Abstraction techniques for verification of concurrent systems
Constantin Enea

To cite this version:

HAL Id: tel-00623170
https://tel.archives-ouvertes.fr/tel-00623170
Submitted on 13 Sep 2011
Abstraction Techniques for Verification of Concurrent Systems

– Ph.D. Thesis –

by Constantin Enea

Supervisors:

Prof.dr. Ferucio Laurentiu Tiplea
Departement of Computer Science
“Al. I. Cuza” University of Iasi
Iasi, Romania

Prof.dr. Anatol Slissenko
Laboratoire d’Algorithmique, Complexite et Logique
University Paris 12, Val de Marne
Paris, France

Paris, 2007
Preface

Abstraction techniques, often based on abstract interpretation, provide a method for symbolically executing systems using the abstract instead of the concrete domain. In this thesis, we are concerned with abstractions for logics under multi-valued interpretations. We provide preservation results for first-order logic, temporal logic, and temporal logic of knowledge. As a case study, we show how abstraction can be used to solve the safety problem for protection systems which model access control policies.

The use of abstraction in the context of data types, is also investigated. This technique scales well from data types to abstract data types. Here, abstractions are applied to initial specifications by means of equations and they are called equationally specified abstractions. To reason about dynamic systems, we introduce dynamic data types and extend the previous abstraction technique to this case.

The main problem that arises when using abstraction techniques is to find the suitable abstraction or to refine an already existing abstraction in order to obtain a better one. In this thesis, we prove that the abstraction techniques for data types, under Kleene’s three-valued interpretation, can be used in a refinement procedure. Moreover, we show that the counterexample guided abstraction refinement procedure (CEGAR) [25] works better when used with equationally specified abstractions.

I would like to thank all the people that have contributed to this thesis in one way or another. First of all, there is Ferucio Laurentiu Tiplea, my supervisor from Romania, teacher, and co-author, who has always been available to answer my questions. His broad perspective of computer science, and far beyond, has helped me many times to make the right choices – but he has never forced anything upon me. He started working with me even from the undergraduate studies, making my life easier during the PhD.

My thanks should also be given to Anatol Slissenko and Catalin Dima, my supervisors at University “Paris 12”. Their encouragement, guidance and feedback has been particularly important.

Last but not least, I would like to thanks my family and my friends for
their support and encouragement during the last years. Special thanks go to my parents to whom I owe most of what I know and what I am, and to Cezara for her support that helped me to get through the rough times as well as for being part of the good times.

September 15, 2007
Constantin Enea
Contents

Preface
1 i

Introduction
1

1 Multi-valued Logics
1.1 Truth algebras
1.2 Logic systems
1.2.1 First-order logic
1.2.2 Temporal logic
1.2.3 Temporal logic of knowledge
1.3 Multi-valued model checking
1.3.1 Reduction to 2-valued model checking
1.3.2 Specialized techniques
6

2 Multi-valued Abstractions
2.1 Interpretation policies
2.2 First-Order Logic
2.2.1 Abstractions and Preservation Results
2.2.2 Multi-valued Abstraction Through 2-valued Abstraction
2.3 Temporal Logic
2.3.1 A Case Study: Abstractions of Protection Systems
2.3.2 Abstractions and Preservation Results
2.3.3 Relating abstractions
2.4 Temporal Logic of Knowledge
30

3 Abstractions of Data Types
3.1 Preliminaries on Membership Algebra
3.2 Reasoning About Data Types
3.3 Abstractions of models
3.3.1 Abstractions
103

iii
3.3.2 Property preservation \hspace{2em} 117
3.4 Particular cases \hspace{2em} 125
 3.4.1 McMillan’s Approach \hspace{2em} 125
 3.4.2 Shape Analysis \hspace{2em} 127
 3.4.3 Predicate Abstraction \hspace{2em} 129
 3.4.4 Duplicating Predicate Symbols \hspace{2em} 129
3.5 Abstractions of Abstract Data Types \hspace{2em} 132
 3.5.1 Abstractions of Initial Specifications \hspace{2em} 133

4 Abstraction of Dynamic Data Types \hspace{2em} 139
 4.1 Dynamic Data Types \hspace{2em} 140
 4.2 Abstractions and Preservation Results \hspace{2em} 148

5 Abstraction Refinement Techniques \hspace{2em} 156
 5.1 Abstraction Refinement for Data Types \hspace{2em} 156
 5.2 CEGAR is Better under Equational Abstraction \hspace{2em} 158
 5.2.1 Rewrite Theories \hspace{2em} 158
 5.2.2 A Motivating Example \hspace{2em} 161
 5.2.3 CEGAR under Equational Abstraction \hspace{2em} 167

Index \hspace{2em} 170

Bibliography \hspace{2em} 172
Introduction

As the hardware and software systems are growing continuously in scale and functionality, the likelihood of subtle errors becomes greater. In industry, testing has traditionally been the main debugging technique. For example, “beta-releases” of a software are sent out to a group of people who are willing to use it and report on errors encountered. Other programs, like microprocessor code implemented in hardware, are often automatically tested by feeding them sequences of inputs and comparing the corresponding outputs to the desired ones. The validity of the testing approach is based on the exhaustive search for possible inputs (which can be impractically, many) and it does not apply to reactive systems that maintain a continuous interaction with their environment. The reactive systems are in contrast to the old-fashioned view of a program as something that takes some input, computes for a while, and then produces a result and terminates.

The use of formal methods have been proposed to overcome these problems. Formal methods cover all approaches to specification and verification based on mathematical formalisms. They contain three basic parts: a mathematical model of the system, a formal language for expressing the specification and a methodology to establish whether the model of the system satisfies the specification.

Formal methods can be classified as syntactic and semantic. In syntactic methods the system is described in some programming language whose elementary constructs are expressed by axioms and the larger constructs by inference rules in some proof system. The specification is given in some powerful formal language and the proof of correctness reduces to a proof within this system. In semantic methods, the model of a program consists of a description of all its possible behaviors in a mathematical structure like a transition system. The specification is a formula in a logic that is interpreted over such structures (e.g. temporal logic) and the correctness is proved by showing that the formula is satisfied by the model.

An example of a semantic formal method is the temporal logic model checking developed independently by Clarke and Emerson [22] in the United
States and by Quielle and Sifakis [101] in France. In this approach, systems are modeled by Kripke structures and the specifications are expressed in a propositional temporal logic. An efficient search procedure is used to determine if the specification is true in the Kripke structure. The most important advantages of model checking are that it is completely automatic and in case of “false” answers it provides a counterexample that shows why the specification is not satisfied.

The main drawback of model checking is the state explosion problem that can occur in systems consisting of a set of concurrent processes which run in parallel. The set of possible behaviors of the system contains a sequence for each possible interleaving of actions of the components and it may grow exponentially in the number of components. The presence of data values can also contribute to the problem. An extra bit of memory used by a program potentially doubles the size of the state space. Many possible solutions to the state explosion problem have been proposed. They try to improve the representation of the full state space or to reduce the state space by ignoring certain details. In the first category we can find symbolic model checking [14, 85] which represents the state space by ordered binary decision diagrams [12] and produced spectacular results [14, 24, 88], or on-the-fly model checking [32, 50] which expands progressively the state space of the system. From the second category, we can mention partial order techniques [56, 99, 112], symmetry techniques [23, 43, 68], modularization [29, 58, 59], or abstraction [33, 69, 70, 77, 67, 15, 110, 100, 26, 114, 34, 57, 103, 36, 86, 4, 113, 104].

Abstraction techniques, often based on abstract interpretation [33], provide a method for symbolically executing systems using the abstract instead of the concrete domain. For example, the data abstraction technique from [26] considers an abstraction mapping between the actual data values in the system and a small set of abstract data values. This mapping is extended to states and transitions, in order to obtain an abstract version of the system under consideration. Shape analysis [96, 104], which is a data flow analysis technique used mainly for complex analysis of dynamically allocated data, is based on representing the set of possible memory states (“stores”) that arise at a given point in the program by shape graphs. In such a graph, heap cells are represented by shape-graph nodes and, in particular, sets of “indistinguishable” heap cells are represented by a single shape-graph node. Predicate abstraction is another prominent abstraction technique [57, 36, 113, 4]. The main idea of predicate abstraction is to map concrete objects (states of a transition system, data of a data type etc.) to “abstract objects” according to their evaluation under a finite set of predicates. In [6], Bidoit and Boisséau consider algebraic abstractions in order to verify properties of security protocols modeled by universal algebras. Their abstraction is based on ho-
momorphisms, and the technique of duplicating predicate symbols [26, 35] is used for validation and refutation.

In order that an abstraction be useful, it must be property-preserving. The forms of property preservation which are mostly studied in the literature involve only logics under the classical two-valued interpretation. Multi-valued logics provide an alternative to classical boolean logic for modeling and reasoning about systems. By adding new truth values, uncertainty and disagreement can be modeled explicitly and a variety of applications were found in databases [53], knowledge representation [55], machine learning [93], software and hardware verification [9, 10, 65].

Many applications of multi-valued logics have been found in hardware and software verification. For hardware verification, simulation tools and implementations of genuinely multi-valued circuits have been proposed, dynamic hazards have been modeled by introducing pseudo states to find overlapping regions of competing signals [13], implementation of gates have been verified on the basis of switch level models [64], etc. For software verification, we need uncertainty because we may not know whether some behaviors should be possible, we need disagreement because we may have different stakeholders that disagree about how the systems should behave and we need to represent relative importance because some behaviors are essential and others may or may not be implemented. Multi-valued model checking techniques have been proposed by many researchers [16, 72, 19, 20, 60, 11, 73, 74], thus, motivating, even more, the use of multi-valued logics in the verification process.

This thesis deals with abstractions that preserve properties expressed in logics under multi-valued interpretations. Chapter 1 presents the concept of truth algebra which is the basis of multi-valued interpretations of logics. Then, the concept of a logical structure suitable for defining a multi-valued first order logic to reason about systems is introduced. Multi-valued temporal logic \textit{mv-CTL} interpreted over multi-valued Kripke structures and multi-valued temporal logic of knowledge \textit{mv-KCTL} interpreted over multi-agent multi-valued Kripke structures are recalled. The chapter ends with the presentation of the multi-valued model checking techniques found in the literature.

Chapter 2 introduces multi-valued abstractions. The abstractions are obtained by applying equivalence relations and then, the predicate symbols of the logic are re-defined to work properly on equivalence classes. As an equivalence class may contain more than one element and each element leads to a truth value for each predicate, to redefine a predicate on an equivalence class comes down to define a policy of recombination of truth values from some given set. Such a policy is called an interpretation policy. Abstrac-
tions of logical structures are then defined as pairs formed by an equivalence relation and an interpretation policy used to redefine the predicates, and give several preservation results for first order logic formulas. The abstractions of multi-valued Kripke structures are triples formed of an equivalence relation and two interpretation policies, one used to redefine the transition predicate and one used to redefine the atomic propositions. We prove their utility by the preservation results that follow. Finally, the abstractions of multi-agent multi-valued Kripke structures contain three interpretation policies, one being used to redefine the similarity relations. The preservation results we give involve formulas from the temporal logic of knowledge under Kleene’s three-valued interpretation. Before giving abstractions of multi-valued Kripke structures, we provide a case study of using abstraction in the context of protection systems which model access control policies [63]. We propose two notions of simulation between protection systems and define a class of access control models that are simulated by access control models with a finite number of objects. Then, we show that several classes of protection systems from the literature fall into this class, notably the take-grant systems [78] and the monotonic typed access matrix systems with an acyclic creation graph [106]. By this we also unify and clarify the proof of decidability of the safety problem for these classes of protection systems.

Equationally specified abstractions are introduced and analyzed in Chapter 3. We define abstractions of data types modeled by membership algebras [91] and we show how to use abstractions specified by equations in the case of abstract data types. The membership algebras are a suitable logical framework in which a very wide range of total and partial equational specification formalisms can be naturally represented [91]. The membership algebra formalism is quite general and expressive, supports sub-sorts and overloading, and deals very well with errors and partiality. Moreover, membership algebra specifications can be efficiently implemented in systems like Maude [30]. The preservation results we obtain involve first order logic formulas and they are translated from the abstractions of logical structures. Moreover, the abstraction technique we propose generalizes and clarifies the nature of many abstraction techniques found in the literature, such as the technique of duplicating predicate symbols [26, 35, 6], shape analysis [96, 104], predicate abstraction [57, 36, 113], McMillan’s approach [86] etc. For example, it is shown that the technique of duplicating predicate symbols, which is based on associating two versions to each formula, one used for validation and the other one used for refutation, consists of two abstractions based on the same congruence: one of them is weakly preserving (used for validation), and the other one is error preserving (used for refutation).

The approach in [92] which is also based on specifying abstractions by
equations, models systems by rewrite theories and the logic used to define the properties to be checked is LTL under a 2-valued interpretation. It can be seen that this approach is a special case of the techniques described in this thesis.

Chapter 4 continues to apply this abstraction technique to dynamic data types. There have been proposed several approaches for modeling dynamic systems by universal algebras (see [2] for a survey on this topic). All the approaches are based on predicates which are added somehow to the signature, but they work outside the algebra. In the approach we propose we also add predicates to membership algebras, but they work inside the algebra (including the transition predicate too). This makes the formalism algebra-logic work unitarily. Now, the preservation results involve temporal logic formulas and they are translated from the abstractions of multi-valued Kripke structures introduced previously. The abstractions specified by equations are used again to define abstractions of abstract dynamic data types.

The main problem that arises when using abstraction techniques is to find the suitable abstraction or to refine an already existing abstraction in order to obtain a better one [76, 105, 66, 25, 87, 3, 80]. In Chapter 5, we prove that the types of abstraction of data types for Kleene’s three-valued interpretation from [111] can be used in a refinement procedure. Moreover, we prove that the counterexample guided abstraction refinement procedure [25] works better when used with equationally specified abstractions.
Chapter 1

Multi-valued Logics

Multi-valued logics\(^1\) provide an alternative to classical boolean logic for modeling and reasoning about systems. By adding new truth values, uncertainty and disagreement can be modeled explicitly and a variety of applications were found in databases [53], knowledge representation [55], machine learning [93], software and hardware verification [9, 10, 65].

A number of specific multi-valued logics have been proposed and studied. For example, Kleene [71] introduced a three-valued logic for reasoning with missing information, while Belnap [5] proposed a four-valued logic to handle inconsistent assertions in database systems. The fuzzy logic, where the truth values are all reals between 0 and 1, captures even more degrees of certainty. Each of these logics can be generalized to allow for different levels of uncertainty or disagreement. In practice, it is useful to be able to choose different multi-valued logics for different modeling tasks.

Many applications of multi-valued logics have been found in hardware and software verification. In the case of hardware verification, multi-valued logics can be applied for:

- building simulation tools and implementations of genuinely multi-valued circuits;
- modeling dynamic hazards by introducing pseudo states to find overlapping regions of competing signals (race detection) [13];
- test pattern generation by propagation of undefined or error values [21];
- verifying the implementation of gates on the basis of switch level models [64].

\(^1\)In the literature on logic systems the terms multiple-valued, many-valued and multi-valued logic are used interchangeably.
Multi-valued logics play a crucial role to modeling and analyzing software systems. We need uncertainty because we may not know whether some behaviors should be possible, we need disagreement because we may have different stakeholders that disagree about how the systems should behave and we need to represent relative importance because some behaviors are essential and others may or may not be implemented. Moreover, to make model-checking practical for verification of real software systems, abstract models of the software behavior must be constructed. When working with abstractions, it is natural to consider three-valued logics, with the third value used to indicate elided information in the model [9], or to indicate the result of checking when a definite answer is not possible using the chosen abstraction [104, 18].

The remainder of this chapter provides a formal description of multi-valued logics. We begin, in Section 1.1, with the presentation of the structures we use for the set of truth values under which we will consider the multi-valued logics. Then, we describe in Section 1.2 the multi-valued first order logic and the multi-valued temporal logic with or without knowledge. The last section will survey the most important multi-valued model checking techniques.

1.1 Truth algebras

The set of truth values is any complete lattice together with a negation operator and some properties for it. Recall first a few basic concepts.

A partial order on a set B is a binary relation on B such that:

- (reflexivity) for any $a \in B$, $a \leq a$;
- (anti-symmetry) for any $a, b \in B$, $a \leq b$ and $b \leq a$ implies $a = b$;
- (transitivity) for any $a, b, c \in B$, $a \leq b$ and $b \leq c$ implies $a \leq c$.

We will denote by $<$ the relation $\leq -\{(a, a) | a \in B\}$ and we will say that $a \in B$ immediately precede $b \in B$, denoted $a < b$, if $a < b$ and there is no $c \in B$ such that $a < c < b$. By $\geq (>, \succ)$ we denote the inverse of $\leq (<, \prec)$. Also, $\downarrow x = \{y \in B \mid y \leq x\}$ and $\uparrow x = \{y \in B \mid y \geq x\}$.

From a partially ordered set we single out elements having special properties.

Definition 1.1 Let (B, \leq) be a partial order and $A \subseteq B$.

1. An element $b \in B$ is called a lower bound of A if $b \leq x$, for any $x \in A$.

7
2. An element $b \in B$ is called a greatest lower bound (glb, for short) of A if it is a lower bound and for any other lower bound b' of A, we have $b' \leq b$.

3. An element $b \in B$ is called an upper bound of A if $x \leq b$, for any $x \in A$.

4. An element $b \in B$ is called a least upper bound (lub, for short) of A if it is an upper bound and for any other upper bound b' of A, we have $b \leq b'$.

5. An element $a \in A$ is called a least element of A if $a \leq x$, for any $x \in A$.

6. An element $a \in A$ is called a greatest element of A if $x \leq a$, for any $x \in A$.

Clearly, if there exists a least upper bound (greatest lower bound) for a subset $A \subseteq B$ then it is unique.

Definition 1.2 A partially ordered set (B, \leq) is called a lattice if every finite subset of B has a greatest lower bound and least upper bound. (B, \leq) is called a finite lattice if the set B is finite.

As usual, the least upper bound of a subset $A \subseteq B$ is denoted by $\lor A$, and the greatest lower bound of A is denoted by $\land A$. When lattices will be used as domains for truth values, $\lor A$ ($\land A$) plays the role of the disjunction (conjunction) of all elements in A. 0 and 1 denote the least and, respectively, the greatest element of the lattice, if they exist.

Definition 1.3 A lattice (B, \leq) is called complete if every subset of B has a greatest lower bound and least upper bound.

We can easily remark that any finite lattice is also complete and any complete lattice has a least and a greatest element.

Sometimes, for a more accurate modeling of truth values, distributivity is to be employed.

Definition 1.4 A lattice (B, \leq) is distributive if

- $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ and
- $a \land (b \lor c) = (a \land b) \lor (a \land c)$,

for any $a, b, c \in B$.

8
An element \(x \in B \) of a lattice \((B, \leq)\) is called **join-irreducible** if \(x = y \) or \(x = z \) whenever \(x \) can be written in the form \(x = y \lor z \), for some \(y, z \in B \). The least element, if it exists, is join-irreducible. Birkhoff’s representation theorem [37] states that every element \(b \) of a finite distributive lattice can be represented as the least upper bound of all join-irreducible elements less than or equal to \(b \) in the lattice.

Now, we present **truth algebras**, structures over which we will define interpretations of multi-valued logics.

Definition 1.5 A **truth algebra** \(^2\) is a tuple \(B = (B, \wedge, \lor, \neg) \), where:

1. \((B, \leq)\) is a complete lattice, where \(\leq \) is the binary relation on \(B \) given by \(a \leq b \) iff \(a \lor b = b \), for any \(a, b \in B \);
2. \(\wedge \) and \(\lor \) are the greatest lower bound and least upper bound operators, respectively;
3. \(\neg : B \rightarrow B \) is a bijection such that \(\neg 0 = 1 \) and \(\neg 1 = 0 \).

\((B, \leq)\) is called the **lattice support** of \(B \). If the lattice support is finite or distributive, the truth algebra \(B \) will be called **finite** or **distributive**, respectively.

Notice that the completeness of the lattice \((B, \leq)\) ensures that \(\wedge \) and \(\lor \) always exist and they are unique.

Example 1.1 A few examples of truth algebras are in order:

- classical 2-valued logics are based on the truth algebra whose lattice support has only 2 elements (Figure 1.1(a)). Since the lattice has only two elements, by the definition of a truth algebra, \(\neg 0 = 1 \) and \(\neg 1 = 0 \);

- Kleene’s strong 3-valued logic [71] is based on the lattice in Figure 1.1(b) (the truth value \(\bot \) means “undefined”). In this case, the negation operator is defined by \(\neg \bot = \bot \) (\(\neg 0 = 1 \) and \(\neg 1 = 0 \) are implied by the definition of a truth algebra);

- the lattice in Figure 1.1(c) is the support for Belnap’s 4-valued logic [5] which has been introduced for reasoning about inconsistent databases. The meaning of the truth values is as follows: 0 signifies that the property is false only, 1 signifies that the property is true only, \(B \) signifies that the property is both true and false, and \(N \) signifies that the

\(^2\)We have coined the terminology of a “truth algebra” as an algebraic counterpart of a “c-complete lattice” used in [73].
property is neither true nor false. The negation operator is defined by
\(\neg N = N\) and \(\neg B = B\);

- the lattice in Figure 1.1(d) shows a logic that can be used for reasoning about disagreement between two knowledge sources [39]. The truth values have two components that specify the truth value of some formula from the point of view of each source. For example, 01 specifies the fact that the first knowledge source thinks that the formula is false and the second one thinks that it is true. The negation operator defines \(\neg 10 = 01\) and \(\neg 01 = 10\);

- the lattice in Figure 1.1(e) shows a nine-valued logic that can be used for reasoning about the disagreement between two sources, but also shows missing information in each source (\(M\) is used to model missing information);

- the linear order in Figure 1.1(f) can be used to model different levels
of uncertainty: properties are more certain as they are interpreted to a value more close to 1;

- the lattice from Figure 1.1(g) has the same structure as Belnap’s logic but this one is used to model different levels of uncertainty: besides the usual meaning for 0 and 1, DC is used for values controlled by the environment and DK for values controlled by the system, but not yet decided. The negation is defined by $\neg DC = DC$ and $\neg DK = DK$.

- the lattices from Figure 1.1(h) and Figure 1.1(i) add new values to the one from Figure 1.1(g). The first one adds a new value “should” (denoted SH) to express properties that are desired but not required (1 expresses properties that are required), and the second one replaces DC by DC_1 and DC_2 because we suppose there exist two possible environments;

- the infinite lattice from Figure 1.1(j) models a set of truth values used in the fuzzy logic [81] (the reals between 0 and 1).

A particular case of truth algebras are quasi-boolean algebras [102, 7, 38, 17].

Definition 1.6 A quasi-boolean algebra is a truth algebra $B = (B, \land, \lor, \neg)$, where:

- its support (B, \leq) is a finite distributive lattice;
- (De Morgan) $\neg(a \land b) = \neg a \lor \neg b$ and $\neg(a \lor b) = \neg a \land \neg b$, for all $a, b \in B$;
- (involution) $\neg \neg a = a$, for all $a \in B$;
- (antimonotonic) $a \leq b \Leftrightarrow \neg a \geq \neg b$, for all $a, b \in B$.

In the definition of a quasi-boolean algebra we may not require “$\neg 0 = 1$” and “$\neg 1 = 0$” because both of them can be easily obtained by using De Morgan laws. First, we remark that $a \land 0 = 0$, for any $a \in B$. Then, using the De Morgan laws, we obtain:

$$
\neg 0 = \neg(a \land 0) = \neg a \lor \neg 0,
$$

for any $a \in B$. Now, let a_1 be an element of B such that $\neg a_1 = 1$ (this element exists because \neg is a bijection). Then,

$$
\neg 0 = 1 \lor \neg 0 = 1
$$

which completes our proof. Analogously, we can prove that $\neg 1 = 0$.

11
Example 1.2 All truth algebras in Figure 1.1, except for (h) and (i), are quasi-boolean. The truth algebra in Figure 1.1(h) is not a quasi-boolean algebra because there is no negation for SH; the truth algebra in Figure 1.1(i) is not quasi-boolean because its support is not a distributive lattice.

In [17] it was remarked that finite distributive lattices are symmetric about their horizontal axes and this symmetry is a suitable negation operator to form a quasi-boolean algebra.

Definition 1.7 A lattice (B, \leq) is symmetric if there exists a bijective function H such that

- $a \leq b \iff H(a) \geq H(b)$, and
- $H(H(a)) = a$,

for any $a, b \in B$.

In some cases, truth algebras enjoy more properties such as non-contradiction and excluded middle.

Definition 1.8 A boolean algebra is a tuple $B = (B, \land, \lor, \neg, 0', 1')$ such that:

- (B, \leq) is a distributive lattice, where \leq is the binary relation on B given by $a \leq b$ iff $a \lor b = b$, for all $a, b \in B$;
- \land and \lor are the greatest lower bound and least upper bound operators, respectively, and $\neg : B \rightarrow B$ is a bijection;
- $0'$ and $1'$ are two distinguished elements such that:
 - $a \lor 0' = a$ and $a \land 1' = a$, for any $a \in B$;
 - (non-contradiction) $a \land \neg a = 0'$, for any $a \in B$;
 - (excluded middle) $a \lor \neg a = 1'$, for any $a \in B$.

A boolean algebra is called finite if B is finite.

We can remark that in the case of a boolean algebra $B = (B, \land, \lor, \neg, 0', 1')$ whose support (B, \leq) is complete, $0' = 0$ and $1' = 1$. Hence, finite boolean algebras are particular cases of quasi-boolean algebras.

Example 1.3 All the truth algebras in Figure 1.1 except for (a) and (d) are not boolean algebras. Remember that the algebras in Figure 1.1(h) and Figure 1.1(i) were not even quasi-boolean while the others do not satisfy non-contradiction. For example, in the lattice from Figure 1.1(b) we have $\bot \land \neg \bot \neq 0$.

12
1.2 Logic systems

1.2.1 First-order logic

We introduce the concept of a *logical structure*, suitable both for modeling systems by membership algebras and for defining a logic for reasoning about systems.

Let \(K \) be a non-empty set whose elements will be called *kinds*. A \(K \)-kinded set is a \(K \)-indexed family of sets \(S = (S_k | k \in K) \). For a \(K \)-kinded set \(S = (S_k | k \in K) \) and \(w = k_1 \ldots k_m \in K^+ \), \(m \geq 1 \), we denote by \(S_w \) the set \(S_{w} = S_{k_1} \times \cdots \times S_{k_m} \) (\(K^+ \) stands for \(K^* - \{\lambda\} \), where \(K^* \) is the free monoid generated by \(K \) and \(\lambda \) is the unity of \(K^* \)).

A \(K \)-kinded logical signature is a pair \((\mathcal{B}, \Sigma_L) \), where \(\mathcal{B} \) is a truth algebra and \(\Sigma_L \) is a \(K^+ \)-indexed set of pairwise disjoint sets

\[
\Sigma_L = (\Sigma_{L,w} | w \in K^+).
\]

The elements \(k \in K^+ \) are called *logical types* over \(K \) and the elements \(p \in \Sigma_{L,w} \) are called *predicate* or *logical symbols* of type \(w \).

Definition 1.9 Let \((\mathcal{B}, \Sigma_L) \) be a \(K \)-kinded logical signature. A \((\mathcal{B}, \Sigma_L) \)-logical structure is a tuple \(S = (S, \Sigma^S_L) \), where \(S \) is a \(K \)-kinded set and \(\Sigma^S_L \) is a \(K^+ \)-indexed set of predicate interpretations

\[
\Sigma^S_L = (\Sigma^{S}_{L,w} | w \in K^+),
\]

where \(\Sigma^{S}_{L,w} = \{ p^S : S_w \rightarrow B | p \in \Sigma_{L,w} \} \) is a \(\Sigma_{L,w} \)-indexed set of functions from \(S_w \) into \(B \).

Given \((\mathcal{B}, \Sigma_L) \) a \(K \)-kinded logical signature and an at most countable \(K \)-kinded set of variables \(X \), the set of *first order formulas* over \((\mathcal{B}, \Sigma_L) \) and \(X \) is defined as follows:

1. *atomic formulas:*

 (a) \(p(x_1, \ldots, x_m) \) is an atomic formula, for any predicate symbol \(p \) of logical type \(w = k_1 \ldots k_m \in K^+ \) and \(x_i \in X_{k_i}, 1 \leq i \leq m \);

2. *formulas:*

 (a) every atomic formula is a formula;

 (b) if \(\phi_1 \) and \(\phi_2 \) are formulas then \(\neg \phi_1 \), \((\phi_1 \lor \phi_2) \), and \((\phi_1 \land \phi_2) \) are formulas;
(c) if x is a variable and ϕ is a formula, then $(\exists x)\phi$ and $(\forall x)\phi$ are formulas.

Denote by $\mathcal{L}^O(\Sigma_L, X)$, where $O \subseteq \{\land, \lor, \neg\}$, the set of first order formulas over (B, Σ_L) and X that use only operators from the set O, the quantifier \forall if $\land \in O$, and the quantifier \exists if $\lor \in O$ (when $O = \{\land, \lor, \neg\}$, we omit the superscript “O” from the notation $\mathcal{L}^O(\Sigma_L, X)$).

An assignment of X into S is a function $\gamma : X \rightarrow S$ such that $\gamma(x) \in S_k$, for any $x \in X_k$. $\Gamma(X, S)$ stands for the set of all assignments of X into S.

Given a (B, Σ_L)-logical structure S each first order formula ϕ induces a function $I_S(\phi)$ from the set $\Gamma(X, S)$ into B, as follows:

- $I_S(p(x_1, \ldots, x_m))(\gamma) = p^S(\gamma(x_1), \ldots, \gamma(x_m))$, for any p of logical type $w = k_1 \ldots k_m \in K^+$ and $x_i \in X_{k_i}$, $1 \leq i \leq m$;
- $I_S(\phi_1 \land \phi_2) = I_S(\phi_1) \land I_S(\phi_2)$, for any formulas ϕ_1 and ϕ_2;
- $I_S(\phi_1 \lor \phi_2) = I_S(\phi_1) \lor I_S(\phi_2)$, for any formulas ϕ_1 and ϕ_2;
- $I_S(\neg \phi_1) = \neg I_S(\phi_1)$, for any formula ϕ;
- $I_S(\exists x)\phi(\gamma) = \bigvee_{a \in S_k} I_S(\phi)(\gamma[x/a])$, for any formula ϕ and any $x \in X_k$;
- $I_S(\forall x)\phi(\gamma) = \bigwedge_{a \in S_k} I_S(\phi)(\gamma[x/a])$, for any formula ϕ and any $x \in X_k$.

We emphasize that “$\bigvee_{a \in S_k}$” and “$\bigwedge_{a \in S_k}$” in the definition above are the least upper bound and the greatest lower bound of some set of truth values.

$I_S(\phi)$ is called the interpretation function of ϕ into S. If ϕ is a formula, we say that ϕ has the truth value $b \in B$ in S, and denote this by $[\phi]^S = b$, if $I_S(\phi)(\gamma) = b$, for all $\gamma \in \Gamma(X, S)$.

1.2.2 Temporal logic

The temporal logic CTL^* [27] describes sequences of transitions between states in a reactive system which interacts with and continuously responds to its environment. This logic uses atomic propositions and boolean operators to build up formulas describing properties of states. Moreover, path operators and quantifiers are introduced to describe transitions between states.

The temporal logic CTL^* is defined over some set AP of atomic propositions and it contains two types of formulas, state and path formulas. Their syntax is given by the following rules ($p \in \text{AP}$, φ is a state formula, and ψ is a path formula):
• true, false and \(p \) are state formulas, for any \(p \in AP \);
• if \(\varphi_1 \) and \(\varphi_2 \) are state formulas, then so are \(\neg \varphi_1, \varphi_1 \lor \varphi_2 \), and \(\varphi_1 \land \varphi_2 \);
• if \(\psi \) is a path formula, then \(\forall \psi \) and \(\exists \psi \) are state formulas;
• each state formula is a path formula;
• if \(\psi_1 \) and \(\psi_2 \) are path formulas, then so are \(\neg \psi_1, \psi_1 \lor \psi_2, \psi_1 \land \psi_2, X \psi_1, X \psi_1, \psi_1 U \psi_2 \), and \(\psi_1 R \psi_2 \).

We abbreviate \(F \psi = true \ U \psi \) and \(G \psi = false \ R \psi \). The meaning of the operators above are as follows: \(X \) and \(X \) are the strong and weak versions of “next-time”, \(U \) is “until”, \(R \) is “releases”, \(F \) is “eventually”, \(G \) is “always”, \(\forall \) is “for all paths”, and \(\exists \) is “there exists a path”.

\(CTL^* \) is the set of all state formulas generated by the rules presented above; \(CTL^*_+ \) is the subset of \(CTL^* \) consisting of formulas without negation, \(CTL \) is the subset of \(CTL^* \) consisting of formulas in which each future time operator is immediately preceded by a path quantifier, \(LTL \) is the subset of \(CTL^* \) consisting of formulas of the form \(\forall \psi \), where \(\psi \) is a path formula in which the only state subformulas permitted are atomic propositions, and \(\forall CTL^* (\exists CTL^*) \) is the subset of \(CTL^* \) consisting of formulas that do not contain \(\exists (\forall) \). In order to avoid implicit existential (universal) paths quantifiers resulting from the use of negation in \(\forall CTL^* (\exists CTL^*) \) formulas, we assume that the path quantifiers are not in the scope of a negation.

Example 1.4 A few examples of \(CTL^* \) formulas together with their intuitive meaning are in order:

• \(\exists G F p \): there exists a path that contains infinitely many states in which \(p \) is true;
• \(\exists (G (p \Rightarrow X p)) \): there exists a path along which \(p \) holds continuously from the first state in which it holds;
• \(\forall (p \Rightarrow F q) \): if \(p \) holds then, by any possible path, we can reach a state in which \(q \) holds;
• \(\forall F G p \): along every path, there exists some state from which \(p \) will hold forever;
• \(\forall G (p \Rightarrow \forall F q) \): if we reach a state satisfying \(p \), then we will eventually reach a state satisfying \(q \);
• \[\forall G (\exists F p) \text{: from any state it is possible to get to a state in which } p \text{ holds.} \]

The third and the fourth formulas in Example 1.4 are LTL formulas while the fifth and the sixth are CTL formulas. The fourth one has the property that there is no equivalent CTL formula and for the sixth one there is no equivalent LTL formula.

“Multi-valued semantics” of CTL\(^*\) are given by means of multi-valued Kripke structures [51, 52].

Definition 1.10 A multi-valued Kripke structure (mv-Kripke structure) over a set of atomic propositions \(AP \) and a truth algebra \(B = (\mathcal{B}, \wedge, \vee, \neg) \) is a tuple \(M = (Q, R, L) \), where:

- \(Q \) is the set of states;
- \(R : Q \times Q \rightarrow \mathcal{B} \) is the (multi-valued) transition predicate;
- \(L : Q \rightarrow (AP \rightarrow \mathcal{B}) \) is a function which associates to any state \(q \) the “truth values” of the atomic propositions in state \(q \).

Let \(M \) be an mv-Kripke structure over \(AP \) and \(B \), and \(D \) be a subset of \(B \). An infinite \(D \)-sequence of states is a sequence \(\pi = q_0 q_1 \ldots \) such that \(R(q_i, q_{i+1}) \in D \), for all \(i \geq 0 \). The length of \(\pi \) is \(\infty \). A maximal finite \(D \)-sequence of states is a sequence \(\pi = q_0 q_1 \ldots q_n \) such that \(R(q_i, q_{i+1}) \in D \), for all \(0 \leq i < n \), and \(R(q_n, q) \notin D \), for all \(q \in Q \). The length of \(\pi \) is \(n + 1 \). A \(D \)-path of \(M \) is either an infinite \(D \)-sequence or a maximal finite \(D \)-sequence of states. \(\text{Paths}(M, D, q) \) stands for the set of all \(D \)-paths of \(M \) starting in state \(q \), \(\text{Paths}(M, D) \) stands for the set of all \(D \)-paths of \(M \), \(\pi(i) \) stands for the state \(q_i \), and \(\pi^i \) is the suffix of \(\pi \) starting at \(q_i \), for any \(0 \leq i < |\pi| \).

The truth value of a CTL\(^*\) state formula \(\phi \) in a state \(q \) of \(M \) (denoted \([\phi]_q^M \)) and the truth value of a CTL\(^*\) path formula \(\psi \) along a \(D \)-path \(\pi \) in \(M \) (denoted \([\psi]_\pi^M \)) are defined as follows (\(p \in AP \), \(\varphi \), \(\varphi_1 \), and \(\varphi_2 \) are state formulas, and \(\psi \), \(\psi_1 \), and \(\psi_2 \) are path formulas):

\[
\begin{align*}
 [\text{true}]_q^M &= 1; \\
 [\text{false}]_q^M &= 0; \\
 [p]_q^M &= L(q)(p); \\
 [-\varphi]_q^M &= \neg[\varphi]_q^M; \\
 [\varphi_1 \land \varphi_2]_q^M &= [\varphi_1]_q^M \land [\varphi_2]_q^M; \\
 [\varphi_1 \lor \varphi_2]_q^M &= [\varphi_1]_q^M \lor [\varphi_2]_q^M;
\end{align*}
\]
\[\phi \]
\[M \pi = [\phi]_{\pi}(0); \]
\[-\psi \]
\[M \pi = -[\psi]_{\pi}M; \]
\[\psi_1 \land \psi_2 \]
\[M \pi = [\psi_1]_{\pi}M \land [\psi_2]_{\pi}M; \]
\[\psi_1 \lor \psi_2 \]
\[M \pi = [\psi_1]_{\pi}M \lor [\psi_2]_{\pi}M; \]
\[X \psi \]
\[M \pi = (|\pi| > 1) \land R(\pi(0), \pi(1)) \land [\psi]_{\pi}; \]
\[X \psi \]
\[M \pi = (|\pi| \leq 1) \lor (R(\pi(0), \pi(1)) \land [\psi]_{\pi}); \]
\[\psi_1 \lor \psi_2 \]
\[M \pi = [\psi_2]_{\pi}M \lor \bigvee_{0<i<|\pi|}([\psi_2]_{\pi}M \land \bigwedge_{0\leq j<i}([\psi_1]_{\pi}M \land R(\pi(j), \pi(j+1)))); \]
\[\psi_1 \land \psi_2 \]
\[M \pi = [\psi_2]_{\pi}M \land \bigwedge_{0<i<|\pi|}((R(\pi(i-1), \pi(i)) \land [\psi_1]_{\pi}M) \lor \bigvee_{0\leq j<i}([\psi_1]_{\pi}M)); \]
\[\forall \psi \]
\[M \pi = \bigwedge_{\pi \in \text{Paths}(M,D,q)}[\psi]_{\pi}; \]
\[\exists \psi \]
\[M \pi = \bigvee_{\pi \in \text{Paths}(M,D,q)}[\psi]_{\pi}; \]

(it is implicitly assumed that the values of the standard predicates \(<, \leq, \rangle\) are 0 and 1, the least and greatest element of \mathcal{B}).

Remark 1.1 Throughout this thesis many results will involve the positive version $CTL^*_+\text{ of } CTL^*$. However, if this logic is considered on quasi-boolean algebras, this is not a restriction. On the basis of De Morgan laws, we can suppose without loss of generality that any formula in CTL^* is in the negation normal form, i.e. the negation is only applied to the atomic propositions and then, we can use a copy of the set of atomic propositions for their negations to obtain an equivalent formula in CTL^*_+. When the logic CTL^* is interpreted over mv-Kripke structures it is usually called *multi-valued CTL^** (mv-CTL^*).

1.2.3 Temporal logic of knowledge

Temporal logic of knowledge $KCTL^*P$ [49] is suitable for reasoning about knowledge in the context of *multi-agent systems*, i.e. systems consisting in a collection of interacting agents. The modeling of knowledge is based on “possible worlds”. The intuition is that if an agent does not have complete knowledge about the world, he will consider a number of possible worlds (these are given by a *similarity relation*). The agent is said to know a fact ϕ if ϕ holds at all agent’s possible worlds.

Let AP be a set of atomic propositions and n the number of agents in the system. As in the case of CTL^*, there are two types of formulas, *state* and *path* formulas. The rules describing its syntax include the ones of CTL^* together with rules for past time operators and knowledge operators:

- if ψ_1 and ψ_2 are path formulas, then so are $\text{Pr} \ \psi_1, \text{S} \ \psi_2$ and $\text{B} \ \psi_2$.
• if \(\varphi \) is a state formula, then so are \(K_i \varphi \) and \(P_i \varphi \), for any \(1 \leq i \leq n \).

We abbreviate \(A \psi = \psi \) false and \(O \psi = true \) \(S \psi \). The past time path operators have the following meaning [82]: \(\text{Pr} \) is “previous”, \(A \) is “always in the past”, \(O \) is “once”, \(S \) is “since”, and \(B \) is “back to”. The knowledge operators have the meaning [49]: \(K_i \) is “agent \(i \) knows \(\phi \)” and \(P_i \) is “agent \(i \) thinks that \(\phi \) is possible”.

\(KCTL^*P \) is the set of all state formulas generated by the rules presented above. We denote by \(\forall KCTL^*P (\exists KCTL^*P) \) the subset of \(KCTL^*P \) consisting of formulas that do not contain \(\exists \) and \(P_i \) (\(\forall \) and \(K_i \)). In order to avoid implicit existential (universal) paths quantifiers and knowledge operators \(P_i \) (\(\forall \) and \(K_i \)) resulting from the use of negation in \(\forall KCTL^*P (\exists KCTL^*P) \) formulas, we assume that the quantifiers and the knowledge operators are not in the scope of a negation.

Example 1.5 A few examples of \(KCTL^*P \) formulas together with their intuitive meaning are in order:

- \(P_2K_1p \): agent 2 considers possible the fact that agent 1 knows \(p \);
- \(K_1(bit = 0) \lor K_1(bit = 1) \): agent 1 knows the value of \(bit \);
- \(K_1 \exists Fp \lor K_1 \exists F\neg p \): agent 1 knows that either \(p \) or \(\neg p \) will hold eventually, from all the states he considers possible;
- \(K_2K_1p \land \neg K_1K_2K_1q \): agent 2 knows that agent 1 knows \(p \) but agent 1 does not know that agent 2 knows that agent 1 knows \(q \);

“Multi-valued semantics” of \(KCTL^*P \) are given by means of multi-agent multi-valued Kripke structures which extend the \(mv \) modal epistemic models [74] by the use of multi-valued similarity relations.

Definition 1.11 Let \(AP \) be a set of atomic propositions and \(B = (B, \land, \lor, \neg) \) a truth algebra. A multi-agent multi-valued Kripke structure (multi-agent \(mv \)-Kripke structure) over \(AP \) and \(B \) is a tuple \(M = (Q, R, L, (\sim_i | 1 \leq i \leq n)) \), where \((Q, R, L) \) is an \(mv \)-Kripke structure over \(AP \) and \(B \) and \(\sim_i : Q \times Q \rightarrow B \), for all \(1 \leq i \leq n \), is the similarity relation of agent \(i \). Each similarity relation \(\sim_i \) satisfies the following properties:

- **reflexivity**: \(\sim_i (x, x) = 1 \), for any \(x \in Q \);
- **symmetry**: \(\sim_i (x, y) = \sim_i (y, x) \), for any \(x, y \in Q \);
- **transitivity**: \(\sim_i (x, z) = \sim_i (x, y) \land \sim_i (y, z) \), for any \(x, y, z \in Q \).
As we can remark, \sim_i is a multi-valued binary relation on Q. "$\sim_i (x, y) = b$" means that agent i associates the truth value b to the similarity of x and y.

Given a multi-agent mv-Kripke structure M over AP and B, and given a subset D of B, define the set of all D-paths of M starting in state q, denoted $\text{Paths}(M, D, q)$, exactly as for mv-Kripke structures. Again, $\text{Paths}(M, D)$ stands for the set of all D-paths of M. Moreover, we will call a point any pair (π, m), where $\pi \in \text{Paths}(M, D)$ and $m \in N$ with $0 \leq m < |\pi|$. The set of points of the Kripke structure M will be denoted by $\text{Points}(M, D)$.

For any multi-agent mv-Kripke structure, we can obtain an interpreted system by unwinding the transition predicate. The labeling function on points is compatible with the one on the corresponding states.

Definition 1.12 Let $M = (Q, R, L, (\sim_i \mid 1 \leq i \leq n))$ be a multi-agent mv-Kripke structure. The interpreted system corresponding to M is a triple $I = (\text{Paths}(M, D), L^I, (\sim_i^I \mid 1 \leq i \leq n))$, where

- $L^I : \text{Points}(M, D) \rightarrow (AP \rightarrow B)$ is the interpretation function for the atomic propositions in M defined by $L^I(\pi, m)(p) = L(\pi(m))(p)$, for any $\pi \in \text{Paths}(M, D)$ and $0 \leq m < |\pi|$;

- $\sim_i^I : \text{Points}(M, D) \times \text{Points}(M, D) \rightarrow B$, for any $1 \leq i \leq n$, is the similarity relation defined by $\sim_i^I ((\pi, m), (\pi', m')) = \sim_i (\pi(m), \pi'(m'))$.

From now on we will make no distinction between L and its extension to points L^I. The same holds for the similarity relations.

We now give the semantics of $KCTL^*P$, which for the fragment that includes only future time and knowledge is similar to the multi-valued semantics in [74]. If ϕ is a formula in $KCTL^*P$ and $I = (\text{Paths}(M, D), L, (\sim_i \mid 1 \leq i \leq n))$ is an interpreted system we define the truth value of ϕ in the point (π, m), denoted by $[\phi]_{I(\pi,m)}^I$, in the following way ($p \in AP$, φ, φ_1, and φ_2 are state formulas, and ψ, ψ_1, and ψ_2 are path formulas):

$$
[\text{true}]_{I(\pi,m)}^I = 1;
[\text{false}]_{I(\pi,m)}^I = 0;
[p]_{I(\pi,m)}^I = L(\pi, m)(p);
[-p]_{I(\pi,m)}^I = -L(\pi, m)(p);
[\varphi_1 \land \varphi_2]_{I(\pi,m)}^I = [\varphi_1]_{I(\pi,m)}^I \land [\varphi_2]_{I(\pi,m)}^I;
[\varphi_1 \lor \varphi_2]_{I(\pi,m)}^I = [\varphi_1]_{I(\pi,m)}^I \lor [\varphi_2]_{I(\pi,m)}^I;
[X\varphi]_{I(\pi,m)}^I = [\varphi]_{I(\pi,m+1)}^I;
$$
The complexity of the multi-valued model checking problem is always the product between the size of the lattice and the complexity of 2-valued model checking. Model checking multi-valued logics have been proposed by many researchers. Two main approaches have gained attention:

- the reduction approach [72, 60, 11, 73, 74] which transforms an instance of the multi-valued model checking problem into a set of instances of the 2-valued model checking problem (in this way we can use previously known model checking algorithms);
- the direct approach [16, 19, 17, 20, 11] which introduces specialized algorithms for multi-valued model checking.

We can not say which of the above approaches is better. The complexity is always the product between the size of the lattice and the complexity of 2-valued model checking. As already mentioned in [11], the reduction complexity of the multi-valued model checking problem is always the product between the size of the lattice and the complexity of 2-valued model checking.
approach benefits from the fact that it can be implemented using already existing model checkers but the direct approach can work in a more “on the fly” manner. In the reduction approach, we have to construct a set of 2-valued Kripke structures starting only from the initial mv-Kripke structure and the truth algebra and then check the formula on all these models. In the direct approach we can take into consideration all three inputs: the mv-Kripke structure, the truth algebra and the formula in order to guide our check.

1.3.1 Reduction to 2-valued model checking

The approach using Birkhoff’s representation theorem

Reduction techniques for multi-valued model checking to 2-valued model checking are introduced in [72, 60, 11, 74]. Although the authors of [60, 11] use μ-calculus as their supporting logic, straightforward particularizations can be made for CTL^*. Moreover, the μ-calculus combined with knowledge modalities used in [74] permits us to extract a reduction result even for $KCTL^*$ on multi-agent mv-Kripke structures with 2-valued similarity relations.

The idea of all the techniques above is the same. We define for each mv-Kripke structure M over a quasi-boolean algebra B, a set of 2-valued Kripke structures $\{M_x|x \in J(B)\}$, where $J(B)$ is the set of join-irreducible elements of (B, \leq). Then, we use the result of the 2-valued model checking on each of these 2-valued Kripke structures to obtain the truth value of the formula in the initial structure.

We proceed with the formalization of the reduction result using the approach in [72, 74]. In [72], the authors give a preliminary reduction result and complete solutions only for three classes of quasi-boolean algebras. Later, in [74], they extend the method for the temporal logic of knowledge and offer a complete solution for any quasi-boolean algebra.

Let $B = (B, \land, \lor, \neg)$ be a quasi-boolean algebra. The result in [72] considers a function $f : B \to B$ with $f(B) \neq B$ which preserves arbitrary bounds, and proves that multi-valued model checking over B can be reduced to model checking over a quasi-boolean algebra induced by $f(B)$ (if $|f(B)| = 2$ then we deal with the standard 2-valued model checking for CTL^*).

Theorem 1.1 [72] Let $B = (B, \land, \lor, \neg)$ be a quasi-boolean algebra and

3The use of μ-calculus in [60, 11, 74] complicates the construction of the Kripke structures M_x because in the semantics of μ-calculus we also need the negation of the transition predicate.
$f : B \rightarrow B$ be a function with $f(B) \neq B$ and which preserves arbitrary bounds, i.e.

$$f(\land B') = \bigwedge_{b \in B'} f(b) \text{ and } f(\lor B') = \bigvee_{b \in B'} f(b),$$

for any $B' \subseteq B$. Further, let $M = (Q, R, L)$ be an mv-Kripke structure over B and some set of atomic propositions AP and let $M' = (Q, R', L')$ be an mv-Kripke structure over a quasi-boolean algebra induced by $f(B)$ and AP such that $R'(q, q') = f(R(q, q'))$ and $L'(q)(p) = f(L(q)(p))$, for any $q, q' \in Q$ and $p \in AP$.

Then, for any state (path) CTL^*_+ formula ϕ (ψ), it holds:

- $[\phi]^M_q \in f^{-1}(b)$ iff $[\phi]^{M'}_{q'} = b$;
- $[\psi]^M_p \in f^{-1}(b)$ iff $[\psi]^{M'}_{p'} = b$,

for any $q \in Q'$ and $\pi \in \text{Paths}(M, B - \{0\})$.

In [74] this result is extended for multi-agent mv-Kripke structures with 2-valued similarity relations and formulas expressed in the μ-calculus combined with knowledge modalities. This extension imposes another restriction on the function f because in the semantics of μ-calculus we also need the negation of the transition predicate, which can be discarded when considering formulas expressed in $KCTL^*_+$.

If $M = (Q, R, L)$ is an mv-Kripke structure as above, Theorem 1.1 permits us to answer questions of the form "$[\phi]^M_q \in f^{-1}(b)$?" or "$[\psi]^M_p \in f^{-1}(b)$?". In order to offer the exact truth value of some formula, the following procedure is proposed in [72]:

- define k mappings f_1, \ldots, f_k such that:
 - $f_1(B), \ldots, f_k(B)$ are lattices for which we already have model checking algorithms;
 - for any $b \in B$ there exist a set of indexes $\{i_1, \ldots, i_p\} \subseteq \{1, \ldots, k\}$ and $b_{i_j} \in f_{i_j}(B)$, for all $1 \leq j \leq p$, such that:
 $$\bigcap_{1 \leq j \leq p} f_{i_j}^{-1}(b_{i_j}) = \{b\}.$$

- if M_1, \ldots, M_k are the mv-Kripke structures defined as in Theorem 1.1 over $f_1(B), \ldots, f_k(B)$, respectively, then:
 $$[\phi]^M_q = b \iff ([\phi]^{M_1}_{q_1} = b_{i_1} \land \cdots \land [\phi]^{M_p}_{q_p} = b_{i_p}).$$

22
[72] provides solutions for finding mappings like the ones above only for linear orders, products of two linear orders, and $2 \times 2 + 2$. For instance, if B with $B = \{0, \frac{1}{k}, \ldots, \frac{k-1}{k}, 1\}$ is a linear order, we define k mappings $f_k : B \to \{0, 1\}$ in the following way:

- $f_i(x) = 0$ iff $x < \frac{i}{k}$ and
- $f_i(x) = 1$ iff $x \geq \frac{i}{k}$,

for any $1 \leq i < k$, and $f_k(x) = 1$ if $x = 1$ and $f_k(x) = 0$, otherwise.

Notice that all f_i, $1 \leq i \leq k$, preserve arbitrary bounds and also, for any $\frac{j}{k}$ with $1 \leq j \leq k - 1$, we can find the set of indexes $\{j, j + 1\}$, $b_j = 1$ and $b_{j+1} = 0$ such that:

$$\frac{j}{k} = f_j(1) \cap f_{j+1}(0).$$

Consequently, for any CTL_+^* formula:

$$[\phi]^M_q = \frac{j}{k} \text{ iff } [\phi]^M_j = 1 \text{ and } [\phi]^M_{j+1} = 0.$$

For the truth values 0 and 1, we can easily obtain $[\phi]^M_j = 0$ iff $[\phi]^M_i = 0$ and $[\phi]^M_j = 1$ iff $[\phi]^M_k = 1$.

In [74], a general method is offered, to obtain mappings like the ones above for any quasi-boolean algebra B. The technique is based on Birkhoff’s representation theorem.

Let $B = (B, \wedge, \vee, \neg)$ be a quasi-boolean algebra like above. It is proved that for any irreducible element x of (B, \leq), the function $f_x : B \to \{0, 1\}$ defined by $f_x(b) = 1$, for any $b \geq x$ and $f_x(b) = 0$, otherwise, preserves arbitrary bounds.

Then, by Birkhoff’s representation theorem for finite distributive lattices, which states that every element b of such a lattice can be represented as the least upper bound of all the join-irreducible elements less than or equal to b in the lattice, we obtain that for any $b \in B$, there exist the set $\mathcal{J}(B) \cap b \downarrow = \{i_1, \ldots, i_p\}$ such that $i_1 \uparrow \cap \cdots \cap i_p \uparrow = \{b\}$. Consequently, for any $b \in B$, we can find the set of indexes $\{i_1, \ldots, i_p\}$ and $b_{i_1} = \cdots = b_{i_p} = 1$ such that

$$\bigcap_{1 \leq j \leq p} f_{i_j}^{-1}(1) = \{b\}.$$

Moreover, the set of indexes above is unique and consequently we can derive the following result.
Theorem 1.2 [74] Let $M = (Q, R, L)$ be an mv-Kripke structure over a quasi-boolean algebra B and a set of atomic propositions AP. Then,

$$[φ]^M_q = \bigvee \{x \in J(B)[[φ]^M_x = 1]\},$$

for any $q \in Q$ and $φ$ a CTL^+_s formula.

Complexity Theorem 1.2 implies that the complexity of multi-valued model checking over a quasi-boolean lattice B is bounded by nM, where n is the number of join-irreducible elements of (B, \leq) and M is the complexity of 2-valued model checking.

The approach using designated values

Another reduction technique from multi-valued model checking to 2-valued model checking is the one in [73]. In this case, we start with a weaker multi-valued model checking problem: instead of computing the exact truth value of some formula, we are interested in finding if the truth value of some formula is in some set of designated values.

As the authors of [73] claim, the designated values should be the counterpart of truth in classical logic: a multi-valued formula is considered to be valid if its truth value is designated.

We now proceed with the description of the reduction in [73]. If $B = (B, \wedge, \vee, \neg)$ is a truth algebra, a set of designated values $D \subseteq B$ must have the following properties:

- D is a proper non-empty subset of B;
- D is upward closed under \leq, i.e. $b' \in D$ whenever $b \leq b'$ for some $b \in D$;
- $B - D$ is downward closed under \leq, i.e. $b' \in B - D$ whenever $b' \leq b$ for some $b \in B - D$;
- $D (B - D)$ is closed under lub and glb, i.e. $D (B - D)$ contains the lub and the glb of any non-empty subset of $D (B - D)$.

The set of designated values D will also be the set of truth values used to define paths.

Now, for any mv-Kripke structure $M = (Q, R, L)$ over a truth algebra B and a set of atomic propositions AP, and any set of designated values $D \subseteq B$ like above, we define a new 2-valued Kripke structure $M^D = (Q, R^D, L^D)$ such that:
* \(R^D(q, q') = 1 \) iff \(R(q, q') \in D \), for any \(q, q' \in Q \);

* \(L^D(q)(p) = 1 \) iff \(L(q)(p) \in D \), for any \(q \in Q \).

The main result of this reduction technique says that a formula \(\phi \) has a designated truth value in \(M \) if and only if it is 1 in \(M^D \).

Theorem 1.3 [73] Let \(M = (Q, R, L) \) be an mv-Kripke structure like above and \(D \subseteq B \) a set of designated values. Then, for any state (path) \(C TL^* \) formula \(\phi (\psi) \), any \(q \in Q \) and any path \(\pi \in \text{Paths}(M, D) \) we have:

* \([\phi]^M_q \in D \) iff \([\phi]^M_D = 1\);

* \([\psi]^M_\pi \in D \) iff \([\psi]^M_D = 1\).

Complexity Clearly, the above theorem implies that the multi-valued model checking problem which questions the membership of the truth value of some formula to the set of designated values, has the same complexity as the 2-valued model checking problem.

1.3.2 Specialized techniques

Symbolic multi-valued CTL model checking

In [16, 19, 17] a specialized model checking algorithm for multi-valued CTL is proposed.

