R. Adolph, D. A. Vorp, D. L. Steed, M. W. Webster, M. V. Kameneva et al., Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm, Journal of Vascular Surgery, vol.25, issue.5, pp.916-942, 1997.
DOI : 10.1016/S0741-5214(97)70223-4

A. Amblard, ContributionàContributionà l'´ etude du comportement d'une endoprothèse aortique abdominale. Analyse des endofuites de type I, Thèse de doctorat, 2006.

J. H. Ashton, J. P. Geest, R. Simon, B. Et, G. Haskett et al., Compressive mechanical properties of the intraluminal thrombus in abdominal aortic aneurysms and fibrin-based thrombus mimics, Journal of Biomechanics, vol.42, issue.3, pp.197-201, 2009.
DOI : 10.1016/j.jbiomech.2008.10.024

P. Astarci, V. Lacroix, and R. Et-verhelst, Les anévrismes de l'aorte abdominale, Louvain Medical, vol.125, pp.163-173, 2006.

G. A. Ateshian, W. H. Warden, J. J. Kim, R. P. Grelsamer, and V. C. Et-mow, Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments, Journal of Biomechanics, vol.30, issue.11-12, pp.11-121157, 1997.
DOI : 10.1016/S0021-9290(97)85606-0

J. L. Auriault, Dynamic behaviour of a porous medium saturated by a newtonian fluid, International Journal of Engineering Science, vol.18, issue.6, pp.775-785, 1980.
DOI : 10.1016/0020-7225(80)90025-7

J. L. Auriault, About the Beavers and Joseph Boundary Condition, Transport in Porous Media, vol.62, issue.part2, pp.257-266, 2010.
DOI : 10.1007/s11242-009-9435-9

J. Auriault, C. Boutin, and C. Et-geindreau, Homogénéisation de phénomènes couplés en milieux hétérogènes 2, quasi -statique et dynamique des milieux poreux, Hermes Sciences, 2009.

S. Avril, P. Badel, and A. Et-duprey, Anisotropic and hyperelastic identification of in vitro human arteries from full-field optical measurements, Journal of Biomechanics, vol.43, issue.15, pp.432978-2985, 2010.
DOI : 10.1016/j.jbiomech.2010.07.004

URL : https://hal.archives-ouvertes.fr/hal-00543316

A. Ayyalasomayajula, J. P. Vande-geest, and B. R. Et-simon, Porohyperelastic Finite Element Modeling of Abdominal Aortic Aneurysms, Journal of Biomechanical Engineering, vol.132, issue.10, pp.104502-104510, 2010.
DOI : 10.1115/1.4002370

C. A. Basciano and C. Et-kleinstreuer, Invariant-based anisotropic constitutive models of thehealthy and aneurysmal abdominal aortic wall, Journal of Biomechanical Engineering, vol.131, pp.1-11, 2009.

G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, Journal of Fluid Mechanics, vol.none, issue.01, pp.197-207, 1967.
DOI : 10.1017/S0022112067001375

R. Bergel and D. H. , The dynamic elastic properties of the arterial wall, The Journal of Physiology, vol.156, issue.3, pp.458-69, 1961.
DOI : 10.1113/jphysiol.1961.sp006687

D. H. Bergel, The static elastic properties of the arterial wall, The Journal of Physiology, vol.156, issue.3, pp.445-57, 1961.
DOI : 10.1113/jphysiol.1961.sp006686

M. A. Biot, General Theory of Three???Dimensional Consolidation, Journal of Applied Physics, vol.12, issue.2, pp.155-64, 1941.
DOI : 10.1063/1.1712886

URL : https://hal.archives-ouvertes.fr/hal-01368635

M. A. Biot, Theory of Elasticity and Consolidation for a Porous Anisotropic Solid, Journal of Applied Physics, vol.26, issue.2, pp.182-187, 1955.
DOI : 10.1063/1.1721956

URL : https://hal.archives-ouvertes.fr/hal-01368659

B. R. Blackman, G. Garcia-cardena, and M. A. Et-gimbrone, A New In Vitro Model to Evaluate Differential Responses of Endothelial Cells to Simulated Arterial Shear Stress Waveforms, Journal of Biomechanical Engineering, vol.124, issue.4, pp.397-407, 2002.
DOI : 10.1115/1.1486468

J. D. Blankensteijn and S. E. Et-de-jong, Two-Year Outcomes after Conventional or Endovascular Repair of Abdominal Aortic Aneurysms, New England Journal of Medicine, vol.352, issue.23, pp.2398-405, 2005.
DOI : 10.1056/NEJMoa051255

D. Bluestein, K. Dumont, M. D. Beule, J. Ricotta, P. Impellizzeri et al., Intraluminal thrombus and risk of rupture in patient specific abdominal aortic aneurysm ??? FSI modelling, Computer Methods in Biomechanics and Biomedical Engineering, vol.44, issue.1, pp.73-81, 2009.
DOI : 10.1016/j.medengphy.2005.06.008

D. Bluestein, L. Niu, R. T. Schoephoerster, and M. K. Et-dewanjee, Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition, Journal of Biomechanical Engineering, vol.118, issue.3, pp.280-286, 1996.
DOI : 10.1115/1.2796008

M. Bouhlel, M. Jamei, and C. Et-geindreau, Microstructural effects on the overall poroelastic proprieties of saturated porous media, Modelling Simul. Mater. Sci. Eng, vol.18, 2010.

