L. Galfetti, L. T. De-luca, F. Severini, L. Meda, G. Marra et al., Nanoparticles for solid rocket propulsion, Journal of Physics: Condensed Matter, vol.18, issue.33, pp.1991-2005, 2006.
DOI : 10.1088/0953-8984/18/33/S15

A. Pivkina, P. Ulyanova, and Y. Frolov, Nanomaterials for Heterogeneous Combustion, Propellants, Explosives, Pyrotechnics, vol.29, issue.1
DOI : 10.1002/prep.200400025

M. K. Corbierre, N. S. Cameron, M. Sutton, S. G. Mochrie, L. B. Lurio et al., Polymer-Stabilized Gold Nanoparticles and Their Incorporation into Polymer Matrices, Journal of the American Chemical Society, vol.123, issue.42, pp.10411-10412, 2001.
DOI : 10.1021/ja0166287

X. Xia, S. Cai, and C. Xie, Preparation, structure and thermal stability of Cu/LDPE nanocomposites, Materials Chemistry and Physics, vol.95, issue.1, pp.122-129, 2006.
DOI : 10.1016/j.matchemphys.2005.05.010

K. C. Anyaogu, A. V. Fedorv, and D. C. Neckers, Synthesis, Characterization, and Antifouling Potential of Functionalized Copper Nanoparticles, Langmuir, vol.24, issue.8, pp.4340-4346, 2008.
DOI : 10.1021/la800102f

K. Mallick, M. J. Witcomb, and M. S. Scurrell, Preparation and characterization of a conjugated polymer and copper nanoparticle composite material: A chemical synthesis route, Materials Science and Engineering: B, vol.123, issue.2
DOI : 10.1016/j.mseb.2005.07.011

K. Mallick, M. Witcomb, and M. Scurell, Fabrication of a nanostructured gold-polymer composite material, The European Physical Journal E, vol.13, issue.3, pp.347-353, 2006.
DOI : 10.1140/epje/i2006-10023-3

K. Mallick, M. J. Witcomb, and M. S. Scurell, Palladium nanoparticles in poly(ophenylenediamine ): Synthesis of a nanostructured 'metal/polymer' composite material, J

K. Mallick, M. J. Witcomb, and M. S. Scurell, In situ synthesis of copper nanoparticles and poly(o-toluidine): A metal???polymer composite material, European Polymer Journal, vol.42, issue.3, pp.670-675, 2006.
DOI : 10.1016/j.eurpolymj.2005.09.020

M. A. Breimer, G. Yevgeny, S. Sy, and O. A. Sadik, Incorporation of Metal Nanoparticles in Photopolymerized Organic Conducting Polymers:?? A Mechanistic Insight, Nano Letters, vol.1, issue.6, pp.305-308, 2001.
DOI : 10.1021/nl015528w

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, Nanoparticle-Embedded Polymer: In Situ Synthesis, Free-Standing Films with Highly Monodisperse Silver Nanoparticles and Optical Limiting, Chemistry of Materials, vol.17, issue.1, pp.9-12, 2005.
DOI : 10.1021/cm0485963

S. N. Sidorov, L. M. Bronstein, V. A. Davankov, M. P. Tsyurupa, S. P. Solodovnikov et al., Cobalt Nanoparticle Formation in the Pores of Hyper-Cross-Linked Polystyrene:?? Control of Nanoparticle Growth and Morphology, Chemistry of Materials, vol.11, issue.11, pp.3210-3215, 1999.
DOI : 10.1021/cm990274p

Y. Nakao, Noble Metal Solid Sols in Poly(Methyl Methacrylate), Journal of Colloid and Interface Science, vol.171, issue.2, pp.386-391, 1995.
DOI : 10.1006/jcis.1995.1194

C. Aymonier, D. Bortzmeyer, R. Thomann, and R. Mülhaupt, Poly(Methyl methacrylate)/Palladium Nanocomposites:?? Synthesis and Characterization of the Morphological, Thermomechanical, and Thermal Properties, Chemistry of Materials, vol.15, issue.25, pp.4874-4878, 2003.
DOI : 10.1021/cm031049h

L. Urso, V. Nicolosi, G. Compagnini, and O. Puglisi, The effect of polymer molecular weight on the formation and evolution of silver-polymer nanocomposite thin films, Mat. Sci

V. Sankaran, J. Yue, R. E. Cohen, R. R. Schrock, and R. J. Silbey, Synthesis of zinc sulfide clusters and zinc particles within microphase-separated domains of organometallic block copolymers, Chemistry of Materials, vol.5, issue.8, pp.1133-1142, 1993.
DOI : 10.1021/cm00032a017

Y. N. Chan, G. S. Craig, R. R. Schrock, and R. E. Cohen, Synthesis of palladium and platinum nanoclusters within microphase-separated diblock copolymers, Chemistry of Materials, vol.4, issue.4, pp.885-894, 1992.
DOI : 10.1021/cm00022a026

Y. N. Chan, G. S. Craig, R. R. Schrock, and R. E. Cohen, Synthesis of palladium and platinum nanoclusters within microphase-separated diblock copolymers, Chemistry of Materials, vol.4, issue.4, pp.885-894, 1992.
DOI : 10.1021/cm00022a026

K. J. Klabunde, J. Habdas, and G. Cardenas-trivino, Colloidal metal particles dispersed in monomeric and polymeric styrene and methyl methacrylate, Chemistry of Materials, vol.1, issue.5, pp.481-483, 1989.
DOI : 10.1021/cm00005a002

C. Schlossman and M. L. , X-ray studies of polymer/gold nanocomposites, J. Appl. Phys, vol.85, pp.3180-3184, 1999.

S. A. 24-zavialov, A. N. Pivkina, and J. Schoonman, Formation and characterization of metal-polymer nanostructured composites, Solid State Ionics, vol.147, issue.3-4, pp.415-419, 2002.
DOI : 10.1016/S0167-2738(02)00038-3

D. Salz, B. Mahltig, A. Baalmann, M. Wark, and N. Jaeger, Metal clusters in plasma polymer matrices. Part III. Optical properties and redox behaviour of Cu clusters, Physical Chemistry Chemical Physics, vol.2, issue.13, pp.3105-3110, 2000.
DOI : 10.1039/b002327m

H. Takele, U. Schürmann, H. Greve, D. Paretkar, V. Zaporojtchenko et al., Controlled growth of Au nanoparticles in co-evaporated metal/polymer composite films and their optical and electrical properties, The European Physical Journal Applied Physics, vol.33, issue.2, pp.83-89, 2006.
DOI : 10.1051/epjap:2006006

S. Horiuchi and Y. Nakao, Polymer/Metal Nanocomposites: Assembly of Metal Nanoparticles in Polymer Films and their Applications, Current Nanoscience, vol.3, issue.3, pp.206-214, 2007.
DOI : 10.2174/157341307781422988

J. J. Watkins and T. J. Mccarthy, Polymer/metal nanocomposite synthesis in supercritical CO 2, Chem. Mater, 1991.

Y. Zhang and C. Erkey, Preparation of supported metallic nanoparticles using supercritical fluids: A review, The Journal of Supercritical Fluids, vol.38, issue.2, pp.252-267, 2006.
DOI : 10.1016/j.supflu.2006.03.021

J. J. Watkins and T. Mccarthy, Chemistry in supercritical fluid swollen polymers: direct synthesis of metal/polymer nanocomposites, Polym. Mater. Sci. Eng, vol.73, pp.158-159, 1995.