Multi-valued sets are sets for which the range of the membership function can be any quasi-boolean algebra and not the set \(\{0, 1\} \) as in the classical set theory. Formally, if \(B = (B, \land, \lor, \neg) \) is a quasi-boolean algebra and \(S \) a classical set, then a \(B \)-valued set on \(S \) is a total function from \(S \) into \(B \). The operations on multi-valued sets are defined as follows (\(S \) and \(S' \) are two \(B \)-valued sets):

\[
(S \cap_B S')(x) = (S(x) \land S'(x)), \text{ for any } x \in S \cup S';
\]

\[
(S \cup_B S')(x) = (S(x) \lor S'(x)), \text{ for any } x \in S \cup S';
\]

\[
\overline{S}(x) = \neg(S(x)), \text{ for any } x \in S;
\]

\[
S \subseteq_B S' \iff \forall x \,(S(x) \leq S'(x));
\]

\[
S = S' \iff \forall x \,(S(x) = S'(x)).
\]

Straightforwardly, we can define \(B \)-valued relations over two sets \(S \) and \(T \) as \(B \)-valued sets on \(S \times T \). If \(R \) is a \(B \)-valued relation over \(S \) and \(T \) and \(S \)
a B-valued set on S then we define the forward image of S under R, $\overrightarrow{R}(S)$, as follows:

$$\overrightarrow{R}(S)(t) = \bigvee_{s \in S} (S(s) \land R(s, t)),$$

for any $t \in T$.

Analogously, if R is a B-valued relation over S and T and T a B-valued set on T then we define the backward image of T under R, $\overleftarrow{R}(T)$, as follows:

$$\overleftarrow{R}(T)(s) = \bigvee_{t \in T} (T(t) \land R(s, t)),$$

for any $s \in S$.

Algorithms for multi-valued model checking are now obtained by restating the CTL operators in the μ-calculus: usual operations on sets and relations are replaced by the multi-valued versions provided above. Moreover, as in classical symbolic model-checking, the authors of [16, 19, 17] use structures like Multi-Valued Decision Diagrams [109] and Multi-Valued Binary-Terminal Decision Diagrams [108] to efficiently manipulate multi-valued sets.

Complexity If M is the complexity of 2-valued symbolic model checking, then the complexity of the multi-valued version is bounded by $t_B M$, where t_B is the time needed to compute conjunctions and disjunctions of elements in B. It is well known that this time is linear in the number of join-irreducible elements of (B, \leq) (see, for example [37]).

An automata approach to multi-valued μ-calculus model checking

In [11] a multi-valued model checking algorithm for μ-calculus using automata is proposed. As CTL^* is expressible in μ-calculus, this algorithm can be particularized for multi-valued CTL^* model checking. It extends the approach for 2-valued model checking from [75] that uses alternating automata in the following way (we suppose M is a 2-valued Kripke structure and ϕ a formula to be verified):

- constructs an alternating automaton A_ϕ that accepts exactly the trees that satisfy ϕ;
- constructs the product automaton $A_{M,\phi} = M \times A_{D,\phi}$;
- outputs “1” if the language of $A_{M,\phi}$ is non-empty and “0”, otherwise.

Although the approach in [11] applies to mv-Kripke structures with 2-valued transition predicates, this is not a restriction since any multi-valued model checking problem can be transformed into an equivalent one that uses
mv-Kripke structures with 2-valued transition predicates. For μ-calculus, this is suggested but not formally proved in [11]. In the following we will provide a formal proof for the case of CTL^* formulas. The main idea is that the truth value of a transition $R(q, q')$ in the initial model, is recorded in the state q', in the new model. We emphasize that this will involve a blow-up of size $|B|$, where $B = (B, \wedge, \vee, \neg)$ is the truth algebra under consideration.

Let $M = (Q, R, L)$ be an mv-Kripke structure over a truth algebra $B = (B, \wedge, \vee, \neg)$ and some set of atomic propositions AP. We define the following structure $M' = (Q', R', L')$ over B and $AP \cup \{r\}$ such that R' is 2-valued:

- $Q' = Q \times B$;
- $R'((q, b_1), (q', b_2)) = 1$ iff $R(q, q') = b_2$, for any $q, q' \in Q$ and $b_1, b_2 \in B$;
- $L'((q, b))(p) = L(q)(p)$, for any $q \in Q$ and $p \in AP$;
- r is a new atomic proposition with $L'((q, b))(r) = b$, for any $q \in Q$ and $b \in B$.

The transformation above is useful when the set D of truth values used to build paths is equal to $B - \{0\}$. In the general case, $Q' = Q \times D$ and B is replaced with D. Moreover, notice that the set of truth values used to build path in M' is $\{1\}$.

We define a transformation $T(\phi)$, for any ϕ a path or state CTL^* formula, as follows (rules are given only for the minimal set of operators):

- $T(p) = p$, $T(\neg \varphi_1) = \neg T(\varphi_1)$ and $T(\varphi_1 \wedge \varphi_2) = T(\varphi_1) \wedge T(\varphi_2)$, for any $p \in AP$ and φ_1, φ_2 state formulas;
- $T(\forall \psi_1) = \forall T(\psi_1)$, for any ψ_1 a path formula;
- $T(\neg \psi_1) = \neg T(\psi_1)$, $T(\psi_1 \wedge \psi_2) = T(\psi_1) \wedge T(\psi_2)$, $T(X\phi) = X(T(\phi) \wedge r)$, $T(\bar{X}\phi) = \bar{X}(T(\phi) \wedge r)$ and $T(\phi U \psi) = (T(\phi) \wedge Xr) U T(\psi)$, for any ψ_1 and ψ_2 path formulas;

For any path π of M starting in q, we denote by π'_b the path of M' starting in (q, b), for any $b \in B$. Notice that π'_b is unique and $\pi'_b(i) = (\pi(i), b')$, where $R(\pi(i - 1), \pi(i)) = b'$, for any $0 < i < |\pi|$.

Theorem 1.4 Let M and M' be as above. Then,

$$[\phi]^M_q = [T(\phi)]^M_{(q, b)} \quad \text{and} \quad [\psi]^M_{\pi} = [T(\psi)]^M_{\pi'_b}$$

for any $q \in Q$, state CTL^* formula ϕ, path CTL^* formula ψ, and $b \in B$.

27
Proof. We will prove the statements in the theorem by structural induction on the formulas ϕ and ψ. The following cases are to be considered:

- $\phi = p \in AP$. We have that $[\phi]_q^M = L(q)(p) = L'((q, b))(p)$, for any $b \in B$. Since $T(p) = p$ we obtain $[\phi]_q^M = [T(\phi)]_{(q,b)}^{M'}$;

- $\phi = \neg \phi_1$, where ϕ_1 is a state formula. Then $[\phi]_q^M = \neg [\phi_1]_q^M$ and $T(\phi) = \neg T(\phi_1)$. Applying the induction hypothesis we get $[\phi_1]_q^M = [T(\phi_1)]_{(q,b)}^{M'}$, for any $b \in B$ and consequently, $[\phi]_q^M = \neg [T(\phi_1)]_{(q,b)}^{M'} = [T(\phi)]_{(q,b)}^{M'}$;

- $\phi = \phi_1 \land \phi_2$, where ϕ_1 and ϕ_2 are state formulas. Then $[\phi]_q^M = [\phi_1]_q^M \land [\phi_2]_q^M$ and $T(\phi) = T(\phi_1) \land T(\phi_2)$. Applying the induction hypothesis we get $[\phi_1]_q^M = [T(\phi_1)]_{(q,b)}^{M'}$ and $[\phi_2]_q^M = [T(\phi_2)]_{(q,b)}^{M'}$, for any $b \in B$. Consequently, $[\phi]_q^M = [T(\phi_1)]_{(q,b)}^{M'} \land [T(\phi_2)]_{(q,b)}^{M'} = [T(\phi)]_{(q,b)}^{M'}$;

- $\phi = \forall \psi$, where ψ is a path formula. We have

$$[\phi]_q^M = \bigwedge_{\pi \in \text{Paths}(M, D, q)} [\psi]_\pi^M.$$

Using $T(\phi) = \forall T(\psi)$ we obtain

$$[T(\phi)]_{(q,b)}^{M'} = \bigwedge_{\rho \in \text{Paths}(M', \{1\}, q, b)} [T(\psi)]_{\rho}^{M'}.$$

By the definition of M', any path $\rho \in \text{Paths}(M', \{1\}, q, b)$ is a path π_b', for some $\pi \in \text{Paths}(M, D, q)$. Now, applying the induction hypothesis, we get $[\psi]_{\pi}^M = [T(\psi)]_{\pi_b'}^{M'}$ and consequently, $[\phi]_{q}^M = [T(\phi)]_{(q,b)}^{M'}$;

- the case $\phi = \exists \phi_1$, where ϕ_1 is a path formula, is similar to the previous one;

- the cases $\psi = \neg \psi_1$ and $\psi = \psi_1 \land \psi_2$, where ψ_1 and ψ_2 are path formulas, are obtained as the similar cases involving state formulas;

- $\psi = X\psi_1$, where ψ_1 is a path formula. We have $T(\psi) = X(T(\psi_1) \land r)$ and

$$[\psi]_{\pi}^M = (|\pi| > 1) \land R(\pi(0), \pi(1)) \land [\psi_1]_{\pi_b}^{M'}.$$

Clearly, $|\pi| > 1$ iff $|\pi_b| > 1$. Then,

$$[T(\psi)]_{\pi_b}^{M'} = [X(T(\psi_1) \land r)]_{\pi_b}^{M'}$$

$$= (|\pi_b| > 1) \land R'(\pi_b(0), \pi_b(1)) \land [T(\psi_1)]_{\pi_b}^{M'} \land [r]_{\pi_b}^{M'}.$$

By the definition of π_b and r, we have $[r]_{\pi_b}^{M'} = R(\pi(0), \pi(1))$ which proves $[\psi]_{\pi}^M = [T(\psi)]_{\pi_b}^{M'}$;
• the case $\psi = \overline{X}\psi_1$, where ψ_1 is a path formula is similar to the previous one;

• the case $\psi = \psi_1 \mathbin{U} \psi_2$, where ψ_1 and ψ_2 are path formulas. We have $T(\psi) = (T(\psi_1) \mathbin{\wedge} Xr) \mathbin{U} T(\psi_2)$ and

\[
[\psi]_\pi^M = [\psi_1]_\pi^M \mathbin{\vee} \bigvee_{0 < i < |\pi|} ([\psi_2]_\pi^M \mathbin{\wedge} \bigwedge_{0 < j < i} ([\psi_1]_\pi^M \mathbin{\wedge} R(\pi(j), \pi(j + 1)))).
\]

Then,

\[
[T(\psi)]_{\pi_b}^{M'} = [(T(\psi_1) \mathbin{\wedge} Xr) \mathbin{U} T(\psi_2)]_{\pi_b}^{M'}
= [T(\psi_1)]_{\pi_b}^{M'} \mathbin{\vee} \bigvee_{0 < i < |\pi|} ([T(\psi_2)]_{\pi_b}^{M'} \mathbin{\wedge}
\bigwedge_{0 < j < i} ([T(\psi_1) \mathbin{\wedge} Xr)]_{\pi_b}^{M'} \mathbin{\wedge} R'(\pi_b(j), \pi_b(j + 1))))
\]

In the above, we use $R'(\pi_b(j), \pi_b(j + 1)) = 1$,

\[
[T(\psi_1) \mathbin{\wedge} Xr]_{\pi_b}^{M'} = [T(\psi_1)]_{\pi_b}^{M'} \mathbin{\wedge} [r]_{\pi_{b+1}}^{M'}
\]

and $[r]_{\pi_{b+1}}^{M'} = R(\pi(j), \pi(j + 1))$ to obtain $[\psi]_\pi^M = [T(\psi)]_{\pi_b}^{M'}$. \hfill \Box

The approach in [75] is extended to the multi-valued case by first extending the alternating automata. While in classic alternating automata, we describe successors through boolean expressions built up from states, boolean values, conjunction and disjunction, in extended alternating automata (EAA, for short) we describe successors through boolean expressions built up from states, truth values in B, conjunction and disjunction over B. Moreover, in EAAs each accepting run has a truth value and now, we are not interested in the non-emptiness of the language but in the truth value of each accepting run.

The fundamental property of an EAA is that the set of truth values for which there exists an accepting run has a maximum value. This permits an algorithm which proceeds with minor differences as in the 2-valued case but, in the last step the answer for the truth value of ϕ in M is the maximum value of an accepting run.

Complexity As computing the maximum value of an accepting run for the product automaton is proved to have the same complexity as checking it’s non-emptiness, the complexity for μ-calculus model checking remains the same even for the multi-valued case. However, in this case, the size of the problem will also include the size of B. 29
Chapter 2

Multi-valued Abstractions

This chapter deals with abstractions that preserve properties expressed in logics under multi-valued interpretations given by truth algebras. The abstract system is obtained by applying equivalence relations and the predicate symbols of the logic are re-defined to work properly on equivalence classes.

We define abstractions of logical structures that preserve first order logic formulas, abstractions of multi-valued Kripke structures that preserve temporal logic formulas and abstractions of multi-agent multi-valued Kripke structures that preserve temporal logic of knowledge formulas. Moreover, we show how multi-valued abstractions can be computed from 2-valued abstractions provided that some requirements are satisfied.

Before giving abstractions of multi-valued Kripke structures, we provide a case study of using abstraction in the context of protection systems which model access control policies [63].

2.1 Interpretation policies

The abstraction techniques for multi-valued logics we introduce in this thesis extend the ones offered for Kleene’s 3-valued logic in [111, 46, 45]. The abstract system is obtained by applying equivalence relations. Then, the predicate symbols of the logic are re-defined to work properly on equivalence classes. As an equivalence class may contain more than one element and each element leads to a truth value for each predicate, to redefine a predicate on an equivalence class comes down to define a policy of recombination of truth values from some given set.

Definition 2.1 Let $\mathcal{B} = (B, \wedge, \vee, \neg)$ be a truth algebra. An *interpretation policy* over \mathcal{B} is any function α from B into the set $\{\exists^S, \exists^S_a | S, S' \in \mathcal{P}(B)\}$.

An interpretation policy α over B works as follows. Let A be a non-empty set of elements, p a unary predicate symbol, and $I_p^A : A \to B$ an interpretation function which gives truth values to p on each $a \in A$. Given an arbitrary and non-empty set $X \subseteq P(A) - \{\emptyset\}$, we want to use α to define a new interpretation function $I_p^X : X \to B$ as follows. For any $T \in X$, $I_p^X(T)$ is the truth value $b \in B$ if one of the following properties is satisfied:

- if $\alpha(b) = \exists^S$, then
 $(\forall t \in T)(I_p^A(t) \in S) \land (\exists t \in T)(I_p^A(t) = b)$
- if $\alpha(b) = \exists^S_a$, then
 $(\forall t \in T)(I_p^A(t) \in S) \land (\exists t_1, t_2 \in T)(I_p^A(t_1) \leq b \leq I_p^A(t_2))$.

It is quite clear that such a function I_p^X might not exists. It might happen that no policy $\alpha(b)$ can be applied to $T \in X$ or two distinct policies $\alpha(b)$ and $\alpha(b')$ can be applied to $T \in X$. When α allows to define an unique function I_p^X as above, then I_p^X will be called the reinterpretation of I_p^A on X according to α and any element $I_p^X(T)$ will be called the truth value of p on T according to α (it is also denoted by p_α^T).

Therefore, an interpretation policy aims to redefine already existing interpretation functions. One may remark that a policy of the form $\alpha(b) = \exists^b$ says that a predicate p is reinterpreted to b on a non-empty subset T if all the elements in T evaluate the predicate p to b. Sometimes, we will denote this by $\alpha(b) = \forall$.

Example 2.1 In [111], an abstraction based verification technique has been proposed for abstract data types. The technique employs a first order logic under Kleene’s 3-valued interpretation. The truth algebra is based on the lattice $(B = \{0, \bot, 1\}, \leq)$ with $0 \leq \bot \leq 1$. Three abstraction types were defined: $\forall\forall$-abstractions, $\forall\exists$-abstractions, and $\exists^{0,1}\forall$-abstractions.

It is easily seen that the reinterpretations of the predicate symbols for these abstractions are driven by the following interpretation policies:

<table>
<thead>
<tr>
<th>abstraction type [111]</th>
<th>interpretation policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall\forall$</td>
<td>$\alpha(0) = \exists^0$ \quad $\alpha(\bot) = \exists^{0,1,1}$ \quad $\alpha(1) = \exists^1$</td>
</tr>
<tr>
<td>$\forall\exists$</td>
<td>$\alpha(0) = \exists^{0,1,1}$ \quad $\alpha(\bot) = \exists^{0,1}$ \quad $\alpha(1) = \exists^1$</td>
</tr>
<tr>
<td>$\exists^{0,1}\forall$</td>
<td>$\alpha(0) = \exists^0$ \quad $\alpha(\bot) = \exists^{0,1,1}$ \quad $\alpha(1) = \exists^{0,1}$</td>
</tr>
</tbody>
</table>

\(^1\text{The symbol } \exists\text{ in the definition of interpretation policies should not be confused with the symbol } \exists\text{ used in the syntax of the logics. In interpretation policies this symbol will always be accompanied by a superscript (and sometimes, a subscript).} \)
As we have already said, an interpretation policy might not allow redefining an already existing interpretation function. Interestingly is that some interpretation policies allow redefining interpretation functions no matter what the domain of these functions is and no matter how these functions are defined. This is the case, for instance, of the policies in Example 2.1.

When an interpretation policy leads to exactly one reinterpretation no matter how the interpretation function is chosen, it will be called a safe interpretation policy. They can be characterized as follows.

Theorem 2.1 An interpretation policy \(\alpha : B \to \{ \exists^S, \exists_a^S | S, S' \in \mathcal{P}(B) - \{ \emptyset \} \} \) is safe if and only if for any non-empty subset \(S_T \subseteq B \) there exists an unique \(b \in B \) such that one of the following two statements holds true:

- if \(\alpha(b) = \exists^S \), then \(b \in S_T \subseteq S \);
- if \(\alpha(b) = \exists_a^S \), then \(S_T \subseteq S \) and there are \(b_1, b_2 \in S \) such that \(b_1 \leq b \leq b_2 \).

Proof It is clear that if \(\alpha \) is safe then there is an unique \(b \in B \) such that one of the two statements holds true.

Conversely, assume that \(\alpha \) satisfies the property in the theorem. Let \(p \) be a predicate symbol, \(A \) be a non-empty set, and \(I_A^p : A \to \mathcal{P}(B) - \{ \emptyset \} \) be an interpretation of \(p \) over \(A \). Let \(X \subseteq \mathcal{P}(A) - \{ \emptyset \} \). We will show that we can define an unique reinterpretation \(I_X^p \) of \(I_A^p \) on \(X \) according to \(\alpha \).

Let \(T \in X \), and let \(S_T = \{ I_A^p(t) | t \in T \} \). Clearly, \(S_T \) is non-empty. Then, there exists an unique \(b \in B \) such that one of the two properties in the theorem holds true. If we define \(I_X^p(T) = b \) then one can easily see that this is a consistent definition of a function and it is the unique one which satisfies the interpretation policy \(\alpha \).

\(\square \)

2.2 First-Order Logic

2.2.1 Abstractions and Preservation Results

Logical structures, used to model systems, assign meanings to logical signatures by associating a set of data to each kind and a multi-valued predicate to each predicate symbol. Abstractions of logical structures are captured by using equivalences and interpretation policies. The equivalence classes represent sets of elements that are treated as a whole and the interpretation policy is used to obtain the truth value of the predicates on equivalence classes.

If \(K \) is a non-empty set of kinds, a \(K \)-kinded binary relation on a \(K \)-kinded set \(S \) is a \(K \)-indexed family \(\rho = (\rho_k | k \in K) \) such that \(\rho_k \) is a binary
relation on \(S_k \). \(\rho \) is an *equivalence relation* on \(S \) if each \(\rho_k \) is an equivalence relation on \(S_k \).

Definition 2.2 Let \(S = (S, \Sigma^S_L) \) be a \((B, \Sigma^B)\)-logical structure, \(\rho \) a \(K \)-kinded equivalence on \(S \) and \(\alpha \) an interpretation policy over \(B \). An \(\alpha \)-abstraction of \(S \) by \(\rho \) is a \((B, \Sigma^B_L)\)-logical structure \(S' = (S/\rho, \Sigma^S_L) \) such that:

- \(S/\rho = (S_k/\rho_k | k \in K) \);
- \(p^{S'}([a_1]_{\rho_{k_1}}, \ldots, [a_m]_{\rho_{k_m}}) \) is the value of \(p \) over the set
 \[\{(u_1, \ldots, u_m)| u_i \in [a_i]_{\rho_{k_i}}, 1 \leq i \leq m\} \]
 according to \(\alpha \), for any predicate \(p \) of type \(k_1 \ldots k_m \) with \(m \geq 1 \), and \(a_i \in S_{k_i}, 1 \leq i \leq m \).

In order to be useful, an abstraction should be *property preserving* with respect to a specific set of properties. In the following we provide three types of preservation results:

- \(\geq \)-preservation with respect to a set of properties \(P \) and two truth values \(b, b' \in B \) means that a given property \(\phi \in P \) is evaluated to a truth value greater than or equal to \(b' \) in the concrete system whenever it is evaluated to a truth value greater than or equal to \(b \) in the abstract system;

- \(\leq \)-preservation with respect to a set of properties \(P \) and two truth values \(b, b' \in B \) means that a given property \(\phi \in P \) is evaluated to a truth value less than or equal to \(b' \) in the concrete system whenever it is evaluated to a truth value less than or equal to \(b \) in the abstract system;

- \(= \)-preservation results with respect to a set of properties \(P \) and a set of truth values \(B' \) means that a given property \(\phi \in P \) is evaluated to a truth value \(b \in B' \) in the concrete system whenever it is evaluated to \(b \) in the abstract system;

Remark 2.1 If \(B \) is the classic two-valued truth algebra, the \(= \)-preservation include three forms of property preservation frequently found in the literature [34, 113, 111]:

- *strong-preservation*: an abstraction is strongly preserving if a set of properties with truth values true or false in the abstract system has corresponding properties in the concrete system with the same truth values;
• weak-preservation: an abstraction is weakly preserving if a set of properties true in the abstract system has corresponding properties in the concrete system that are also true;

• error-preservation: an abstraction is error preserving if a set of properties false in the abstract system has corresponding properties in the concrete system that are also false.

One of the advantages of Definition 2.2 is that with the same equivalence we can prove more than one property just by changing the interpretation policy.

We shall derive in the following, several preservation results. We begin by two technical results. Given an equivalence \(\rho \) on \(S \) and two assignments \(\gamma \in \Gamma(X, S') \) and \(\gamma' \in \Gamma(X, S) \), we write \(\gamma' \in \gamma \) whenever \(\gamma'(x) \in \gamma(x) \), for all \(x \in X \).

Lemma 2.1 Let \(S \) be a \((B, \Sigma_L) \)-logical structure like above, \(\rho \) an equivalence on \(S \) and \(S' \) an \(\alpha \)-abstraction of \(S \) by \(\rho \), for some interpretation policy \(\alpha \). Then:

1. \(\gamma' \in \Gamma(X, S) \), for any \(\gamma \in \Gamma(X, S') \) such that \(\gamma' \in \gamma \);
2. for any \(\gamma' \in \Gamma(X, S) \) there exists \(\gamma \in \Gamma(X, S') \) such that \(\gamma' \in \gamma \).

Proof (1) follows directly from definitions.

(2) Given an assignment \(\gamma' \) into \(S' \), define the assignment \(\gamma \) into \(S' \) by \(\gamma(x) = [\gamma'(x)] \), for all \(x \). Clearly, \(\gamma' \in \gamma \).

Lemma 2.2 Let \(S, \rho, \) and \(S' \) like above, and \(\gamma \) be an assignment into \(S' \). Then,

\[I_{S'}(p(x_1, \ldots, x_m)) (\gamma) = p^S([\gamma_1(x_1)], \ldots, [\gamma_m(x_m)]) \]

for any \(\gamma_1, \ldots, \gamma_m \in \gamma \) and atomic formula \(p(x_1, \ldots, x_m) \).

Proof Directly from the definition of \(I_{S'} \).

We have to remark that Lemmata 2.1 and 2.2 do not depend on the interpretation policy. As a result they hold true for any abstraction.

Theorem 2.2 Let \(S = (S, \Sigma_L^S) \) be a \((B, \Sigma_L) \)-logical structure, \(\rho \) an equivalence on \(S \), \(\alpha \) an interpretation policy over \(B \), \(S' = (S/\rho, \Sigma_L^{S'}) \) an \(\alpha \)-abstraction of \(S \) by \(\rho \), and \(b \) a truth value in \(B \). If there exists \(b' \in B \) such that \(\alpha(x) \in \{ \exists^T, \exists_x^T, \forall \mid T \subseteq \uparrow b' \} \), for all \(x \geq b \), then:

\[I_{S'}(\phi)(\gamma) \geq b \Rightarrow (\forall \gamma' \in \gamma)(I_S(\phi)(\gamma') \geq b') \]
for any $\phi \in \mathcal{L}^{(\land)}(\Sigma_L, X)$ and $\gamma \in \Gamma(X, S')$. Moreover, if

$$\forall B' \geq b \Rightarrow (\exists x \in B')(x \geq b), \text{ for any } B' \subseteq B,$$

then

$$\mathcal{I}_{S'}(\phi)(\gamma) \geq b \Rightarrow (\forall \gamma' \in \gamma)(\mathcal{I}_{S}(\phi)(\gamma') \geq b'),$$

for any $\phi \in \mathcal{L}^{(\land, \lor)}(\Sigma_L, X)$ and $\gamma \in \Gamma(X, S')$.

Proof To prove the first part, we proceed by structural induction on ϕ. We consider the following cases:

- $\phi = p(x_1, \ldots, x_m)$ is an atomic formula. Let $\gamma \in \Gamma(X, S')$ such that $\mathcal{I}_{S'}(p(x_1, \ldots, x_m))(\gamma) \geq b$. Now, let $\gamma' \in \Gamma(X, S)$ such that $\gamma' \in \gamma$. We apply Lemma 2.2 for $\gamma_1 = \cdots = \gamma_m = \gamma'$ and obtain

$$\mathcal{I}_{S'}(p(x_1, \ldots, x_m))(\gamma) = p^S([\gamma'(x_1)], \ldots, [\gamma'(x_m)]) \geq b,$$

which by the conditions on α implies $p^S(\gamma'(x_1), \ldots, \gamma'(x_m)) \geq b'$. Consequently, $\mathcal{I}_{S}(\phi)(\gamma') \geq b'$;

- $\phi = \phi_1 \land \phi_2$. Assume that ϕ_1 and ϕ_2 satisfy the property and let $\gamma \in \Gamma(X, S')$ be an assignment such that $\mathcal{I}_{S'}(\phi_1 \land \phi_2)(\gamma) \geq b$. This implies $\mathcal{I}_{S'}(\phi_1)(\gamma) \geq b$ and $\mathcal{I}_{S'}(\phi_2)(\gamma) \geq b$. By the induction hypothesis, we obtain $\mathcal{I}_{S}^\prime(\phi_1)(\gamma') \geq b'$ and $\mathcal{I}_{S}^\prime(\phi_2)(\gamma') \geq b'$, for any $\gamma' \in \gamma$. Therefore, $\mathcal{I}_{S}(\phi_1 \land \phi_2)(\gamma') \geq b'$, for any $\gamma' \in \gamma$;

- $\phi = (\forall x)\phi_1$ with $x \in X_k$. Assume that ϕ_1 satisfies the property and let $\gamma \in \Gamma(X, S')$ be an assignment such that $\mathcal{I}_{S'}((\forall x)\phi_1)(\gamma) \geq b$. This implies $\mathcal{I}_{S'}(\phi_1)(\gamma[x/a]) \geq b$, for any $a \in S_k/\rho_k$. By the induction hypothesis, we obtain that $\mathcal{I}_{S}(\phi_1)(\gamma'') \geq b'$, for any $\gamma'' \in \gamma[x/a]$. Consequently, $\mathcal{I}_{S}(\phi_1)(\gamma'[x/a']) \geq b'$, for any $\gamma' \in \gamma$ and $a' \in a$, and, $\mathcal{I}_{S}((\forall x)\phi_1)(\gamma') \geq b'$, for any $\gamma' \in \gamma$.

For the second part, two more cases are to be added to the proof above:

- $\phi = \phi_1 \lor \phi_2$. Assume that ϕ_1 and ϕ_2 satisfy the property and let $\gamma \in \Gamma(X, S')$ be an assignment such that $\mathcal{I}_{S'}(\phi_1 \lor \phi_2)(\gamma) \geq b$. By the condition on the truth algebra B, we obtain that $\mathcal{I}_{S'}(\phi_1)(\gamma) \geq b$ or $\mathcal{I}_{S'}(\phi_2)(\gamma) \geq b$, and by the induction hypothesis we obtain $\mathcal{I}_{S}(\phi_1)(\gamma') \geq b'$, for any $\gamma' \in \gamma$ or $\mathcal{I}_{S}(\phi_2)(\gamma') \geq b'$, for any $\gamma' \in \gamma$. Thus, $\mathcal{I}_{S}(\phi_1 \lor \phi_2)(\gamma') \geq b'$, for any $\gamma' \in \gamma$.
• \(\phi = (\exists x)\phi_1 \), with \(x \in X_k \). Assume that \(\phi_1 \) satisfies the property and let \(\gamma \in \Gamma(X, S') \) be an assignment such that \(\mathcal{I}_S((\exists x)\phi_1)(\gamma) \geq b \). By the condition on the truth algebra \(\mathcal{B} \), this implies that there exists \(a \in S_k/\rho_k \) such that \(\mathcal{I}_{S'}(\phi_1)(\gamma[x/a]) \geq b \), and by the induction hypothesis, we obtain \(\mathcal{I}_S(\phi_1)(\gamma'') \geq b' \), for any \(\gamma'' \in \gamma[x/a] \). Thus, there exists \(a' \in a \) such that \(\mathcal{I}_{S'}(\phi_1)(\gamma'\{x/a\}) \geq b' \), for any \(\gamma' \in \gamma \), and, \(\mathcal{I}_S((\exists x)\phi_1)(\gamma') \geq b' \), for any \(\gamma' \in \gamma \).

Corollary 2.1 Let \(S = (S, \Sigma_S^L) \) be a \((\mathcal{B}, \Sigma_L) \)-logical structure, \(\rho \) an equivalence on \(S \), \(\alpha \) an interpretation policy over \(\mathcal{B} \), \(S' = (S/\rho, \Sigma_{S'}^L) \) an \(\alpha \)-abstraction of \(S \) by \(\rho \), and \(b \) a truth value in \(\mathcal{B} \). If there exists \(b' \in \mathcal{B} \) such that \(\alpha(x) \in \{\exists^T, \exists^T, \forall | T \subseteq \uparrow b' \} \), for all \(x \geq b \), then:

\[
[\phi]^{S'} \geq b \Rightarrow [\phi]^S \geq b',
\]

for any \(\phi \in \mathcal{L}^{\{\land\}}(\Sigma_L, X) \). Moreover, if

\[
\forall B' \geq b \Rightarrow (\exists x \in B')(x \geq b), \text{ for any } B' \subseteq B,
\]

then

\[
[\phi]^{S'} \geq b \Rightarrow [\phi]^S \geq b',
\]

for any \(\phi \in \mathcal{L}^{\{\land, \lor\}}(\Sigma_L, X) \).

Proof Let \(\phi \) be a formula in \(\mathcal{L}^{\{\land\}}(\Sigma_L, X) \) such that \([\phi]^{S'} \geq b \). Then, \(\mathcal{I}_{S'}(\phi)(\gamma) \geq b \), for any \(\gamma \in \Gamma(X, S') \). By Lemma 2.1, for any \(\gamma' \in \Gamma(X, S) \) there exists \(\gamma \in \Gamma(X, S') \) such that \(\gamma' \in \gamma \). Consequently, we can use Theorem 2.2 to obtain \([\phi]^S \geq b' \). The second part of the theorem follows a similar line.

We exemplify the use of the \(\geq \)-preservation result in Corollary 2.1.

Example 2.2 Let \(K \) be a set of kinds containing the kind \(nat \) for the set of natural numbers and \((\mathcal{B}, \Sigma_L) \) be a \(K \)-kinded logical signature where \(\mathcal{B} \) is the truth algebra in Figure 1.1(e), \(p \in \Sigma_{L,nat} \), and \(q \in \Sigma_{L,nat,nat} \). Moreover, consider \(S = (S, \Sigma_S^L) \) a \((\mathcal{B}, \Sigma_L) \)-logical structure such that:

- \(S_{nat} = \mathbb{N} \);
- \(p^S \) is defined by:

\[
p^S(x) = \begin{cases}
1M, & \text{if } x \% 4 = 0; \\
10, & \text{if } x \% 4 = 1; \\
11, & \text{if } x \% 4 = 2; \\
1M, & \text{if } x \% 4 = 3;
\end{cases}
\]
• q^S is defined by:

$$q^S(x, y) = \begin{cases}
M M, & \text{if } (x + y) \% 4 = 0; \\
M 1, & \text{if } (x + y) \% 4 = 1; \\
M 0, & \text{if } (x + y) \% 4 = 2; \\
M M, & \text{if } (x + y) \% 4 = 3;
\end{cases}$$

Suppose we are interested in the truth value of the formula $\phi_1 = p(x) \land p(y) \land q(x, y)$. We can find a lower bound for this truth value by applying an α-abstraction of S by the equivalence ρ given by

$$x \rho_{nat} y \iff x \text{ and } y \text{ have the same parity}.$$

The interpretation policy α is chosen such that

<table>
<thead>
<tr>
<th>Truth values</th>
<th>$1M$</th>
<th>10</th>
<th>$M 0$</th>
<th>$M M$</th>
<th>11</th>
<th>$M 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>The policy α</td>
<td>$\exists {1M, 11}$</td>
<td>$\exists {1M, 10}$</td>
<td>$\exists {M 0, MM}$</td>
<td>$\exists {M M, M 1}$</td>
<td>\forall</td>
<td>\forall</td>
</tr>
</tbody>
</table>

Let S' be the abstraction above. Since $|S_{nat}/\rho| = 2$ we can easily prove that $[\phi_1]_{S'} = M 0$. Moreover, we have $\alpha(x) \in \{\exists T, \exists T_a, \forall | S' \subseteq \downarrow b'\}$, for all $x \geq M 0$ and, consequently, $[\phi_1]^S \geq M 0$, by Corollary 2.1.

Theorem 2.3 Let $S = (S, \Sigma^S_L)$ be a (B, Σ_L)-logical structure, ρ an equivalence on S, α an interpretation policy over B, $S' = (S/\rho, \Sigma^S_L)$ an α-abstraction of S by ρ, and b a truth value in B. If there exists $b' \in B$ such that $\alpha(x) \in \{\exists S', \exists S', \forall | S' \subseteq \downarrow b'\}$, for all $x \leq b$, then:

$$I_{S'}(\phi)(\gamma) \leq b \Rightarrow (\forall \gamma' \in \gamma)(I_S(\phi)(\gamma') \leq b'),$$

for any $\phi \in \mathcal{L}^{\land, \lor}(\Sigma_L, X)$ and $\gamma \in \Gamma(X, S')$. Moreover, if

$$\land B' \leq b \Rightarrow (\exists x \in B')(x \leq b), \text{ for any } B' \subseteq B,$$

then

$$I_{S'}(\phi)(\gamma) \leq b \Rightarrow (\forall \gamma' \in \gamma)(I_S(\phi)(\gamma') \leq b'),$$

for any $\phi \in \mathcal{L}^{\land, \lor}(\Sigma_L, X)$ and $\gamma \in \Gamma(X, S')$.

Proof This is similar to the proof of Theorem 2.2. \qed

Corollary 2.2 Let $S = (S, \Sigma^S_L)$ be a (B, Σ_L)-logical structure, ρ an equivalence on S, α an interpretation policy over B, $S' = (S/\rho, \Sigma^S_L)$ an α-abstraction of S by ρ, and b a truth value in B. If there exists $b' \in B$

such that $\alpha(x) \in \{\exists S', \exists S', \forall | S' \subseteq \downarrow b'\}$, for all $x \leq b$, then:

$$[\phi]_{S'} \leq b \Rightarrow [\phi]^S \leq b'.$$
for any $\phi \in \mathcal{L}^{(\vee)}(\Sigma_L, X)$. Moreover, if
\[\wedge B' \leq b \implies (\exists x \in B')(x \leq b), \text{ for any } B' \subseteq B, \]
then
\[[\phi]^{S'} \leq b \implies [\phi]^S \leq b', \]
for any $\phi \in \mathcal{L}^{(\wedge, \vee)}(\Sigma_L, X)$.

Proof This is similar to the proof of Corollary 2.1 (but using Theorem 2.3).

Example 2.3 Let K be a set of kinds containing the kind nat for the set of natural numbers. We consider a K-kinded logical signature (\mathcal{B}, Σ_L) where \mathcal{B} is the truth algebra in Figure 1.1(h), $p \in \Sigma_{L,nat}$, and $q \in \Sigma_{L,nat,nat}$. Moreover, let $S = (S, \Sigma^S_L)$ be a (\mathcal{B}, Σ_L)-logical structure such that:

- $S_{nat} = \mathbb{N}$;
- $p^S(x) = SH$ if x is even and $p^S(x) = 1$ if x is odd;
- $q^S(x, y) = DC$ if $x + y$ is even and $q^S(x, y) = SH$ if $x + y$ is odd.

Consider the formula
\[\phi_2 = (\forall x)(\exists y)(p(x) \vee q(x, y)). \]

An upper bound for the truth value of ϕ_2 can be found by applying an α-abstraction of S induced by the equivalence relation ρ given by:
\[x \rho_{nat} y \text{ iff } x \text{ and } y \text{ have the same parity,} \]
for any $x, y \in \mathbb{N}$. The interpretation policy α can be chosen in various ways. For example, suppose that $\alpha(DC) = \alpha(SH) = \alpha(1) = \forall$.

If S' is the α-abstraction of S by ρ then the value of $[\phi_2]^{S'}$ can be obtained easily because $S_{nat}/\rho = \{[0]_{\rho}, [1]_{\rho}\}$ has only two elements. More exactly, $[\phi_2]^{S'}$ equals
\[((p([0]_{\rho}) \vee q([0]_{\rho}, [0]_{\rho})) \vee (p([0]_{\rho}) \vee q([0]_{\rho}, [1]_{\rho}))) \wedge (p([1]_{\rho}) \vee q([1]_{\rho}, [0]_{\rho})) \vee (p([1]_{\rho}) \vee q([1]_{\rho}, [1]_{\rho}))) = SH. \]

Now, since $\alpha(x) = \forall$, for all $x \leq SH$, and
\[\wedge B' \leq SH \implies (\exists x \in B')(x \leq SH), \]
we obtain $[\phi_2]^S \leq SH$, by Corollary 2.2.
Theorem 2.4 Let $S = (S, \Sigma_{L}^{S})$ be a (B, Σ_{L})-logical structure, ρ an equivalence on S, α an interpretation policy over B, $S' = (S/\rho, \Sigma_{L}^{S'})$ an α-abstraction of S by ρ, and b a truth value in B. If $\alpha(b) = \forall$ and $\alpha(x) \in \{\exists, \forall \mid S \subseteq \Gamma \downarrow x\}$, for all $x > b$, then:

$$I_{S'}(\phi)(\gamma) \geq b \Rightarrow (\forall \gamma' \in \gamma)(b \leq I_{S}(\phi)(\gamma')) \leq I_{S'}(\phi)(\gamma)$$

and

$$I_{S'}(\phi)(\gamma) = b \Rightarrow (\forall \gamma' \in \gamma)(I_{S}(\phi)(\gamma') = b),$$

for any $\phi \in L(\Sigma_{L}, X)$ and $\gamma \in \Gamma(X, S')$.

Proof We proceed by simultaneous structural induction on ϕ. The following cases are to be discussed:

- $\phi = p(x_{1}, \ldots, x_{m})$ is an atomic formula. Let $\gamma \in \Gamma(X, S')$ such that $I_{S'}(p(x_{1}, \ldots, x_{m}))(\gamma) \geq b$. Now, let $\gamma' \in \Gamma(X, S)$ such that $\gamma' \in \gamma$. We apply Lemma 2.2 for $\gamma_{1} = \cdots = \gamma_{m} = \gamma'$ and obtain

$$I_{S'}(p(x_{1}, \ldots, x_{m}))(\gamma) = p_{S'}([\gamma'(x_{1})], \ldots, [\gamma'(x_{m})]) \geq b,$$

which implies $b \leq p_{S}(\gamma'(x_{1}), \ldots, \gamma'(x_{m})) \leq p_{S'}(\gamma(x_{1}), \ldots, \gamma(x_{m}))$. Consequently, $b \leq I_{S}(\phi)(\gamma') \leq I_{S'}(\phi)(\gamma)$.

Now, let $\gamma \in \Gamma(X, S')$ such that $I_{S'}(p(x_{1}, \ldots, x_{m}))(\gamma) = b$. We can use in the same way Lemma 2.2 and $\alpha(b) = \forall$ to obtain $I_{S}(\phi)(\gamma') = b$, for any $\gamma' \in \gamma$;

- $\phi = \phi_{1} \land \phi_{2}$. Assume that ϕ_{1} and ϕ_{2} satisfy the properties and let $\gamma \in \Gamma(X, S')$ such that $I_{S'}(\phi_{1} \land \phi_{2})(\gamma) \geq b$. This implies $I_{S'}(\phi_{1})(\gamma) \geq b$ and $I_{S'}(\phi_{2})(\gamma) \geq b$. By the induction hypothesis we obtain $b \leq I_{S}(\phi_{1})(\gamma') \leq I_{S'}(\phi_{1})(\gamma)$ and $b \leq I_{S}(\phi_{2})(\gamma') \leq I_{S'}(\phi_{2})(\gamma')$, for any $\gamma' \in \gamma$, which further implies $b \leq I_{S}(\phi_{1} \land \phi_{2})(\gamma') \leq I_{S'}(\phi_{1} \land \phi_{2})(\gamma)$.

Now, let $\gamma \in \Gamma(X, S')$ such that $I_{S'}(\phi_{1} \land \phi_{2})(\gamma) = b$. We consider two cases:

- $I_{S}(\phi_{1})(\gamma) = b$ and $I_{S}(\phi_{2})(\gamma) \geq b$. By the induction hypothesis, the first statement implies $I_{S}(\phi_{1})(\gamma') = b$, for any $\gamma' \in \gamma$ while the latter implies $I_{S}(\phi_{2})(\gamma') \geq b$, for any $\gamma' \in \gamma$ and, consequently, $I_{S}(\phi_{1} \land \phi_{2})(\gamma') = b$, for any $\gamma' \in \gamma$;

- $I_{S}(\phi_{1})(\gamma) \neq b$ and $I_{S}(\phi_{2})(\gamma) \neq b$. Again, by the induction hypothesis, we obtain $b \leq I_{S}(\phi_{1})(\gamma') \leq I_{S'}(\phi_{1})(\gamma)$ and $b \leq I_{S}(\phi_{2})(\gamma') \leq I_{S'}(\phi_{2})(\gamma)$, for any $\gamma' \in \gamma$ which implies $I_{S}(\phi_{1} \land \phi_{2})(\gamma') = b$, for any $\gamma' \in \gamma$. □
Corollary 2.3 Let $S = (S, \Sigma^S_L)$ be a (B, Σ_L)-logical structure, ρ an equivalence on S, α an interpretation policy over B, $S' = (S/\rho, \Sigma^{S'}_L)$ an α-abstraction of S by ρ, and b a truth value in B. If $\alpha(b) = \forall$ and $\alpha(x) \in \{\exists^S \mid S \subseteq \downarrow b \cap \uparrow x\}$, for all $x > b$, then:

$$[\phi]^{S'} \geq b \Rightarrow b \leq [\phi]^S \leq [\phi]^{S'}$$

and

$$[\phi]^{S'} = b \Rightarrow [\phi]^S = b,$$

for any $\phi \in \mathcal{L}(\land)(\Sigma_L, X)$.

Proof This is similar to the proof of Corollary 2.1 (but using Theorem 2.4).

Theorem 2.5 Let $S = (S, \Sigma^S_L)$ be a (B, Σ_L)-logical structure, ρ an equivalence on S, α an interpretation policy over B, $S' = (S/\rho, \Sigma^{S'}_L)$ an α-abstraction of S by ρ, and b a truth value in B. If $\alpha(b) = \forall$ and $\alpha(x) \in \{\exists^S \mid S \subseteq \downarrow x \cap \uparrow b\}$, for all $x < b$, then:

$$I_{S'}(\phi)(\gamma) \leq b \Rightarrow (\forall \gamma' \in \gamma)(I_{S'}(\phi)(\gamma) \leq I_S(\phi)(\gamma') \leq b),$$

and

$$I_{S'}(\phi)(\gamma) = b \Rightarrow (\forall \gamma' \in \gamma)(I_S(\phi)(\gamma') = b),$$

for any $\phi \in \mathcal{L}(\lor)(\Sigma_L, X)$ and $\gamma \in \Gamma(X, S')$.

Proof It follows the same line as the proof of Theorem 2.4.

Corollary 2.4 Let $S = (S, \Sigma^S_L)$ be a (B, Σ_L)-logical structure, ρ an equivalence on S, α an interpretation policy over B, $S' = (S/\rho, \Sigma^{S'}_L)$ an α-abstraction of S by ρ, and b a truth value in B. If $\alpha(b) = \forall$ and $\alpha(x) \in \{\exists^S \mid S \subseteq \downarrow x \cap \uparrow b\}$, for all $x < b$, then:

$$[\phi]^{S'} \leq b \Rightarrow [\phi]^{S'} \leq [\phi]^S \leq b$$

and

$$[\phi]^{S'} = b \Rightarrow [\phi]^S = b,$$

for any $\phi \in \mathcal{L}(\lor)(\Sigma_L, X)$.

Proof This is similar to the proof of Corollary 2.1 (but using Theorem 2.5).

Theorem 2.6 Let $S = (S, \Sigma^S_L)$ be a (B, Σ_L)-logical structure, ρ an equivalence on S, α an interpretation policy over B, $S' = (S/\rho, \Sigma^{S'}_L)$ an α-abstraction of S by ρ, and b a truth value in B. If:
1. $\alpha(b) = \forall$;
2. $\alpha(x) \in \{\exists^s, \exists^s_x, \forall \mid S' \subseteq b\}$, for all $x > b$;
3. $\alpha(x) \in \{\exists^s, \exists^s_x, \forall \mid S' \subseteq b\}$, for all $x < b$;
4. for any $B' \subseteq B$, $\land B' \leq b$ implies that there exists $x \in B'$ such that $x \leq b$;
5. for any $B' \subseteq B$, $\lor B' \geq b$ implies that there exists $x \in B'$ such that $x \geq b$;
6. for any $B' \subseteq B$, $\land B' = b$ implies $b \in B'$;
7. for any $B' \subseteq B$, $\lor B' = b$ implies $b \in B'$;

then

$$I_S(\phi)(\gamma) \geq b \Rightarrow (\forall \gamma' \in \gamma)(I_S(\phi)(\gamma') \geq b),$$

$$I_S(\phi)(\gamma) \leq b \Rightarrow (\forall \gamma' \in \gamma)(I_S(\phi)(\gamma') \leq b),$$

$$I_S(\phi)(\gamma) = b \Rightarrow (\forall \gamma' \in \gamma)(I_S(\phi)(\gamma') = b),$$

for any $\phi \in L^{(\land, \lor)}(\Sigma_L, X)$ and $\gamma \in \Gamma(X, S')$.

Proof The first and the second statement in the theorem are obtained by taking $b' = b$ in Theorem 2.2 and 2.3, respectively. For the third statement, we proceed by structural induction on ϕ and consider the following cases:

- $\phi = p(x_1, \ldots, x_m)$ is an atomic formula. Let $\gamma \in \Gamma(X, S')$ such that $I_S(p(x_1, \ldots, x_m))(\gamma) = b$ and $\gamma' \in \Gamma(X, S)$ with $\gamma' \in \gamma$. We apply Lemma 2.2 for $\gamma_1 = \cdots = \gamma_m = \gamma'$ and obtain

$$I_S(p(x_1, \ldots, x_m))(\gamma) = p^s(\gamma'(x_1), \ldots, \gamma'(x_m)) = b,$$

which implies $p^s(\gamma'(x_1), \ldots, \gamma'(x_m)) = b$, by $\alpha(b) = \forall$. Consequently, $I_S(\phi)(\gamma') = b$, for any $\gamma' \in \gamma$;

- $\phi = \phi_1 \land \phi_2$. Assume that ϕ_1 and ϕ_2 satisfy the properties and let $\gamma \in \Gamma(X, S')$ such that $I_S(\phi_1 \land \phi_2)(\gamma) = b$. By 6, we can suppose without any loss of generality that $I_S(\phi_1)(\gamma) = b$ and $I_S(\phi_2)(\gamma) \geq b$. By the induction hypothesis we obtain $I_S(\phi_1)(\gamma') = b$ and $I_S(\phi_1)(\gamma') \geq b$, for any $\gamma' \in \gamma$, which further implies $I_S(\phi_1 \land \phi_2)(\gamma') = b$, for any $\gamma' \in \gamma$;

- $\phi = \phi_1 \lor \phi_2$. This is similar to the previous case;
• \(\phi = (\forall x)\phi_1 \) with \(x \in X_k \). Assume that \(\phi_1 \) satisfies the property, and let \(\gamma \in \Gamma(X,S') \) be an assignment such that \(I_S((\forall x)\phi_1)(\gamma) = b \). This implies \(I_{S'}(\phi_1)(\gamma[x/a]) \geq b \), for any \(a \in S_k/\rho_k \) and, by 6, \(I_{S'}(\phi_1)(\gamma[x/a']) = b \), for some \(a' \in S_k/\rho_k \). By the induction hypothesis, we obtain that \(I_S(\phi_1)(\gamma_1) \geq b \), for any \(\gamma_1 \in \gamma[x/a] \), and \(I_S(\phi_1)(\gamma_2) = b \), for any \(\gamma_2 \in \gamma[x/a'] \). Consequently, \(I_S((\forall x)\phi_1)(\gamma'[x/a]) = b \), for any \(\gamma' \in \gamma, a_1 \in S_k \) and \(a_2 \in a' \). Therefore, \(I_S((\forall x)\phi_1)(\gamma') = b \), for any \(\gamma' \in \gamma \).

• \(\phi = (\exists x)\phi_1 \). This is similar to the previous case.

Corollary 2.5 Let \(S = (S, \Sigma^S_L) \) be a \((B, \Sigma_L)\)-logical structure, \(\rho \) an equivalence on \(S \), \(\alpha \) an interpretation policy over \(B \), \(S' = (S/\rho, \Sigma^S'_L) \) an \(\alpha \)-abstraction of \(S \) by \(\rho \), and \(b \) a truth value in \(B \). If:

1. \(\alpha(b) = \forall \);
2. \(\alpha(x) \in \{\exists^{S'}, \exists^S, \forall \mid S' \subseteq \uparrow b\} \), for all \(x > b \);
3. \(\alpha(x) \in \{\exists^{S'}, \exists^S, \forall \mid S' \subseteq \downarrow b\} \), for all \(x < b \);
4. for any \(B' \subseteq B \), \(\land B' \leq b \) implies that there exists \(x \in B' \) such that \(x \leq b \);
5. for any \(B' \subseteq B \), \(\lor B' \geq b \) implies that there exists \(x \in B' \) such that \(x \geq b \);
6. for any \(B' \subseteq B \), \(\land B' = b \) implies \(b \in B' \);
7. for any \(B' \subseteq B \), \(\lor B' = b \) implies \(b \in B' \);

then

\[
\begin{align*}
[\phi]^{S'} & \geq b \Rightarrow [\phi]^S \geq b, \\
[\phi]^{S'} & \leq b \Rightarrow [\phi]^S \leq b, \\
[\phi]^{S'} & = b \Rightarrow [\phi]^S = b,
\end{align*}
\]

for any \(\phi \in L^{\land, \lor}(\Sigma_L, X) \).

Proof This is similar to the proof of Corollary 2.1 (but using Theorem 2.6). \(\square \)

All preservation results in [111] (for Kleene’s 3-valued logic) are particular cases of Corollary 2.5.
Corollary 2.6 Let \leq be the partial order on $B = \{0, \perp, 1\}$ given by $0 \leq \perp \leq 1$ and let $B = (B, \land, \lor, \neg)$ be the corresponding truth algebra. Let $S = (S, \Sigma^S_L)$ be a (B, Σ^S_L)-logical structure, ρ an equivalence on S, α an interpretation policy over B, and $S' = (S/\rho, \Sigma^{S'}_L)$ an α-abstraction of S by ρ. Then, the following properties hold:

- if $\alpha(0) = \forall$, $\alpha(\perp) = \exists^{(0,\perp,1)}$, and $\alpha(1) = \exists^{(0,1)}$ then
 \[[\phi]^{S'} = 0 \Rightarrow [\phi]^S = 0, \text{ for any } \phi \in \mathcal{L}(\land,\lor)(\Sigma_L, X). \]
 That is, S' is error-preserving with respect to formulas in $\mathcal{L}(\land,\lor)(\Sigma_L, X)$;

- if $\alpha(0) = \exists^{(0,\perp,1)}$, $\alpha(\perp) = \exists^{(\perp,1)}$, and $\alpha(1) = \forall$, then
 \[[\phi]^{S'} = 1 \Rightarrow [\phi]^S = 1, \text{ for any } \phi \in \mathcal{L}(\land,\lor)(\Sigma_L, X). \]
 That is, S' is weak-preserving with respect to formulas in $\mathcal{L}(\land,\lor)(\Sigma_L, X)$;

- if $\alpha(0) = \forall$, $\alpha(\perp) = \exists^{a^{(0,\perp,1)}}$, and $\alpha(1) = \forall$, then
 \[[\phi]^{S'} = b \Rightarrow [\phi]^S = b, \text{ for any } \phi \in \mathcal{L}(\Sigma_L, X) \text{ and } b \in \{0, 1\}. \]
 That is, S' is strong-preserving with respect to formulas in $\mathcal{L}(\Sigma_L, X)$;

2.2.2 Multi-valued Abstraction Through 2-valued Abstraction

In this section we show how multi-valued abstractions can be computed from 2-valued abstractions, provided that some requirements are satisfied. In order to simplify the presentation, we will consider only 2-valued abstractions based on the two possible safe interpretation policies α_1 and α_2 over B_2 (B_2 is the truth algebra with two elements):

- $\alpha_1(0) = \exists$ and $\alpha_1(1) = \forall$;
- $\alpha_2(0) = \forall$ and $\alpha_2(1) = \exists$.

We may remark that α_1 corresponds to the interpretation by under-approximation (i.e. $p([a]_\rho) = 1$ iff $p(a_1) = 1$, for all $a_1 \in [a]_\rho$) and α_2 corresponds to the interpretation by over-approximation (i.e. $p([a]_\rho) = 1$ iff $p(a_1) = 1$, for some $a_1 \in [a]_\rho$).

Definition 2.3 Let $S = (S, \Sigma^S_L)$ be a (B_2, Σ^S_L)-logical structure and ρ a K-kinded equivalence on S. A \mathcal{P}-abstraction of S by ρ, where $\mathcal{P} \subseteq \Sigma_L$, is a (B_2, Σ^S_L)-logical structure $S' = (S/\rho, \Sigma^{S'}_L)$ such that:
• $S/\rho = (S_k/\rho_k | k \in K)$;

• $p^{S'}([a_1]_{\rho_{k_1}}, \ldots, [a_m]_{\rho_{k_m}})$ is the value of p over the set
 \[\{(u_1, \ldots, u_m) | u_i \in [a_i]_{\rho_{k_i}}, 1 \leq i \leq m\} \]
 according to α_1 if $p \in \mathcal{P}$ and according to α_2 if $p \notin \mathcal{P}$, for any predicate p of type $k_1 \ldots k_m$ with $m \geq 1$, and $a_i \in S_{k_i}, 1 \leq i \leq m$.

The passing from 2-valued abstractions to multi-valued abstractions follows two steps:

• first, we represent multi-valued predicates by sets of 2-valued predicates induced by some new partial order \leq' on B. Using this representation, a (B_2, Σ'_{L})-logical structure $S_{\leq'}$ is associated to any (B, Σ_{L})-logical structure S;

• second, if $S'_{\leq'}$ is a \mathcal{P}-abstraction of $S_{\leq'}$ by some equivalence ρ, then we extract an interpretation policy α over B such that the (B, Σ_{L})-logical structure S' associated to $S'_{\leq'}$ is an α-abstraction of S by ρ.

