P. J. Cunat, Aciers inoxydables, Critères de choix et structure, Techniques de l'Ingénieur, traité Matériaux métalliques MB4; dossier M4 540, 2000.

P. J. Cunat, Aciers inoxydables, Propriétés, Résistance à la corrosion, Techniques de l'Ingénieur, traité Matériaux métalliques MB4; dossier M4 541, 2000.

F. H. Keating, Chromium Nickel Austenitic Steels, 1956.

L. Pasco, Évaluation non destructive par mesures du bruit Barkhausen de la martensite a' induite par la fatigue oligo-cyclique d'aciers inoxydables austénitiques, Thèse de l'Institut National des Sciences Appliquées de Lyon, 2004.

P. L. Manganon and G. Thomas, The martensite phases in 304 stainless steel, Metallurgical Transactions, vol.18, issue.6, pp.1577-1586, 1970.
DOI : 10.1007/BF02642003

P. Lacombe, B. Baroux, and G. Beranger, Les aciers inoxydables, Les éditions de physique, 1990.

E. Nagy, V. Mertinger, F. Tranta, and J. Solyom, Deformation induced martensitic transformation in stainless steels, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.378-308, 2004.
DOI : 10.1016/j.msea.2003.11.074

F. B. Pickering, Physical metallurgical development of stainless steel, Proceedings of the Stainless Steels Conférence, pp.2-28, 1984.

G. Hénaff and F. , Fatigue des structures: endurance, critères de dimensionnement, propagation des fissures, rupture, Ellipses, 2005.

C. Bathias-augmentée, C. Bathias, and J. P. Baïlon, La fatigue des matériaux et des structures, pp.105-110, 1997.

H. Mughrabi, F. Ackermann, and H. Kerz, Persitant slip bands in fatigue face-centered and body-centered cubic metals, Fatigue Mechanisms, ASTM STP 675, pp.69-105, 1979.

M. Gerland, R. Alain, B. A. Saadi, and J. Mendez, Low cycle fatigue behaviour in vacuum of a 316L-type austenitic stainless steel between 20 and 600 degrees C .2. dislocation structure evolution and correlation with cyclic behaviour, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.229-68, 1997.

S. S. Manson, Behavior of materials under conditions of thermal stresses", in: Heat transfer symposium, 1952.

L. F. Coffin, A study of the effect of cyclic thermal stresses on a ductile metal, Trans. ASME, vol.76, pp.931-950, 1954.

Y. Murakami, Effects of Small Defects and Nonmetallic Inclusions on the Fatigue Strength of Metals, Key Engineering Materials, vol.51, issue.52, pp.167-180, 1989.
DOI : 10.4028/www.scientific.net/KEM.51-52.37

H. U. Hong, B. S. Rho, and S. W. Nam, A study on the crack initiation and growth from deltaferrite/gamma phase interface under continuous fatigue and creep-fatigue conditions in type 304L stainless steels, International Journal of Fatigue, pp.24-1063, 2002.

H. P. Lieurade-augmentée, C. Bathias, and J. P. Baïlon, La fatigue des matériaux et des structures, pp.57-104, 1997.

J. Goodman, Mechanics applied to engineering, 1989.

G. L. Wire, T. R. Leax, and J. T. Kandra, Mean stress and environment effects on fatigue in type 304 stainless steel, pp.213-228, 1999.

L. Wagner and G. Lütjering, Influence of surface condition on fatigue strength, Proceedings of the 4th Int. Conf. on Fatigue and Fatigue Thresholds, pp.15-20, 1990.

H. Holzapfel, V. Schulze, O. Vohringer, and E. Macherauch, Residual stress relaxation in an AISI 4140 steel due to quasistatic and cyclic loading at higher temperatures, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.248-257, 1998.
DOI : 10.1016/S0921-5093(98)00522-X

D. J. Smith, G. H. Farrahi, W. X. Zhu, and C. A. Mcmahon, Experimental measurement and finite element simulation of the interaction between residual stresses and mechanical loading, International Journal of Fatigue, vol.23, issue.4, pp.293-302, 2001.
DOI : 10.1016/S0142-1123(00)00104-3

S. G. Raman and K. A. Padmanabhan, Effect of prior cold work on the room-temperature low-cycle fatigue behaviour of AISI 304LN stainless steel, International Journal of Fatigue, vol.18, issue.2, pp.71-79, 1996.
DOI : 10.1016/0142-1123(95)00078-X

Y. S. Shih and J. J. Chen, The frequency effect on the fatigue crack growth rate of 304 stainless steel, Nuclear Engineering and Design, vol.191, issue.2, pp.225-230, 1999.
DOI : 10.1016/S0029-5493(99)00144-2

C. Belamri, Influence de la température (20 à 600°C) et de l'environnement (air-vide) sur le comportement en fatigue plastique d'un acier inoxydable austénitique (316L), Thèse de l, 1986.

R. Alain, Comportement en fatigue plastique d'un acier inoxydable austénitique type 316L entre 20 et 600°C; Etude des facteurs gouvernant la durée de vie, Thèse de l'Université de Poitiers, 1993.