C. Boutin, Study of permeability by periodic and self-consistent homogenisation, European Journal of Mechanics - A/Solids, vol.19, issue.4, pp.603-632, 2000.
DOI : 10.1016/S0997-7538(00)00174-1

URL : https://hal.archives-ouvertes.fr/hal-00943756

A. R. Brady, S. G. Thompson, F. G. Fowkes, R. M. Greenhalgh, and J. T. Et-powell, Abdominal Aortic Aneurysm Expansion: Risk Factors and Time Intervals for Surveillance, Circulation, vol.110, issue.1, pp.16-21, 2004.
DOI : 10.1161/01.CIR.0000133279.07468.9F

P. M. Brown, D. T. Zelt, and B. Et-sobolev, The risk of rupture in untreated aneurysms: The impact of size, gender, and expansion rate, Journal of Vascular Surgery, vol.37, issue.2, pp.280-284, 2003.
DOI : 10.1067/mva.2003.119

T. E. Carew, R. N. Vaishnav, and D. J. Patel, Compressibility of the Arterial Wall, Circulation Research, vol.23, issue.1, pp.61-68, 1968.
DOI : 10.1161/01.RES.23.1.61

E. Choke, G. Cockerill, R. Wilson, S. Sayed, J. Dawson et al., A Review of Biological Factors Implicated in Abdominal Aortic Aneurysm Rupture, European Journal of Vascular and Endovascular Surgery, vol.30, issue.3, 2005.
DOI : 10.1016/j.ejvs.2005.03.009

P. Coussot and J. Et-grossiord, Comprendre la rhéologie, de la circulation du sangà sangà la prise du béton, 2002.

P. F. Davies, Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology, Nature Clinical Practice Cardiovascular Medicine, vol.98, issue.1, pp.16-26, 2009.
DOI : 10.1038/ncpcardio1397

H. Demiray, A note on the elasticity of soft biological tissues, Journal of Biomechanics, vol.5, issue.3, pp.309-311, 1972.
DOI : 10.1016/0021-9290(72)90047-4

V. Deplano, Y. Knapp, E. Bertrand, and E. Et-gaillard, Flow behaviour in an asymmetric compliant experimental model for abdominal aortic aneurysm, Journal of Biomechanics, vol.40, issue.11, pp.2406-2419, 2007.
DOI : 10.1016/j.jbiomech.2006.11.017

URL : https://hal.archives-ouvertes.fr/hal-00137129

D. Martino, E. S. Bohra, A. Vande-geest, J. P. Gupta, N. Sacks et al., Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue, Journal of Vascular Surgery, vol.43, issue.3, pp.570-576, 2006.
DOI : 10.1016/j.jvs.2005.10.072

S. Doll and K. Et-schweizerhof, On the Development of Volumetric Strain Energy Functions, Journal of Applied Mechanics, vol.67, issue.1, pp.17-21, 2000.
DOI : 10.1115/1.321146

J. Donea, A. Huerta, J. Ponthot, and A. Et-rodriguez-ferran, Arbitrary Lagrangian-Eulerian Methods, 2004.
DOI : 10.1002/0470091355.ecm009

URL : http://hdl.handle.net/2117/8449

B. J. Doyle, A. J. Cloonan, M. T. Walsh, D. A. Vorp, and T. M. Et-mcgloughlin, Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques, Journal of Biomechanics, vol.43, issue.7, pp.431408-1416, 2010.
DOI : 10.1016/j.jbiomech.2009.09.057

C. Egelhoff, R. Budwig, D. Elger, T. Khraishi, and K. Et-johansen, Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions, Journal of Biomechanics, vol.32, issue.12, pp.1319-1329, 1999.
DOI : 10.1016/S0021-9290(99)00134-7

J. E. Estes, Abdominal Aortic Aneurysm: A Study of One Hundred and Two Cases, Circulation, vol.2, issue.2, pp.258-264, 1950.
DOI : 10.1161/01.CIR.2.2.258

E. Falk, Dynamics in Thrombus Formation, Fibrinolysis in Tissue Remodelling and Development ), pp.204-223, 1992.
DOI : 10.1016/0002-9149(90)90525-6

J. Ferruzzi, D. A. Vorp, and J. D. Humphrey, On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms, Journal of The Royal Society Interface, vol.110, issue.1, pp.435-450, 2011.
DOI : 10.1161/01.CIR.0000133279.07468.9F

M. F. Fillinger, S. P. Marra, M. L. Raghavan, and F. E. Kennedy, Prediction of rupture risk in abdominal aortic aneurysm during observation: Wall stress versus diameter, Journal of Vascular Surgery, vol.37, issue.4, pp.724-732, 2003.
DOI : 10.1067/mva.2003.213

M. F. Fillinger, M. L. Raghavan, S. P. Marra, J. L. Cronenwett, and F. E. Kennedy, In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk, Journal of Vascular Surgery, vol.36, issue.3, pp.589-599, 2002.
DOI : 10.1067/mva.2002.125478

R. Finol, E. A. Keyhani, K. Et-amon, and C. H. , The Effect of Asymmetry in Abdominal Aortic Aneurysms Under Physiologically Realistic Pulsatile Flow Conditions, Journal of Biomechanical Engineering, vol.125, issue.2, pp.207-217, 2003.
DOI : 10.1115/1.1543991

Y. Fung, Elasticity of soft tissues in simple elongation, American Journal of Physiology, vol.213, issue.6, pp.1532-1544, 1967.