Let $B = (B, \wedge, \vee, \neg)$ be a truth algebra over the lattice (B, \leq). We consider a new partial order \leq' on B with the following properties:\footnote{As usual, if \leq' is a partial order on B, then $\leq' = \leq' - \{(a, a) | a \in B\}$, \geq' is the inverse of \leq', and $x \succ' y$ if $x \succ y$ and there exists no $c \in B$ such that $x \succ c \succ y$.}

• (B, \leq') is an inf-complete lattice, i.e. any subset $B' \subseteq B$ has a greatest lower bound. We denote by $0'$ its smallest element;

• for any $x \in B$ there exists a unique $y \in B$ such that $x \succ' y$.

\begin{figure}[h]
\centering
\begin{subfigure}{0.3\textwidth}
\centering
\begin{tikzpicture}
\node (0) at (0,0) {0};
\node (a) at (1,0) {a};
\node (b) at (1,1) {b};
\node (c) at (1,-1) {c};
\node (ab) at (2,0) {ab};
\node (ac) at (2,1) {ac};
\node (bc) at (2,-1) {bc};
\node (1) at (3,0) {1};
\draw (0) -- (a); \draw (0) -- (b); \draw (0) -- (c);
\draw (a) -- (ab); \draw (b) -- (ab); \draw (c) -- (ab);
\draw (ac) -- (a); \draw (bc) -- (a);
\draw (bc) -- (b);
\draw (ac) -- (c);
\end{tikzpicture}
\caption{(a)}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{tikzpicture}
\node (0) at (0,0) {0};
\node (a) at (1,0) {a};
\node (b) at (1,1) {b};
\node (c) at (1,-1) {c};
\node (ab) at (2,0) {ab};
\node (ac) at (2,1) {ac};
\node (bc) at (2,-1) {bc};
\node (1) at (3,0) {1};
\draw (0) -- (a); \draw (0) -- (b); \draw (0) -- (c);
\draw (a) -- (ab); \draw (b) -- (ab); \draw (c) -- (ab);
\draw (ac) -- (a); \draw (bc) -- (a);
\draw (bc) -- (b);
\draw (ac) -- (c);
\end{tikzpicture}
\caption{(b)}
\end{subfigure}
\begin{subfigure}{0.3\textwidth}
\centering
\begin{tikzpicture}
\node (0) at (0,0) {0};
\node (a) at (1,0) {a};
\node (b) at (1,1) {b};
\node (c) at (1,-1) {c};
\node (ab) at (2,0) {ab};
\node (ac) at (2,1) {ac};
\node (bc) at (2,-1) {bc};
\node (1) at (3,0) {1};
\draw (0) -- (a); \draw (0) -- (b); \draw (0) -- (c);
\draw (a) -- (ab); \draw (b) -- (ab); \draw (c) -- (ab);
\draw (ac) -- (a); \draw (bc) -- (a);
\draw (bc) -- (b);
\draw (ac) -- (c);
\end{tikzpicture}
\caption{(c)}
\end{subfigure}
\caption{A lattice and two possible orders \leq' for it.}
\end{figure}
Example 2.4 A lattice representing the inclusion order between subsets of \(\{a, b, c\} \) (0 stands for the empty set and 1 for the full set \(\{a, b, c\} \)) is given in Figure 2.1(a). Two possible orders \(\leq' \) for it are represented in Figure 2.1(b) and Figure 2.1(c).

Now, let \(S = (S, \Sigma^S_L) \) be a \(K \)-kinded \((B, \Sigma^L_L) \)-logical structure and \(\leq' \) a partial order on \(B \) as above. We will associate to \(S \) a \(K \)-kinded \((B_2, \Sigma'^L_L) \)-logical structure \(S_{\leq'} = (S, \Sigma'^{S_{\leq'}}_L) \) in the following way:

- for each predicate symbol \(p \in \Sigma_L \) we include in \(\Sigma'_L \) a set of predicates \(\{p_b \mid b \in B - \{0'\}\} \) of the same type with \(p \);

- \(p_{\leq'}^S(a) = 1 \) if \(p^S(a) \geq' b \), for any \(a \in S_w \), where \(w \) is the type of \(p \). In words, \(p_b \) is true for elements on which \(p \) gets truth values greater than or equal to \(b \) (with respect to \(\leq' \)).

Example 2.5 Let \(K = \{k\} \) be a set of kinds and \((B, \Sigma_L) \) a logical signature, where \(B \) is the truth algebra in Figure 2.1(a) and \(\Sigma^L_k = \{p\} \). Moreover, let \(S = (S, \Sigma^S_L) \) be a \((B, \Sigma^L_L) \)-logical structure such that the support of the kind \(k \) is the language \(\{a^m b^n c^p \mid m, n, p \in \mathbb{N}\} \), and \(p^S(w) \) is the truth value representing the maximal set of symbols that appear in \(w \) (the value of \(p \) over the empty word \(\epsilon \) is 0, and the value of \(p \) over the words containing all symbols is 1). For example, \(p^S(b^1) = b, p^S(a^2b) = ab \) and \(p^S(ab^3c^8) = 1 \).

Based on the partial order \(\leq' \) Figure 2.1(c), we can associate to \(S \) a \((B_2, \Sigma'_L) \)-logical structure \(S_{\leq'} \) such that \(\Sigma'^S_L = \{p_{ab}, p_1, p_0, p_a, p_b, p_bc, p_c\} \). The definition of the predicates in \(S_{\leq'} \) is given as above. For example, \(p_a(w) = 1 \) iff \(w \) contains only \(a \), only \(b \), only \(c \) or \(b \) and \(c \).

Remark 2.2 The process of associating \(S_{\leq'} \) to \(S \) is reversible. Having \(S_{\leq'} \), we can obtain \(S \). To this, we just have to remark that \(p^S(a) = b \in B - \{0'\} \) if

\[p_{\leq'}^S(a) = 1 \text{ and } p_{x \geq'}^S(a) = 0, \text{ for all } x \geq' b, \]

for any \(a \in S_w \), where \(w \) is the type of \(p \). Moreover, \(p^S(a) = 0' \) if \(p_{\leq'}^S(a) = 0 \), for all \(b \geq' 0' \).

We emphasize that the process above is reversible because \(S_{\leq'} \) satisfies the following properties:

- for any \(x, y \in B - \{0'\} \) with \(x \geq' y \), if \(p_{x \geq'}^S([a]_p) = 1 \), for some \(p \in \Sigma^L_w \) and \(a \in S_w \), then \(p_{y \geq'}^S([a]_p) = 1 \);
• for any \(x, y_1, y_2 \in B - \{0\}\) with \(x \preceq y_1\) and \(x \preceq y_2\), and any predicate \(p \in \Sigma_{L,w}\), there exists no \(\vec{a} \in S_w\) such that \(p_{y_1}(\vec{a}_1^\rho) = 1\) and \(p_{y_2}(\vec{a}_2^\rho) = 1\).

Unfortunately, the translation result does not work for any relation \(\leq'\). This partial order must satisfy some constraints with respect to the equivalence relation used for abstraction.

Definition 2.4 Let \(S\) and \(S_{\leq'}\) be as above and \(\rho\) an equivalence relation on \(S\). We say that \(\leq'\) is appropriate for \(\rho\) if:

• for any \(x, y_1, y_2 \in B\) with \(x \preceq y_1\) and \(x \preceq y_2\), any predicate \(p \in \Sigma_{L,w}\), and any \(\vec{a} \in S_w\), \([\vec{a}]_\rho\) does not contain distinct elements \(\vec{a}_1^\rho\) and \(\vec{a}_2^\rho\) such that \(p_{y_1}(\vec{a}_1^\rho) = 1\) and \(p_{y_2}(\vec{a}_2^\rho) = 1\).

The restriction on \(\leq'\) will be the appropriateness for the equivalence considered for abstraction. We emphasize that this restriction still permits us to find a partial order \(\leq'\), no matter what equivalence we choose for abstraction (we can always choose a linear order). Therefore, independently of the equivalence \(\rho\) used for abstraction, there exist multi-valued \(\alpha\)-abstractions of logical structures by \(\rho\) that can be obtained by using 2-valued abstractions.

Example 2.6 Let \(S\) be the logical structure from Example 2.5. We consider an equivalence relation \(\rho\) on \(S_k\) such that \(a^mb^nc^p\rho a^{m'}b^{n'}c^{p'}\) iff:

\[(m = n = p = m' = n' = p' = 0)\] or \[(p = p' = 0 \land (m = m' = 0 \lor n = n' = 0 \lor m = n' = 0 \lor m' = n = 0))\] or \[(m > 0 \land n > 0 \land m' > 0 \land n' > 0)\] or \[(p > 0 \land p' > 0 \land (m > 0 \Rightarrow n = 0) \land (n > 0 \Rightarrow m = 0) \land (m' > 0 \Rightarrow n' = 0) \land (n' > 0 \Rightarrow m' = 0)).\]

Notice that \(\leq'\) is appropriate for \(\rho\) because we do not have equivalence classes containing the value 1 for \(p_b\) and \(p_{bc}\) or the value 1 for any two predicates from the set \(\{p_{ab}, p_0, p_a\}\).

Since in the multi-valued abstractions, the predicates are defined according to the same interpretation policy we will consider \(\mathcal{P}\)-abstractions of \(S_{\leq'}\) for which \(\mathcal{P}\) contains some predicate \(p_b\) only if it contains all possible \(p_b\) with \(p \in \Sigma_L\). We will denote by \(B_\mathcal{P}\) the set of truth values \(b\) for which the predicates \(p_b\) are in \(\mathcal{P}\).

As it was the case with the partial order \(\leq'\), we have some restrictions even for the set \(\mathcal{P}\) of predicates.
For (1), it is sufficient to prove that \(\rho \) for \(W \) we consider the following cases:

- for any \(x, y \in B \) with \(x \succ y \), \(x \notin B_P \) and \(y \in B_P \), any predicate \(p \in \Sigma_{L,w} \) and any \(\vec{a} \in S_w \), we have the following:

\[
(\exists \vec{a}_1 \in [\vec{a}]_\rho)(p_{x \succ y}^S(\vec{a}_1) = 1) \Rightarrow (\forall \vec{a}_1 \in [\vec{a}]_\rho)(p_{x \succ y}^S(\vec{a}_1) = 1)
\]

Example 2.7 Let \(S \) and \(\rho \) be as in Example 2.6. Moreover, let \(P = \{p_{ab}, p_1, p_b, p_{bc}\} \) be a subset of \(\Sigma'_L \). We can easily see that \(P \) is appropriate for \(\rho \) because the equivalence class containing elements for which \(p_c \) is 1 has the property that \(p_{bc} \) is 1 for all its elements.

Now, we prove that the \(P \)-abstraction of \(S_{\leq'} \) by some equivalence \(\rho \) is a logical structure from which we can still extract a multi-valued logical structure as in Remark 2.2, whenever \(\leq' \) and \(P \) are appropriate for \(\rho \).

Theorem 2.7 Let \(S_{\leq'}, \rho \) and \(P \) be as above. If \(\leq' \) and \(P \) are appropriate for \(\rho \) then the \(P \)-abstraction \(S_{\leq'} \) of \(S_{\leq'} \) by \(\rho \) satisfies the following properties:

1. for any \(x, y \in B - \{0'\} \) with \(x \succ y \), any predicate \(p \in \Sigma_{L,w} \) and any \(\vec{a} \in S_w \):

\[
p_{x \succ y}^S([\vec{a}]_\rho) = 1 \Rightarrow p_{y \leq' x}^S([\vec{a}]_\rho) = 1;
\]

2. for any \(x, y_1, y_2 \in B - \{0'\} \) with \(x \prec y_1 \) and \(x \prec y_2 \), and any predicate \(p \in \Sigma_{L,w} \), there is no \(\vec{a} \in S_w \) such that:

\[
p_{y_1 \leq' x}^S([\vec{a}]_\rho) = p_{y_2 \leq' x}^S([\vec{a}]_\rho) = 1.
\]

Proof For (1), it is sufficient to prove that

\[
p_{x \succ y}^S([\vec{a}]_\rho) = 1 \Rightarrow p_{y \leq' x}^S([\vec{a}]_\rho) = 1,
\]

for any \(x, y \in B - \{0'\} \) with \(x \succ y \), any predicate \(p \in \Sigma_{L,w} \), and any \(\vec{a} \in S_w \). We consider the following cases:

- \(x, y \notin B_P \). By the definition of \(S_{\leq'} \), \(p_{x \succ y}^S([\vec{a}]_\rho) = 1 \) iff there exists \(\vec{a}_1 \in [\vec{a}]_\rho \) such that \(p_{x \succ y}^S(\vec{a}_1) = 1 \) and \(p_{y \leq' x}^S([\vec{a}_1]) = 1 \) iff there exists \(\vec{a}_2 \in [\vec{a}]_\rho \) such that \(p_{y \leq' x}^S(\vec{a}_2) = 1 \), for any \(\vec{a} \in S_w \), where \(w \) is the type of \(p \). Since \(p_{x \succ y}^S(\vec{a}) = 1 \) implies \(p_{y \leq' x}^S(\vec{a}) = 1 \) we also have that \(p_{x \succ y}^S([\vec{a}]_\rho) = 1 \) implies \(p_{y \leq' x}^S([\vec{a}]_\rho) = 1 \);
\[x \in B_P \text{ and } y \notin B_P. \text{ Suppose that } p_{x}^{S_{\leq}'}([\vec{a}]_{\rho}) = 1. \text{ This implies } p_{x}^{S_{\leq}'}(\vec{a}_{1}) = 1, \text{ for all } \vec{a}_{1} \in [\vec{a}]_{\rho} \text{ and thus, } p_{x}^{S_{\leq}'}(\vec{a}) = 1. \text{ By the definition of } S_{\leq}', \text{ we further obtain } p_{y}^{S_{\leq}'}(\vec{a}) = 1, \text{ which implies } p_{y}^{S_{\leq}'}(\vec{a}) = 1, \text{ by the fact that } y \notin B_P; \]

\[x \notin B_P \text{ and } y \in B_P. \text{ Suppose that } p_{x}^{S_{\leq}'}([\vec{a}]_{\rho}) = 1. \text{ This implies that there exists } \vec{a}_{1} \in [\vec{a}]_{\rho} \text{ such that } p_{x}^{S_{\leq}'}(\vec{a}_{1}) = 1 \text{ which, by the fact that } P \text{ is appropriate for } \rho, \text{ implies } p_{y}^{S_{\leq}'}(\vec{a}_{2}) = 1, \text{ for all } \vec{a}_{2} \in [\vec{a}]_{\rho}. \text{ Consequently, } p_{y}^{S_{\leq}'}([\vec{a}]_{\rho}) = 1; \]

\[x, y \in B_P. \text{ Suppose that } p_{x}^{S_{\leq}'}([\vec{a}]_{\rho}) = 1. \text{ This implies } p_{x}^{S_{\leq}'}(\vec{a}_{1}) = 1, \text{ for all } \vec{a}_{1} \in [\vec{a}]_{\rho} \text{ and thus, by the definition of } S_{\leq}', p_{y}^{S_{\leq}'}(\vec{a}_{1}) = 1, \text{ for all } \vec{a}_{1} \in [\vec{a}]_{\rho}. \text{ Therefore, } p_{y}^{S_{\leq}'}([\vec{a}]_{\rho}) = 1. \]

To prove (2) we consider again several cases:

\[y_1, y_2 \in B_P. \text{ If we suppose that there exists some equivalence class } [\vec{a}]_{\rho} \text{ such that } p_{y_1}^{S_{\leq}'}(\vec{a}) = p_{y_2}^{S_{\leq}'}(\vec{a}) = 1, \text{ then } p_{y_1}^{S_{\leq}'}(\vec{a}_{1}) = p_{y_2}^{S_{\leq}'}(\vec{a}_{1}) = 1, \text{ for all } \vec{a}_{1} \in [\vec{a}]_{\rho}. \text{ However, this can not hold because } y_1 \text{ and } y_2 \text{ are incomparable with respect to } \leq'; \]

\[y_1 \in B_P \text{ and } y_2 \notin B_P. \text{ Suppose that there exists some equivalence class } [\vec{a}]_{\rho} \text{ such that } p_{y_1}^{S_{\leq}'}(\vec{a}) = p_{y_2}^{S_{\leq}'}(\vec{a}) = 1. \text{ Then, } p_{y_1}^{S_{\leq}'}(\vec{a}_{1}) = 1, \text{ for all } \vec{a}_{1} \in [\vec{a}]_{\rho} \text{ and } p_{y_2}^{S_{\leq}'}(\vec{a}_{2}) = 1, \text{ for some } \vec{a}_{2} \in [\vec{a}]_{\rho}. \text{ Again, we can use the fact that } y_1 \text{ and } y_2 \text{ are incomparable with respect to } \leq' \text{ to obtain that this contradicts the definition of } S_{\leq}'; \]

\[y_1 \notin B_P \text{ and } y_2 \in B_P. \text{ This is similar to the previous case; } \]

\[y_1, y_2 \notin B_P. \text{ In order to have some equivalence class } [\vec{a}]_{\rho} \text{ with } p_{y_1}^{S_{\leq}'}(\vec{a}) = p_{y_2}^{S_{\leq}'}(\vec{a}) = 1, \text{ there should exist } \vec{a}_{1}, \vec{a}_{2} \in [\vec{a}]_{\rho} \text{ such that } p_{y_1}^{S_{\leq}'}(\vec{a}_{1}) = p_{y_2}^{S_{\leq}'}(\vec{a}_{2}) = 1. \text{ However, this contradicts the fact that } \leq' \text{ is appropriate for } \rho. \]

The relationships between the logical structures we have build until now are depicted in Figure 2.2: \(S_{\leq}' \) is obtained from \(S \) by using the partial order \(\leq' \), \(S_{\leq}' \) is a \(P \)-abstraction of \(S_{\leq} \) by some equivalence \(\rho \), and \(S' \) is obtained from \(S_{\leq}' \) by using the partial order \(\leq' \). We will now prove the dotted arrow
Figure 2.2: Relationships between multi-valued and 2-valued logical structures and abstractions.

by identifying the interpretation policy α that corresponds to \mathcal{P} and \preceq', such that S' is an α-abstraction of S by ρ.

Theorem 2.8 Let $S = (S, \Sigma^S)$ be a K-kinded (\mathcal{B}, Σ^L)-logical structure, \preceq' a partial order on \mathcal{B}, ρ an equivalence relation on S, and $\mathcal{P} \subseteq \Sigma^L$ such that \preceq' and \mathcal{P} are appropriate for ρ. If $S'_{\leq'}$ is a \mathcal{P}-abstraction of $S_{\leq'}$ by ρ then S' is an α-abstraction of S by ρ, for some interpretation policy α which satisfies the following properties:

1. if $(\forall b \succ' 0')(b \notin B_{\mathcal{P}})$ then $\alpha(0') = \forall$;
2. if $(\exists b \succ' 0')(b \in B_{\mathcal{P}})$ then $\alpha(0') = \exists^T$, where $0' \in T$ and $\{x| x \geq' b\} \subseteq T$, for any $b \succ' 0'$ with $b \in B_{\mathcal{P}}$;
3. if $b \notin B_{\mathcal{P}}$ and $(\forall z \succ' b)(z \notin B_{\mathcal{P}})$ then $\alpha(b) = \exists^T$, where $T = \{x| x \leq' c \leq' x\} \subseteq T$ and c is given by

 $$c = \begin{cases}
 \text{the least element of } B \text{ such that } c \leq' b \text{ and } c \in B_{\mathcal{P}}, & \text{if it exists;} \\
 0', & \text{otherwise;}
 \end{cases}$$
4. if $b \notin B_{\mathcal{P}}$ and $(\exists z \succ' b)(z \in B_{\mathcal{P}})$ then $\alpha(b) = \exists^T_a$, where $T = \{x| x \geq' c\}$ and c is given by

 $$c = \begin{cases}
 \text{the least element of } B \text{ such that } c \leq' b \text{ and } c \in B_{\mathcal{P}}, & \text{if it exists;} \\
 0', & \text{otherwise;}
 \end{cases}$$
5. if $b \in B_{\mathcal{P}}$ and $(\forall z \succ' b)(z \notin B_{\mathcal{P}})$ then $\alpha(b) = \forall$;
6. if $b \in B_{\mathcal{P}}$ and $(\exists z \succ' b)(z \in B_{\mathcal{P}})$ then $\alpha(b) = \exists^T$, where $b \in T$ and $\{x| x \geq' z\} \subseteq T$, for any $z \succ' b$ with $z \in B_{\mathcal{P}}$;
7. if \(b \in B_P \) and \((\forall z)(z \not\succ^T b)\) then \(\alpha(b) = \forall \);

8. if \(b \notin B_P \) and \((\forall z)(z \not\succ^T b)\) then \(\alpha(b) = \exists^T \), where \(T = \{ x | x \geq^T c \} \) and \(c \) is given by

\[
c = \begin{cases}
\text{the least element of } B \text{ such that } c \leq^T b \text{ and } c \in B_P, \text{if it exists;} \\
0', \text{otherwise};
\end{cases}
\]

Proof Let \(p \in \Sigma_{L,w} \) be a predicate and \(\bar{a} \in S_w \). To prove the first and the second part we proceed as follows:

- if \(p^S([\bar{a}]_\rho) = 0' \) then \(p^{S'}_b([\bar{a}]_\rho) = 0 \), for all \(b \succ' 0' \). Since \(b \notin B_P \), for any \(b \succ' 0' \), we have that \(p^{S'}_b([\bar{a}]_\rho) = 0 \), for all \(\bar{a}_1 \in [\bar{a}]_\rho \) and \(b \succ' 0' \). Thus, \(p^S(\bar{a}_1) = 0' \), for all \(\bar{a}_1 \in [\bar{a}]_\rho \), which implies \(\alpha(0') = \forall \). This proves (1);

- if \(p^S([\bar{a}]_\rho) = 0' \) then \(p^{S'}_b([\bar{a}]_\rho) = 0 \), for all \(b \succ' 0' \). Two cases are in order:
 - if \(b \notin B_P \) then \(p^{S'}_b(\bar{a}_1) = 0 \), for all \(\bar{a}_1 \in [\bar{a}]_\rho \);
 - if \(b \in B_P \) then \(p^{S'}_b(\bar{a}_2) = 0 \), for some \(\bar{a}_2 \in [\bar{a}]_\rho \).

As \(\leq' \) is appropriate for \(\rho \), there exists a unique \(b \succ' 0' \) such that \(p_b(\bar{x}) = 1 \), for some \(\bar{x} \in [\bar{a}]_\rho \). Consequently, there should exist \(\bar{a}_1 \in [\bar{a}]_\rho \) such that \(p^{S'}_b(\bar{a}_3) = 0 \), for all \(b \succ' 0' \), which implies \(p^S(\bar{a}_3) = 0' \).

Moreover, for any \(\bar{a}_1 \in [\bar{a}]_\rho \), we can have \(p^{S'}_b(\bar{a}_1) = 1 \) only if \(b \in B_P \) and, consequently, the values different from \(c \) of \(p^S(\bar{a}_1) \) are greater than or equal to some \(b \succ' 0' \) with \(b \in B_P \). This proves (2).

Now, let \(b \in B - \{0'\} \) such that \(p^S([\bar{a}]_\rho) = b \). First, we consider the case when there exists \(z \in B \) with \(z \succ' b \). We obtain that:

\[
p^{S'}_b([\bar{a}]_\rho) = 1 \quad \text{and} \quad p^{S'}_x([\bar{a}]_\rho) = 0, \quad \text{for all } x \succ' b.
\]

The following cases are to be discussed:

- if \(b \notin B_P \) and \((\forall z \succ' b)(z \notin B_P)\) then there exists \(\bar{a}_1 \in [\bar{a}]_\rho \) such that \(p^{S'}_b(\bar{a}_1) = 1 \) and \(p^{S'}_x(\bar{a}_2) = 0 \), for all \(\bar{a}_2 \in [\bar{a}]_\rho \) and \(x \succ' b \). This clearly implies \(p^S(\bar{a}_1) = b \) and \(p^S(\bar{a}_2) \leq^T b \), for all \(\bar{a}_2 \in [\bar{a}]_\rho \).

Assume that there exists the least element \(c \in B \) such that \(c \leq^T b \) and \(c \in B_P \). Suppose by contradiction that there exists \(\bar{a}_3 \in [\bar{a}]_\rho \) such that \(p^S(\bar{a}_3) \prec^T c \). We obtain \(p^{S'}(\bar{a}_3) = 0 \) which, by \(c \in B_P \),
obtain that $p^{S_{\le'}}([\vec{a}]_\rho) = 0$. Further, by the construction of $S'_{\le'}$, we get $p^{S'_{\le'}}([\vec{a}]_\rho) = 0$, which contradicts the hypothesis.

If no such c exists, then we can not impose any more restrictions on the value of $p^S(\vec{a}_1)$ with $\vec{a}_1 \in [\vec{a}]_\rho$. This proves (3);

- if $b \not\in B_P$ and $(\exists z \succ' b)(z \in B_P)$ then:

 - there exists $\vec{a}_1 \in [\vec{a}]_\rho$ such that $p^S_\rho(\vec{a}_1) = 1$;

 - there exists $\vec{a}_x^* \in [\vec{a}]_\rho$ such that $p^{S_{\le'}}(\vec{a}_x^*) = 0$, for all $x \succ' b$ with $x \in B_P$;

 - $p^{S_{\le'}}(\vec{a}_2) = 0$, for all $\vec{a}_2 \in [\vec{a}]_\rho$ and $x \succ' b$ with $x \not\in B_P$.

By the construction of $S'_{\le'}$, we obtain $p^S(\vec{a}_1) \ge' b$ and $p^S(\vec{a}_x^*) \le' b$. The fact that $p^S(\vec{a}_3) \ge' c$, for all $\vec{a}_3 \in [\vec{a}]_\rho$, is obtained exactly as in the previous case. This proves (4);

- if $b \in B_P$ and $(\forall z \succ' b)(z \not\in B_P)$ then $p^S_\rho(\vec{a}_1) = 1$ and $p^{S_{\le'}}(\vec{a}_1) = 0$, for all $\vec{a}_1 \in [\vec{a}]_\rho$ and $x \succ' b$. Obviously, we get $p^S(\vec{a}_1) = b$, for all $\vec{a}_1 \in [\vec{a}]_\rho$, and therefore, $\alpha(b) = \forall$. This proves (5);

- if $b \in B_P$ and $(\exists z \succ' b)(z \in B_P)$ then:

 - $p^S_\rho(\vec{a}_1) = 1$, for all $\vec{a}_1 \in [\vec{a}]_\rho$;

 - there exists $\vec{a}_x^* \in [\vec{a}]_\rho$ such that $p^{S_{\le'}}(\vec{a}_x^*) = 0$, for all $x \succ' b$ with $x \in B_P$;

 - $p^{S_{\le'}}(\vec{a}_2) = 0$, for all $\vec{a}_2 \in [\vec{a}]_\rho$ and $x \succ' b$ with $x \not\in B_P$.

Clearly, the first property implies $p^S(\vec{a}_1) \ge' b$, for all $\vec{a}_1 \in [\vec{a}]_\rho$, while the third implies that there exists no $\vec{a}_2 \in [\vec{a}]_\rho$ such that $p^S(\vec{a}_2) \ge' x$, where $x \succ' b$ and $x \not\in B_P$. This proves (6).

Finally, let $b \in B - \{0\}$ such that $(\forall z)(z \not\succ' b)$ and $p^S([\vec{a}]_\rho) = b$. We obtain that $p^S(\vec{a}_1) = 1$ and we consider two cases:

- if $b \in B_P$ then $p^S_\rho(\vec{a}_1) = 1$, for all $\vec{a}_1 \in [\vec{a}]_\rho$. This implies $p^S(\vec{a}_1) = b$, for all $\vec{a}_1 \in [\vec{a}]_\rho$, and therefore, $\alpha(b) = \forall$. This proves (7);

- if $b \not\in B_P$ then there exists $\vec{a}_1 \in [\vec{a}]_\rho$ such that $p^S_\rho(\vec{a}_1) = 1$ which implies $p^S(\vec{a}_1) = b$. Moreover, as in case (3), we can obtain $p^S(\vec{a}_2) \ge' c$, for all $\vec{a}_2 \in [\vec{a}]_\rho$. This proves (8). \[\square\]
Example 2.8 Let \mathcal{S}, \mathcal{S}', ρ and \mathcal{P} be as in Example 2.7 and \mathcal{S}', the \mathcal{P}-abstraction of \mathcal{S}', by ρ. By Theorem 2.8, we can find the following interpretation policy α such that \mathcal{S}', the (\mathcal{B}, Σ_L)-logical structure corresponding to \mathcal{S}', is an α-abstraction of \mathcal{S} by ρ:

<table>
<thead>
<tr>
<th>Truth values</th>
<th>ac</th>
<th>ab</th>
<th>1</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>bc</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>The policy α</td>
<td>$\exists{ab,1,ac}$</td>
<td>$\exists{ab,1}$</td>
<td>\forall</td>
<td>\exists</td>
<td>\exists_a</td>
<td>\forall</td>
<td>$\exists{bc,c}$</td>
<td></td>
</tr>
</tbody>
</table>

2.3 Temporal Logic

2.3.1 A Case Study: Abstractions of Protection Systems

Before we describe multi-valued abstractions of Kripke structures, we present a case study of using abstraction in the context of access control models [44] (the abstraction technique used is the simulation relation [94]).

Access control is one of the facets of the implementation of security policies. In access control models, the security policy is implemented by an assignment of access rights to the objects composing the system and by the rules allowing the creation and/or destruction of new objects and the modification of their access rights.

A powerful model of access control systems is the access matrix model [63]. In this model, the protection state of the system is characterized by the set of access rights that different entities (subjects or objects) have over other entities and by the set of commands which may change this state, by creating/destroying subjects or objects or by adding/removing rights. The expressive power of this model is sufficiently large to include other models like take-grant systems [78], SPM systems [107], ESPM systems [1], TAM systems [106] etc.

The basic decision problem in an access matrix model is the safety problem: given two entities A and B and a right R, decide whether the system can evolve into a state in which A has right R over B. Very early, it was shown that this problem is undecidable [63] and remains like that even for systems without subject/object destruction [62]. Consequently, a number of restrictions have been proposed [63, 78, 106] for which the safety problem is decidable.

We propose two notions of simulation between protection systems and define a class of access control models that are simulated by access control.
models with a finite number of objects for which the safety problem is decidable. Then, we show that several classes of protection systems from the literature fall into this class, notably the take-grant systems and the monotonic typed access matrix systems with an acyclic creation graph. By this we also unify and clarify the proof of decidability of the safety problem for these classes of protection systems.

Protection Systems

We use protection systems modeled as in [63]. Here, the protection state of a system is modeled by an access matrix with a row for each subject and a column for each object. The cells hold the rights that subjects have on objects.

A protection system is defined over a finite set of generic rights and contains commands that specify how the protection state can be changed. The commands are formed of a conditional part which tests for the presence of rights in some cells of the access matrix and an operational part which specifies the changes made on the protection state. The changes are specified using primitive operations for subject/object creation and destruction and for entering/removing rights.

Definition 2.6 A protection scheme is a tuple \(S = (R, C) \), where \(R \) is a finite set of rights and \(C \) is a finite set of commands of the following form:

\[
\text{command } c(x_1, x_2, \ldots, x_n) \\
\text{if} \quad r_1 \in [x_{s_1}, x_{o_1}] \\
\quad \cdots \\
\quad r_k \in [x_{s_k}, x_{o_k}] \\
\text{then} \\
\quad op_1 \\
\quad \cdots \\
\quad op_m
\]

Above, \(c \) is a name, \(x_1, x_2, \ldots, x_n \) are formal parameters and each \(op_i \) is one of the following primitive operations: enter \(r \) into \([x_s, x_o] \), delete \(r \) from \([x_s, x_o] \), create subject \(x_s \), create object \(x_o \), destroy subject \(x_s \), and destroy object \(x_o \). Also, \(r, r_1, \ldots, r_k \) are rights from \(R \) and \(s, s_1, \ldots, s_k, o, o_1, \ldots, o_k \) are integers between 1 and \(n \).

We will call a command mono-operational if it contains only one primitive operation and monotonic if it does not contain “destroy subject”, “destroy object” and “delete” operations.
Definition 2.7 A configuration over \(R \) is a tuple \(Q = (S, O, P) \), where \(S \) is the set of subjects, \(O \) the set of objects, \(S \subseteq O \), and \(P : S \times O \to \mathcal{P}(R) \) is the access matrix. We will denote by \(\text{Cf}(R) \) the set of configurations over \(R \).

As we can see, all subjects are also objects. This is a very natural assumption since, for example, processes in a computer system may be accessed by, or may access other processes. The objects from \(O \setminus S \) will be called pure objects.

Definition 2.8 A protection system is a tuple \(\psi = (R, C, Q_0) \), where \((R, C)\) is a protection scheme and \(Q_0 \) a configuration over \(R \), called the initial configuration. A protection system is mono-operational (monotonic) if all commands in \(C \) are mono-operational (monotonic).

We will call the subjects (objects) from \(S_0 \) (\(O_0 \)) initial subjects (objects).

The six primitive operations mean exactly what their name imply (for details the reader is referred [63]). We will denote by \(\Rightarrow_{\text{op}} \) the application of a primitive operation \(\text{op} \) in some configuration.

Definition 2.9 Let \(\psi = (R, C, Q_0) \) be a protection system, \(Q \) and \(Q' \) two configurations over \(R \) and \(c(x_1, \cdots x_n) \in C \) a command like in Definition 2.6. We say that \(Q' \) is obtained from \(Q \) in \(\psi \), applying \(c \) with the actual arguments \(o_1, \cdots, o_n \), denoted by \(Q \xrightarrow{c(o_1, \cdots, o_n)} \psi Q' \), if:

- \(r_i \in P(o_{s_i}, o_{o_i}) \), for all \(1 \leq i \leq k \);
- there exist configurations \(Q_1, \cdots, Q_m \) such that \(Q \xrightarrow{\text{op}_1} Q_1 \xrightarrow{\text{op}_2} \cdots \xrightarrow{\text{op}_k} Q_m \) and \(Q_m = Q' \) (\(\text{op}_i \) is the primitive operation obtained after substituting \(x_1, \cdots, x_n \) with \(o_1, \cdots, o_n \)).

When the command \(c \) and the actual arguments \(o_1, \cdots, o_n \) are understood from the context, we will write only \(Q \xrightarrow{\psi} Q' \). We consider also \(\xrightarrow{\psi}^* \), the reflexive and transitive closure of \(\xrightarrow{\psi} \). We say that a configuration \(Q \) over \(R \) is reachable in \(\psi \) if \(Q_0 \xrightarrow{\psi}^* Q \).

For protection systems like above, we consider the following safety problem: given \(s \) an initial subject, \(o \) an initial object and a right \(r \), decide if a state in which \(s \) has right \(r \) over \(o \) is reachable. This is a less general safety problem than the one in [63], but it is more natural and used more frequently in the literature [1, 78, 107, 106].

Definition 2.10 Let \(\psi = (R, C, Q_0 = (S_0, O_0, P_0)) \) be a protection system, \(s \in S_0 \), \(o \in O_0 \) and \(r \in R \). A configuration \(Q = (S, O, P) \) over \(R \) is called leaky for \((s, o, r)\) if \(s \in S \), \(o \in O \) and \(r \in P(s, o) \).
We say that ψ is leaky for (s,o,r) if there exists a reachable configuration leaky for (s,o,r). Otherwise, ψ is called safe for (s,o,r), denoted by $\psi \triangleleft (s,o,r)$.

Now we can define the safety problem as follows:

Safety problem (SP)

Instance: A protection system ψ, $s \in S_0$, $o \in O_0$, $r \in R$;

Question: is ψ safe for (s,o,r)?

Simulations

The problem to decide if a protection system is safe was shown to be undecidable in [63], by designing a protection system that simulates a Turing machine. The most important source of undecidability is the creation of objects, which makes the system infinite-state. Hence, techniques to reduce the state space of the system are well suited. In this paper we will refer to an abstraction technique, namely the simulation relation [94].

Definition 2.11 Let $\psi_1 = (R_1, C_1, Q_1^0 = (S_1^0, O_1^0, P_1^0))$ and $\psi_2 = (R_2, C_2, Q_2^0 = (S_2^0, O_2^0, P_2^0))$ be two protection systems. Also, let $\rho_o \subseteq O_1^0 \times O_2^0$ and $\rho_r \subseteq R_1 \times R_2$ be two relations. For any $Q_1 = (S_1, O_1, P_1) \in Cf(R_1)$ and $Q_2 = (S_2, O_2, P_2) \in Cf(R_2)$, we say that Q_2 simulates Q_1 w.r.t. ρ_o and ρ_r, denoted by $Q_1 \prec_{\rho_o, \rho_r} Q_2$, if:

1. $\rho_o(S_1 \cap S_1^0) \subseteq S_2 \cap S_2^0$;
2. $\rho_o(O_1 \cap O_1^0) \subseteq O_2 \cap O_2^0$;
3. for any $s \in S_1 \cap S_1^0$, $o \in O_1 \cap O_1^0$ and $r \in R_1$, if $r \in P_1(s,o)$ then there exist $s' \in \rho_o(s)$, $o' \in \rho_o(o)$ and $r' \in \rho_r(r)$ such that $r' \in P_2(s',o')$.

Above, $\rho(s) = \{s' | \rho(s,s')\}$, for any relation ρ.

The relations ρ_o and ρ_r are used to relate the “access powers” of subjects from two different protection systems. For example, having right r over an object o in the first system is considered to be the same as having a right $r' \in \rho_r(r)$ over an object $o' \in \rho_o(o)$ in the second system. In this context, a configuration Q_2 from ψ_2 simulates a configuration Q_1 from ψ_1, if every initial subject from Q_2 has at least the same “access power” as the initial subject from Q_1 to which is related by ρ_o.

The simulation relation we define next is more general than the one in [94] because one transition step in the first system can be simulated by zero, one, or more transition steps in the second system.
Definition 2.12 Let $\psi_1 = (R_1, C_1, Q_0^1)$ and $\psi_2 = (R_2, C_2, Q_0^2)$ be two protection systems, and ρ_o, ρ_r relations like above. We say that $H \subseteq Cf(R_1) \times Cf(R_2)$ is a simulation relation from ψ_1 to ψ_2 w.r.t. ρ_o and ρ_r if for any $Q_1 \in Cf(R_1)$ and $Q_2 \in Cf(R_2)$, $H(Q_1, Q_2)$ implies that:

1. $Q_1 \prec_{\rho_o, \rho_r} Q_2$;

2. for any $Q'_1 \in Cf(R_1)$ such that $Q_1 \rightarrow_{\psi_1} Q'_1$ there exists $Q'_2 \in Cf(R_2)$ such that $Q_2 \rightarrow_{\psi_2}^* Q'_2$ and $H(Q'_1, Q'_2)$.

Definition 2.13 Let $\psi_1 = (R_1, C_1, Q_0^1)$ and $\psi_2 = (R_2, C_2, Q_0^2)$ be two protection systems, and ρ_o, ρ_r two relations like above. We say that ψ_2 simulates ψ_1 w.r.t. ρ_o and ρ_r, denoted by $\psi_1 \prec_{\rho_o, \rho_r} \psi_2$, if there exists a simulation relation H from ψ_1 to ψ_2 w.r.t. ρ_o and ρ_r such that $H(Q_0^1, Q_0^2)$. We write $\psi_1 \prec \psi_2$ if there exist ρ_o and ρ_r like above such that $\psi_1 \prec_{\rho_o, \rho_r} \psi_2$.

The usefulness of the simulation relation is proved by the next theorem. We will show that solving some instances of SP in a protection system that simulates another may lead to solving an instance of SP in the initial system.

Theorem 2.9 Let $\psi_1 = (R_1, C_1, Q_0 = (S_0, O_0, P_0))$ and $\psi_2 = (R_2, C_2, Q_0' = (S_0', O_0', P_0'))$ be two protection systems, and ρ_o, ρ_r two relations like above. If $\psi_1 \prec_{\rho_o, \rho_r} \psi_2$, then:

\[[(\forall s' \in \rho_o(s))(\forall o' \in \rho_o(o))(\forall r' \in \rho_r(r))(\psi_2 \triangleright (s', o', r'))] \Rightarrow [\psi_1 \triangleright (s, o, r)], \]

for any $s \in S_0$, $o \in O_0$ and $r \in R_1$.

Proof Suppose by contradiction that ψ_1 is not safe for (s, o, r). Then, there exists the following computation in ψ_1:

\[Q_0 \rightarrow_{\psi_1} Q_1 \rightarrow_{\psi_1} \cdots \rightarrow_{\psi_1} Q_1 \]

such that Q_1 is leaky for (s, o, r).

$\psi_1 \prec_{\rho_o, \rho_r} \psi_2$ implies that there exists a simulation relation H from ψ_1 to ψ_2 such that $H(Q_0, Q_0')$. Hence, we have in ψ_2 the following computation:

\[Q'_0 \rightarrow_{\psi_2}^* Q'_1 \rightarrow_{\psi_2}^* \cdots \rightarrow_{\psi_2}^* Q'_1 \]

such that $H(Q_i, Q'_i)$ for all $0 \leq i \leq l$.

Consequently, $Q_l \prec_{\rho_o, \rho_r} Q'_l$ and, since $r \in P(l, s, o)$, we obtain that there exists s' in $\rho_o(s)$, o' in $\rho_o(o)$ and r' in $\rho_r(r)$ such that $r' \in P(l, s', o')$, where P_l is the access matrix of Q_l and P'_l the access matrix of Q'_l. So, Q'_l is leaky for (s', o', r') and ψ_2 is not safe for (s', o', r'), contradicting the supposition made above. \qed
The result above implies that ψ_2 is a *weak-preserving abstraction* of ψ_1 in the sense that only positive answers to instances of SP in ψ_2 may lead to solving instances of SP in ψ_1.

We will now prove that, in some conditions, the existence of simulation relations in both senses may transform ψ_2 into a *strong-preserving abstraction* of ψ_1. This means that, also negative answers to instances of SP in ψ_2 are important for solving instances of SP in ψ_1.

We say that a relation $\rho \subseteq D_1 \times D_2$ is *injective* if $\rho(x_1) \cap \rho(x_2) = \emptyset$, for any $x_1, x_2 \in D_1$.

Corollary 2.7 Let $\psi_1 = (R_1, C_1, Q_0 = (S_0, O_0, P_0))$ and $\psi_2 = (R_2, C_2, Q'_0 = (S'_0, O'_0, P'_0))$ be two protection systems, and ρ_o, ρ_r two relations like above.

If $\psi_1 \prec_{\rho_o, \rho_r} \psi_2$, $\psi_2 \prec_{\rho_o^{-1}, \rho_r^{-1}} \psi_1$ and ρ_o, ρ_r are injective then:

$$\left[(\forall s' \in \rho_o(s))(\forall o' \in \rho_o(o))(\forall r' \in \rho_r(r))(\psi_2 \models (s', o', r')) \right] \Leftrightarrow \left[\psi_1 \models (s, o, r) \right],$$

for any $s \in S_0$, $o \in O_0$ and $r \in R_1$.

Proof The result is immediate, applying Theorem 2.9 for $\psi_1 \prec_{\rho_o, \rho_r} \psi_2$ and $\psi_2 \prec_{\rho_o^{-1}, \rho_r^{-1}} \psi_1$. \qed

Next, we exemplify the use of simulation relations in the analysis of protection systems. We will show that an weak-preserving abstraction of a protection system can be obtained by adding commands or by removing the non-monotonic primitive operations from all the commands. Then, for monotonic protection systems, we prove that an abstraction can be obtained by splitting each command into mono-operational commands.

Example 2.9 Let $\psi = (R, C, Q_0 = (S_0, O_0, P_0))$ and $\psi' = (R, C', Q_0)$ be two protection systems such that $C \subseteq C'$.

We say that two configurations $Q = (S, O, P)$ and $Q' = (S', O', P')$ from $Cf(R)$ are equal up to names, denoted by $Q \approx Q'$, if:

- $O \cap O_0 = O' \cap O_0$;
- there exists a bijection $\phi : O \to O'$ such that:
 - $\phi(o) = o$, for every $o \in O \cap O_0$ (ϕ preserves initial objects);
 - $\phi(S) = S'$ (ϕ preserves subjects);
 - $r \in P(s, o) \Leftrightarrow r \in P'(\phi(s), \phi(o))$, for any $s \in S$, $o \in O$ and $r \in R$.

It can be easily proved that $\psi \prec_{id_C, id_R} \psi'$, considering the simulation relation $H \subseteq Cf(R) \times Cf(R)$, given by $H(Q, Q')$ iff $Q \approx Q'$.

57
Example 2.10 Let $\psi = (R, C, Q_0 = (S_0, O_0, P_0))$ be a protection system. We suppose w.l.o.g. that the commands in C do not delete a right that they have just entered or destroy an object that they have just created. We will prove that ψ is simulated by its monotonic restriction, i.e., by the system which acts like ψ but does not destroy any object and does not delete any right.

Let $\psi_m = (R, C_m, Q_0)$, where C_m is the set of commands obtained from the ones in C, by removing all non-monotonic primitive operations.

We can prove that $\psi \prec id_{O_0, id_R} \psi_m$, considering the following relation H:

- $Q = (S, O, P)$ and $Q' = (S', O', P')$ from $Cf(R)$, we have $H(Q, Q')$ if:
 - $O \cap O_0 \subseteq O' \cap O_0$;
 - there exists an injection $\phi: O \rightarrow O'$, such that:
 - $\phi(o) = o$, for every $o \in O \cap O_0$;
 - $\phi(S) \subseteq S'$;
 - $r \in P(s, o) \Rightarrow r \in P'(\phi(s), \phi(o))$, for any $s \in S$, $o \in O$ and $r \in R$.

Example 2.11 Let $\psi = (R, C, Q_0)$ be a monotonic protection system. We can prove that ψ is simulated by the mono-operational system that results by splitting all the commands from C into mono-operational commands.

To this end, we will reuse the relation H defined by $H(Q, Q')$ if $Q \approx Q'$ and prove that it is a simulation from ψ to ψ_{mo} w.r.t. id_{O_0} and id_R.

Quasi-bisimulations

We present another type of simulation relation between protection systems, that resembles to a bisimulation relation [98] but does not induce an equivalence relation over protection systems. That is why we will call this relation a quasi-bisimulation. It differs from the simulation relation presented earlier by the fact that initial subjects must have the same “access power” and we must be able to simulate one step from a protection system with a sequence of zero or more steps in the other system.

Definition 2.14 Let $\psi_1 = (R_1, C_1, Q_0^1 = (S_0^1, O_0^1, P_0^1))$ and $\psi_2 = (R_2, C_2, Q_0^2 = (S_0^2, O_0^2, P_0^2))$ be two protection systems. Also, let $\rho_o \subseteq O_0^1 \times O_0^2$ and $\rho_r \subseteq R_1 \times R_2$ be two relations. For any $Q_1 = (S_1, O_1, P_1) \in Cf(R_1)$ and $Q_2 = (S_2, O_2, P_2) \in Cf(R_2)$, we say that Q_2 is quasi-bisimilar to Q_1 w.r.t. ρ_o and ρ_r, denoted by $Q_1 \preceq_{\rho_o, \rho_r} Q_2$, if:

1. $\rho_o(S_1 \cap S_0^1) \subseteq S_2 \cap S_0^2$;
2. \(\rho_o(O_1 \cap O_0^1) \subseteq O_2 \cap O_0^2 \);

3. For any \(s \in S_1 \cap S_0^1 \), \(o \in O_1 \cap O_0^1 \) and \(r \in R_1 \), \(r \in P_1(s, o) \) iff there exist \(s' \in \rho_o(s) \), \(o' \in \rho_o(o) \) and \(r' \in \rho_r(r) \) such that \(r' \in P_2(s', o') \).

Definition 2.15 Let \(\psi_1 = (R_1, C_1, Q_1^1) \) and \(\psi_2 = (R_2, C_2, Q_2^1) \) be two protection systems, and \(\rho_o \), \(\rho_r \) relations like above. We say that \(B \subseteq Cf(R_1) \times Cf(R_2) \) is a quasi-bisimulation relation from \(\psi_1 \) to \(\psi_2 \) w.r.t. \(\rho_o \) and \(\rho_r \) if for any \(Q_1 \in Cf(R_1) \) and \(Q_2 \in Cf(R_2) \), \(B(Q_1, Q_2) \) implies that:

1. \(Q_1 \preceq_{\rho_o, \rho_r} Q_2 \)

2. for any \(Q_1' \in Cf(R_1) \) such that \(Q_1 \rightarrow_{\psi_1} Q_1' \) there exists \(Q_2' \in Cf(R_2) \) such that \(Q_2 \rightarrow_{\psi_2}^* Q_2' \) and \(B(Q_1', Q_2') \).

3. for any \(Q_2' \in Cf(R_2) \) such that \(Q_2 \rightarrow_{\psi_2} Q_2' \) there exists \(Q_1' \in Cf(R_1) \) such that \(Q_1 \rightarrow_{\psi_1}^* Q_1' \) and \(B(Q_1', Q_2') \).

Definition 2.16 Let \(\psi_1 = (R_1, C_1, Q_1^1) \) and \(\psi_2 = (R_2, C_2, Q_2^1) \) be two protection systems, and \(\rho_o \), \(\rho_r \) relations like above. We say that \(\psi_2 \) is quasi-bisimilar to \(\psi_1 \) w.r.t. \(\rho_o \) and \(\rho_r \), denoted by \(\psi_1 \preceq_{\rho_o, \rho_r} \psi_2 \), if there exists a quasi-bisimulation relation \(B \) from \(\psi_1 \) to \(\psi_2 \) w.r.t. \(\rho_o \) and \(\rho_r \), such that \(B(Q_0^1, Q_0^2) \). We write \(\psi_1 \preceq \psi_2 \) if there exist \(\rho_o \) and \(\rho_r \) like above such that \(\psi_1 \preceq_{\rho_o, \rho_r} \psi_2 \).

Next, we will prove the usefulness of the quasi-bisimulations, showing that if we have two protection systems such that \(\psi_1 \preceq \psi_2 \), solving an instance of SP in \(\psi_1 \) is equivalent with solving one or more instances of SP in \(\psi_2 \). This could still be more efficient if the state space of \(\psi_2 \) is much smaller than the one of \(\psi_1 \).

Theorem 2.10 Let \(\psi_1 = (R_1, C_1, Q_0 = (S_0, O_0, P_0)) \) and \(\psi_2 = (R_2, C_2, Q_0' = (S_0', O_0', P_0')) \) be two protection systems, and \(\rho_o \), \(\rho_r \) two relations like above. If \(\psi_1 \preceq_{\rho_o, \rho_r} \psi_2 \), then:

\[
\left(\forall s' \in \rho_o(s) \left(\forall o' \in \rho_o(o) \left(\forall r' \in \rho_r(r) \left(\psi_2 \triangleleft (s', o', r') \right) \right) \right) \right) \iff \left[\psi_1 \triangleleft (s, o, r) \right],
\]

for any \(s \in S_0 \), \(o \in O_0 \) and \(r \in R_1 \).

Proof Similar to the proof of Theorem 2.9. \(\square \)
A Class of Decidable Protection Systems

Definition 2.17 A protection system $\psi = (R, C, Q_0)$ is called a *finite protection system* if the commands from C do not contain “create” primitive operations.

It is well known [79] that the safety problem for finite protection systems is decidable.

Definition 2.18 We define Dec to be the class of protection systems that has the following properties:

- if ψ is a finite protection system then $\psi \in Dec$;
- if $\psi' \in Dec$ and $\psi \prec_{\rho_o, \rho_r} \psi'$, $\psi' \prec_{\rho_o^{-1}, \rho_r^{-1}} \psi$, for some ρ_o and ρ_r injective relations, then $\psi \in Dec$;
- if $\psi' \in Dec$ and $\psi \preceq \psi'$ then $\psi \in Dec$.

By Corollary 2.7 and Theorem 2.10, we obtain that the safety problem for the protection systems from Dec is decidable.

We will show that it contains three other well-known classes of protection systems for which the safety problem is decidable: MTAM systems with acyclic creation graphs [106], mono-operational protection systems [63] and take-grant systems [78].

By showing that these three classes of protection systems are included in Dec, we unify their proof of decidability for the safety problem. We show that the safety problem is decidable because these protection systems are simulated by systems that have all the needed objects created even from the initial configuration and no commands that can create objects afterward.

MTAM Systems with Acyclic Creation Graphs In [106], the authors propose an extension of the a access matrix model, the typed access matrix model (TAM, for short), that assigns a type to each object of a configuration.

Formally, a TAM system is a tuple $\tau = (R, T, C, Q_0 = (S_0, O_0, t_0, P_0))$, where R is a finite set of rights, T a finite set of types, C a finite set of typed commands and Q_0 the initial configuration.

Configurations are tuples $Q = (S, O, t, P)$, where S, O and P are as before, and $t : O \rightarrow T$ is a function that assigns a type to every object.

The typed commands differ from the commands of a protection system defined as in Sect. 2, by the fact that they test the type of each argument and the primitive operations used to create objects are: “create subject s of type t” and “create object o of type t.”
\(\tau \) is called a monotonic TAM system (MTAM, for short) if the commands from \(C \) do not contain operations that delete rights or destroy objects.

We say that an MTAM system is in canonical form if the "create" commands (commands that contain at least one "create" primitive operation) are unconditional (the conditional part is empty). In \cite{106} was proved that MTAM systems can always be considered to be in canonical form.

If \(c \) is a typed command like in Fig. 2.3, \(t_i \) is called a child type of \(c \) if "create subject \(x_i \) of type \(t_i \)" or "create object \(x_i \) of type \(t_i \)" appears in \(c \). Otherwise, \(t_i \) is called a parent type of \(c \).

The creation graph of a TAM system \(\tau = (R,T,C,Q) \) is a directed graph with the set of vertexes \(T \) and an edge from \(t_1 \) to \(t_2 \) if there exists a command \(c \in C \) such that \(t_1 \) is a parent type of \(c \) and \(t_2 \) a child type of \(c \).

The safety problem \(SP \) can be defined analogously for TAM systems.

The main decidability result of \cite{106} is:

Theorem

\(SP \) for MTAM systems with acyclic creation graphs is decidable.

A TAM system \(\tau = (R,T,C,Q_0 = (S_0,O_0,t_0,P_0)) \) can be described using a protection system \(\psi_\tau = (R \cup T,C',Q'_0 = (O_0,O_0,P'_0)) \), where:

\[
P'_0(s,o) = \begin{cases}
P_0(s,o), & \text{if } s \neq o \text{ and } s \in S_0 \\
P_0(s,o) \cup \{t_0(s)\}, & \text{if } s = o \text{ and } s \in S_0 \\
\{t_0(s)\}, & \text{if } s = o \text{ and } s \in O_0 - S_0 \\
\emptyset, & \text{otherwise.}
\end{cases}
\]

and \(C' = \{\gamma(c) | c \in C\} \), with \(\gamma \) the transformation from Fig. 2.3 \((i_1, \cdots, i_l) \) are integers between 1 and \(n \) such that \(x_{il} \) does not appear in a "create" operation).

The primitive operations of \(\gamma(c) \) are obtained by copying the ones from \(c \), excepting the case of a "create subject \(s \) of type \(t \)" or "create object \(s \) of type \(t \)" primitive operation, when we add in \(\gamma(c) \) two operations: "create subject \(s \)" or "create object \(s \)" and "enter \(t \) in \([s,s]\)".

From now on, when we say TAM systems, we mean protection systems like \(\psi_\tau \). Hence, an MTAM system is in canonical form if in the conditional part of every "create" command we test only rights from \(T \).

In the following, we will obtain using quasi-bisimulations, the decidability of the safety problem for a class of protection systems more general than the MTAM systems with acyclic creation graphs.

If \(\psi = (R,C,Q_0) \) is a protection system, denote by \(\mathcal{T}_\psi(\mathcal{X}) \) the set of terms
command \(c(x_1 : t_1, x_2 : t_2, \ldots, x_n : t_n) \) command \(\gamma(c)(x_1, x_2, \ldots, x_n) \)

if \(r_1 \) in \([x_{s_1}, x_{o_1}]\) \dots if \(t_{i_1} \) in \([x_{i_1}, x_{i_1}]\)

then \(op_1 \) \dots \(op_m \)

then \(op'_1 \) \dots \(op'_{m'} \)

Figure 2.3: The transformation \(\gamma \).

defined over the set of variables \(\mathcal{X} \) and the signature \(\Sigma_\psi \), where

\[
\Sigma_\psi = \{ c_i \text{ of arity } n \mid c(x_1, \ldots, x_n) \in C \text{ and } 1 \leq i \leq n \} \\
\cup \{ o \text{ of arity } 0 \mid o \in O_0 \} \cup \{ \emptyset \text{ of arity } 0 \}
\]

By \(T_\psi \) we will denote the set of ground terms.

For a command \(c(x_1, \ldots, x_n) \in C \), we say that \(x_i \), for some \(1 \leq i \leq n \), is a child argument of \(c \) if “create subject \(x_i \)” or “create object \(x_i \)” appears in \(c \). Otherwise, \(x_i \) is a parent argument of \(c \). We define the relation \(\equiv_Q \) over the objects of a configuration \(Q = (S, O, P) \in Cf(R) \) as follows:

\[
o \equiv_Q o \quad \text{if } o \in O_0;
o \equiv_Q o' \quad \text{if } o \text{ and } o' \text{ were created as the } i \text{-th argument of a command } c
\]

applied with \(o_{p_1}, \ldots, o_{p_m} \) as parent arguments for \(o \)

and with \(o'_{p_1}, \ldots, o'_{p_m} \) as parent arguments for \(o' \),

and \(o_{p_j} \equiv_Q o'_{p_j} \), for all \(1 \leq j \leq m \).

\((p_1, \ldots, p_m \) are the indexes of the parent arguments of \(c \))

The fact that \(o \) was created as the \(i \)-th argument of a command \(c \) applied with \(o_{p_1}, \ldots, o_{p_m} \) as parent arguments, can be memorized in a configuration \(Q \) in many ways. For example, we can modify the system \(\psi \) by adding a right parent and a right \(c_i \), for all \(c(x_1, \ldots, x_n) \in C \) and \(1 \leq i \leq n \), and by transforming every command \(c(x_1, \ldots, x_n) \in C \), such that after creating \(x_i \), for some \(1 \leq i \leq n \), we enter \(c_i \) in \([x_i, x_i] \) and parent in \([x_{p_j}, x_i] \) for all \(x_{p_j} \) parent arguments of \(c \). In the following, for the simplicity of the exposition, we will not formalize this.

Clearly, the relation above is an equivalence and to every equivalence class we can uniquely associate a ground term from \(T_\psi \). Consequently, we
will denote an equivalence class by $[t]_Q$, where t is the corresponding term from T_ψ.

In the following, when we say equivalence relation we mean the relation \equiv_Q and when we say equivalence class, we mean an equivalence class of \equiv_Q.

Definition 2.19 Let $\psi = (R, C, Q_0)$ be a protection system. We say that a term from T_ψ is **accessible** if there exists $Q \in Cf(R)$ such that $Q_0 \xrightarrow*{\psi} Q$ and $[t]_Q \neq \emptyset$. By $\text{Acc}(\psi)$ we will denote the set of accessible terms.

