
HAL Id: tel-00619637
https://theses.hal.science/tel-00619637

Submitted on 6 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based 3D hand pose estimation from monocular
video

Martin De de La Gorce La Gorce

To cite this version:
Martin De de La Gorce La Gorce. Model-based 3D hand pose estimation from monocular video.
Other. Ecole Centrale Paris, 2009. English. �NNT : 2009ECAP0045�. �tel-00619637�

https://theses.hal.science/tel-00619637
https://hal.archives-ouvertes.fr

ECOLE CENTRALE DE PARIS

P H D T H E S I S
to obtain the title of

PhD of Science

of Ecole Centrale de Paris

Specialty : Applied Mathematics

Defended by

Martin de La Gorce

Model-based 3D Hand Pose
Estimation from Monocular

Video

Thesis Advisor: Nikos Paragios

prepared at Ecole Centrale de Paris, MAS laboratory

defended on December 14, 2009

Jury :

Reviewers : Dimitri Metaxas - Rutgers University

Pascal Fua - EPFL

Advisor : Nikos Paragios - Ecole Centrale de Paris

Examinators : Radu Patrice Horaud - INRIA

Renaud Keriven - Ecole de Ponts Paritech

Adrien Bartoli - University d’Auvergne

Bjorn Stenger - Toshiba Research

Invited : David Fleet - University of Toronto.

Acknowledgments

I would like to thank the people that helped me during preparing my PhD these

last four years.

Thank to my PhD advisor, Nikos Paragios, who has been supportive and had

confidence in my work. He gave me the freedom I needed, proposed me very relevant

directions and has been precious in is help to communicate and yield visibility to

my research results. I also greatly appreciated his encouragements to establish

international collaborations by visiting other prestigious research centers.

Thank to David Fleet for the extremely productive collaboration we started

during a two month visit in the university of Toronto. While discussing the results

I obtained with the method presented in the third chapter of this manuscript,

he made a simple but sound remark that motivated the direction taken in the

fourth chapter: “if you needed to add shading onto your hand model to get a

good visualization of your results, that means that you should add shading in the

generative model you use for the tracking”. I deeply appreciated his strive for

perfection in the explanation of scientific ideas and his enthusiasm to discuss about

in-depth technical aspects as well as the great challenges of the field in general. His

help as also be precious in the writing of this manuscript.

I am grateful to my thesis rapporteurs Dimitri Metaxas and Pascal Fua, for

having kindly accepted to review this work. I appreciated their valuable comments.

Thank to Radu Patrice Horaud, Renaud Keriven, Adrien Bartoly and Bjorn Stenger

for examining it and for the constructive discussion during the thesis defense.

Thanks to all the current and former members of the Medical Imaging and

Computer Vision Group at the Applied Mathematics Department in Ecole Centrale

for the friendly international environment and the great working atmosphere. In

particular I would like to thank Chaohui Wang and Mickaël Savinaud for our fruitful

collaboration. Thank to Noura and Regis for their moral support. Thanks to my

friends Geoffray and Romain for having confirming me by their example in the idea

that having hobbies is a necessary condition to do a good PhD thesis. And finally,

thank to all my other friend and my family members who have been supporting

during these four years.

Index

1 Introduction 5

1.1 General introduction . 5

1.2 Applications of Hand tracking . 6

1.2.1 Animation . 7

1.2.2 Quantitative Motions analysis 8

1.2.3 Sign Language Recognition 8

1.2.4 2D human-Computer interaction 10

1.2.5 3D human-Computer interaction 10

1.2.6 The hand as a high DOF control device 11

1.3 Hand Pose Estimation Scientific Challenges 11

1.4 Contributions & outline . 15

1.4.1 Part-based Hand Representation and Statistical Inference . . 15

1.4.2 Triangular Mesh with Texture & Shading 16

1.4.3 Outline . 17

2 State of the art 19

2.1 Acquisition framework . 19

2.1.1 Monocular setting . 19

2.1.2 Small baseline stereo setting 20

2.1.3 Wide baseline setting . 20

2.1.4 Other settings . 21

2.1.5 Markers . 22

2.1.6 Context . 22

2.2 Model-based tracking . 23

2.2.1 General principle . 23

2.2.2 Hand models . 25

2.2.3 Images features . 30

2.2.4 Fitting procedures . 38

2.3 Discriminative methods / Learning-Based Methods 43

2.3.1 Principle . 43

2.3.2 Database indexing methods 44

2.3.3 Regression techniques . 46

2.4 Other approaches . 47

2.5 Related literature . 48

2.5.1 Non-optical systems . 48

2.6 Limitations of existing methods . 49

iv Index

3 Silhouette Based Method 53

3.1 Method overview . 53

3.2 Articulated model . 55

3.2.1 Forward kinematic . 55

3.2.2 Forward Kinematic Differentiation 61

3.2.3 Hand anatomy terms . 62

3.2.4 The hand skeleton model . 65

3.2.5 Linear constraints on joint angles 67

3.2.6 Model calibration . 69

3.3 Hand surface model and projection 70

3.3.1 surface model . 70

3.3.2 Camera model . 72

3.3.3 Ellipsoid projection . 74

3.3.4 Convex polytope projection 75

3.3.5 Filled ellipses/polygons union 76

3.3.6 Intersecting two ellipses . 80

3.3.7 Intersecting an ellipse with a polyline 80

3.3.8 Intersecting boundaries of two polygons 81

3.4 Matching cost . 84

3.4.1 Generative colors models . 84

3.4.2 The discontinuous likelihood 85

3.4.3 The continuous likelihood . 88

3.5 Numerical computation of the matching cost 92

3.5.1 Line segments . 93

3.5.2 Ellipsoid arcs . 97

3.5.3 Approximating filled-ellipses by polygons 98

3.6 The Matching Cost Derivatives . 100

3.6.1 Differentiation of the polytope transformation and projection 101

3.6.2 Differentiation of the ellipsoid transformation and projection 101

3.6.3 Differentiation of ellipses to convex polygons conversion . . . 102

3.6.4 Differentiation of segment intersections 103

3.6.5 Force on silhouette vertices 103

3.6.6 Second order derivatives . 106

3.7 Pose estimation . 107

3.7.1 Sequential Quadratic Programing with BFGS update 108

3.7.2 Variable metric descent . 110

3.7.3 Trust-Region method . 112

3.7.4 Comparing the three Optimization methods 113

3.7.5 Exact versus Approximate Matching cost and derivatives . . 115

3.7.6 Smart Particle Filtering . 118

3.8 Discussion . 121

3.8.1 Validation . 121

3.8.2 Summary . 124

Index v

4 Method with texture & shading 127

4.1 Overview . 127

4.2 Hand geometry . 129

4.2.1 The choice of triangulated surface 129

4.2.2 Linear Blend Skinning . 131

4.2.3 Morphological variations . 133

4.3 Hand appearance & projection . 134

4.3.1 Shading the hand . 134

4.3.2 Texturing the hand . 135

4.3.3 Hand Model projection & Occlusions 138

4.4 Data-fidelity function . 139

4.4.1 Discrete image domain . 139

4.4.2 Antialiasing formulation . 141

4.4.3 Continuous Image domain formulation 143

4.4.4 Surface domain formulation 144

4.5 Pose Prior . 146

4.5.1 Motivation & existing methods 146

4.5.2 Prior based on Kernel PCA 147

4.6 Pose and Lighting Estimation . 149

4.6.1 Gradient with respect to Pose and Lighting 149

4.7 Numerical computation of Ec and ∇θEc 153

4.7.1 Exact computation of the matching cost 153

4.7.2 Direct discretization of the gradient 157

4.7.3 Differentiable discretization of the energy 158

4.8 Model Registration . 160

4.8.1 Sequential Quadratic Programming 160

4.8.2 Blockwise BFGS update . 161

4.8.3 Texture update . 165

4.9 Experimental Results . 171

4.9.1 Initialization . 171

4.9.2 Tracking without pose prior 172

4.9.3 Tracking with pose prior . 174

5 Conclusion & Perspectives 183

5.1 Contributions . 183

5.2 Perspectives . 184

A Appendix 187

A.1 forces on the silhouette : alternative proof 187

A.2 Algorithms . 189

A.3 identifying occlusion forces . 197

A.4 Kernel PCA . 200

Conspectus librorum 203

Abstract

The objective of this thesis is to design an algorithm that allows to automatical-

ly recover a full description of the 3D motion of a hand from a monocular (i.e.

single-view) video sequence. The solution we propose constitutes a preliminary

step towards designing new natural human-computer interfaces or automatic ges-

ture analysis. In this thesis, we introduce two model based methods that improve

state-of-the-art techniques. To this end, an articulated hand model is fitted on each

image by minimizing the discrepancy between the projection of the 3D model in the

image plane and the observed image. This minimization is done efficiently using

an iterative refinement technique that is based on quasi-Newton gradient-descents.

The first method relies on a hand model composed of ellipsoids and convex poly-

hedra. The discrepancy measure is based on global color distributions of the hand

and the background. The second method uses a triangulated surface model with

texture and shading. In this case, the discrepancy measure is defined by comparing

for each pixel the color intensities of the observed image with the synthetic image

generated with the hand model. While computing the gradient of the discrepancy

measure, a particular attention is given to terms related to the changes of visibility

of the surface near self-occlusion boundaries that are neglected in existing formula-

tions. Finally, a prior distribution of typical hand poses is learned from examples

towards improving tracking performance.

Notations

• N the set of integers

• R the set of reals

• ab the segment joining a and b

• AT the transpose of matrix A

• A−1 the inverse of matrix A

• det(A) is the determinant of matrix A

• Ai,j The element of A located at lines i and column j

• A[i:j,k:l] The submatrix of A obtained by selecting from lines i to j and columns

k to l

• A[:,k:l] The submatrix of A obtained by selecting from lines lines and columns

k to l

• A[i:j,:] The submatrix of A obtained by selecting from lines i to j and all

columns

• xi:j sub vector by selecting component for i to j or (depending on the context)

the set {xi, . . . , xj}

• p(x) probability of x

• N(x|µ,Σ) x is a random variable normally distribed, with mean = µ, and

covariance Σ.

• 0i×j is the i by j zero matrix

• In×n is the n by n identity matrix

• SO(3) is the set of 3 by rotation matrix (R ∈ SO(3) ⇔ RtR =

I3×3 anddet(R) = 1)

• vD is the diagonal matrix whose diagonal elements are components of the

vector v

• ∇f Laplacian of a scalar function f

• f(x,.) is the one variable function that maps y to f(x, y)

• ⌊x⌋ is the greatest integer n such that n ≤ x.