Y. Fung, Biomechanics : Mechanical Properties of Living Tissues, 1993.

Y. C. Fung and S. Q. Et-liu, Change of residual strains in arteries due to hypertrophy caused by aortic constriction, Circulation Research, vol.65, issue.5, pp.1340-1349, 1989.
DOI : 10.1161/01.RES.65.5.1340

B. Furie and B. C. Et-furie, Mechanisms of Thrombus Formation, New England Journal of Medicine, vol.359, issue.9, pp.938-949, 2008.
DOI : 10.1056/NEJMra0801082

T. C. Gasser, G. Görgülü, M. Folkesson, and J. Et-swedenborg, Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads, Journal of Vascular Surgery, vol.48, issue.1, pp.179-188, 2008.
DOI : 10.1016/j.jvs.2008.01.036

T. C. Gasser, G. Martufi, M. Aurer, and M. Et-folkesson, Micromechanical Characterization of Intra-luminal Thrombus Tissue from Abdominal Aortic Aneurysms, Annals of Biomedical Engineering, vol.36, issue.2, pp.371-380, 2010.
DOI : 10.1007/s10439-009-9837-4

E. Georgakarakos, C. Ioannou, Y. Kamarianakis, Y. Papaharilaou, T. Kostas et al., The Role of Geometric Parameters in the Prediction of Abdominal Aortic Aneurysm Wall Stress, European Journal of Vascular and Endovascular Surgery, vol.39, issue.1, pp.42-50, 2010.
DOI : 10.1016/j.ejvs.2009.09.026

R. M. Greenhalgh, C. B. Louise, and J. T. Et-powell, Endovascular versus open repair of abdominal aortic aneurysm. The New Engl, J. Med, vol.362, pp.1862-71, 2010.

A. J. Hall, E. F. Busse, D. J. Mccarville, and J. J. Et-burgess, Aortic Wall Tension as a Predictive Factor for Abdominal Aortic Aneurysm Rupture: Improving the Selection of Patients for Abdominal Aortic Aneurysm Repair, Annals of Vascular Surgery, vol.14, issue.2, pp.152-159, 2000.
DOI : 10.1007/s100169910027

S. Hans, O. Jareupoon, and R. Et-huang, Relationship of residual intraluminal to intrathrombotic pressure in a closed aneurysmal sac, Journal of Vascular Surgery, vol.37, issue.5, pp.949-953, 2003.
DOI : 10.1067/mva.2003.256

L. P. Harter, B. H. Gross, P. W. Callen, and R. A. Barth, Ultrasonic evaluation of abdominal aortic thrombus., Journal of Ultrasound in Medicine, vol.1, issue.8, pp.315-318, 1982.
DOI : 10.7863/jum.1982.1.8.315

T. Hatakeyama, H. Shigematsu, and T. Et-muto, Risk factors for rupture of abdominal aortic aneurysm based on three-dimensional study, Journal of Vascular Surgery, vol.33, issue.3, pp.453-61, 2001.
DOI : 10.1067/mva.2001.111731

C. M. He and M. R. Et-roach, The composition and mechanical properties of abdominal aortic aneurysms, Journal of Vascular Surgery, vol.20, issue.1, pp.6-13, 1994.
DOI : 10.1016/0741-5214(94)90169-4

J. W. Hinnen, D. J. Rixen, O. H. Koning, J. H. Bockel, and J. F. Et-hamming, Development of fibrinous thrombus analogue for in-vitro abdominal aortic aneurysm studies, Journal of Biomechanics, vol.40, issue.2, pp.289-295, 2007.
DOI : 10.1016/j.jbiomech.2006.01.010

G. Holzapfel, T. Gasser, and M. Stadler, A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis, European Journal of Mechanics - A/Solids, vol.21, issue.3, pp.441-63, 2002.
DOI : 10.1016/S0997-7538(01)01206-2

G. A. Holzapfel, Determination of material models for arterial walls from uniaxial extension tests and histological structure, Journal of Theoretical Biology, vol.238, issue.2, pp.290-302, 2006.
DOI : 10.1016/j.jtbi.2005.05.006

URL : https://hal.archives-ouvertes.fr/hal-01299856

G. A. Holzapfel, T. C. Gasser, and R. W. Et-ogden, A new Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models, Journal of Elasticity, vol.61, pp.1-48, 2000.
DOI : 10.1007/0-306-48389-0_1

URL : https://hal.archives-ouvertes.fr/hal-01297725

G. A. Holzapfel and R. W. Et-ogden, Constitutive modelling of arteries, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.287, issue.3, pp.4661551-1597, 2010.
DOI : 10.1152/ajpheart.00094.2004

G. A. Holzapfel, G. Sommer, M. Aurer, P. Regitnig, and R. W. Et-ogden, Layer-Specific 3D Residual Deformations of Human Aortas with Non-Atherosclerotic Intimal Thickening, Annals of Biomedical Engineering, vol.21, issue.4, pp.530-575, 2007.
DOI : 10.1007/s10439-006-9252-z

M. K. Hong, J. Vossoughi, G. S. Mintz, R. D. Kauffman, R. F. Hoyt et al., Altered Compliance and Residual Strain Precede Angiographically Detectable Early Atherosclerosis in Low-Density Lipoprotein Receptor Deficiency, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.17, issue.10, pp.172209-2217, 1997.
DOI : 10.1161/01.ATV.17.10.2209

J. Hrona and M. Et-madlik, Fluid-structure interaction with applications in biomechanics, Nonlinear Analysis: Real World Applications, vol.8, issue.5, pp.1431-1458, 2007.
DOI : 10.1016/j.nonrwa.2006.05.007

D. J. Humphrey, Mechanics of the arterial wall : review and directions, Crit Rev Biomed Eng, vol.23, pp.1-162, 1995.

J. Humphrey and C. Et-taylor, Intracranial and Abdominal Aortic Aneurysms: Similarities, Differences, and Need for a New Class of Computational Models, Annual Review of Biomedical Engineering, vol.10, issue.1, pp.221-267, 2008.
DOI : 10.1146/annurev.bioeng.10.061807.160439

T. Imura, K. Yamamoto, K. Kanamori, T. Mikami, and H. Et-yasuda, Non-invasive ultrasonic measurement of the elastic properties of the human abdominal aorta, Cardiovascular Research, vol.20, issue.3, pp.208-214, 1986.
DOI : 10.1093/cvr/20.3.208