Definition 2.20 A monotonic protection system $\psi = (R, C, Q_0)$ is called creation-independent if R can be partitioned into two disjunctive sets R_c and R_e such that:

- the “create” commands test for and enter only rights from R_c;
- the other commands (the commands that contain only “enter” operations) enter only rights from R_e.

We can easily see that MTAM systems are particular cases of creation-independent protection systems in which $R_c = T$, $R_e = R$ and the tests for the rights in R_c are as in command $\gamma(c)$ from Fig. 1.

If $\psi = (R, C, Q_0)$ is a protection system, we will denote by $\text{Reach}_\psi(Q, C')$, where $Q \in Cf(R)$ and $C' \subseteq C$, the set of reachable configurations from Q using only commands from C'.

Now, we prove that for any creation-independent system ψ, any $t \in \text{Acc}(\psi)$ and any reachable configuration Q, we can apply in Q a sequence of “create” commands to create an object from an equivalence class represented by t.

Lemma 2.3 Let $\psi = (R, C, Q_0)$ be a creation-independent protection system and $C' \subseteq C$ the set of “create” commands. Then,

$$(\forall t \in \text{Acc}(\psi))(\forall Q \in \text{Reach}_\psi(Q_0, C)(\exists Q' \in \text{Reach}_\psi(Q, C'))([|t]_{Q'} = [|t]_{Q} + 1))$$

Proof From Definition 2.20, we can see that the application of a “create” command is not influenced in any way by the application of a command from $C - C'$.

Because ψ is also monotonic we can easily obtain the result above. □

Theorem 2.11 Let $\psi = (R, C, Q_0)$ be a creation-independent protection system. If $\text{Acc}(\psi)$ is finite then, ψ belongs to Dec.

63
Proof If \(\psi \) is a creation-independent protection system, then \(R \) can be partitioned into \(R_c \) and \(R_e \) as in Definition 2.20.

Let \(\psi_f = (R, C_f, Q_0) = (S_0', O_0', P_0') \) be a protection system, where \(C_f \subseteq C \) is the set of commands that do not create objects and:

- \(O_0' = \{t|t \in Acc(\psi)\} \). Clearly, \(O_0 \subseteq O_0' \);
- \(S_0' \) is the set of subjects from \(O_0' \);
- \(P_0' \) is defined such as it’s restriction to objects from \(O_0 \) is \(P_0 \) and in the cells of the other objects we have the rights from \(R_e \) entered by the corresponding “create” commands.

In other words, \(Q_0' \) is obtained from \(Q_0 \) applying “create” commands such that we obtain objects from equivalence classes represented by all terms in \(Acc(\psi) \).

We will prove that \(\psi \) is quasi-bisimilar to \(\psi_f \) w.r.t \(id_{O_0} \) and \(id_R \).

In the following, for a configuration \(Q = (S, O, P) \), \(f_Q : O \rightarrow Acc(\psi) \) is a function such that \(f(o) = t \) iff \(o \in [t]_Q \).

We consider the following relation \(B \): given \(Q = (S, O, P) \) reachable in \(\psi \) and \(Q' = (S', O', P') \) configuration from \(C_f(R) \), we have \(B(Q, Q') \) if:

- \(O_0 \subseteq O \) and \(O' = Acc(\psi) \);
- \(r \in P'(t_1, t_2) \) iff there exists \(s \in [t_1]_Q \) and \(o \in [t_2]_Q \) such that \(r \in P(s, o) \).

To prove that \(B \) is a quasi-bisimulation, let \(Q \) and \(Q' \) be two configurations like above such that \(B(Q, Q') \).

Clearly, \(Q \preceq_{id_{O_0}, id_R} Q' \).

Now, let \(Q_1 \) be a configuration such that \(Q \rightarrow^*_f Q_1 \). If we apply a “create” command then, we can find \(Q_1' = Q' \), such that \(Q' \rightarrow^*_f Q_1' \) and \(B(Q_1, Q_1') \).

Otherwise, suppose we apply a command \(c(x_1, \ldots, x_n) \in C' \), with actual arguments \(o_1, \ldots, o_n \). Since \(B(Q, Q') \), we can apply \(c(x_1, \ldots, x_n) \) with actual arguments \(f_Q(o_1), \ldots, f_Q(o_n) \) in \(Q' \) and obtain a configuration \(Q_1' \) such that \(B(Q_1, Q_1') \).

For the reverse, suppose we have \(Q' \rightarrow^*_f Q_1' \), for some configuration \(Q_1' \). Clearly, in this step we apply a command \(c(x_1, \ldots, x_n) \) that contain only “enter” primitive operations. Suppose it is applied using \(t_1, \ldots, t_n \in Acc(\psi) \) as actual arguments.

Since \(\psi \) is monotonic and create-independent, we can reach in \(\psi \) from \(Q \) a configuration \(\overline{Q} \) such that \(B(\overline{Q}, Q') \) and the access matrix of \(\overline{Q} \) includes that of \(Q \) and has in plus one object \(o_i \) for each \(t_i \) above, such that \(o_i \in [t_i]_\overline{Q} \) and \(o_i \) has in his cells the same rights as \(t_i \) in \(Q' \) (the creation of objects...
is possible by Lemma 2.3 and the rights can be entered in the cells of \(o_i \)
because, once we have applied in \(\psi \) a command that contains only “enter”
primitive operations, we can apply it later eventually with equivalent actual
arguments).

Now, in \(\overline{Q} \) we can apply \(c \) with \(o_1, \ldots, o_n \) as actual arguments and obtain
a configuration \(Q_1 \) such that \(\text{B}(Q_0, Q_1) \).

The fact that \(\text{B}(Q_0, Q'_0) \) ends our proof. \(\square \)

Using Theorem 2.11, we will prove that MTAM systems with acyclic
creation graphs and mono-operational protection systems belong to \(\text{Dec} \).

Corollary 2.8 MTAM systems with acyclic creation graphs belong to \(\text{Dec} \).

Proof As stated above we suppose that MTAM systems are in canonical
form and consequently, they are creation-independent.

Since the creation graph is acyclic, we have also that the set of accessible
terms is finite and we can apply Theorem 2.11, to obtain the statement of
this corollary. \(\square \)

Mono-operational Protection Systems Mono-operational protection
systems ([63]) are protection systems with mono-operational commands. We
will show that they are included in \(\text{Dec} \) in two steps, by proving first that
the subclass of monotonic mono-operational protection systems is included
in \(\text{Dec} \).

Theorem 2.12 Monotonic mono-operational protection systems belong to
\(\text{Dec} \).

Proof In the following we will consider protection systems such that every
object is also a subject. This can be assumed without loss of generality by
introducing an otherwise empty row for each pure object.

Hence, let \(\psi = (R, C, Q_0 = (O_0, O_0, P_0)) \) be a monotonic mono-operational
protection system such that the commands in \(C \) do not contain “create ob-
ject” primitive operations.

We prove that \(\psi \) is quasi-bisimilar to some monotonic monooperational
system \(\psi' \) that is creation-independent and has \(\text{Acc}(\psi') \) finite. Consequently,
by Theorem 2.11, \(\psi' \in \text{Dec} \) and from the definition of \(\text{Dec} \), \(\psi \in \text{Dec} \).

Let \(\psi' = (R \cup \{\text{alive}\}, C', Q'_0 = (O_0, O_0, P'_0)) \), where \(P'_0 \) is defined by:

\[
P'_0(s, o) = \begin{cases}
P_0(s, o) \cup \{\text{alive}\}, & \text{if } s = o; \\
P_0(s, o), & \text{otherwise.}
\end{cases}
\]

and \(C' \) is obtained from \(C \) in the following way:
• modify each conditional part of an “enter” command (command that contains an “enter” primitive operation) \(c(x_1, \ldots, x_n) \in C \) by adding tests of the form: \(\text{alive} \) in \([x_i, x_i]\), for all \(1 \leq i \leq n \);

• add a command \(c_s(x) \) that has the conditional part empty and only a primitive operation “create subject \(x \)”.

• remove each “create” command \(c(x_1, \ldots, x_n) \) that creates a subject \(x_i \), for some \(1 \leq i \leq n \), and add an “enter” command with the conditional part of \(c \), modified as in the first case, and a primitive operation “enter \(\text{alive} \) in \([x_i, x_i]\)”.

Now, we prove that \(\psi \preceq_{\text{id}_{O_0}, \text{id}_R} \psi' \), using the following relation \(B \): if \(Q = (O, O, P) \in Cf(R) \) and \(Q' = (O', O', P') \in Cf(R \cup \{\text{alive}\}) \), we have \(B(Q, Q') \) if:

• \(O_0 \subseteq O \) and \(O_0 \subseteq O' \);

• if \(O'_{\text{alive}} = \{o | o \in O' \text{ and } \text{alive} \in P'(o, o)\} \) then, there exists a bijection \(\phi : O \rightarrow O'_{\text{alive}} \), such that:
 - \(\phi(o) = o \), for every \(o \in O \cap O_0 \);
 - \(r \in P(o_1, o_2) \iff r \in P'(\phi(o_1), \phi(o_2)) \), for all \(o_1, o_2 \in S \) and \(r \in R \).

We can easily prove that \(B \) is a quasi-bisimulation relation if we take in consideration the following:

• applying a “create” command in \(\psi \) is equivalent with applying in \(\psi' \) the “create” command \(c_s \) and an “enter” command that gives to this new subject the \(\text{alive} \) right to himself;

• in \(\psi' \) we can create more subjects than in \(\psi \), but if they do not have the \(\text{alive} \) right to themselves, they are useless. In fact, only to commands that enter the \(\text{alive} \) right in \(\psi' \), we associate a “create” command in \(\psi \).

Clearly, \(\psi' \) is create-independent since the only “create” command does not test or enter any right. \(\text{Acc}(\psi') \) is finite, because all the created objects in \(\psi' \) are from an equivalence class represented by the same term \(c_s(\emptyset) \).

Theorem 2.13 Mono-operational protection systems belong to \(\text{Dec} \).

Proof Let \(\psi = (R, C, Q_0) \) be a mono-operational system.

From Example 2.10 we have that \(\psi \preceq_{\text{id}_{O_0}, \text{id}_R} \psi_m \), where \(\psi_m = (R, C_m, Q_0) \) is the monotonic restriction of \(\psi \).
As \(C_m \subseteq C \), from Example 2.9 we have also that \(\psi_m \prec_{id_{O_0}, id_R} \psi \).

The fact that \(id_{O_0} \) and \(id_R \) are injective and \(\psi_m \) is a monotonic monoperational protection system, which by Theorem 2.12 belongs to \(Dec \), concludes our proof. \(\Box \)

Take-grant Systems Take-grant systems ([78]) are protection systems \(\psi = (R, C, Q_0 = (O_0, O_0, P_0)) \), where \(R = \{ t, g, c \} \) and \(C \) is the set of commands shown in Fig. 2.4, for all \(\alpha, \beta, \gamma \in R \). It is clear that the system is monotonic and all objects are also subjects.

In the original paper, take-grant systems were presented as graph transformation systems. A configuration \(Q = (O, O, P) \) is represented as a labeled directed graph, using subjects as nodes and cells in the matrix as labeled arcs (if \(P(o_1, o_2) \neq \emptyset \), we have an arc from \(o_1 \) to \(o_2 \) labeled with \(P(o_1, o_2) \)). The commands in Fig. 2.4 are represented as graph transformations that introduce nodes and/or arcs.

We say that two nodes are connected if there exists a path between them, independent of the directionality or labels of the arcs. The decidability of the safety problem is obtained from the following theorem:

Theorem

Let \(\psi \) be a take-grant system. \(\psi \) is leaky for \((o_1, o_2, r)\) iff in \(G_0 \) (the graph that represents \(Q_0 \)) \(o_1 \) and \(o_2 \) are connected and there exists an incoming arc in \(o_2 \) labeled with \(t \) or \(c \) if \(r = t \) or with \(r \) if \(r \in \{ g, c \} \).

We will prove that take-grant protection systems are in \(Dec \), by showing that they are quasi-bisimilar to a finite protection system with the same initial configuration.

Theorem 2.14 Take-grant systems belong to \(Dec \).

Proof If \(\psi = (R, C, Q_0 = (O_0, O_0, P_0)) \) is a take-grant protection system like above, let \(\psi_f = (R, C', Q_0) \), where \(C' \) contains all the commands of the following form:

\[
\text{command } c_{i,\alpha}(x, y, z, x_1, \cdots, x_i) \\
\text{if connected}(x, y, x_1, \cdots, x_i) \\
\alpha \text{ in } [z, y] \\
\text{then} \\
\text{enter } \alpha \text{ in } [x, y]
\]

where \(0 \leq i \leq |O_0| - 2 \) and \(\alpha \in R \). connected\((x, y, x_1, \cdots, x_i)\) is a set of...
command \textit{take}_\alpha(x, y, z) \\
\text{if } t \text{ in } [x, y] \\
\alpha \text{ in } [y, z] \\
\text{then} \\
\text{enter } \alpha \text{ in } [x, z] \\
command \textit{grant}_\alpha(x, y, z) \\
\text{if } g \text{ in } [x, y] \\
\alpha \text{ in } [x, z] \\
\text{then} \\
\text{enter } \alpha \text{ in } [y, z] \\
command \textit{create}(x, y) \\
\text{create subject } y \\
\text{enter } t \text{ in } [x, y] \\
\text{enter } g \text{ in } [x, y] \\
\text{enter } c \text{ in } [x, y] \\
\command \textit{call}_\alpha(x, y, z, u) \\
\text{if } \alpha \text{ in } [x, y] \\
c \text{ in } [x, z] \\
\text{then} \\
\text{create subject } u \\
\text{enter } \alpha \text{ in } [u, y] \\
\text{enter } t \text{ in } [u, z] \\
\command \textit{call}_\alpha,\beta(x, y, z, u) \\
\text{if } \alpha \text{ in } [x, y] \\
\beta \text{ in } [x, y] \\
c \text{ in } [x, z] \\
\text{then} \\
\text{create subject } u \\
\text{enter } \alpha \text{ in } [u, y] \\
\text{enter } \beta \text{ in } [u, y] \\
\text{enter } t \text{ in } [u, z] \\
\command \textit{call}_\alpha,\beta,\gamma(x, y, z, u) \\
\text{if } \alpha \text{ in } [x, y] \\
\beta \text{ in } [x, y] \\
\gamma \text{ in } [x, y] \\
c \text{ in } [x, z] \\
\text{then} \\
\text{create subject } u \\
\text{enter } \alpha \text{ in } [u, y] \\
\text{enter } \beta \text{ in } [u, y] \\
\text{enter } \gamma \text{ in } [u, y] \\
\text{enter } t \text{ in } [u, z] \\

Figure 2.4: Take-grant commands.

conditions obtained from the conditions below, choosing one from each line:

\[\beta_1 \text{ in } [x, x_1] \quad \text{or} \quad \beta_1 \text{ in } [x_1, x] \]
\[\beta_2 \text{ in } [x_1, x_2] \quad \text{or} \quad \beta_2 \text{ in } [x_2, x_1] \]
\[\vdots \]
\[\beta_{i+1} \text{ in } [x_i, y] \quad \text{or} \quad \beta_{i+1} \text{ in } [y, x_i]. \]

Above, \(\beta_k \), for \(1 \leq k \leq i + 1 \), can be any right from \(R \).

Intuitively, \(\text{connected}(x, y, x_1, \ldots, x_i) \) checks if in the graph that represents the configuration in which we apply \(c_{i, \alpha} \), the nodes \(x \) and \(y \) are connected by a path of length \(i + 2 \) that passes through \(x_1, \ldots, x_i \).

We will prove that \(\psi \preceq_{id_{O_0}, id_R} \psi_f \), considering the following relation \(B \): given \(Q_1 = (S_1, O_1, P_1) \) reachable from \(Q_0 \) and \(Q_2 = (S_2, O_2, P_2) \in Cf(R) \), we have \(B(Q_1, Q_2) \) if:

- \(O_2 = O_0 \);
- \(r \in P_1(s, o) \iff r \in P_2(s, o) \), for any \(s \in S_0, o \in O_0 \) and \(r \in R \).

Now, we will prove that \(B \) is a quasi-bisimulation relation between \(\psi \) and \(\psi_f \) w.r.t. \(id_{O_0} \) and \(id_R \).

\(Q_1 \preceq_{id_{O_0}, id_R} Q_2 \) is straightforward from the definition of \(B \).

Now suppose that \(Q_1 \rightarrow_{\psi} Q'_1 \) by a command \(c \).
If \(c \) is \(\text{take}_\alpha \), then suppose it is applied with some actual arguments \(s_1, s_2 \) and \(s_3 \). If all these objects are initial then, because \(c \) is also present in \(C' \), we can apply it with the same actual arguments in \(Q_2 \) and obtain a configuration \(Q'_2 \) such that \(B(Q'_1, Q'_2) \).

If not, we have two cases: whether or not \(s_1 \) and \(s_3 \) are both initial objects. If they are not both initial objects then, we can find \(Q'_2 = Q_2 \) such that \(Q_2 \xrightarrow{\psi_f} Q'_2 \) and \(B(Q'_1, Q'_2) \).

If \(s_1 \) and \(s_3 \) are both from \(O_0 \) then from the main result of [78] stated above, we have that there exists some initial objects \(o_1, \ldots, o_i \), for some \(i \) between 0 and \(|O_0| - 2 \), such that \(\text{connected}(s_1, s_3, o_1, \ldots, o_i) \) is true and also, there exists some initial object \(o \) such that \(\alpha \in P_0(o, s_3) \). Since \(\psi \) and \(\psi_f \) are monotonic, these conditions are true also in \(Q_2 \) and thus, we can apply a command from \(C' \) to add \(\alpha \) in \([s_1, s_3] \). Consequently, we can obtain a configuration \(Q'_2 \) such that \(Q_2 \xrightarrow{\psi_f} Q'_2 \) and \(B(Q'_1, Q'_2) \).

The case when \(c \) is \(\text{grant}_\alpha \) is similar.

2.3.2 Abstractions and Preservation Results

We present abstractions of multi-valued Kripke structures and preservation results for \(\text{CTL}^* \) formulas as introduced in [47]. The abstract system is obtained by applying equivalence relations on the state space of the concrete system. Then, the predicate symbols of the logic are re-defined to work properly on equivalence classes using interpretation policies as we have explained in Section 2.1.

Definition 2.21 Let \(M = (Q, R, L) \) be an mv-Kripke structure over \(AP \) and \(\mathcal{B}, \rho \) an equivalence relation on \(Q \), and \(\alpha_R \) and \(\alpha_L \) two interpretation policies over \(\mathcal{B} \). An mv-Kripke structure \(M' = (Q', R', L') \) over \(AP \) and \(\mathcal{B} \) is called an \((\alpha_R, \alpha_L)\)-abstraction of \(M \) by \(\rho \) if:

- \(Q' = Q/\rho \);
- \(R' \) is the reinterpretation of \(R \) on \(Q' \times Q' \) according to \(\alpha_R \);
- \(L' \) is the reinterpretation of \(L \) over \(Q' \) according to \(\alpha_L \).
The abstractions for Kripke structures introduced in [46] are instances of the Definition 2.21.

Let $M_2 = (Q_2, R_2, L_2)$ be an (α_R, α_L)-abstraction by an equivalence ρ of an mv-Kripke structure $M_1 = (Q_1, R_1, L_1)$ over AP and $\mathcal{B} = (B, \leq)$, and $D \subseteq B$. We say that a path $\pi_2 \in \text{Paths}(M_2, D)$ is a corresponding path to $\pi_1 \in \text{Paths}(M_1, D)$ if:

- $|\pi_2| = |\pi_1|$;
- $\pi_2(i) = [\pi_1(i)]$, for any $0 \leq i < |\pi_2|$.

We denote by $C_{M_1}(\pi_2)$ the set of all D-paths in M_1 that have π_2 as a corresponding D-path in M_2.

Let $\mathcal{B} = (B, \land, \lor, \neg)$ be a truth algebra and $D \subseteq B$. The set D is called

- (upward) closed under \leq if $b' \in D$ whenever $b \leq b'$ for some $b \in D$;
- closed under lub (glb) if D contains the lub (glb) of any non-empty subset of elements in D;
- backward closed under lub (glb) if it includes any non-empty subset $X \subseteq B$ whenever it contains lub(X) (glb(X)).

It is easy to see that D is closed under lub and backward closed under glb, whenever it is closed under \leq.

Now we are in a position to establish several preservation results. The first one shows preservation results for subsets D of truth values.

Theorem 2.15 Let $M_2 = (Q_2, R_2, L_2)$ be an (α_R, α_L)-abstraction by an equivalence ρ of an mv-Kripke structure $M_1 = (Q_1, R_1, L_1)$ over AP and $\mathcal{B} = (B, \leq)$, let $D \subseteq B$, and ϕ and ψ be a state and, respectively, a path $\text{mv}\neg\forall\text{CTL}^*_+$ formula over AP. If

1. for any $\pi_1 \in \text{Paths}(M_1, D)$ there exists a corresponding path $\pi_2 \in \text{Paths}(M_2, D)$;
2. for any $q \in Q_1$ and any $p \in AP$, $L_2([q])(p) \in D$ implies $L_1(q)(p) \in D$;
3. D is closed under \leq and glb, and backward closed under lub,

then

$$(\forall q \in Q_1)([\phi]_{M_2}^{M_1} \in D \Rightarrow [\phi]_{M_1}^{M_2} \in D)$$

and

$$(\forall \pi_2 \in \text{Paths}(M_2, D))(\psi]_{\pi_2}^{M_2} \in D \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))(\psi]_{\pi_1}^{M_1} \in D)).$$
Proof We will prove the statements in the theorem by simultaneous structural induction on the formulas ϕ and ψ. The following cases are to be considered:

- $\phi = p \in AP$. Let $q \in Q_1$. If we assume that $[\phi]_{M^2} \in D$, then $L_2([q])(p) \in D$ and by 2 we obtain $L_1(q)(p) \in D$ which shows that $[\phi]_{M^1} \in D$;

- $\phi = \phi_1 \land \phi_2$, where ϕ_1 and ϕ_2 are state formulas. Given $q \in Q_1$ assume that $[\phi_1]_{M^2} \in D$ and both ϕ_1 and ϕ_2 satisfy the property in the theorem. Then, $[\phi_1]_{M^2} \land [\phi_2]_{M^2} \in D$. As D is closed under \leq, $[\phi_1]_{M^2} \land [\phi_2]_{M^2} \leq [\phi_1]_{M^2}$ and $[\phi_1]_{M^2} \land [\phi_2]_{M^2} \leq [\phi_2]_{M^2}$; both $[\phi_1]_{M^2}$ and $[\phi_2]_{M^2}$ are in D and by the induction hypothesis we obtain $[\phi_1]_{M^1}, [\phi_2]_{M^1} \in D$. Now we use the fact that D is closed under glb and we get $[\phi_1]_{M^1} \land [\phi_2]_{M^1} \in D$ which shows that $[\phi]_{M^1} \in D$;

- the case $\phi = \phi_1 \lor \phi_2$, where ϕ_1 and ϕ_2 are state formulas, is similar to the previous one. One has to use backward closeness of D under lub and then closeness of D under \leq;

- $\phi = \forall \psi$, where ψ is a path formula. Given $q \in Q_1$ assume that $[\phi]_{M^2} \in D$ and ψ satisfies the property in the lemma. Then,

$$\bigwedge_{\pi_2 \in \text{Paths}(M_2,D,[q])} [\psi]_{\pi_2} \in D$$

and because D is closed under \leq we obtain $[\psi]_{\pi_2} \in D$, for any $\pi_2 \in \text{Paths}(M_2,D,[q])$.

Let π_1 be a D-path from q in M_1. According to 1, there exists a corresponding D-path π_2 from $[q]$ in M_2. As $[\psi]_{\pi_2} \in D$, the induction hypothesis leads to $[\psi]_{\pi_1} \in D$ and the closeness of D under glb concludes the case by showing that

$$[\phi]_{M^1} = \bigwedge_{\pi_1 \in \text{Paths}(M_1,D,q)} [\psi]_{\pi_1} \in D;$$

- $\psi = \psi_1 \lor \psi_2$, where ψ_1 and ψ_2 are path formulas. Given π_2 a D-path in M_2 starting at some state $[q]$ assume that $[\psi_1]_{M^2} \in D$ and ψ_1 and ψ_2 satisfy the property in the theorem. Then, by the fact that D is backward closed under lub, both $[\psi_1]_{\pi_2}^{M^2}$ and $[\psi_2]_{\pi_2}^{M^2}$ are in D. By the induction hypothesis, $[\psi_1]_{\pi_1}^{M^1}, [\psi_2]_{\pi_1}^{M^1} \in D$, for any $\pi_1 \in C_{M_1}(\pi_2)$. Using the closeness of D under \leq, we obtain $[\psi_1]_{\pi_1}^{M^1} \lor [\psi_2]_{\pi_1}^{M^1} \in D$, that is $[\psi]_{\pi_1}^{M^1} \in D$, for any $\pi_1 \in C_{M_1}(\pi_2)$;
• the case $\psi = \psi_1 \land \psi_2$, where ψ_1 and ψ_2 are path formulas, is similar to
the previous case;

• $\psi = X\psi_1$, where ψ_1 is a path formula. Given π_2 a D-path in M_2
starting at some state $[q]$ assume that $[\psi]_{\pi_2}^{M_2} \in D$ and ψ_1 satisfies the
property in the theorem. Then, $|\pi_2| > 1$ and
\[R_2(\pi_2(0), \pi_2(1)) \land [\psi]_{\pi_2}^{M_2} \in D, \]
which by the backward closeness of D under glb implies $[\psi]_{\pi_2}^{M_2} \in D$.

Let $\pi_1 \in C_{\pi_1}(\pi_2)$. Clearly, $\pi_1 \in C_{\pi_1}(\pi_2)$ and, therefore, $[\psi]_{\pi_1}^{M_1} \in D$
by the induction hypothesis. As a conclusion, $[\psi]_{\pi_1}^{M_1} \in D$;

• the case $\psi = \overline{X}\psi_1$, where ψ_1 is a path formula is similar to the previous
one;

• the cases $\psi = \psi_1 U \psi_2$ and $\psi = \psi_1 R \psi_2$, where ψ_1 and ψ_2 are path
formulas, purports a similar discussion as those above. □

Remark 2.3 The constraints the set D in Theorem 2.15 should satisfy are
similar to the ones in Theorem 1 in [73]. The main difference is that in
[73] there is a bisimulation between an mv-Kripke structure and a standard
Kripke structure, while Theorem 2.15 in this paper is based on a simulation
from an mv-Kripke structure to another mv-Kripke structure.

Remark 2.4 The first two conditions in Theorem 2.15 can be proved looking
only at the interpretation policies used in the abstraction. Hence, the first
condition holds if
\[(\alpha_R(b) = \exists^S \Rightarrow S \cap D = \emptyset) \land (\alpha_R(b) = \exists^S_a \Rightarrow S \cap D = b \downarrow \cap D = b \uparrow \cap D = \emptyset),\]
for any $b \in B - D$, while the second holds if
\[(\alpha_L(d) = \exists^S \Rightarrow S \subseteq D) \land (\alpha_L(d) = \exists^S_a \Rightarrow S \cup d \downarrow \cup d \uparrow \subseteq D),\]
for any $d \in D$.

Preserving punctual truth values $b \in B$ is harder than preserving subsets
of truth values. We present below a suite of results along this line. As we will
see, we have to distinguish between $\forall CTL^*$ formulas and $\exists CTL^*$ formulas.
Theorem 2.16 Let $M_2 = (Q_2, R_2, L_2)$ be an (α_R, α_L)-abstraction by an equivalence ρ of an mv-Kripke structure $M_1 = (Q_1, R_1, L_1)$ over AP and $B = (B, \leq), D \subseteq B, b \in B,$ and ϕ and ψ be a state and, respectively, a path $\text{mv-}\forall CTL^*_+$ formula over AP. If

1. for any $\pi_1 \in \text{Paths}(M_1, D)$ there exists a corresponding path $\pi_2 \in \text{Paths}(M_2, D)$;

2. for any $q \in Q_1$ and any $p \in AP$, $L_2([q])(p) \geq b$ implies $L_1(q)(p) \geq b$;

3. for any $q, q' \in Q_1$, $R_2([q], [q']) \geq b$ implies $R_1(q, q') \geq b$;

4. for any subset B' of B, $\forall B' \geq b$ implies $b' \geq b$ for some $b' \in B'$,

then:

$$(\forall q \in Q_1)(([\phi]^{M_2}_{[q]} \geq b) \Rightarrow ([\phi]^{M_1}_{[q]} \geq b))$$

and

$$(\forall \pi_2 \in \text{Paths}(M_2, D))([\psi]^{M_2}_{\pi_2} \geq b) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2) ([\phi]^{M_1}_{\pi_1} \geq b)).$$

Proof We will prove the statements in the theorem by simultaneous structural induction on the formulas ϕ and ψ. The following cases are to be considered:

- $\phi = p \in AP$. Let $q \in Q_1$. If we assume that $[\phi]^{M_2}_{[q]} \geq b$, then $L_2([q])(p) \geq b$ and by 2 we obtain $L_1(q)(p) \geq b$ which shows that $[\phi]^{M_1}_{[q]} \geq b$;

- $\phi = \phi_1 \land \phi_2$, where ϕ_1 and ϕ_2 are state formulas. Given $q \in Q_1$ assume that $[\phi_1]^{M_2}_{[q]} \geq b$ and both ϕ_1 and ϕ_2 satisfy the property in the lemma. Then, $[\phi_1]^{M_2}_{[q]} \land [\phi_2]^{M_2}_{[q]} \geq b$ which leads to $[\phi_1]^{M_2}_{[q]} \geq b$ and $[\phi_2]^{M_2}_{[q]} \geq b$. By the induction hypothesis we obtain $[\phi_1]^{M_1}_{[q]} \land [\phi_2]^{M_1}_{[q]} \geq b$. Consequently, $[\phi_1]^{M_1}_{[q]} \land [\phi_2]^{M_1}_{[q]} \geq b$ which shows that $[\phi]^{M_1}_{[q]} \geq b$;

- $\phi = \phi_1 \lor \phi_2$, where ϕ_1 and ϕ_2 are state formulas. Given $q \in Q_1$ assume that $[\phi_1]^{M_2}_{[q]} \geq b$ and both ϕ_1 and ϕ_2 satisfy the property in the lemma. Then, $[\phi_1]^{M_2}_{[q]} \lor [\phi_2]^{M_2}_{[q]} \geq b$ and by 4 we may assume that $[\phi_1]^{M_2}_{[q]} \geq b$. By the induction hypothesis we obtain $[\phi_1]^{M_1}_{[q]} \geq b$ which implies $[\phi]^{M_1}_{[q]} = [\phi_1]^{M_1}_{[q]} \lor [\phi_2]^{M_1}_{[q]} \geq b$;

- $\phi = \forall \psi$, where ψ is a path formula. Given $q \in Q_1$ assume that $[\phi]^{M_2}_{[q]} \geq b$ and ψ satisfies the property in the lemma. Then,

$$\bigwedge_{\pi_2 \in \text{Paths}(M_2, D, [q])} [\psi]^{M_2}_{\pi_2} \geq b$$

73
and we obtain $[\psi]^{M_2}_{\pi_2} \geq b$, for all $\pi_2 \in \text{Paths}(M_2, D, [q])$.

Let π_1 be a D-path from q in M_1. According to 1, there exists a corresponding D-path π_2 from $[q]$ in M_2. As $[\psi]^{M_2}_{\pi_2} \geq b$, the induction hypothesis leads to $[\psi]^{M_2}_{\pi_1} \geq b$ and thus

$$[\phi]^{M_1}_{\pi_1} = \bigwedge_{\pi_1 \in \text{Paths}(M_1, D, q)} [\psi]^{M_1}_{\pi_1} \geq b;$$

- the cases $\psi = \psi_1 \wedge \psi_2$ and $\psi = \psi_1 \vee \psi_2$, where ψ_1 and ψ_2 are path formulas, can be discussed as the similar cases for state formulas;

- $\psi = X \psi_1$, where ψ_1 is a path formula. Given π_2 a D-path in M_2 starting at some state $[q]$ assume that $[\psi]^{M_2}_{\pi_2} \geq b$ and ψ_1 satisfies the property in the lemma. Then, $|\pi_2| > 1$ and

$$R_2(\pi_2(0), \pi_2(1)) \wedge [\psi]^{M_2}_{\pi_1} \geq b$$

which leads to $R_2(\pi_2(0), \pi_2(1)) \geq b$ and $[\psi]^{M_2}_{\pi_1} \geq b$.

Let $\pi_1 \in C_{M_1}(\pi_2)$. Clearly, $\pi_1^1 \in C_{M_1}(\pi_2^1)$ and, therefore, $[\psi]^{M_1}_{\pi_1} \geq b$ by the induction hypothesis. Combining this with $R_1(\pi_1(0), \pi_1(1)) \geq b$ which follows from 3, we obtain $[\psi]^{M_1}_{\pi_1} \geq b$;

- the cases $\psi = X \psi_1$, $\psi = \psi_1 U \psi_2$, and $\psi = \psi_1 R \psi_2$, where ψ_1 and ψ_2 are path formulas, purport a similar discussion as those above. □

Remark 2.5 As it was the case with the previous theorem, the first three conditions in Theorem 2.16 can be proved looking only at the interpretation policies used in the abstraction. Hence, the first condition holds if

$$(\alpha_R(b) = \exists^S S \cap D = \emptyset) \wedge (\alpha_R(b) = \exists^S_a S \cap D = b \cap \downarrow D = b \cap \uparrow D = \emptyset),$$

for any $b \in B - D$, while the second and the third hold if

$$(\alpha(d) = \exists^S_S S \subseteq b \uparrow) \wedge (\alpha(d) = \exists^S_a d \downarrow \cup d \uparrow \subseteq b \uparrow),$$

for any $\alpha \in \{\alpha_R, \alpha_L\}$ and $d \geq b$.

The preservation results for Kripke structures over Kleene’s three-valued interpretation (B_3 denotes the corresponding truth algebra) from Lemmas 1 and 2, Section 5, in [46] can be obtained as a particular case of Theorem 2.16.
Corollary 2.9 Let $M_2 = (Q_2, R_2, L_2)$ be an (α_R, α_L)-abstraction by an equivalence ρ of an mv-Kripke structure $M_1 = (Q_1, R_1, L_1)$ over AP and B_3, $D = \{\bot, 1\}$, and ϕ be a mv-LTL_+ formula over AP. If

1. for any $\pi_1 \in \text{Paths}(M_1, D)$ there exists a corresponding path $\pi_2 \in \text{Paths}(M_2, D)$;
2. for any $q \in Q_1$ and any $p \in AP$, $L_2([q])(p) \geq \bot$ implies $L_1(q)(p) \geq \bot$,

then

$$(\forall q \in Q_1)([\phi]^M_2 \geq \bot \Rightarrow [\phi]^M_1 \geq \bot).$$

Proof Directly from Theorem 2.16 (the third condition can be discarded because $D = \{\bot, 1\}$).

Corollary 2.10 Let $M_2 = (Q_2, R_2, L_2)$ be an (α_R, α_L)-abstraction by an equivalence ρ of an mv-Kripke structure $M_1 = (Q_1, R_1, L_1)$ over AP and B_3, $D = \{\bot, 1\}$, and ϕ be a mv-LTL_+ formula over AP. If

1. for any $\pi_1 \in \text{Paths}(M_1, D)$ there exists a corresponding path $\pi_2 \in \text{Paths}(M_2, D)$;
2. for any $q, q' \in Q_1$, $R_2([q], [q']) = 1$ implies $R_1(q, q') = 1$;
3. for any $q \in Q_1$ and any $p \in AP$, $L_2([q])(p) = 1$ implies $L_1(q)(p) = 1$,

then

$$(\forall q \in Q_1)([\phi]^M_2 = 1 \Rightarrow [\phi]^M_1 = 1).$$

Moreover, the result holds if the second condition is replaced by $R_1(q, q') \in \{0, 1\}$, for all $q, q' \in Q_1$.

Proof The first part follows directly from Theorem 2.16 and the second part can be proved in a similar manner.

The following preservation result for abstractions of Kripke structures over Kleene’s three-valued interpretation has been introduced in [46] but it depends too much on the particular structure of the truth algebra B_3 to be deduced from some general preservation result.

Theorem 2.17 Let $M_2 = (Q_2, R_2, L_2)$ be an (α_R, α_L)-abstraction by an equivalence ρ of an mv-Kripke structure $M_1 = (Q_1, R_1, L_1)$ over AP and B_3, $D = \{\bot, 1\}$, and ϕ be a mv-LTL_+ formula over AP. If

1. for any $\pi_2 \in \text{Paths}(M_2, D)$ there exists a D-path $\pi_1 \in C_M(\pi_2)$;
2. for any \(\pi_1 \in \text{Paths}(M_1, D) \) there exists a corresponding path \(\pi_2 \in \text{Paths}(M_2, D) \);

3. for any \(q, q' \in Q_1 \), \(R_2([q], [q']) = \perp \) implies \(R_1(q, q') = \perp \);

4. for any \(q \in Q_1 \) and any \(p \in AP \), \(L_2([q])(p) = \perp \) implies \(L_1(q)(p) = \perp \),

5. for any \(q \in Q_1 \) and any \(p \in AP \), \(L_2([q])(p) = 1 \) implies \(L_1(q)(p) \in \{ \perp, 1 \} \),

then

\[
(\forall q \in Q_1)([\phi]_{\pi_2}^{M_2} = \perp \Rightarrow [\phi]_{\pi_1}^{M_1} = \perp).
\]

Proof By Corollary 2.9 we obtain that

\[
[\phi]_{[q]}^{M_2} = \perp \Rightarrow [\phi]_{\pi_2}^{M_1} \in \{1, \perp\},
\]

for any \(\phi \in LTL_+ \) and \(q \in Q_1 \). What remains to be proved is that \([\phi]_{\pi_2}^{M_1} = \perp \).

According to the semantics of \(LTL_+ \), the fact that

\[
[\phi]_{[q]}^{M_2} = \perp \Rightarrow [\phi]_{\pi_2}^{M_2} = \perp
\]

implies that there exists \(\pi_2 \) a path in \(M_2 \) starting at \([q]\) such that \([\phi]_{\pi_2}^{M_2} = \perp \).

By 2, there exists a path \(\pi_1 \) in \(M_1 \) starting at \(q \) such that \(\pi_1(i) \in \pi_2(i) \), for any \(0 \leq i < |\pi_1| \). We will prove that \([\phi]_{\pi_2}^{M_2} = \perp \) implies \([\phi]_{\pi_1}^{M_1} = \perp \), which concludes the proof.

Similarly to the proof of Corollary 2.9, by structural induction on \(\phi \) we can easily show that \([\phi]_{\pi_2}^{M_2} \in \{1, \perp\} \) implies \([\phi]_{\pi_1}^{M_1} \in \{1, \perp\} \).

Now, by structural induction on \(\phi \) we show that \([\phi]_{\pi_2}^{M_2} = \perp \) implies \([\phi]_{\pi_1}^{M_1} = \perp \):

- \(\phi = p \in AP \). This case follows directly from 4;

- \(\phi = \psi_1 \wedge \psi_2 \). Assume that \(\psi_1 \) and \(\psi_2 \) satisfy the property. Then, \([\psi_1 \wedge \psi_2]_{\pi_2}^{M_2} = [\psi_1]_{\pi_2}^{M_2} \wedge [\psi_2]_{\pi_2}^{M_2} = \perp \) implies \([\psi_1]_{\pi_2}^{M_2}, [\psi_2]_{\pi_2}^{M_2} \in \{1, \perp\} \), and \([\psi_1]_{\pi_2}^{M_2} = \perp \text{ or } [\psi_2]_{\pi_2}^{M_2} = \perp \). Then we get \([\psi_1]_{\pi_1}^{M_1}, [\psi_2]_{\pi_1}^{M_1} \in \{1, \perp\} \), and from the induction hypothesis it follows \([\psi_1]_{\pi_1}^{M_1} = \perp \text{ or } [\psi_2]_{\pi_1}^{M_1} = \perp \). Hence, \([\phi]_{\pi_1}^{M_1} = \perp \);

- \(\phi = \psi_1 \vee \psi_2 \). This is similar to the previous case.

76
\[\phi = X\psi. \] Assume that \(\psi \) satisfies the property. Then, \([X\psi]_{\pi_2}^M = |\pi_2| > 1 \land [\psi]_{\pi_2^2}^M \land R_2(\pi_2(0), \pi_2(1)) = \bot \) implies \(|\pi_2| > 1 \) and \([\psi]_{\pi_2^2}^M \land R_2(\pi_2(0), \pi_2(1)) = \bot \). But then, \([\psi]_{\pi_1^2}^M, R_1(\pi_1(0), \pi_1(1)) \in \{1, \bot\} \). If \([\psi]_{\pi_2^2}^M = \bot \), then, by the induction hypothesis, \([\psi]_{\pi_1^2}^M = \bot \) and we are done with this case. Otherwise, we use 3 and we are also done;

- the cases \(\phi = \overline{X}\psi, \phi = \psi_1 U \psi_2, \) and \(\phi = \psi_1 R \psi_2 \) are discussed similarly and, therefore, they are omitted. \(\square \)

Theorem 2.18 Let \(M_2 = (Q_2, R_2, L_2) \) be an \((\alpha_R, \alpha_L)\)-abstraction by an equivalence \(\rho \) of an mv-Kripke structure \(M_1 = (Q_1, R_1, L_1) \) over \(AP \) and \(B = (B, \leq), D \subseteq B, b \in B, \) and \(\phi \) and \(\psi \) be a state and, respectively, a path mv-\(VCTL^+_L \) formula over \(AP \). If

1. for any \(\pi_2 \in \text{Paths}(M_2, D) \) there exists a \(D \)-path \(\pi_1 \in C_{M_1}(\pi_2) \);
2. for any \(q \in Q_1 \) and any \(p \in AP, L_2([q])(p) \leq b \) implies \(L_1(q)(p) \leq b \);
3. for any \(q, q' \in Q_1, R_2([q], [q']) \leq b \) implies \(R_1(q, q') \leq b \);
4. for any subset \(B' \) of \(B, \land B' \leq b \) implies \(b' \leq b \) for some \(b' \in B' \);

then:

\[(\forall q \in Q_1)([\phi]_{\pi_2}^M \leq b \implies [\phi]_{\pi_1}^M = b) \]

and

\[(\forall \pi_2 \in \text{Paths}(M_2, D))(\psi)_{\pi_2}^M \leq b \implies (\forall \pi_1 \in C_{M_1}(\pi_2))(\psi)_{\pi_1}^M \leq b). \]

Proof Almost all cases are pretty much the same as for Theorem 2.16 and, therefore, they are omitted. We only emphasize the following two cases:

- \(\phi = \forall \psi, \) where \(\psi \) is a path formula. Given \(q \in Q_1 \) assume that \([\phi]_{\pi_2^q}^M \leq b \) and \(\psi \) satisfies the property in the lemma. Then,

\[\bigwedge_{\pi_2 \in \text{Paths}(M_2, D, [q])} [\psi]_{\pi_2}^M \leq b \]

and, by 4, we obtain \([\psi]_{\pi_2}^M \leq b \), for some \(\pi_2 \in \text{Paths}(M_2, D, [q]) \).

According to 1, there exists a corresponding \(D \)-path \(\pi_1 \) from \(q \) in \(M_1 \). As \([\psi]_{\pi_2}^M \leq b \), the induction hypothesis leads to \([\psi]_{\pi_1}^M \leq b \) and thus

\[[\phi]_{\pi_1}^M = \bigwedge_{\pi_1 \in \text{Paths}(M_1, D, q)} [\psi]_{\pi_1}^M \leq b; \]

77
the case \(\psi = X\psi_1 \) has to be split into two sub-cases: one corresponding to \(|\pi_2| > 1 \), which is handled as in the proof of Theorem 2.16, and one corresponding to \(|\pi_2| \leq 1 \). The later sub-case leads easily to \(X\psi_1|M_2 = 0 \) which implies \(X\psi_1|M_1 = 0 \) (see the notation in the proof of Theorem 2.16). □

Remark 2.6 Again, the first condition in Theorem 2.18 holds if
\[
(\alpha_R(b) = \exists^S \Rightarrow S \subseteq D) \land (\alpha_R(b) = \exists^S \Rightarrow S \cup b \downarrow \cup b \uparrow \subseteq D),
\]
for any \(b \in D \), while the second and the third hold if
\[
(\alpha(d) = \exists^S \Rightarrow S \subseteq b \downarrow) \land (\alpha(d) = \exists^S \Rightarrow S \cup d \downarrow \cup d \uparrow \subseteq b \downarrow),
\]
for any \(\alpha \in \{\alpha_R, \alpha_L\} \) and \(d \leq b \).

We can obtain as a direct corollary of Theorem 2.18 the preservation result for Kripke structures over Kleene’s three-valued interpretation from Lemma 3, Section 5, in [46].

Corollary 2.11 Let \(M_2 = (Q_2, R_2, L_2) \) be an \((\alpha_R, \alpha_L)\)-abstraction by an equivalence \(\rho \) of an mv-Kripke structure \(M_1 = (Q_1, R_1, L_1) \) over \(AP \) and \(B_3 \), \(D = \{\bot, 1\} \), and \(\phi \) be a mv-\(LTL^+ \) formula over \(AP \). If
1. for any \(\pi_2 \in \text{Paths}(M_2, D) \) there exists a \(D \)-path \(\pi_1 \in C_{M_1}(\pi_2) \);
2. for any \(q \in Q_1 \) and any \(p \in AP \), \(L_2([q])(p) = 0 \) implies \(L_1(q)(p) = 0 \),
then
\[
(\forall q \in Q_1)([\phi]_{[q]}^{M_2} = 0 \Rightarrow [\phi]_{[q]}^{M_1} = 0).
\]

Proof Directly from Theorem 2.18 (the third condition can be discarded because \(D = \{\bot, 1\} \)). □

A similar preservation result have been obtained in [46] for \(LTL_\infty^+ \), the subset of \(LTL \) consisting of formulas without negation and \(X \).

Corollary 2.12 Let \(M_2 = (Q_2, R_2, L_2) \) be an \((\alpha_R, \alpha_L)\)-abstraction by an equivalence \(\rho \) of an mv-Kripke structure \(M_1 = (Q_1, R_1, L_1) \) over \(AP \) and \(B_3 \), \(D = \{\bot, 1\} \), and \(\phi \) be a mv-\(LTL_\infty^+ \) formula over \(AP \). If
1. for any \(q \in Q_1 \) and any path \(\pi_2 \) in \(M_2 \) starting at \([q]\), there exists a path \(\pi_1 \) in \(M_1 \) starting at \(q \) with \(|\pi_1| \leq |\pi_2| \) and \(\pi_1(i) \in \pi_2(i) \), for any \(0 \leq i < |\pi_1| \);
2. for any \(q \in Q_1 \) and any \(p \in AP \), \(L_2([q])(p) = 0 \) implies \(L_1(q)(p) = 0 \),

then

\[(\forall q \in Q_1)([\phi]^{M_2}_q = 0 \Rightarrow [\phi]^{M_1}_q = 0). \]

Theorem 2.19 Let \(M_2 = (Q_2, R_2, L_2) \) be an \((\alpha_R, \alpha_L)\)-abstraction by an

equivalence \(\rho \) of an mv-Kripke structure \(M_1 = (Q_1, R_1, L_1) \) over \(AP \) and

\(B = (B, \leq) \), \(D \subseteq B \), \(b \in B \), and \(\phi \) and \(\psi \) be a state and, respectively, a path

mv-\(\exists CTL^* \) formula over \(AP \). If

1. for any \(\pi_2 \in \text{Paths}(M_2, D) \) there exists a corresponding path \(\pi_1 \in \text{C}_M_1(\pi_2) \);
2. for any \(q \in Q_1 \) and any \(p \in AP \), \(L_2([q])(p) \leq b \) implies \(L_1(q)(p) \leq b \);
3. for any \(q, q' \in Q_1 \), \(R_2([q], [q']) \geq b \) implies \(R_1(q, q') \geq b \);
4. for any subset \(B' \) of \(B \), \(\forall B' \geq b \) implies \(b' \geq b \) for some \(b' \in B' \),

then:

\[(\forall q \in Q_1)([\phi]^{M_2}_q \geq b \Rightarrow [\phi]^{M_1}_q \geq b) \]

and

\[(\forall \pi_2 \in \text{Paths}(M_2, D))(\psi^{M_2}_{\pi_2} \geq b \Rightarrow (\forall \pi_1 \in C_M_1(\pi_2))(\phi^{M_1}_{\pi_1} \geq b)). \]

Proof Similar to the proof of Theorem 2.16.

Remark 2.7 Again, the first condition in Theorem 2.19 holds if

\[(\alpha_R(b) = \exists^S \Rightarrow S \subseteq D) \land (\alpha_R(b) = \exists^S_a \Rightarrow S \cup b \downarrow \cup b \uparrow \subseteq D), \]

for any \(b \in D \) while the second and the third hold if

\[(\alpha(d) = \exists^S \Rightarrow S \subseteq b \uparrow) \land (\alpha(d) = \exists^S_a \Rightarrow S \cup d \downarrow \cup d \uparrow \subseteq b \uparrow), \]

for any \(\alpha \in \{\alpha_R, \alpha_L\} \) and \(d \geq b \).

Theorem 2.20 Let \(M_2 = (Q_2, R_2, L_2) \) be an \((\alpha_R, \alpha_L)\)-abstraction by an

equivalence \(\rho \) of an mv-Kripke structure \(M_1 = (Q_1, R_1, L_1) \) over \(AP \) and

\(B = (B, \leq) \), \(D \subseteq B \), \(b \in B \), and \(\phi \) and \(\psi \) be a state and, respectively, a path

mv-\(\exists CTL^* \) formula over \(AP \). If

1. for any \(\pi_1 \in \text{Paths}(M_1, D) \) there exists a corresponding path \(\pi_2 \in \text{Paths}(M_2, D) \);
2. for any \(q \in Q_1 \) and any \(p \in AP \), \(L_2([q])(p) \leq b \) implies \(L_1(q)(p) \leq b \);
3. for any \(q, q' \in Q_1 \), \(R_2([q], [q']) \leq b \) implies \(R_1(q, q') \leq b \);

4. for any subset \(B' \) of \(B \), \(\land B' \leq b \) implies \(b' \leq b \) for some \(b' \in B' \),

then:

\[
(\forall q \in Q_1)([\phi]_{M_2}^{M_1} \leq b \Rightarrow [\phi]_{q}^{M_1} \leq b)
\]

and

\[
(\forall \pi_2 \in \text{Paths}(M_2, D))(\psi_{\pi_2}^{M_2} \leq b \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))(\phi_{\pi_1}^{M_1} \leq b)).
\]

Proof Similar to the proof of Theorem 2.18.

Remark 2.8 Again, the first condition in Theorem 2.20 holds if

\[
(\alpha_R(b) = \exists^S \Rightarrow S \cap D = \emptyset) \land (\alpha_R(b) = \exists_a^S \Rightarrow S \cap D = b \downarrow \cap D = b \uparrow \cap D = \emptyset),
\]

for any \(b \in B - D \) while the second and the third hold if

\[
(\alpha(d) = \exists^S \Rightarrow S \subseteq b \downarrow) \land (\alpha(d) = \exists_a^S \Rightarrow S \cup d \downarrow \cup d \uparrow \subseteq b \downarrow),
\]

for any \(\alpha \in \{\alpha_R, \alpha_L\} \) and \(d \leq b \).

Remark 2.9 Let \(M_2 = (Q_2, R_2, L_2) \) be an \((\alpha_R, \alpha_L)\)-abstraction by an equivalence \(\rho \) of an mv-Kripke structure \(M_1 = (Q_1, R_1, L_1) \) over \(AP \) and \(B = (B, \leq) \), \(D \subseteq B \) and \(b \in B \). If all the conditions from Theorems 2.16, 2.18, 2.19 and 2.20 hold and also,

- for any \(q' \in Q_1 \) and any \(p \in AP \), \(L_2([q'])(p) = b \) implies \(L_1(q')(p) = b \);
- for any \(q', q'' \in Q_1 \), \(R_2([q'], [q'']) = b \) implies \(R_1(q', q'') = b \);
- for any subset \(B' \) of \(B \), \(\land B' = b \) implies \(b \in B' \);
- for any subset \(B' \) of \(B \), \(\lor B' = b \) implies \(b \in B' \);

then,

\[
(\forall q \in Q_1)([\phi]_{M_2}^{M_1} = b \Rightarrow [\phi]_{q}^{M_1} = b)
\]

and

\[
(\forall \pi_2 \in \text{Paths}(M_2, D))(\psi_{\pi_2}^{M_2} = b \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))(\phi_{\pi_1}^{M_1} = b)),
\]

for any \(\phi \) and \(\psi \) a state and, respectively, a path \(\text{mv-CTL}^*_+ \) formula over \(AP \).
2.3.3 Relating abstractions

When we want to verify a system by abstraction, first we choose an equivalence and then a type of abstraction (a pair of interpretation policies \((\alpha_R, \alpha_L)\)). The abstraction might not allow us to draw any conclusion (about the property we want to check) and, therefore, we might try to change the abstraction: either the equivalence, or the type of abstraction, or both of them. The simplest choice is to change the type of abstraction. In such a case it would be very helpful to know the relationships between types of abstraction in order to avoid those types which would lead us to the same conclusions as the previous type of abstraction.

In this section we will study the relationships between the type of abstraction of Kripke structures over Kleene’s three-valued interpretations obtained using the following interpretation policies [46]:

- \(\alpha_1(0) = \forall, \alpha_1(\bot) = \exists^{\{0, \bot, 1\}}\) and \(\alpha_1(1) = \forall\);
- \(\alpha_2(0) = \exists^{\{0, \bot, 1\}}, \alpha_2(\bot) = \exists^{\{\bot, 1\}}\) and \(\alpha_2(1) = \forall\);
- \(\alpha_3(0) = \forall, \alpha_3(\bot) = \exists^{\{0, \bot\}}\) and \(\alpha_3(1) = \exists^{\{0, \bot, 1\}}\).

Theorem 2.21 Let \(M_1\) be an mv-Kripke structure over some set of atomic propositions \(AP\) and \(B_3\), \(M_2\) an \((\alpha_2, \alpha_3)\)- or a \((\alpha_2, \alpha_1)\)-abstraction of \(M_1\) based on some equivalence \(\rho\), and \(M_3\) an \((\alpha_3, \alpha_2)\)-abstraction of \(M_1\) based on \(\rho\). Then,

\[[\phi]_{M_2}^{M_2} = 0 \Rightarrow [\phi]_{M_3}^{M_3} = 0, \]

for any \(\phi \in LTL_+\) and \(q \in Q_1\).

Proof Assume that \(M_2\) is a \((\alpha_2, \alpha_3)\)-abstraction of \(M_1\) (the other case can be obtained analogously). Clearly, \(Q_2 = Q_3/\rho'\), where \(\rho'\) is the identity.

Notice that Corollary 2.11 takes place even if \(Q_2 = Q_1/\rho\) and \(M_2\) is not necessarily an \((\alpha_R, \alpha_L)\)-abstraction of \(M_1\).

We prove that the hypothesis of Corollary 2.11 hold for \(M_3\) and \(M_2\) (in this order). Let \(\pi_2\) be a path in \(M_2\) starting at \([q]_\rho\), for some \(q \in Q_1\). By the definition of \(R_2\), there exists a path \(\pi_1\) in \(M_1\) starting at \(q\) such that \(\pi_2(i) = [\pi_1(i)]_\rho\), for any \(0 \leq i < |\pi_2|\). Now, by the definition of \(R_3\), there exists a path \(\pi_3\) in \(M_3\) starting at \([q]_\rho\) such that \(\pi_1(i) \in \pi_3(i)\), for any \(0 \leq i < |\pi_1|\). Since \(\pi_1(i)\) can be in a unique abstract state with respect to \(\rho\), we obtain that \(\pi_3(i) = \pi_2(i)\), for all \(0 \leq i < |\pi_2|\). From the construction above we also obtain \(|\pi_2| = |\pi_3|\). Now, if \(L_2([q]_\rho, p) = 0\), for some \(q \in Q_1\), then \(L_1(q_1, p) = 0\), for any \(q_1 \in [q]_\rho\) and, consequently, \(L_3([q]_\rho, p) = 0\) which concludes the proof. \(\square\)
Theorem 2.22 Let M_1 be an mv-Kripke structure over some set of atomic propositions AP and B_3, M_2 an (α_3, α_2)-abstraction of M_1 based on some equivalence ρ, and M_3 an (α_1, α_2)- or an (α_1, α_1)-abstraction of M_1 based on ρ. Then,

1. $[\phi]_{[q]}^{M_2} = \perp \Rightarrow [\phi]_{[q]}^{M_3} = \perp$,
2. $[\phi]_{[q]}^{M_3} = 1 \Rightarrow [\phi]_{[q]}^{M_2} = 1$,

for any $\phi \in LTL_+$ and $q \in Q_1$. Moreover, if M_3 is an (α_1, α_2)-abstraction then,

3. $[\phi]_{[q]}^{M_3} = \perp \Rightarrow [\phi]_{[q]}^{M_2} \in \{\perp, 1\}$,

for any $\phi \in LTL_+$ and $q \in Q_1$.

Proof Assume that M_3 is a (α_1, α_2)-abstraction of M_1 (the other case can be obtained analogously). Clearly, $Q_3 = Q_2/\rho'$ and $Q_2 = Q_3/\rho'$, where ρ' is the identity.

Notice that Theorem 2.17, Corollary 2.9, and Corollary 2.10 take place even if $Q_2 = Q_1/\rho$ and M_2 is not necessarily an (α_R, α_L)-abstraction of M_1.