H. Ohde, M. Ohde, and C. M. Wai, Swelled plastics in supercritical CO 2 as media for stabilization of metal nanoparticles and for catalytic hydrogenation, Chem. Comm, pp.930-931, 2004.

E. Said-galiyev, L. Nikitin, R. Vinokur, M. Gallyamov, M. Kurykin et al., New Chelate Complexes of Copper and Iron:?? Synthesis and Impregnation into a Polymer Matrix from Solution in Supercritical Carbon Dioxide, Industrial & Engineering Chemistry Research, vol.39, issue.12, pp.4891-4896, 2000.
DOI : 10.1021/ie000251g

Y. Xie, C. Zhang, S. Miao, K. Ding, Z. Miao et al., One-pot synthesis of ZnS/polymer composites in supercritical CO2???ethanol solution and their applications in degradation of dyes, Journal of Colloid and Interface Science, vol.318, issue.1, pp.110-115, 2008.
DOI : 10.1016/j.jcis.2007.09.076

J. Yang, T. Hasell, W. Wang, and S. M. Howdle, A novel synthetic route to metal???polymer nanocomposites by in situ suspension and bulk polymerizations, European Polymer Journal, vol.44, issue.5, pp.1331-1336, 2008.
DOI : 10.1016/j.eurpolymj.2008.01.044

S. 36-yoda, A. Hasegawa, H. Suda, Y. Uchimaru, K. Haraya et al., Preparation of a platinum and palladium/polyimide nanocomposite film as a precursor of metal-doped carbon molecular sieve membrane via supercritical impregnation, Chem. Mater, vol.19, pp.2363-2368, 2004.

B. Wong, S. Yoda, and S. M. Howdle, The preparation of gold nanoparticle composites using supercritical carbon dioxide, The Journal of Supercritical Fluids, vol.42, issue.2, pp.282-287, 2007.
DOI : 10.1016/j.supflu.2007.03.005

T. Hasell, S. Yoda, S. M. Howdle, and P. D. Brown, Microstructural characterisation of silver/polymer nanocomposites prepared using supercritical carbon dioxide, Journal of Physics: Conference Series, vol.26
DOI : 10.1088/1742-6596/26/1/066

T. Hasell, L. Lagonigro, A. C. Peacock, S. Yoda, P. D. Brown et al., Silver Nanoparticle Impregnated Polycarbonate Substrates for Surface Enhanced Raman Spectroscopy, Advanced Functional Materials, vol.43, issue.7, pp.1265-1271, 2008.
DOI : 10.1002/adfm.200701429

K. S. Morley, P. B. Webb, N. V. Tokavera, A. P. Krasnov, V. K. Popov et al., Synthesis and characterisation of advanced UHMWPE/silver nanocomposites for biomedical applications, European Polymer Journal, vol.43, issue.2, pp.307-314, 2007.
DOI : 10.1016/j.eurpolymj.2006.10.011

T. Hasell, K. T. Thurecht, R. D. Jones, P. D. Brown, and S. M. Howdle, Novel one pot synthesis of silver nanoparticle-polymer composites by supercritical CO 2 polymerization in the presence of a RAFT agent, Chem. Comm, pp.3933-3935, 2007.

D. L. Tomasko, H. Li, D. Liu, X. Han, M. J. Wingert et al., Applications in the Processing of Polymers, Industrial & Engineering Chemistry Research, vol.42, issue.25, pp.6431-6456, 2003.
DOI : 10.1021/ie030199z

L. N. 44-nikitin, M. O. Gallyamov, R. A. Vinokur, A. E. Nikolaec, E. E. Said-galiyev et al., Swelling and impregnation of polystyrene using supercritical carbon dioxide, The Journal of Supercritical Fluids, vol.26, issue.3, pp.263-273, 2003.
DOI : 10.1016/S0896-8446(02)00183-3

G. K. Fleming and W. J. Koros, Dilation of polymers by sorption of carbon dioxide at elevated pressures. 1. Silicone rubber and unconditioned polycarbonate, Macromolecules, vol.19, issue.8, 1986.
DOI : 10.1021/ma00162a030

R. M. Conforti, T. A. Barbari, and M. E. Pozo-de-fernandes, Sorption and Dilation Measurements, Macromolecules, vol.29, issue.20, pp.6629-6633, 1996.
DOI : 10.1021/ma951838n

P. K. Davis, G. D. Lundy, J. E. Palamara, J. L. Duda, and R. P. Danner, New Pressure-Decay Techniques to Study Gas Sorption and Diffusion in Polymers at Elevated Pressures, Industrial & Engineering Chemistry Research, vol.43, issue.6
DOI : 10.1021/ie034075y

Y. Sato, T. Takikawa, S. Takishima, and H. Masuoka, Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene, The Journal of Supercritical Fluids, vol.19, issue.2, pp.18-198, 2001.
DOI : 10.1016/S0896-8446(00)00092-9

Y. Sato, T. Takikawa, M. Yamane, S. Takishima, and H. Masuoka, Solubility of carbon dioxide in PPO and PPS/PS blends. Fluid Phase Equilib, pp.847-858, 2002.

M. Pantoula and C. Panayiotou, Sorption and swelling in glassy polymer/carbon dioxide systems, The Journal of Supercritical Fluids, vol.37, issue.2, pp.254-262, 2006.
DOI : 10.1016/j.supflu.2005.11.001

J. H. Aubert, Solubility of carbon dioxide in polymers by the quartz crystal microbalance technique, The Journal of Supercritical Fluids, vol.11, issue.3, pp.163-172, 1998.
DOI : 10.1016/S0896-8446(97)00033-8

Y. 54-kamaiya, K. Mizoguchi, K. Terada, Y. Fujiwara, and J. S. Wang, CO 2 sorption and dilation of poly(methylmethacrylate), Macromolecules, vol.36, pp.472-478, 1998.

