol.72, issue.24, pp.241402-112, 2005.
DOI : 10.1103/PhysRevB.72.241402

V. Perebeinos, J. Tersoff, and P. Avouris, Effect of Exciton-Phonon Coupling in the Calculated Optical Absorption of Carbon Nanotubes, Physical Review Letters, vol.94, issue.2, pp.27402-112, 2005.
DOI : 10.1103/PhysRevLett.94.027402

R. Loudon, One-Dimensional Hydrogen Atom, American Journal of Physics, vol.27, issue.9, pp.649-112, 1959.
DOI : 10.1119/1.1934950

J. Lauret, Etude des propriétés optiques des nanotubes de carbone, Thèse de doctorat, p.112, 2003.

C. Voisin, Propriétés des nanotubes de carbone Habilitation à diriger des recherches, p.114, 2009.

S. Schmitt-rink, D. Chemla, and D. Miller, Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures, Physical Review B, vol.32, issue.10, pp.6601-6609, 1985.
DOI : 10.1103/PhysRevB.32.6601

F. Wang, Auger recombination of excitons in one-dimensional systems, Physical Review B, vol.73, issue.24, pp.136-139, 2006.
DOI : 10.1103/PhysRevB.73.245424

S. Schmitt-rink, D. S. Chemla, D. A. Miller, C. Ciuti, and G. C. Rocca, Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures, Physical Review B, vol.32, issue.10, pp.6601-130, 1985.
DOI : 10.1103/PhysRevB.32.6601

F. Wang, G. Dukovic, E. Knoesel, L. Brus, and T. Heinz, Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes, Physical Review B, vol.70, issue.24, pp.241403-133, 2004.
DOI : 10.1103/PhysRevB.70.241403

Y. Ma, J. Stenger, J. Zimmermann, S. Bachilo, R. Smalley et al., Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy, The Journal of Chemical Physics, vol.120, issue.7, pp.3368-133, 2004.
DOI : 10.1063/1.1640339

Y. Ma, L. Valkunas, S. Dexheimer, S. Bachilo, and G. Fleming, Femtosecond Spectroscopy of Optical Excitations in Single-Walled Carbon Nanotubes: Evidence for Exciton-Exciton Annihilation, Physical Review Letters, vol.94, issue.15, pp.157402-133, 2005.
DOI : 10.1103/PhysRevLett.94.157402

C. Ciuti, V. Savona, C. Piermarocchi, A. Quattropani, and P. Schwendimann, Role of the exchange of carriers in elastic exciton-exciton scattering in quantum wells, Physical Review B, vol.58, issue.12, pp.7926-7933, 1998.
DOI : 10.1103/PhysRevB.58.7926

F. Wang, Y. Wu, M. Hybertsen, and T. Heinz, Auger recombination of excitons in one-dimensional systems, Physical Review B, vol.73, issue.24, pp.245424-133, 2006.
DOI : 10.1103/PhysRevB.73.245424

V. Perebeinos, J. Tersoff, and P. Avouris, Scaling of Excitons in Carbon Nanotubes, Physical Review Letters, vol.92, issue.25, pp.257402-136, 2004.
DOI : 10.1103/PhysRevLett.92.257402

F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, The Optical Resonances in Carbon Nanotubes Arise from Excitons, Science, vol.308, issue.5723, pp.838-133, 2005.
DOI : 10.1126/science.1110265

J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi et al., Exciton binding energies in carbon nanotubes from two-photon photoluminescence, Physical Review B, vol.72, issue.24, pp.241402-133, 2005.
DOI : 10.1103/PhysRevB.72.241402

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes. Imperial college press London, p.133, 1998.

L. Valkunas, Y. Z. Ma, and G. R. Fleming, Exciton-exciton annihilation in single-walled carbon nanotubes, Physical Review B, vol.73, issue.11, pp.115432-137, 2006.
DOI : 10.1103/PhysRevB.73.115432

Y. Xiao, Saturation of the Photoluminescence at Few-Exciton Levels in a Single-Walled Carbon Nanotube under Ultrafast Excitation, Physical Review Letters, vol.104, issue.1, p.136, 2010.
DOI : 10.1103/PhysRevLett.104.017401

S. Berciaud, Luminescence Decay and the Absorption Cross Section of Individual Single-Walled Carbon Nanotubes, Physical Review Letters, vol.101, issue.7, p.137, 2008.
DOI : 10.1103/PhysRevLett.101.077402