• ε(x) is the fractional part of x i.e ε(x) ≡ x− ⌊x⌋

Caput 1

Introduction

1.1 General introduction

The objective of this thesis is to design an algorithm that would allow to recover

automatically a full description of the 3d motion of a hand given a monocular (i.e.

single-view) video sequence. Using the information provided by the video, our aim

to is to determine the full set of kinematic parameters that are required to describe

the pose of the skeleton of the hand. This set of parameters is composed of the

angles associate to each joint/articulation and the global position and orientation

of the wrist. Given these parameters, the 3D pose of the hand can then be fully

reconstructed. This is illustrated in [Figure (1.1)] where the recovered hand pose

parameters are used to synthesize the hand from a new view-point, from which the

hand has not been seen before.

Descriptio 1.1: The 3D hand pose is inferred from the left image and is used to

synthesize the hand from a new view-point in the right image

The method would preferably be sequential, in the sense that we could handle

scenarios where the images are available one at a time and the hand pose is estimated

after each new observation. We would like a method that can work in a single-view

setting. In comparison with multi-view settings (using mirrors or several cameras),

this setting is more affordable and convenient for the user but makes articulated

hand tracking more challenging as the depth information cannot be retrieved. The

motivation to solve the monocular hand tracking problem is twofold. One can view

this problem both from practical and scientific interest. From practical point of

view, many applications involving human-Computer interfaces or gesture analysis

would benefit from such a development (see section 1.2). From practical point

of view, this problem is extremely challenging in many aspects. One can cite for

example the important number of degrees of freedom of the hand, the presence of

6 Caput 1. Introduction

self-occlusions as well as the depth ambiguities inherent to monocular data. Such

technical difficulties are not specific to hand tracking and elements of the solution

could be of interest to other articulated-body tracking problems or other computer

vision problem tasks where one has to deal with occlusions and depth ambiguities.

In this thesis, we introduce two novel methods of increasing complexity that

improve to certain extend the state-of-the-art for monocular hand tracking prob-

lem. Both are model-based methods and are based on a hand model that is fitted

to the image. This process is guided by an objective function that defines some

image-based measure of the hand projection given the model parameters. The fit-

ting process is achieved through an iterative refinement technique that is based on

gradient-descent and aims a minimizing the objective function There are significant

differences both in terms of modeling as well as in terms of inference between to

the two proposed solutions.

The first method relies on a hand model made of ellipsoids and a simple discrep-

ancy measure based on global color distributions of the hand and the background.

The second method uses a triangulated surface model with texture and shading and

exploits a robust distance between the synthetic and observed image as discrepan-

cy measure. Like most of the state of the art monocular hand tracking methods,

robustness and speed are requirements that would make it suitable for general use.

Our hand tracking method is not real-time, which makes interactive applications

not yet possible. Increase of computation power of computers and improvement of

our method might make real-time attainable.

In this chapter we will first review the applications that motivate designing

hand-tracking solutions, then we will discuss the different reasons that make hand-

tracking a difficult problem to solve, especially in a monocular setting, and finally

we will present of short overview of our contributions.

1.2 Applications of Hand tracking

Among different body parts, the hand is the most efficient, general-purpose inter-

action tool due to its dexterous functionality in communication and manipulation.

This statement is supported physiologically by the fact that the area in the human

brain dedicated to the control of the hand’s movements is about as large as the to-

tal of the areas dedicated to the arms, the torso and the lower body [Mitobe 2007].

Probably due to the central role of the hands in gestural communication, a system

able to make sense of hand motion have been envisioned by several science-fictions

film directors in movies such as Johnny Mnemonic (1995,[Figure (1.2.a)] , Final

Fantasy (2001) or Minority Report (Spielberg 2002 [Figure (1.2.b)]) .

Hand motion capture is actually not quite science-fiction but is already possible

using physical systems such as data gloves that are equipped of sensors that can

digitize the position the fingers (see section 2.5.1). These systems are efficient

but intrusive, too expensive for most applications and generally their performance

is decreasing quickly with extended use. Because human cognitive systems are

1.2. Applications of Hand tracking 7

john mnemonic,1995 minority report,2002

Descriptio 1.2: Data glove in movies

able to infer the pose of a filmed hand, one would expect that alternative non-

intrusive systems could be designed using cameras and Computer-Vision techniques.

In comparison to glove-based systems, existing computer-vision (CV) systems have

the advantage to be inexpensive but still lack of precision, robustness and speed

for general uses. Before detailing further the existing hand motion capture systems

and compare their respective advantages, we will first motivates development of CV

hand tracking systems by presenting different scenarios where it can be used for.

The goal of this thesis is to obtain estimates related with the full 3D pose

of the hand. However we will see that for some applications it might suffice to

estimate only the 3D pose of some specific parts of the hand such as the fingertip(s)

or the palm or even 2D position of fingertip(s) projections in the camera image

plane. Despite not being essential for these applications, a full hand pose estimator

would nevertheless remain of great interest. Indeed, rather than designing a new

algorithm to extract needed information (that is specific to the task) directly from

the image, it appears simpler to extract this information from the full hand pose

estimates if already provided by a general-purpose hand pose estimator. Even if, for

such applications, only a portion of the hand pose information is retained, it would

eventually be easier to add new functionalities by retaining more information on

the hand pose if it is already available. Let us now review application areas where

such an inference system could be of great interest.

1.2.1 Animation

Motion capture (MoCap) systems digitalize actor’s body movement and are more

and more often used in the cinema and game industry to animate virtual characters

with realism. Once the movement of the actor is captured, the estimated pose

parameters are used to animate a virtual character. In the context of classical

movies, this is a great help in situations where the performance would impractical

or too dangerous for real actors or where the choice of camera angle would have make

8 Caput 1. Introduction

the shooting difficult or impossible to do with real cameras. This is also amplified

for scenes or movies involving no-human behaviors like animals for example. In

such a context the motion capture system is not required to be real-time. Real-time

motions capture systems are sometimes used for live television broadcast in order to

place a virtual character interacting with real people within a real or virtual scene.

Most character motion capture systems does not measure secondary motions like

detailed hand motion. The resulting animations look unnatural due to the stiffness

of hand motion. Systems dedicated to hand motion capture such as data-gloves

(see section 2.5.1) are therefore useful to increase realism in character’s full body

animation or when doing close-up on hands in an animated sequence. Of course, we

could mention also the importance of these techniques on the recent explosion of

fully animated movies that go beyond children audience and become a main stream

in cinematography.

1.2.2 Quantitative Motions analysis

Motion capture systems can be use to study the human movements in general and

the human locomotion in particular. We refer to gait analysis in the latter case.

The interest of using motion capture for quantitative motions analysis lies mainly

in its ability to produce repeatable results. In the field of clinical medicine, mo-

tion capture can be used to measure the extent of a client’s disability as well as

a client’s progress with rehabilitation. By accurately measuring hand and finger

movement one can quantitatively monitor the recovering from hand or nervous-

system injury. Non invasive motion-capture systems are preferable for such medical

applications, as it allows the clinicians to evaluate the motion without burdening

patients with tracking devices. Motion capture can also be used for sportive ges-

tures analysis towards helping athletes to improve their performances. However,

capturing the detailed movements of the hands might not be of great interest for

these applications.

Motion capture can help to design product that are ergonomically practical. For

example, in the medical fields, motion capture can help to design effective prosthetic

devices. One can cite for example aid systems for elder population [Xin 2007]. This

subset of population is often physically challenged and motion capture can help to

study the age-related physical limitations, especially the ones related with motion.

Non invasive motion-capture systems can improve psychological confidence or free-

dom of the subjects over invasive motion-capture systems, and help the subjects to

focus on performing their tasks.

1.2.3 Sign Language Recognition

Hand motion capture can be used as a central component in an automatic sign

language recognition system. A sign language is a language that conveys meaning

through the use of visual sign patterns combining hand shapes, orientation and

movement of the hands, arms or body, lips movements and facial expressions. The

1.2. Applications of Hand tracking 9

manual alphabet augments the vocabulary of a sign language when spelling indi-

vidual letters of a word. Signs in the American Sign Language (ASL) correspond

to dynamic hand movements and are associated to a full world while the letters

of the American Manual Alphabet (AMA [Figure (1.3)]) correspond to static hand

pose (the letters J and Z are exceptions). A system able to perform automatic

sign language recognition would allow translating sign language into written text

or synthetic speech and therefore enabling communications between deaf and nor-

mal people. In particular, the combination of an automatic speech recognition

with ASL synthesis could produce a new bidirectional communication framework

between hearing-impaired people and non-impaired people. There is certain prior

work on this direction like for example the ones in [Takahashi 1991]1[Liang 1998],

[Kadous 1995],[Murakami 1991]2 [Lee 1996]3 which rely on invasive motion capture

systems - such as data-gloves - to obtain hand pose measurements which are used

as features to perform automatic classification.

Descriptio 1.3: American Manual Alphabet (AMA)

However, as it is mentioned in section 2.5.1, data-gloves are expensive and not

suited for frequent use. An alternative solution consists in using computer-vision

techniques. A possible approach is to proceed in two steps: 1) estimate the 3D hand

pose from the images using method like the ones developed in this thesis, and 2)

use the estimated pose parameters as features for classification. Because 3D hand

pose estimation is already a difficult problem, this is not the approach generally

taken in the literature aiming at recognizing signs language. Most methods perform

gesture classification using feature directly extracted from the images and do not

explicitly estimate the 3D hand poses. In comparison with feature directly extracted

from the image, 3D hand pose estimates present the advantage to contain all the

useful information for sign recognition while being independent of the view-point,

illumination etc.

For more details on gesture recognition in general, we refer the reader to several

reviews [Wu 1999c, Wu 1999b]. Since the great majority of these methods do not

explicitly estimate the 3D hand poses, the pose estimation problem is not detailed

in these reviews.