J. Mendez, On the effects of temperature and environment on fatigue damage processes in Ti alloys and in stainless steel, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.263-187, 1999.
DOI : 10.1016/S0921-5093(98)01164-2

F. D. Fischer, T. Schaden, F. Appel, and H. Clemens, Mechanical twins, their development and growth, European Journal of Mechanics - A/Solids, vol.22, issue.5, pp.22-709, 2003.
DOI : 10.1016/S0997-7538(03)00081-0

M. A. Meyers and K. K. Chawla, Mechanical behavior of materials, 1998.
DOI : 10.1017/CBO9780511810947

F. Hamdi and S. Asgari, Evaluation of the Role of Deformation Twinning in Work Hardening Behavior of Face-Centered-Cubic Polycrystals, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, pp.39-294, 2008.
DOI : 10.1007/s11661-007-9356-6

T. H. Lee, C. S. Oh, S. J. Kim, and S. Takaki, Deformation twinning in high-nitrogen austenitic stainless steel, Acta Materialia, vol.55, issue.11, pp.55-3649, 2007.
DOI : 10.1016/j.actamat.2007.02.023

J. Garnier, Déformation sous flux des aciers austénitiques des structures internes des réacteurs à eau pressurisée, Thèse de doctorat de l'Institut National Polytechnique de Grenoble, 2007.

M. A. Meyers, O. Vohringer, and V. A. Lubarda, The onset of twinning in metals: a constitutive description, Acta Materialia, vol.49, issue.19, pp.49-4025, 2001.
DOI : 10.1016/S1359-6454(01)00300-7

A. Renault, J. Garnier, A. Jaillet, F. Barcelo, I. Tournié et al., Identification des mécanismes de déformation plastique dans l'acier austénitique inoxydable 304L, 2006.

R. H. Richman, G. F. Bolling, . Stress, . Deformation, . And et al., Stress, deformation, and martensitic transformation, Metallurgical Transactions, vol.6, issue.9, p.2451, 1971.
DOI : 10.1007/BF02814882

G. B. Olson, M. Cohen, M. For, . Strain-induced, . Nucleation et al., A mechanism for the strain-induced nucleation of martensitic transformations, Journal of the Less Common Metals, vol.28, issue.1, p.107, 1972.
DOI : 10.1016/0022-5088(72)90173-7

P. C. Maxwell, A. Goldberg, J. C. Shyne, and S. Alloys, Stress-Assisted and strain-induced martensites in FE-NI-C alloys, Metallurgical Transactions, vol.206, issue.6, pp.1305-1318, 1974.
DOI : 10.1007/BF02646613

J. A. Venables, M. Transformation, . In, and . Steel, The martensite transformation in stainless steel, Philosophical Magazine, vol.2, issue.73, p.35, 1962.
DOI : 10.1016/0001-6160(61)90133-X

D. Hennessy, G. Steckel, C. Altstetter, and P. Fatigue, Phase transformation of stainless steel during fatigue, Metallurgical Transactions A, vol.24, issue.3, pp.415-424, 1976.
DOI : 10.1007/BF02642838

A. Das, S. Sivaprasad, M. Ghosh, P. C. Chakraborti, and S. Tarafder, Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.486-283, 2008.
DOI : 10.1016/j.msea.2007.09.005

R. G. Teteruk, H. J. Maier, and H. J. Christ, Fatigue-induced martensitic transformation in metastable stainless steels, Proceedings of the 4th International Conference on Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, Garmisch-Partenkirchen, pp.321-326, 1998.
DOI : 10.1016/B978-008043326-4/50056-8

U. Krupp, H. J. Christ, P. Lezuo, H. J. Maier, and R. G. Teteruk, Influence of carbon concentration on martensitic transformation in metastable austenitic steels under cyclic loading conditions, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.319-527, 2001.
DOI : 10.1016/S0921-5093(01)01087-5

W. S. Lee and C. F. Lin, The morphologies and characteristics of impact-induced martensite in 304L stainless steel, Scripta Materialia, vol.43, issue.8, pp.43-777, 2000.
DOI : 10.1016/S1359-6462(00)00487-5

M. Shaira, Caractérisation non destructive de la transformation martensitique de l'acier 304L induite par déformation cyclique, Thèse de l'Institut National des Sciences Appliquées de Lyon, 2006.

C. Bathias, R. M. Pelloux, F. Crack-propagation, . In, . And et al., Fatigue crack propagation in martensitic and austenitic steels, Metallurgical Transactions, vol.3, issue.5, pp.1265-1273, 1973.
DOI : 10.1007/BF02644521

J. Stolarz, N. Baffie, and T. Magnin, Fatigue short crack behaviour in metastable austenitic stainless steels with different grain sizes, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.319-521, 2001.
DOI : 10.1016/S0921-5093(01)01072-3

A. Garcia, Caractérisation microstructurale d'aciers inoxydables austénitiques de type AISI 304L sollicités en fatigue, Thèse de l'Institut Polytechnique de Grebnoble, 2009.