To prove 1 we show that the hypothesis of Theorem 2.17 hold for M_3 and M_2 (in this order):

- notice that $R_3([q]_\rho, [q']_\rho) \in \{1, \perp\}$ iff there exists $q_1 \in [q]_\rho$ and $q'_1 \in [q']_\rho$ such that $R_1(q_1, q'_1) \in \{1, \perp\}$ iff $R_2([q]_\rho, [q']_\rho) \in \{1, \perp\}$. Consequently, for any path π_3 in M_3 there exists a path π_2 in M_2 such that $|\pi_2| = |\pi_3|$ and $\pi_2(i) = \pi_3(i)$, for any $0 \leq i < |\pi_3|$, and vice-versa. Consequently, 1 and 2 in Theorem 2.17 hold for M_2;

- now, if $R_2([q]_\rho, [q']_\rho) = \perp$, there exists $q_1 \in [q]_\rho$ and $q'_1 \in [q']_\rho$ such that $R_1(q_1, q'_1) = \perp$ and $R_1(q_2, q'_2) \in \{\perp, 0\}$, for any $q_2 \in [q]_\rho$ and $q'_2 \in [q']_\rho$. Hence, $R_3([q]_\rho, [q']_\rho) = \perp$, which proves 3 in Theorem 2.17;

- if $L_2([q]_\rho, p) = \perp$, there exists $q_1 \in [q]_\rho$ such that $L_1(q_1, p) = \perp$ and $L_1(q_2, p) \in \{\perp, 1\}$, for any $q_2 \in [q]_\rho$. Hence, $L_3([q]_\rho, p) = \perp$, which proves 4 in Theorem 2.17;

- finally, if $L_2([q]_\rho, p) \in \{\perp, 1\}$, $L_1(q_1, p) \in \{\perp, 1\}$, for any $q_1 \in [q]_\rho$. Hence, $L_3([q]_\rho, p) \in \{\perp, 1\}$, which proves 5 in Theorem 2.17.

Therefore, from Theorem 2.17 we obtain 1.

To prove 2 we show that the hypothesis of Corollary 2.10 hold for M_2 and M_3 (in this order):
• the first hypothesis of Corollary 2.10 follows from what we have proved above;

• from $R_3([q]_\rho, [q']_\rho) = 1$ it follows that $R_1(q_1, q'_1) = 1$, for any $q_1 \in [q]_\rho$ and $q'_1 \in [q']_\rho$, and by the definition of R_2 we obtain that $R_2([q]_\rho, [q']_\rho) = 1$. Now, if $L_3([q]_\rho, p) = 1$, then $L_1(q_1, p) = 1$, for any $q_1 \in [q]_\rho$ and, consequently, $L_2([q]_\rho, p) = 1$.

Therefore, by Corollary 2.10 we obtain 2.

To prove 3 we show that the hypothesis of Corollary 2.9 hold for M_2 and M_3 (in this order):

• the first hypothesis of Corollary 2.9 follows from what we have proved above (in fact it is the same as the first hypothesis of Corollary 2.10);

• then, M_2 and M_3 have the same interpretation for the labeling function, which proves the second hypothesis of Corollary 2.9.

Therefore, we can apply Corollary 2.9 and we obtain 3. \qed

Theorem 2.23 Let M_1 be an mv-Kripke structure over some set of atomic propositions and B_3, M_2 an (α_2, α_3)- or an (α_2, α_1)-abstraction of M_1 based on some equivalence ρ, and M_3 an (α_1, α_3)- or a (α_1, α_1)-abstraction of M_1 based on ρ. Then,

$$[\phi]_{M_2} = 0 \Rightarrow [\phi]_{M_3} = 0,$$

for any $\phi \in LTL_+$ and $q \in Q_1$.

Proof Assume that M_2 is an (α_2, α_3)-abstraction and M_3 an (α_1, α_3)-abstraction of M_1 (the other cases can be obtained analogously). Clearly, $Q_2 = Q_3/\rho'$, where ρ' is the identity.

We show that Corollary 2.11 can be applied to M_3 and M_2 (in this order). First, from $R_2([q]_\rho, [q']_\rho) \in \{1, \bot\}$ we obtain that $R_1(q_1, q'_1) \in \{1, \bot\}$, for any $q_1 \in [q]_\rho$ and $q'_1 \in [q']_\rho$, which implies that $R_3([q]_\rho, [q']_\rho) \in \{1, \bot\}$.

Consequently, for any path π_2 in M_2 there exists a path π_3 in M_3 such that $\pi_2(i) = \pi_3(i)$, for any $0 \leq i < |\pi_2|$. Moreover, $|\pi_2| = |\pi_3|$. If $L_2([q]_\rho, p) = 0$, then $L_1(q_1, p) = 0$, for any $q_1 \in [q]_\rho$. Hence, $L_3([q]_\rho, p) = 0$. \qed

Theorem 2.24 Let M_1 be an mv-Kripke structure over some set of atomic propositions AP and B_3, M_2 an (α, α')-abstraction of M_1 based on some equivalence ρ, and M_3 an $(\alpha, \alpha'\alpha'\alpha')$-abstraction of M_1 based on ρ, where $\alpha, \alpha', \alpha'' \in \{\alpha_1, \alpha_2, \alpha_3\}$. If $\phi \in LTL_+$ and $q \in Q_1$ then:
1. If \(\alpha' = \alpha_3 \) and \(\alpha'' = \alpha_1 \) then:
 - \([\phi]^M_{[q]} = 1 \Rightarrow [\phi]^M_{[q]} = 1 \);
 - \([\phi]^M_{[q]} = \bot \Rightarrow [\phi]^M_{[q]} = \bot \);
 - \([\phi]^M_{[q]} = 0 \Leftrightarrow [\phi]^M_{[q]} = 0 \).

2. If \(\alpha' = \alpha_2 \) and \(\alpha'' = \alpha_1 \) then:
 - \([\phi]^M_{[q]} = 1 \Rightarrow [\phi]^M_{[q]} = 1 \);
 - \([\phi]^M_{[q]} = \bot \Rightarrow [\phi]^M_{[q]} = \bot \);
 - \([\phi]^M_{[q]} = 1 \Leftrightarrow [\phi]^M_{[q]} = 1 \).

3. If \(\alpha' = \alpha_2 \) and \(\alpha'' = \alpha_3 \) then:
 - \([\phi]^M_{[q]} = 1 \Rightarrow [\phi]^M_{[q]} = 1 \);
 - \([\phi]^M_{[q]} = 0 \Rightarrow [\phi]^M_{[q]} = 0 \);
 - \([\phi]^M_{[q]} = \bot \Leftrightarrow [\phi]^M_{[q]} \in \{\bot, 1\} \);
 - \([\phi]^M_{[q]} = \bot \Leftrightarrow [\phi]^M_{[q]} \in \{\bot, 0\} \).

Proof

Directly from definitions, Theorem 2.17 and Corollaries 2.9, 2.10, and 2.11.

![Concrete model](image_url)

Figure 2.5: Preserving 0 truth values between different types of abstractions

The results developed in this section can be pictorially represented as in Figure 2.5 and Figure 2.6.
Both figures show preservation results for formulas in LTL_+. Figure 2.5 shows preservation results for the truth value 0, while the other figure shows preservation results for the truth values 1 and \perp. For example, an arrow from (α_2, α_3) to (α_1, α_1) labelled by 0 means that a property which is evaluated to 0 in a (α_2, α_3)-abstraction is also evaluated to 0 in a (α_1, α_1)-abstraction (both abstractions being under the same equivalence). An arrow like the one from (α_1, α_2) to (α_1, α_3) labelled by \perp and 1, \perp (see Figure 2.6) means that a property which is evaluated to \perp in a (α_1, α_2)-abstraction is evaluated to 1 or \perp in a (α_1, α_3)-abstraction. Arrows labeled with 0' mean preservation of 0 values only for formulas in LTL_∞.

These relationships offer some hints when choosing the type of abstraction to prove properties of systems. For example, when trying to falsify some property in LTL_∞ we can choose to make a (α_2, α_1)-abstraction or a (α_1, α_1)-abstraction of the system. Both abstractions preserve the truth value 0 from the abstract system to the concrete one. However, the former removes more behavior of the system and, consequently, it is easier to check while the latter preserves more behavior and can be used to falsify more properties.

2.4 Temporal Logic of Knowledge

2.4.1 Abstractions and Preservation Results

In this section, we extend the abstractions of mv-Kripke structures from the previous section to the multi-agent case [45]. As we have seen, the transition predicate and the labeling function of the abstract system are obtained by reinterpretations according to some interpretation policy. In the case of the
similarity relations of the abstract system, we can not always use the reinterpretations of the similarity relations of the concrete system according to some interpretation policy. These reinterpretations might not satisfy reflexivity, symmetry or transitivity. We will discuss the reinterpretations used in [45] which correspond to the following safe interpretation policies on the truth algebra corresponding to Kleene’s 3-valued interpretation, denoted \mathcal{B}_3:

- $\alpha_1(0) = \forall$, $\alpha_1(\bot) = \exists \{0, \bot, 1\}$ and $\alpha_1(1) = \forall$;
- $\alpha_2(0) = \exists \{0, \bot, 1\}$, $\alpha_2(\bot) = \exists \{\bot, 1\}$ and $\alpha_2(1) = \forall$;
- $\alpha_3(0) = \forall$, $\alpha_3(\bot) = \exists \{0, \bot\}$ and $\alpha_3(1) = \exists \{0, \bot, 1\}$.

The relations between the reinterpretations according to these interpretation policies and the properties of a similarity relation are enumerated in the next proposition.

Proposition 2.1 Let $M = (Q, R, L, i \mid 1 \leq i \leq n)$ be a multi-agent multi-valued Kripke structure over AP and \mathcal{B}_3, and ρ an equivalence relation on Q. We have that:

1. the reinterpretation of \sim_i according to α_1 is symmetric;
2. the reinterpretation of \sim_i according to α_2 is symmetric and transitive;
3. the reinterpretation of \sim_i according to α_3 is reflexive and symmetric.

Proof Clearly, the symmetry of \sim_i implies the symmetry of the reinterpretation of \sim_i according to any interpretation policy. Moreover, $\alpha_3(1) = \exists \{0, \bot, 1\}$ implies that the reinterpretation of \sim_i according to α_3 is reflexive.

Now, let $\delta: Q/\rho \times Q/\rho \to \{0, 1, \bot\}$ be the reinterpretation of \sim_i according to α_2. To prove the transitivity of δ, the following cases are to be discussed:

1. $\delta([q], [q']) = 0$ and $\delta([q'], [q'']) = \bot$, for some $q, q', q'' \in Q_1$. By the definition of δ, there exist $q_1 \in [q], q'_1 \in [q']$ such that $\sim_i (q_1, q'_1) = 0$, and $\sim_i (q'_2, q''_1) \in \{\bot, 1\}$, for any $q'_2 \in [q']$ and $q''_1 \in [q'']$. Since \sim_i is a similarity relation, we have that $\sim_i (q_1, q''_1) = 0$, for any $q''_1 \in [q'']$. Hence, $\delta([q], [q'']) = 0$.

2. $\delta([q], [q']) = \bot$ and $\delta([q'], [q'']) = 0$, for some $q, q', q'' \in Q_1$. This case is similar to the previous one.
3. $\delta([q], [q']) = 0$ and $\delta([q'], [q'']) = 1$, for some $q, q', q'' \in Q_1$. By the definition of δ, there exist $q_1 \in [q]$ and $q'_1 \in [q']$ such that $\sim_i (q_1, q'_1) = 0$, and $\sim_i (q'_2, q''_1) = 1$, for any $q'_2 \in [q']$ and $q''_1 \in [q'']$.

Again, because \sim_i is a similarity relation, we obtain $\sim_i (q_1, q''_1) = 0$, for any $q''_1 \in [q'']$. Consequently, $\delta([q], [q'']) = 0$.

4. $\delta([q], [q']) = 1$ and $\delta([q'], [q'']) = 0$, for some $q, q', q'' \in Q_1$. This case is similar to the previous one.

5. $\delta([q], [q']) = \bot$ and $\delta([q'], [q'']) = 1$, for some $q, q', q'' \in Q_1$. The former implies that there exist $q_1 \in [q]$ and $q'_1 \in [q']$ such that $\sim_i (q_1, q'_1) = \bot$, while the latter implies that $\sim_i (q'_2, q''_1) = 1$, for any $q'_2 \in [q']$ and $q''_1 \in [q'']$.

By the transitivity of \sim_i, $\sim_i (q_1, q''_1) = \bot$, for any $q''_1 \in [q'']$. Moreover, by the definition of δ, $\sim_i (q_2, q'_3) \in \{\bot, 1\}$, for any $q_2 \in [q]$ and $q'_3 \in [q']$, which implies $\sim_i (q_2, q''_1) \in \{\bot, 1\}$, for any $q_2 \in [q]$ and $q''_1 \in [q'']$. Hence, $\delta([q], [q'']) = \bot$.

6. $\delta([q], [q']) = 1$ and $\delta([q'], [q'']) = \bot$, for some $q, q', q'' \in Q_1$. This case is similar to the previous one.

7. $\delta([q], [q']) = \bot$ and $\delta([q'], [q'']) = \bot$, for some $q, q', q'' \in Q_1$. The first property implies that there exist $q_1 \in [q]$ and $q'_1 \in [q']$ such that $\sim_i (q_1, q'_1) = \bot$ and the second property implies that $\sim_i (q'_2, q''_1) \in \{\bot, 1\}$, for any $q'_2 \in [q']$ and $q''_1 \in [q'']$. By the transitivity of \sim_i, we obtain that $\sim_i (q_1, q''_1) = \bot$, for any $q''_1 \in [q'']$. Moreover, we have that $\sim_i (q_2, q'_3) \in \{\bot, 1\}$, for any $q_2 \in [q]$ and $q'_3 \in [q']$, which implies $\sim_i (q_2, q''_1) \in \{\bot, 1\}$, for any $q_2 \in [q]$ and $q''_1 \in [q'']$. Hence, $\delta([q], [q'']) = \bot$.

8. $\delta([q], [q']) = 1$ and $\delta([q'], [q'']) = 1$, for some $q, q', q'' \in Q_1$. From the former we obtain that $\sim_i (q_1, q'_1) = 1$, for any $q_1 \in [q]$ and $q'_1 \in [q']$ and from the latter $\sim_i (q'_2, q''_1) = 1$, for any $q'_2 \in [q']$ and $q''_1 \in [q'']$. Since \sim_i is transitive, we get that $\sim_i (q_1, q''_1) = 1$ for any $q_1 \in [q]$ and $q''_1 \in [q']$. Consequently, $\delta([q], [q'']) = 1$. }

The above proposition mentions all the properties of a similarity relation that are always satisfied by a reinterpretation of \sim_i according to α_1, α_2 or α_3. Consequently, when trying to redefine the similarity relations in the abstract system we have to apply some reflexive or transitive closures.

Before we define closures, we remark that the properties of a similarity relation $\sim: A \times A \to \{0, \bot, 1\}$ build classes of elements that have the same
properties as the equivalence classes build by some equivalence relation. The class of an element \(a \in A \) is
\[
[a] = \{ x | x \sim (a, x) \neq 0 \}.
\]
The class \([a]_\sim\) has the property that \(\sim (x, y) = \sim (x', y') \) for any \(x, y, x', y' \in [a]_\sim \) with \(x \neq y \) and \(x' \neq y' \). To prove this, let \(\sim (x, y) = b_1 \) and \(\sim (y, x') = b_2 \). By the transitivity of \(\sim \), we obtain that \(\sim (x, x') = b_1 \wedge b_2 \). The symmetry of \(\sim \) implies \(\sim (x', y) = b_2 \), which, by \(\sim (x, y) = \sim (x', y') \sim (x', y) \), further implies \(b_1 = b_1 \wedge b_2 \) and consequently, \(b_1 \leq b_2 \). In a similar manner, we can prove \(b_2 \leq b_1 \) which concludes \(b_1 = b_2 \). Now, using a similar approach, we can prove \(\sim (y, x') = \sim (x', y') \) which completes our proof.

Let \(\sigma : A \times A \to \{0, 1, \perp\} \) be a three-valued relation. The reflexive closure of \(\sigma \) is a three-valued relation \(\sigma_r : A \times A \to \{0, 1, \perp\} \) defined by:
\[
\sigma_r(x, y) = \begin{cases}
1, & \text{if } x = y; \\
\sigma(x, y), & \text{otherwise}.
\end{cases}
\]

The transitive closure of a reflexive and symmetric three-valued relation \(\sigma : A \times A \to \{0, 1, \perp\} \) is build as follows. For each \(a \in A \), we construct the class \([a]_\sigma\) by computing the sequence of sets \(([a]_\sigma^i) i \geq 0 \) defined by:
\[
[a]_\sigma^0 = \{ a \}; \\
[a]_\sigma^{i+1} = \{ x | (\exists y \in [a]_\sigma^i)(\sigma(x, y) \neq 0) \};
\]
until \([a]_\sigma^j = [a]_\sigma^{j+1}\), for some \(j \geq 0 \). We take \([a]_\sigma = [a]_\sigma^j\) and define the transitive closure \(\sigma_t : A \times A \to \{0, 1, \perp\} \) as follows:
- if a class \([a]_\sigma\) has the property \(\sigma(x, y) \neq 0 \), for all \(x, y \in [a]_\sigma \), then we take \(\sigma_t(x, y) = \sigma(x, y) \), for all \(x, y \in [a]_\sigma \);
- otherwise, we take \(\sigma_t(x, x) = 1 \), for all \(x \in [a]_\sigma \), and \(\sigma_t(x, y) = \perp \), for all \(x, y \in [a]_\sigma \) with \(x \neq y \);
- for any \(a_1, a_2 \in A \) with \([a_1]_\sigma \cap [a_2]_\sigma = \emptyset \), we take \(\sigma_t(x, y) = 0 \), for all \(x \in [a_1]_\sigma \) and \(y \in [a_2]_\sigma \).

Remark 2.10 We may remark that the transitive closure of \(\sigma \), \(\sigma_t \), transforms 0 and 1 values of \(\sigma \) into \(\perp \) values.

Definition 2.22 Let \(M = (Q, R, L, (\sim_i | 1 \leq i \leq n)) \) be a multi-agent multi-valued Kripke structure over \(AP \) and \(B_3 \), \(\rho \) an equivalence relation on \(Q \), and \(\alpha_R, \alpha_L, \alpha_S \in \{ \alpha_1, \alpha_2, \alpha_3 \} \) three interpretation policies over \(B_3 \). A multi-agent mv-Kripke structure \(M' = (Q', R', L', (\sim_i | 1 \leq i \leq n)) \) over \(AP \) and \(B_3 \) is called an \((\alpha_R, \alpha_L, \alpha_S) \)-abstraction of \(M \) by \(\rho \) if:
\(Q' = Q / \rho \);
\(R' \) is the reinterpretation of \(R \) on \(Q' \times Q' \) according to \(\alpha_R \);
\(L' \) is the reinterpretation of \(L \) over \(Q' \) according to \(\alpha_L \).
\(\sim'_i \) is defined as follows:

- if \(\alpha_S = \alpha_1 \) then \(\sim'_i \) is the reflexive and transitive closure of the reinterpretation of \(\sim_i \) on \(Q' \times Q' \) according to \(\alpha_1 \);
- if \(\alpha_S = \alpha_2 \) then \(\sim'_i \) is the reflexive closure of the reinterpretation of \(\sim_i \) on \(Q' \times Q' \) according to \(\alpha_2 \);
- if \(\alpha_S = \alpha_3 \) then \(\sim'_i \) is the transitive closure of the reinterpretation of \(\sim_i \) on \(Q' \times Q' \) according to \(\alpha_3 \).

Example 2.12 Consider the system from Figure 2.7. It consists of two agents \(H \) and \(L \) asynchronously composed (the \(\land \) symbol means that the instructions are executed in one atomic transition). \(H \) continuously increases \(x \) by 2 but, when it receives a signal from \(L \) (\(L \) sets \(z \) to 1) it increases \(x \) only by 1. The agent \(L \) also uses \(y \) to count the number of signals it sends.

\[
\begin{align*}
\text{local } x, y, z : \text{integer} \\
x &:= 1; y := 0; z := 0; \\
H :: \\
1. \text{while true} \\
2. \text{if } z = 0 \text{ then} \\
3. \quad x := x + 2; \\
4. \quad \text{if } z = 1 \text{ then} \\
5. \quad x := x + 1 \land z := 0; \\
\| \\
L :: \\
1. \text{while true} \\
2. \text{if } z = 0 \text{ then} \\
3. \quad y := y + 1 \land z := 1; \\
\end{align*}
\]

Figure 2.7: A system with two processes

Suppose that \(L \) can not read \(x \). We would be interested in checking whether the low-level user \(L \) can deduce something about the parity of \(x \).

We model this system by a multi-agent mv-Kripke structure

\[
M_1 = (Q, R, L, (\sim_H, \sim_L)),
\]

whose states are triples \((x, y, z)\), where \(x, y \) and \(z \) are the variables from Figure 2.7. We consider that \((x, y, z) \sim_H (x', y', z')\) if \(x = x' \) and \(z = z' \) and \((x, y, z) \sim_L (x', y', z')\) if \(y = y' \) and \(z = z' \).

An instance of the question above is the formula

\[
\phi = P_L O ((even(y) \land z = 1) \Rightarrow P \neg(even(x) S z = 1)),
\]

89
where \(\text{even} \) is a predicate that it is 1 for even numbers and 0 otherwise. If this property is false then, the fact that \(y \) is even implies that \(x \) is even in all the states since the last time \(z \) was 1. Consequently, if \(y \) is even \(L \) knows the parity of \(x \) for some of the past states.

Such a property is an instance of information flow w.r.t run-based secrecy [97]. In fact, the falsity of \(\phi \) would prove also that agent \(H \) does not maintain run-based secrecy with respect to agent \(L \), i.e. there exists an \(H \)-local and satisfiable formula \(\phi \) such that \(P_L O \phi \) is false.

We define the equivalence relation \(\rho \) on the set of states of \(M_1 \) as follows:

\[
(x, y, z) \rho (x', y', z') \text{ if } \text{even}(|x - x'|) \land \text{even}(|y - y'|) \land z = z'.
\]

The \((\alpha_3, \alpha_3, \alpha_3)\)-abstraction of \(M_1 \) by \(\rho \) is depicted in Figure 2.8(a). We have denoted the abstract states by triples, where the first two elements specify the parity of \(x \) and \(y \), respectively, while the third component gives the value of \(z \).

We can remark that the abstract system has only 4 reachable states and it is very easy to verify it. All we need is some preservation results in order to transfer the truth value of \(\phi \) from the abstract system into the concrete system.

Example 2.13 The system in Figure 2.9 consists of two agents \(H \) and \(L \) (as before, \(\land \) means that the instructions linked by it are executed in one atomic transition) which run in parallel. \(H \) generates randomly a value for \(x \) and then, according to the remainder \(x \mod 6 \), it sets \(y \). When \(H \) have set \(y \), \(L \) increments it and stops the system by setting \(z = 1 \).

We suppose that \(x \) is hidden to \(L \) and we want to answer the following question: can \(L \) deduce something about the remainder \(x \mod 6 \) from the parity of \(y \)?
local x, y: integer
$x := 0$; $y := 4$; $z := 0$;

$$H :: \begin{cases}
1. \text{if } y = 4 \text{ then } \{
2. \text{random}(x);
3. \text{if } x \text{ mod } 6 \geq 3 \text{ then }
4. \quad y := (x \text{ mod } 6) - 3 \land x := 0;
5. \text{else }
6. \quad y := x \text{ mod } 6 \land x := 0;
\} \\
\end{cases}$$

\parallel $L :: \begin{cases}
1. \text{if } (y < 4 \land z = 0) \text{ then }
2. \quad y := y + 1 \land z := 1;
\end{cases}$

Figure 2.9: A system with two processes

The system is modeled by a multi-agent mv-Kripke structure

$$M_2 = (Q', R', L', (\sim_H', \sim_L')),$$

whose states are triples (x, y, z), where x, y and z are the variables from Figure 2.9. We consider $(x, y, z) \sim_H' (x', y', z')$ if $x = x'$ and $(x, y, z) \sim_L' (x', y', z')$ if even$(|y - y'|)$.

The question above can be expressed by the following formulas:

$$\phi_k = PL \bigvee (z = 0) \lor O (x \text{ mod } 6 = k), \text{ for any } 0 \leq k \leq 5.$$

If all these formulas are true then we obtain a negative answer to our question. Again, we are trying to prove properties that are related to the notion of run-based secrecy from [97].

Now, consider the equivalence relation σ on Q' given by:

$$(x, y, z) \sigma (x', y', z') \text{ if } x \text{ mod } 6 = x' \text{ mod } 6 \land y = y' \land z = z'.$$

The $(\alpha_2, \alpha_2, \alpha_2)$-abstraction of M' by σ is shown in Figure 2.8(b). We have denoted abstract states by triples (a, b, c), where $a = x \text{ mod } 6$, $b = y$ and $c = z$. Again, we have obtained a finite abstract system and it will be very useful if we could verify properties directly on it.

Abstractions are useful when they offer preservation results with respect to a specific set of properties. We offer three forms of property preserving, the first two being frequently found in the literature [34]:

- weak-preservation with respect to a set of properties P: an abstraction is weakly preserving with respect to P if for any $\phi \in P$, ϕ is evaluated to 1 in the abstract system implies that ϕ is evaluated to 1 in the concrete system;
• error-preservation with respect to a set of properties P: an abstraction is error preserving with respect to P if for any $\phi \in P$, ϕ is evaluated to 0 in the abstract system implies that ϕ is evaluated to 0 in the concrete system;

• very weak-preservation with respect to a set of properties P: an abstraction is very weak-preserving with respect to P if for any $\phi \in P$, ϕ is evaluated to 1 or \bot in the abstract system implies that ϕ is evaluated to 1 or \bot in the concrete system.

Weak and very weak preservation results

In order to prove weak and very weak preservation results, we start by some technical lemmas that will identify the basic conditions that must be satisfied by the abstraction in order to be weak or very weak preserving with respect to $\forall KCTL^*P_+ \lor \exists KCTL^*P_+$ formulas.

Let $M_2 = (Q_2, R_2, L_2, (\sim^2_{\alpha} | 1 \leq i \leq n))$ be an $(\alpha_R, \alpha_L, \alpha_S)$-abstraction by an equivalence ρ of a multi-agent mv-Kripke structure $M_1 = (Q_1, R_1, L_1, (\sim^1_i | 1 \leq i \leq n))$ over AP and B_3. As in the case of mv-Kripke structures, we say that a path $\pi_2 \in \text{Paths}(M_2, \{\bot, 1\})$ is a corresponding path to $\pi_1 \in \text{Paths}(M_1, \{\bot, 1\})$ if:

1. $|\pi_2| = |\pi_1|$;

2. $\pi_2(i) = [\pi_1(i)]$, for any $0 \leq i < |\pi_2|$.

We denote by $C_{M_1}(\pi_2)$ the set of all $\{\bot, 1\}$-paths in M_1 that have π_2 as a corresponding $\{\bot, 1\}$-path in M_2.

Lemma 2.4 Let $M_2 = (Q_2, R_2, L_2, (\sim^2_{\alpha} | 1 \leq i \leq n))$ be an $(\alpha_R, \alpha_L, \alpha_S)$-abstraction by an equivalence ρ of a multi-agent mv-Kripke structure $M_1 = (Q_1, R_1, L_1, (\sim^1_i | 1 \leq i \leq n))$ over AP and B_3, and ϕ a $\forall KCTL^*P_+$ formula. If

1. for any $\pi_1 \in \text{Paths}(M_1, \{\bot, 1\})$ there exists a corresponding path $\pi_2 \in \text{Paths}(M_2, \{\bot, 1\})$;

2. for any $q, q' \in Q_1$, $\sim^1_i (q, q') \in \{\bot, 1\}$ implies $\sim^2_i ([q], [q']) \in \{\bot, 1\}$;

3. for any $q \in Q_1$ and any $p \in AP$, $L_2([q])(p) \in \{\bot, 1\}$ implies $L_1(q)(p) \in \{\bot, 1\}$,
then
\[([\phi]_{(\pi_2,m)}^{I_2} \in \{\bot, 1\}) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2)) ([\phi]_{(\pi_1,m)}^{I_1} \in \{\bot, 1\}), \]
for any \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\) \((I_1, I_2)\) are the interpreted systems corresponding to \(M_1\) and \(M_2\), respectively.

Proof The claim can be proved by structural induction on \(\phi\). We will present only some of the possible cases, the others being similar to these ones:

1. \(\phi = p \in AP\). Suppose that \([\phi]_{(\pi_2,m)}^{I_2} = L_2(\pi_2(m), p) \in \{\bot, 1\}\), for some point \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\). Let \(\pi_1\) be a path of \(M_1\) such that \(\pi_1 \in C_{M_1}(\pi_2)\), if such a path exists. By 3 and \(\pi_2(m) = [\pi_1(m)]\), we obtain that \(L_1(\pi_1(m), p) \in \{\bot, 1\}\) and, therefore, \([\phi]_{(\pi_1,m)}^{I_1} \in \{\bot, 1\}\);

2. \(\phi = X\phi_1\). Assume that \(\phi_1\) satisfies the property and
\[[X\phi_1]_{(\pi_2,m)}^{I_2} = |\pi_2^m| \leq 1 \lor ([\phi_1]_{(\pi_2,m+1)}^{I_2} R_2(\pi_2(m), \pi_2(m+1))) \in \{\bot, 1\}, \]
for some point \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\). Also, let \(\pi_1\) be a path of \(M_1\) such that \(\pi_1 \in C_{M_1}(\pi_2)\), if such a path exists. If \(|\pi_2^m| \leq 1\) then \(|\pi_1^m| \leq 1\) which leads to \([X\phi_1]_{(\pi_1,m)}^{I_1} = 1\). Otherwise, \([\phi_1]_{(\pi_2,m+1)}^{I_2} \lor R_2(\pi_2(m), \pi_2(m+1)) \in \{\bot, 1\}\). By the definition of \(\pi_1\) we obtain \(|\pi_1^m| > 1\) and \(R_1(\pi_1(m), \pi_1(m+1)) \in \{\bot, 1\}\), and by the induction hypothesis, \([\phi_1]_{(\pi_1,m+1)}^{I_1} \in \{\bot, 1\}\). Consequently, \([X\phi_1]_{(\pi_1,m+1)}^{I_1} \in \{\bot, 1\}\);

3. \(\phi = \forall \phi_1\). Assume that \(\phi_1\) satisfies the property and
\[[\forall \phi_1]_{(\pi_2,m)}^{I_2} = \bigwedge_{\pi[1..m]=[\pi_2[1..m]]} [\phi_1]_{(\pi,m)}^{I_2} \in \{\bot, 1\}, \]
for some point \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\). Also, let \(\pi_1\) be a path of \(M_1\) such that \(\pi_1 \in C_{M_1}(\pi_2)\), if such a path exists. This implies \([\phi_1]_{(\pi_2,m)} \in \{\bot, 1\}\), for all paths \(\pi\) such that \(\pi[1..m] = \pi_2[1..m]\). By 1, for each path \(\sigma\) of \(M_1\) with \(\sigma[1..m] = \pi_1[1..m]\) there exists a path \(\sigma'\) of \(M_2\) such that \(\sigma'[1..m] = \pi_2[1..m]\) and \([\phi_1]_{(\pi_2,m)}^{I_2} \in \{\bot, 1\}\). Applying the induction hypothesis we get \([\phi_1]_{(\pi_2,m)}^{I_2} \in \{\bot, 1\}\), for each path \(\sigma\) with \(\sigma[1..m] = \pi_1[1..m]\). Hence, \([\forall \phi_1]_{(\pi_1,m)}^{I_1} \in \{\bot, 1\}\);

4. \(\phi = K_i\phi_1\). Assume that \(\phi_1\) satisfies the property and
\[\bigwedge_{\sim_s^2((\pi_2, m), (\pi_2', m')) \neq 0} \sim_s^2((\pi_2, m), (\pi_2', m')) \land [\phi_1]_{(\pi_2',m')}^{I_2} \in \{\bot, 1\}, \quad (2.1) \]
for some point \((\pi_1, m) \in \text{Points}(M_2, \{\bot, 1\})\). Also, let \(\pi_1\) be a path of \(M_1\) such that \(\pi_1 \in C_{M_1}(\pi_2)\), if such a path exists. We have to prove that

\[
\bigwedge_{\sim^1_i ((\pi_1, m), (\pi'_1, m'')) \neq 0} \sim^1_i ((\pi_1, m), (\pi'_1, m'')) \land [\phi]^{I_1}_{(\pi'_1, m'')} \in \{\bot, 1\}.
\]

Let \((\pi'_1, m'')\) be a point of \(M_1\) such that \(\sim^1_i ((\pi_1, m), (\pi'_1, m'')) \neq 0\). By 1, there exists a corresponding path for \(\pi'_1\), denote it \(\pi''_2\), such that \(\pi''_2(m'') = [\pi'_1(m'')]\). Moreover, by 2, \(\sim^2_i ((\pi_2, m), (\pi'_2, m'')) \in \{\bot, 1\}\).

From property (2.1) we deduce that \([\phi]^{I_2}_{(\pi'_2, m'')} \in \{\bot, 1\}\) which, by the induction hypothesis, implies \([\phi]^{I_1}_{(\pi'_1, m'')} \in \{\bot, 1\}\). \(\square\)

Lemma 2.5 Let \(M_2 = (Q_2, R_2, L_2, \sim^2_i 1 \leq i \leq n)\) be an \((\alpha_R, \alpha_L, \alpha_S)\)-abstraction by an equivalence \(\rho\) of a multi-agent mv-Kripke structure \(M_1 = (Q_1, R_1, L_1, \sim^1_i 1 \leq i \leq n)\) over \(AP\) and \(B_3\), and \(\phi\) a \(\forall KCTL^* P_+\) formula. If

1. for any \(\pi_1 \in \text{Paths}(M_1, D)\) there exists a corresponding path \(\pi_2 \in \text{Paths}(M_2, D)\);
2. for any \(q, q' \in Q_1\), \(\sim^1_i (q, q') \in \{\bot, 1\}\) implies \(\sim^2_i ([q], [q']) \in \{\bot, 1\}\);
3. for any \(q \in Q_1\) and any \(p \in AP\), \(L_2([q])(p) = 1\) implies \(L_1(q)(p) = 1\);
4. for any \(q, q' \in Q_1\), \(R_2([q], [q']) = 1\) implies \(R_1(q, q') = 1\);
5. for any \(q, q' \in Q_1\), \(\sim^2_i ([q], [q']) = 1\) and \([q] \neq [q']\) implies \(\sim^1_i (q, q') = 1\), then

\[
([\phi]^{I_2}_{(\pi'_2, m'')} = 1) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))([\phi]^{I_1}_{(\pi'_1, m'')} = 1),
\]

for any \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\) \((I_1, I_2\) are the interpreted systems corresponding to \(M_1\) and \(M_2\), respectively). The same holds even if the requirements 4 and 5 are replaced by \(R_1(q, q') \in \{0, 1\}\), for any \(q, q' \in Q_1\), and \(\sim^1_i (q, q') \in \{0, 1\}\), for any \(q, q' \in Q_1\), respectively.

Proof The proof follows the same lines as Lemma 2.4. We detail only the following case:

- \(\phi = K_i \phi_1\). Assume that \(\phi_1\) satisfies the property and

\[
\bigwedge_{\sim^2_i ((\pi_2, m), (\pi''_2, m'')) \neq 0} \sim^2_i ((\pi_2, m), (\pi''_2, m'')) \land [\phi]^{I_2}_{(\pi''_2, m'')} = 1,
\]

(2.2)
for some point \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\). Also, let \(\pi_1\) be a path of \(M_1\) such that \(\pi_1 \in C_{M_1}(\pi_2)\), if such a path exists. We have to prove that

\[
\bigwedge_{\sim_1^1((\pi_1, m), (\pi_1', m')) \neq 0} \sim_1^1 ((\pi_1, m), (\pi_1', m')) \wedge [\phi]_{(\pi_1', m')}^I_1 = 1.
\]

Let \((\pi_1', m'')\) be a point of \(M_1\) such that \(\sim_1^1 ((\pi_1, m), (\pi_1', m'')) \neq 0\).

If \((\pi_1', m'') = (\pi_1, m)\) then \(\sim_1^1 ((\pi_1, m), (\pi_1, m)) = 1\). Because \(\sim_1^1\) is a similarity relation, we have \(\sim_1^2 ((\pi_2, m), (\pi_2, m)) = 1\) which implies \([\phi]_{(\pi_2, m)}^{I_2} = 1\). By the induction hypothesis, we obtain \([\phi]_{(\pi_1, m)}^{I_1} = 1\).

If \((\pi_1', m'') \neq (\pi_1, m)\), by 1, we obtain that there exists a corresponding path for \(\pi_1\), denote it \(\pi_2\), such that \(\pi_2(m'') = [\pi_1'(m'')].\) Moreover, by 2, \(\sim_1^2 ((\pi_2, m), (\pi_2', m'')) \in \{\bot, 1\}\). From the property (2.2), we obtain that \(\sim_1^2 ((\pi_2, m), (\pi_2', m'')) = 1\) and \([\phi]_{(\pi_2', m'')}^{I_2} = 1\) and finally, by 5 and the induction hypothesis, we get \(\sim_1^1 ((\pi_1, m), (\pi_1', m'')) = 1\) and \([\phi]_{(\pi_1, m')}^{I_1} = 1\), which completes our proof.

\(\square\)

Until now, we have proved weak and very weak preservation results involving \(\forall \mathit{KCTL}^* P_+\) formulas. Now, we turn our attention to \(\exists \mathit{KCTL}^* P_+\) formulas.

Lemma 2.6 Let \(M_2 = (Q_2, R_2, L_2, (\sim_2^1 1 \leq i \leq n))\) be an \((\alpha_R, \alpha_L, \alpha_S)\)-abstraction by an equivalence \(\rho\) of a multi-agent mv-Kripke structure \(M_1 = (Q_1, R_1, L_1, (\sim_1^1 1 \leq i \leq n))\) over \(\mathcal{AP}\) and \(\mathcal{B}_3\), and \(\phi\) an \(\exists \mathit{KCTL}^* P_+\) formula. If

1. for any \(\pi_2 \in \text{Paths}(M_2, \{\bot, 1\})\) there exists a path \(\pi_1 \in \text{Paths}(M_1, \{\bot, 1\})\) with \(\pi_1 \in C_{M_1}(\pi_2)\);
2. for any \(q, q' \in Q_1, \sim_1^1 ([q], [q']) \in \{\bot, 1\}\) implies \(\sim_1^1 (q, q') \in \{\bot, 1\}\);
3. for any \(q, q' \in Q_1, R_2([q], [q']) \in \{\bot, 1\}\) implies \(R_1(q, q') \in \{\bot, 1\}\);
4. for any \(q \in Q_1\) and any \(p \in \mathcal{AP}\), \(L_2([q])(p) \in \{\bot, 1\}\) implies \(L_1(q)(p) \in \{\bot, 1\}\),

then

\([(\phi)_{(\pi_2, m)}^{I_2} \in \{\bot, 1\}) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))(\phi)_{(\pi_1, m)}^{I_1} \in \{\bot, 1\})\),

for any \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\) \((I_1, I_2\) are the interpreted systems corresponding to \(M_1\) and \(M_2\), respectively).
Proof We can proceed by structural induction on ϕ as in Lemma 2.4. Below, we give only the new cases.

• $\phi = \exists \phi_1$. Assume that ϕ_1 satisfies the property and let (π_2, m) be a point of M_2 such that

$$[\exists \phi_1]^{l_2}_{(\pi_2, m)} = \bigvee_{\pi'_2[1..m]=\pi_2[1..m]} [\phi_1]^{l_2}_{(\pi'_2, m)} \in \{\bot, 1\}.$$

There exists a path π_2' with $\pi_2'[1..m] = \pi_2[1..m]$ such that $[\phi_1]^{l_2}_{(\pi'_2, m)} \in \{\bot, 1\}$. Let π_1 be a path of M_1, corresponding to π_2 (by 1, we know that it exists). Applying the induction hypothesis, we get that $[\phi_1]^{l_1}_{(\pi_1, m)} \in \{\bot, 1\}$, for any path $\pi_1' \in C_{M_1}(\pi_2')$. Because of the third condition and $\pi_2'[1..m] = \pi_2[1..m]$, there exists $\pi_1'' \in C_{M_1}(\pi_2')$ such that $\pi_1''[1..m] = \pi_1[1..m]$ and $[\phi_1]^{l_1}_{(\pi_1', m)} \in \{\bot, 1\}$ which implies $[\exists \phi_1]^{l_1}_{(\pi_1, m)} \in \{\bot, 1\}$;

• $\phi = P_i \phi_1$. Assume that ϕ_1 satisfies the property and let (π_2, m) be a point of M_2 such that

$$\bigvee_{\sim_i^2((\pi_2, m), (\pi'_2, m')) \neq 0} \sim_i^2 ((\pi_2, m), (\pi'_2, m')) \land [\phi_1]^{l_2}_{(\pi'_2, m')} \in \{\bot, 1\}.$$

There exists (π'_2, m') a point of M_2 such that $\sim_i^2 ((\pi_2, m), (\pi'_2, m')) \in \{\bot, 1\}$ and $[\phi_1]^{l_2}_{(\pi'_2, m')} \in \{\bot, 1\}$. Now, let $\pi_1 \in C_{M_1}(\pi_2)$ and $\pi_1' \in C_{M_1}(\pi_2')$ (by 1, we know that they exist). By 2, we have $\sim_i^1 ((\pi_1, m), (\pi_1', m')) \in \{\bot, 1\}$. Moreover, by the induction hypothesis, we obtain $[\phi_1]^{l_1}_{(\pi_1', m')} \in \{\bot, 1\}$ and consequently,

$$[P_i \phi_1]^{l_1}_{(\pi_1, m)} = \bigvee_{\sim_i^1((\pi_1, m), (\pi_1', m')) \neq 0} \sim_i^1 ((\pi_1, m), (\pi_1', m')) \land [\phi_1]^{l_1}_{(\pi_1', m')} \in \{\bot, 1\}.$$

\[\square\]

Lemma 2.7 Let $M_2 = (Q_2, R_2, L_2, (\sim_i^2 | 1 \leq i \leq n))$ be an $(\alpha_R, \alpha_L, \alpha_S)$-abstraction by an equivalence ρ of a multi-agent mv-Kripke structure $M_1 = (Q_1, R_1, L_1, (\sim_i^1 | 1 \leq i \leq n))$ over AP and B_3, and ϕ an $\exists KCTL^* P_+$ formula. If

1. for any $\pi_2 \in Paths(M_2, \{\bot, 1\})$ there exists a path $\pi_1 \in Paths(M_1, \{\bot, 1\})$ with $\pi_1 \in C_{M_1}(\pi_2)$;
2. for any \(q, q' \in Q_1, \sim^2_i ([q], [q']) = 1 \) implies \(\sim^1_i (q, q') = 1 \);
3. for any \(q \in Q_1 \) and any \(p \in AP, L_2([q])(p) = 1 \) implies \(L_1(q)(p) = 1 \);
4. for any \(q, q' \in Q_1, R_2([q], [q']) = 1 \) implies \(R_1(q, q') = 1 \),

then

\[
([\phi]^{f_2}_{(\pi_2, m)} = 1) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))([\phi]^{f_1}_{(\pi_1, m)} = 1),
\]

for any \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\). Moreover, if \(R_1(q, q') \in \{0, 1\} \) and \(\sim^1_i (q, q') \in \{0, 1\}\), for all \(q, q' \in Q_1 \) and \(1 \leq i \leq n \), then

\[
([\phi]^{f_2}_{(\pi_2, m)} = 1) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))([\phi]^{f_1}_{(\pi_1, m)} = 1),
\]

for any \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\).

- If \(\alpha_L = \alpha_2 \) then

\[
([\phi]^{f_2}_{(\pi_2, m)} \in \{\bot, 1\}) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))([\phi]^{f_1}_{(\pi_1, m)} \in \{\bot, 1\}),
\]

for any \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\). Moreover, if \(R_1(q, q') \in \{0, 1\} \) and \(\sim^1_i (q, q') \in \{0, 1\}\), for all \(q, q' \in Q_1 \) and \(1 \leq i \leq n \), then

\[
([\phi]^{f_2}_{(\pi_2, m)} = 1) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))([\phi]^{f_1}_{(\pi_1, m)} = 1),
\]

for any \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\).

- If \(\alpha_L = \alpha_1, R_1(q, q') \in \{0, 1\} \) and \(\sim^1_i (q, q') \in \{0, 1\}\), for all \(q, q' \in Q_1 \) and \(1 \leq i \leq n \), then

\[
([\phi]^{f_2}_{(\pi_2, m)} = 1) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))([\phi]^{f_1}_{(\pi_1, m)} = 1),
\]

for any \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\).

Proof Directly from Lemma 2.4 and Lemma 2.5. \(\square\)

Theorem 2.25 Let \(M_2 = (Q_2, R_2, L_2, (\sim^2_i | 1 \leq i \leq n)) \) be an \((\alpha_3, \alpha_L, \alpha_3)\)-abstraction by an equivalence \(\rho \) of a multi-agent mv-Kripke structure \(M_1 = (Q_1, R_1, L_1, (\sim^1_i | 1 \leq i \leq n)) \) over \(AP \) and \(B_3 \), and \(\phi \) an \(\forall KCTL^* P_+ \) formula.

Proof The proof follows the same lines as Lemma 2.6. \(\square\)

We will enumerate now the weak and very weak preservation results that hold for all the possible types of abstraction.

Theorem 2.26 Let \(M_1 = (Q_1, R_1, L_1, (\sim^1_i | 1 \leq i \leq n)) \) be a multi-agent mv-Kripke structure over \(AP \) and \(B_3 \), \(M_2 = (Q_2, R_2, L_2, (\sim^2_i | 1 \leq i \leq n)) \) an \((\alpha_1, \alpha_L, \alpha_1)\)-abstraction by an equivalence \(\rho \), and \(\phi \) an \(\forall KCTL^* P_+ \) formula.
If $\alpha_L \in \{\alpha_1, \alpha_2\}$ then

$$(\phi^I_2(\pi_2, m) = 1) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))(\phi^I_1(\pi_1, m) = 1),$$

for any $(\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})$.

Proof Directly from Lemma 2.5. \square

Next, we try to give a weak and a very weak preservation result for abstractions of type $(\alpha_2, \alpha_L, \alpha_2)$, for some $\alpha_L \in \{\alpha_1, \alpha_2, \alpha_3\}$, with respect to $\exists KCTL^*P_+$ formulas. Since the similarity relations of the abstractions are reflexive closures of the reinterpretations of \sim^1_i according to α_2, the condition 2 in Lemmas 2.6 and 2.7 might not hold. However, we will show that the preservation results hold for equivalences relations ρ for which the reinterpretation of \sim^1_i according to α_2 is already reflexive. If M_1 and M_2 are as above, we say that ρ is compatible with \sim^1_i if whenever $q \rho q'$ we have $\sim^1_i(q, q') = 1$. Clearly, this compatibility implies that the reinterpretation of \sim^1_i according to α_2 is reflexive.

Theorem 2.27 Let $M_1 = (Q_1, R_1, L_1, (\sim^1_i|_{1 \leq i \leq n}))$ be a multi-agent mv-Kripke structure over AP and B_3, $M_2 = (Q_2, R_2, L_2, (\sim^2_i|_{1 \leq i \leq n}))$ an $(\alpha_2, \alpha_L, \alpha_2)$-abstraction by an equivalence ρ compatible with \sim^1_i, and ϕ an $\exists KCTL^*P_+$ formula.

- If $\alpha_L \in \{\alpha_1, \alpha_2\}$ then
 $$(\phi^I_2(\pi_2, m) = 1) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))(\phi^I_1(\pi_1, m) = 1),$$
 for any $(\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})$.

- If $\alpha_L = \alpha_2$ then
 $$(\phi^I_2(\pi_2, m) = \bot) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))(\phi^I_1(\pi_1, m) \in \{\bot, 1\}),$$
 for any $(\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})$.

Proof Directly from Lemmas 2.6 and 2.7. \square

Example 2.14 The abstract system from Example 2.13 has only 13 reachable states and we can easily prove that the truth value of ϕ_k, for any $0 \leq k \leq 5$, is 1. Moreover, since $\phi_k \in \exists KCTL^*P_+$ we can apply the weak preservation result from Theorem 2.27 and obtain that all formulas ϕ_k are 1 in the concrete system I_1. 98
Error preservation results

To prove the error preservation results, we start again, by some technical lemmas that identify the basic conditions that must be satisfied by an abstraction in order to be error-preserving.

Lemma 2.8 Let $M_2 = (Q_2, R_2, L_2, (\sim_2^i \mid 1 \leq i \leq n))$ be an $(\alpha_R, \alpha_L, \alpha_S)$-abstraction by an equivalence ρ of a multi-agent mv-Kripke structure $M_1 = (Q_1, R_1, L_1, (\sim_1^i \mid 1 \leq i \leq n))$ over AP and B_3, and ϕ an $\exists KCTL^*P_+$ formula. If

1. for any $\pi_1 \in \text{Paths}(M_1, D)$ there exists a corresponding path $\pi_2 \in \text{Paths}(M_2, D)$;
2. for any $q, q' \in Q_1$, $\sim_1^2(q, q') \in \{ \bot, 1 \}$ implies $\sim_2^2([q], [q']) \in \{ \bot, 1 \}$;
3. for any $q \in Q_1$ and any $p \in AP$, $L_2([q])(p) = 0$ implies $L_1(q)(p) = 0$;

then

$$(\exists \phi_1)^I_{(\pi_2, m)} = 0 \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))(\exists \phi_1)^I_{(\pi_1, m)} = 0),$$

for any $(\pi_2, m) \in \text{Points}(M_2, \{ \bot, 1 \})$ (I_1, I_2 are the interpreted systems corresponding to M_1 and M_2, respectively).

Proof The claim is proved by structural induction on ϕ. We will enumerate only some of the possible cases:

- $\phi = \exists \phi_1$. Assume that ϕ_1 satisfies the property and

$$[\exists \phi_1]_{(\pi_2, m)}^{I_2} = \bigvee_{\pi[1..m]=\pi_2[1..m]} [\phi_1]_{(\pi, m)}^{I_2} = 0,$$

for some point $(\pi_2, m) \in \text{Points}(M_2, \{ \bot, 1 \})$. Also, let π_1 be a path of M_1 such that $\pi_1 \in C_{M_1}(\pi_2)$, if such a path exists. Then, $[\phi_1]_{(\pi, m)}^{I_2} = 0$, for all paths π such that $\pi[1..m] = \pi_2[1..m]$.

By 1, for each path σ of M_1 with $\sigma[1..m] = \pi_1[1..m]$ there exists a path σ' of M_2 such that $\sigma'[1..m] = \pi_2[1..m]$ and $[\phi_1]_{(\sigma', m)}^{I_2} = 0$. Applying the induction hypothesis, we get $[\phi_1]_{(\sigma, m)}^{I_2} = 0$, for each path σ with $\sigma[1..m] = \pi_1[1..m]$. Hence, $[\exists \phi_1]_{(\pi_1, m)}^{I_1} = 0$

- $\phi = P_i\phi_1$. Assume that ϕ_1 satisfies the property and

$$[\exists \phi_1]_{(\pi_2, m)(\pi_2', m')}^{I_2} = \bigvee_{\sim_2^2((\pi_2, m), (\pi_2', m')) \neq 0} ([\phi_1]_{(\pi_2', m')}^{I_2} \wedge [\phi_1]_{(\pi_2', m')}^{I_2}) = 0,$$

(2.3)
for some point \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\). Also, let \(\pi_1\) be a path of \(M_1\) such that \(\pi_1 \in C_{M_1}(\pi_2)\), if such a path exists.

We have to prove that

\[
\forall \sim_1^4 \((\pi_1, m), (\pi_1', m'')\) \neq 0 \sim_1^4 (\pi_1, m), (\pi_1', m'') \land [\phi_1^{I_1}(\pi_1', m'')] = 0.
\]

Let \((\pi_1', m'')\) be a point of \(M_1\) such that \(\sim_1^4 (\pi_1, m), (\pi_1', m'')\) \(\neq 0\). By 1, there exists \(\pi_2 \in \text{Paths}(M_2, \{\bot, 1\})\) a corresponding path to \(\pi_1'\) and, by 2, we obtain \(\sim_1^2 ((\pi_2, m), (\pi_2', m'')) \in \{\bot, 1\}\). Property (2.3) implies that \([\phi_1]^{I_2}(\pi_2', m'') = 0\) and by the induction hypothesis we get \([\phi_1]^{I_1}(\pi_1', m'') = 0\), which completes our proof. \(\square\)

The following lemma can be proved in a similar way to Lemma 2.8.

Lemma 2.9 Let \(M_2 = (Q_2, R_2, L_2, (\sim_1^4 | 1 \leq i \leq n))\) be an \((\alpha_R, \alpha_L, \alpha_S)\)-abstraction by an equivalence \(\rho\) of a multi-agent mv-Kripke structure \(M_1 = (Q_1, R_1, L_1, (\sim_1^4 | 1 \leq i \leq n))\) over \(AP\) and \(B_3\), and \(\phi\) an \(\forall KCTL^* P_+\) formula. If

1. for any \(\pi_2 \in \text{Paths}(M_2, \{\bot, 1\})\) there exists a path \(\pi_1 \in \text{Paths}(M_1, \{\bot, 1\})\) with \(\pi_1 \in C_{M_1}(\pi_2)\);
2. for any \(q, q' \in Q_1, \sim_1^4 ([q], [q']) \in \{\bot, 1\}\) implies \(\sim_1^4 (q, q') \in \{\bot, 1\}\);
3. for any \(q, q' \in Q_1, R_2([q], [q']) \in \{\bot, 1\}\) implies \(R_1(q, q') \in \{\bot, 1\}\);
4. for any \(q \in Q_1\) and any \(p \in AP\), \(L_2([q])(p) = 0\) implies \(L_1(q)(p) = 0\);

then

\[
([\phi]^{I_2}(\pi_2, m) = 0) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))([\phi]^{I_1}(\pi_1, m) = 0),
\]

for any \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\) \((I_1, I_2\) are the interpreted systems corresponding to \(M_1\) and \(M_2\), respectively).

Proof Again, the proof can be done by structural induction on \(\phi\). We will detail only the cases that do not appear in the previous lemma.

- \(\phi = \forall \phi_1\). Assume that \(\phi_1\) satisfies the property and

\[
[\forall \phi_1]^{I_2}(\pi_2, m) = \bigwedge_{\pi[1..m] = \pi_2[1..m]} [\phi_1]^{I_2}(\pi, m) = 0,
\]

100
for some point \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\). Then, there exists a path \(\pi'_2\) with \(\pi'_2[1..m] = \pi_2[1..m]\) such that \([\phi_1]_{1}^{f_2}_{(\pi'_2, m)} = 0\). Let \(\pi_1\) be a path of \(M_1\) such that \(\pi_1 \in C_{M_1}(\pi_2)\). Applying the induction hypothesis, we get that \([\phi_1]_{1}^{f_1}_{(\pi'_1, m)} = 0\), for any path \(\pi'_1 \in C_{M_1}(\pi'_2)\). Because of the third condition and \(\pi'_2[1..m] = \pi_2[1..m]\), there exists \(\pi''_2 \in C_{M_1}(\pi'_2)\) such that \(\pi''[1..m] = \pi_1[1..m]\) and \([\phi_1]_{1}^{f_1}_{(\pi''_2, m)} = 0\) which implies \([\forall \phi_1]_{1}^{f_1}_{(\pi_1, m)} = 0\);

- \(\phi = K_i \phi_1\). Assume that \(\phi_1\) satisfies the property and
 \[
 \bigwedge_{\sim^2_1((\pi_2, m), (\pi'_2, m')) \neq 0} \sim^2_1 ((\pi_2, m), (\pi'_2, m')) \land [\phi_1]_{1}^{f_2}_{(\pi'_2, m')} = 0,
 \]
 for some point \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\).

Then, there exists some point \((\pi'_2, m') \in \text{Points}(M_2, \{\bot, 1\})\) such that \(\sim^2_1 ((\pi_2, m), (\pi'_2, m')) \in \{\bot, 1\}\) and we have \([\phi_1]_{1}^{f_2}_{(\pi'_2, m')} = 0\). Let \(\pi_1 \in C_{M_1}(\pi_2)\) and \(\pi'_1 \in C_{M_1}(\pi'_2)\) (by 1, we know that they exist). By 2, we have that \(\sim^1_1 ((\pi_1, m), (\pi'_1, m')) \in \{\bot, 1\}\) and by the induction hypothesis, we obtain that \([\phi_1]_{1}^{f_1}_{(\pi_1, m)} = 0\). Consequently, \([K_i \phi_1]_{1}^{f_1}_{(\pi_1, m)} = 0\).

\(\square\)

In the following, we will state the error preservation results.

Theorem 2.28 Let \(M_1 = (Q_1, R_1, L_1, (\sim^1_{1} \mid 1 \leq i \leq n))\) be a multi-agent mv-Kripke structure over \(\text{AP}\) and \(\mathcal{B}_3\), \(M_2 = (Q_2, R_2, L_2, (\sim^2_{1} \mid 1 \leq i \leq n))\) an \((\alpha_3, \alpha_L, \alpha_3)\)-abstraction by an equivalence \(\rho\) with \(\alpha_L \in \{\alpha_1, \alpha_3\}\), and \(\phi\) an \(\exists KCTL^*P\) formula. Then

\[
([\phi]_{1}^{f_2}_{(\pi_2, m)} = 0) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))([\phi]_{1}^{f_1}_{(\pi_1, m)} = 0),
\]

for any \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\).