M. Itskov and N. Et-aksel, Elastic constants and their admissible values for incompressible and slightly compressible anisotropic materials, Acta Mechanica, vol.60, issue.2, pp.81-96, 2002.
DOI : 10.1007/BF01182156

K. Johnston, R. B. Rutherford, M. Tilson, D. M. Shah, L. Hollier et al., Suggested standards for reporting on arterial aneurysms, Journal of Vascular Surgery, vol.13, issue.3, pp.444-50, 1991.
DOI : 10.1067/mva.1991.26737

P. Kalita and R. Et-schaefer, Mechanical Models of Artery Walls, Archives of Computational Methods in Engineering, vol.287, issue.3, pp.1-36, 2008.
DOI : 10.1007/s11831-007-9015-5

M. Kazi, J. Thyberg, P. Religa, J. Roy, P. Eriksson et al., Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall, Journal of Vascular Surgery, vol.38, issue.6, pp.1283-1292, 2003.
DOI : 10.1016/S0741-5214(03)00791-2

K. M. Khanafer, P. Gadhoke, R. Berguer, and J. L. Et-bull, Modeling pulsatile flow in aortic aneurysms : Effect of non-newtonian properties of blood, Biorheology, vol.43, pp.661-79, 2006.

N. Koshiba, J. Ando, X. Chen, and T. Et-hisada, Multiphysics simulation of blood flow and ldl transport in a porohyperelastic arterial wall model, J. Biomech. Eng, vol.129, issue.3, pp.374-385, 2007.

D. N. Ku, D. P. Giddens, C. K. Zarins, and S. Et-glagov, Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.5, issue.3, pp.293-302, 1985.
DOI : 10.1161/01.ATV.5.3.293

J. C. Lasheras, The biomechanics of arterial aneurysms. The Annual Review of Fluid Mechanics, pp.293-319, 2007.

L. Bars, M. Et-worster, and M. G. , Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, Journal of Fluid Mechanics, vol.550, issue.-1, pp.149-173, 2006.
DOI : 10.1017/S0022112005007998

URL : https://hal.archives-ouvertes.fr/hal-00084035

B. M. Learoyd and M. G. Taylor, Alterations with Age in the Viscoelastic Properties of Human Arterial Walls, Circulation Research, vol.18, issue.3, pp.278-292, 1966.
DOI : 10.1161/01.RES.18.3.278

F. A. Lederle, G. R. Johnson, S. E. Wilson, I. L. Gordon, E. P. Chute et al., Relationship of age, gender, race, and body size to infrarenal aortic diameter, Journal of Vascular Surgery, vol.26, issue.4, 1997.
DOI : 10.1016/S0741-5214(97)70057-0

A. J. Lee, F. G. Fowkes, M. N. Carson, G. C. Leng, and P. L. Et-allan, Smoking, atherosclerosis and risk of abdominal aortic aneurysm, European Heart Journal, vol.18, issue.4, pp.671-677, 1997.
DOI : 10.1093/oxfordjournals.eurheartj.a015314

J. Leung, A. Wright, N. Cheshire, J. Crane, S. Thom et al., Fluid structure interaction of patient specific abdominal aortic aneurysms : a comparison with solid stress models, BioMedical Engineering OnLine, vol.5, issue.1, p.33, 2006.
DOI : 10.1186/1475-925X-5-33

M. E. Levenston, E. H. Frank, and A. J. Et-grodzinsky, Variationally derived 3-field finite element formulations for quasistatic poroelastic analysis of hydrated biological tissues, Computer Methods in Applied Mechanics and Engineering, vol.156, issue.1-4, pp.1-4231, 1998.
DOI : 10.1016/S0045-7825(97)00208-9

T. Levy and E. Sanchez-palencia, On boundary conditions for fluid flow in porous media, International Journal of Engineering Science, vol.13, issue.11, pp.923-940, 1975.
DOI : 10.1016/0020-7225(75)90054-3

Z. Li and C. Et-kleinstreuer, Blood flow and structure interactions in a stented abdominal aortic aneurysm model, Medical Engineering & Physics, vol.27, issue.5, pp.369-382, 2005.
DOI : 10.1016/j.medengphy.2004.12.003

Z. Li and C. Et-kleinstreuer, A comparison between different asymmetric abdominal aortic aneurysm morphologies employing computational fluid???structure interaction analysis, European Journal of Mechanics - B/Fluids, vol.26, issue.5, pp.615-631, 2007.
DOI : 10.1016/j.euromechflu.2007.03.003

T. Länne, B. Sonesson, D. Bergqvist, H. Bengtsson, and D. Et-gustafsson, Diameter and compliance in the male human abdominal aorta: Influence of age and aortic aneurysm, European Journal of Vascular Surgery, vol.6, issue.2, pp.178-184, 1992.
DOI : 10.1016/S0950-821X(05)80237-3

A. Long, L. Rouet, A. Bissery, P. Rossignol, D. Mouradian et al., Compliance of abdominal aortic aneurysms evaluated by tissue Doppler imaging: Correlation with aneurysm size, Journal of Vascular Surgery, vol.42, issue.1, pp.18-26, 2005.
DOI : 10.1016/j.jvs.2005.03.037

E. N. Marieb, Anatomie et physiologie humaines, 1993.

E. D. Martino, G. Guadagni, A. Fumero, G. Ballerini, R. Spirito et al., Fluid???structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm, Medical Engineering & Physics, vol.23, issue.9, pp.647-655, 2001.
DOI : 10.1016/S1350-4533(01)00093-5