P. Villechaise, L. Sabatier, and J. C. Girard, On slip band features and crack initiation in fatigued 316L austenitic stainless steel: Part 1: Analysis by electron back-scattered diffraction and atomic force microscopy, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.323-377, 2002.
DOI : 10.1016/S0921-5093(01)01381-8

J. Man, K. Obrtlik, and J. Polak, Study of surface relief evolution in fatigued 316L austenitic stainless steel by AFM, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.351-123, 2003.
DOI : 10.1016/S0921-5093(02)00846-8

H. Mughrabi, R. Wang, K. Differt, and U. Essmann, Fatigue Crack Initiation by Cyclic Slip Irreversibilities in High-Cycle Fatigue, Fatigue Mechanisms: Advances in quantitative Measurements of Physical Damage, ASTM STP 811, pp.5-45, 1983.
DOI : 10.1520/STP30551S

M. Mineur, P. Villechaise, and J. Mendez, Influence of the crystalline texture on the fatigue behavior of a 316L austenitic stainless steel, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.286-257, 2000.
DOI : 10.1016/S0921-5093(00)00804-2

C. Blochwitz and W. Tirschler, Influence of texture on twin boundary cracks in fatigued austenitic stainless steel, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.339-318, 2003.
DOI : 10.1016/S0921-5093(02)00126-0

M. Bayerlein and H. Mughrabi, Fatigue crack initiation and early crack growth in copper polycristals _ Effets of temperature and environment, pp.55-82, 1992.

J. Mendez, P. Violan, M. Quintard, and C. Gasc, Characterization of fatigue damage in finegrained copper tested in air and in vacuum, 5th Proc. of Europ. Conf. on Fracture, pp.515-522, 1984.

J. Chene and A. M. Brass, Hydrogen transport by mobile dislocations in nickel base superalloy single crystals, Scripta Materialia, vol.40, issue.5, pp.40-537, 1999.
DOI : 10.1016/S1359-6462(98)00451-5

J. A. Donovan, A. Evolution, . Hydrogen, . Metals, and . Plastic-deformation, Accelerated evolution of hydrogen from metals during plastic deformation, Metallurgical Transactions A, vol.38, issue.11, pp.1677-1683, 1976.
DOI : 10.1007/BF02817885

R. Alain, P. Violan, and J. Mendez, Low cycle fatigue behavior in vacuum of a 316L type austenitic stainless steel between 20 and 600 degrees C .1. fatigue resistance and cyclic behavior, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.229-87, 1997.

T. Magnin, Développements récents en fatigue oligocyclique sous l'angle de la métallurgie physique, Mémoires et études scientifiques, pp.33-48, 1991.

J. Mendez, Etude comparative des mécanismes d'amorçage des microfissures de fatigue sous air et sous vide dans le cuivre polycristallin. Influence d'une implantation ionique, Thèse de l, 1984.
DOI : 10.1016/0036-9748(80)90255-0

P. C. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, Journal of Basic Engineering, vol.85, issue.4, pp.528-534, 1963.
DOI : 10.1115/1.3656900

G. R. Irwin, Analysis of stresses and strain near the end of acrack traversing a plate, Journal of Applied Mechanics, Transactions of ASME, vol.24, pp.361-364, 1948.

K. Obrtlik, J. Polak, M. Hajek, and A. Vasek, Short fatigue crack behaviour in 316L stainless steel, Short fatigue crack behaviour in 316L stainless steel, pp.471-475, 1997.
DOI : 10.1016/S0142-1123(97)00005-4

A. Carpinteri, . Stress-intensity, . Factors, . Semielliptic, . Cracks et al., Stress-intensity factors for semi-elliptical surface cracks under tension or bending, Engineering Fracture Mechanics, vol.38, issue.4-5, pp.327-334, 1991.
DOI : 10.1016/0013-7944(91)90011-O

A. Carpinteri, S. Change, . Surface, . In, . Bars et al., Shape change of surface cracks in round bars under cyclic axial loading, International Journal of Fatigue, vol.15, issue.1, pp.21-26, 1993.
DOI : 10.1016/0142-1123(93)90072-X

N. A. Noda, K. Kobayashi, and T. Oohashi, Variation of the stress intensity factor along the crack front of interacting semi-elliptical surface cracks, Archive of Applied Mechanics, pp.71-114, 2001.

R. G. Ballinger, Light Water Reactors: Materials of Construction and their Performance: Characteristics that Impact Degradation, in: International conference on plants materials degradations _ Application to the stress corrosion cracking of Ni base alloys, The Materials Ageing Institute, 2008.

M. Higuchi and K. Iida, AN INVESTIGATION OF FATIGUE STRENGTH CORRECTION FACTOR FOR OXYGENATED HIGH TEMPERATURE WATER ENVIRONMENT, p.6, 1988.
DOI : 10.1016/B978-1-4832-8430-9.50114-3

O. K. Chopra and W. J. Shack, Effects of LWR Coolant Environments on Fatigue Design Curves of Carbon and Low-Alloy Steels, NUREG/CR-6583, ANL-97, pp.20555-20556, 1998.
DOI : 10.2172/573404

O. K. Chopra, Effects of LWR Coolant Environments on Fatigue Design Curves of Austenitic Stainless Steels, U.S. NRC; Office of Nuclear Regulatory Research, pp.20555-20556, 1999.