Proof Directly from Lemma 2.8. \(\square\)

Next, we prove that the \((\alpha_2, \alpha, \alpha_2)\)-abstractions, for some \(\alpha \in \{\alpha_1, \alpha_2, \alpha_3\}\), are error preserving with respect to \(\forall KCTL^*P\). Again, \(\rho\) must be compatible with \(\sim^1_{1}\).

Theorem 2.29 Let \(M_1 = (Q_1, R_1, L_1, (\sim^1_{1} \mid 1 \leq i \leq n))\) be a multi-agent mv-Kripke structure over \(\text{AP}\) and \(\mathcal{B}_3\), \(M_2 = (Q_2, R_2, L_2, (\sim^2_{1} \mid 1 \leq i \leq n))\) an \((\alpha_2, \alpha_L, \alpha_2)\)-abstraction by an equivalence \(\rho\) compatible with \(\sim^1_{1}\) with \(\alpha_L \in \{\alpha_1, \alpha_3\}\), and \(\phi\) an \(\forall KCTL^*P\) formula. Then

\[
([\phi]_{1}^{f_2}_{(\pi_2, m)} = 0) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))([\phi]_{1}^{f_1}_{(\pi_1, m)} = 0),
\]

for any \((\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})\).

101
Proof. Directly from Lemma 2.9.

Theorem 2.30 Let $M_1 = (Q_1, R_1, L_1, (\sim_i^1 | 1 \leq i \leq n))$ be a multi-agent mv-Kripke structure over AP and B_3, $M_2 = (Q_2, R_2, L_2, (\sim_i^2 | 1 \leq i \leq n))$ an $(\alpha_1, \alpha_L, \alpha_1)$-abstraction by an equivalence ρ with $\alpha_L \in \{\alpha_1, \alpha_3\}$, and ϕ an $\exists KCTL^* P_+$ formula. Then

$$([\phi]_{(\pi_2, m)}^{I_2} = 0) \Rightarrow (\forall \pi_1 \in C_{M_1}(\pi_2))([\phi]_{(\pi_1, m)}^{I_1} = 0),$$

for any $(\pi_2, m) \in \text{Points}(M_2, \{\bot, 1\})$.

Proof. Directly from Lemma 2.8.

Example 2.15 Using the predicate $\text{odd}(x)$, which is 1 for odd numbers and 0 otherwise, we transform ϕ into an equivalent formula from $\exists KCTL^* P_+$. The abstract system from Example 2.12 has only 4 reachable states and we can easily prove that the formula ϕ is false. Since $\phi \in \exists KCTL^* P_+$ we can apply the error preservation result from Theorem 2.28 and obtain that ϕ is false in the concrete system I_1.

102
Chapter 3
Abstractions of Data Types

Many abstraction techniques we have found in the literature are driven by almost the same mechanism (e.g., surjective functions) and based on similar property preservation results, but the formalisms used by authors are quite different. We may say that all these abstraction techniques have their roots in Cousot’s abstract interpretation framework [33], but this framework offers only a general methodology which, in particular cases should be complemented by specific techniques. Therefore, in our opinion, the development of specialized abstraction formalisms to allow reasonable instantiations in practical cases, is necessary.

In this chapter, we provide a solution to this problem with respect to data types, which extends the one in [111]. It tries to capture the essence of data type reduction and, in order to do that (abstract) data types are modeled by membership algebras enriched by sets of predicate symbols. This is a widely accepted formalism for specifying data types which offers mathematical precision and, on the other side, is practical related in that that many modern programming languages, such as C++ and Java, allow the users to define abstract data types beyond the basic ones. We define an abstraction as being a pair consisting of a congruence and an interpretation policy. The congruence partitions the original data type and redefines its operations in order to operate properly on the quotient data type. The interpretation policy interprets the predicate symbols into the quotient data type. It is shown that the interpretation policy cannot be substituted by the congruence as in the case of the operations. Therefore, a data type abstraction should necessarily include an interpretation policy.

The definition of an abstraction we adopted has proved to be very suitable from many points of view. First, we were able to classify abstractions based on the property preservation they assure. This classification shows clearly that the property preservation an abstraction assures depends directly on
the interpretation policy and indirectly on the congruence. Secondly, the abstraction technique proposed in the paper generalizes and clarifies the nature of many abstraction techniques found in the literature, such as the technique of duplicating predicate symbols [26, 35, 6], shape analysis [96, 104], predicate abstraction [57, 36, 113], McMillan’s approach [86] etc. For example, it is shown that the technique of duplicating predicate symbols, which is based on associating two versions to each formula, one used for validation and the other one used for refutation, consists of two abstractions based on the same congruence. One is used in conjunction with validation formulas (because these abstractions preserve the truth value 1), and one is used in conjunction with refutation formulas (because these abstractions preserve the truth value 0). Therefore, the nature of this technique is clearly emphasized.

The abstraction technique proposed in the paper scale well from data types to abstract data types. Here, abstractions are applied to initial specifications by means of equations. The result of such an abstraction is a specification of a quotient abstract data type, which is in fact a new abstract data type. Therefore, analysis techniques specific to abstract data types can be combined with the abstraction technique proposed in this paper and applied in order to reason on (quotient) abstract data types.

The chapter is organized as follows. The first section recalls basic concepts on membership algebras and the second one provides a very brief introduction to (abstract) data types, motivates the usefulness of the membership algebra apparatus in their study, and fixes the logic to be used in order to reason about data types. Abstractions of data types are introduced in the third section, where property preservation results are also provided. The comparisons with other abstraction techniques are the subject of the next section. Thus, it is shown that the technique of duplicating predicate symbols, shape analysis, predicate abstraction and McMillan’s approach are all particular cases of our approach (from the abstraction’s point of view). The last section extends the abstraction technique discussed in the previous sections to abstract data types.

3.1 Preliminaries on Membership Algebra

We start the presentation of the abstraction techniques for abstract data types by recalling a few concepts regarding membership algebra [91, 8].

Let K be a non-empty set whose elements will be called *kinds*. In this framework, the word kind is used instead of the more usual word *sort*, that will be reserved for another purpose. A K-*kinded membership signature* is a pair $\Omega = (\Sigma, \pi)$ which consists of a $(K^* \times K)$-indexed family of function
symbols $\Sigma = (\Sigma_{w,k} | (w, k) \in K^* \times K)$ such that $\Sigma_{w,k} \cap \Sigma_{w,k'} = \emptyset$ for any $(w, k), (w, k') \in K^* \times K$ with $k \neq k'$, and a function $\pi : S \rightarrow K$, where S is a non-empty set disjoint of K whose elements are called sorts. The elements $(w, s) \in K^* \times K$ are called types over K, and the elements $\sigma \in \Sigma_{w,k}$ are called function or operation symbols of type (w, k); the elements $\sigma \in \Sigma_{w,k}$ are also called constant symbols of kind $k \in K$. $\Sigma_{\lambda,k}$ is re-denoted by Σ_k, for any $k \in K$.

Let $\Omega = (\Sigma, \pi)$ be a K-kinded membership signature. Regarding kinds as sorts, Σ can be thought of as an ordinary signature. In this context, any algebra of signature Σ will also be called a K-kinded Σ-algebra. That is, a K-kinded Σ-algebra is a pair $A = (A, \Sigma A)$, where $\Sigma A = (\Sigma_{w,k} | (w, k) \in K^* \times K)$, $\Sigma_{w,k} = \{ \sigma^A | \sigma \in \Sigma_{w,k} \}$, and σ^A is a function from A_w into A_k, for all $(w, k) \in K^* \times K$ and $\sigma \in \Sigma_{w,k}$ (A_w denotes $\{ \emptyset \}$, if $w = \lambda$, and $A_{k_1} \times \cdots \times A_{k_n}$, if $w = k_1 \cdots k_n \in K^+$). An Ω-algebra is a triple $A = (A, \Sigma A, \Pi_A)$, where $(A, \Sigma A)$ is K-kinded Σ-algebra and Π_A is a function which assigns to each sort $s \in S$ a subset $A_s \subseteq A_{\pi(s)}$. We will denote $A = (A, \Sigma A)$ and call it the K-kinded Σ-algebra associated to A.

An Ω-homomorphism from an Ω-algebra A to an Ω-algebra B is a Σ-homomorphism h from A to B such that $h_{\pi(s)}(A_s) \subseteq B_s$, for any sort $s \in S$. Ω-equivalences (Ω-congruences) on A are Σ-equivalences (Σ-congruences) on A.

Given an Ω-algebra $A = (A, \Sigma A, \Pi_A)$ and an Ω-congruence $\rho = (\rho_k | k \in K)$, the quotient of A by ρ is the Ω-algebra $A/\rho = (A/\rho, \Sigma A/\rho, \Pi_A/\rho)$, where $A/\rho = (A/\rho, \Sigma A/\rho)$ is the quotient of the Σ-algebra A by ρ and $\Pi_A/\rho(s) = \{ [a]_{\rho(s)} | [a]_{\rho(s)} \cap \Pi_A(s) \neq \emptyset \}$, for any sort s.

Given a K-kinded signature Σ and a disjoint family $X = (X_k | k \in K)$ of variables, disjoint of Σ as well, denote by $T_\Sigma(X)_k$ the set of terms of kind k over Σ and X. The K-indexed set $T_\Sigma(X) = (T_\Sigma(X)_k | k \in K)$ can be structured as a K-kinded Σ-algebra as usual, denoted $T_\Sigma(X)$. When $X = \emptyset$, we simply write T_Σ instead of $T_\Sigma(\emptyset)$. The elements of this algebra are called ground terms. T_Σ is an initial algebra in the class Alg_Σ of all Σ-algebras, that is, there exists a unique Σ-homomorphism $eval_A$ from T_Σ into A, for any $A \in Alg_\Sigma$.

If $\Omega = (\Sigma, \pi)$ is a K-kinded membership signature and Π is a function which assigns a subset of $T_\Sigma(X)_\pi(s)$ to any sort $s \in S$, then $T_\Omega(X, \Pi) = (T_\Sigma(X), T_\Sigma^2(X), \Pi)$ is an Ω-algebra. $T_\Omega(\Pi)$ stands for $T_\Omega(\emptyset, \Pi)$.

An assignment of X into A is a K-indexed set of functions $\gamma = (\gamma_k | k \in K)$ such that γ_k is a function from X_k into A_k, for all $k \in K$. If $a \in A_k$ and $x \in X_k$, then $\gamma[x/a]$ is the assignment obtained from γ by replacing the value $\gamma_k(x)$ by a. $\tilde{\gamma}$ denotes the unique homomorphic extension of γ to $T_{\Sigma}(X)$, and $\Gamma(X, A)$ stands for the set of all assignments of X into A.

105
\(\mathcal{A} \) (\(\tilde{\gamma} \) may not be a homomorphism from \(T_{\Omega}(X, \Pi) \) to \(\mathcal{A} \), for any \(\Pi \) as above).

In the membership equational logic over \(\Omega = (\Sigma, \pi) \) and \(X \) there are two types of atomic formulas:

- **equations**, which are of the form \(t = t' \), where \(t, t' \in T_{\Sigma}(X)_k \) for some kind \(k \), and

- **membership assertions**, which are of the form \(t : s \), where \(s \in S \) and \(t \in T_{\Sigma}(X)_{\pi(s)} \).

A sentence (formula) in the membership equational logic is a universally quantified Horn clause on the above atomic formulas, that is, a sentence of the form "\(e \models C \)”, where \(e \) is an atomic formula and \(C \) is a finite set of atomic formulas.

Given an \(\Omega \)-algebra \(\mathcal{A} \), the satisfaction of atomic formulas with respect to a given assignment \(\gamma : X \rightarrow A \) is defined by:

\[
\begin{align*}
\bullet \mathcal{A}, \gamma \models t = t' & \iff \tilde{\gamma}_k(t) = \tilde{\gamma}_k(t'); \\
\bullet \mathcal{A}, \gamma \models t : s & \iff \tilde{\gamma}_\pi(s)(t) \in A_s.
\end{align*}
\]

Given a sentence \(\phi = e \models C \), we say that \(\mathcal{A} \) satisfies \(\phi \) or \(\mathcal{A} \) is a model of \(\phi \), denoted \(\mathcal{A} \models \phi \), if \(\gamma \) satisfies \(e \) whenever it satisfies each atomic formula in \(C \), for any \(K \)-kinded assignment \(\gamma : X \rightarrow A \). For a set \(\Phi \) of sentences we write \(\mathcal{A} \models \Phi \) iff \(\mathcal{A} \models \phi \), for all \(\phi \in \Phi \). The class of all \(\Omega \)-algebras that are models for a set \(\Phi \) of sentences is denoted by \(Mod(\Phi) \).

Given a set \(\Phi \) of sentences over \(\Omega = (\Sigma, \pi) \) and \(X \), the binary relation \(\models_\Phi \) on \(T_{\Sigma}(X) \) given by \(t \models_\Phi t' \) iff \((\forall \mathcal{A} \in Mod(\Phi))(\forall \gamma : X \rightarrow A)(\tilde{\gamma}_k(t) = \tilde{\gamma}_k(t')) \), for any kind \(k \) and terms \(t \) and \(t' \) of kind \(k \), is a congruence. Moreover, if we consider the function \(\Pi : S \rightarrow 2^{T_{\Sigma}(X)} \) given by

\[
\Pi(s) = \{ [t] \in T_{\Sigma}(X)_{\pi(s)} / \models_\Phi, \Sigma_{T_{\Sigma}(X)} = \phi, \Pi, \Pi] \mid (\forall \mathcal{A} \in Mod(\Phi))(\forall \gamma : X \rightarrow A)(\tilde{\gamma}_\pi(s)(t) \in A_s) \},
\]

for any \(s \in S \), then \((T_{\Sigma}(X) / \models_\Phi, \Sigma_{T_{\Sigma}(X)} = \phi, \Pi) \) is an \(\Omega \)-algebra. As this algebra is uniquely defined by \(\Phi \), we denote it by \(T_{\Omega, \Phi}(X) \).

According to [91], \(T_{\Omega, \Phi}(X) \) is a free algebra in the class \(Mod(\Phi) \), i.e., for any \(\Omega \)-algebra \(\mathcal{A} \in Mod(\Phi) \) and for each assignment \(\gamma : X \rightarrow A \) there exists a unique \(\Omega \)-homomorphism \(h : T_{\Omega, \Phi}(X) \rightarrow \mathcal{A} \) such that \(h_k([t] =_{\phi, \gamma}) = \tilde{\gamma}_k(t) \), for any kind \(k \) and any term \(t \) of kind \(k \). Moreover, \(T_{\Omega, \Phi} = T_{\Omega, \Phi}(\emptyset) \) is an initial algebra in the class \(Mod(\Phi) \), i.e., for any \(\Omega \)-algebra \(\mathcal{A} \in Mod(\Phi) \) there exists a unique \(\Omega \)-homomorphism \(h : T_{\Omega, \Phi} \rightarrow \mathcal{A} \).

The following set of deduction rules is sound and complete for the membership logic over \(\Omega \) and \(X \) [91]:

106
subject reduction: \[t : s, \quad t = t' \]

\[t' : s \]

membership: \[t_1 : s_1, \ldots, t_n : s_n, \quad u_1 = v_1, \ldots, u_n = v_n \]

\[t : s \quad \text{if} \quad t_1 : s_1, \ldots, t_n : s_n, \quad u_1 = v_1, \ldots, u_n = v_n \in \Phi \]

reflexivity: \[t = t \]

symmetry: \[t' = t \]

transitivity: \[t = t', \quad t' = t'' \]

\[t = t'' \]

congruence: \[t_1 = t'_1, \ldots, t_n = t'_n \]

\[f(t_1, \ldots, t_n) = f(t'_1, \ldots, t'_n) \]

where \(t_i \) and \(t'_i \) are terms of kinds \(k_i \), \(1 \leq i \leq n \), and \(f \) is of type \((k_1, \ldots, k_n, k)\)

replacement: \[t_1 : s_1, \ldots, t_n : s_n, \quad u_1 = v_1, \ldots, u_n = v_n \]

\[t = t' \quad \text{if} \quad t_1 : s_1, \ldots, t_n : s_n, \quad u_1 = v_1, \ldots, u_n = v_n \in \Phi \]

3.2 Reasoning About Data Types

We model data types by membership algebras, a widely accepted formalism for specifying data types [91, 8]. To address the problem of verifying or analyzing a particular program that uses a certain data structure, we enrich signatures with logical symbols used to build formulas. Questions about properties of data structures will be answered by evaluating such formulas.

(A)bstract) Data Types In this section we provide a brief introduction to (abstract) data types and motivate the usefulness of the membership algebra apparatus, an extension of universal algebra, in their study. We follow mainly [40, 41, 95, 91, 8].

A data type consists of one or more sets of values, such as natural numbers, booleans, characters or strings, together with a collection of functions on these sets. Examples of basic data types provided by most programming languages include integer, boolean, array, record. From a mathematical point of view, a data type is an \(\Omega \)-algebra. The signature \(\Sigma \) associates names to operations, while the algebra associates domains to kinds and interprets correspondingly the operation names. The sorts are used for overloading.
operation names or for handling errors and partiality.

Many modern programming languages, such as C++ or Java, allow the user to define additional data types beyond the basic ones, such as stack, queue, tree or counter. As it is usual in such cases, operations are defined by *sentences*. For example, if we define a data type of stacks over arbitrary elements (stacks are sequences of elements and the empty stack will be denoted \(\lambda \)) with the operations *Push* of type \((k_{stack}, k_{elem}, k_{stack})\), *Pop* of type \((k_{stack}, k_{stack})\), and *Top* of type \((k_{stack}, k_{elem})\), and the sort *stack* of kind \(k_{stack}\) to represent valid stacks, then the following sentences specify the properties of these operations:

1. \(\lambda : stack \);
2. \(\text{Push}(x,y) : stack \) if \(x : element \) and \(y : stack \);
3. \(\text{Top}(\text{Push}(x,y)) = x \) if \(y : stack \);
4. \(\text{Pop}(\text{Push}(x,y)) = y \) if \(y : stack \),

where \(x \) is a variable of kind \(k_{stack} \) and \(y \) is a variable of kind \(k_{elem} \). Notice that, by the specification of the sort *stack*, the term *Pop*(\(\lambda \)) of kind \(k_{stack} \) is not of sort *stack* and it will be considered an *error*. Such data types are usually called *abstract data types*. In fact, a *specification* as the one above stands for all data types of stacks over equipotent \(^1\) sets of elements. These data types are “similar” in that they differ only by the “nature” of their elements. From a mathematical point of view, an abstract data type is a class of \(\Omega \)-algebras closed under isomorphism (the isomorphism models the “similarity” concept above). More about abstract data types and specifications is provided in Section 3.5.

There are many advantages which follow from the utilization of the membership algebra apparatus in modeling (abstract) data types, such as:

- mathematical precision;
- using membership algebras, instead of universal algebras, we can deal well with errors and partiality;
- independence of any particular implementation in a computer language. Therefore, we may reason about effects of the operations, relations to other data types etc.;

\(^1\)Two sets are equipotent if there exists a bijective function from one set into the other one.
• easiness in defining new operations and predicates on data types. For example, from the axioms above, one may easily define the predicate $IsEmpty(x)$ by the following additional axioms:

$$\begin{align*}
- \text{IsEmpty}(\lambda) &= \text{true}; \\
- \text{IsEmpty}(\text{Push}(x, y)) &= \text{false};
\end{align*}$$

• easiness in checking program correctness. If a program using a set of specified data types is designed so that the correctness of the program depends only on the specification, then the primary concern of the data type implementor is to satisfy the specification. In this way, neither the user nor the implementor of a data type needs to worry about additional details of the other’s program.

• membership algebra specifications can be efficiently implemented in systems like Maude [30].

Abstract data types are central to object-oriented programming where every “class” is an abstract data type. An “object” is a data structure encapsulated with a set of routines, called “methods”, which operate on the data. Operations on the data can only be performed via these methods, which are common to all objects that are instances of a particular class. Thus the interface to objects is well defined, and allows the code implementing the methods to be changed as long as the interface remains the same.

A Motivating Example We consider a toy example in order to motivate the concepts we are going to introduce. More developed examples are provided later in the chapter.

Example 3.1 The set of natural numbers together with the addition operation defines a data type that can be modeled by a K-kinded Ω-algebra A, where:

- K contains only one kind (denoted by nat) and S is empty;
- Σ contains one constant symbol of type nat for each natural number, and one operation symbol $+$ of type (nat, nat, nat);
- $A_{nat} = \mathbb{N}$;
- the constant symbol associated to a natural number is interpreted as the number itself, and $+^A$ is the usual addition operation on natural numbers.
In this algebra, the following property trivially holds:

\[(\varphi_1) \ (\forall x, y \in A_{nat})(\text{Isgrz}^A(x) \lor \text{Isgrz}^A(y) \implies \text{Isgrz}^A(x +^A y)),\]

where \text{Isgrz} is a unary predicate symbol whose meaning is “is greater than zero”, \text{Isgrz}^A is its interpretation in \(A\), ‘\lor’ and ‘\implies’ are the usual “or” and “implies” predicates, \(x\) and \(y\) are variables, and ‘\(\forall\)’ is the universal quantifier. These new elements do not belong to the algebra \(A\); they are part of a meta-language used to express properties of \(A\).

Assume now that we are interested in distinguishing between 0 and the other natural numbers. That is, we want to treat all the natural numbers greater than 0 as a whole. In order to do that we define a congruence \(\rho\) by

\[a \rho b \text{ iff either } a = b = 0 \text{ or } a, b \neq 0,\]

for all natural numbers \(a\) and \(b\). The equivalence classes induced by \(\rho\) are \([0]\), containing only the number 0, and \([1]\), containing all the other numbers. The addition operation on these equivalence classes is given in the table below.

<table>
<thead>
<tr>
<th>(+^A/\rho)</th>
<th>([0])</th>
<th>([1])</th>
</tr>
</thead>
<tbody>
<tr>
<td>([0])</td>
<td>([0])</td>
<td>([1])</td>
</tr>
<tr>
<td>([1])</td>
<td>([0])</td>
<td>([1])</td>
</tr>
</tbody>
</table>

The algebra \(A/\rho\) acts as an abstraction of \(A\) with respect to the property mentioned above (all the natural numbers greater than 0 are treated as a whole). The predicate symbol \text{Isgrz} can be interpreted in \(A/\rho\) by

\[\text{Isgrz}^{A/\rho}([a]) \text{ iff } (\forall a' \in [a])(a' > 0),\]

for any \(a\). Now, the property \(\varphi_1\) can be rewritten as follows:

\[(\varphi_2) \ (\forall x, y \in A_{nat}/\rho)(\text{Isgrz}^{A/\rho}(x) \lor \text{Isgrz}^{A/\rho}(y) \implies \text{Isgrz}^{A/\rho}(x +^{A/\rho} y)).\]

We have to remark that the validity of \(\varphi_2\) in \(A/\rho\) leads to the validity of \(\varphi_1\) in \(A\). Moreover, \(\varphi_2\) holds in \(A/\rho\), and this can be easily checked out by an automatic procedure due to the fact that \(A/\rho\) contains only two elements. Therefore, \(\varphi_1\) holds in \(A\). Much more, \(\varphi_1\) and \(\varphi_2\) are in fact interpretations of the same formula \(\varphi\) (of the meta-language)

\[(\varphi) \ (\forall x, y)(\text{Isgrz}(x) \lor \text{Isgrz}(y) \implies \text{Isgrz}(x + y))\]

in two different algebras of the same signature. We can say that the validity of \(\varphi\) in \(A/\rho\) implies the validity of \(\varphi\) in \(A\).
Our example works fine with the predicates we considered. However, for other predicates things can be totally different. Let us consider, for instance, the equality predicate on \(A \). It can be interpreted in \(A/\rho \) in various ways. One of the most natural way is to consider a new truth value \(\bot \) whose meaning is “indefinite”, and to define the predicate as in the table below.

\[
\begin{array}{c|cc}
\equiv^{A/\rho} & [0] & [1] \\
\hline
[0] & 1 & 0 \\
[1] & 0 & \bot
\end{array}
\]

\((\equiv^{A/\rho} ([1], [1])\) is evaluated to \(\bot \) because two arbitrary numbers in \([1]\) can be equal or different). □

Logically Extended Signatures The example in the paragraph above leads us to the following considerations:

1. the meta-language used to express properties of data types (algebras) should be specific to signatures and not to data types (algebras). But, even if the elements of the meta-language are specific to signatures they should work properly inside the algebras.

2. data type reductions can be captured by congruences. In such a case, the operations are automatically redefined to operate on the quotient data type (algebra), but the predicates need a special treatment (more arguments about this are provided in Section 3.3).

We will discuss (1) in this section, and (2) in the next section.

Let \(K \) be a set of kinds. **Logically extended \(K \)-kinded membership signatures** are adding logical symbols (predicate symbols) to ordinary membership signatures. The logical symbols of such a signature have two roles:

– to specify basic properties satisfied by elements of an algebra;

– to build formulas defining new properties.

Definition 3.1 A logically extended \(K \)-kinded membership signature is a 4-tuple \(\Omega_L = (B, \leq', \Sigma, \Sigma_L, \pi) \), where:

- \(B = (B, \land, \lor, \neg) \) is a truth algebra;

- \(\leq' \) is a partial order on \(B \) such that:

 - \((B, \leq')\) is an inf-complete lattice, i.e. any subset \(B' \subseteq B \) has a greatest lower bound. We denote by \(0' \) its smallest element;
– for any \(x \in B \) there exists a unique \(y \in B \) such that \(x \succ y \) (\(\prec \leq \) \(\{ (a, a) | a \in B \} \)), \(\succ \) is the inverse of \(\prec \), and \(x \succ y \) if \(x \succ y \) and there exists no \(c \in B \) such that \(x \succ c \succ y \).

- \(K' \subseteq K \) is a set of basic kinds.
- \(\Sigma_L = (\Sigma_{L,w} | w \in K'^+) \) is a set of predicate symbols (\(w \) is called a logical type);
- the set of kinds \(K \) contains apart from \(K' \), a kind for each logical type for which we have at least one predicate symbol in \(\Sigma_L \). Formally,
 \[
 K = K' \cup \{ k_w | w \in K'^+ \text{ and } \Sigma_{L,w} \neq \emptyset \};
 \]
- \(\Sigma \) is a \(K^* \times K \)-indexed family of function symbols such that it contains a function symbol \((_, \ldots, _, _) \) for each logical type for which we have at least one predicate symbol in \(\Sigma_L \). The function symbol \((_, \ldots, _, _) \) associated to the logical type \(w = k_1 \cdots k_m \in K'^+ \) has the arity \((k_1 \cdots k_m, k_w)\);
- the set of sorts \(S \) contains a distinguished sort \(s_{p,b}, \) for each \(p \in \Sigma_L \) and \(b \in B - \{0'\} \).
- \(\pi \) is a function from \(S \) into \(K \) such that \(\pi(s_{p,b}) = k_w \), for any \(p \in \Sigma_{L,w} \), \(b \in B - \{0'\} \) and \(w \in K'^+ \).

The kind \(k_w \), for some logical type \(w = k_1 \ldots k_m \in K'^+ \), represents all possible \(m \)-tuples for which the \(i \)th element is of kind \(k_i \) (by means of the corresponding function symbol \((_, \cdots, _, _) \) and \(s_{p,b} \) defines the set of all tuples on which \(p \) gets truth values greater than or equal to \(b \) (with respect to \(\leq' \)), for any \(b \in B - \{0'\} \). The tuples on which \(p \) is \(0' \) are the ones that do not belong to any \(s_{p,b} \) with \(b \in B - \{0'\} \). In fact, the representation we have used for multi-valued predicates is obtained in two steps:

- we represent a multi-valued predicate \(p \) by a set of two-valued predicates \(\{ p_b | b \in B - \{0'\} \} \) such that \(p_b \) is 1 for elements on which \(p \) is greater than or equal to \(b \) (with respect to \(\leq' \));
- each 2-valued predicate is represented by a sort that specifies it’s non-zero values.

A logically extended membership signature should be thought as an ordinary membership signature that contains some distinguished kinds and
some distinguished sorts; the predicate symbols are just used to specify the distinguished kinds and sorts.

Logically extended algebras are membership algebras that correspond to logically extended membership signatures such that the meaning of the sorts representing predicates is as above.

Definition 3.2 Let $\Omega_L = (B, \leq', \Sigma, \Sigma_L, \pi)$ be a logically extended K-kinded signature. An **Ω_L-algebra** is a membership algebra $A = (A, \Sigma_A, \Pi_A)$ such that:

- $\Pi_A(s_{p,b}) \subseteq \Pi_A(s_{p,b'})$, for any $p \in \Sigma_L$ and $b, b' \in B - \{0'\}$ with $b' \leq' b$.
- $\Pi_A(s_{p,b}) \cap \Pi_A(s_{p,b'}) = \emptyset$, for any $p \in \Sigma_L$ and $b, b' \in B - \{0'\}$ such that there exists $x \in B$ with $x <' b$ and $x <' b'$.

By the representation of multi-valued predicates used in the logically extended membership algebras, the truth value of some predicate $p \in \Sigma_L, w$ over an element $a \in A_k_w$ is the maximum truth value $b \in B - \{0'\}$, with respect to \leq', for which $a \in \Pi_A(s_{p,b})$, or $0'$ if such a b does not exist.

Homomorphisms, equivalences, and congruences of Ω_L-algebras are homomorphisms, equivalences, and congruences, respectively, of membership algebras.

Given $\Omega_L = (B, \leq', \Sigma, \Sigma_L, \pi)$ a logically extended K-kinded membership signature and a (denumerable) set X of K-kinded variables, we define the set of **first order formulas** over Ω_L and X as in Section 1.2.1 but, now, the elements of the universe are terms:

1. **atomic formulas**:
 - (a) $p(t_1, \ldots, t_m)$ is an atomic formula, for any logical symbol p of type $k_1 \cdots k_m$ and any term t_i of kind k_i, $1 \leq i \leq m$;
2. **formulas**:
 - (a) every atomic formula is a formula;
 - (b) if α and β are formulas, then $(\alpha \lor \beta)$, $\neg \alpha$, and $(\alpha \land \beta)$ are formulas;
 - (c) if x is a variable and α is a formula, then $((\exists x) \alpha)$ and $((\forall x) \alpha)$ are formulas.

Denote by $\mathcal{L}^O(\Omega_L, X)$, where $O \subseteq \{\land, \lor, \neg\}$, the set of first order formulas over Ω_L and X that use only the operators from the set O, the quantifier \forall if $\land \in O$ and the quantifier \exists if $\lor \in O$.

113
Given an Ω_L-algebra A, each term or first order formula φ induces a function $\mathcal{I}_A(\varphi)$ from the set $\Gamma(X, A)$ (of all assignments of X into A, which are defined as for membership algebras) into $A \cup \mathcal{B}$, as follows:

- $\mathcal{I}_A(x)(\gamma) = \gamma(x)$, for any variable x;
- $\mathcal{I}_A(\sigma)(\gamma) = \sigma^A$, for any constant symbol σ;
- $\mathcal{I}_A(\sigma(t_1, \ldots, t_m))(\gamma) = \sigma^A(I_A(t_1)(\gamma), \ldots, I_A(t_m)(\gamma))$, for any term $\sigma(t_1, \ldots, t_m)$;
- $\mathcal{I}_A(p(t_1, \ldots, t_m))(\gamma)$, for any atomic formula $p(t_1, \ldots, t_m)$, is the truth value of p over $(I_A(t_1)(\gamma), \ldots, I_A(t_m)(\gamma))$;
- $\mathcal{I}_A(p \lor q) = \mathcal{I}_A(p) \lor \mathcal{I}_A(q)$ and $\mathcal{I}_A(p \land q) = \mathcal{I}_A(p) \land \mathcal{I}_A(q)$, for any formulas p, q;
- $\mathcal{I}_A(\neg \psi) = \neg \mathcal{I}_A(\psi)$, for any formula ψ;
- $\mathcal{I}_A((\exists x)\psi)(\gamma) = \bigvee_{a \in A_k} \mathcal{I}_A(\psi)(\gamma[x/a])$ and $\mathcal{I}_A((\forall x)\psi)(\gamma) = \bigwedge_{a \in A_k} \mathcal{I}_A(\psi)(\gamma[x/a])$, for any formula ψ and any variable x of kind k.

$\mathcal{I}_A(\psi)$ is called the interpretation function of ψ into A. If ψ is a formula, we say that ψ has the truth value $b \in \mathcal{B}$ in A, and denote this by $[\psi]_A = b$, if $\mathcal{I}_A(\psi)(\gamma) = b$, for all $\gamma \in \Gamma(X, A)$.

Example 3.2 The algebra in Example 3.1 can be simply transformed into an Ω_L-algebra by considering $\Sigma_L = \{\text{Isgrz}\}$. Denote this algebra by A as well. The function γ given by $\gamma(x) = 0$ and $\gamma(y) = 1$ is an assignment of X into A. Under this assignment, $\mathcal{I}_A(\varphi)$ is valuated to 1, where φ is the formula in Example 3.1. \Box

3.3 Abstractions of models

An algebra assigns a meaning to a signature by associating a set of data to each sort and an operation (function) to each operation symbol. Therefore, an algebra defines a concrete data type.

By a **data type reduction/abstraction** we understand to reduce types/domains of large or unbounded range to small types/domains (types/domains of small range). A few words about “small domains” are in order. First of all, we have to say that it is very hard to quantify the difference between large and small domains and, moreover, the difference is relative. In 1981,
when model checking was invented, systems with 10^{20} states were regarded as large systems. Nowadays, there are techniques that can be applied to systems with 10^{120} states. If for a class of systems verification techniques can be applied in reasonable time, the systems in the class can be regarded as small. Large systems are not necessarily infinite systems. Surely, infinite systems pose more problems than finite ones, although there are techniques for verifying particular infinite-state systems. As a conclusion, a system which allows practical verification can be regarded as a small one. Here, all the examples we are going to consider exhibit reductions to (finite) very small domains. However, we want to emphasize that our main goal is not to investigate abstractions leading to small domains. The main goal is twofold: first, we classify abstractions and show that many techniques proposed in the literature fall in one of the classes introduced in the paper, and secondly, we propose abstractions guided by equations.

As we have already mentioned in the previous section, an elegant way to formalize such reductions is to use congruences which are equivalence relations compatible with data types (algebras) operations. In this way, the operations of the original data type are automatically redefined to operate on the abstraction of the original data type.

In this section we study abstractions of data types; the extension to abstract data types will be studied in Section 3.5.

3.3.1 Abstractions

As mentioned in the previous section, congruences of logically extended algebras are defined as for membership algebras by taking into consideration the function symbols. The quotient is obtained as usual, all the sorts being defined by over-approximation.

In order to define abstractions we have to consider also interpretation policies and redefine the predicates according to them. Consequently, the abstractions induced by congruences are defined as usual quotients except for the sorts representing predicates.

Definition 3.3 Let $\Omega_L = (B, \leq', \Sigma, \Sigma_L, \pi)$ be a logically extended signature, $A = (A, \Sigma^A, \Pi_A)$ an Ω_L-algebra, ρ a congruence on A and α an interpretation policy over B. The α-abstraction of A by ρ is an Ω_L-algebra $D = (A/\rho, \Sigma^A/\rho, \Pi')$ such that:

- $\Pi'(s) = \{[a]_{\rho_{\alpha}(s)} \ | \ [a]_{\rho_{\alpha}(s)} \cap \Pi_A(s) \neq \emptyset\}$, for any sort s not representing some predicate;
• $[a]_\rho \in \Pi'(s_{p,b})$, for some $p \in \Sigma_{L,w}$; $a \in A_{k_w}$ and $b \in B$, if there exists $b' \in B$ such that $b \leq' b'$ and b' is the value of p over $[a]_\rho$ according to α.

Remark 3.1 As we can see, the definition of an abstraction requires a special treatment of the sorts representing logical symbols. Including a carrier set for the range of the logical operations might appear as a good solution for a uniform treatment and this is the approach adopted in [92]. However, this may not allow to distinguish between predicate interpretations in the abstract system or may lead to useless abstractions, as it was already remarked in [111].

For example, let \mathcal{A} be a membership algebra that models the set of natural numbers where the set $\{\text{true, false}\}$ is structured as a kind and a function symbol \models is used with the meaning “$\models (e, p) = v$ iff p has the truth value v in the element e”. Also, let eq be the equality predicate defined on couples of natural numbers as usual:

$$\models ((n_1, n_2), eq) = \text{true} \text{ iff } n_1 = n_2.$$

We suppose that \mathcal{A} contains a kind for couples of natural numbers and $(_, _)$ is a function symbol that constructs such couples.

Now, let ρ be a congruence on \mathcal{A} such that $a \rho b$ iff $a = b = 0$ or $a, b \neq 0$.

If we want to abstract \mathcal{A} using ρ we can obtain only one abstraction because \models is a function symbol and it is automatically redefined in the quotient system by the congruence ρ. Moreover, we obtain:

$$\models^{A/\rho}([(1,1)], eq) = [\models^{\mathcal{A}} ((1,1), eq)] = [\text{true}]$$ and

$$\models^{A/\rho}([(1,2)], eq) = [\models^{\mathcal{A}} ((1,2), eq)] = [\text{false}]$$

which leads to $[\text{true}] = [\text{false}]$. That is, both truth values true and false are in the same equivalence class and the abstraction is useless.

Regarding the computation of multi-valued abstractions for logically extended membership algebras we can translate the results introduced for logical structures in Section 2.2.2. We can use the S'-congruences introduced in [46] to obtain some of the possible α-abstractions of an Ω_L-algebra. The S'-congruences are defined on membership algebras and allow sorts to be defined by under-approximation in the quotient algebra. If A is a set, ρ an equivalence on A, and B a subset of A, we say that B/ρ is defined by over-approximation if $B/\rho = \{[a] \in A/\rho | a \in B\}$, and we say that B/ρ is defined by under-approximation if $B/\rho = \{[a] \in A/\rho | [a] \subseteq B\}$.
Definition 3.4 Let $\Omega = (\Sigma, \pi)$ be a K-kinded membership signature and $\mathcal{A} = (A, \Sigma^A, \Pi_A)$ be an Ω-algebra. An S'-congruence on \mathcal{A} is a pair (ρ, S') consisting of a congruence ρ on \mathcal{A} and a subset S' of the set S of sorts. The quotient of \mathcal{A} by (ρ, S') is an Ω-algebra $\mathcal{A}/(\rho, S') = (A/\rho, \Sigma^{\mathcal{A}/\rho}, \Pi_{\mathcal{A}/\rho})$, where $\Pi_{\mathcal{A}/\rho}(s)$ is defined by under-approximation, if $s \in S'$, and by over-approximation, if $s \notin S'$.

S'-congruences can be applied as well on Ω_L-algebras which are particular cases of membership algebras. Moreover, all the notions from above remain valid if we replace congruences by S'-congruences.

If \mathcal{A} is an Ω_L-algebra, we will make the connection between quotients of \mathcal{A} relative to S'-congruences (ρ, S') (which represent two-valued abstractions) and α-abstractions of \mathcal{A} by ρ (which represent multi-valued abstractions), based on Theorem 2.8, in the following way:

- the set $S' \subseteq S$ has a similar property to the one of P, that is, $s_{p,b} \in S'$ implies $(\forall p \in \Sigma_L)(s_{p,b} \in S')$. We will denote by $B_{S'}$ the set of truth values b for which the sorts $s_{p,b}$ are in S';
- we require that \leq' and S' are appropriate for the congruence ρ (the appropriateness of S' is defined similarly to the appropriateness of P);
- we can prove, in a similar way to Theorem 2.7, that the quotient of an Ω_L-algebra by an S'-congruence as above is also an Ω_L-algebra.
- α is obtained using the eight rules of Theorem 2.8 in which we replace B_S with $B_{S'}$.

3.3.2 Property preservation

In this section we will prove the usefulness of the abstractions above by offering preservation results. These results will be translated from the multi-valued abstraction technique for logical structures presented in Section 2.2.

In fact, we will reduce the problem of checking the truth value of some formula ϕ in an Ω_L-algebra \mathcal{A} for some assignment γ to the checking of the truth value of a formula $Tr(\phi)$ in a (B, Σ_L^L)-logical structure $S_\mathcal{A}$ for some assignment $Tr(\gamma)$. Moreover, we will prove that this reduction preserves truth values, i.e.

$$\mathcal{I}_\mathcal{A}(\phi)(\gamma) = \mathcal{I}_{S_\mathcal{A}}(Tr(\phi))(Tr(\gamma))$$

We start by describing the transformation that we apply on formulas. Let ϕ be a formula over Ω_L and some set of variables X. We say that a term t is
maximal in ϕ if it is included in the following set:

$$\{t_1, \ldots, t_m | p(t_1, \ldots, t_m) \text{ a subformula of } \phi, \text{ for some } p\}.$$

To simplify the definition of the transformation $Tr(\phi)$ we suppose the following:

- any two atomic formulas are build using different predicate symbols;
- the quantified variables appear only in maximal terms that do not contain any other variable.

Clearly, if a formula does not satisfy the above we can add predicates and obtain an equivalent form with these properties.

The main idea of the transformation is the following: as in logical structures we are not interested in how elements from the universe are obtained, we will abstract the terms in ϕ by variables whose values will be the possible values of the corresponding terms. When we encounter quantified variables the transformation is a little bit more complicated: we will abstract all the terms in which some quantified variable appears by the same variable whose values will record possible values for all these terms. Obviously, to make these changes we also need new predicate symbols of appropriate logical types.

The formal definition of the transformation $Tr(\phi) \in \mathcal{L}(\Sigma_L^\prime, X^\prime)$, for any formula $\phi \in \mathcal{L}(\Omega_L, X)$ with $\Omega_L = (\mathcal{B}, \leq^\prime, \Sigma, \Sigma_L, \pi)$, is as follows:

1. for any maximal term t not containing a quantified variable, we add to X^\prime a new variable x_t of a new kind k_t;
2. if v is a quantified variable, suppose v_1, \ldots, v_n are the maximal terms that contain v. We will consider a new variable of a new kind k_v, denoted $(x_{v_1}, \ldots, x_{v_n})$;
3. if $p(t_1, \ldots, t_m)$ is an atomic formula without quantified variables then,
 $$Tr(p(t_1, \ldots, t_m)) = p'(x_{t_1}, \ldots, x_{t_m}),$$
 where p' is a new predicate symbol of type $k_{t_1} \ldots k_{t_m}$.
4. if $p(t_1, \ldots, t_m)$ is an atomic formula such that the terms t_{i_1}, \ldots, t_{i_p}, for some set of indexes $\{i_1, \ldots, i_p\} \subseteq \{1, \ldots, m\}$ contain the quantified variable v then,
 $$Tr(p(t_1, \ldots, t_m)) = p_v(x_1, \ldots, x_m).$$
The transformation above does not add new logical operators, and consequently, if \(\phi \in L^O(\Omega_L, X) \), then, to any \(\Omega \subseteq \{\land, \lor, \neg, \forall, \exists\} \), every quantifier \(\forall \) (\(\exists \)) is replaced by \(\forall(x_{v_1}, \ldots, x_{v_n}) (\exists(x_{v_1}, \ldots, x_{v_n})) \), where \(v_1, \ldots, v_n \) are the maximal terms of \(\phi \) that contain \(v \).

Remark 3.2 The transformation above does not add new logical operators, and, consequently, if \(\phi \in L^O(\Omega_L, X) \) then \(Tr(\phi) \in L^O(\Sigma'_L, X') \), for any \(O \subseteq \{\land, \lor, \neg\} \).

If \(K' \) is the set of kinds and \(\Sigma'_L \) the set of predicates obtained by the transformation above then, to any \(\Omega_L \)-algebra \(A = (A, \Sigma^A, \Pi_A) \) we associate a \((B, \Sigma'_L)\)-logical structure \(S_A = (S, \Sigma^{SA}_L) \) such that:

- \(S_{k_i} = \{I_A(t)(\gamma) | \gamma \in \Gamma(X, A)\} \), for any term \(t \). Notice that \(S_{k_i} \) is a subset of \(A_{k_i} \), where \(k \) is the kind of \(t \);
- \(S_{k_i} = \{(I_A(v_1)(\gamma), \ldots, I_A(v_n)(\gamma)) | \gamma \in \Gamma(X, A)\} \), where \(v_1, \ldots, v_n \) are the maximal terms in \(\phi \) that contain the quantified variable \(v \);
- \(p^{SA}(u_1, \ldots, u_m) \) is the value of \(p \) over \((u_1, \ldots, u_m) \), for any predicate \(p \) added in the step 3 of the definition of \(Tr(\phi) \);
- \(p^{SA}(u_1, \ldots, u_m) \) is the value of \(p \) over \((u'_1, \ldots, u'_m) \), for any predicate \(p \) added in the step 4 of the definition of \(Tr(\phi) \), where \(u'_1, \ldots, u'_m \) are obtained by the following considerations:
 - each \(u_i \) with \(i \in \{i_1, \ldots, i_p\} \) is a tuple \((a_1, \ldots, a_n) \), where \(a_i = I_A(v_i)(\gamma) \), for some assignment \(\gamma \). We take \(u'_i = a_j \) if \(t_i = v_j \);
 - \(u'_i = u_i \) if \(i \not\in \{i_1, \ldots, i_p\} \).

Finally, each assignment \(\gamma \in \Gamma(X, A) \) is transformed into an assignment \(Tr(\gamma) \in \Gamma(X', S_A) \) such that \(Tr(\gamma)(x_i) = I_A(t)(\gamma) \) and \(Tr(\gamma)((x_{v_1}, \ldots, x_{v_n})) = (I_A(v_1)(\gamma), \ldots, I_A(v_n)(\gamma)) \).
Example 3.3 Let K be a set of kinds containing only one kind nat for the set of natural numbers and $\Omega_L = (\mathcal{B}_2, \leq', \Sigma, \Sigma_L, \pi)$ a K-kinded logically extended signature with \mathcal{B}_2 the truth algebra containing only two values, $0 \leq' 1$, \(\Sigma = \{0, \text{Succ}, +, \cdot, \%\} \) and $\Sigma_{L,\text{nat,nat}} = \{p, q\}$ (0 is the constant representing the natural number 0, Succ is the successor operation on natural numbers, $+$ is the addition, \cdot is the multiplication and $\%$ is the modulo operation).

We take an Ω_L-algebra $\mathcal{A} = (A, \Sigma^A, \Pi_A)$ such that $A_{\text{nat}} = \mathbb{N}$, Σ^A interprets correspondingly the operation symbols from Σ, $\Pi_A(s_{p,1})$ is the set of couples (a, b) with a an even number and $\Pi_A(s_{q,1})$ is the set of couples (a, b) with $a\%3 = 1$.

Moreover, consider the formula ϕ over Ω_L and $X = \{x, y, z\}$ as follows:

$$\phi = \forall x \exists y ((p(x \%2, y) \lor p(y + 3, z \%5)) \land q(4 \cdot z + 5, 9)).$$

Above, we have used 2 instead of the term $\text{Succ}(\text{Succ}(0))$, 3 instead of $\text{Succ}(\text{Succ}(\text{Succ}(0)))$, etc.

If we denote $t_1 = x \%2$, $t_2 = y$, $t_3 = y + 3$, $t_4 = z \%5$, $t_5 = 4 \cdot z + 5$ and $t_6 = 9$ then:

$$\text{Tr}(\phi) = \forall (x_{t_1}) \exists (x_{t_2}, x_{t_3})((p_{x,y}(x_{t_1}, (x_{t_2}, x_{t_3})) \lor p_y((x_{t_2}, x_{t_3}), x_{t_4})) \land q'(x_{t_5}, x_{t_6})).$$

We consider a new set of kinds $K' = \{k_x, k_y, k_{t_4}, k_{t_5}, k_{t_6}\}$ and a K'-kinded logical signature $(\mathcal{B}_2, \Sigma'_L)$ such that Σ'_L contains $p_{x,y}$ of type k_xk_y, p_y of type $k_yk_{t_4}$, and q' of type $k_{t_5}k_{t_6}$.

We will associate to the Ω_L-algebra \mathcal{A}, a $(\mathcal{B}_2, \Sigma'_L)$-logical structure $\mathcal{S}_A = (S, \Sigma'^{\mathcal{S}_A})$ with:

- $S_{k_x} = \{0, 1\}$, $S_{k_y} = \{(a, a + 3) | a \in \mathbb{N}\}$, $S_{k_{t_4}} = \{0, 1, 2, 3, 4\}$, $S_{k_{t_5}} = \{4 \cdot a + 5 | a \in \mathbb{N}\}$ and $S_{k_{t_6}} = \{9\}$;

- $p_{x,y}(u, v) = \begin{cases} 1 & \text{if } u \text{ is even,} \\ 0 & \text{otherwise;} \end{cases}$

- $p_y(u, v) = \begin{cases} 1 & \text{if } u = (a, b) \text{ and } b \text{ is even,} \\ 0 & \text{otherwise;} \end{cases}$

- $q'(u, v) = \begin{cases} 1 & \text{if } u\%3 = 1, \\ 0 & \text{otherwise.} \end{cases}$

Now, let γ be an assignment of X into A with $\gamma(z) = 2$. The transformed assignment, $\text{Tr}(\gamma)$, is an assignment of $X' = \{(x_{t_1}), (x_{t_2}, x_{t_3}), x_{t_4}, x_{t_5}, x_{t_6}\}$ into \mathcal{S}_A such that $\text{Tr}(\gamma)(x_{t_4}) = 2$, $\text{Tr}(\gamma)(x_{t_5}) = 13$ and $\text{Tr}(\gamma)(x_{t_6}) = 9$.

We can easily see that the transformation above preserves the value of ϕ, i.e. $\mathcal{I}_A(\phi)(\gamma) = \mathcal{I}_{\mathcal{S}_A}(\text{Tr}(\phi))(\text{Tr}(\gamma)) = 1$.}

120
Theorem 3.1 Let $\Omega_L = (\mathcal{B}, \leq', \Sigma, \Sigma_L, \pi)$ be a K-kinded logically extended signature, $\mathcal{A} = (A, \Sigma^A, \Pi_A)$ an Ω_L-algebra, ϕ a formula over Ω_L and some set of variables X, and $\gamma \in \Gamma(X, \mathcal{A})$. Then,

$$\mathcal{I}_{\mathcal{A}}(\phi)(\gamma) = \mathcal{I}_{S_{\mathcal{A}}}(Tr(\phi))(Tr(\gamma)),$$

where $S_{\mathcal{A}}$, $Tr(\phi)$ and $Tr(\gamma)$ are defined as above.

Proof We proceed by structural induction on the formula ϕ. The following cases are to be discussed:

- $\phi = p(t_1, \ldots, t_m)$. By definition, $Tr(\phi) = p'(x_{t_1}, \ldots, x_{t_m})$. We have that $\mathcal{I}_{\mathcal{A}}(\phi)(\gamma)$ equals the value of p over $(\mathcal{I}_{\mathcal{A}}(t_1)(\gamma), \ldots, \mathcal{I}_{\mathcal{A}}(t_m)(\gamma))$, and

 $$\mathcal{I}_{S_{\mathcal{A}}}(Tr(\phi))(Tr(\gamma)) = p'^{S_{\mathcal{A}}}(Tr(\gamma)(x_{t_1}), \ldots, Tr(\gamma)(x_{t_m})) = p'^{S_{\mathcal{A}}}((\mathcal{I}_{\mathcal{A}}(t_1)(\gamma), \ldots, \mathcal{I}_{\mathcal{A}}(t_m)(\gamma)),$$

 which by the definition of $p'^{S_{\mathcal{A}}}$ implies $\mathcal{I}_{\mathcal{A}}(\phi)(\gamma) = \mathcal{I}_{S_{\mathcal{A}}}(Tr(\phi))(Tr(\gamma)).$

- $\phi = \phi_1 \land \phi_2$. Assume that ϕ_1 and ϕ_2 satisfy the property. We have that

 $$\mathcal{I}_{\mathcal{A}}(\phi_1 \land \phi_2)(\gamma) = \mathcal{I}_{\mathcal{A}}(\phi_1)(\gamma) \land \mathcal{I}_{\mathcal{A}}(\phi_2)(\gamma) = \mathcal{I}_{S_{\mathcal{A}}}(Tr(\phi_1))(Tr(\gamma)) \land \mathcal{I}_{S_{\mathcal{A}}}(Tr(\phi_2))(Tr(\gamma)) = \mathcal{I}_{S_{\mathcal{A}}}(Tr(\phi_1) \land Tr(\phi_2))(Tr(\gamma)) = \mathcal{I}_{S_{\mathcal{A}}}(Tr(\phi_1 \land \phi_2))(Tr(\gamma)).$$

- $\phi = \phi_1 \lor \phi_2$. This is similar to the previous case.

- $\phi = (\forall v)\phi_1$. Assume that ϕ_1 satisfies the property. We have that

 $$\mathcal{I}_{\mathcal{A}}((\forall v)\phi_1)(\gamma) = \bigwedge_{a \in A_k} \mathcal{I}_{\mathcal{A}}(\phi_1)(\gamma[v/a]) = \bigwedge_{a \in A_k} \mathcal{I}_{S_{\mathcal{A}}}(Tr(\phi_1))(Tr(\gamma[v/a])).$$

Notice that in $Tr(\phi_1)$ the terms v_1, \ldots, v_n which contain v are replaced by different variables x_{v_1}, \ldots, x_{v_n}. We define ϕ_2 as $Tr(\phi_1)$ but the variables x_{v_1}, \ldots, x_{v_n} are replaced by the same variable $(x_{v_1}, \ldots, x_{v_n})$ and the predicates p', for some $p \in \Sigma_L$, appearing in atomic formulas containing v, are replaced by p_n (similarly to the 4th step in the definition of $Tr(\phi)$). By the definition of the transformation of formulas and assignments,

$$\{ Tr(\gamma[v/a]) \mid a \in A_k \} = \{ Tr(\gamma)[(x_{v_1}, \ldots, x_{v_n})/(a_1, \ldots, a_n)] \mid (a_1, \ldots, a_n) \in S_{k_v} \}.$$
and consequently,

\[I_A(\phi) = \bigwedge_{(a_1, \ldots, a_n) \in S_{k_t}} I_{S_A}(\phi_2)(Tr(\gamma)((x_{v_1}, \ldots, x_{v_n})/(a_1, \ldots, a_n))) \]

\[= I_{S_A}((\forall(x_{v_1}, \ldots, x_{v_n})\phi_1)(Tr(\gamma))). \]

- \(\phi = (\exists v)\phi_1. \) This is similar to the previous case. \(\square \)

The theorem above permits us to restate all the preservation results from Section 2.2 in the context of logically extended membership algebras.

Theorem 3.2 Let \(\Omega_L = (\mathcal{B}, \leq, \Sigma, \Sigma_L, \pi) \) be a \(K \)-kinded logically extended signature, \(\mathcal{A} = (A, \Sigma^A, \Pi_A) \) an \(\Omega_L \)-algebra, \(\rho \) a congruence on \(\mathcal{A} \), \(\alpha \) an interpretation policy over \(\mathcal{B}, \mathcal{D} = (A/\rho, \Sigma^A/\rho, \Pi') \) an \(\alpha \)-abstraction of \(\mathcal{A} \) by \(\rho \) and \(b \) a truth value in \(B \). If there exists \(b' \in B \) such that \(\alpha(x) \in \{\exists^T, \exists^T, \forall | T \subseteq \uparrow b'\} \), for all \(x \geq b \), then:

\[[\phi]^D \geq b \Rightarrow [\phi]^A \geq b' \]

for any \(\phi \in \mathcal{L}(\land)(\Omega_L, X) \). Moreover, if we also have that for any \(B' \subseteq B \),

\[\forall B' \geq b \Rightarrow (\exists x \in B')(x \geq b), \]

then

\[[\phi]^D \geq b \Rightarrow [\phi]^A \geq b', \]

for any \(\phi \in \mathcal{L}(\land, \lor)(\Omega_L, X) \).

Proof Suppose that \([\phi]^D \geq b \). This implies \(I_D(\phi)(\gamma) \geq b \), for any \(\gamma \in \Gamma(X, \mathcal{D}) \).

Let \(Tr(\phi) \) be the transformation on the formula \(\phi \) defined as above, \(S_D \)
the \((\mathcal{B}, \Sigma'_L) \)-logical structure associated to \(\mathcal{D}, S_A \) the \((\mathcal{B}, \Sigma'_L) \)-logical structure
associated to \(\mathcal{A} \) and \(Tr(\gamma) \in \Gamma(X', S_D) \).