E. D. Martino, S. Mantero, F. Inzoli, G. Melissano, D. Astore et al., Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: Experimental characterisation and structural static computational analysis, European Journal of Vascular and Endovascular Surgery, vol.15, issue.4, pp.290-299, 1998.
DOI : 10.1016/S1078-5884(98)80031-2

E. S. Martino and D. A. Vorp, Effect of Variation in Intraluminal Thrombus Constitutive Properties on Abdominal Aortic Aneurysm Wall Stress, Annals of Biomedical Engineering, vol.31, issue.7, pp.804-813, 2003.
DOI : 10.1114/1.1581880

T. Matsumoto, T. Fukui, T. Tanaka, N. Ikuta, T. Ohashi et al., Biaxial Tensile Properties of Thoracic Aortic Aneurysm Tissues, Journal of Biomechanical Science and Engineering, vol.4, issue.4, pp.518-547, 2009.
DOI : 10.1299/jbse.4.518

C. A. Meyer, C. Guivier-curien, J. Et-moore, and J. E. , Trans-Thrombus Blood Pressure Effects in Abdominal Aortic Aneurysms, Journal of Biomechanical Engineering, vol.132, issue.7, pp.71005-71012, 2010.
DOI : 10.1115/1.4001253

URL : https://hal.archives-ouvertes.fr/hal-00459768

C. J. Mills, I. T. Gabe, J. H. Gault, D. T. Mason, J. Ross et al., Pressure-flow relationships and vascular impedance in man, Cardiovascular Research, vol.4, issue.4, pp.405-422, 1970.
DOI : 10.1093/cvr/4.4.405

M. Mooney, A Theory of Large Elastic Deformation, Journal of Applied Physics, vol.11, issue.9, pp.582-592, 1940.
DOI : 10.1063/1.1712836

W. R. Mower, W. J. Quinones, and S. S. Et-gambhir, Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress, Journal of Vascular Surgery, vol.26, issue.4, pp.602-608, 1997.
DOI : 10.1016/S0741-5214(97)70058-2

S. C. Nicholls, J. B. Gardner, M. H. Meissner, and K. H. Et-johansen, Rupture in small abdominal aortic aneurysms, Journal of Vascular Surgery, vol.28, issue.5, pp.884-892, 1998.
DOI : 10.1016/S0741-5214(98)70065-5

R. Norman, P. Et-powell, and J. , Abdominal Aortic Aneurysm: The Prognosis in Women Is Worse Than in Men, Circulation, vol.115, issue.22, pp.2865-2874, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.671859

P. E. Norman, K. Jamrozik, M. M. Lawrence-brown, M. T. Le, C. A. Spencer et al., Population based randomised controlled trial on impact of screening on mortality from abdominal aortic aneurysm, BMJ, vol.329, issue.7477, p.3291259, 2004.
DOI : 10.1136/bmj.38272.478438.55

R. W. Ogden, Large Deformation Isotropic Elasticity: On the Correlation of Theory and Experiment for Compressible Rubberlike Solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.328, issue.1575, pp.567-584, 1972.
DOI : 10.1098/rspa.1972.0096

M. S. Olufsen, Structured tree outflow condition for blood flow in larger systemic arteries, Am J Physiol Heart Circ Physiol, vol.276, pp.257-268, 1999.

M. F. O-'rourke, J. V. Blazek, C. L. Morreels, J. Et-krovetz, and L. J. , Pressure Wave Transmission along the Human Aorta: >CHANGES WITH AGE AND IN ARTERIAL DEGENERATIVE DISEASE, Circulation Research, vol.23, issue.4, pp.567-579, 1968.
DOI : 10.1161/01.RES.23.4.567

L. H. Peterson, R. E. Jenesen, and J. Et-parnell, Mechanical Properties of Arteries in Vivo, Circulation Research, vol.8, issue.3, pp.622-661, 1960.
DOI : 10.1161/01.RES.8.3.622

F. Peyraut, C. Renaud, N. Labed, and Z. Et-feng, Mod??lisation de tissus biologiques en hyper??lasticit?? anisotrope ??? ??tude th??orique et approche ??l??ments finis, Comptes Rendus M??canique, vol.337, issue.2, pp.101-107, 2009.
DOI : 10.1016/j.crme.2009.03.007

T. Pfeiffer, L. Reiher, K. Grabitz, and W. Et-sandmann, Results of conventional surgical therapy for abdominal aortic aneurysms since the beginning of the ???endovascular era???, Der Chirurg, vol.71, issue.1, pp.72-81, 2000.
DOI : 10.1007/s001040051016

J. T. Powell, Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. The Lancet, pp.1649-56, 1998.

A. Rachev and S. E. Et-greenwald, Residual strains in conduit arteries, Journal of Biomechanics, vol.36, issue.5, pp.661-670, 2003.
DOI : 10.1016/S0021-9290(02)00444-X

M. Raghavan and D. A. Et-vorp, Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability, Journal of Biomechanics, vol.33, issue.4, pp.475-482, 2000.
DOI : 10.1016/S0021-9290(99)00201-8

M. L. Raghavan, M. F. Fillinger, S. P. Marra, B. P. Naegelein, and F. E. Kennedy, Automated Methodology for Determination of Stress Distribution in Human Abdominal Aortic Aneurysm, Journal of Biomechanical Engineering, vol.127, issue.5, pp.868-871, 2005.
DOI : 10.1115/1.1992530

M. L. Raghavan, J. Kratzberg, E. M. De-tolosa, M. M. Hanaoka, P. Walker et al., Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm, Journal of Biomechanics, vol.39, issue.16, pp.3010-3016, 2006.
DOI : 10.1016/j.jbiomech.2005.10.021

M. L. Raghavan, D. A. Vorp, M. P. Federle, M. S. Makaroun, and M. W. Webster, Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm, Journal of Vascular Surgery, vol.31, issue.4, pp.760-769, 2000.
DOI : 10.1067/mva.2000.103971

M. L. Raghavan, M. W. Webster, and D. A. Et-vorp, Ex vivo biomechanical behavior of abdominal aortic aneurysm: Assessment using a new mathematical model, Annals of Biomedical Engineering, vol.20, issue.5, pp.573-82, 1996.
DOI : 10.1007/BF02684226

D. Reed, C. Reed, G. Stemmermann, and T. Et-hayashi, Are aortic aneurysms caused by atherosclerosis ? Circulation, pp.205-211, 1992.