1 ı̈¿ 1

2
verifier

2 ı̈¿ 1

2
verifier

3 ı̈¿ 1

2
verifier

10 Caput 1. Introduction

1.2.4 2D human-Computer interaction

Hand motion capture can be used as a central component to design 2D human-

Computer interfaces. One can imagine numerous scenarios, like 2D virtual envi-

ronments or augmented reality applications to manipulate electronic documents,

presentations or other applications projected on desks, walls etc. We refer the read-

er to [Moeslund 2003] for complete review of such systems. The estimated index

finger-tip position in the image plane can be used as a pointer like a virtual 2D

mouse. This can be associated with the automatic recognition of gestures or pos-

es among a finite set of predefined gestures/poses being associated with semantic

meanings. The detected gestures/poses can be used to trigger actions (select/release

for example) in a similar fashion to mouse buttons or keys on a keyboard. Using

the tips position of two fingers (the thumb and the index for example) one can also

perform simple 2D manipulation tasks such as translation, rotation and re-scale (

the 2D position of two fingers provide a 4D parameters vector that matches the

dimension of the space of transformation obtained by the above mentioned trans-

formations). 3D hand pose provides a straightforward manner to obtain the 2D

position of the finger tips in the image plane and to detect postures that trigger

actions using some classifiers with the estimated hand parameters as features. The

use of invasive motion capture systems is expensive and not suited for frequent use.

Therefore computer-vision systems are a good alternative. The difficulty of the 3D

hand pose estimation problem from images had as a result that most of the methods

found in the literature do work directly with high-level features extracted from the

images and/or with a simplified 2D hand models. The advantage in term of expres-

siveness of such 2D HCI over a mouse and a keyboard is not obvious. Furthermore,

the user has to remember the set of command gestures which may contain ones that

are not very natural to perform. The advantage of such 2D HCI systems over a

mouse and a keyboard appears when non-invasive computer vision techniques are

used. These methods are suitable for numerous scenarios where contacts between

the user and the system are either not possible, or not allowed, such as in an oper-

ating room or in public places where we wish to avoid deterioration of the HCI by

the users.

1.2.5 3D human-Computer interaction

Hand motion capture can be used as a central component to design 3D human-

Computer interfaces in various scenarios including 3D Virtual Environments (VE)

or augmented reality (AR) applications. If the 3D pose of a pointing index is

recovered accurately, this can be used to select an object of interest in the 3D

environment. The 6D rigid transformations of the palm can be estimated and

applied on the selected object. Like in the 2D case, specific hand poses can be

used to trigger actions. However this type of 6D interface does not fully exploit

the full range of expression of the hand and such reduced functionalities could be

obtained through simple 3D mouse devices. Another approach to manipulate 3D

1.3. Hand Pose Estimation Scientific Challenges 11

virtual object consists in capturing the motion of the whole hand and simulating

physically realistic reactions of the virtual object to the contact of the hand. Such

approaches require haptic devices such as exoskeleton (see section 2.5.1) that can

provide force feedback for the user to feel contact with the virtual object and object’s

inertia. Computer-Vision based hand motion trackers are therefore not suitable in

this setting.

1.2.6 The hand as a high DOF control device

Hand motion capture can be used to devise high degree of freedom (DOF) control

devices. The hand skeleton has about 28 degrees of freedom (24 joint angles + 6

DOF for global position and orientation of the wrist). By mapping the measure as-

sociated to each captured DOF into a real valued controller one can simultaneously

control 26 continuous 1D inputs.

This has been experimented for live music performance in 1989, when the MIT

Media-Lab composer Tod Machover included some form of whole-hand input in the

performance of a piece he had been commissioned to write for the 50th anniversary

of the Nippon University. The results had been promising however lag and impreci-

sion on the measures prevented the consistency and accuracy needed by professional

musicians [Sturman 1994, Sturman 1992].

To conclude, it is clear that there is an enormous and wide spread demand for

vision-based hand-pose estimation problems

1.3 Hand Pose Estimation Scientific Challenges

Building a fast and effective vision-based hand pose tracker is quite challenging.

Hand pose estimation from images is difficult due to various factors. One should

separate these challenges into two categories, the ones due to the model and problem

complexity from mathematical point of view and the ones due to the observations

limitations.

• Dimensionality

The hand skeleton has approximately 30 significant degrees of freedom, and

therefore the state space of possible hand poses is enormous. The search

for the best pose in such a high-dimensional state space is computationally

demanding. The state space search can be improved by exploiting interdepen-

dence between fingers. This is generally done by constraining the hand pose

to remain within a low dimensional sub-manifold of the Cartesian product of

the individual parameter ranges. This dimensionality reduction is driven from

considerations about the physiology of the hand or learned from a training set

of poses that is assumed to be representative of the kind of gestures we aim to

track. In the context of hand tracking several approaches have been proposed

[Lin 2000, Wu 2001, Zhou 2003, Thayananthan 2003a](see section 2.2.2.2). In

contrast with body tracking where the motion often fall on either the walking

12 Caput 1. Introduction

or running class, it seems impractical to restraint the classical hand motion to

a small set of activities that can be described by low dimensional manifolds

in the pose space. In [Zhou 2003] the manifold as been obtained using a 6

dimensional PCA on training data collected from a CyberGlove. However

such a dimensionality reduction of the pose space will lead to a slightly in-

accurate representation of the hand that will be unable to fully explain the

observed image. A solution might consist in progressively re-augmenting the

dimensionality to refine the pose estimation. We refer to the section 4.5.2

for more details about the method we chose in order to learn the manifold of

hand poses.

• Range and Rate of Changes of the Model Parameters

The hand movements are often quick but also complex. According to

[Erol 2007] its speed reach up to 5 m/s for translation and 300 degrees/s

for wrist rotation. This has several consequences that make hand tracking

difficult. First, predictions of the future state from estimated states at previ-

ous time instants inherit significant uncertainty. As a consequence we cannot

focus the search of the hand pose in a narrow region of the space of hand

pose parameters. Second, off-the-shelf cameras can generally support 30Hz

frame rates. Therefore one can observe up to 10 degrees inter-frame wrist

rotations. That may cause important motion blur which might deteriorates

clues extracted in the image. In order to address the challenges associated

to the speed of the hand motion and depending on the application, it might

acceptable to ask the user to avoid rapid hand motions. However in his thesis

Sturman [Sturman 1992] recommends at least 100 Hz tracking speed to allow

effective human-computer interaction.

• Presence of self occlusions

The hand is an articulated object and its projection often results in important

self-occlusions. These occlusions make practically impossible to segment dif-

ferent parts of the hand and to extract reliably features such as optical flow or

depth maps in stereos settings. Treating occlusion through an outlier process

(or robust functions) might not be sufficient to treat large occlusion. The

occlusion dependency on the hand pose should be modeled in the generative

model towards avoiding the attribution of image measurements to occluded

parts of the hand. Whenever parts are fully occluded (in all cameras, in

multi-camera settings) their pose cannot be estimated based on image mea-

surements. This introduces uncertainty to the pose estimate of the hidden

parts. Without image support, it is generally not possible to predict the lo-

cation where these parts are reappearing. This might cause the tracker to

fail whenever the algorithm heavily relies on pose prediction to initialize local

exploration in the pose space. Note that self-occlusions are less of a problem

when using a wide base-line multi-camera setting (see section 2.1.3) because

it is unlikely that a part of the hand is simultaneously occluded in all images

1.3. Hand Pose Estimation Scientific Challenges 13

taken from very different viewpoints. A possibility to limit occlusions be-

tween fingers in a monocular setting is to restrict the palm to remain parallel

to the image plane. However, such a constraint might be acceptable only for

a limited set of applications.

• Lack of Texture and color Discrimination Between Hand Parts

Most of the hand is skin colored which makes difficult to discriminate one

part of the hand from another based solely on color. This contrast with body

tracking where hands, arms and legs have often different colors. The hands

do not present contrasted texture, which makes optical flow, point tracking or

stereo reconstruction often inefficient. Edges around fingers that are occluding

other parts of the hand are difficult to discriminate from wrinkles.

• Self collisions

Whenever a generative approach is used, one needs to ensure that the esti-

mated hand pose is physically possible. One of the constraints is that two

different part of the hand should not inter-penetrate. In the hand parame-

ter space, the set of points representing admissible poses that do not present

inter-penetration is a sub-volume of the initial hand parameter space. Unfor-

tunately this set is not convex and confining the search in this set is far from

trivial, especially for optimization-based methods.

• Depth ambiguities

Working with a monocular setting is challenging compared to multi-camera

settings because the depth information cannot be retrieved. The lack of depth

information makes the estimation of the hand pose under-constrained or ill-

posed. Distinct 3D hand poses hypothesis with different depth may lead to

very similar 2D projection and thus could equally well explain 2D cues or fea-

tures extracted from the observed image. Whenever the considered method is

generative and the pose estimation problem is formulated as the minimization

of some objective function based on the observed image cues, these ambiguities

result into the existence of several equally low minima of the objective func-

tion. Similar to the variational approaches, in the case of Bayesian inference,

these ambiguities produce multiple modes in the posterior distribution of the

hand pose parameters.Such observation ambiguities depend on the nature of

the features extracted from the images. This is illustrated in [Figure (1.4)]

where the first column shows images of a hand with two different poses of

the index finger. The other two columns show the corresponding edge maps

and silhouettes based on color, both of which do not change significantly as

the finger moves. The edges and the silhouette extracted in the image do

not provide enough information to disambiguate between the two finger posi-

tions while inferring the hand pose. However, while looking the first column

in [Figure (1.4)], an human is able to disambiguate between the two finger

positions. This illustrates the fact that humans are generally able to guess

14 Caput 1. Introduction

Descriptio 1.4: Two hand pictures in the first column and their corresponding edge

map and segmented silhouette in the two other columns. Edge and Silhouette are

little informative to disambiguate the two different index poses.

the 3D pose of a hand even with a single eye. In the example [Figure (1.4)]

the visual information that allows disambiguation between the two poses is

very likely to be conveyed by the shading. Because the shading depends on

the orientation of the normal to the surface, it provides information about

the local depth variations of the surface. This relation is exploited by general

shape-from-shading techniques to infer depth from monocular data whenever

the surface has uniform reflectance and the lightning is controlled.

• Cluttered background

Edge detection in cluttered background provides many edges that do not relate

to the hand and that are likely to distract the tracker. Furthermore, intensity

separation between cluttered background (multi-modal unknown density) and

skin color is not always straightforward. Dealing with arbitrary background

is a challenging issue in computer vision, even for rigid objects tracking. A

classical approach to overcome these problems it to assume that either it is

uniform, static or with a color that differs significantly from the skin color.

Note however that such assumptions might not be generally applicable for

real-life applications.