J. U. Keller, H. Rave, and R. Staudt, Measurement of gas absorption in a swelling polymeric material by a combined gravimetric-dynamic method, Macromolecular Chemistry and Physics, vol.200, issue.10, pp.2269-2275, 1999.
DOI : 10.1002/(SICI)1521-3935(19991001)200:10<2269::AID-MACP2269>3.0.CO;2-7

R. G. Wissinger and M. E. Paulaitis, Swelling and sorption in polymer???CO2 mixtures at elevated pressures, Journal of Polymer Science Part B: Polymer Physics, vol.25, issue.12, pp.2497-2510, 1987.
DOI : 10.1002/polb.1987.090251206

M. Tang, W. H. Huang, and Y. P. Chen, Comparisons of the sorption and diffusion of supercritical carbon dioxide into polycarbonate and polysulfone, Journal of the Chinese Institute of Chemical Engineers, vol.38, issue.5-6, pp.419-424, 2007.
DOI : 10.1016/j.jcice.2007.09.003

J. V. Schnitzler and R. Eggers, Mass transfer in polymers in a supercritical CO 2 -atmosphere

O. Muth, T. Hirth, and H. Vogel, Investigation of sorption and diffusion of supercritical carbon dioxide into poly(vinyl chloride), The Journal of Supercritical Fluids, vol.19, issue.3, pp.299-306, 2001.
DOI : 10.1016/S0896-8446(00)00101-7

K. F. Webb and A. S. Teja, Solubility and diffusion of carbon dioxide in polymers. Fluid Phase Equilib, pp.158-160, 1999.

Y. Zhang, K. K. Gangwani, and R. M. Lemert, Sorption and swelling of block copolymers in the presence of supercritical fluid carbon dioxide, The Journal of Supercritical Fluids, vol.11, issue.1-2, pp.225-134, 1997.
DOI : 10.1016/S0896-8446(97)00031-4

B. Bonavoglia, G. Storti, M. Morbidelli, A. Rajendran, and M. Mazzotti, Sorption and swelling of semicrystalline polymers in supercritical CO2, Journal of Polymer Science Part B: Polymer Physics, vol.28, issue.11, pp.1531-1546, 2006.
DOI : 10.1002/polb.20799

M. Daneshvar, S. Kim, and E. Gulari, High-pressure phase equilibria of polyethylene glycol-carbon dioxide systems, The Journal of Physical Chemistry, vol.94, issue.5, pp.2124-2128, 1990.
DOI : 10.1021/j100368a071

E. Weidner, V. Wiesmet, Z. Knez, and M. Skerget, Phase equilibrium (solid-liquid-gas) in polyethyleneglycol-carbon dioxide systems, The Journal of Supercritical Fluids, vol.10, issue.3, pp.139-147, 1997.
DOI : 10.1016/S0896-8446(97)00016-8

D. Gourgouillon and M. Nunes-da-ponte, High pressure phase equilibria for poly(ethylene glycol)s + CO2: experimental results and modelling, Physical Chemistry Chemical Physics, vol.1, issue.23, pp.5369-5375, 1999.
DOI : 10.1039/a906927e

V. Wiesmet, E. Weidner, S. Behme, G. Sadowski, and W. Arlt, Measurement and modelling of high-pressure phase equilibria in the systems polyethyleneglycol (PEG)???propane, PEG???nitrogen and PEG???carbon dioxide, The Journal of Supercritical Fluids, vol.17, issue.1, pp.1-12, 2000.
DOI : 10.1016/S0896-8446(99)00043-1

A. Garg, E. Glari, and C. W. Manke, Thermodynamics of Polymer Melts Swollen with Supercritical Gases, Macromolecules, vol.27, issue.20, pp.5643-5653, 1994.
DOI : 10.1021/ma00098a019

R. R. Edwards, Y. Tao, S. Xu, P. S. Wells, K. S. Yun et al., ???Polymer Interactions at Near-Critical Conditions, The Journal of Physical Chemistry B, vol.102, issue.7, pp.1287-1295, 1998.
DOI : 10.1021/jp972430q

B. J. Briscoe and C. Kelly, The plasticization of a polyurethane by carbon dioxide at high pneumatic stresses, Polymer, vol.36, issue.16, pp.3099-3102, 1995.
DOI : 10.1016/0032-3861(95)97871-C

N. M. 71-flichy, S. G. Kazarian, C. J. Lawrence, and B. J. Briscoe, An ATR???IR Study of Poly (Dimethylsiloxane) under High-Pressure Carbon Dioxide:?? Simultaneous Measurement of Sorption and Swelling, The Journal of Physical Chemistry B, vol.106, issue.4, pp.754-759, 2002.
DOI : 10.1021/jp012597q

I. Pasquali, J. M. Andanson, S. G. Kazarian, and R. Bettini, Measurement of CO2 sorption and PEG 1500 swelling by ATR-IR spectroscopy, The Journal of Supercritical Fluids, vol.45, issue.3, pp.384-390, 2008.
DOI : 10.1016/j.supflu.2008.01.015

T. Guadagno and S. G. Kazarian, Sorption and Swelling of Liquid Polymers with in-Situ Near-IR Spectroscopy, The Journal of Physical Chemistry B, vol.108, issue.37, pp.13995-13999, 2004.
DOI : 10.1021/jp0481097

N. H. Brantley, S. G. Kazarian, and C. A. Eckert, In situ FTIR measurement of carbon dioxide sorption into poly(ethylene terephthalate) at elevated pressures, Journal of Applied Polymer Science, vol.102, issue.4, pp.764-775, 2000.
DOI : 10.1002/(SICI)1097-4628(20000725)77:4<764::AID-APP8>3.0.CO;2-#

S. P. Nalawade, F. Picchioni, and L. P. Janssen, Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications, Progress in Polymer Science, vol.31, issue.1, pp.19-43, 2006.
DOI : 10.1016/j.progpolymsci.2005.08.002

J. R. Royer, J. M. Desimone, and S. A. Khan, Carbon Dioxide-Induced Swelling of Poly(dimethylsiloxane), Macromolecules, vol.32, issue.26, pp.8965-8973, 1999.
DOI : 10.1021/ma9904518

M. Buback, J. Schweer, and H. Tups, Near infrared absorption of pure carbon dioxide up to 3100 bar and 500 K. I. Wavenumber range 320 cm -1 to 5600 cm -1, Z. Naturforsch. A, vol.41, pp.505-511, 1986.