P. Rissland, Y. Alemu, S. Einav, J. Ricotta, and D. Et-bluestein, Abdominal Aortic Aneurysm Risk of Rupture: Patient-Specific FSI Simulations Using Anisotropic Model, Journal of Biomechanical Engineering, vol.131, issue.3, pp.1-10, 2009.
DOI : 10.1115/1.3005200

J. Rodriguez, C. Ruiz, M. Doblaré, and G. A. Et-holzapfel, Mechanical Stresses in Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy, Journal of Biomechanical Engineering, vol.130, issue.2, pp.1-10, 2008.
DOI : 10.1115/1.2898830

J. F. Rodriguez, G. Martufi, M. Doblaré, and E. A. Et-finol, The Effect of Material Model Formulation in the Stress Analysis of Abdominal Aortic Aneurysms, Annals of Biomedical Engineering, vol.36, issue.6, pp.2218-2239, 2009.
DOI : 10.1007/s10439-009-9767-1

C. S. Roy, The Elastic Properties of the Arterial Wall, The Journal of Physiology, vol.3, issue.2, pp.125-159, 1881.
DOI : 10.1113/jphysiol.1881.sp000088

M. S. Sacks, Biaxial Mechanical Evaluation of Planar Biological Materials, Journal of Elasticity, vol.61, pp.199-246, 2000.
DOI : 10.1007/0-306-48389-0_7

A. V. Salsac, Evolution des contraintes hemodynamiques lors de la croissance des anevrismes aortiques abdominaux, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00017919

A. V. Salsac, S. R. Sparks, J. M. Chomaz, and J. C. Et-lasheras, Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms, Journal of Fluid Mechanics, vol.560, pp.19-51, 2006.
DOI : 10.1017/S002211200600036X

URL : https://hal.archives-ouvertes.fr/hal-01023355

G. W. Schurink, J. M. Van-baalen, M. J. Visser, and J. H. Van-bockel, Thrombus within an aortic aneurysm does not reduce pressure on the aneurysmal wall, Journal of Vascular Surgery, vol.31, issue.3, pp.501-506, 2000.
DOI : 10.1067/mva.2000.103693

C. M. Scotti and E. A. Et-finol, Compliant biomechanics of abdominal aortic aneurysms: A fluid???structure interaction study, Computers & Structures, vol.85, issue.11-14, pp.1097-1113, 2007.
DOI : 10.1016/j.compstruc.2006.08.041

C. M. Scotti, J. Jimenez, S. C. Muluk, and E. A. Et-finol, Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid???structure interaction, Computer Methods in Biomechanics and Biomedical Engineering, vol.73, issue.3, pp.301-323, 2008.
DOI : 10.1007/s10237-004-0059-2

R. Shimogonya, Y. Ishikawa, T. Imai, Y. Matsuki, N. Et-yamaguchi et al., Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON), Journal of Biomechanics, vol.42, issue.4, pp.550-554, 2009.
DOI : 10.1016/j.jbiomech.2008.10.006

J. C. Simo, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. Part II: Computational aspects, Computer Methods in Applied Mechanics and Engineering, vol.68, issue.1, pp.1-31, 1988.
DOI : 10.1016/0045-7825(88)90104-1

B. R. Simon, M. V. Kaufmann, M. A. Mcafee, A. L. Baldwin, and L. M. Et-wilson, Identification and Determination of Material Properties for Porohyperelastic Analysis of Large Arteries, Journal of Biomechanical Engineering, vol.120, issue.2, pp.188-194, 1998.
DOI : 10.1115/1.2798301

K. Singh, K. H. Bonaa, B. K. Jacobsen, L. Bjork, and S. Et-solberg, Prevalence of and Risk Factors for Abdominal Aortic Aneurysms in a Population-based Study : The Tromso Study, American Journal of Epidemiology, vol.154, issue.3, pp.236-280, 2001.
DOI : 10.1093/aje/154.3.236

L. Speelman, G. W. Schurink, E. M. Bosboom, J. Buth, M. Breeuwer et al., The mechanical role of thrombus on the growth rate of an abdominal aortic aneurysm, Journal of Vascular Surgery, vol.51, issue.1, pp.19-26, 2010.
DOI : 10.1016/j.jvs.2009.08.075

C. Stamatopoulos, D. S. Mathioulakis, Y. , P. Et, Y. et al., Experimental unsteady flow study in a patient-specific abdominal aortic aneurysm model, Experiments in Fluids, vol.116, issue.6, p.xx, 2010.
DOI : 10.1007/s00348-010-1034-6

C. Stamatopoulos, Y. Papaharilaou, D. Mathioulakis, and A. Et-katsamouris, Steady and unsteady flow within an axisymmetric tube dilatation, Experimental Thermal and Fluid Science, vol.34, issue.7, pp.915-927, 2010.
DOI : 10.1016/j.expthermflusci.2010.02.008

C. Stefanadis, C. Stratos, C. Vlachopoulos, S. Marakas, H. Boudoulas et al., Pressure-Diameter Relation of the Human Aorta : A New Method of Determination by the Application of a Special Ultrasonic Dimension Catheter, Circulation, vol.92, issue.8, pp.2210-2219, 1995.
DOI : 10.1161/01.CIR.92.8.2210