T. Nakamura, I. Saito, and Y. Asada, Guidelines on Environmental Fatigue Evaluation for LWR Component, Pressure Vessel and Piping Codes and Standards, 2003.
DOI : 10.1115/PVP2003-1780

B. F. Langer, Design of Pressure Vessels for Low-Cycle Fatigue, Journal of Basic Engineering, vol.84, issue.3, pp.389-402, 1962.
DOI : 10.1115/1.3657332

W. E. Cooper, The Initial Scope and Intent of the Section III Fatigue Design Procedure, Technical Information from Workshop on Cyclic Life and Environmental Effects in Nuclear Applications, 1992.

Y. S. Garud, S. R. Paterson, R. B. Dooley, R. S. Pathania, J. Hickling et al., Corrosion Fatigue of Water Touched Pressure Retaining Components in Power Plants"; EPRI TR?106696, Final Report, 1997.

R. Kilian, J. Hickling, and R. Nickell, Environmental Fatigue Testing of Stainless Steel Pipe Bends in Flowing, Simulated PWR Primary Water at 240°C"; MRP-151, Electric Power Research Institute, Third Intl. Conf. Fatigue of Reactor Components, 2005.

O. K. Chopra and W. J. Shack, The Effect of LWR Coolant Environments on the Fatigue Life of Reactor Materials, Volume 1: Codes and Standards, pp.20555-20556, 2007.
DOI : 10.1115/PVP2006-ICPVT-11-93889

O. K. Chopra and W. J. Shack, Environmental Effects on Fatigue Crack Initiation in Piping and Pressure Vessel Steels, U.S. NRC; Office of Nuclear Regulatory Research, pp.20555-20556, 2001.

O. K. Chopra, Mechanism and Estimation of Fatigue Crack Initiation in Austenitic Stainless Steels in LWR Environments, U.S. NRC; Office of Nuclear Regulatory Research, vol.6787, pp.20555-20556, 2002.
DOI : 10.2172/925035

O. K. Chopra and W. J. Shack, Review of the Margins for ASME Code Fatigue Design Curve ? Effects of Surface Roughness and Material Variability, U.S. NRC; Office of Nuclear Regulatory Research, pp.20555-20556, 2003.
DOI : 10.2172/925073

C. E. Jaske, W. J. Odonnell, F. Design, . For-pressure-vessel, and . Alloys, Fatigue Design Criteria for Pressure Vessel Alloys, Journal of Pressure Vessel Technology, vol.99, issue.4, pp.584-592, 1977.
DOI : 10.1115/1.3454577

J. B. Conway, R. H. Stentz, and J. T. Berling, Fatigue, Tensile, and Relaxation Behavior of Stainless Steels, U.S. Atomic Energy Commission, p.26135, 1975.
DOI : 10.2172/4239699

D. A. Hale, S. A. Wilson, J. W. Kass, E. Kiss, . Low-cycle et al., Low Cycle Fatigue of Commercial Piping Steels in a BWR Primary Water Environment, Journal of Engineering Materials and Technology, vol.103, issue.1, pp.15-25, 1981.
DOI : 10.1115/1.3224967

S. Ranganath, J. N. Kass, and J. D. Heald, Fatigue Behavior of Carbon Steel Components in High?Temperature Water Environments" Low?Cycle Fatigue and Life Prediction, American Society for Testing and Materials; ASTM STP 770, pp.436-459, 1982.

M. Higuchi, K. Iida, D. P. Jones, B. R. Newton, W. J. O-'donnell et al., Reduction in Low?Cycle Fatigue Life of Austenitic Stainless Steels in High?Temperature Water, Pressure Vessel and Piping Codes and Standards, pp.79-86, 1997.

M. Higuchi, K. Iida, and K. Sakaguchi, Effects of Strain Rate Fluctuation and Strain Holding on Fatigue Life Reduction for LWR Structural Steels in Simulated PWR Water, Pressure Vessel and Piping Codes and Standards, pp.143-152, 2001.

A. Hirano, M. Yamamoto, K. Sakaguchi, T. Shoji, and K. Iida, Effects of Water Flow Rate on Fatigue Life of Ferritic and Austenitic Steels in Simulated LWR Environment, Pressure Vessel and Piping Codes and Standards, pp.143-150, 2002.
DOI : 10.1115/PVP2002-1231

M. Fujiwara, T. Endo, and H. Kanasaki, Strain Rate Effects on the Low?Cycle Fatigue Strength of 304 Stainless Steel in High?Temperature Water Environment. Fatigue Life: Analysis and Prediction, Proc. Intl. Conf. and Exposition on Fatigue, Corrosion Cracking, Fracture Mechanics and Failure Analysis, pp.309-313, 1986.

H. Mimaki, H. Kanasaki, I. Suzuki, M. Koyama, M. Akiyama et al., Material Aging Research Program for PWR Plants, Aging Management Through Maintenance Management, PVP I. T. Kisisel, American Society of Mechanical Engineers, vol.332, pp.97-105, 1996.