To conclude, hand-pose estimation using computer vision techniques is a chal-

lenging problem from technical and practical perspective. In this thesis we made an

effort to provide answers to some of the limitations of the existing methods through

tow distinct contributions.

1.4. Contributions & outline 15

1.4 Contributions & outline

Our contributions consist of what are so-called model-based methods where candi-

date hand poses are evaluated using a synthetic model of the hand whose projection

in the image is compared to the observed image. The methods do differ in terms of

modeling as well as in terms of inference. The first one is a low complexity approach

both in terms of the hand model as well as in terms of model-to-data association

and inference [de La Gorce 2006, de La Gorce 2010b]. The second one introduces

a more complex and richer model that is combined with a powerful image-based

criterion and a term that account for prior knowledge of the hand-pose manifold

[de La Gorce 2008, de La Gorce 2010a].

These two methods differ by the choice of the hand surface model and by the

criterion used while comparing the model projection and the observed image. For

each of the two method we propose solutions to some of the limitations of the

previous methods we listed in section 2.6. Unfortunately, like for other monocular

hand tracking methods proposed in the literature, robustness and speed are still

two major concerns that make our methods not yet suitable for general use. We

will briefly present the essence of these methods in the upcoming sections.

1.4.1 Part-based Hand Representation and Statistical Inference

In this context, the hand is modeled as an articulated body made of ellipsoids

and polyhedra. For each frame, the model is fitted onto the observed image by

minimizing a matching cost that is defined using color models of the background

and of the hand. This cost is defined by summing the logarithm of the likelihood

ratio (between hand and background likelihoods based on color) over all points

within the synthetic silhouette. Ellipses are approximated by polygons leading to

an approximate matching cost that can be numerically evaluated exactly while

being a continuous and differentiable function of the hand pose parameters. The

hand pose estimation is done by minimizing the matching cost using a trust-region

method that exploits its exact gradient and an approximation of its Hessian. This

local search method is combined with a particle filter in order to deal with occlusions

and local minima through multiple hypotheses.

The main contributions of this method are the following:

• The methodology that consists in defining a continuous matching cost that

can be computed exactly and whose gradient can also be computed exactly.

• The use of a polygonal discretization of the silhouette in order to de-

fine an approximate matching cost that is computationally tractable and

differentiable.

• The design of a new algorithm that allows to compute quickly the exact

integral of an interpolated gray-level image within a polygon with non integer

vertex coordinates. The algorithm also computes the derivative of this integral

with respect to the vertex positions.

16 Caput 1. Introduction

• The introduction of a variable metric gradient descent and a efficient trust-

region method for model fitting.

The main limitation of this method is its inability to disambiguate between

different poses that produces the same hand silhouette. This is due to the lack of

visual information extracted from the image, such as the information provided by

the texture and the shading of the observed hand.

1.4.2 Triangular Mesh with Texture & Shading

The hand is modeled as deformable triangulated surface with an underlying skeleton

controlling the deformations. In order to exploit shading information in the images,

the hand model surface is shaded using some hypothesis on the direction and the

strength of the lightning. Towards capturing dense information provided by fine

asperities of the albedo, the fine texture of the hand is learned from the image

sequence and mapped onto the hand model surface. Given an hypothesized hand

pose and lightning condition, a synthetic image of the hand including texture and

shading is generated and the matching cost is defined as the sum of individual pixel

error between the synthetic image and the observed image. Due to the discretization

on a pixel grid, this matching cost is discontinuous. We proposed a continuous

version of the matching cost by considering the image domain as a continuous

domain and we derive the analytical expression for the gradient of this continuous

matching cost. The appropriate treatment of the occlusion boundary yield new

occlusion forces along these occlusion boundary and a theoretical connection is

made with active regions and active polygons. The pose estimation is done by

finding hand pose and lightning parameters that minimize this matching error.

Like for the first method an effort has been made to propose an implementation

of the matching cost that remains a continuous and differentiable function of the

hand pose parameters, despite the discretization on the image grid.

Among the contribution of this approaches are

• The use of shading and texture in the model

• The derivation of the occlusion forces that account for the progressive change

of visibility around occlusion boundary when the hand displace.

• The methodology that consist in 1) proposing an implementation of the

matching cost that remains a continuous and differentiable function of

the hand pose parameters, despite the discretization on the image grid 2)

differentiating the implemented version of the matching cost.

• The introduction of a block-wise BFGS formula to exploit independences be-

tween hand parts and speed up the convergence rate over the standard BFGS

formula.

1.4. Contributions & outline 17

1.4.3 Outline

The reminder of this document is organized in the following manner. In chapter two

we briefly review the state of the art methods in hand pose estimation for monocular

or stereo settings. We present related work both in terms of the modeling aspect

as well as in terms of inference one. The main contributions of this thesis are

presented in the next two chapters. First, we introduce a part-based representation

and a corresponding inference method that aims to globally separate hand from

the background through the use of regional statistics. The second method consists

of a powerful richer model that includes texture, shading, lighting, etc... and is

inferred through the definition of a global objective functions that minimizes local

discrepancies between the image and the synthesized hand image. This framework is

amended to account for prior knowledge. Discussion and future directions conclude

this thesis.

Caput 2

State of the art

In this section we will review methods that have been proposed in the literature to

design automatic hand pose estimation systems. We will use as basis the classifica-

tion being proposed in [Erol 2007], which inspired in some aspect our own review.

Prior in hand pose estimation could be classified in different ways, like for example

according to the acquisition framework, the type of image features that are used,

the presence/absence of constraints on the user’s hand poses/movements or on the

theoretical approach (model-based or discriminative) the method relies on. The two

classification axes that seemed the most relevant are 1) the type of input provided

by the acquisition system and 2) the theoretical approach considered to estimate

the hand pose from the input. We will first present the different acquisition settings

that have been considered to do hand tracking. We will then adopt a theoretical

view point and treat separately the two main approaches that are the model-based

approach and the classification/regression based approaches. Finally we will discuss

the literature treating related problems such as non-optical hand tracking systems,

automatic gesture recognition and body tracking.

2.1 Acquisition framework

Several optical acquisition systems can be considered to perform computer-vision

hand tracking, In particular one can refer to the number of cameras, the use of

markers etc. In this section, we briefly review the major optical acquisition systems

that have been use for hand tracking. Non-optical acquisition systems are discussed

in the section 2.5.1.

2.1.1 Monocular setting

The most affordable acquisition system is a system composed of a single classic

camera or a webcam. This system is the most convenient for the user, of low cost

and thus is accessible to a wide audience. A system based on a a single camera is

eventually easy to transport and can be wear on a hat (see [Liu 2004, Starner 1998]).

However having a single view-point of the hand makes 3D hand-tracking a very

challenging problem. In comparison with multi-camera settings, the depth cannot

be obtain by triangulation and is difficult to infer from the data. Subtle image

information such as the information conveyed by shading is crucial to infer depth

of the different parts of the hand (see section 1.3).

Among methods using a monocular setting to perform hand pose estimation are

the methods proposed in [Athitsos 2002, Ouhaddi 1999a, Lee 2004, Stenger 2001c,

20 Caput 2. State of the art

Stenger 2001b, Lin 2004, Wu 2001, Kuch 1995, Zhou 2005a, Zhou 2003, Wu 1999a,

Sudderth 2004, Shimada 2001, Rosales 2001, Potamias 2008, Lu 2003, Kato 2006,

Imai 2004, Heap 1996, Ge 2008, Cui. J-S 2004, Athitsos 2003a, Guan 1999,

Chua 2002].

2.1.2 Small baseline stereo setting

Another classical setting consists in taking two cameras with a distance between

them that is small in comparison with the distance to the hand. Thus the two cam-

eras are approximatively pointing at the same direction and are capturing the hand

with a slight change of the view-point. Using the two synchronized image sequences,

some depth information can be inferred. Image-based stereo-reconstruction con-

sists in (i) finding dense correspondences between the two images and (ii) performing

triangulation towards recovering a “continuous” depth map. Because the hand has

little texture and because for several configurations one observes significant occlu-

sions, it is difficult to find dense correspondences if the resolution of the images is

low to medium. The presence of occlusions cannot be handled very well by stereo

reconstruction algorithms.

The triangulation process, requires some knowledge about the 3D positions of

the two cameras and therefore an additional calibration process is to be considered

[Clarke 1998]. If the main aim is to determine the 3D hand pose relatively to the

cameras, then we only need to determine position of the second cameras relatively

to the first camera (the system has to be calibrated each time the relative position

of the two cameras is modified). Therefore it can be usefully to fix the two cameras

on the same rigid frame. Another difficulty is to synchronize the two cameras such

that the two acquired sequences refer to frames that are taken exactly in the same

time (the maximal hand displacement in the images during the time discrepancy

between the two cameras should be smaller than a pixel). This cannot be easily

achieved using standard webcam but can be done with firewire cameras with a clock

signal. Parameters of the cameras such as exposure and color balance should also

be calibrated such that the acquired sequences refer to comparable pixel intensities.

If the reliable depth information can be inferred using a stereo setting, then it would

greatly facilitate tracking in comparison with monocular setting.

Among methods using a stereo setting to perform hand pose estimation are

the methods proposed in [Delamarre 1998, Dewaele 2004, Chik 2007] (see section

2.2.3.3).

2.1.3 Wide baseline setting

Another muti-camera setting consists in taking two or more cameras with their

relative distance comparable with their distance from the hand. Thus the two

camera optical axis are pointing at very different directions (sometimes orthogonal

one from an other when using 3 cameras [Ogawara 2003, Ueda 2005]) and the hand

2.1. Acquisition framework 21

is seen from different view-points. Two wide baseline setting that have been used

for hand tracking are shown in [Figure (2.1)].

Descriptio 2.1: Wide baseline capture systems. Authors names from left to right:

Ueda [Ueda 2005], Ogawara [Ogawara 2003]

The main challenge is to find correspondences between the two images. The

local appearance of the image patches corresponding to the same physical hand

point might be very different due to specularity for example, or because points

visible in an image might not be visible in other images.