J. R. 78-fried and W. J. Li, High-pressure FTIR studies of gas???polymer interactions, Journal of Applied Polymer Science, vol.41, issue.56
DOI : 10.1002/app.1990.070410521

N. F. Van-der-vegt, A molecular dynamics simulation study of solvation thermodynamical quantities of gases in polymeric solvents, Journal of Membrane Science, vol.205, issue.1-2, pp.125-139, 2002.
DOI : 10.1016/S0376-7388(02)00071-6

Y. Yampolskii, D. Wile, and C. Maher, Novel correlation for solubility of gases in polymers: effect of molecular surface area of gases, Journal of Applied Polymer Science, vol.65, issue.4, pp.552-560, 2000.
DOI : 10.1002/(SICI)1097-4628(20000425)76:4<552::AID-APP13>3.0.CO;2-O

P. 81-vanginderen, W. A. Herrebout, and B. J. Vanderveken, van der Waals Complex of Dimethyl Ether with Carbon Dioxide, The Journal of Physical Chemistry A, vol.107, issue.28, pp.5391-5396, 2003.
DOI : 10.1021/jp034553i

C. 83-drohmann and E. J. Beckman, Phase behavior of polymers containing ether groups in carbon dioxide, The Journal of Supercritical Fluids, vol.22, issue.2, pp.103-110, 2002.
DOI : 10.1016/S0896-8446(01)00111-5

W. A. Herrebout, S. N. Delanoye, and B. J. Van-der-veken, On the formation of a van der Waals complex between ethene and carbon dioxide in liquid argon. An FTIR and ab initio study, Journal of Molecular Structure, vol.706, issue.1-3, pp.107-113, 2004.
DOI : 10.1016/j.molstruc.2004.03.031

P. Vitoux, T. Tassaing, F. Cansell, and C. Aymonier, In situ IR spectroscopy and ab initio calculations to study polymer swelling by supercritical CO 2, J. Phys. Chem. B
URL : https://hal.archives-ouvertes.fr/hal-00355773

A. Erriguible, F. Marias, F. Cansell, and C. Aymonier, Monodisperse model to predict the growth of inorganic nanostructured particles in supercritical fluids through a coalescence and aggregation mechanism, The Journal of Supercritical Fluids, vol.48, issue.1
DOI : 10.1016/j.supflu.2008.09.014

URL : https://hal.archives-ouvertes.fr/hal-00358128

L. Neindre and B. , Viscosité : définitions et dispositifs de mesure

S. Areerat, T. Nagata, and M. Oshima, Measurement and prediction of LDPE/CO2 solution viscosity, Polymer Engineering & Science, vol.40, issue.11, pp.2234-2245, 2002.
DOI : 10.1002/pen.11113

M. 90-nobelen, S. Hoppe, C. Fonteix, F. Pla, M. Dupire et al., Modeling of the rheological behavior of polyethylene/supercritical <mml:math altimg="si183.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mrow><mml:mi>CO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math> solutions, Chemical Engineering Science, vol.61, issue.16, pp.5334-5345, 2006.
DOI : 10.1016/j.ces.2006.03.052

C. Kwag, C. W. Manke, and E. Gulari, Rheology of molten polystyrene with dissolved supercritical and near-critical gases, Journal of Polymer Science Part B: Polymer Physics, vol.27, issue.19, pp.2771-2781, 1999.
DOI : 10.1002/(SICI)1099-0488(19991001)37:19<2771::AID-POLB6>3.0.CO;2-9

L. J. Gerhardt, C. W. Manke, and E. Gulari, Rheology of polydimethylsiloxane swollen with supercritical carbon dioxide, Journal of Polymer Science Part B: Polymer Physics, vol.35, issue.3, pp.523-534, 1997.
DOI : 10.1002/(SICI)1099-0488(199702)35:3<523::AID-POLB11>3.0.CO;2-J

M. Lee and C. B. Park, Measurements and modeling of PS/supercritical CO2 solution viscosities, Polymer Engineering & Science, vol.4, issue.1, pp.99-109, 1999.
DOI : 10.1002/pen.11400

Y. C. Bae and E. Gulari, Viscosity reduction of polymeric liquid by dissolved carbon dioxide, Journal of Applied Polymer Science, vol.63, issue.4, pp.459-466, 1997.
DOI : 10.1002/(SICI)1097-4628(19970124)63:4<459::AID-APP7>3.0.CO;2-Q

K. Liu, F. Schuch, and E. Kiran, High-pressure viscosity and density of poly(methylmethacrylate) + acetone and poly(methylmethacrylate) + acetone + CO 2 systems

N. M. Flichy, C. J. Lawrence, and S. G. Kazarian, Rheology of poly(propylene glycol) and suspensions of fumed silica in poly(propylene glycol) under high-pressure CO 2, Ind. Eng

D. L. Cracium, C. Cozar, O. Chris, V. Agut, C. Rusu et al., Spectroscopic studies of some oxygen-bonded copper (II) ?-diketonate complexes, J. Mol. Struct, pp.563-564, 2001.

S. Marre, A. Erriguible, A. Perdomo, F. Cansell, F. Marias et al., Kineticallycontrolled formation of supported nanoparticles in low temperature supercritical media for development of advanced nanostructured materials, Chem. Mater

R. Arriga, V. Pessey, F. Weill, B. Chevalier, J. Etourneau et al., Kinetic study of chemical transformation in supercritical media of bis(hexafluoroacetylacetonate)copper (II) hydrate, The Journal of Supercritical Fluids, vol.20, issue.1, pp.55-59, 2001.
DOI : 10.1016/S0896-8446(01)00055-9

A. Gericke, Study of copper nanoparticles formation on supports of different nature by UV- Vis diffuse reflectance spectroscopy, Chem. Phys. Lett, vol.385, pp.173-176, 2004.

O. A. 101-yeshchenko, I. M. Dmitruk, A. Dmytruk, and A. A. Alexeenko, Influence of annealing conditions on size and optical properties of copper nanoparticles embedded in silica matrix, Materials Science and Engineering: B, vol.137, issue.1-3, pp.247-254, 2007.
DOI : 10.1016/j.mseb.2006.11.030

D. Salz, B. Mahltig, A. Baalmann, M. Wark, and N. Jaeger, Metal clusters in plasma polymer matrices. Part III. Optical properties and redox behaviour of Cu clusters, Physical Chemistry Chemical Physics, vol.2, issue.13, pp.3105-3110, 2000.
DOI : 10.1039/b002327m

Y. F. Ivanov, M. N. Osmonoliev, V. S. Sedoi, V. A. Arkhipov, S. S. Bondarchuk et al., Productions of Ultra-Fine Powders and Their Use in High Energetic Compositions, Propellants, Explosives, Pyrotechnics, vol.28, issue.6, pp.319-333, 2003.
DOI : 10.1002/prep.200300019

J. Puszynski, A. Formation, characterization and reactivity of nanoenergetic powders. Proceeding of the International Pyrotechnics Seminar, pp.583-179, 2002.