H. Kanasaki, R. Umehara, H. Mizuta, and T. Suyama, Fatigue Lives of Stainless Steels in PWR Primary Water, Trans. 14th Intl. Conf. on Structural Mechanics in Reactor Technology (SMiRT 14), pp.473-483, 1997.

H. Kanasaki, R. Umehara, H. Mizuta, and T. Suyama, Effects of Strain Rate and Temperature Change on the Fatigue Life of Stainless Steel in PWR Primary Water, Trans. 14th Intl. Conf. on Structural Mechanics in Reactor Technology (SMiRT 14), pp.485-493, 1997.

M. Hayashi, Thermal fatigue strength of type 304 stainless steel in simulated BWR environment, Nuclear Engineering and Design, vol.184, issue.1, pp.135-144, 1998.
DOI : 10.1016/S0029-5493(97)00372-5

M. Hayashi, K. Enomoto, T. Saito, and T. Miyagawa, Development of thermal fatigue testing apparatus with BWR water environment and thermal fatigue strength of austenitic stainless steels, Nuclear Engineering and Design, vol.184, issue.1, pp.184-113, 1998.
DOI : 10.1016/S0029-5493(97)00364-6

K. Tsutsumi, H. Kanasaki, T. Umakoshi, T. Nakamura, S. Urata et al., Fatigue Life Reduction in PWR Water Environment for Stainless Steels, Assessment Methodologies for Preventing Failure: Service Experience and Environmental Considerations, PVP, pp.23-34, 2000.

K. Tsutsumi, T. Dodo, H. Kanasaki, S. Nomoto, Y. Minami et al., Fatigue Behavior of Stainless Steel under Conditions of Changing Strain Rate in PWR Primary Water, Pressure Vessel and Piping Codes and Standards, PVP, pp.135-141, 2001.

K. Tsutsumi, M. Higuchi, K. Iida, and Y. Yamamoto, The Modified Rate Approach Method to Evaluate Fatigue Life Under Synchronously Changing Temperature and Strain Rate in Elevated Temperature Water, Pressure Vessel and Piping Codes and Standards, pp.99-107, 2002.
DOI : 10.1115/PVP2002-1227

O. K. Chopra, D. J. Gavenda, D. P. Jones, B. R. Newton, W. J. O-'donnell et al., Effects of LWR Coolant Environments on Fatigue Lives of Austenitic Stainless Steels, Pressure Vessel and Piping Codes and Standards, pp.87-97, 1997.

O. K. Chopra and D. J. Gavenda, Effects of LWR Coolant Environments on Fatigue Lives of Austenitic Stainless Steels, Journal of Pressure Vessel Technology, vol.120, issue.2, pp.116-121, 1998.
DOI : 10.1115/1.2842228

O. K. Chopra and J. L. Smith, Estimation of Fatigue Strain?Life Curves for Austenitic Stainless Steels in Light Water Reactor Environments"; Fatigue Environmental Factors and New Materials, pp.249-259, 1998.

O. K. Chopra, B. Alexandreanu, and W. J. Shack, Effect of Material Heat Treatment on Fatigue Crack Initiation in Austenitic Stainless Steels in LWR Environments, U.S. NRC; Office of Nuclear Regulatory Research, pp.20555-20556, 2005.
DOI : 10.2172/925154

H. D. Solomon, C. Amzallag, R. E. De-lair, and A. J. Vallee, Strain Controlled Fatigue of Type 304L SS in Air and PWR Water, Third Intl. Conf. on Fatigue of Reactor Components, 2004.

H. D. Solomon, C. Amzallag, A. J. Vallee, R. E. De, and . Lair, Asme, Influence of mean stress on the fatigue behavior of 304L SS in air and PWR water, Proceedings of the ASME Pressure Vessels and Piping Conference -2005, pp.87-97, 2005.

H. D. Solomon and C. Amzallag, Asme, Comparison of models predicting the fatigue behavior of Austenitic Stainless Steels, Proceedings of the ASME Pressure Vessels and Piping Conference -2005, pp.73-86, 2005.

M. Higuchi, K. Sakaguchi, and A. , Review and consideration of unsettled problems on evaluation of fatigue damage in LWR water, Proceedings of the ASME Pressure Vessels and Piping Conference -2005, pp.99-108, 2005.

M. Higuchi, T. Nakamura, and Y. Sugie, Updated Knowledge Implemented to the Revision of Environmental Fatigue Evaluation Method for Nuclear Power Plant in JSME Code, Volume 1: Codes and Standards, 2009.
DOI : 10.1115/PVP2009-77077

M. Higuchi, K. Sakaguchi, and Y. Nomura, Effects of Strain Holding and Continuously Changing Strain Rate on Fatigue Life Reduction of Structural Materials in Simulated LWR Water, Volume 1: Codes and Standards
DOI : 10.1115/PVP2007-26101

K. J. Miller, Initiation and Growth Rates of Short Fatigue Cracks", in: Fundamentals of Deformation and Fracture, Eshelby Memorial Symposium, pp.477-500, 1985.