Nevertheless, some depth information can be inferred without finding corre-

spondences but by computing the so-called visual hull (see section 2.2.3.3). The

visual hull can then be used as a valuable cue for hand pose inference. Extract-

ing the visual hull requires hand segmentation in images which can be facilitate

using infrared cameras. Such a method requires the knowledge of the relative

positions of the cameras. This can obtained through a multi-camera calibration

process [Svoboda 2005] that has to be repeated each time a camera is moved with

respect to the others. Because the cameras are not close from each other, it is dif-

ficult to fix them onto a single transportable rigid frame which make wide baseline

setting difficult to move. Wide baseline methods were proposed for hand pose esti-

mation in [Schlattmann 2007, Ogawara 2003, Nirei 1996, Ueda 2005, Guan 2007a,

de Campos 2006, Tran 2008, Cheng 2006].

2.1.4 Other settings

Some specialized hardware-specific cameras can estimate a depth map of the scene

at a short range without the need of any complex computation. Time-of-flight

cameras are cameras that create distance data with help of the time-of-flight (TOF)

principle. The scene is illuminated by short light pulses and the camera measures

the time taken until the reflected light reaches each pixel of the camera. This

time is directly proportional to the distance of the reflecting object. The camera

therefore provides a range value for each pixel. Until recently available system have

been too expensive for wide audience (as an example the SwissRangerTMSR4000

22 Caput 2. State of the art

by mesa imaging costs about 9000$). Recently the Israeli developer 3DV Systems

announced a time-of-light camera at the cost of at approximately. Base on this

technology, Microsoft will equip the next generation of XBox with a real-time full

boy tracking system. In [Mo 2006] the depth is obtained using a camera developed

by Canesta that allows the acquisition of low-resolution depth images at 30hz using

a laser-base technology.

A different approach to obtain a depth map is through the projection of a

structured light with a specially designed light pattern on the scene. In such a

setting, the depth map can be obtained using only a single image of the reflected

light and by performing triangulation. The structured light can be in the form of

horizontal and vertical lines, points, or checker board patterns. Among methods

using a structure to perform hand pose estimation one can refer to [Bray 2004b,

Du 2008, Malassiotis 2008]

Finally, another approach to disambiguate the depth, proposed in the context

of finger tracking by [Segen 1999], consists in using casted shadows of the object

(the hand in our case) on a planar surface lying in its vicinity. The shadow pro-

vides information on the silhouette of the hand seen from another point of view.

Extracting the information requires some knowledge about the positions of light

source and the surface receiving the shadow. From a computational point of view

this approach has some similarities with the wide baseline setting, where a second

camera is virtually placed at the position of the light source.

2.1.5 Markers

Employing markers on the hand can help tracking. The use of markers could be

considered intrusive but markers yield considerable technical advantages in terms

of processing speed. A single ellipsoidal marker has been use in [Usabiaga 2006]

to infer the 6D global pose of the hand. In [Kim 2004] white fingertip markers

where used under black-light to detect fingertip locations, yielding to much richer

set of gestures. In [Dorfmuller-Ulhaas 2001] a glove marked with retro-reflective

balls has been used to track the index movements. In [Buchmann 2004] a glove

with three markers (the index tip ,the thumb tip and the palm) has been used

to ease the capture of grabbing movements between the index and the thumb. In

[Holden 1997, Lien 1998, Lien 2005, Lien 1998, Dorner 1994] gloves with more than

seven markers have been used to estimated the full 3D hand pose of the hand.

2.1.6 Context

The acquisition framework may also inherit contextual restrictions on the user or the

environment. Concerning the environment, a classical approach is to use a uniform

or static background in order to facilitate the hand segmentation (some examples

are [Lin 2002, Wu 2001, Kuch 1995, Ouhaddi 1999a, Zhou 2005a, Athitsos 2002]).

If the background is close to the user, a black background might be preferable

because moving shadows due to the user are less perceptible on a dark background.

2.2. Model-based tracking 23

If the camera is fixed and the background is cluttered but static, one can learn a

detailed model of the background that facilitates the hand segmentation. If the

lightning is controlled the method does not need to be illuminant-independent.

Concerning the user, it is often assumed that the set of hand pose that are to be

estimated is restricted. A common restriction is to assure that the palm is parallel

to the image plane. The purpose is to avoid out of plane rotations that cause

fingers to occlude each other. Restricting the hand pose also helps to reduce the

dimensionality of the hand pose space and facilitate the pose estimation problem.

Finally, assuming the user is always facing the camera can help to reduce the space

of possible hand poses during communicative gesturing such as in sign-language

where the set of gesture depends on the observer/interlocutor position. With such

a restriction the method does not need to be view-independent.

2.2 Model-based tracking

2.2.1 General principle

Model-based methods rely on an explicit model of the hand that allows, for arbitrary

hand poses, to synthesize on-line hand model features. Given an image of the hand,

the hand pose estimation consists in searching, among possible hand poses, the hand

pose candidate that yield the best match between the synthesized model features

and the ones extracted from the image. This search is generally (but not always,

see section 2.2.4) formulated as an optimization problem. A scalar measure of the

error matching is introduced, and the best hand pose is the one that minimize

this error. Due to the high dimensionality of the hand pose space, this search

cannot be exhaustive. The search is generally made locally, in the vicinity of an

initial guess of the hand pose obtained by prediction from the pose estimated in

the previous frames. The search is done by iteratively refining the initial pose or by

sampling once a set of poses around the predicted pose (like in Bayesian filtering).

Two terminologies are related to the model-based approach: the inverse problem

formulation and the generative formulation.

• Inverse problem formulation. Model-based methods are sometimes re-

ferred as inverse problems. In an inverse problem formulation, one specifies

first a (deterministic) function f(θ) that synthesize features from an hand

model given an arbitrary pose parameter θ. The function f(θ) is defined

using a model of the hand and eventually of the cameras. Then observed

features O extracted from the image, one aims to estimate the hand pose by

solving the inverse problem, that is evaluating the inverse function f−1 at

O i.e finding θ such that O = f(θ). Due to noise and modeling errors this

problem generally does not have any solution and we have {θ | fθ = O} = ∅.
One can overcome the above mentioned limitations through the introduction

of a discrepancy measure ρ between the observed features O and the synthet-

ic features f(θ). We refer to these measure as the objective function or the

24 Caput 2. State of the art

matching cost. The estimation of θ is then formalized as the minimization of

this measure:

θ̂ = argmin
θ

ρ(f(θ), I) (2.1)

The lowest potential of this objective function will provide best match between

the synthesized model features and the features extracted from the image.

This approach conforms to the description of the model-based approach we

made.

• Generative formulation.

The choice of the matching objective function might seem somewhat arbitrary,

especially if one combine different features and need to weight their relative

importance while evaluating the quality of the matching. A principled manner

towards a model-based approach is to define a probabilistic generative model,

i.e. to define the probability P (O|θ) with O the observed features and θ an

arbitrary set of parameters that describe the configuration of the hand. The

probability P (O|θ) is defined using the model of the hand, its projection onto
the camera(s) and the noise measurements. Then, given an observed image,

we use P (O|θ) to estimate the parameters θ. The most common framework
driven from this principle is the maximum-a-posteriori estimation of θ that

done by maximizing the posterior probability P (θ|O) with respect to θ. The

posterior probability P (θ|O) can be computed up to a constant factor using
the Bayes’ rule:

P (θ|O) = P (O|θ)P (O)
P (O)

(2.2)

with P (O) =
∫

θ P (I|θ)P (θ) that is constant and thus not taken into account
during the maximization. If one does not define any prior on θ one can

simply use maximum likelihood estimates by maximizing P (O|θ) with respect
to θ. In both cases there no closed-form solution for the maximization and

iterative search or Monte-Carlo techniques are considered. Such an attractive

generative approach has not been used in the context of hand tracking due to

the difficulty of modeling realistic noise on complex extracted features.

Model-based methods are good candidates for continuous tracking over consec-

utive frames with small or predictable inter-frame displacements. Another inter-

secting aspect of model-based methods is that multi-view inputs can be handled

without solving any correspondence problem between the images. The matching

errors with 2D features on all the cameras can simply be summed to define a single

error that has to be minimized.

As we will see, the model-based approaches found in the literatures differs mainly

on the choice of hand model, the choice of features, the evaluation of the matching,

the prediction use to localize the search and the manner the search of the hand pose

is made.

2.2. Model-based tracking 25

Distal phalanx (P3)

Middle phalanx (P2)

Metacarpal (M)

Proximal phalanx (P1)

Distal interphalangeal (DIP)

Proximal interphalangeal (PIP)

Metacarpophalangeal (MP)

Trapezoid bone

Trapezium bone

Capitate bone

Tubercle of scaphoid bone

Pisiform bone

Harnate bone

Triquetral bone

Lunate bone

Interphalangeal (IP)

d
c

b

a

e

Descriptio 2.2: The right hand skeleton from palmar side

2.2.2 Hand models

A 3D hand model consists in a 3D surface that deforms and whose deformation

is parameterized by a pose vector. This pose parameterization is often done using

underlying skeleton that model the set of kinematic constraints between the bones

of the hand. Thus, most 3D hand models comprises i) a model of the skeleton

of the hand and its articulations and ii) a model of the hand surface and of its

deformation being guided from bones displacements. Few methods do not follow

this dual skeleton/surface modeling approach. As an example of such alternative

approaches,in [Heap 1996] a linear PCA model of hand surface variations is obtained

directly from a data-set of hand images acquired with a magnetic resonance imaging

system. We will describe in this section the different skeleton and hand surface

models.

2.2.2.1 Kinematic model/parameterization

The skeleton of the human hand comprises 27 bones [Figure (2.2)]. The palm (or

metacarpus) comprises 5 bones (one for each finger) and the wrist (or carpus) 8

bones. The 14 remaining fingers are digital bones called phalanx.

Each finger but the thumb comprises 3 phalanxes: the distal phalanx, interme-

diate (middle) phalanx and proximal phalanx. The thumb as no middle phalanx

but its associated metacarpal bone is well separated from the rest of the palm. The

bones of the hand are connected together by joints with one or more degrees of

freedom.

26 Caput 2. State of the art

In the literature, the bones of the palm and the wrist are generally merged into

a single rigid part. Few papers [Kuch 1995] uses non-fixed carpometacarpal joints

(connecting the metacarpal bones to the wrist) to allow folding or curving of the

palm. In [Kuch 1995] two internal Degrees of freedom (DOF) are located at the base

of the forth and fifth (ring and pinky) metacarpals. Fixing the carpometacarpal

joints might yield not very realistic palm rigidity.