Also, consider the equivalence \(\rho' \) on \(S_A \) such that

- \(\rho'_{k_t} \) is the restriction of \(\rho_{k^t} \) to \(S_{k_t} \times S_{k_t} \), where \(k^t \) is the kind of a maximal
term \(t \) appearing in \(\phi \);

- if \(v \) is a quantified variable and \(v_1, \ldots, v_n \) are the maximal terms of
\(\phi \) containing \(v \) then, \(\rho'_{k_v} \) is defined by \((a_1, \ldots, a_n) \rho'_{k_v}(b_1, \ldots, b_n) \), if \(a_i \rho_{k_v} b_i \), for any \(1 \leq i \leq n \), where \(k_v \) is the kind of \(v \).
We can easily prove that S_D is an α-abstraction of S_A by ρ'. Consequently,

$$I_D(\phi)(\gamma) \geq b \Rightarrow I_{S_D}(Tr(\phi))(Tr(\gamma)) \geq b$$

$$\Rightarrow (\forall \gamma' \in Tr(\gamma))(I_{S_A}(Tr(\phi))(\gamma') \geq b')$$

$$\Rightarrow (\forall \gamma'' \in \gamma)(I_A(\phi)(\gamma'') \geq b').$$

Above, we have used Theorem 2.2 and

$$\{\gamma' \in \Gamma(X', S_A) | \gamma' \in Tr(\gamma)\} = \{Tr(\gamma'') | \gamma'' \in \Gamma(X, A) \text{ and } \gamma'' \in \gamma\}.$$

Since we can extend Lemma 2.1 to logically extended algebras, i.e. for any $\gamma'' \in \Gamma(X, A)$ there exists an assignment $\gamma \in \Gamma(X, D)$ such that $\gamma'' \in \gamma$, we obtain $[\phi]^A \geq b'$. \hfill \Box

Theorem 3.3 Let $\Omega_L = (B, \leq', \Sigma, \Sigma_L, \pi)$ be a K-kinded logically extended signature, $A = (A, \Sigma^A, \Pi_A)$ an Ω_L-algebra, ρ a congruence on A, α an interpretation policy over B, $D = (A/\rho, \Sigma^{A/\rho}, \Pi')$ an α-abstraction of A by ρ and b a truth value in B. If $\alpha(b) = \forall$ and $\alpha(x) \in \{\exists S', \exists^S, \forall \mid S' \subseteq \downarrow b'\}$, for all $x > b$, then:

$$\forall B' \leq b \Rightarrow (\exists x \in B')(x \leq b), \text{ for any } B' \subseteq B,$$

then

$$[\phi]^D \leq b \Rightarrow [\phi]^A \leq b',$$

for any $\phi \in L^{\vee}(\Omega_L, X)$. Moreover, if

$$\wedge B' \leq b \Rightarrow (\exists x \in B')(x \leq b), \text{ for any } B' \subseteq B,$$

then

$$[\phi]^D \leq b \Rightarrow [\phi]^A \leq b',$$

for any $\phi \in L^{\wedge, \vee}(\Omega_L, X)$.

Proof Similarly to the proof of Theorem 3.2. \hfill \Box

Theorem 3.4 Let $\Omega_L = (B, \leq', \Sigma, \Sigma_L, \pi)$ be a K-kinded logically extended signature, $A = (A, \Sigma^A, \Pi_A)$ an Ω_L-algebra, ρ a congruence on A, α an interpretation policy over B, $D = (A/\rho, \Sigma^{A/\rho}, \Pi')$ an α-abstraction of A by ρ and b a truth value in B. If $\alpha(b) = \forall$ and $\alpha(x) \in \{\exists S, \forall \mid S \subseteq \downarrow b \cap \downarrow x\}$, for all $x > b$, then:

$$[\phi]^D \geq b \Rightarrow [\phi]^{A} \leq [\phi]^D \text{ and } [\phi]^D = b \Rightarrow [\phi]^{A} = b,$$

for any $\phi \in L^{\wedge}(\Omega_L, X)$.

Proof Similarly to the proof of Theorem 3.2. \hfill \Box
Theorem 3.5 Let \(\Omega_L = (B, \leq', \Sigma, \Sigma_L, \pi) \) be a \(K \)-kinded logically extended signature, \(A = (A, \Sigma_A, \Pi_A) \) an \(\Omega_L \)-algebra, \(\rho \) a congruence on \(A \), \(\alpha \) an interpretation policy over \(B \), \(D = (A/\rho, \Sigma_A/\rho, \Pi'') \) an \(\alpha \)-abstraction of \(A \) by \(\rho \) and \(b \) a truth value in \(B \). If \(\alpha(b) = \forall \) and \(\alpha(x) \in \{ \exists^S, \forall \mid S \subseteq \uparrow x \cap \downarrow b \} \), for all \(x < b \), then:

\[
[\phi]^D \leq b \Rightarrow [\phi]^A \leq b \quad \text{and} \quad [\phi]^D = b \Rightarrow [\phi]^A = b,
\]

for any \(\phi \in \mathcal{L}^{(\forall)}(\Omega_L, X) \).

Proof Similarly to the proof of Theorem 3.2. \(\square \)

Theorem 3.6 Let \(\Omega_L = (B, \leq', \Sigma, \Sigma_L, \pi) \) be a \(K \)-kinded logically extended signature, \(A = (A, \Sigma_A, \Pi_A) \) an \(\Omega_L \)-algebra, \(\rho \) a congruence on \(A \), \(\alpha \) an interpretation policy over \(B \), \(D = (A/\rho, \Sigma_A/\rho, \Pi'') \) an \(\alpha \)-abstraction of \(A \) by \(\rho \) and \(b \) a truth value in \(B \). If:

1. \(\alpha(b) = \forall \);
2. \(\alpha(x) \in \{ \exists^S, \exists^S, \forall \mid S \subseteq \uparrow b \} \), for all \(x > b \);
3. \(\alpha(x) \in \{ \exists^S, \exists^S, \forall \mid S \subseteq \downarrow b \} \), for all \(x < b \);
4. for any \(B' \subseteq B \), \(\land B' \leq b \) implies that there exists \(x \in B' \) such that \(x \leq b \);
5. for any \(B' \subseteq B \), \(\lor B' \geq b \) implies that there exists \(x \in B' \) such that \(x \geq b \);
6. for any \(B' \subseteq B \), \(\land B' = b \) implies \(b \in B' \);
7. for any \(B' \subseteq B \), \(\lor B' = b \) implies \(b \in B' \);

then

\[
[\phi]^D \geq b \Rightarrow [\phi]^A \geq b, \\
[\phi]^D \leq b \Rightarrow [\phi]^A \leq b, \\
[\phi]^D = b \Rightarrow [\phi]^A = b,
\]

for any \(\phi \in \mathcal{L}^{(\land, \lor)}(\Omega_L, X) \).

Proof Similarly to the proof of Theorem 3.2. \(\square \)

All preservation results in [111] (for Kleene’s 3-valued logic) are particular cases of Theorem 3.6 (we denote by \(B_3 \) the corresponding truth algebra).
Corollary 3.1 Let $\Omega_L = (\mathcal{B}_3, \leq, \Sigma, \Sigma_L, \pi)$ be a K-kinded logically extended signature, $A = (A, \Sigma^A, \Pi_A)$ an Ω_L-algebra, ρ a congruence on A, α an interpretation policy over \mathcal{B}_3, and $D = (A/\rho, \Sigma^A/\rho, \Pi')$ an α-abstraction of A by ρ. Then, the following properties hold:

- if $\alpha(0) = \forall$, $\alpha(\bot) = \exists\{0, \bot, 1\}$, and $\alpha(1) = \exists\{0, 1\}$ then

 $[\phi]^D = 0 \implies [\phi]^A = 0$, for any $\phi \in \mathcal{L}^{(\land, \lor)}(\Sigma_L, X)$.

- if $\alpha(0) = \exists\{0, \bot, 1\}$, $\alpha(\bot) = \exists\{\bot, 1\}$, and $\alpha(1) = \forall$, then

 $[\phi]^D = 1 \implies [\phi]^A = 1$, for any $\phi \in \mathcal{L}^{(\land, \lor)}(\Sigma_L, X)$.

- if $\alpha(0) = \forall$, $\alpha(\bot) = \exists_a\{0, \bot, 1\}$, and $\alpha(1) = \forall$, then

 $[\phi]^D = b \implies [\phi]^A = b$, for any $\phi \in \mathcal{L}(\Sigma_L, X)$ and $b \in \{0, 1\}$.

3.4 Particular cases

Following [111] we prove that many abstraction techniques from the literature are particular cases of ours.

3.4.1 McMillan’s Approach

In [86], McMillan has proposed a kind of data type reduction (abstraction) to be used with the SMV system. Even though his approach was “susceptible” to be a particular case of Cousot’s abstract interpretation (see [86]), McMillan has preferred to develop this new formalism closer to data types and practical applications. This is not an isolated case and it proves the necessity of an intermediate formalism with a high degree of generality but easy to be applied in practice.

Our approach, proposed in the previous sections, is as simply and elegant as general it is; it can be used to handle abstractions of data types defined in the most general way. This subsection, as well as the next three, will prove this.

McMillan’s Approach We will use mainly the same notation as in [86]. Let U be a set of values, V a set of variables, T a set of types, and C a set of constructors (each of them having an arity). Define the set \mathcal{L} of formulas as being the set of ground terms over C.

125
A structure is a triple $M = (R, N, F)$, where $R : T \to \mathcal{P}(U)$ assigns a range of values to every type, N is a set of denotations, and F is an interpretation assigning a function $F(c) : N^{n_c} \to N$ to each constructor c of arity n_c. The denotation of a formula $\phi \in \mathcal{L}$ in a structure M is defined inductively and denoted by ϕ^M. It is assumed that each structure M admits a pre-order \leq on N and $F(c)$ is a monotonic function with respect to \leq, for all constructors c.

A homomorphism from a structure $M = (R, N, F)$ into a structure $M' = (R', N', F')$ is a function $h : N \to N'$ satisfying

$$\mathcal{F}'(c)(h(t_1), \ldots, h(t_n)) \leq' h(\mathcal{F}(c)(t_1, \ldots, t_n)),$$

for all $c(t_1, \ldots, t_n) \in \mathcal{L}$ (\leq' is the pre-order on N').

By structural induction and using the monotonicity we can easily obtain $\phi^{M'} \leq' h(\phi^M)$, for all $\phi \in \mathcal{L}$ and homomorphisms h from M into M'.

Assume now that each structure M contains a distinguished denotation $true$ (the denotation of valid formulas). A homomorphism h from M into M' is truth preserving if $true' \leq' h(x)$ implies $x = true$. If h is truth preserving, then

$$(*) \quad \phi^{M'} = true' \Rightarrow \phi^M = true,$$

for all formulas ϕ.

The methodology described above can be used in connection with data type reductions as follows. Let us assume that M' is obtained from M by some abstraction technique. If there is a truth preserving homomorphism h from M into M', then $(*)$ holds true. Therefore, proving that a formula ϕ holds in M can be reduced to proving that ϕ holds in M'. This task could be easier because M' is a reduced structure obtained from M.

The abstraction technique considered in [86] works as follows. Let $M = (R, N, F)$ be a structure, where

$$\mathcal{N} = \{\mathcal{I}| \mathcal{I} : \{\gamma|\gamma : V \to U\} \to U\},$$

and let $r : T \to \mathcal{P}(U)$ be a function such that $r(s) \subseteq R(s)$, for all $s \in T$. Define

$$R_r(s) = \{\{a\}|a \in r(s)\} \cup \{R(s) - r(s)\}$$

and \mathcal{N}_r as \mathcal{N} but changing U into $\mathcal{P}(U)$. The interpretation \mathcal{F}_r is not defined in the general case, but only in the case of the SMV operators, and it is asked that every constructor c should be safe with respect to r, that is

$$\mathcal{F}(c(t_1, \ldots, t_n))(\gamma) \in \mathcal{F}_r(c(t'_1, \ldots, t'_n))(\gamma'),$$

126
for all $t_1, t'_1, \ldots, t_n, t'_n$, $\gamma : V \to U$ and $\gamma' : V \to \mathcal{P}(U)$ such that $\gamma \in \gamma'$ and $\mathcal{F}(t_i)(\gamma) \in \mathcal{F}_r(t'_i)(\gamma')$, for all $1 \leq i \leq n$.

Then, $h_r : M \to M_r$ given by

$$h_r(x)(\gamma') = \{x(\gamma) | \gamma \in \gamma'\},$$

for all $x \in N$ and $\gamma' : V \to \mathcal{P}(U)$, is a truth preserving homomorphism from M into M_r. Therefore, (\ast) can be applied.

A Membership Algebra Approach The approach presented above is a particular case of the results in Section 3.3. The set of types is just a set K of kinds and the truth algebra under consideration is the classical one with only two values, denoted \mathcal{B}_2. The set of constructors used to define formulas is in our case the logically extended membership signature $\Omega_L = (\mathcal{B}_2, \leq', \Sigma, \Sigma_L, \pi)$. The set $\mathcal{L}(\Omega_L, X)$ of formulas we consider is incomparable much larger than the set of formulas considered by McMillan. Moreover, we consider membership signatures as in Definition 3.1 to define concrete (and arbitrarily complex) data types. A structure is then an Ω_L-algebra $A = (A, \Sigma^A, \Pi_A)$ which induces both assignments and formula interpretations.

A data type reduction r (in McMillan’s approach) induces a K-kinded equivalence $\rho = (\rho_k|k \in K)$ given by

$$a \rho_k b \iff (a = b \in r(k)) \lor (a, b \notin r(k)),$$

for all $a, b \in A_k$.

This equivalence should be in fact a congruence (this it is not mentioned explicitly in [86] but it can be easily seen from examples).

Since the homomorphism h from M into M_r is truth-preserving, the structure M_r becomes now an α-abstraction of A by ρ, where $\alpha(0) = \exists$ and $\alpha(1) = \forall$. The definition we consider for the α-abstraction makes safe with respect to r all the function and logical symbols. Notice that there is no need to consider pre-orders on algebras.

Therefore, McMillan’s approach is a particular case of our approach.

3.4.2 Shape Analysis

Shape analysis is a data flow analysis technique [96]. It is mainly used for complex analysis of dynamically allocated data, and it is based on representing the set of possible memory states (“stores”) that arise at a given point in the program by *shape graphs*. In such a graph, heap cells are represented by shape-graph nodes and, in particular, sets of “indistinguishable” heap cells are represented by a single shape-graph node. In the past two decades, many
shape-analysis algorithms have been developed [69, 70, 77, 67, 15, 110, 100, 114, 103]. The parametric framework for shape analysis introduced in [104] covers almost all of the work mentioned above.

We show that shape analysis as described in [104] can be obtained as a particular case of the results in Section 3.3.

Shape Analysis In [104], the authors define a first order logic with transitive closure over a finite set \(\mathcal{P} = \{p_1, \ldots, p_n\} \) of predicate symbols. A 2-valued logical structure for this logic is defined as a couple \(S = (U^S, \mathcal{I}^S) \), where \(U^S \) is a set of individuals and \(\mathcal{I}^S \) maps each predicate symbol \(p \) of arity \(k \) to a truth-valued function \(\mathcal{I}^S(p) : (U^S)^k \rightarrow \{0, 1\} \). Replacing the set \{0, 1\} by the set \{0, 1, \perp\} in the definition above we obtain a 3-valued logical structure.

2-valued logical structures are used to encode concrete stores as follows. Individuals represent memory locations in the heap, pointers from the stack into the heap are represented by unary predicates, and pointer valued-fields are represented by binary predicates. The property-extraction principle adopted in [104] is the following: by encoding stores as logical structures, questions about properties of stores can be answered by evaluating formulas.

3-valued logical structures are used to encode abstract stores.

The concrete store is related to the abstract store by truth-blurring embeddings. An embedding of a structure \(S = (U^S, \mathcal{I}^S) \) into a structure \(S' = (U'^S, \mathcal{I}'^S) \) is any surjective function \(f : U^S \rightarrow U'^S \) such that

\[
\mathcal{I}^S(p)(u_1, \ldots, u_k) \sqsubseteq \mathcal{I}'^S(p)(f(u_1), \ldots, f(u_k)),
\]

for any \(k \), predicate symbol \(p \) of arity \(k \), and any \(u_1, \ldots, u_k \in U^S \), where \(\sqsubseteq \) is the information order on \{0, 1, \perp\} defined by

\[
x \sqsubseteq y \iff x = y \lor y = \perp.
\]

Theorem 3.7 (Embedding Theorem [104])

Let \(f \) be an embedding from a logical structure \(S = (U^S, \mathcal{I}^S) \) into a logical structure \(S' = (U'^S, \mathcal{I}'^S) \). Then,

\[
\mathcal{I}^S(\varphi)(\gamma) \sqsubseteq \mathcal{I}'^S(\varphi)(f \circ \gamma),
\]

for any formula \(\varphi \) and any complete assignment \(\gamma \) for \(\varphi \).

The embedding theorem provides a systematic way to use an abstract 3-valued structure \(S \) to answer questions about properties of the concrete 2-valued structure that \(S \) represents. It ensures that it is safe to evaluate a formula \(\varphi \) on a single 3-valued structure \(S \) instead of evaluating \(\varphi \) in all 2-valued structures that can be embedded in \(S \).
A Membership Algebra Approach The approach in [104] can be easily seen as a particular case of the approach proposed in this paper. For each logical structure $S = (U^S, I^S)$, U^S can be viewed as a uni-kind algebra, where the truth algebra is the one used for Kleene’s three-valued logic, denoted B_3, $\Omega_L = (B_3, \leq', \Sigma, \Sigma_L, \pi)$ and Σ contains only the operators (\ldots). I^S is the interpretation function of formulas into the algebra U^S (see Section 3.2).

The abstraction is driven by embeddings which are surjective functions. As we have no real function symbols, the equivalence relation induced by such a surjective function is a congruence. Also, the properties an embedding satisfy give rise to α-abstractions with $\alpha(0) = \forall$ and $\alpha(\perp) = \exists$, and the embedding theorem follows easily from the results in Section 3.3. Moreover, in contrast to [104], the set of individuals in our approach is typed and enriched by typed-operations; the predicate symbols are typed as well.

3.4.3 Predicate Abstraction

Predicate abstraction, also called *boolean abstraction* or *existential abstraction* in [4], has been introduced by Graf and Saidi in [57] to provide a method for the automatic construction of an abstract state graph of an infinite system using the PVS theorem prover. Since then, predicate abstraction has been studied thoroughly [36, 113].

The main idea of the predicate abstraction is to map concrete objects (states of a transition system, data of a data type etc.) to “abstract objects” according to their evaluation under a finite set of predicates.

Let P be a finite set of predicates over a set A. The set P induces an equivalence relation ρ_P on A as follows

$$a \rho_P b \iff (\forall p \in P)(p(a) \text{ iff } p(b)),$$

for all $a, b \in A$.

The quotient set A/ρ_P can be taken as the abstract system induced by P. If some operations are given on the set A (i.e., a transition relation, data type operations etc.) then these operations should be redefined to operate on the abstract system in a congruential way.

It is very clear that predicate abstraction is a particular case of the approach proposed in this paper.

3.4.4 Duplicating Predicate Symbols

The technique of *duplicating predicate symbols* is one of the intensively used techniques in abstraction [27, 35, 6]. It is based on associating “copies” to
each predicate symbol. Therefore, a formula \(\varphi \) gets several versions depending on the predicate copies are used. Usually, two copies for each predicate symbol are associated, and two versions of a formula are used: one of them for validation, and the other one for refutation.

We describe in details the duplicating predicate symbols technique used in [6] and we will show that it can be easily obtained as a particular case of the abstraction methodology proposed in this paper.

In [6], Bidoit and Boisseau considered logically extended structures (we use here logically extended membership algebras) whose predicate symbols are valuated into \(\{0, 1\} \), and associated a split signature \(\Omega_\mathcal{S}^L = (B_2, \leq', \Sigma, \Sigma_L, \pi') \) to each logically extended signature \(\Omega_L = (B_2, \leq, \Sigma, \Sigma_L, \pi) \), where \(0 \leq' 1 \), and \(\Sigma_L, \oplus \) and \(\Sigma_L, \ominus \) are obtained by indexing the predicate symbols \(P \in \Sigma_L \) by \(\oplus \) and, respectively, by \(\ominus \). \(P_\oplus \) and \(P_\ominus \) have the same type as \(P \).

Let \(A = (A, \Sigma^A, \Pi_A) \) and \(C = (C, \Sigma^C, \Pi_C) \) be two \(\Omega_L \)-algebras and \(h \) be an epimorphism from \(A \) into \(C \). The canonical \(\Omega_\mathcal{S}^L \)-structure associated to \(A \) and \(h \) is defined by \(A^h = (C, \Sigma^C, \Pi_C') \) such that:

- \((b_1, \ldots, b_n) \in \Pi'_C(s_{P_\oplus,1}) \) if \((\forall 1 \leq i \leq n)(\forall a_i \in h^{-1}(b_i))((a_1, \ldots, a_n) \in \Pi_A(s_{P,1})) \);
- \((b_1, \ldots, b_n) \in \Pi'_C(s_{P_\ominus,1}) \) if \((\forall 1 \leq i \leq n)(\exists a_i \in h^{-1}(b_i))((a_1, \ldots, a_n) \in \Pi_A(s_{P,1})) \);

for all \(P \in \Sigma_L \) of logical type \(k_1 \cdots k_n \) and \(b_1 \in C_{k_1}, \ldots, b_n \in C_{k_n} \). Also, \(\Pi'_C(s) = \Pi_C(s) \), for any sort \(s \) that does not represent a predicate.

For any formula \(\varphi \) over \(\Omega_L \) and \(X \) define two formulas \(\varphi_\oplus \) and \(\varphi_\ominus \) over \(\Omega_\mathcal{S}^L \) and \(X \) as follows:

- \(P(t_1, \ldots, t_n)_\oplus = P_\oplus(t_1, \ldots, t_n) \);
- \(P(t_1, \ldots, t_n)_\ominus = P_\ominus(t_1, \ldots, t_n) \);
- \((\varphi_1 \lor \varphi_2)_\oplus = (\varphi_{1_\oplus} \lor \varphi_{2_\oplus}) \) and \((\varphi_1 \lor \varphi_2)_\ominus = (\varphi_{1_\ominus} \lor \varphi_{2_\ominus}) \), and similar for \(\land, \forall \) and \(\exists \);
- \((\neg \varphi)_\oplus = (\varphi_\ominus) \) and \((\neg \varphi)_\ominus = (\neg \varphi_\oplus) \).

Now, one of the main results proved in [6] states that

\[
[\varphi_\oplus]^{A^h} = 1 \implies [\varphi]^A = 1
\]

and

\[
[\varphi_\ominus]^{A^h} = 0 \implies [\varphi]^A = 0.
\]
These two implications give the correctness of the abstraction. Here, the abstraction should be understood by the fact that an element b acts as an abstraction for $h^{-1}(b)$.

In order to show that the result above is a particular case of the abstraction methodology proposed in this paper we have to remark first the following:

- the predicate symbols, in the formalism above, are valued into $\{0, 1\}$;
- the kernel $\ker(h)$ of any epimorphism h defines a congruence on A and the quotient algebra $A/\ker(h)$ is isomorphic to C. Conversely, any congruence ρ on A leads to an epimorphism from A into A/ρ. Therefore, we can consider congruences instead of epimorphisms in order to design abstractions;
- any formula $\varphi \in \mathcal{L}(\Omega_L, X)$ can be equivalently transformed into the negation normal form, where the negation is applied only to atomic formulas.

Given a logically extended signature $\Omega_L = (B_2, \leq, \Sigma, \Sigma_L, \pi)$ we define a new signature $\Omega'_L = (B_2, \leq', \Sigma, \Sigma_L \cup \Sigma'_L, \pi)$, where Σ'_L is just a copy of Σ_L. In any Ω'_L-algebra A, the predicate symbol P' will be interpreted as $\neg P$ is.

For any formula $\varphi \in \mathcal{L}(\Omega'_L, X)$ in the negation normal form we define a new formula $\varphi' \in \mathcal{L}(\land, \lor)(\Omega'_L, X)$ by replacing $\neg P$ by P' and $\neg Q$ by Q', for any P and Q.

Directly from the above constructions we have

\[(\ast) \quad [\varphi]^A = [\varphi']^A, \text{ for any formula } \varphi \in \mathcal{L}(\Omega'_L, X).\]

Consequently,

- if D is an α_1-abstraction of A by ρ, with $\alpha_1(1) = \forall$ and $\alpha_1(0) = \exists$, then $\quad [\varphi']^D = 1 \Rightarrow [\varphi]^A = 1$
 (from Theorem 3.6 and (\ast));

- if D is an α_2-abstraction of A by ρ, with $\alpha_2(1) = \exists$ and $\alpha_2(0) = \forall$, then $\quad [\varphi']^D = 0 \Rightarrow [\varphi]^A = 0$
 (from Theorem 3.6 and (\ast)).
\(\varphi' \) plays exactly the role of \(\varphi\Box \) in the first case (of \(\alpha_1 \)-abstractions), and it plays exactly the role of \(\varphi\Box \) in the second case (of \(\alpha_2 \)-abstractions). In both cases, \(\mathcal{D} \) plays the role of \(\mathcal{A}^4 \).

These results emphasize clearly the nature of the duplicating predicate symbols technique. Thus, this technique consists of two abstractions based on the same congruence. One of them is an \(\alpha_1 \)-abstraction, used for validation, and the other one is an \(\alpha_2 \)-abstraction, used for refutation.

3.5 Abstractions of Abstract Data Types

In this section we generalize the results from the previous sections to abstract data types. An abstract data type (ADT, for short) for a membership signature \(\Omega_L \) is a class of \(\Omega_L \)-algebras that is closed under isomorphism \(^2\). An ADT is called monomorphic if its algebras are all isomorphic to each other; otherwise, it is called polymorphic \(^3\). A specification may be viewed as a description of a class of objects by means of their properties. In a formal specification these properties are expressed as formulas in a logic. Hence, a specification of an ADT essentially consists of a set of formulas expressing the common properties of its algebras. Specifications are defined by a syntax and a semantics. The syntax fixes the “form”, and the semantics fixes the “meaning” of specifications. A specification is called monomorphic (polymorphic) if it defines a monomorphic (polymorphic) ADT. Specifications can be classified in atomic and composed. An atomic specification is essentially built up from the scratch; it consists of a signature \(\Omega_L \) and a set of formulas \(\Phi \) in a logic \(L \). Its semantics is defined as the class of all \(\Omega_L \)-algebras that are models of \(\Phi \). Three basic atomic specifications are loose specification, initial specification, and constructive specification \(^4\). A composed specification is a specification written in a specification language. Starting from atomic specifications the constructs of such a language allow one to build large specifications out of smaller ones \(^5\).

\(^2\)Informally, the closure under isomorphism corresponds to the fact that isomorphic algebras are “similar” in that they differ only by the nature of their carriers.

\(^3\)A monomorphic ADT stands for a single data type, whereas a polymorphic ADT may correspond to an “incomplete” specification.

\(^4\)Drawing up atomic specifications is sometimes called specification-in-the-small.

\(^5\)Drawing up composed specifications with the help of a specification language is sometimes called specification-in-the-large.
3.5.1 Abstractions of Initial Specifications

An initial membership specification is a 4-tuple $Sp = (\Sigma, \pi, X, E)$, where $\Omega = (\Sigma, \pi)$ is a membership signature, X is a disjoint family of variables, disjoint of Σ too, and E is a set of sentences over Ω and X.

The semantics of an initial membership specification Sp called the monomorphic abstract data type (ADT, for short) induced by Sp, is defined by

$$\mathcal{M}(Sp) = \{A | A \text{ is isomorphic to } T_{\Omega,E} \}.$$

Specifications of logically extended membership algebras are simply membership specifications where sentences for predicate symbols are separately given.

Definition 3.5 A logically extended membership specification is a tuple $LSp = (B, \leq', \Sigma, \Sigma_L, \pi, X, E, E_P)$, where:

1. $(B, \leq', \Sigma, \Sigma_L, \pi)$ is a logically extended membership signature;
2. X is a disjoint family of variables, disjoint of Σ too;
3. E is a set of sentences over X and the membership signature $\Omega = (\Sigma, \pi)$ that does not contain the operators (\ldots, \ldots) and the sorts $s_{p,b}$;
4. E_P is a set of sentences of the form:

 (a) $t : s_{p,b}$ if C;

 (b) $x : s_{p,b_1}$ if $x : s_{p,b_2}$,

where $p \in \Sigma_L, w$, t is a term of kind k_w over the membership signature Ω and X, x a variable of kind k_w, $b, b_1, b_2 \in B - \{0'\}$, $b_1 \prec' b_2$ and C is a set of atomic formulas over Ω and X. E_P contains exactly one sentence of type (4b) for every $p \in \Sigma_L$ and $b_1, b_2 \in B - \{0'\}$ such that there exist $x \in B$ with $x \prec' b_1$ and $x \prec' b_2$, there exist no term t with $E \cup E_P \vdash t : s_{p,b_1}$ and $E \cup E_P \vdash t : s_{p,b_2}$.

Moreover, E_P should satisfy the following consistency requirement: for any predicate $p \in \Sigma_L$ and $b_1, b_2 \in B - \{0'\}$ such that there exist $x \in B$ with $x \prec' b_1$ and $x \prec' b_2$, there exist no term t with $E \cup E_P \vdash t : s_{p,b_1}$ and $E \cup E_P \vdash t : s_{p,b_2}$.

Definition 3.6 Let $LSp = (B, \leq', \Sigma, \Sigma_L, \pi, X, E, E_P)$ be a logically extended membership specification. The initial semantics of LSp, $\mathcal{M}(LSp)$, is the class of all Ω_L-algebras isomorphic to $T_{\Omega, E \cup E_P}$.

Since logically extended membership specifications are usual membership specifications, we have:
Proposition 3.1 Let $LSp = (\mathcal{B}, \Sigma, \Sigma_L, \pi, X, E, E_P)$ be a logically extended membership specification. Then, $T_{\Omega, E \cup E_P}$ is an initial algebra in the initial semantics of LSp.

In the following, by the value of a predicate p over a term t we mean the maximum truth value $b \in B$ (with respect to \leq') for which $E \cup E_P \vdash t : s_{p,b}$, or $0'$, if such a b does not exist.

An abstraction of an Ω_L-algebra A consists in a congruence ρ and an interpretation policy used to redefine predicate symbols in the quotient of A with respect to ρ. Naturally, abstractions can be applied to abstract data types $\mathcal{M}(LSp)$ by means of a representative of them, and $T_{\Omega, E \cup E_P}$ is a suitable choice.

When an abstraction is specified by a set of equations we say that it is an equationally specified abstraction.

Definition 3.7 Let $LSp = (\mathcal{B}, \leq', \Sigma, \Sigma_L, \pi, X, E, E_P)$ be a logically extended membership specification. An abstraction of LSp is a pair $\Delta = (A, \alpha)$, where A is a set of sentences over Ω and X and α is an interpretation policy over B.

Definition 3.8 Let $LSp = (\mathcal{B}, \leq', \Sigma, \Sigma_L, \pi, X, E, E_P)$ be a logically extended membership specification and $\Delta = (A, \alpha)$ an abstraction of it. The logically extended membership specification for the abstraction of LSp by Δ is $LSp_\Delta = (\mathcal{B}, \leq', \Sigma, \Sigma_L, \pi, X, E \cup A, E_P^\Delta)$, where:

- $E \cup A \cup E_P^\Delta \vdash t : s_{p,b}$ iff the value of p over the set of terms $\{t' | E \cup A \vdash t = t'\}$ according to α is greater than or equal to b (with respect to \leq').

Now, from the definition of LSp_Δ we can derive the following result which states that the initial semantics of LSp_Δ contains algebras that are α-abstractions of the algebras from the initial semantics of LSp.

Proposition 3.2 Let LSp, Δ and LSp_Δ be as above. Let ρ be the congruence on $T_{\Omega, E'}$ defined by:

$$[t]_{E',k} \rho [t']_{E',k} \Leftrightarrow E'' \vdash t = t', \text{ for any } t, t' \in (T_{\Omega, L})_k,$$

where $E' = E \cup E_P$ and $E'' = E \cup A \cup E_P^\Delta$. Then, $T_{\Omega, E''}$ is the α-abstraction of $T_{\Omega, E'}$ by ρ.

In order to extend the results regarding the computation of multi-valued abstractions using 2-valued abstractions to the case of abstract data types, notice that S'-congruences, (ρ, S'), of algebras from the semantics of a membership specification can be captured by pairs (A, S') where A is a set of
membership sentences. The specification for the quotient abstract data type is obtained as follows.

Definition 3.9 Let \(LSp \) be as above and \(\Delta' = (A, S') \) an \(S' \)-congruence of it. The logically extended membership specification for the quotient of \(LSp \) by \(\Delta' \) is \(LSp_{\Delta'} = (B, \leq', \Sigma, \Sigma_L, \pi, X, E \cup A, E_P^{\Delta'}) \), where:

- \(E'' \vdash t : s \Leftrightarrow (\forall t')(E'' \vdash t = t' \Rightarrow E' \vdash t' : s) \), for any \(s \in S' \) and \(t, t' \in (T_{\Omega,E'})_p(s) \) (\(E' = E \cup E_P \) and \(E'' = E \cup A \cup E_P^{\Delta'} \)).

Moreover, we can prove that the initial semantics of \(LSp_{\Delta'} \) contains algebras that are quotients by an \(S' \)-congruence of the algebras from the initial semantics of \(LSp \). This guarantees that we can relate \(\alpha \)-abstractions to quotients by an \(S' \)-congruence as in Section 3.3.1.

Proposition 3.3 Let \(LSp, \Delta' \) and \(LSp_{\Delta'} \) be as above. Let \(\rho \) be the congruence on \(T_{\Omega,E'} \) defined by:

\[
[t]_{E',k} \rho_k [t']_{E',k} \Leftrightarrow E'' \vdash t = t', \text{ for any } t, t' \in (T_{\Omega,E'})_{\pi(s)},
\]

where \(E' = E \cup E_P \) and \(E'' = E \cup A \cup E_P^{\Delta'} \). Then, \(T_{\Omega,E''} \) is the quotient of \(T_{\Omega,E'} \) by \((\rho, S') \).

Example 3.4 A logically extended specification of an elementary data type of natural numbers is given, where the predicate \(Isgrz \) is like in Example 3.1 (the logic is under the 2-valued interpretation).

LSpec: Natural numbers

- kinds: nat
- sorts: \(s_{\text{Isgrz},1} \) of kind nat
- opns: 0 : \(\rightarrow \) nat
 - \(\text{Succ} : \text{nat} \rightarrow \text{nat} \)
 - \(\text{Add} : \text{nat nat} \rightarrow \text{nat} \)
- vars: \(x, y : \text{nat} \)

E:
- \(\text{Add}(x, 0) = x \)
- \(\text{Add}(x, \text{Succ}(y)) = \text{Succ}(\text{Add}(x, y)) \)

E_P:
- \(\text{Succ}(x) : s_{\text{Isgrz},1} \)
Let us assume now that we want to prove that the property

$$\varphi = (\forall x, y)(\text{Isgrz}(x) \lor \text{Isgrz}(y) \Rightarrow \text{Isgrz}(\text{Add}(x, y)))$$

holds in the abstract data type defined by $LSpec$. We consider an abstraction (Δ, α), where Δ consists in the equation

$$\text{Succ(Succ}(x) = \text{Succ}(0),$$

$\alpha(0) = \exists^{0,1}$, and $\alpha(1) = \forall$. This abstraction treats the number 0 as an individual, and all the natural numbers greater than 0 on the whole.

The data type for the abstraction has only two elements and it is straightforward to prove that φ holds. Since the abstraction is of type α, we deduce that φ holds true in the concrete data type.

Example 3.5 Consider the program Keeping-up [82] given in Figure 3.1. It consists of two processes P_1 and P_2. The process P_1 repeatedly increments x, provided that x does not exceed $y + 1$. Similarly, the process P_2 repeatedly increments y, provided that y does not exceed $x + 1$. The program satisfies the global safety property $\Box(|x - y| \leq 1)$ [82].

Below, an initial logically extended specification of this program is given. $Conv$ stands for “conversion” of boolean data to natural numbers, Leq stands for “less than or equal to”, and Add for “addition”. We use $t : s_{p,\bot,1}$ instead of $t : s_{p,\bot}$ and $t : s_{p,1}$, for any predicate symbol p.

$LSpec$: Keeping-up

<table>
<thead>
<tr>
<th>local x, y: integer where $x = y = 0$</th>
</tr>
</thead>
</table>
| $P_1 :: \begin{cases}
 l_0 : \text{loop forever do} \\
 l_1 : \text{await } x < y + 1 \\
 l_2 : x := x + 1
\end{cases}$ |
| $P_2 :: \begin{cases}
 m_0 : \text{loop forever do} \\
 m_1 : \text{await } y < x + 1 \\
 m_2 : y := y + 1
\end{cases}$ |

Figure 3.1: Program Keeping-up
$Leq : \mathbb{nat} \times \mathbb{nat} \rightarrow \mathbb{bool}$
$Add : \mathbb{nat} \times \mathbb{nat} \rightarrow \mathbb{nat}$
$(\cdot, \cdot) : \mathbb{nat} \times \mathbb{nat} \rightarrow \mathbb{couple}$

vars: $x, y : \mathbb{nat}$

E: $Conv(\text{False}) = \text{Zero}$
$Conv(\text{True}) = \text{Succ}(\text{Zero})$
$Add(x, \text{Zero}) = x$
$Add(x, \text{Succ}(y)) = \text{Succ}(Add(x, y))$
$Leq(\text{Zero}, x) = \text{True}$
$Leq(\text{Succ}(x), \text{Zero}) = \text{False}$
$Leq(\text{Succ}(x), \text{Succ}(y)) = Leq(x, y)$

E_P: $(0, 0) : s_{R, \bot, 1}$
$(Add(x, Conv(Leq(x, y))), y) : s_{R, \bot, 1} \text{ if } (x, y) : s_{R, \bot, 1}$
$(x, Add(y, Conv(Leq(y, x)))) : s_{R, \bot, 1} \text{ if } (x, y) : s_{R, \bot, 1}$
$(x, y) : s_{GS, \bot, 1} \text{ if } x = y$
$(x, y) : s_{GS, \bot, 1} \text{ if } x = y + \text{Succ}(0)$
$(x, y) : s_{GS, \bot, 1} \text{ if } x + \text{Succ}(0) = y$

Two three-valued predicates are used: R which is 1 for the couples (x, y) reachable from $(0, 0)$ by the program in Figure 3.1, and GS which describes “safe” couples. They are used to model the global safety property we want to prove. This property can be described by the formula

$\varphi = (\forall (x, y))((x, y) \text{ reachable } \Rightarrow (x = y \lor x = \text{Succ}(y) \lor y = \text{Succ}(x)))$

or, equivalently,

$\varphi = (\forall (x, y))(R(x, y) \Rightarrow GS(x, y))$.

By means of the equivalence

$(\forall x, y)(|\text{Succ}(x) - \text{Succ}(y)| \leq 1 \iff |x - y| \leq 1)$

we can derive the abstraction (Δ, α), where Δ consists in the equation

$(\text{Succ}(x), \text{Succ}(y)) = (x, y),$

$\alpha(0) = \forall, \alpha(\bot) = \exists^{\{0, \bot, 1\}}, \text{ and } \alpha(1) = \forall.$

The abstraction leads to three equivalence classes on the set of all reachable vectors from the initial vector $[(0, 0)]$, namely

$[(0, 0)], \ [(\text{Succ}(0), 0)], \ [(0, \text{Succ}(0))].$
Now, it is straightforward to check that φ holds true in the abstract system. As the abstraction uses the interpretation policy α, by Corollary 3.1, φ holds true in the original system.
Chapter 4
Abstraction of Dynamic Data Types

We present an abstraction technique for dynamic systems modeled by membership specifications [91] and specifications given in multi-valued CTL^*, which extends the approach in [111]. We have used membership specifications because they provide a suitable framework in which a very wide range of total and partial equational specification formalisms can be naturally represented. The membership algebra formalism is quite general and expressive, supports sub-sorts and overloading, and deals very well with errors and partiality. Moreover, membership algebra specifications can be efficiently implemented in systems like Maude [30]. The temporal logic we consider is under a multi-valued interpretation because there are many problems in software engineering, such as modeling systems with uncertain information or inconsistencies, for which 2-valued logic is insufficient.

The main advantages of the abstraction technique we propose in this chapter are:

- we use equationally specified abstractions as in [92, 84, 111];
- the logic used is multi-valued CTL^*. Moreover, maximal finite paths are allowed;
- we interpret the transition function of the abstract system and its atomic propositions in various ways getting many property preservation results. The interpretation in [92, 84] falls in one of these cases and, therefore, the approach in [92, 84] becomes a special case of ours;
- the preservation results were first developed on multi-valued Kripke structures and then translated to membership specifications. This fact
gives independence to these results allowing them to be used with various formalisms;

- we do not represent in our specifications the set of truth values by means of a kind as it was done in [92, 84]. The reason is that such a representation may not allow to distinguish between predicate interpretations in the abstract system or may lead to useless abstractions, as it was already remarked in [111].

4.1 Dynamic Data Types

There have been proposed several approaches for modeling dynamic systems by universal algebras (see [2] for a survey on this topic). All the approaches are based on predicates which are added somehow to the signature, but they work outside the algebra. In the approach we propose [45] we model dynamic systems (that can be described in terms of states and transitions) by membership algebras, a suitable logical framework in which a very wide range of total and partial equational specification formalisms can be naturally represented [91]. The membership algebra formalism is quite general and expressive, supports sub-sorts and overloading, and deals very well with errors and partiality. Moreover, membership algebra specifications can be efficiently implemented in systems like Maude [30]. We also add predicates to membership algebras as in the approaches mentioned in [2], but they work inside the algebra (including the transition predicate too). This makes the formalism algebra-logic work unitarily.

In order to model dynamic systems by membership algebras we consider logically extended algebras with a special kind \texttt{state}, a set of predicates of type \texttt{state} (defining properties of states), and a transition predicate of type \texttt{state state}.

Definition 4.1 A \textit{dynamic }K-kinded \textit{signature} is a K-kinded logically extended signature $\Omega_D = (\mathcal{B}, \leq, \Sigma, \Sigma_L, \pi)$, where:

- the set of basic kinds K' contains one distinguished kind \texttt{state};
- $\Sigma_{L,w} = \emptyset$, for any $w \in K'^+ \setminus \{\texttt{state, state state}\}$ and $\Sigma_{L,\texttt{state state}} = \{\rightarrow\}$. We have only one predicate \rightarrow of type \texttt{state state} called the \textit{transition predicate} and some predicates of type \texttt{state}, called \textit{atomic propositions}.

The kind associated to the logical type \texttt{state state} is denoted \texttt{step}.

\textbf{Note:} The kind \texttt{step} denotes the transition predicate.
As a dynamic signature is a particular case of logically extended signature, it should be thought as an ordinary membership signature that contains two distinguished kinds and some distinguished sorts; the predicate symbols are just used to specify the distinguished sorts.

Definition 4.2 Let $\Omega_D = (B, \leq', \Sigma, \Sigma_L, \pi)$ be a dynamic K-kinded signature. A **dynamic Ω_D-algebra** A is an Ω_D-logically extended membership algebra.

Homomorphisms, equivalences, and congruences of Ω_D-algebras are homomorphisms, equivalences, and congruences, respectively, of membership algebras.

Given a dynamic K-kinded signature Ω_D, define the set of CTL^* formulas over Ω_D as being the set of all CTL^* formulas over the set of atomic propositions of Ω_D. These formulas will be interpreted over the multi-valued Kripke structures associated to Ω_D-algebras. More precisely, given an Ω_D-algebra $A = (A, \Sigma^A, \Pi_A)$, the multi-valued Kripke structure associated to A, denoted $M(A)$, is the triple (Q, \rightarrow_A, L_A), where:

- $Q = A_{state}$;
- $\rightarrow_A(q, q')$ is the value of the predicate \rightarrow in A, over (q, q');
- $L_A(q, p)$ is the value of the predicate p in A, over q.

Given a dynamic Ω_D-algebra A and a CTL^* formula ϕ over Ω_D, define $I_A(\phi, \pi) = \left[\phi\right]_M(A)$ and $I_A(\phi, q) = \left[\phi\right]^M_A(q)$, for any path π and state q of $M(A)$.

Specifications of dynamic algebras are simply membership specifications where sentences for atomic propositions and for the transition predicate are separately given.

Definition 4.3 A **dynamic specification** is a tuple

$$DSp = (B, \leq', \Sigma, \Sigma_L, \pi, X, E, E_{AP}, E_-),$$

where:

1. $(B, \leq', \Sigma, \Sigma_L, \pi)$ is a dynamic K-kinded signature;
2. X is a disjoint family of variables, disjoint of Σ too;
3. E is a set of sentences over X and the membership signature $\Omega = (\Sigma, \pi)$ that does not contain the operator $(_, _)$ and the sorts $s_{p,b}$.

141
4. E_{AP} is a set of sentences of the form:

 (a) $t : s_{p,b}$ if C;

 (b) $x : s_{p,b_1}$ if $x : s_{p,b_2},$

 where t is a term of kind `state` over $\Omega = (\Sigma, \pi)$ and X, x is a variable of kind `state`, p is an atomic proposition, $b, b_1, b_2 \in B - \{0'\}$ with $b_1 \prec b_2$, and C is a set of atomic formulas over $\Omega = (\Sigma, \pi)$ and X. Moreover, E_{AP} contains exactly one sentence of type (4b) for every p and $b_1 \preceq b_2$.

5. E_{-} is a set of sentences of the form:

 (a) $(t, t') : s_{\rightarrow,b}$ if C;

 (b) $x : s_{\rightarrow,b_1}$ if $x : s_{\rightarrow,b_2},$

 where (t, t') is a term of kind `step`, x is a variable of kind `step`, and C is a set of atomic formulas, all of them over $\Omega = (\Sigma, \pi)$ and X. Moreover, E_{-} contains exactly one sentence of type (5b) for every $b_1 \preceq b_2$.

The sentences defining the atomic propositions and the transition predicate should satisfy the following consistency requirement: for any predicate $p \in \Sigma_L$ and $b_1, b_2 \in B - \{0'\}$ such that there exist $x \in B$ with $x \prec b_1$ and $x \prec b_2$, there exist no term t with $E \cup E_{AP} \cup E_{-} \vdash t : s_{p,b_1}$ and $E \cup E_{AP} \cup E_{-} \vdash t : s_{p,b_2}$.

Definition 4.4 Let $DSp = (B, \preceq', \Sigma, \Sigma_L, \pi, X, E, E_{AP}, E_{-})$ be a dynamic specification. The initial semantics of DSp is the class $\mathcal{M}(DSp)$ of all Ω_D-algebras isomorphic to $T_{\Omega_D,E'},$ where $E' = E \cup E_{AP} \cup E_{-}$. $\mathcal{M}(DSp)$ is called an abstract dynamic data type.

Since dynamic specifications are membership specifications, we have:

Proposition 4.1 Let $DSp = (B, \preceq', \Sigma, \Sigma_L, \pi, X, E, E_{AP}, E_{-})$ be a dynamic specification. Then, $T_{\Omega_D,E'},$ where $E' = E \cup E_{AP} \cup E_{-}$, is an initial algebra in the initial semantics of DSp.

Example 4.1 The system in Figure 4.1 consists of three processes, P_1, P_2, and P_3, which share a memory cell z and run in parallel. P_1 and P_2 may only write z and their access to z is mutually excluded (by a bakery-like algorithm [111]). P_1 increments z by 2 and P_2 increments z by 3. P_3 may only read z and take an action according to a given value m which is a multiple of 2 and 3. It is known that all readings of values less than or equal to m of a memory cell z are correct. If $z < m$, then P_3 does not take any action, and
if \(z = m \), then \(P_3 \) definitely sets \(b \) to 1. However, if \(z > m \), then \(P_3 \) may perform an erroneous reading. In this case, it \textit{may or may not set} \(b \) to 1. To model this situation, we use the truth value \(\perp \) from Kleene’s three valued interpretation. The statement “\textit{may <statement> end_may}” in Figure 4.1 specifies this last case.

A counter \(t \) is incremented every time \(P_3 \) reads correctly the memory (“\(t := ? \)” in Figure 4.1 means that \(t \) is initially uninitialized). These three processes may have different writing/reading speeds and, therefore, the number of readings performed by \(P_3 \) may be arbitrarily large in comparison with the number of writings performed by \(P_1 \) and \(P_2 \). As the process \(P_3 \) does not take any action for \(z < m \), we do not know the exact number of readings. For this reason, when \(z \) becomes greater or equal to \(m \), \(P_3 \) generates a random number \(t \) (which simulates \(t \) possible readings for \(z < m \)) and then increments it accordingly.

We model this system by a 3-valued Kripke structure whose states are 9-dimensional vectors \((x, x', y, y', a, z, z', b, t)\) with the following meaning:

- \(x \) and \(y \) are the corresponding numbers of \(P_1 \) and \(P_2 \), respectively;

- \(x' \) gives the local state of \(P_1 \): \(x' \) is 0 if \(x = 0 \), it is 1 if \(x > 0 \) and \(P_1 \) is not writing \(z \), and it is 2 if \(x > 0 \) and \(P_1 \) is writing \(z \). \(y' \) has a similar meaning;

- \(a \) is a flag whose value is 0 when \(x = y \), 1 when \(x > y \), and 2 when \(x < y \);

\begin{verbatim}
local x, y, z, t, b: integer
x := 0; y := 0; z := 0; b := 0; t := ?
P1 ::
1: x := y + 1;
2: loop forever while y ≠ 0 ∧ x > y;
3: z := z + 2;
4: x := 0;
P2 ::
1: y := x + 1;
2: loop forever while x ≠ 0 ∧ y ≥ x;
3: z := z + 3;
4: y := 0;
P3 ::
1: loop forever while z < m;
2: if t :=? then random(t);
3: if z = m then b := 1; t := t + 1;
 else may b := 1; t := t + 1 end_may;
\end{verbatim}

Figure 4.1: A malfunction system
- z denotes the memory content;
- z' is a flag whose value is 0 when $z < m$, 1 when $z = m$, and 2 when $z > m$;
- b denotes the flag that it is set to 1 by P_3 when $z = m$;
- t stands for how many times P_3 reads the memory z.

A fragment of the Kripke structure associated to this system for $m = 6$ is represented in Figure 4.2 ($R(q, q') = 1$ is represented by an arrow from q to q', while $R(q, q') = \bot$ is represented by an arrow from q to q' labeled by \bot).

![Figure 4.2: A fragment of the Kripke structure in Example 4.1](image)

We will discuss the truth value of two LTL formulas under Kleene’s three-valued interpretation:
• “$F(t \geq 0) \Rightarrow F(b = 1)$”. This formula is true on any path which starts in $(0, 0, 0, 0, 0, 0, 0, 0, ?)$ and passes through $(0, 0, 0, 0, 0, 9, 1, 1, 5)$, and it has the truth value \bot on any path which starts in $(0, 0, 0, 0, 0, 0, 0, 0, ?)$ and passes through $(0, 0, 0, 0, 0, 7, 2, 1, 11)$;

• “$F(t \geq 0) \Rightarrow F(t = 1)$”. This formula interprets to 0 on any path which starts in $(0, 0, 0, 0, 0, 0, 0, 0, ?)$ and passes through the state $(0, 0, 0, 0, 0, 7, 2, 1, 11)$.

The sorts used to specify them are $s_{p,\bot}, s_{p,1}, s_{q,\bot}, s_{q,1}, s_{r,\bot}$, and $s_{r,1}$. The properties above can now be restated as $Fp \Rightarrow Fq$ and $Fp \Rightarrow Fr$.

In order to draw up a dynamic specification for this system we will make use of the following notations:

• we write 0 instead of Zero, 1 instead of Succ(Zero) etc.;

• we use $t \xrightarrow{1} t'$ ($t \xrightarrow{\bot} t'$) instead of $(t, t'): s_{\rightarrow,1}$ ($(t, t'): s_{\rightarrow,\bot}$);

• we use $t \xrightarrow{1/\bot} t'$ if C whenever both $t \xrightarrow{1} t'$ if C and $t \xrightarrow{\bot} t'$ if C are elements of the specification.

DSpec: A Malfunction System

kinds: nat?

state

sorts: nat of kind nat?

$s_{p,\bot}, s_{p,1}, s_{q,\bot}, s_{q,1}, s_{r,\bot}, s_{r,1}$ of kind state

opns: $\text{Succ}: \text{nat}? \rightarrow \text{nat}?

$(\ldots, \ldots, \ldots, \ldots, \ldots, \ldots): (\text{nat}?)^9 \rightarrow \text{state}$
vars: \(x, x', y, y', z, z', a, b, t : \text{nat}\)

\(u : \text{state}\)

\(v : \text{step}\)

E: sentences for \(\text{nat}\)

E_AP:

\((x, x', y, y', a, z, z', b, t) : s_{p, \bot}\)

\((x, x', y, y', a, z, z', 1, t) : s_{q, \bot}\)

\((x, x', y, y', a, z, z', b, ?) : s_{r, \bot}\)

\((x, x', y, y', a, z, z', b, t) : s_{r, \bot} \text{ if } t = 1\)

\((x, x', y, y', a, z, z', b, t) : s_{p, 1} \text{ if } t : \text{nat}\)

\((x, x', y, y', a, z, z', 1, t) : s_{q, 1}\)

\((x, x', y, y', a, z, z', b, t) : s_{r, 1} \text{ if } t = 1\)

\(u : s_{p, \bot} \text{ if } u : s_{p, 1}\)

\(u : s_{q, \bot} \text{ if } u : s_{q, 1}\)

\(u : s_{r, \bot} \text{ if } u : s_{r, 1}\)

\(E_-: (0, 0, 0, 0, 0, 0, 0, ?) \xrightarrow{1/1} (1, 1, 1, 1, 0, 0, 0, 0)\)

\((0, 0, y, y', a, z, z', b, t) \xrightarrow{1/1} (\text{Succ}(y), 1, y, y', 1, z, z', b, t)\)

\((x, x', 0, 0, a, z, z', b, t) \xrightarrow{1/1} (x, x', \text{Succ}(x), 1, 2, z, z', b, t)\)

\((1, 1, 1, 1, 0, 0, 0, 0, ?) \xrightarrow{1/1} (1, 2, 1, 1, 0, 0, 0, 0, ?)\)

\((x, 1, y, 1, 1, z, z', b, t) \xrightarrow{1/1} (x, 2, y, 1, 1, z, z', b, t)\)

\((x, 1, y, 2, z, z', b, t) \xrightarrow{1/1} (x, 1, y, 2, 2, z, z', b, t)\)

\((0, 0, y, 1, 2, z, z', b, t) \xrightarrow{1/1} (0, 0, y, 2, 2, z, z', b, t)\)

\((x, 1, 0, 0, 1, 1, z, z', b, t) \xrightarrow{1/1} (x, 2, 0, 0, 1, z, z', b, t)\)

\((x, 2, y, y', a, z, 0, 0, ?) \xrightarrow{1/1} (0, 0, y, y', 2, \text{Succ}(\text{Succ}(z)), 0, 0, ?)\)

if \(\text{Succ}(\text{Succ}(z)) = 2, y : \text{nat}\)

...
if Succ(Succ(z)) = 2

\[(x, 2, 0, 0, 1, z, 0, 0, ?) \xrightarrow{1/1} (0, 0, 0, 0, 0, Succ(Succ(z)), 0, 0, ?) \]
\[if \ Succ(Succ(z)) = m - 1 \]

\[(x, 2, 0, 0, 1, z, 0, b, t) \xrightarrow{1/1} (0, 0, 0, 0, 0, Succ(Succ(z)), 1, b, t) \]
\[if \ Succ(Succ(z)) = m \]

\[(x, 2, 0, 0, 1, z, 0, b, t) \xrightarrow{1/1} (0, 0, 0, 0, 0, Succ(Succ(z)), 2, b, t) \]
\[if \ Succ(z) = m \]

\[(x, 2, 0, 0, 1, z, 1, b, t) \xrightarrow{1/1} (0, 0, 0, 0, 0, Succ(Succ(z)), 2, b, t) \]
\[(x, 2, 0, 0, 1, z, 2, b, t) \xrightarrow{1/1} (0, 0, 0, 0, 0, Succ(Succ(z)), 2, b, t) \]

\[(x, x', y, 2, a, z, 0, 0, ?) \xrightarrow{1/1} (x, x', 0, 0, 1, Succ(Succ(Succ(z))), 0, 0, ?) \]
\[if \ Succ(Succ(Succ(z))) = 3, \ x : \text{nat} \]

\[(x, x', y, 2, a, z, 0, 0, ?) \xrightarrow{1/1} (x, x', 0, 0, 1, Succ(Succ(Succ(z))), 0, 0, ?) \]
\[if \ Succ(Succ(Succ(z))) = m - 1, \ x : \text{nat} \]

\[(x, x', y, 2, a, z, 0, b, t) \xrightarrow{1/1} (x, x', 0, 0, 1, Succ(Succ(Succ(z))), 1, b, t) \]
\[if \ Succ(Succ(Succ(z))) = m, \ x : \text{nat} \]

\[(x, x', y, 2, a, z, 0, b, t) \xrightarrow{1/1} (x, x', 0, 0, 1, Succ(Succ(Succ(z))), 2, b, t) \]
\[if \ Succ(Succ(Succ(z))) = m, \ x : \text{nat} \]

\[(x, x', y, 2, a, z, 1, b, t) \xrightarrow{1/1} (x, x', 0, 0, 1, Succ(Succ(Succ(z))), 2, b, t) \]
\[if \ x : \text{nat} \]

\[(x, x', y, 2, a, z, 2, b, t) \xrightarrow{1/1} (x, x', 0, 0, 1, Succ(Succ(Succ(z))), 2, b, t) \]
\[if \ x : \text{nat} \]

\[(0, 0, y, 2, 2, z, 0, 0, ?) \xrightarrow{1/1} (0, 0, 0, 0, 0, Succ(Succ(Succ(z))), 0, 0, ?) \]
\[if \ Succ(Succ(Succ(z))) = 3 \]

\[(0, 0, y, 2, 2, z, 0, 0, ?) \xrightarrow{1/1} (0, 0, 0, 0, 0, Succ(Succ(Succ(z))), 0, 0, ?) \]
\[if \ Succ(Succ(Succ(z))) = m - 1 \]

\[(0, 0, y, 2, 2, z, 0, b, t) \xrightarrow{1/1} (0, 0, 0, 0, 0, Succ(Succ(Succ(z))), 1, b, t) \]
\[if \ Succ(Succ(Succ(z))) = m \]

\[(0, 0, y, 2, 2, z, 0, b, t) \xrightarrow{1/1} (0, 0, 0, 0, 0, Succ(Succ(Succ(z))), 2, b, t) \]
\[if \ Succ(Succ(z)) = m \]

\[(0, 0, y, 2, 2, z, 0, b, t) \xrightarrow{1/1} (0, 0, 0, 0, 0, Succ(Succ(Succ(z))), 2, b, t) \]

147
\[
\text{if } \text{Succ}(z) = m \\
(0, 0, y, 2, 2, z, 1, b, t) \xrightarrow{1/1} (0, 0, 0, 0, \text{Succ}(\text{Succ}(\text{Succ}(z))), 2, b, t) \\
(0, 0, y, 2, 2, z, 2, b, t) \xrightarrow{1/1} (0, 0, 0, 0, \text{Succ}(\text{Succ}(\text{Succ}(z))), 2, b, t) \\
(x, x', y, y', a, z, 1, 0, ?) \xrightarrow{1/1} (x, x', y, y', a, z, 1, 1, t) \\
(x, x', y, y', a, z, 2, 0, ?) \xrightarrow{1/1} (x, x', y, y', a, z, 2, 1, t) \\
(x, x', y, y', a, z, 2, 1, t) \xrightarrow{v} (x, x', y, y', a, z, 2, 1, \text{Succ}(t))
\]

4.2 Abstractions and Preservation Results

In the previous section, a multi-valued Kripke structure \(M(\mathcal{A})\) was associated to an \(\Omega_D\)-algebra \(\mathcal{A}\). If we perform an abstraction on \(\mathcal{A}\) driven by a congruence \(\rho\) and two interpretation policies \(\alpha_R\) and \(\alpha_L\), then the Kripke structure associated to the abstraction is obtained by applying \(\rho\) to \(M(\mathcal{A})\) and by reinterpreting the transition predicate according to \(\alpha_R\) and the atomic propositions according to \(\alpha_L\). We can use the relationships between the two Kripke structures established in Section 2.3 in order to obtain preservation results for the corresponding dynamic data types.