J. C. Sanchez-lopez, A. Caballero, and A. Fernandez, Characterisation of passivated aluminium nanopowders: An XPS and TEM/EELS study, Journal of the European Ceramic Society, vol.18, issue.9, pp.1195-1200, 1998.
DOI : 10.1016/S0955-2219(98)00042-9

Y. 106-champion and J. Bigot, Synthesis and structural analysis of aluminum nanocrystalline powders, Nanostructured Materials, vol.10, issue.7, pp.1097-1110, 1998.
DOI : 10.1016/S0965-9773(98)00149-4

B. Xu and S. I. Tanaka, Multiply twinned aluminum nanoparticles, Nanostructured Materials, vol.8, issue.8, pp.1131-1137, 1997.
DOI : 10.1016/S0965-9773(98)00045-2

J. C. Weigle, C. C. Luhrs, C. K. Chen, W. Perry, . Lee et al., Generation of Aluminum Nanoparticles Using an Atmospheric Pressure Plasma Torch, The Journal of Physical Chemistry B, vol.108, issue.48, pp.18601-18607, 2004.
DOI : 10.1021/jp049410q

S. 109-elizer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman et al., Synthesis of nanoparticles with femtosecond laser pulses, Physical Review B, vol.69, issue.14, pp.144119-144120, 2004.
DOI : 10.1103/PhysRevB.69.144119

H. Hahn and R. S. Averback, The production of nanocrystalline powders by magnetron sputtering, Journal of Applied Physics, vol.67, issue.2, pp.1113-1115, 1990.
DOI : 10.1063/1.345798

P. Sen, J. Ghosh, A. Abdullah, and P. Kumar, Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique, Journal of Chemical Sciences, vol.44, issue.5-6, pp.499-508, 2003.
DOI : 10.1007/BF02708241

M. I. Lerner and V. Shamanskii, Synthesis of nanoparticles by high-power current pulses, Journal of Structural Chemistry, vol.4, issue.1
DOI : 10.1007/s10947-006-0104-3

Y. S. Kwon, Y. H. Jung, N. A. Yavorovsky, A. P. Illyn, and J. S. Kim, Ultra-fine powder by wire explosion method, Scripta Materialia, vol.44, issue.8-9, pp.2247-2251, 2001.
DOI : 10.1016/S1359-6462(01)00757-6

F. 114-tepper, Nanosize powders produced by elcetro-explosion of wire and their potential applications, Powder Metall, vol.43, pp.320-322, 2000.

V. S. Sedoi and Y. Ivanov, Particles and crystallites under electrical explosion of wires, Nanotechnology, vol.19, issue.14, 2008.
DOI : 10.1088/0957-4484/19/14/145710

R. Sarathi, T. K. Sindhu, and S. R. Chakravarthy, Generation of nano aluminium powder through wire explosion process and its characterization, Materials Characterization, vol.58, issue.2, pp.148-155, 2007.
DOI : 10.1016/j.matchar.2006.04.014

W. Jiang and K. Yatsui, Pulsed wire discharge for nanosize powder synthesis, IEEE Trans

K. Murai, C. Chuhyun, S. Hisayuki, J. Weihua, and Y. Kiyoshi, Particle Size Distribution of Copper Nanosized Powders Prepared by Pulsed Wire Discharge, IEEJ Transactions on Fundamentals and Materials, vol.125, issue.1, pp.39-44, 2005.
DOI : 10.1541/ieejfms.125.39

V. 119-ivanov, Y. A. Kotov, O. H. Samatov, R. Böhme, H. U. Karow et al., Synthesis and dynamic compaction of ceramic nano powders by techniques based on electric pulsed power, Nanostructured Materials, vol.6, issue.1-4, pp.287-290, 1995.
DOI : 10.1016/0965-9773(95)00054-2

M. L. 120-green, R. A. Levy, R. G. Nuzzo, and E. Coleman, Aluminum films prepared by metal-organic low pressure chemical vapour deposition. Thin Solid Films, pp.367-377, 1984.

R. A. Levy, M. L. Green, and P. K. Gallagher, Characterization of LPCVD Aluminum for VLSI Processing, Journal of The Electrochemical Society, vol.131, issue.9, pp.2175-2182, 1984.
DOI : 10.1149/1.2116043

D. R. 122-biswas, C. Ghosh, and R. L. Layman, Vapor Phase Deposition of Aluminum Film on Quartz Substrate, Journal of The Electrochemical Society, vol.130, issue.1, pp.234-236, 1983.
DOI : 10.1149/1.2119669

J. O. 123-caarlsson, S. Gorbatkin, D. Lubben, and J. Greene, Thermodynamics of the homogeneous and heterogeneous decomposition of trimethylaluminum, monomethylaluminum, and dimethylaluminumhydride: Effects of scavengers and ultraviolet-laser photolysis, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.9, issue.6, pp.2759-2770, 1991.
DOI : 10.1116/1.585642

L. M. 124-yeddanapalli and C. C. Schubert, Thermal and Photochemical Decomposition of Gaseous Aluminum Trimethyl, The Journal of Chemical Physics, vol.14, issue.1, pp.1-7, 1946.
DOI : 10.1063/1.1724057

T. R. Gow, R. Lin, L. A. Cadwell, F. Lee, A. L. Backman et al., Decomposition of trimethylaluminum on silicon(100), Chemistry of Materials, vol.1, issue.4, pp.406-411, 1989.
DOI : 10.1021/cm00004a006

D. W. 126-squire, C. S. Dulcey, and M. C. Lin, Mechanistic studies of the decomposition of trimethylaluminum on heated surfaces, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.3, issue.5, pp.1513-1519, 1985.
DOI : 10.1116/1.582976

J. Bradley, Properties of high-purity Al x Ga 1-x As grown by the metal-organic vapor-phaseepitaxy techniques using methyl precursors, J. Appl. Phys, vol.62, pp.632-643, 1987.

T. Kobayashi, A. Sekiguchi, N. Akiyama, N. Hosokawa, and T. Asamaki, Growth of Al films by gas???temperature???controlled chemical vapor deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.10, issue.3, pp.525-538, 1992.
DOI : 10.1116/1.578183

D. B. Beach, S. E. Blum, and F. K. Legoues, Chemical vapor deposition of aluminum from trimethylamine???alane, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.7, issue.5, pp.3117-3118, 1989.
DOI : 10.1116/1.576322

C. Vahlas, P. Ortiz, D. Oquab, and I. W. Hall, Toward the improvement of the microstructure of chemical vapour deposited aluminum on silicon carbide, J. Electrochem

D. A. Mantell, The role of oxygen in chemical vapor deposition nucleation barriers of triisobutylaluminum on silicon, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.7, issue.3, pp.630-633, 1989.
DOI : 10.1116/1.575856

D. A. Mantell, Surface mechanisms in aluminum chemical vapour deposition, J. Vac Sci

B. E. Bent, R. G. Nuzzo, and L. H. Dubois, Surface organometallic chemistry in the chemical vapor deposition of aluminum films using triisobutylaluminum: .beta.-hydride and .beta.-alkyl elimination reactions of surface alkyl intermediates, Journal of the American Chemical Society, vol.111, issue.5, pp.1634-1644, 1989.
DOI : 10.1021/ja00187a016