For all fingers other than thumb, the two interphalangeal joints (Distal and

Proximal interphalangeal) are modeled with one DOF and the metacarpopha-

langeal (MP) joint (connecting fingers to the palm) is generally modeled as a

saddle joint with two DOFs [Kuch 1995, Dewaele 2004, Stenger 2001c]. Some

authors model the MP joints as a spherical joint with three DOFs by adding

a twist motion [Bray 2004b]. The thumb has only two phalanges and its sin-

gle interphalangeal joint is generaly modeled with one DOF. The metacar-

pophalangeal joint of the thumb is modeled with one [Bray 2004b] or two

DOF[Lee 1995, Kuch 1995, Dewaele 2004, Stenger 2001c]. The carpometacarpal

articulation, connecting the thumb with the wrist, is the most difficult to mod-

el accurately. Biomechanical studies [Hollister 1992] have shown that this joint

has two non-orthogonal and non-intersecting rotation axes. This joint has often

been modeled as a saddle joint with two orthogonal intersecting rotation axes

[Lee 1995, Kuch 1995, Bray 2004b, Dewaele 2004, Stenger 2001c], but this mod-

el is not very accurate. Predominant choice consists in 3 DOF spherical joint

[Delamarre 1998], that is an over-relaxation of the model. A solution to get a 2

DOF model for this joint is to impose one of the 3 angles of the spherical joint to

be linear combination of the two others [Griffin 2000].

To the best of our knowledge - except from our own work - none of the hand

tracking paper modeled the forearm.

The pose the hand can be described by the angles associated to each articula-

tions. Furthermore 6 additional parameters should be used to encode the global

pose of the palm (3 for its global orientation and 3 for its global position). Depend-

ing on the choices made while modeling the joints the total number of parameters

varies between 26 and 31 [Ueda 2005]. Describing the global orientation of the palm

might be problematic due to the singularities appearing when parameterizing the

set of rotation (SO3) by 3 angles (see section 3.2.1.2). In order to avoid such sin-

gularities the use of quaternions has been adopted to describe the global rotation

in [Rehg 1994a].

Rather that describing the hand pose by the angles associated to each articula-

tion, one can describe independently the global pose of each bone [Sudderth 2004].

Such a representation could in general yield to a dislocated hand with parts apart.

One deal with the above mentioned limitation through the introduction of non-linear

constraints on the parameters associated to adjacent bones (see section 3.2.1.4).

2.2. Model-based tracking 27

2.2.2.2 Pose constraints

The constraints implied by the kinematic model described in the preceding sec-

tion are not sufficient to avoid unrealistic hand configurations. The structure of

the bones, muscles and the tendons induces limitations on the articulation an-

gles that should be embedded in the hand model. These constrains are essential

to (i) avoid unrealistic hand configurations during tracking (ii) reduce the search

space. Some structural constraints have been identified “by hand” in the litera-

ture [Lee 1995, Kuch 1995, Lin 2000]. Besides structural limitation, more subtle

constraints are imposed by the naturalness of hand motions. Such constraints are

difficult to identify by hand and have been learned automatically from a data-set of

natural hand poses. Most papers consider only active movements (activated by ten-

dons and muscles) and not passive movements (externally forced) for which joints

generally have a greater range.

Previous works [Lee 1995, Kuch 1995, Lin 2000] distinguish two type of hand

constraints: the static and the dynamic constraints. Static constraints are individu-

al bounds on the range of each joint angles. The limits are fixed (static) and do not

depend on other angles of the hand. These constraints are primarily derived from

the hand’s bone. If the pose is described by the set of joints angles, the set of hand

pose that verifies these constraints is a hypercube in the parameters space. This

hypercube is the Cartesian product of the individual angles ranges. The space of

realistic hand poses is actually smaller than this hypercube. The tendon structure

within the hand induces interdependence between fingers angles that are not mod-

eled by static constraints. In order to take these interdependencies into account, a

second kind of constraints has been defined in the literature. Dynamic constraints

are linear or non-linear equalities or inequalities involving two or more joint angles.

Linear inequalities involving two joint angles have been specified “by hand” in the

literature (see [Lee 1995, Kuch 1995, Lin 2000]). These constraints are referred as

dynamic because if we fix all angles of the hand with the exception of one, the range

of this single angle now depends on some the other joint angles.

Dynamic constraints can be subdivided into intra-finger constraints and inter-

finger constraints. The intra-finger constraints are constraints between joints angles

of the same finger. As an example, the two interphalangeal joints of any finger

other than the thumb are approximatively related by a linear equality (the DIP

angle approximatively equals two third of the PIP angle). Inter-finger constraints

are constraints between joint angles from different fingers. As an example of such

constraints, the extension of a finger is hindered by the flexing of others.

The constraint related to the “naturalness” of poses are not due to struc-

tural limitation of the hand. These constraints are context-specific and even-

tually are difficult to identify. Different approaches have been proposed to

learn such constraints from a data-set of natural hand poses we aim to track

[Lin 2000, Wu 2001, Zhou 2003, Thayananthan 2003a, Lin 2004]. In most cases,

a sub-manifold of the parameters space is learned from the data and the hand pa-

rameters vector during inference is constrained to remain within this sub-manifold.

28 Caput 2. State of the art

The global hand pose parameters (orientation and translation) are generally not

included in the training set, and thus the hand remains free to rotate and translate

during the inference. In [Wu 2001] and [Lin 2000] a principal component analysis

(PCA) is applied on a data set of hand configurations, each represented by a set

of joint angles. In both papers 95% of the variance is said to be captured within

the first 7 principal components. They constrain, through re-parameterization of

the hand pose, the configuration to lies in the affine space that corresponds to the

mean added with any linear combination of the top 7 eigen vectors. Similar to that

in [Zhou 2003] the same PCA based approach was used with 6 components. In

[Lin 2000] the hand pose is further constrained to be expressed as a convex com-

bination of 28 hand poses within this affine space. In [Lin 2002] the hand pose

manifold is defined as the union of 1D manifolds joining each pairs in a set of 28

basis configurations. In [Lin 2004], hand pose estimation is constrained (in the first

sage of the search) to be in a finite set of pose samples previously captured with

a CyberGlove. Each sample corresponds to one set of joint angle parameter that

defines the hand pose.

Whenever the pose estimation is formulated as the minimization of some objec-

tive function the naturalness of poses can be imposed using non-uniform penaliza-

tion rather than constraints [Thayananthan 2003a]. If the method is formulated as

a Bayesian method, one can use a non uniform prior on the hand parameters.

2.2.2.3 Hand surface

The second component of a hand model refers to the shape of the skin surface and

to its deformation under bones displacement. The actual hand skin deformation

involves quite complex elastic deformations. Sophisticated models have been in-

troduced in the computer graphics literature to obtain realistic skin deformations

[Sloan 2001, Kry 2002]. In the context of hand tracking, realism is not the main

objective. The model has to be synthesized many times per analyzed frame, and

therefore a rough model might be preferable to keep the computational load rea-

sonable. Several hand surface models have been proposed in the hand tracking

literature.

In [Delamarre 1998, Stenger 2001a, Stenger 2001b, Stenger 2003,

Stenger 2004a, Stenger 2004b, Thayananthan 2003a, Lin 2004, Ouhaddi 1999a,

Du 2008, Nirei 1996, Lee 2004] the hand surface has been modeled as the union

of a small set of truncated quadric surfaces such as cylinders, cones, ellipsoids

and spheres. The union of quadric primitives yields a surface that is smooth

almost everywhere with the exception of the intersection of the primitives and the

borders of the truncation. Conics are easy to project in the camera plane using

the perspective geometry results [Stenger 2001c]. Each conic primitive has a fixed

size and follows the movements of the bone it is associated with. The surface

model that can be obtained using such an approach is not very accurate but

computationally efficient. In [Lu 2003] the finger parts are modeled as cylinders

and the palm is modeled as a six-rectangle-side-solid. In [Wu 2001, Lin 2002] the

2.2. Model-based tracking 29

a) b) c) d)

e) f) g) h)

i) j) k) l)

Descriptio 2.3: Hand surface models. Authors names a) Ouhaddi [Ouhaddi 1999a]

b) Lee [Lee 2004] c) Stenger [Stenger 2006] d) Lin [Lin 2004] e) Ueda [Ueda 2005] f)

[Du 2008] g) Bray [Bray 2004b] h) Ogawara [Ogawara 2003]. i) Heap [Heap 1996]

j) Dewaele [Dewaele 2004] k) Wu [Wu 2001] l) Kuch [Kuch 1995]

hand is supposed to be viewed from a direction orthogonal to the palm and the

hand surface is modeled using a flat rectangle for each hand parts. This very simple

view-dependent model is called cardboard and is shown in [Figure (2.3.k)]. The

occlusions between parts are handled using a visibility map. A major drawback of

this model is that it cannot capture motions with large out-of-plane rotations. In

[Dewaele 2004] the hand is modeled as an implicit surfaces defined with meta-balls

[Figure (2.3.j)]. The surface is defined as a level surface (a.k.a isosurface) of

some a real-valued function of three variables referred as the implicit function.

This implicit function is defined using pseudo-distances to ellipsoids, with one

ellipsoid associated to each part of the hand. Each ellipsoid has a fixed size and

follows the movements of the corresponding bone. The surface that is obtained in

[Dewaele 2004] is smooth almost everywhere and the discontinuities of the normal

vector are not noticeable. These study makes use of 3D features obtained from

stereo vision ands thus eliminate the need to project the model into the image.

In [Bray 2004a, Bray 2004b, Ogawara 2003, Du 2008, Chik 2007] the hand surface

is modeled using a triangulated surface. Each vertex of the surface is associated

to one or more bones. Using the Linear Blend Skinning technique (a.k.a Skeleton

Subspace Deformation, see section 4.2.2), each vertex follows the movements of the

30 Caput 2. State of the art

associate bone(s). For each pair vertex/bone, a weight allows to control influence

of the bones on the vertex displacements. Using progressive transition while

specifying the weights, one obtain smooth deformation of the surface around joints

of the hand. These studies make use of 3D features obtained using structured light

[Bray 2004a, Bray 2004b] or visual hull [Ogawara 2003] and thus eliminated the

need to project the model into the image. In [Ueda 2005] a subdivision surface is

used to model the hand surface at different resolutions in order to use a coarse

to fine approach [Figure (2.3.e)]. In [Kuch 1994, Kuch 1995] the hand is modeled

used a B-spline surface with 300 control points. Each of the control point is

associated to a bone and follows its displacements [Figure (2.3.l)]. Note that not

all model-based hand-pose estimations methods adopt a hand surface. One can

cite for example the ones that use high-level features such as finger tip detected

in the image [Nölker 1998, Nölker 1999, Rehg 1993, Shimada 1998] or markers

[Holden 1997, Lien 1998, Lien 2005, Lien 1998, Dorner 1994]. Another example is

the one presented in [Cheng 2004, Cheng 2006], in which a probability density of

the hand is modeled in the 3D space using 16 anisotropic Gaussian distributions.