URL : https://hal.archives-ouvertes.fr/hal-00719454

T. Pedersen, Variational approach to excitons in carbon nanotubes, Physical Review B, vol.67, issue.7, pp.73401-139, 2003.
DOI : 10.1103/PhysRevB.67.073401

A. Honold, L. Schultheis, J. Kuhl, and C. Tu, Collision broadening of two-dimensional excitons in a GaAs single quantum well, Physical Review B, vol.40, issue.9, pp.6442-6445, 1989.
DOI : 10.1103/PhysRevB.40.6442

D. Nguyen, C. Voisin, P. Roussignol, C. Roquelet, J. Lauret et al., Elastic Exciton-Exciton Scattering in Photoexcited Carbon Nanotubes, Physical Review Letters, vol.107, issue.12, p.139, 2011.
DOI : 10.1103/PhysRevLett.107.127401

URL : https://hal.archives-ouvertes.fr/hal-00623859

I. Martini, Exciton-exciton annihilation and the production of interchain species in conjugated polymer films:???Comparing the ultrafast stimulated emission and photoluminescence dynamics of MEH-PPV, Physical Review B, vol.69, issue.3, p.140, 2004.
DOI : 10.1103/PhysRevB.69.035204

S. Rudin, Temperature-dependent exciton linewidths in semiconductors, Physical Review B, vol.42, issue.17, pp.11218-11231, 1990.
DOI : 10.1103/PhysRevB.42.11218

W. Braun, quantum wires, Physical Review B, vol.56, issue.19, pp.12096-12099, 1997.
DOI : 10.1103/PhysRevB.56.12096

W. Langbein, Transient four-wave mixing in T-shaped GaAs quantum wires, Physical Review B, vol.60, issue.24, pp.16667-16674, 1999.
DOI : 10.1103/PhysRevB.60.16667

C. Kammerer, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol et al., Line narrowing in single semiconductor quantum dots: Toward the control of environment effects, Physical Review B, vol.66, issue.4, pp.41306-141, 2002.
DOI : 10.1103/PhysRevB.66.041306

URL : https://hal.archives-ouvertes.fr/hal-00546650

I. Favero, Temperature dependence of the zero-phonon linewidth in quantum dots: An effect of the fluctuating environment, Physical Review B, vol.75, issue.7, p.141, 2007.
DOI : 10.1103/PhysRevB.75.073308

URL : https://hal.archives-ouvertes.fr/hal-00284909

K. Matsuda, T. Inoue, Y. Murakami, S. Maruyama, and Y. Kanemitsu, Exciton dephasing and multiexciton recombinations in a single carbon nanotube, Physical Review B, vol.77, issue.3, pp.33406-142, 2008.
DOI : 10.1103/PhysRevB.77.033406

K. Yoshikawa, R. Matsunaga, K. Matsuda, and Y. Kanemitsu, Mechanism of exciton dephasing in a single carbon nanotube studied by photoluminescence spectroscopy, Applied Physics Letters, vol.94, issue.9, pp.93109-144, 2009.
DOI : 10.1063/1.3089843

Y. Ma, M. Graham, G. Fleming, A. Green, and M. Hersam, Ultrafast Exciton Dephasing in Semiconducting Single-Walled Carbon Nanotubes, Physical Review Letters, vol.101, issue.21, pp.217402-142, 2008.
DOI : 10.1103/PhysRevLett.101.217402

A. V. Gopal, R. Kumar, A. S. Vengurlekar, T. Melin, F. Laruelle et al., Exciton-phonon scattering in GaAs/AlAs quantum wires, Applied Physics Letters, vol.74, issue.17, pp.2474-143, 1999.
DOI : 10.1063/1.123012

D. T. Nguyen, C. Voisin, P. Roussignol, C. Roquelet, J. S. Lauret et al., Phonon-induced dephasing in single-wall carbon nanotubes En préparation, p.143, 2011.

G. Pennington and N. Goldsman, Low-field semiclassical carrier transport in semiconducting carbon nanotubes Non- Markovian decoherence of localized nanotube excitons by acoustic phonons, Physical Review B Physical Review Letters, vol.71, issue.101 6, pp.144-067402, 2005.

B. Annexe, /. Extraction-de-?f, and ?. Et, ? à partir des mesures L'analyse des données expérimentales a été présentée dans la section 3

. Chiinhomzero, 1)=ChiInhomZero(d,1) +imag(ChiZero(d,dC))*g(dC,1)

. Chiinhom, 1)=ChiInhom(d,1)+imag(Chi(d,dC))*g(dC,1)

. Deltachiinhom, 1)=DeltaChiInhom(d,1) +imag(DeltaChi(d,dC))*g(dC,1)