Skip to Main content Skip to Navigation
Theses

Contribution à la Conception des Machines Electriques à Rotor Passif pour des Applications Critiques : Modélisations Electromagnétiques et Thermiques sur Cycle de Fonctionnement, Etude du Fonctionnement en Mode Dégradé.

Abstract : In this thesis, a comparison among different machine topologies has been firstly realized, and two electrical machines: Switched Reluctance Motors (SRMs) and Flux-Switching Permanent Magnet (FSPM) motors are then chosen for the following studies. A fast and precise coupled electromagnetic-thermal model is performed for these two structures. This model is based on a prior steady characterization by Finite Element method (FEM) 2D via calculating the instantaneous torque, the two components of magnetic induction (B_r and B_θ) of each element of rotor as well as stator for different RMS current densities and different rotor positions. These results are then used in the analytical copper and iron losses models for calculating the instantaneous copper and rotor as well as stator iron losses during one driving cycle. The Lumped Parameter (LP) and FEM 2D transient thermal models are then carried out, in which the previously obtained instantaneous power losses are used as heat sources for calculating the temperatures of different motor parts during driving cycles. A faulty-thermal analysis for a three-phase FSPM motor is also achieved. The faults in this thesis are mainly due to short-circuit (SC), such as inter-turn SC in phases or inter-turn and inter-phase SC, one phase or three phases SC in a redundant FSPM motor. Based on MATLAB-Simulink, the faulty information as the normal and short-circuit currents can be obtained, the power losses can then be calculated as previously. Thus, the thermal behavior of the machines can be predicted under faulty mode. The coupled Thermal-Electromagnetic Analysis method in this thesis can also be extended for all the other applications with driving cycles. Finally, the faulty analysis for a six-phase FSPM motor is performed, and one six-phase full bridge inverter is applied to drive the machine. This allows us to control each phase independently under faulty mode. The faults here are open-circuit or short-circuit in one or several phases (up to three). Some correction methods such as: increasing healthy current and/or change their phase angles, are proposed to maintain the electromagnetic torque while minimizing the torque ripple. The analytical and FEM 2D results have shown the good efficiency of the proposed methods both in case of phase open-circuit and in case of phase short-circuit.
Document type :
Theses
Complete list of metadatas

Cited literature [92 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00620713
Contributor : Guangjin Li <>
Submitted on : Thursday, September 8, 2011 - 1:47:48 PM
Last modification on : Wednesday, December 30, 2020 - 1:08:04 PM
Long-term archiving on: : Thursday, March 30, 2017 - 2:34:16 PM

Identifiers

  • HAL Id : tel-00620713, version 1

Citation

Guangjin Li. Contribution à la Conception des Machines Electriques à Rotor Passif pour des Applications Critiques : Modélisations Electromagnétiques et Thermiques sur Cycle de Fonctionnement, Etude du Fonctionnement en Mode Dégradé.. Energie électrique. École normale supérieure de Cachan - ENS Cachan, 2011. Français. ⟨tel-00620713⟩

Share

Metrics

Record views

821

Files downloads

1337