M. M. Stringfellow, P. F. Lawrence, and R. G. Et-stringfellow, The influence of aorta-aneurysm geometry upon stress in the aneurysm wall, Journal of Surgical Research, vol.42, issue.4, pp.425-433, 1987.
DOI : 10.1016/0022-4804(87)90178-8

H. Takagi, S. Yoshikawa, Y. Mizuno, Y. Matsuno, Y. Umeda et al., Intrathrombotic Pressure of a Thrombosed Abdominal Aortic Aneurysm, Annals of Vascular Surgery, vol.19, issue.1, 2005.
DOI : 10.1007/s10016-004-0141-3

C. A. Taylor, C. P. Cheng, L. A. Espinosa, B. T. Tang, D. Parker et al., In Vivo Quantification of Blood Flow and Wall Shear Stress in the Human Abdominal Aorta During Lower Limb Exercise, Annals of Biomedical Engineering, vol.30, issue.3, pp.402-410, 2002.
DOI : 10.1114/1.1476016

M. J. Thubrikar, J. Al-soudi, and F. Et-robicsek, Wall Stress Studies of Abdominal Aortic Aneurysm in a Clinical Model, Annals of Vascular Surgery, vol.15, issue.3, pp.355-366, 2001.
DOI : 10.1007/s100160010080

M. J. Thubrikar, M. Labrosse, F. Robicsek, J. Al-soudi, and B. Et-fowler, Mechanical properties of abdominal aortic aneurysm wall, Journal of Medical Engineering and Technology, vol.25, pp.133-142, 2001.

M. Toungara, G. Chagnon, and C. Et-geindreau, NUMERICAL ANALYSIS OF THE WALL STRESS IN ABDOMINAL AORTIC ANEURYSM: INFLUENCE OF THE MATERIAL MODEL NEAR-INCOMPRESSIBILITY, Journal of Mechanics in Medicine and Biology, vol.12, issue.01, 2011.
DOI : 10.1142/S0219519412004442

M. Toungara and C. Et-geindreau, Influence du comportement mécanique des artères sur la prédiction de la rupture des anévrismes de l'aorte abdominale, XIXème Congrès Français de Mécanique, 2009.

M. Toungara and C. Et-geindreau, Effects of the arterial wall anisotropy on the spatio-temporal distribution of wall stress and wall shear stress in abdominal aortic aneurysms, 6th World Congress on Biomechanics, 2010.

M. Toungara and C. Et-geindreau, Fluid structure interaction and material model influence on stresses distribution in abdominal aortic aneurysms, 9th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, 2010.

E. A. Van-dam, S. D. Dams, G. W. Peters, M. C. Rutten, G. W. Schurink et al., Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus, Biomechanics and Modeling in Mechanobiology, vol.27, issue.6, p.xx?x, 2007.
DOI : 10.1007/s10237-007-0080-3

V. Geest, J. P. Sacks, M. S. Vorp, and D. A. , The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta, Journal of Biomechanics, vol.39, issue.7, pp.1324-1334, 2006.
DOI : 10.1016/j.jbiomech.2005.03.003

V. Geest, J. P. Sascks, M. S. Vorp, and D. A. , A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms, Journal of Biomechanics, vol.39, issue.13, pp.2347-54, 2006.
DOI : 10.1016/j.jbiomech.2006.05.011

V. Geest, J. P. Schmidt, D. E. Sacks, M. S. Vorp, and D. A. , The Effects of Anisotropy on the Stress Analyses of Patient-Specific Abdominal Aortic Aneurysms, Annals of Biomedical Engineering, vol.36, issue.3, pp.921-953, 2008.
DOI : 10.1007/s10439-008-9490-3

V. Geest, J. P. Wang, D. H. Wisniewski, S. R. Makaroun, M. S. Vorp et al., Towards A Noninvasive Method for Determination of Patient-Specific Wall Strength Distribution in Abdominal Aortic Aneurysms, Annals of Biomedical Engineering, vol.37, issue.1, pp.1098-1106, 2006.
DOI : 10.1007/s10439-006-9132-6

M. Van-'t-veer, J. Buth, M. Merkx, P. Tonino, H. Van-den-bosch et al., Biomechanical properties of abdominal aortic aneurysms assessed by simultaneously measured pressure and volume changes in humans, Journal of Vascular Surgery, vol.48, issue.6, pp.1401-1407, 2008.
DOI : 10.1016/j.jvs.2008.06.060

A. K. Venkatasubramaniam, M. J. Fagan, T. Mehta, K. J. Ray, G. Kuhan et al., A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms, P. T, 2004.

R. Vignon, I. E. Et-taylor, and C. A. , Outflow boundary conditions for one-dimensional finite element modeling of blood flow and pressure waves in arteries, Wave Motion, vol.39, issue.4, pp.361-374, 2004.
DOI : 10.1016/j.wavemoti.2003.12.009

R. P. Vito and S. A. Et-dixon, Blood Vessel Constitutive Models???1995???2002, Annual Review of Biomedical Engineering, vol.5, issue.1, pp.413-452, 2003.
DOI : 10.1146/annurev.bioeng.5.011303.120719

K. Y. Volokh, Prediction of arterial failure based on a microstructural bi-layer fiber???matrix model with softening, Journal of Biomechanics, vol.41, issue.2, pp.447-53, 2008.
DOI : 10.1016/j.jbiomech.2007.08.001

K. Y. Volokh, Comparison of biomechanical failure criteria for abdominal aortic aneurysm, Journal of Biomechanics, vol.43, issue.10, pp.2032-2066, 2010.
DOI : 10.1016/j.jbiomech.2010.03.024