2.2.2.4 Adaptation to user morphology

The hand shape and the lengths of the bones vary among humans. Towards accurate

model-based hand trackers, the hand model needs to match the size of the user’s

hand. This demand becomes more important in a monocular setting. For example,

if a finger on the model is too long, its off-plane angle will be over-estimated such

that the shortening due to the projection compensate for the over-estimation of

the length. The off-plane angle is less likely to be over estimated if the hand is

simultaneously observed from another viewpoint. The problem of calibrating the

model to the user is usually solved manually in the literature. In [Kuch 1994]

the hand is calibrated in a semi-supervised manner. Several landmark points are

selected manually on images taken from different view points and the hand spline-

based surface is fitted on the landmark points. In [Chua 2000] the index finger size

is estimate from an image of the hand open and coplanar with the image plane. The

size of each phalanx is estimated based on a fixed ratio between finger segments. In

[Lu 2003] a shape correction step is employed in the first few frames to improve the

hand shape. It consists in adapting the size of each rigid part using non-isotropic

scaling deformations. The parameters are estimated using an iterative method

based on physical forces.

2.2.3 Images features

The optimal hand pose corresponds to the model parameters that yield the best

match between the synthesized model features and the ones extracted from the im-

age. There are two classes of features, the low-level and high level ones. Low-level

features are computed for each pixel using pixels intensities in a small neighborhood

of the pixel. High-level features require non-local reasoning to be extracted, that

2.2. Model-based tracking 31

are generally specific to the kind of data we have and are often expensive to com-

pute. Most model-based method combine different cues to estimate the hand pose.

According to [Sigal 2007] “It is a general consensus in the body tracking community

that combining features leads to better and more robust inference methods”. We

will describe some of the more common features used in the literature bellow.

2.2.3.1 Low level features

The simplest features coming from image are the pixels intensities. In [Rehg 1994b,

Rehg 1995] pixel intensities are directly compared with those obtained from a model

of the hand made of layered 2D templates. In [Rehg 1994b] the square differences

between observed and synthesized intensities are summed over all pixels. If a back-

ground model is not available the summation is restricted to pixels that originates

from one of the templates composing the hand model.

The observed image and the template are filtered with a Laplacian of

Gaussian filter that emphases the edges and eventually helps to have results

that are less sensitive to shading variations. Edges or contours are features

that are used in most (if not all) model-based hand trackers. [Heap 1996,

Lin 2002, Lin 2004, Stenger 2001a, Lu 2003, Thayananthan 2003a, Stenger 2001a,

Stenger 2004a, Stenger 2004b, Sudderth 2004, Cui. J-S 2004]. An example from

[Stenger 2006] of extracted edges is presented in [Figure (2.4)]. The edges in the

observed image are compared with the edges that are synthesized from the model

in with the hand pose candidates. If the hand surface is in 3D, the synthetic edges

are obtained by finding point of the surface where the surface normal is orthogonal

to the line passing thought the point and the optical center of the camera (in the

case of triangulated surface the normal is not continuous and the definition slightly

differs, see section 4.6.1.2). Among these points, the ones that are hidden by an

other part of the hand should be discarded (which is not mentioned to be the case in

[Heap 1996, Lu 2003]). Each point on the synthetic edge is associated to the nearest

edge(s) in the observed image. The distances between associated edges are summed

to define a matching measure. The edges orientations yield a valuable information

in such approaches. One can (i) search the nearest edges along the direction orthog-

onal to the synthetic edges, (ii) use the observed edge directions when defining the

matching cost [Thayananthan 2003a, Stenger 2001a, Stenger 2004a, Stenger 2004b,

Sudderth 2004], (iii) use a 1D gradient filter on the image intensities along the line

that is orthogonal to the synthetic edges [Heap 1996]. Edges are features that have

the advantage not to be illumination-invariant. Their use is less evident when the

background is cluttered, since background edges might be difficult to distinguish

from hand edges. Wriggles and sharp cast shadows within the hand may also create

edges that are generally not modeled.

The hand silhouette is a other common feature used by hand trackers [Lin 2002,

Lin 2004, Wu 2001, Kuch 1995, Ouhaddi 1999a]. The silhouette corresponds to the

segmentation of the hand in the observed image(s). The silhouette is more robust

to clutter than edges or contours. The silhouette segmentation is generally based

32 Caput 2. State of the art

Descriptio 2.4: Edges from [Stenger 2006]

on the assumption that the hand is the only skin colored object in the image. Gen-

erally, the background is either assumed to have a uniform color distribution or to

be static. Whenever the background is static, a sequence of images can be used to

learn a Gaussian per pixel (mean and covariance). The silhouette segmentation is

done by comparing, for each pixel, the likelihoods of being part of the hand or the

background given the hand color model and the background model (background

substraction). Using a Markov-random-field formulation [Howe 2004], active con-

tours or some morphological filters one can improve the quality of the segmentation

over independent per-pixel classification.

Once the hand is segmented, the silhouette extracted form the image is com-

pared with the ones that are synthesized with hand poses candidates. The compar-

ison is generally done [Lin 2002, Lin 2004, Wu 2001, Kuch 1995, Ouhaddi 1999a]

by measuring the symmetric area difference of the two hand silhouettes (observed

and synthetic). The symmetric difference between two regions is the region made

of the points that are within one of the two regions but not both.

S1 S2 S1 ∪ S2 S1 ∩ S2 S1∆S2 ≡ (S1 ∪ S2)/(S1 ∩ S2)

Descriptio 2.5: Symmetric difference between the segmented silhoutte (S1) and the

synthesized silhouette (S2)

Denoting S1 and S2 the two regions, the symmetric difference between the two

region writes S1∆S2 ≡ (S1 ∪ S2)/(S1 ∩ S2). This region is empty whenever the

2.2. Model-based tracking 33

two silhouette matches exactly [Figure (2.5)]. The area of this region is sometimes

referred as the hamming distance. In [Ouhaddi 1999a] the chamfer distance between

the two silhouettes is also tested as an alternative matching measure. In [Nirei 1996]

the scalar product between the two normalized distance images associated to the

segmented silhouette and the model silhouette is used as the matching criterion.

In a monocular setting, the segmented hand silhouette generally does not provide

sufficient information to capture the position of the fingers that occlude parts of

the palm. These feature is generally combined with other features such as edges

[Lin 2002, Lin 2004, Wu 2001].

The segmentation of the hand silhouette based on color distributions may be

inaccurate, especially in the presence of a cluttered background, due to the lack

of strong shape constraints when performing the segmentation. One would like

to limit the impact of such segmentation error on the hand pose estimation. A

possible solution could be to compute uncertainties on the segmentation and use

these uncertainties while comparing the segmented silhouette with the silhouette

obtained with the model. Another solution is to compute directly a “matching

error” without performing segmentation by summing, over all pixels within the

silhouette, the difference between the two log-likelihoods (which is equivalent to

logarithm of the likelihood ratio) based respectively on the hand color model and

the background color model. For each pixel, the logarithm of the likelihood-ratio

is positive if the pixel is more likely to be part of the hand and negative otherwise.

This has been done in [Stenger 2006, Sudderth 2004, Stenger 2004a, Stenger 2004b].

An example from [Stenger 2006] of likelihood-ratio image based on the color of the

pixels is presented in [Figure (2.6)].

Descriptio 2.6: Hand/background likelihood ratio [Stenger 2006]

In [Zhou 2003] edges are detected by applying an edge filter on the log-likelihood

ratio image which allows to detect the hand silhouette boundaries.

Some motion information can also be extracted from successive images as fea-

34 Caput 2. State of the art

tures to estimate the hand displacement. In [Lu 2003, Nirei 1996] the optical flow

is used to infer the displacement of the hand model between two successive frames.

In [Lu 2003] A shading model is introduced in the formulation of the optical flow

equation in order to cope with shading variation when the model displace. In

[Dewaele 2004] points-of-interest are detected in the left image and matched with

the right image using a correlation criterion in order to obtain a sparse 3D rep-

resentation of the hand surface. For each frame the detected points-of-interest

are matched 1 with points-of-interest detected in previous frame. This set of corre-

spondences between two successive frames can be interpreted as a sparse 3D motion

information that is updated at each iteration of the fitting procedure.

2.2.3.2 High level features

High level features carry the advantage of better contextual and global represen-

tation of the observation space but are in general computationally more expensive

to extract from the image. They present some advantages over low level features:

the matching cost for a hand pose candidate is generally much less expensive to

compute. This could speed up the pose estimation process once the features are

computed, and the resulting matching cost (if formalized) is generally less noisy and

have less local minima. On the other hand, reliable high level features are difficult

to extract in the general case due to self similarities in the hand and self-occlusions.

Descriptio 2.7: Detected finger tips in [Nölker 1999]

Finger tips 2D positions are valuable high-level features to estimate the 3D hand

pose. Once the finger tips are detected, one can define the matching cost associated

to these features to be the sum of the Euclidean distances between the position

detected and model tip positions [Nölker 1998, Nölker 1999]. However detecting

the tips is in general a difficult problem. In [Nölker 1998, Nölker 1999] a neural

network was trained using a feature space derived from Gabor filter [Figure (2.7)].

In order to facilitate detection, the background is discarded by assuming it to be

darker than any part of the hand. The performance of this detector is difficult to

assess because the space of poses of the training and testing set seems quite limited

(the palm interior is oriented to the camera, there is no occlusion of the finger

1the term “matching” is actually slightly abusive because the fitting procedure is based on EM-

ICP where the matching variable are hidden variable and only their probabilities are computed

(see section 2.2.4.2)

2.2. Model-based tracking 35

tips) and the illumination conditions do not vary in the dataset. In [Du 2008],

finger tips are detected as local maxima of the curvature of the silhouette. This is

sufficient for their virtual keyboard application where the fingers are extended and

well separated. In [Rehg 1993] line and point features are extracted from images

taken from one or more viewpoints. These features consist of points representing

finger tips and link feature vectors that represent the central axis of each finger

segment. Their extraction is done using local feature trackers that inspect locally

the image intensities long lines that are nearly orthogonal to each finger. These

features are not reliable in case the edges of the finger are hidden by an other part

of the hand.