M. E. Gross, L. H. Dubois, R. G. Nuzzo, and K. P. Cheung, Metal-Organic Chemical Vapor Deposition of Aluminum from Trialkylamine Alanes, MRS Proceedings, vol.11, pp.383-390, 1991.
DOI : 10.1063/1.346140

W. L. Gladfelter, D. C. Boyd, and K. F. Jensen, Trimethylamine complexes of alane as precursors for the low-pressure chemical vapor deposition of aluminum, Chemistry of Materials, vol.1, issue.3, pp.339-343, 1989.
DOI : 10.1021/cm00003a013

K. Masu, M. Yokoyama, H. Matsuhashi, and K. Tsubouchi, Contribution of free electrons to Al CVD on a Si surface by photo-excitation, Applied Surface Science, vol.79, issue.80, pp.79-237, 1994.
DOI : 10.1016/0169-4332(94)90416-2

T. 138-nakajima, T. Tanaka, and K. Yamashita, A theoretical study of aluminum chemical vapour deposition using dimethylaluminum hydride: a surface reaction mechanism on

E. 139-kondoh and T. Ohta, Chemical vapour deposition of aluminum from dimethylaluminum hydride: characteristics of DMAH vaporization and Al growth kinetics, J. Vac. Sci. Technol

K. Tsubouchi, K. Masu, N. Shigeeda, T. Matano, Y. Hiura et al., Complete planarization of via holes with aluminum by selective and nonselective chemical vapor deposition, Applied Physics Letters, vol.57, issue.12, pp.1221-1223, 1990.
DOI : 10.1063/1.103490

T. Amazawa, Very Low Pressure Selective Aluminum Chemical Vapor Deposition Using Dimethylaluminum Hydride Without H[sub 2] Carrier Gas, Journal of The Electrochemical Society, vol.145, issue.12, pp.4327-4332, 1998.
DOI : 10.1149/1.1838959

T. Shinzawa, F. Uesugi, I. Nishiyama, K. Sugai, S. Kishida et al., New molecular compound precursor for aluminum chemical vapour deposition, Appl. Organomet

S. P. Shavkunov, M. I. Degtev, and V. S. Korzanov, A complex method of applying aluminum to carbon fiber, Protection of Metals, vol.39, issue.4, pp.385-388, 2003.
DOI : 10.1023/A:1024959801609

T. H. Baum, C. E. Larson, and R. L. Jackson, Laser???induced chemical vapor deposition of aluminum, Applied Physics Letters, vol.55, issue.12, pp.1264-1266, 1989.
DOI : 10.1063/1.101629

C. E. Johnson and K. Higa, Preparation of Nanometer Sized Aluminum Powders, MRS Proceedings, vol.75
DOI : 10.1002/9780470132401.ch10

T. J. Foley, C. E. Johnson, and K. Higa, Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating, Chemistry of Materials, vol.17, issue.16, pp.4086-4091, 2005.
DOI : 10.1021/cm047931k

D. M. Frigo and J. M. Van-eijden, Preparation and properties of alane dimethylethylamine, a liquid precursor for MOCVD, Chemistry of Materials, vol.6, issue.2, pp.190-195, 1994.
DOI : 10.1021/cm00038a015

D. P. 150-dufaux and R. L. Axelbaum, Nanoscale unagglomerated nonoxide particles from a sodium coflow flame,, Combustion and Flame, vol.100, issue.3, pp.350-358, 1995.
DOI : 10.1016/0010-2180(94)00097-C

X. Li, B. Y. Kim, and S. W. Rhee, Structural characterization of aluminum films deposited on sputtered???titanium nitride/silicon substrate by metalorganic chemical vapor deposition from dimethylethylamine alane, Applied Physics Letters, vol.67, issue.23, pp.3426-3428, 1995.
DOI : 10.1063/1.115268

E. Tokumitsu, T. Yamada, M. Konagai, and K. Takahashi, Photo???metalorganic molecular???beam epitaxy: A new epitaxial growth technique, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.7, issue.3, pp.706-710, 1989.
DOI : 10.1116/1.575870

F. 154-foulon and M. Stuke, Excimer laser projection-patterned deposition of Al via photolytically driven decomposition of trialkylamine alane as adsorbate precursor, Applied Physics A Solids and Surfaces, vol.32, issue.3
DOI : 10.1007/BF00539486

G. S. Higashi and C. G. Fleming, Patterned aluminum growth via excimer laser activated metalorganic chemical vapor deposition, Applied Physics Letters, vol.48, issue.16, pp.1051-1053, 1986.
DOI : 10.1063/1.96593

T. 157-cacouris, G. Scelsi, P. Shaw, R. Scarmozzino, and R. M. Osgood, Laser direct writing of aluminum conductors, Applied Physics Letters, vol.52, issue.22, pp.1865-1867, 1988.
DOI : 10.1063/1.99609

C. 158-popov, B. Ivanov, and V. Shanov, Mass spectrometric study of laser induced pyrolytic decomposition of TIBA and TMAA, J. Phys. IV, vol.3, pp.107-112, 1993.

J. Faltermeier, A. Knorr, R. Taveli, H. Gundlach, A. Kumar et al., Integrated plasma-promoted chemical vapor deposition route to aluminum interconnect and plug technologies for emerging computer chip metallization, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.15, issue.5
DOI : 10.1116/1.589521

P. J. Herley and W. Jones, Nanoparticle generation by electron beam induced atomization of binary metal azides, Nanostructured Materials, vol.2, issue.6, pp.553-562, 1993.
DOI : 10.1016/0965-9773(93)90028-A

J. C. Sanchez-lopez, A. R. Gonzalez-elipe, and A. Fernandez, Passivation of nanocrystalline Al prepared by the gas phase condensation method: An x-ray photoelectron spectroscopy study, Journal of Materials Research, vol.13, issue.03, pp.703-710, 1998.
DOI : 10.1016/0965-9773(94)90143-0

A. Ermoline, M. Schoenitz, E. Dreizin, and N. Yao, Production of carbon-coated aluminium nanopowders in pulsed microarc discharge, Nanotechnology, vol.13, issue.5, pp.638-643, 2002.
DOI : 10.1088/0957-4484/13/5/320

S. J. Lee, S. W. Han, and K. Kim, Perfluorocarbon-stabilized silver nanoparticles manufactured from layered silver carboxylates, Chemical Communications, issue.5, pp.442-443, 2002.
DOI : 10.1039/b111607j