K. Y. Volokh and D. A. Vorp, A model of growth and rupture of abdominal aortic aneurysm, Journal of Biomechanics, vol.41, issue.5, pp.1015-1036, 2008.
DOI : 10.1016/j.jbiomech.2007.12.014

D. A. Vorp, Biomechanics of abdominal aortic aneurysm, Journal of Biomechanics, vol.40, issue.9, pp.1887-1902, 2007.
DOI : 10.1016/j.jbiomech.2006.09.003

D. A. Vorp, P. C. Lee, D. H. Wang, M. S. Makaroun, E. M. Nemoto et al., Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening, Journal of Vascular Surgery, vol.34, issue.2, pp.291-300, 2001.
DOI : 10.1067/mva.2001.114813

D. A. Vorp, W. A. Mandarino, M. W. Webster, and J. Et-gorcan, Potential influence of intraluminal thrombus on abdominal aortic aneurysm as assessed by a new non-invasive method, Cardiovascular Surgery, vol.4, issue.6, pp.732-739, 1996.
DOI : 10.1016/S0967-2109(96)00008-7

D. A. Vorp, M. L. Raghavan, and M. W. Webster, Mechanical wall stress in abdominal aortic aneurysm: Influence of diameter and asymmetry, Journal of Vascular Surgery, vol.27, issue.4, pp.632-639, 1998.
DOI : 10.1016/S0741-5214(98)70227-7

D. H. Wang, M. Makaroun, M. W. Webster, and D. A. Vorp, Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm, Journal of Biomechanical Engineering, vol.123, pp.536-539, 2001.

D. H. Wang, M. S. Makaroun, M. W. Webster, and D. A. Vorp, Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm, Journal of Vascular Surgery, vol.36, issue.3, pp.598-604, 2002.
DOI : 10.1067/mva.2002.126087

J. Wang, S. Liu, T. Kao, W. Hu, and C. Et-liu, NONINVASIVE DETERMINATION OF ARTERIAL PRESSURE-DEPENDENT COMPLIANCE IN YOUNG SUBJECTS USING AN ARTERIAL TONOMETER, Biomedical Engineering: Applications, Basis and Communications, vol.18, issue.03, pp.111-119, 2006.
DOI : 10.4015/S1016237206000191

R. Wang and R. L. Et-gleason-jr, A Mechanical Analysis of Conduit Arteries Accounting for Longitudinal Residual Strains, Annals of Biomedical Engineering, vol.15, issue.4, pp.1377-87, 2010.
DOI : 10.1007/s10439-010-9916-6

N. Westerhof, J. , L. Et-berend, and E. W. , The arterial Windkessel, Medical & Biological Engineering & Computing, vol.10, issue.suppl 2, pp.131-172, 2008.
DOI : 10.1007/s11517-008-0359-2

K. A. Wilson, A. J. Lee, A. J. Lee, P. R. Hoskins, F. G. Fowkes et al., The relationship between aortic wall distensibility and rupture of infrarenal abdominal aortic aneurysm, Journal of Vascular Surgery, vol.37, issue.1, pp.112-119, 2003.
DOI : 10.1067/mva.2003.40

H. Wolinsky and S. Et-glagov, Structural Basis for the Static Mechanical Properties of the Aortic Media, Circulation Research, vol.14, issue.5, pp.400-413, 1964.
DOI : 10.1161/01.RES.14.5.400

B. Wolters, M. Rutten, G. Schurink, U. Kose, J. De-hart et al., A patient-specific computational model of fluid???structure interaction in abdominal aortic aneurysms, Medical Engineering & Physics, vol.27, issue.10, pp.871-883, 2005.
DOI : 10.1016/j.medengphy.2005.06.008

J. R. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, The Journal of Physiology, vol.127, issue.3, pp.553-63, 1955.
DOI : 10.1113/jphysiol.1955.sp005276

D. M. Wootton and D. N. Et-ku, Fluid Mechanics of Vascular Systems, Diseases, and Thrombosis, Annual Review of Biomedical Engineering, vol.1, issue.1, pp.299-329, 1999.
DOI : 10.1146/annurev.bioeng.1.1.299

M. Xenos, S. H. Rambhia, Y. Alemu, S. Einav, N. Labropoulos et al., Patient-Based Abdominal Aortic Aneurysm Rupture Risk Prediction with Fluid Structure Interaction Modeling, Annals of Biomedical Engineering, vol.96, issue.11, pp.3323-3360, 2010.
DOI : 10.1007/s10439-010-0094-3

J. Xiong, W. Guo, J. Wang, and W. Et-zhou, Effects of Wall Thickness on Stress Distribution in Patient-Specific Models of Abdominal Aortic Aneurysm, 2009 2nd International Conference on Biomedical Engineering and Informatics, pp.1-3, 2009.
DOI : 10.1109/BMEI.2009.5305297

J. Xiong, S. M. Wang, W. Zhou, and J. G. Et-wu, Measurement and analysis of ultimate mechanical properties, stress-strain curve fit, and elastic modulus formula of human abdominal aortic aneurysm and nonaneurysmal abdominal aorta, Journal of Vascular Surgery, vol.48, issue.1, pp.189-195, 2008.
DOI : 10.1016/j.jvs.2007.12.053

G. R. Zendehbudi and A. Et-kazemi, The accuracy of thin-shell theory in estimation of aneurysm rupture, Journal of Biomechanics, vol.40, issue.14, pp.3230-3235, 2007.
DOI : 10.1016/j.jbiomech.2007.04.022

O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, 2000.

. Mots-clés, Anévrisme de l'aorte abdominale, rupture, thrombus, interactions fluide structures , (poro)-hyperélasticité, anisotropie, modélisation numérique