D. J. Gavenda, P. R. Luebbers, O. K. Chopra, S. Rahman, K. K. Yoon et al., Crack Initiation and Crack Growth Behavior of Carbon and Low?Alloy Steels, Fatigue and Fracture 1, pp.243-255, 1997.
DOI : 10.2172/505296

S. G. Raman, D. Argence, and A. Pineau, HIGH TEMPERATURE SHORT FATIGUE CRACK BEHAVIOUR IN A STAINLESS STEEL, Fatigue & Fracture of Engineering Materials & Structures, vol.42, issue.7, pp.20-1015, 1997.
DOI : 10.1111/j.1460-2695.1997.tb01544.x

K. J. Miller, Damage in Fatigue: A New Outlook, in: International Pressure Vessels and Piping Codes and Standards, Current Applications, PVP, vol.11, issue.313, pp.191-192, 1995.

J. L. Smith and O. K. Chopra, Crack Initiation in Smooth Fatigue Specimens of Austenitic Stainless Steel in Light Water Reactor Environments, Operations, Applications, and Components ? 1999, pp.235-242, 1999.

W. J. Shack and T. F. Kassner, Review of Environmental Effects on Fatigue Crack Growth of Austenitic Stainless Steels, p.94, 1994.

T. Shoji, H. Takahashi, M. Suzuki, T. Kondo, A. New et al., A New Parameter for Characterizing Corrosion Fatigue Crack Growth, Journal of Engineering Materials and Technology, vol.103, issue.4, pp.298-304, 1981.
DOI : 10.1115/1.3225020

D. Tice and K. Rigby, Corrosion fatigue crack growth of austenitic stainless steel in PWR primary coolant at low frequency, 3rd Int. Conf. on Fatigue of Reactor Components; EPRI - US NRC -OECD NEA, 2004.

D. Tice, N. Platts, K. Rigby, J. Stairmand, and D. Swan, Asme, Influence of PWR primary coolant environment on corrosion fatigue crack growth of austenitic stainless steel, Proceedings of the ASME Pressure Vessels and Piping Conference -2005, pp.193-205, 2005.

W. H. Cullen, R. E. Taylor, K. Törronen, and M. Kemppainen, The Temperature Dependence of Fatigue Crack Growth Rates of A351 CF8A Cast Stainless Steel in LWR Environment, p.3546, 1984.

C. Amzallag, G. Baudry, and J. L. Bernard, Effect of PWR Environment on the Fatigue Crack Growth of Different Stainless Steels and Inconel Type Alloy, Proc. IAEA Specialists Meeting on Subcritical Crack Growth; NUREG/CP-044, 1983.

W. Bamford, Fatigue Crack Growth of Stainless Steel Piping in a Pressurized Water Reactor Environment, Journal of Pressure Vessel Technology, vol.101, issue.1, p.73, 1979.
DOI : 10.1115/1.3454601

J. L. Bernard, B. Houssin, and G. Slama, Validation des Caracteristiques de Calcul des Materiaux constituant le Circuit Primaire des Reacteurs PWR, p.218, 1977.

W. M. Evans and G. L. Wire, Results of High Stress Ratio and Low Stress Intensity on Fatigue Crack Growth Rates for 304 Stainless Steel in 288ºC Water, Pressure Vessel & Piping Codes and Standards, p.1226, 2002.

G. L. Wire, W. M. Evans, and W. J. Mills, Fatigue Crack Propagation Tests on 304 Stainless Steel in High Temperature Water: Accelerated Cracking Rates and Transition to Lower Rates, Pressure Vessel and Piping Codes and Standards, p.71, 2004.
DOI : 10.1115/PVP2004-2675

L. G. Ljungberg, C. Cubicciotti, and M. Trolle, Effect of Water Impurities in BWRs on Environmental Crack Growth under Realistic Load Conditions, Proc. 4th Int. Symp

L. G. Ljungberg, C. Cubicciotti, and M. Trolle, Effect of Water Impurities in BWRs on Environmental Crack Growth in Type 304 Stainless Steel, NUREG/ CP?0112, p.57, 1990.

G. L. Wire and W. J. Mills, Fatigue Crack Propagation Rates for Notched 304 Stainless Steel Specimens In Elevated Temperature Water, Journal of Pressure Vessel Technology, vol.126, issue.3, pp.318-326, 2004.
DOI : 10.1115/1.1767859

G. L. Wire, W. M. Evans, and W. J. Mills, Asme, Fatigue crack propagation of 304 stainless steel in high temperature water-additional tests and data correlation, Proceedings of the ASME Pressure Vessels and Piping Conference -2005, pp.207-222, 2005.

Y. Nomura, H. Kanasaki, K. Sakaguchi, and S. Suzuki, Fatigue Crack Growth Curve for Austenitic Stainless Steels in PWR Environment, Proceedings of PVP2006-ICPVT-11, ASME Pressure Vessels and Piping Division Conference, 2006.