S. A. Sardar, R. Duschek, R. I. Blyth, F. P. Netzer, and M. G. Ramsey, The bonding of aldehydes on aluminium: benzaldehyde on Al(111), Surface Science, vol.468, issue.1-3, pp.10-16, 2000.
DOI : 10.1016/S0039-6028(00)00819-0

J. E. Crowell, J. G. Chen, and J. Yates, A vibrational study of the adsorption and decomposition of formic acid and surface formate on Al(111), The Journal of Chemical Physics, vol.85, issue.5, pp.3111-3122, 1986.
DOI : 10.1063/1.451020

Y. S. 166-kwon, A. A. Gromov, and J. Strokova, Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin, Applied Surface Science, vol.253, issue.12, pp.5558-5564, 2007.
DOI : 10.1016/j.apsusc.2006.12.124

A. A. Gromov, U. Förter-barth, and U. Teipel, Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings: Characterisation and reactivity with air and water, Powder Technology, vol.164, issue.2, pp.111-115, 2006.
DOI : 10.1016/j.powtec.2006.03.003

L. Guo, W. Song, M. Hu, C. Xie, and X. Chen, Preparation and reactivity of aluminum nanopowders coated by hydroxyl-terminated polybutadiene (HTPB), Applied Surface Science, vol.254, issue.8, pp.2413-2417, 2008.
DOI : 10.1016/j.apsusc.2007.09.043

C. Dubois, P. G. Lafleur, C. Roy, P. Brousseau, and R. A. Stowe, Polymer-Grafted Metal Nanoparticles for Fuel Applications, Journal of Propulsion and Power, vol.23, issue.4, pp.651-658, 2007.
DOI : 10.2514/1.25384

E. Diaz, P. Brousseau, G. Ampleman, and R. E. Prud-'homme, Polymer Nanocomposites from Energetic Thermoplastic Elastomers and Alex??, Propellants, Explosives, Pyrotechnics, vol.28, issue.4, pp.210-215, 2003.
DOI : 10.1002/prep.200300007

M. M. Mench, K. K. Kuo, C. L. Yeh, and Y. C. Lu, Comparison of thermal behaviour of regular and ultra-fine aluminium powders (Alex) made from plasma explosion process

D. Surianarayama, Oxidation Kinetics of Aluminum Nitride, Journal of the American Ceramic Society, vol.21, issue.6, pp.1108-1110, 1990.
DOI : 10.1111/j.1151-2916.1990.tb05167.x

C. C. Chen and J. W. Bozzelli, -Butyl Ethers and the Corresponding Radicals, The Journal of Physical Chemistry A, vol.107, issue.22, pp.4531-4546, 2003.
DOI : 10.1021/jp022131n

URL : https://hal.archives-ouvertes.fr/hal-00109057

J. Peng, D. L. Cedeno, and C. Manzanares, Cis- and trans-3-hexene: infrared spectrum in liquid argon solution, ab initio calculations of equilibrium geometry, normal coordinate analysis, and vibrational assignments, Journal of Molecular Structure, vol.440, issue.1-3, pp.265-288, 1998.
DOI : 10.1016/S0022-2860(97)00247-0

M. J. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. Stewart, Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model, Journal of the American Chemical Society, vol.107, issue.13, pp.3902-3209, 1985.
DOI : 10.1021/ja00299a024

T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, The Journal of Chemical Physics, vol.90, issue.2, pp.1007-1023, 1989.
DOI : 10.1063/1.456153

A. K. Wilson, T. V. Mourik, and T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon, Journal of Molecular Structure: THEOCHEM, vol.388, pp.339-349, 1996.
DOI : 10.1016/S0166-1280(96)80048-0

R. A. Kendall, T. H. Dunning, and R. Harrison, Electron affinities of the first???row atoms revisited. Systematic basis sets and wave functions, The Journal of Chemical Physics, vol.96, issue.9, pp.6796-6806, 1992.
DOI : 10.1063/1.462569

C. Moller and M. S. Plesset, Note on an Approximation Treatment for Many-Electron Systems, Physical Review, vol.46, issue.7, p.618, 1934.
DOI : 10.1103/PhysRev.46.618

S. F. 182-boys and F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Molecular Physics, vol.2, issue.4, pp.553-566, 1970.
DOI : 10.1002/9780470143582.ch1

S. 183-panda and S. E. Pratsinis, Modeling the synthesis of aluminum particles by evaporation-condensation in an aerosol flow reactor, Nanostructured Materials, vol.5, issue.7-8, pp.755-767, 1995.
DOI : 10.1016/0965-9773(95)00292-M

S. 184-iwama and K. Hayakawa, Vaporazation and condensation of metals in a flowing gas with high velocity, Nanostructured Materials, vol.1, issue.2, pp.113-118, 1992.
DOI : 10.1016/0965-9773(92)90062-3

W. 185-gong, H. Li, Z. Zhao, and J. Chen, Ultrafine particles of Fe, Co, and Ni ferromagnetic metals, Journal of Applied Physics, vol.69, issue.8, pp.5119-5121, 1991.
DOI : 10.1063/1.348144

R. S. Bowles, J. J. Kolstad, J. M. Calo, and R. P. Andres, Generation of molecular clusters of controlled size, Surface Science, vol.106, issue.1-3, pp.117-124, 1981.
DOI : 10.1016/0039-6028(81)90188-6

R. 188-birringer, H. Gleiter, H. P. Klein, and P. Marquardt, Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?, Physics Letters A, vol.102, issue.8, pp.365-369, 1984.
DOI : 10.1016/0375-9601(84)90300-1

H. Hahn, J. A. Eastman, and R. W. Siegel, Processing of nanophase ceramics. Ceramic Transactions 1B, Ceramic Powder Science, pp.1115-1122, 1988.

Y. 190-champion and J. Bigot, Characterization of nanocrystalline copper powders prepared by melting in a cryogenic liquid, Materials Science and Engineering: A, vol.217, issue.218, pp.58-63, 1996.
DOI : 10.1016/S0921-5093(96)10291-4

P. Bayle-guillemaud and M. J. Hÿtch, Synthesis and processing of metallic nano powders for the study of their mechanical and magnetic properties, Mater. Sci. Forum, pp.426-432, 2003.

S. D. Ekpe, L. W. Bezuidenhout, and S. K. Dew, Deposition rate model of magnetron sputtered particles, Thin Solid Films, vol.474, issue.1-2, pp.330-336, 2005.
DOI : 10.1016/j.tsf.2004.09.007

V. Haas and R. Birringer, The morphology and size of nanostructured Cu, Pd and W generated by sputtering, Nanostructured Materials, vol.1, issue.6, pp.491-504, 1992.
DOI : 10.1016/0965-9773(92)90082-9

A. R. Nyaiesh and L. Holland, The effects of gas composition on discharge and deposition characteristics when magnetron sputtering aluminum, Vacuum, pp.31-371, 1981.