Definition 4.5 Let \(\Omega_D = (\mathcal{B}, \leq', \Sigma, \Sigma_L, \pi)\) be a dynamic signature, \(\mathcal{A} = (A, \Sigma^A, \Pi_A)\) an \(\Omega_D\)-algebra, \(\rho\) a congruence on \(\mathcal{A}\), and \(\alpha_R, \alpha_L\) two interpretation policies over \(\mathcal{B}\). The \((\alpha_R, \alpha_L)\)-abstraction of \(\mathcal{A}\) by \(\rho\) is an \(\Omega_D\)-algebra \(\mathcal{B} = (A/\rho, \Sigma^A/\rho, \Pi')\) such that:

- \(\Pi'(s) = \{[a]_{\rho(s)} | [a]_{\rho(s)} \cap \Pi_A(s) \neq \emptyset\}\), for any sort \(s\) not representing some predicate;

- \([a]_{\rho} \in \Pi'(s_{\rightarrow b})\), for some \(a \in A_{\text{step}}\) and \(b \in B\), if there exists \(b' \in B\) such that \(b \leq' b'\) and \(b'\) is the value of \(\rightarrow\) over \([a]_\rho\) according to \(\alpha_R\);

- \([a]_{\rho} \in \Pi'(s_{p,b})\), for some \(p \in \Sigma_{L,\text{state}}\), \(a \in A_{\text{state}}\) and \(b \in B\), if there exists \(b' \in B\) such that \(b \leq' b'\) and \(b'\) is the value of \(p\) over \([a]_\rho\) according to \(\alpha_L\).

Clearly, abstractions of dynamic data types correspond to abstractions of multi-valued Kripke structures.

Theorem 4.1 Let \(\Omega_D = (\mathcal{B}, \leq', \Sigma, \Sigma_L, \pi)\) be a dynamic signature and \(\mathcal{A} = (A, \Sigma^A, \Pi_A)\) an \(\Omega_D\)-algebra. If \(\mathcal{B}\) is an \((\alpha_R, \alpha_L)\)-abstraction of \(\mathcal{A}\) by \(\rho\), then \(M(\mathcal{B})\) is an \((\alpha_R, \alpha_L)\)-abstraction of \(M(\mathcal{A})\) by \(\rho\).
\textbf{Proof} \hspace{1em} Directly from Definition 2.21 and 4.5. \hfill \Box

Theorem 4.1 permits us to extend all the preservation results that hold for abstractions of multi-valued Kripke structures to abstractions of dynamic data types.

Theorem 4.2 Let $\Omega_D = (B, \le', \Sigma, \Sigma_L, \pi)$ be a dynamic signature, $D \subseteq B$, B an (α_R, α_L)-abstraction of an Ω_D-algebra A by a congruence ρ, and ϕ and ψ be a state and, respectively, a path mv-abstraction of an Ω-state. If

1. $(\alpha_R(b) = \exists^S \Rightarrow S \cap D = \emptyset) \land (\alpha_R(b) = \exists^S_a \Rightarrow S \cap D = b \downarrow \cap D = b \uparrow \cap D = \emptyset)$, for any $b \in B - D$;
2. $(\alpha_L(d) = \exists^S \Rightarrow S \subseteq D) \land (\alpha_L(d) = \exists^S_a \Rightarrow S \cup d \downarrow \cup d \uparrow \subseteq D)$, for any $d \in D$;
3. D is closed under \le and glb, and backward closed under lub,

then

$$(\forall q \in A_{\text{state}})(\mathcal{I}_B(\phi, [q]) \in D \Rightarrow \mathcal{I}_A(\phi, q) \in D)$$

and

$$(\forall \pi_2 \in \Pi(M(B), D))(\mathcal{I}_B(\psi, \pi_2) \in D \Rightarrow (\forall \pi_1 \in C_{M(A)}(\pi_2))(\mathcal{I}_A(\psi, \pi_1) \in D)).$$

\textbf{Proof} \hspace{1em} Directly from Theorem 2.15 and Remark 2.4. \hfill \Box

Theorem 4.3 Let $\Omega_D = (B, \le', \Sigma, \Sigma_L, \pi)$ be a dynamic signature, $D \subseteq B$, $b \in B$, B an (α_R, α_L)-abstraction of an Ω_D-algebra A by a congruence ρ, and ϕ and ψ be a state and, respectively, a path mv-abstraction of an Ω-state. If

1. $(\alpha_R(b) = \exists^S \Rightarrow S \cap D = \emptyset) \land (\alpha_R(b) = \exists^S_a \Rightarrow S \cap D = b \downarrow \cap D = b \uparrow \cap D = \emptyset)$, for any $b \in B - D$;
2. $(\alpha(d) = \exists^S \Rightarrow S \subseteq b \uparrow) \land (\alpha(d) = \exists^S_a \Rightarrow S \cup d \downarrow \cup d \uparrow \subseteq b \uparrow)$, for any $\alpha \in \{\alpha_R, \alpha_L\}$ and $d \geq b$;
3. for any subset B' of B, $\forall B' \geq b$ implies $b' \geq b$ for some $b' \in B'$,

then

$$(\forall q \in A_{\text{state}})(\mathcal{I}_B(\phi, [q]) \geq b \Rightarrow \mathcal{I}_A(\phi, q) \geq b)$$

and

$$(\forall \pi_2 \in \Pi(M(B), D))(\mathcal{I}_B(\psi, \pi_2) \geq b \Rightarrow (\forall \pi_1 \in C_{M(A)}(\pi_2))(\mathcal{I}_A(\psi, \pi_1) \geq b)).$$

149
Proof Directly from Theorem 2.16 and Remark 2.5.

The preservation results for dynamic data types over Kleene’s three-valued interpretation (\mathcal{B}_3 denotes the corresponding truth algebra) from [46] are obtained as particular cases. The following interpretation policies are considered in [46]:

- $\alpha_1(0) = \forall$, $\alpha_1(\perp) = \exists^{\{0, \perp, 1\}}$ and $\alpha_1(1) = \forall$;
- $\alpha_2(0) = \exists^{\{0, \perp, 1\}}$, $\alpha_2(\perp) = \exists^{\{\perp, 1\}}$ and $\alpha_2(1) = \forall$;
- $\alpha_3(0) = \forall$, $\alpha_3(\perp) = \exists^{\{0, \perp\}}$ and $\alpha_3(1) = \exists^{\{0, \perp, 1\}}$.

Corollary 4.1 Let $\Omega_D = (\mathcal{B}_3, \leq', \Sigma, \Sigma_L, \pi)$ be a dynamic signature, $D = \{\perp, 1\}$, \mathcal{B} an (α_3, α_2)-abstraction of an Ω_D-algebra \mathcal{A} by a congruence ρ, and ϕ an mv-LTL_+ formula over $\Sigma_{L,\text{state}}$. Then,

$$\forall q \in A_{\text{state}})(\mathcal{I}_B(\phi, [q]) \geq \perp \Rightarrow \mathcal{I}_A(\phi, q) \geq \perp).$$

Proof Directly from Theorem 4.3. The second condition must be satisfied only for $\alpha = \alpha_L$ because $D = \{\perp, 1\}$. □

Corollary 4.2 Let $\Omega_D = (\mathcal{B}_3, \leq', \Sigma, \Sigma_L, \pi)$ be a dynamic signature, $D = \{\perp, 1\}$, \mathcal{A} an Ω_D-algebra, and ϕ an mv-LTL_+ formula over $\Sigma_{L,\text{state}}$. We have the following:

- if \mathcal{B} is an (α_3, α_2)- or an (α_3, α_1)-abstraction of \mathcal{A} by a congruence ρ and $M(\mathcal{A})$ does not contain any arcs labeled by \perp, then

 $$\forall q \in A_{\text{state}})(\mathcal{I}_B(\phi, [q]) = 1 \Rightarrow \mathcal{I}_A(\phi, q) = 1);$$

- if \mathcal{B} is an (α_1, α_2)- or an (α_1, α_1)-abstraction of \mathcal{A} by a congruence ρ, then

 $$\forall q \in A_{\text{state}})(\mathcal{I}_B(\phi, [q]) = 1 \Rightarrow \mathcal{I}_A(\phi, q) = 1);$$

Proof The first part follows from Corollary 2.10 and the second from Theorem 4.3. □

Theorem 4.4 Let $\Omega_D = (\mathcal{B}, \leq', \Sigma, \Sigma_L, \pi)$ be a dynamic signature, $D \subseteq B$, $b \in B$, \mathcal{B} an (α_R, α_L)-abstraction of an Ω_D-algebra \mathcal{A} by a congruence ρ, and ϕ and ψ be a state and, respectively, a path mv-$\forall CTL^*_+ \text{ formula over } \Sigma_{L,\text{state}}$. If

1. $(\alpha_R(b) = \exists \Rightarrow S \subseteq D) \land (\alpha_R(b) = \exists \Rightarrow S \cup b \downarrow \cup b \uparrow \subseteq D)$, for any $b \in D$;

150
2. \((\alpha(d) = \exists^S \Rightarrow S \subseteq b \downarrow) \land (\alpha(d) = \exists^S_a \Rightarrow S \cup d \downarrow \cup d \uparrow \subseteq b \downarrow)\), for any \(\alpha \in \{\alpha_R, \alpha_L\}\) and \(d \leq b\);

3. for any subset \(B'\) of \(B\), \(\forall B' \leq b\) implies \(b' \leq b\) for some \(b' \in B'\),

then

\[(\forall q \in A_{\text{state}})(I_B(\phi, [q]) \leq b \Rightarrow I_A(\phi, q) \leq b)\]

and

\[(\forall \pi_2 \in \Pi(M(B), D))(I_B(\psi, \pi_2) \leq b \Rightarrow (\forall \pi_1 \in C_M(\pi_2))(I_A(\psi, \pi_1) \leq b))\).

Proof Directly from Theorem 2.18 and Remark 2.6.

In the following, we give another preservation result from [46] which can be obtained as a particular case.

Corollary 4.3 Let \(\Omega_D = (B_3, \leq', \Sigma, \Sigma_L, \pi)\) be a dynamic signature, \(D = \{\bot, 1\}\), \(A\) an \(\Omega_D\)-algebra, and \(\phi\) an mv-LTL\(^+\) formula over \(\Sigma_{\text{state}}\). We have the following:

- if \(B\) is an \((\alpha_2, \alpha_3)\)- or an \((\alpha_2, \alpha_1)\)-abstraction of \(A\) by a congruence \(\rho\) then
 \[\forall q \in A_{\text{state}})(I_B(\phi, [q]) = 0 \Rightarrow I_A(\phi, q) = 0);\]

- if \(B\) is an \((\alpha_1, \alpha_3)\)- or an \((\alpha_1, \alpha_1)\)-abstraction of \(A\) by a congruence \(\rho\) and \(\phi \in \text{LTL}_+\) then
 \[\forall q \in A_{\text{state}})(I_B(\phi, [q]) = 0 \Rightarrow I_A(\phi, q) = 0);\]

Proof The first part follows from Theorem 4.4 while the second from Corollary 2.12.

Theorem 4.5 Let \(\Omega_D = (B, \leq', \Sigma, \Sigma_L, \pi)\) be a dynamic signature, \(D \subseteq B\), \(b \in B\), \(B\) an \((\alpha_R, \alpha_L)\)-abstraction of an \(\Omega_D\)-algebra \(A\) by a congruence \(\rho\), and \(\phi\) and \(\psi\) be a state and, respectively, a path mv-\(\exists\text{CTL}_+^*\) formula over \(\Sigma_{\text{state}}\). If

1. \((\alpha_R(b) = \exists^S \Rightarrow S \subseteq D) \land (\alpha_R(b) = \exists^S_a \Rightarrow S \cup b \downarrow \cup b \uparrow \subseteq D)\), for any \(b \in D\);
2. \((\alpha(d) = \exists^S \Rightarrow S \subseteq b \uparrow) \land (\alpha(d) = \exists^S_a \Rightarrow S \cup d \downarrow \cup d \uparrow \subseteq b \uparrow)\), for any \(\alpha \in \{\alpha_R, \alpha_L\}\) and \(d \geq b\);
3. for any subset \(B'\) of \(B\), \(\forall B' \geq b\) implies \(b' \geq b\) for some \(b' \in B'\),

151
then

\[(\forall q \in A_{\text{state}})(\mathcal{I}_B(\phi, [q]) \geq b \Rightarrow I_A(\phi, q) \geq b)\]

and

\[(\forall \pi_2 \in \Pi(M(B), D))(\mathcal{I}_B(\psi, \pi_2) \geq b \Rightarrow (\forall \pi_1 \in C_{M(A)}(\pi_2))(\mathcal{I}_A(\psi, \pi_1) \geq b)).\]

Proof Directly from Theorem 2.19 and Remark 2.7.

Theorem 4.6 Let \(\Omega_D = (B, \leq', \Sigma, \Sigma_L, \pi) \) be a dynamic signature, \(D \subseteq B \), \(b \in B \), \(B \) an \((\alpha_R, \alpha_L)\)-abstraction of an \(\Omega_D \)-algebra \(A \) by a congruence \(\rho \), and \(\phi \) and \(\psi \) be a state and, respectively, a path mv-\(\exists \text{CTL}_+ \) formula over \(\Sigma_{L, \text{state}} \). If

1. \((\alpha_R(b) = \exists^S \Rightarrow S \cap D = \emptyset) \land (\alpha_R(b) = \exists^S \Rightarrow S \cap D = b \downarrow \cap D = b \uparrow \cap D = \emptyset) \), for any \(b \in B - D \);
2. \((\alpha(d) = \exists^S \Rightarrow S \subseteq b \downarrow) \land (\alpha(d) = \exists^S \Rightarrow S \cup d \downarrow \cup d \uparrow \subseteq b \downarrow) \), for any \(\alpha \in \{\alpha_R, \alpha_L\} \) and \(d \leq b \);
3. for any subset \(B' \) of \(B \), \(\land B' \leq b \) implies \(b' \leq b \) for some \(b' \in B' \),

then

\[(\forall q \in A_{\text{state}})(\mathcal{I}_B(\phi, [q]) \leq b \Rightarrow I_A(\phi, q) \leq b)\]

and

\[(\forall \pi_2 \in \Pi(M(B), D))(\mathcal{I}_B(\psi, \pi_2) \leq b \Rightarrow (\forall \pi_1 \in C_{M(A)}(\pi_2))(\mathcal{I}_A(\psi, \pi_1) \leq b)).\]

Proof Directly from Theorem 2.20 and Remark 2.8.

Example 4.2 We illustrate the use of abstraction on the system in Example 4.1. Assume that this system is modeled by a dynamic algebra \(A \). We consider \(\rho \) a congruence on \(A \) such that:

\[(x_1, x'_1, y_1, y'_1, a_1, z_1, z'_1, b_1, t_1) \rho_{\text{state}} (x_2, x'_2, y_2, y'_2, a_2, z_2, z'_2, b_2, t_2) \]

if and only if

\[z'_1 = z'_2 \land b_1 = b_2 \land (t_1 = t_2 = ? \lor t_1 = t_2 = 0 \lor t_1 = t_2 = 1 \lor t_1, t_2 > 1). \]

Let \(B \) be the \((\alpha_3, \alpha_2)\)-abstraction of \(A \) induced by \(\rho \), where

- \(\alpha_2(0) = \exists^{\{0, \perp, 1\}}, \alpha_2(\perp) = \exists^{\{\perp, 1\}} \) and \(\alpha_2(1) = \forall; \)
- \(\alpha_3(0) = \forall, \alpha_3(\perp) = \exists^{\{0, \perp\}} \) and \(\alpha_3(1) = \exists^{\{0, \perp, 1\}}. \)
Figure 4.3: The Kripke structure for the abstraction in Example 4.2

Notice that $M(B)$ contains only 24 states and hence it can be easily model checked (Figure 4.2 depicts only the reachable states). For example, one can easily see that the truth value of the formula $Fp \Rightarrow Fq$ from Example 4.1 evaluates to \bot in the abstract system and, therefore, it evaluates to 1 or \bot in the original system A by Corollary 4.1.

Now, we show how to compute multi-valued abstractions of dynamic data types from 2-valued abstractions of dynamic data types. The S'-congruences from Definition 3.4 can be applied as well on Ω_D-algebras which are particular cases of membership algebras. The quotients of dynamic algebras by S'-congruences can be viewed as 2-valued abstractions because the redefinitions of the sorts in the quotient are done only by under-approximation and over-approximation.

Let $\Omega_D = (B, \leq', \Sigma, \Sigma_L, \pi)$ be a dynamic signature, A an Ω_D-algebra, and ρ a congruence on A such that \leq' is appropriate for ρ. Moreover, let S'_{AP} be a set of sorts representing atomic propositions such that if $s_{p,b} \in S'$, for some $p \in \Sigma_L$, state, then

$$(\forall p \in \Sigma_L, \text{state})(s_{p,b} \in S'),$$

and S'_-, a set of sorts from the set $\{ s_{-,b} | b \in B \}$. We require that S'_{AP} and S'_- are appropriate for ρ, which is defined similarly to the appropriateness of P for ρ from Definition 2.5. We will denote by $B_{AP,S'}$ the set of truth values b for which the sorts $s_{p,b}$ with $p \in \Sigma_L$, state are in S'_{AP} and by $B_{-,S'}$ the set of truth values b for which the sort $s_{-,b}$ is in S'.

We can prove that the quotient of A by the S'-congruence (ρ, S'), where $S' = S'_{AP} \cup S'_-$, equals the (α_R, α_L)-abstraction of A by ρ, where α_R and α_L are obtained using the eight rules from Theorem 2.8 in which we replace B_P with $B_{-,S'}$ and $B_{AP,S'}$, respectively.
Example 4.3 The \((\alpha_2, \alpha_1)\)-abstraction of \(A\) by \(\rho\) equals the quotient of \(A\) by \((\rho, S')\), where

\[
S' = \{ s_{p,\bot}, s_{p,1}, s_{q,\bot}, s_{q,1}, s_{r,\bot}, s_{r,1} \}.
\]

Naturally, abstractions can be applied to abstract dynamic data types \(M(DSp)\), where \(DSp\) is a dynamic specification, by means of a representative of them, and \(T_{\Omega_D, E \cup E_{AP} \cup E}\) is a suitable choice. The abstractions are specified by equations and, consequently, they are \textit{equationally specified abstractions}.

Let \(DSp\) be a dynamic specification. The value of a predicate \(p\) over a term \(t\) is the maximum truth value \(b \in B\) (with respect to \(\leq'\)) for which \(E \cup E_{AP} \cup E \vdash t: s_{p,b}\), or \(0'\), if such a \(b\) does not exist.

Definition 4.6 Let \(DSp = (B, \leq', \Sigma, \Sigma_L, \pi, X, E, E_{AP}, E\rightarrow)\) be a dynamic membership specification. An abstraction of \(DSp\) is a triple \(\Delta = (A, \alpha_R, \alpha_L)\), where \(A\) is a set of sentences over \(\Omega\) and \(X\), and \(\alpha_R\) and \(\alpha_L\) are interpretation policies over \(B\).

Definition 4.7 Let \(DSp = (B, \leq', \Sigma, \Sigma_L, \pi, X, E, E_{AP}, E\rightarrow)\) be a dynamic membership specification and \(\Delta = (A, \alpha_R, \alpha_L)\) an abstraction of it. The \textit{dynamic membership specification for the abstraction of \(DSp\) by \(\Delta\)} is \(DSp_\Delta = (B, \leq', \Sigma, \Sigma_L, \pi, X, E \cup A, E_{AP}^{\Delta}, E\rightarrow^{\Delta})\), where:

- \(E \cup A \cup E_{AP}^{\Delta} \vdash t: s_{p,b}\) iff the value of \(p\) over the set of terms \(\{ t' \mid E \cup A \vdash t = t' \}\) according to \(\alpha_L\) is greater than or equal to \(b\) (with respect to \(\leq'\)).

- \(E \cup A \cup E\rightarrow^{\Delta} \vdash t: s_{p,b}\) iff the value of \(\rightarrow\) over the set of terms \(\{ t' \mid E \cup A \vdash t = t' \}\) according to \(\alpha_R\) is greater than or equal to \(b\) (with respect to \(\leq'\)).

Now, from the definition of \(DSp_\Delta\) we can derive the following result which states that the initial semantics of \(DSp_\Delta\) contains dynamic algebras that are \((\alpha_R, \alpha_L)\)-abstractions of the dynamic algebras from the initial semantics of \(DSp\).

Proposition 4.2 Let \(DSp, \Delta\) and \(DSp_\Delta\) be as above. Let \(\rho\) be the congruence on \(T_{\Omega_D, E'}\), where \(E' = E \cup E_{AP} \cup E\rightarrow\), defined by:

\[
[t] =_{E'_{k}} \rho \leftrightarrow [t'] =_{E'_{k}} \leftrightarrow E'' \vdash t = t', \text{ for any } t, t' \in (T_{\Omega})_{k},
\]

where \(E'' = E \cup A \cup E_{AP}^{\Delta} \cup E\rightarrow^{\Delta}\). Then, \(T_{\Omega, E''}\) is the \((\alpha_R, \alpha_L)\)-abstraction of \(T_{\Omega, E'}\) by \(\rho\).
Example 4.4 We exemplify the abstraction technique above on the abstract dynamic data type induced by the specification $DSpec$ from Example 4.1.

We will apply an (α_2, α_1)-abstraction Δ induced by the following set A of sentences:

$$A: \ (x_1, x'_1, y_1, y'_1, a_1, z_1, z', b, ?) = (x_2, x'_2, y_2, y'_2, a_2, z_2, z', b, ?)$$

$$\ (x_1, x'_1, y_1, y'_1, a_1, z_1, z', b, 0) = (x_2, x'_2, y_2, y'_2, a_2, z_2, z', b, 0)$$

$$\ (x_1, x'_1, y_1, y'_1, a_1, z_1, z', b, 1) = (x_2, x'_2, y_2, y'_2, a_2, z_2, z', b, 1)$$

$$\ (x_1, x'_1, y_1, y'_1, a_1, z_1, z', b, Succ(Succ(t))) =$$

$$\ (x_2, x'_2, y_2, y'_2, a_2, z_2, z', b, Succ(Succ(Succ(t))))$$

As we can easily see the dynamic specification for the abstraction of $DSpec$ by Δ is $DSpec_{\Delta} = (B_3, \leq', \Sigma, \Sigma_L, \pi, X, E \cup A, E_{AP}, E_{\sim})$.
Chapter 5

Abstraction Refinement Techniques

The main problem that arises when using abstraction techniques is to find the suitable abstraction or to refine an already existing abstraction in order to obtain a better one [76, 105, 66, 25, 87, 3, 80]. In this chapter, we prove that the abstraction techniques for data types, under Kleene’s three-valued interpretation [111], can be used in a refinement procedure. Moreover, we prove that the counterexample guided abstraction refinement procedure [25] works better when used with equationally specified abstractions.

5.1 Abstraction Refinement for Data Types

We present a result adapted from [111] which proves that we can define an abstraction of a data type\(^1\) starting from another abstraction of the same data type. This implies in fact the construction of a quotient algebra starting from a quotient algebra and a congruence. Such a two-step reduction should be also definable by a one-step reduction.

Let \(B_3\) be the truth algebra corresponding to Kleene’s three-valued logic and \(\leq'\leq\). If \(\Omega_L\) is a logically extended signature, \(\mathcal{A}\) an \(\Omega_L\)-algebra and \(\theta, \rho\) two congruences on \(\mathcal{A}\), we say that \(\theta\) is finer than \(\rho\) if \(\theta \subseteq \rho\).

Figure 5.1 gives a pictorial view of the property “finer than” between congruences. One can easily prove (see also [89]) that the binary relation \(\rho/\theta\) given by

\[
(\rho/\theta)_k = \{(a\theta_k, b\theta_k) | (a, b) \in \rho_k\},
\]

\(^1\)We refer to abstractions preserving formulas in a first order logic under Kleene’s three-valued logic.
for all kinds k, is a congruence on A/θ whenever θ and ρ are congruences on A such that $\theta \subseteq \rho$.

The following safe interpretation policies are considered in [111]:

- $\alpha_1(0) = \forall, \alpha_1(\bot) = \exists [0,1,1]$ and $\alpha_1(1) = \forall$;
- $\alpha_2(0) = \exists [0,1,1], \alpha_2(\bot) = \exists [1,1,1]$ and $\alpha_2(1) = \forall$;
- $\alpha_3(0) = \forall, \alpha_3(\bot) = \exists [0,1,1]$ and $\alpha_3(1) = \exists [0,1]$.

Theorem 5.1 Let $\Omega_L = (B_3, \leq, \Sigma, \Sigma_L, \pi)$ be a logically extended signature, $A = (A, \Sigma^A, \Pi_A)$ an Ω_L-algebra, $\alpha \in \{\alpha_1, \alpha_2, \alpha_3\}$, B_1 an α-abstraction of A by a congruence θ, and B_2 an α-abstraction of A by a congruence ρ. If θ is finer than ρ then there exists B an α-abstraction of B_1 by a congruence δ such that $B \cong B_2$ and $B_2 \cong B$.

Proof Let δ be a congruence on B_1 such that $\delta = \rho/\theta$ and let $h : (A/\theta)_{/\delta} \rightarrow A/\rho$ be a mapping defined by

$$h([a]_\delta) = [a]_\rho,$$

for all $a \in A$.

Following a classical line (for example, [89]) one can easily prove that h is a bijective homomorphism between the Σ-algebras A/ρ and $(A/\theta)_{/\delta}$.

Therefore, the following properties remain to be proved:

- $h(\Pi_B(s_{p,1})) = \Pi_{B_2}(s_{p,1})$ and $h(\Pi_B(s_{p,\bot})) = \Pi_{B_2}(s_{p,\bot})$, for any $p \in \Sigma_L$.

But, these properties can be easily checked for each type of abstraction.

For example, in the case of $\alpha = \alpha_1$, let $([a_1], \ldots, [a_n]) \in \Pi_B(s_{p,1})$, for some p of type $k_1 \cdots k_n$ and $a_1 \in A_{k_1}, \ldots, a_n \in A_{k_n}$. By the definition of B, we obtain that $([b_1], \ldots, [b_n]) \in \Pi_B(s_{p,1})$, for all $[b_i] \in [a_i]$, $1 \leq i \leq n$, and further, by the definition of B_1, $(a'_1, \ldots, a'_n) \in \Pi_A(s_{p,1})$, for all $a'_i \in [a_i]$, $1 \leq i \leq n$. Consequently, $(a'_1, \ldots, a'_n) \in \Pi_A(s_{p,1})$, for all $a'_i \in [a_i]$, $1 \leq i \leq n$ and $([a_1], \ldots, [a_n]) \in \Pi_B(s_{p,1})$.

Figure 5.1: θ is finer than ρ
The other cases follow a similar line.

Theorem 5.1 is an extension of the second homomorphism theorem for classical universal algebras [89] to logically extended membership algebras. It shows us that, in order to pass from an abstraction by a congruence \(\theta \) to an abstraction by a congruence \(\rho \) one can abstract further \(A/\theta \) by a congruence \(\rho/\theta \).

5.2 CEGAR is Better under Equational Abstraction

A very popular technique to discover abstractions automatically is counterexample guided abstraction refinement [25] (CEGAR, for short) which starts with an initial abstraction and then, uses counterexamples found in the verification process to refine the current abstraction. The various CEGAR techniques introduced in the literature deal mainly with predicate abstraction.

In this section, we introduce a CEGAR procedure for equational abstractions of 2-valued Kripke structures. Kripke structures are represented by rewrite theories as in [92]. However, we improve the representation of the atomic propositions, so it will not lead, by itself, to useless abstractions. Moreover, the semantics of the temporal logic considers infinite paths and maximal finite paths.

The refinement procedure adds atomic formulas in the conditions of the equations that form the abstraction. As opposed to the approach that uses predicate abstraction, where we add at least one predicate, the number of states of the current abstraction may not necessarily at least double. This will imply, as proved by a consistent example, that this new refinement procedure may build smaller abstractions.

5.2.1 Rewrite Theories

To represent systems we use rewrite theories [90] that contain membership equational theories in which we distinguish some of the membership sentences. We denote by \(B_2 = (\{0, 1\}, \land, \lor, \neg) \) the truth algebra with only two elements and by \(\leq' \) the partial order defined by \(0 \leq' 1 \).

Definition 5.1 Let \(\Omega_D = (B_2, \leq', \Sigma, \Sigma_L, \pi) \) be a dynamic \(K \)-kinded signature. An \(\Omega_D \) rewrite theory over a \(K \)-kinded set of variables \(X \), is a tuple \(R = (E, E_{AP}, \mathcal{E}) \), where
• E is a set of sentences over X and the membership signature $\Omega = (\Sigma, \pi)$ that does not contain the operator $(_ , _)$ and the sorts $s_{p,b}$. They specify the data type for the set of states;

• E_{AP} is a set of sentences of the form

$$t : s_p \text{ if } C,$$

where t is a term of kind state over Ω and X, $p \in \Sigma_L$ is an atomic proposition, and C is a set of atomic formulas over Ω and X. They will specify the sorts that represent the atomic propositions;

• \mathcal{E} is a set of conditional rewriting rules of the form:

$$t \rightarrow t' \text{ if } \bigwedge_{i \in I} u_i : s_i \land \bigwedge_{j \in J} v_j = w_j \land \bigwedge_{l \in L} t_l \rightarrow t'_l,$$

where t, t', t_l, t'_l, for any $l \in L$ are terms of kind state, u_i, for any $i \in I$, and v_j, w_j, for any $j \in J$, are terms of some kind, and s_i, for any $i \in I$, are sorts. They will represent the transitions of the system.

We emphasize that we do not represent the set of truth values as a kind and the atomic propositions by means of a function symbol as it was done in [92] because it can lead to useless abstractions as it was already mentioned in Remark 3.1.

Given a dynamic K-kinded signature Ω_D, define the set of LTL formulas over Ω_D as being the set of LTL formulas over the set of atomic propositions of Ω_D. These formulas will be interpreted over the Kripke structures associated to Ω_D rewrite theories.

Given an Ω_L rewrite theory $\mathcal{R} = (E, E_{AP}, \mathcal{E})$, the Kripke structure associated to \mathcal{R}, denoted $M(\mathcal{R})$, is the triple (Q, R, L), where:

• $Q = T_{\text{state}}$, where $T_{\Omega_D,E\cup E_{AP}} = (T, \Sigma^T, \Pi_T)$ is the initial algebra in the class $\text{Mod}(E \cup E_{AP})$;

• $R(q, q')$ iff $E \cup \mathcal{E} \vdash q \rightarrow q'$, for any $q, q' \in Q$ (\vdash is the syntactic deduction which uses only one rewriting rule from \mathcal{E});

• $L(q, p) = 1$ if $q \in \Pi_T(s_p)$ and 0 otherwise, for any $q \in Q$ and $p \in \Sigma_L$.

Given an Ω_D rewrite theory \mathcal{R} and an LTL formula ϕ over Ω_D, define $I_{\mathcal{R}}(\phi, \pi) = [\phi]^M(\mathcal{R})$ and $I_{\mathcal{R}}(\phi, q) = [\phi]^M(q)$, for any infinite or maximal finite path π and any state q of $M(\mathcal{R})$.

The way we obtain a Kripke structure from a rewrite theory has similar points with the approach from [92]. However, as we consider also finite paths
in the semantics of an \(LTL \) formula, we do not need that the transition relation be made total and also, we use a different representation for the atomic propositions.

Obtaining the Kripke structure associated to some rewrite theory may be undecidable. However, we can restrict ourselves to classes of rewrite theories for which the extraction of the Kripke structure is decidable. For example, we can use the class of executable rewrite theories [92].

Model Checking rewrite theories

One may argue that the construction of the Kripke structure for a rewrite theory may have a great complexity but in fact, we will consider an “on the fly” model-checking algorithm that may need to compute only a part of the entire Kripke structure. This is also the approach used in the Maude \(LTL \) model-checker [42].

We will discuss how to build an “on the fly” model checking algorithm for \(LTL \) when considering also maximal finite paths. Remember that such a model checking technique for \(LTL \) [54] is build upon two algorithms. The first algorithm constructs the Buchi automaton (over the alphabet that consists in the set of atomic propositions) that corresponds to the \(LTL \) formula, in the sense that it accepts only infinite words which are models of this formula while the second consists in a nested DFS search for a reachable accepting state reachable from itself in some Buchi automaton (this automaton will be the product between the input system and the Buchi automaton build in the first part).

We modify the first part by considering Buchi automata which, besides accepting states, have also final states. They accept infinite-length words for which the corresponding run passes infinitely many times through an accepting state or finite-length words for which the corresponding run ends in a final state.

Remember that the nodes of the graph from which we will extract the Buchi automaton corresponding to an \(LTL \) formula that handles only infinite paths are labeled by three sets of formulas: \(\text{New} \) which are formulas that must hold at the current state and have not yet been processed, \(\text{Old} \) which are formulas that must hold in the current node and have already been processed and \(\text{Next} \) which are formulas that must hold in all states that are immediate successors of states satisfying the properties in \(\text{Old} \). Initially, we have only one node which has \(\text{New} = \phi \), where \(\phi \) is the input \(LTL \) formula, and \(\text{Old} = \text{Next} = \emptyset \). At some step of the algorithm we process the current node and we expand the graph if \(\text{New} \neq \emptyset \), depending on the formula read from \(\text{New} \) (if \(\text{New} = \emptyset \) we have finished processing the node and we can consider it as a state.
of the Buchi automaton). When \(\phi \) is not of the form \(\bar{X}\psi \), for some formula \(\psi \), we proceed as usual. Otherwise, when \(\phi = \bar{X}\psi \) we mark the current node as final and we also expand the graph as in the case \(\phi = X\psi \). The nested DFS search from the second part of the “on the fly” model checking algorithm consists in an usual DFS search for an accepting state followed by a second DFS search that must find a path back to the accepting state. We modify it by allowing that the first DFS search stops when finding a final state. The correctness of the modified algorithm can be proved in a similar manner to the correctness of the classical algorithm from [54].

5.2.2 A Motivating Example

Before, we formalize equational abstractions of rewrite theories and it’s corresponding refinement technique, we provide a motivating example that illustrates how CEGAR under equational abstraction produces smaller models to be verified than CEGAR under predicate abstraction. This happens because refining in the context of predicate abstraction means adding at least one predicate to the abstraction function and consequently it means at least the doubling of the state space of the system. Using equational abstractions we may obtain finer refinements that do not necessarily double the state space.

Consider the following protocol adapted from [35] that controls the mutually exclusive access to two common resources of two concurrent processes, modeling the behavior of two mathematicians. They alternate phases of “thinking”, “eating” and “drinking” regulated by the current values of two natural numbers \(m \) and \(n \): the first (second) mathematician has the right to enjoy his meal if \(m \) is odd (even) or to enjoy his drink if \(n \) is odd (even). We suppose that drinking and eating can not take place in the same time. After eating or drinking, each mathematician leaves the dining room and modifies the value of \(m \) or \(n \) in his own fashion. Also, when entering the eating (drinking) phase both mathematicians modify arbitrarily the value of \(n \) (\(m \)). We want to prove that starting from the state in which the two mathematicians are thinking and \(m = n = 16 \), it will always be the case that at least one of the mathematicians is thinking.

A rewrite theory for this protocol is given below (we write 1 instead of \(\text{Succ}(0) \), 2 instead of \(\text{Succ}(ext{Succ}(0)) \), etc). We use two kinds: \text{nat} for the set of natural numbers and \text{state} for the set of global states which are 4-dimensional vectors of natural numbers \((x, y, m, n) \) such that: \(x = 0 \) if the first mathematician is thinking, \(x = 1 \) if the first mathematician is eating and \(x = 2 \) if the first mathematician is drinking; \(y \) represents the state of the second mathematician as \(x \) does for the first one; \(m, n \) are the numbers used to grant the access to the shared resources. Also, we use the sort \text{nat01} of
kind nat for the set \{0, 1\} and the sort nat02 of kind nat for the set \{0, 2\}. The only atomic proposition used is \(p\) which is 1 in states with \(x = 0\) or \(y = 0\) (states in which at least one mathematician is thinking) and 0, otherwise. The sort used to specify it is \(s_p\) and the property above can be restated as \(\phi = G \ p\). A fragment of the Kripke structure for the above system is shown in Figure 5.2.

DrewTh: A Protocol for the Mutually Exclusive Access to Two Resources

kinds: nat

state

sorts: nat01, nat02 of kind nat

\(s_p\) of kind state

opns: 0 : \(\rightarrow\) nat

\(Succ : nat \rightarrow nat\)

% : nat^2 \(\rightarrow\) nat

\(\ldots\) : nat^4 \(\rightarrow\) state

vars: \(x, y, m, n, m', n' : nat\)

E: sentences for nat01, nat02, Succ and %.

\(E_{AP}\):

\((x, y, m, n) : s_p\) if \(x = 0\)

\((x, y, m, n) : s_p\) if \(y = 0\)

\(E_{\ldots}\):

\((0, y, m, n) \rightarrow (1, y, m, n')\) if \(m\%2 = 1, y : nat01\)

\((1, y, m, n) \rightarrow (0, y, Succ(3m), n)\)

\((x, 0, m, n) \rightarrow (x, 1, m, n')\) if \(m\%2 = 0, x : nat01\)

\((x, 1, m, n) \rightarrow (x, 0, m/2, n)\) if \(m\%2 = 0\)

\((0, y, m, n) \rightarrow (2, y, m', n)\) if \(n\%2 = 1, y : nat02\)

\((2, y, m, n) \rightarrow (0, y, m, Succ(3n))\)

\((x, 0, m, n) \rightarrow (x, 2, m', n)\) if \(n\%2 = 0, x : nat02\)

\((x, 2, m, n) \rightarrow (x, 0, m, n/2)\) if \(n\%2 = 0\)

Figure 5.2: A fragment from the Kripke structure of the concrete system

Intuitively, by an equational abstraction of a rewrite theory we will mean a set of membership sentences \(\Delta\). The rewrite theory for the abstract system will be obtained from the rewrite theory of the concrete one by adding
\(\Delta \) to the sentences that specify the data type for the set of states and by modifying the sentences representing atomic propositions in order to obtain under-approximations. The CEGAR technique for equational abstraction will proceed as the one for predicate abstraction but, instead of adding predicates, we will add atomic formulas to some of the membership sentences of the abstraction.

In the following, we will prove \(\phi \) by abstraction: first, we use CEGAR under equational abstraction and then, the classical version under predicate abstraction. The final abstractions obtained by the two procedures will show that the approach using equational abstraction is significantly better from the point of view of the number of states and transitions than the one that uses predicate abstraction.

The approach using equational abstraction

Initial step. We will start the refinement process with the abstraction that ignores the last two elements of a state. In order to take fully advantage of equational abstraction, we will express it using more than one sentence:

\[
\Delta: \begin{align*}
(x, y, m, n) &= (x', y', m', n') & \text{if } x = x', \; y = y', \; x = 0, \; y = 0 \\
(x, y, m, n) &= (x', y', m', n') & \text{if } x = x', \; y = y', \; x + y = 1 \\
(x, y, m, n) &= (x', y', m', n') & \text{if } x = x', \; y = y', \; x = 1, \; y = 1 \\
(x, y, m, n) &= (x', y', m', n') & \text{if } x = x', \; y = y', \; x = 2, \; y = 2 \; \text{nat02, } \; x : \text{nat02} \\
(x, y, m, n) &= (x', y', m', n') & \text{if } x = x', \; y = y', \; x = 2, \; y = 2
\end{align*}
\]

The Kripke structure for this abstraction is depicted in Figure 5.3(a) (we have denoted the abstract states with the values of \(x \) and \(y \)). We can easily produce a counterexample for \(\phi \), let it be the path \((0, 0), (1, 0), (1, 1) \). Trying to unfold the counterexample in the concrete system, we get that it is spurious, that is, it has no correspondent in the concrete system. Then, as in [25], we search for an abstract failure state and we extract the set \(D \) of dead-end states (states from which we have no transition to the abstract state that follows the failure state) and the set \(B \) of bad states (states from which we have transitions to the abstract state that follows the failure state). Thus, we obtain \(D = \{(0,0,16,16)\} \) and \(B = \{(0,0,m,n) \mid m \% 2 = 1\} \). To separate the set of dead-end states from the set of bad states, we refine using the atomic formula \(\overline{m \% 2} = \overline{m' \% 2} \), that it is added only to the first sentence above because, this is the only sentence in \(\Delta \) needed to prove that the states from \(D \cup B \) are in the same abstraction state.

First refinement step. The Kripke structure for this abstraction is depicted in Figure 5.3(b). We have denoted states by couples whose elements are the values of \(x \) and \(y \), or by triples in which the first two elements are
Figure 5.3: The abstraction for the initial, first and second step of refinement

the same and the last represents the value of \(m \% 2 \). A counterexample for
the required property is \((0, 0, 0), (2, 0), (2, 2)\). Trying to unfold this coun-
terexample in the concrete system, we get that it is spurious, and obtain
the set of dead-end states \(D_1 = \{(0, 0, 16, 16)\} \) and the set of bad states
\(B_1 = \{(0, 0, m, n) \mid n \% 2 = 1\} \). Consequently, we refine using the atomic
formula \(n \% 2 = n' \% 2 \) that it is added only to the first sentence of the
abstraction because, this is the only sentence used to prove that the states
from \(D_1 \) and \(B_1 \) are in the same abstraction state.

Second refinement step. The Kripke structure for this abstraction can
be visualized in Figure 5.3(c). The abstract states are represented by couples
and triples as before or by 4-tuples in which the first three elements are as
in the case of triples and the last element is \(n \% 2 \). Again, a counterexample
can be found: \((0, 0, 0, 0), (0, 1), (1, 1)\). Trying to unfold this counterexample
in the concrete system, we get that it is spurious, and obtain the set of dead-
end states \(D_2 = \{(0, 1, 16, 16)\} \) and the set of bad states \(B_2 = \{(0, 1, m, n) \mid m \% 2 = 1\} \). Consequently, we refine using the atomic formula \(m \% 2 = m' \% 2 \) that it is added, for the same reasons, only to the second sentence of the
abstraction.

Third refinement step. The Kripke structure for this abstraction can
be visualized in Figure 5.4(a) (the abstract states are denoted as before). Again, we can find a counterexample \((0, 0, 0, 0), (0, 2), (2, 2)\) which
by unfolding in the concrete system proves to be spurious. We obtain
the set of dead-end states \(D_3 = \{(0, 2, 16, 16)\} \) and the set of bad states
\(B_3 = \{(0, 2, m, n) \mid n \% 2 = 1\} \).

Consequently, we refine using the atomic proposition \(n \% 2 = n' \% 2 \) that
it is added only to the fourth sentence of the abstraction.

Final step. The abstraction obtained after the third refinement step
consists in the following set of sentences:

\[(x, y, m, n) = (x', y', m', n') \text{ if } x = x', y = y', x = 0, y = 0, m \% 2 = m' \% 2,\]
The Kripke structure for this abstraction can be visualized in Figure 5.4(b). Abstraction states are denoted as before, except for \((0, 2, -1, 0)\) and \((2, 0, -1, 1)\) where the first two elements represent the values of \(x\) and \(y\) and the fourth the value of \(n \mod 2\) (the third component just say that \(m \mod 2\) can have any value).

Now, we obtain that \(\phi\) is true in the current abstraction and consequently, we obtain that \(\phi\) is true in the initial model.

The approach using predicate abstraction

Initial step. We will start the refinement process with the same abstraction that ignores the last two elements of a state. For this, we use the set of predicates \(B = \{P^1_x, P^2_x, P^1_y, P^2_y\}\), where \(P^i_v\) is 1 in the states with \(v = i\), for all \(v \in \{x, y\}\) and \(i \in \{1, 2\}\). The Kripke structure obtained is again, the one from Figure 5.3(a). We consider the same spurious counterexample: \((0, 0), (1, 0), (1, 1)\), for which we obtain the set of dead-end states \(D = \{(0, 0, 16, 16)\}\) and the set of bad states \(B = \{(0, 0, m, n) | m \mod 2 = 1\}\).

In order to separate \(D\) and \(B\), we should refine by adding the predicate \(Q((x, y, m, n)) = m \mod 2\).

First refinement step. The Kripke structure of the abstraction that we obtain after the initial step is the one from Figure 5.5(a). We have denoted abstract states by triples where the first two components are the values of \(x\) and \(y\), respectively and the third component is the truth value of \(Q\).

A counterexample can be found: \((0, 0, 0), (0, 2, 0), (2, 2, 0)\) which by unfolding in the concrete system is proved to be spurious. We find the set of dead-end states \(D_1 = \{(0, 2, 16, 16)\}\) and the set of bad states \(B_1 = \{(0, 0, 2, 0)\}\).
\{(0, 2, m, n) \mid n \% 2 = 1\}. To separate them, we should add the predicate \(S((x, y, m, n)) = n \% 2\).

Final refinement step The Kripke structure for the current abstraction is the one from Figure 5.5(b). Now, the model checking procedure over the current abstraction returns 1 and consequently, \(\phi\) is 1 in the concrete system.

Comparison results

The first conclusion we draw when seeing the two proofs above is that CE-GAR under equational abstraction obtained smaller models: the final model from CEGAR under predicate abstraction has 50\% more states and 40\% more transitions. The refinement using equational abstraction performed better because of the modularity of the system (the system consists in two modules that grant access to drink or food). When predicate abstraction discovers one predicate it splits all the abstraction states in two, although the predicate could have been relevant only for the abstraction states of a single module. For example, in the approach using equational abstraction, we didn’t split the state \((0, 1, 0)\) in two abstraction states, as we did in the approach using predicate abstraction, depending on the value of \(n\) because this value does not influence the transitions involving this state (similarly for the states \((1, 0, 1)\), \((0, 2, -0)\) and \((2, 0, -1)\)).

Moreover, we can use the predicates that separate the set of dead-end states from the set of bad states, to derive the atomic formulas added in the case of equational abstraction. For example, from the predicate discovered in the initial step \(Q((x, y, m, n)) = m \% 2\) we can derive the atomic formula \(m \% 2 = m' \% 2\) discovered in the initial step of CEGAR under equational abstraction. This happened because the sentences of the abstraction have the form “\(t = t' \text{ if } C\)”, where \(t\) and \(t'\) are terms of kind \textit{state}. Consequently, for CEGAR under equational abstraction we can use the already developed procedures that discover predicates for CEGAR under predicate abstraction. The single drawback of the proof using our refinement technique was that we had more refinement steps. However, this can not be proved to hold generally and, moreover, using other refinement procedures that eliminate
more counterexamples at the same time, we could improve this matter.

5.2.3 CEGAR under Equational Abstraction

We dedicate this section to the formalization of the CEGAR procedure exemplified in the previous section.

Definition 5.2 Let $\mathcal{R} = (E, E_{AP}, \mathcal{E})$ be an Ω_D rewrite theory over a set of variables X. An abstraction of \mathcal{R} is a set Δ of sentences over Ω_D and X.

The sentences from Δ have the role to induce a congruence on the equivalence classes of terms that represent states of the system. If $T_{\Omega_D,E} = (T, \Sigma^T, \Pi_T)$ is the initial algebra in the class $Mod(E)$, then the set of states of the abstract system will be T_{state}/ρ, where ρ is the congruence defined by:

$$[t]_E = [t']_E \iff E \cup \Delta \vdash t = t',$$

for any t, t' terms of kind state.

Hence, to specify the abstract system induced by an abstraction as above, we just have to add the set of sentences Δ to E and modify the sentences from E_{AP} so the predicates in the abstract system under-approximate the ones in \mathcal{R}.

Definition 5.3 Let \mathcal{R} and Δ be as above. The rewrite theory for the abstraction of \mathcal{R} by Δ is $\mathcal{R}_\Delta = (E \cup \Delta, E^\Delta_{AP}, \mathcal{E})$ such that for any $p \in \Sigma_L$:

- $E \cup \Delta \cup E^\Delta_{AP} \vdash t : s_p$ iff $(\forall t')(E \cup \Delta \vdash t = t' \Rightarrow E \cup E_{AP} \vdash t' : s_p)$.

The next result is straightforward and shows that abstractions of rewrite theories imply abstractions of corresponding Kripke structures.

Theorem 5.2 Let \mathcal{R}, Δ and \mathcal{R}_Δ be as above. Also, consider the initial algebra $T_{\Omega_D,E} = (T, \Sigma^T, \Pi_T)$ and the equivalence relation on T_{state} given by:

$$[t]_E = [t']_E \iff E \cup \Delta \vdash t = t',$$

for any terms t, t' of kind state. Then, $M(\mathcal{R}_\Delta)$ is the (α_R, α_L)-abstraction of $M(\mathcal{R})$ by ρ, where $\alpha_R(0) = \alpha_L(1) = \forall$ and $\alpha_R(1) = \alpha_L(0) = \exists^{[0,1]}$.

The theorem above also implies that the truth of LTL_+ formulas is preserved from the abstract system to the concrete one.

Corollary 5.1 Let \mathcal{R}, Δ and \mathcal{R}_Δ be as above. Then, $\mathcal{I}_\mathcal{R}(\phi, [q]) = 1 \Rightarrow \mathcal{I}_\mathcal{R}(\phi, q) = 1$, for any q state of \mathcal{R}. 167
The meaning of refinement in the context of equational abstraction can be formalized as follows.

Definition 5.4 Let $R = (E, E_{AP}, \mathcal{E})$ be a rewrite theory and Δ, Δ' two abstractions of it. We say that Δ' refines Δ if

$$E \cup \Delta' \vdash t = t' \Rightarrow E \cup \Delta \vdash t = t',$$

for any terms t, t' of kind state.

As we expected refinement implies that an abstract state of $M(R_\Delta)$ may contain more abstract states of $M(R_{\Delta'}).$ One of the advantages when using equational abstractions is that we have many alternatives in refining them: we can remove sentences, we can add atomic formulas to the conditions of the sentences or we can replace atomic formulas with stronger ones.

We present now the CEGAR procedure for equational abstractions of rewrite theories. The interesting part is the one that refines the abstraction, where instead of adding predicates, as in the case of CEGAR under predicate abstraction, we add atomic formulas to the conditions of the sentences that represent the current abstraction. We will remind CEGAR [25] and detail on the refinement part.

```
begin
    let $R$ be a rewrite theory and $q$ a state in $M(R)$;
    let $\Delta$ be the initial abstraction;
    let $\phi$ be some property in $LTL_+$ we want to prove;
    while true do
        $x := \text{modelcheck}(R, \Delta, \phi, q);$
        if $x = 1$ then
            return $I_R(\phi, q) = 1;$
        else
            if $\text{isConcrete}(\text{counterexample}(R, \Delta, \phi, q))$ then
                return $I_R(\phi, q) = 0;$
            else
                $\Delta := \text{refine}(\Delta, \text{counterexample}(R, \Delta, \phi, q));$
        end
end
```

Above, $\text{modelcheck}(R, \Delta, \phi, q)$ does model checking on $M(R_\Delta)$ to verify ϕ in state $[q].$ If the output is 0, then $\text{counterexample}(R, \Delta, \phi, q)$ returns a counterexample for ϕ in the abstraction. The function isConcrete checks if this counterexample is also a counterexample for ϕ in the concrete system. If not, the counterexample is called spurious and we have to refine the abstraction. This is done in the procedure $\text{refine},$ where we modify the set.
of sentences Δ in order to remove from the abstraction the spurious counterexample. As we have already discussed, we adopt the approach from [25], and we search for the set D of dead-end states and the set B of bad states. Then, we discover atomic formulas that separate B from D and add them only to the conditions of the sentences from Δ that are necessary to prove that $B \cup D$ are in the same abstract state.

Now, we intend to give a formal idea about the fact that the procedure above constructs smaller models to be verified than CEGAR under predicate abstraction.

Predicate abstraction can be viewed as a particular case of equational abstraction. We suppose that the predicates used for abstraction are given by terms with possible values 0 and 1. A predicate abstraction induced by the set of predicates $\{p_1, \ldots, p_m\}$ can be expressed by an equational abstraction $\Delta_P = \{s_1, \ldots, s_n\}$ such that s_i has the form

$$t_i = t'_i \text{ if } p_{i,1} = p'_{i,1}, \ldots, p_{i,m} = p'_{i,m},$$

for any $1 \leq i \leq n$, where t_i, t'_i are terms of kind state, $p_{i,j}$ is a version of the term representing p_j that uses variables from t_i and, for any term v, v' is a term obtained from v by replacing each variable x with the primed version x'.

The refinement step in CEGAR under predicate abstraction will add a new predicate to the abstraction, which in the reformulation of the abstraction using membership sentences, means adding a new atomic formula $p_{i,m+1} = p'_{i,m+1}$ to each sentence s_i. The refinement step in the CEGAR under equational abstraction may add the same atomic formula $p_{i,m+1} = p'_{i,m+1}$ but, only to some of the sentences expressing the current abstraction. Therefore, if Δ'_P is the abstraction obtained in the first case and Δ''_P the abstraction obtained in the second case, we have that

$$E \cup \Delta''_P \models t = t' \text{ implies } E \cup \Delta'_P \models t = t',$$

for any t, t' terms of kind state (E is the set of membership sentences that specify the data type for the set of states of the concrete system). The fact that in the abstract system obtained using Δ''_P we may have more equations $t = t'$ that hold, means that we may have fewer abstract states and the abstraction may be smaller.
Index

(α_R, α_L)-abstraction, 69, 148
(α_R, α_L, α_S)-abstraction, 88
¬-preservation, 33

CTL, 15

CTL^\ast_\ast \text{ path formula}, 14

CTL^\ast_\ast \text{ state formula}, 14

CTL^\ast, 15

D-path, 16, 19

K-kind \Sigma\text{-algebra}, 105
K-kind binary relation, 32
K-kind logical signature, 13
K-kind membership signature, 104
K-kind set, 13

KCTL^\ast P \text{ path formula}, 17

KCTL^\ast P \text{ state formula}, 17

LTL, 15

S\text{'-congruence}, 117

\Omega_D \text{ rewrite theory}, 158

\alpha\text{-abstraction}, 33, 49, 115

\Sigma\text{-abstraction}, 43, 49

\exists\;\text{CTL^\ast}, 15

\exists\;\text{KCTL^\ast P}, 18

\forall\text{CTL^\ast}, 15

\forall\text{KCTL^\ast P}, 18

\geq\text{-preservation}, 33

\leq\text{-preservation}, 33

abstract data type, 108, 132

abstractions of rewrite theories, 167

Belnap’s 4-valued logic, 9

Birkhoff’s representation theorem, 9

boolean algebra, 12

data type, 107

dynamic \Omega_D\text{-algebra}, 141
dynamic K-kind \Sigma\text{-algebra}, 140
dynamic specification, 141
equationally specified abstraction, 134, 154

error-preservation, 34

first order formula, 113

first-order formula, 13

function symbol, 105

fuzzy logic, 11
greatest element, 8
greatest lower bound, 8

immediately precede, 7

infinite D-sequence, 16

interpretation policy, 30

safe, 32

interpreted system, 19

join-irreducible, 9

kind, 13

Kleene’s strong 3-valued logic, 9

lattice, 8

c-complete, 9

complete, 8
distributive, 8

finite, 8

inf-complete, 44

symmetric, 12

least element, 8

least upper bound, 8

170
linear order, 10
logical structure, 13
logical type, 13
logically extended Ω_{L}-algebra, 113
logically extended K-kinded membership signature, 111
logically extended membership specification, 133
lower bound, 7
maximal finite D-sequence, 16
membership Ω-algebra, 105
membership algebra
 initial, 105
 membership congruence, 105
 membership equational logic, 106
 membership equivalence, 105
 membership homomorphism, 105
 Mono-operational protection systems, 65
 MTAM systems with acyclic creation graphs, 60
 multi-agent multi-valued Kripke structure, 18
 multi-valued CTL^{*}, 17
 multi-valued $KCTL^{*}P$, 20
 multi-valued Kripke structure, 16
over-approximation, 43
partial order, 7
point, 19
predicate symbol, 13
protection scheme, 53
protection system, 54
 configuration, 54
 quasi-bisimulation relation, 59
 safety problem, 55
 simulation relation, 56
quasi-boolean algebra, 11
quotient, 105
sentence, 106
similarity relation, 18
sort, 105
strong-preservation, 33
take-grant systems, 67
term, 105
 ground, 105
truth algebra, 9
type, 105
under-approximation, 43
upper bound, 8
very weak-preservation, 92
weak-preservation, 34
Bibliography

181