O. K. Chopra, W. K. Soppet, and W. J. Shack, Effects of Alloy Chemistry, Cold Work, and Water Chemistry on Corrosion Fatigue and Stress Corrosion Cracking of Nickel Alloys and Welds, pp.6721-6722, 2001.
DOI : 10.2172/925005

J. M. Keisler, O. K. Chopra, and W. J. Shack, Statistical models for estimating fatigue strain-life behavior of pressure boundary materials in light water reactor environments, Nuclear Engineering and Design, vol.167, issue.2, pp.167-129, 1996.
DOI : 10.1016/S0029-5493(96)01293-9

R. M. Pelloux, J. M. Genkin-augmentée, C. Bathias, and J. P. Baïlon, La fatigue des matériaux et des structures, pp.365-385, 1997.

F. P. Ford, Overview of Collaborative Research into the Mechanisms of Environmentally Controlled Cracking in the Low Alloy Pressure Vessel Steel/Water System Atomic Energy Agency Specialists' Meeting on Subcritical Crack Growth, Proc. 2nd Int, pp.2090-2093, 1986.

H. Hänninen, K. Törrönen, and W. H. Cullen, Comparison of Proposed Cyclic Crack Growth Mechanisms of Low Alloy Steels in LWR Environments Atomic Energy Agency Specialists' Meeting on Subcritical Crack Growth, Proc. 2nd Int, pp.2090-73, 1986.

Y. J. Kim, Analysis of oxide film formed on type 304 stainless steel in 288 degrees C water containing oxygen, hydrogen, and hydrogen peroxide, Corrosion, pp.55-81, 1999.

M. D. Belo, M. Walls, N. E. Hakiki, J. Corset, E. Picquenard et al., Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment, Corrosion Science, pp.40-447, 1998.

B. Stellwag, The mechanism of oxide film formation on austenitic stainless steels in high temperature water, Corrosion Science, vol.40, issue.2-3, pp.337-370, 1998.
DOI : 10.1016/S0010-938X(97)00140-6

L. H. De-almeida and S. N. Monteiro, The significance of Dynamic Strain Aging in Austenitic Stainless Steel, Second International Conference on Mechanical Behavior of Materials, pp.1697-1701, 1976.

S. G. Hong and S. B. Lee, Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel, Journal of Nuclear Materials, vol.328, issue.2-3, pp.328-232, 2004.
DOI : 10.1016/j.jnucmat.2004.04.331

S. L. Mannan, Role of dynamic strain ageing in low cycle fatigue, Bulletin of Materials Science, vol.11, issue.6, pp.561-582, 1993.
DOI : 10.1007/BF02757656

J. H. Wu and C. K. Lin, Effect of strain rate on high-temperature low-cycle fatigue of 17-4 PH stainless steels, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.390-291, 2005.
DOI : 10.1016/j.msea.2004.08.063

V. S. Srinivasan, N. Valsan, R. Sandhya, K. B. Rao, S. L. Mannan et al., High temperature time-dependent low cycle fatigue behaviour of a type 316L(N) stainless steel, High temperature time-dependent low cycle fatigue behaviour of a type 316L(N) stainless steel, pp.11-21, 1999.
DOI : 10.1016/S0142-1123(98)00052-8

S. G. Hong, K. O. Lee, and S. B. Lee, Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel, International Journal of Fatigue, vol.27, issue.10-12, pp.27-1420, 2005.
DOI : 10.1016/j.ijfatigue.2005.06.037

K. Kanazawa, K. Yamaguchi, and S. Nishijima, Mapping of Low Cycle Fatigue Mechanisms at Elevated Temperatures for an Austenitic Stainless Steel, Low Cycle Fatigue, ASTM STP 942, pp.519-530, 1988.
DOI : 10.1520/STP24503S

S. Petitjean, Influence de l'état de surface sur le comportement en fatigue à grand nombre de cycles de l'acier inoxydable austénitique 304L, Thèse de l'Université de Poitiers _ Ecole Nationale, 2003.

Y. Lehericy, Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitée d'un acier inoxydable austénitique 304L, Thèse de l'Université de Poitiers _ Ecole Nationale, 2007.

J. C. Le-roux, S. Taheri, J. P. Sermage, J. Colin, and A. Fatemi, Cyclic Deformation and Fatigue Behaviors of Stainless Steel 304L Including Mean Stress and Pre-Straining Effects, Volume 3: Design and Analysis, pp.2008-61789, 2008.
DOI : 10.1115/PVP2008-61789

T. Mura, Y. Nakasone, A. Theory, . Fatigue, . Initiation et al., A Theory of Fatigue Crack Initiation in Solids, Journal of Applied Mechanics, vol.57, issue.1, pp.1-6, 1990.
DOI : 10.1115/1.2888304

C. Blochwitz and R. Richter, Plastic strain amplitude dependent surface path of microstructurally short fatigue cracks in face-centred cubic metals, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.120-129, 1999.
DOI : 10.1016/S0921-5093(99)00060-X

C. Blochwitz, Fatigue Cracks: Propagation of Short Cracks
DOI : 10.1016/B0-08-043152-6/00516-7

C. Blochwitz, W. Tirschler, and A. Weidner, Crack opening displacement and propagation rate of microstructurally short cracks, Materials Science and Engineering: A, vol.357, issue.1-2, pp.264-269, 2003.
DOI : 10.1016/S0921-5093(03)00212-0

C. Blochwitz, S. Jacob, and W. Tirschler, Grain orientation effects on the growth of short fatigue cracks, austenitic stainless steel, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, pp.496-59, 2008.