C. 198-christou and Z. H. Barber, Ionization of sputtered material in a planar magnetron discharge, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.18, issue.6, pp.2897-2907, 2000.
DOI : 10.1116/1.1312370

W. 199-calss, Deposition and characterization of magnetron sputtered aluminum and aluminum alloy films. Solid State Technol, pp.61-68, 1979.

S. M. 200-rossnagel and J. Hopwood, Metal ion deposition from ionized mangetron sputtering discharge, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.12, issue.1, pp.449-453, 1994.
DOI : 10.1116/1.587142

S. M. 201-rossnagel and J. Hopwood, Magnetron sputter deposition with high levels of metal ionization, Applied Physics Letters, vol.63, issue.24, pp.3285-3287, 1993.
DOI : 10.1063/1.110176

Y. 202-kusano, C. Christou, Z. H. Barber, J. E. Events, and I. M. Huchings, Deposition of carbon nitride films by ionised magnetron sputtering, Thin Solid Films, vol.355, issue.356, pp.117-121, 1999.
DOI : 10.1016/S0040-6090(99)00510-6

S. A. 204-nikoforov, K. W. Urm, G. H. Kim, G. H. Rim, and S. H. Lee, Preparation and characterization of TiN coatings produced by combination of PI3D and ICP assisted magnetron PVD, Surface and Coatings Technology, vol.171, issue.1-3, pp.106-111, 2003.
DOI : 10.1016/S0257-8972(03)00249-4

M. J. Rocke, Effects of residual gas control in relationship with sputtered aluminum film morphology and electromigration properties in fine???line very large scale integrated structures, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.6, issue.3
DOI : 10.1116/1.575306

W. M. Holber, J. S. Logan, H. J. Grabarz, J. T. Yeh, J. B. Caughman et al., Copper deposition by electron cyclotron resonance plasma, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.11, issue.6
DOI : 10.1116/1.578666

A. 207-yonesu, S. Watashi, M. Yoshimi, and Y. Yamashiro, Micowave plasma-assisted ionization of sputtered aluminum atoms in DC magnetron sputtering, Vacuum, vol.80, issue.7, pp.671-674, 2006.
DOI : 10.1016/j.vacuum.2005.11.023

A. 208-yonesu, H. Takemoto, M. Hirata, and Y. Yamashiro, Development of a cylindrical DC magnetron sputtering apparatus assisted by microwave plasma, Vacuum, vol.66, issue.3-4, pp.275-278, 2002.
DOI : 10.1016/S0042-207X(02)00154-9

C. K. Chen, S. Gleiman, and J. Phillips, Low???power plasma torch method for the production of crystalline spherical ceramic particles, Journal of Materials Research, vol.16, issue.05, pp.1256-1265, 2001.
DOI : 10.1109/27.125032

D. Jang and D. Kim, Synthesis of nanoparticles by pulsed laser ablation of consolidated metal microparticles, Applied Physics A, vol.78, issue.8, pp.1985-1988, 2004.
DOI : 10.1063/1.359817

M. 213-ullmann, S. K. Friedlander, and A. Schmidt-ott, Nanoparticles formation by laser ablation, Journal of Nanoparticle Research, vol.4, issue.6, pp.499-509, 2002.
DOI : 10.1023/A:1022840924336

K. Ogawa, T. Vogt, M. Ullmann, S. Johnson, and S. K. Friedlander, Elastic properties of nanoparticle chain aggregates of TiO 2 , Al 2 O 3 and Fe 2 O 3 generated by laser ablation, J

D. Kim and D. Jang, Synthesis of nanoparticles and suspensions by pulsed laser ablation of microparticles in liquid, Applied Surface Science, vol.253, issue.19, pp.8045-8049, 2007.
DOI : 10.1016/j.apsusc.2007.02.153

F. Mafuné, J. Kohno, Y. Takeda, and T. Kondow, Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution, The Journal of Physical Chemistry B, vol.104, issue.39, pp.9111-9117, 2000.
DOI : 10.1021/jp001336y

I. Balchev, N. Minkovshi, T. Marinova, M. Shipochka, and N. Sabotinov, Composition and structure characterization of aluminum after laser ablation, Materials Science and Engineering: B, vol.135, issue.2, pp.108-112, 2006.
DOI : 10.1016/j.mseb.2006.08.042

T. Yamamoto and J. Mazumder, Synthesis of nanocrystalline NbAl3 by laser ablation technique, Nanostructured Materials, vol.7, issue.3, pp.305-312, 1996.
DOI : 10.1016/0965-9773(96)00001-3

C. Grigoriu, M. Hirai, K. Nishiura, W. Jiang, and K. Yatsui, Synthesis of Nanosized Aluminum Nitride Powders by Pulsed Laser Ablation, Journal of the American Ceramic Society, vol.82, issue.24, pp.2631-2633, 2000.
DOI : 10.1111/j.1151-2916.2000.tb01604.x

K. Nandedkar, R. V. Gupta, and P. , Pulsed laser deposition of metal films and nanoparticles in vacuum using subnanosecond laser pulses, Appl. Optics, vol.46, pp.1205-1209, 2007.

S. Amoruso, R. Bruzzese, M. Vitiello, N. N. Nedialkov, and P. A. Atanasov, Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum, Journal of Applied Physics, vol.98, issue.4
DOI : 10.1063/1.2032616

J. Perrière, C. Boulmer-leborgne, R. Benzerga, and S. Tricot, Nanoparticle formation by femtosecond laser ablation, Journal of Physics D: Applied Physics, vol.40, issue.22, pp.7069-7076, 2007.
DOI : 10.1088/0022-3727/40/22/031

P. J. Herley and W. Jones, Ultra-fine particles of aluminium formed by electron-beam-induced decomposition of aluminium hydride, Materials Letters, vol.7, issue.12, pp.441-444, 1989.
DOI : 10.1016/0167-577X(89)90048-7

J. Y. Tsao and D. J. Ehrlich, Patterned photonucleation of chemical vapor deposition of Al by UV???laser photodeposition, Applied Physics Letters, vol.45, issue.6, pp.617-619, 1984.
DOI : 10.1063/1.95331

O. Gottsleben, H. W. Roesky, and M. Stuke, Two-step generation of aluminum microstructures on laser-generated pd pre-nucleation patterns using thermal cvd from (trimethylamine)trihydridoaluminum, Advanced Materials, vol.1963, issue.4, pp.201-202, 1991.
DOI : 10.1002/adma.19910030407

G. E. 227-blonder, G. S. Higashi, and C. G. Fleming, Laser projection patterned aluminum metallization for integrated circuit applications, Applied Physics Letters, vol.50, issue.12, pp.766-768, 1987.
DOI : 10.1063/1.98039