Propriétés arithmétiques des applications miroir

Abstract : We give a necessary and sufficient condition for the integrality of the Taylor coefficients at the origin of formal power series $q_i({mathbf z})=z_iexp(G_i({mathbf z})/F({mathbf z}))$, with ${mathbf z}=(z_1,dots,z_d)$ and where $F({mathbf z})$ and $G_i({mathbf z})+log(z_i)F({mathbf z})$, $i=1,dots,d$ are particular solutions of some $A$-systems of differential equations. This criterion is based on the analytical properties of Landau's function (which is classically associated to the sequences of factorial ratios). One of the techniques used to prove this criterion is a generalization of a version of a theorem of Dwork on the formal congruences between formal series, proved by Krattenthaler and Rivoal in og Multivariate $p$-adic formal congruences and integrality of Taylor coefficients of mirror maps fg [arXiv:0804.3049v3, math.NT]. This criterion involves the integrality of the Taylor coefficients of new univariate mirror maps listed in og Tables of Calabi--Yau equations fg [arXiv:math/0507430v2, math.AG] by Almkvist, van Enckevort, van Straten and Zudilin. In the particular case of one variable, we refine our criterion and demonstrate the integrality of the Taylor coefficients of roots of mirror maps. This allows us to prove a conjecture stated by Zhou in og Integrality properties of variations of Mahler measures fg [arXiv:1006.2428v1 math.AG]. STAR Date de soutenance : 6 septembre 2011 Thèse sur travaux: non
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-00628016
Contributor : Abes Star <>
Submitted on : Friday, September 30, 2011 - 10:56:14 AM
Last modification on : Monday, April 15, 2019 - 5:19:06 PM
Long-term archiving on: Saturday, December 31, 2011 - 2:25:14 AM

File

22617_DELAYGUE_2011_archivage_...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00628016, version 1

Collections

Citation

Eric Delaygue. Propriétés arithmétiques des applications miroir. Mathématiques générales [math.GM]. Université Grenoble Alpes, 2011. Français. ⟨NNT : 2011GRENM032⟩. ⟨tel-00628016⟩

Share

Metrics

Record views

614

Files downloads

186