M. Ghammouri, Etude des facteurs physiques déterminant le dommage en fatigue plastique, Thèse de l'Université de Poitiers _ Ecole Nationale Supérieure de Mécanique et d'Aérotechnique et Faculté des Sciences Fondamentales et Appliquées, 1990.

B. C. De and D. L. , Sur la Relation entre l'Ecartement à Fond de Fissure et la Vitesse de Propagation d'une Fissure par Fatigue, C.R. Acad. Sc. T, vol.274, pp.6-1972

L. A. James and D. Jones, Fatigue Crack Growth Correlations for Austenitic Stainless Steels in Air"_ Predictive capabilities in Environmentally Assisted Cracking, pp.363-414, 1985.

J. Q. Chen, S. Takezono, K. Tao, and T. Hazawa, Application of fracture mechanics to the surface crack propagation in stainless steel at elevated temperatures, Acta Materialia, vol.45, issue.6, pp.45-2495, 1997.
DOI : 10.1016/S1359-6454(96)00342-4

M. Shiratori, T. Miyoshi, Y. Sakai, and G. Zhang, Analysis of stress intensity factors for surface cracks subjected to arbitrarily distributed surface stresses. (3rd report Analysis and application of influence coefficients for round bars with a semielliptical surface crack), Transactions of the Japan Society of Mechanical Engineers Series A, vol.53, issue.488, p.779, 1987.
DOI : 10.1299/kikaia.53.779

T. Kanezaki, C. Narazaki, Y. Mine, S. Matsuoka, and Y. Murakami, Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels, International Journal of Hydrogen Energy, vol.33, issue.10, pp.33-2604, 2008.
DOI : 10.1016/j.ijhydene.2008.02.067

Y. Murakami and S. Matsuoka, Effect of hydrogen on fatigue crack growth of metals, Engineering Fracture Mechanics, vol.77, issue.11, pp.1926-1940, 2010.
DOI : 10.1016/j.engfracmech.2010.04.012

J. Petit, The Influence of Microstructure and Moist Environment on Fatigue Crack Propagation in Metallic Alloys, Kovove Materialy-Metallic Materials, vol.36, pp.220-232, 1998.
DOI : 10.1007/978-94-010-0656-9_19

J. Petit, C. Sarrazin-baudoux, and G. Henaff, An overview on environmentally-assisted fatigue crack propagation, 1999.

J. Petit, Influence of environment on small fatigue crack growth, 1999.
DOI : 10.1016/B978-008043011-9/50016-8

A. J. Mcevily, J. L. Velazquez, F. Crack, . Deformation, . As et al., Fatigue crack tip deformation, Metallurgical Transactions A, vol.61, issue.8, pp.2211-2221, 1992.
DOI : 10.1016/0001-6160(74)90071-6

T. Magnin and J. Stolarz, Mechanisms of fatigue corrosion, Journal De Physique Iv, vol.8, pp.105-114, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00300480

T. Magnin, Corrosion fatigue mechanisms of metallic alloys, Revue De Metallurgie-Cahiers D Informations Techniques, p.423, 2002.

Y. Murakami, Effects of Hydrogen on Metal Fatigue, Proceedings of the international hydrogen energy development forum, pp.96-105, 2007.

H. L. Logan, F. Mechanism, . Of, and . Corrosion, Film-rupture mechanism of stress corrosion, Journal of Research of the National Bureau of Standards, vol.48, issue.2, pp.99-105, 1952.
DOI : 10.6028/jres.048.013

F. P. Ford, Quantitative Prediction of Environmentally Assisted Cracking, CORROSION, vol.52, issue.5, pp.52-375, 1996.
DOI : 10.5006/1.3292125

R. W. Staehle, Stress corrosion cracking (and corrosion fatigue), Materials Science and Engineering, vol.25, pp.207-215
DOI : 10.1016/0025-5416(76)90072-0

N. J. Petch, T. Lowering, . Fracture-stress, . Due, . To et al., XXX. The lowering of fracture-stress due to surface adsorption, Philosophical Magazine, vol.145, issue.4, pp.331-337, 1956.
DOI : 10.1038/169842a0

P. Bastien and P. , Azou, « influence de l'amplitude et de la vitesse des déformations plastiques sur la ségrégation de l'hydrogène dans le fer et les aciers, compte rendu de l'Académie des Sciences, pp.1845-1848, 1951.

T. Magnin, A. Chambreuil, and B. Bayle, The corrosion-enhanced plasticity model for stress corrosion cracking in ductile fcc alloys, Acta Materialia, vol.44, issue.4, pp.44-1457, 1996.
DOI : 10.1016/1359-6454(95)00301-0

D. A. Jones, Localized Surface Plasticity During Stress Corrosion Cracking, CORROSION, vol.52, issue.5, pp.52-356, 1996.
DOI : 10.5006/1.3292123

K. Sieradski and R. Newman, Brittle behavior of ductile metals during stress-corrosion cracking, Philosophical Magazine A, vol.8, issue.1, p.95, 1985.
DOI : 10.1080/01418618508245272