In [Shimada 1998] the protrusion of the hand silhouettes are detected [Fig-

ure (2.8)]. Each protrusion is assumed to correspond either to a finger tip or a

finger joint. The main axis of each protrusion is computed and its direction is

taken into account when defining the matching cost. The wrist position is also

extracted from the silhouette by taking the location where the he width of the arm

changes abruptly.

Descriptio 2.8: markers [Lien 2005]

In [Segen 1999] the hand is assumed to be nearby a planar white surface. It

is also assumed that it is illuminated with a point source that creates a sharp

shadows of the hand onto the surface that is well visible in the image. The tip and

the main axis of both the pointing finger and its shadow are extracted from the

hand silhouette and its shadow. The tips are assumed to be peaks on the silhouette

contours where the local curvature is above some predefined threshold. Then, using

the calibration parameters of the setting, one can recover the 3D axis aligned with

the pointing finger. The same method is applied for an extended thumb.

The challenging aspect of reliable high-level feature detection has resulted into

an extensive use of markers or colored gloves in order to facilitate the segmentation.

In [Lien 1998], seven colored markers are pasted on the hand: one for each finger

tip, one on the palm and one on the wrist. Similarly, in [Lee 1995], seven colored

markers are painted on a white glove: one for each finger tip, one for the MP

joint of the little finger and one for the wrist. Both [Lien 1998] and [Lee 1995] use

a multi-camera setting such that the 3D position of these markers can easily be

extracted. In [Lien 2005], seven non-colored markers [Figure (2.9)] are pasted on

36 Caput 2. State of the art

the hand. Due to the lack of color, the marker identification process is done using

the temporal coherence.

Descriptio 2.9: markers [Lien 2005]

In [Holden 1997] thirteen colored markers are painted on a white glove: two ring

markers for each finger (so that markers could still be detected from various viewing

angles), two semi-ring markers for the MP joint of the index and the little finger,

and one ring marker for the wrist. In [Lien 2005, Holden 1997] a single camera

is used and thus the 3D position of the markers cannot be extracted directly. In

[Dorner 1994] twenty-one colored markers are painted on a white glove one for

each finger joint and tips and one for the wrist. Because it is difficult to find

twenty-one different colors that are contrasted enough to allow robust discrimination

between the colors, two different methods are proposed for coding the marker with

colors. The first uses the same color for different markers (which may create some

ambiguities) while the second is based on a combination of two colors around each

location to uniquely encode each joint.

2.2.3.3 3D features

Using multi-camera settings or some specific hardware it is possible to obtain depth

information about the hand being tracked. We refer to the features that encompass

depth information as 3D features. We discussed in section 2.1 different acquisition

frameworks that can recover depth information.

Using two cameras in a small base-line stereo setting (2.1.2), the depth can be

determined by triangulation after matching corresponding points in the two images.

This encompass both the hand and eventually the background geometry. Color in-

formation and the assumption that the hand is the closest object to the camera

can be used to eliminate most of the points that should not be associated with the

hand. Depending on the density of the matched points, sparse or dense stereo re-

construction can be achieved. In the context of hand tracking, sparse reconstruction

has been used in [Dewaele 2004] (see section 2.2.3.1) and dense reconstruction in

2.2. Model-based tracking 37

[Delamarre 1998] [Figure (2.10)]. The hand has generally little texture and therefore

reliable matching is not possible, which result in erroneous depth estimates.

Descriptio 2.10: Reconstructed depth map from [Delamarre 1998]

Structured lights can be used to address the above mentioned limitation and

recover the depth map using a single camera. This has been done for model-based

hand tracking in [Bray 2004b, Bray 2004a].

Multi-camera wide-base line setting (see section 2.1.3) can provide a volume

called the visual hull that enclose the hand driven from the silhouette of the hand

in each camera. The visual hull is the 3D volume defined as the set of all 3D points

whose projection lies within the hand segmented regions of the images from all

cameras. Intuitively one obtain the visual hull by carving parts of the space that

are inconsistent with any silhouettes from the different image views. Correct hand

segmentations will result to a visual hull that strictly contains the true hand volume.

As the number of views grows more volume is carved away and the visual hull is

getting closer to the true shape of the hand. Two examples of hand visual hull from

[Ueda 2001a] and [Cheng 2004] are presented in [Figure (2.11)] and [Figure (2.12)].

The surface of the visual hull can then be compared with the surface of the

Descriptio 2.11: Visual hull from [Ueda 2001a]

model by matching each point of the model surface to its closest point on the visual

hull [Ueda 2005, Ueda 2003, Schlattmann 2007, Ogawara 2003]. Another approach

[Cheng 2004, Cheng 2006] consists in defining a hand-pose likelihood function based

38 Caput 2. State of the art

Descriptio 2.12: Segmented silhouettes and visual hull from [Cheng 2004]

on a parameterized probability density of the hand using a mixture of 16 anisotropic

Gaussian distributions. Finally when several camera and markers are used, the 3D

position of the markers can be obtained by triangulation [Lien 1998, Lee 1995].

2.2.4 Fitting procedures

Once the features have been extracted, hand pose estimation consist in searching

- among possible poses - the one that yields the best match between the synthe-

sized model features and the ones extracted. This search is often formulated as

an optimization problem. A scalar measure of the error matching is introduced,

and the best hand pose is the one that minimize this error. When this measure is

expressed as a sum of distances between points on the model and nearest feature

points, then the minimization can be done using methods similar to the well known

iterative closest point algorithm (ICP). Some approaches do not explicitly formulate

a matching cost but rather use a metaphor of physical forces to pull or push the

model toward the configuration of the model that is compatible with the observed

features.

2.2.4.1 Local optimization approaches

Often, the matching error between the features extracted from the image and

the ones obtained with the model can be formalized as a scalar objective func-

tion. In that case the hand pose estimation reduces to a continuous minimiza-

tion problem and one can use classical continuous local optimization methods. In

[Kuch 1995, Lin 2004, Ouhaddi 1999a, Lin 2004] the minimization is achieved using

a local search method that does not require the first order derivatives(gradient) of

the objective function. In [Kuch 1995] the matching cost is based on the symmet-

ric difference between the silhouette extracted from the image on the one obtained

with the model. The minimization is done using coordinate descent, that does not

require the gradient. The set of parameters is updated one component at a time by

solving a sequence of one dimensional minimization problems.

In [Lin 2004, Ouhaddi 1999a] the minimization is done using a variant of the

downhill simplex method (a.k.a the Nelder-Mead method). This is a local search

method that does not require the gradient as well. The function being minimized is

2.2. Model-based tracking 39

evaluated on the vertices of a simplex (a polytope of N+1 vertices in N dimensions)

in the pose space. Then at each iteration, the vertex with the highest value is

replaced with a point reflected through the centroid of the remaining N points. If

the value at that vertex becomes the smallest value, then the simplex is expended

otherwise the simplex is contracted. In [Ouhaddi 1999a] the matching cost is based

on silhouettes. The minimization is done using a modified version of the downhill

simplex method that takes the kinematic constraints into account. This is done by

imposing the vertices of the simplex to remain in the the set of poses that verifies

the kinematic constraints Aθ ≤ b.

In [Lin 2004] the matching cost combines edges and silhouette terms. The min-

imization is done in two stages. The first stage alternates the estimation of the

global palm position, using the downhill simplex method, and the estimation of the

finger poses using a multi-start (30 particles) local search. This is achieved using

the downhill simplex method with the constraint that the vertices of the simplex are

taken in a set of sample points collected using a glove-based sensor. This constraint

allows encoding kinematic limits of the hand, but imposes certain limits on the

precision of the pose estimation. In the second stage, the constraints are relaxed

and the simplex can converge towards a precise pose estimate.

In [Rehg 1994b, Rehg 1995, Bray 2004b] the minimization is done using local

search methods that exploits the gradient of the function. The convergence rate

of such method is faster compared to the ones that do not use the gradient infor-

mation. In [Rehg 1994b, Rehg 1995] the matching error is defined as the sum of

square differences between intensities of the images and the ones of the 2D tem-

plates modeling hand parts. The minimization is done using a classical gradient

descent. In [Bray 2004b] the visible 3D hand surface is obtained using a structured

light and the matching error is defined using an approximation of the chamfer dis-

tance between synthetic and measured surfaces. The minimization is done using

a stochastic gradient descent. At each iteration, a small number of points (45 to

200) are selected randomly on the model surface in order to obtain a Monte-Carlo

approximation of the energy and its gradient. This reduces the computational cost

and also helps to avoid spurious local minima. The hand kinematic constraints were

carefully taken into consideration by using an additional step at each iteration. The

resulting algorithm was called Stochastic Meta Descent (SMD).

In [Chik 2007] the hand is captured with two cameras. The matching error

combines a silhouette matching cost and a point stereo-consistency cost. The latter

measure, for each point of a randomly chosen subset of point on the surface model,

the visual consistency between the two image projections of this point (a criterion

often used in stereo reconstruction 2). A stochastic gradient descent approach

using the Robbins-Monro method is proposed with proof of convergence, however

the SMD [Bray 2004b] method is used for the experimentation because it appeared

to be faster.

2Note that it is not said in the paper if and how the points that are hidden in one of the two

camera are efficiently discarded

40 Caput 2. State of the art

2.2.4.2 ICP like methods

The matching measure between the model features and the ones extracted from

the image can often be expressed as a sum of squared Euclidean distances between

points on the model and nearest feature points. In that case the minimization can

be done using methods similar to the well known iterative closest point algorithm

(ICP). The original ICP method iterates between two steps. The first step consists

in building correspondences by matching each model feature with the nearest (using

Euclidean distance) image feature. The second step consists in re-estimating the

model pose by minimizing the sum of squared Euclidean distances between previ-

ously matched pairs. By iterating these two steps the method eventually converges

to a local minimum of the error matching function.

The main advantage of the ICP method over the gradient descent is that a

closed-form solution generally exists for estimating the optimal transformation once

the correspondences are build. Last we should mention that ICP in its original

formulation exhibits a linear convergence rate [Pottmann 2006].

In [Lin 2002] and [Zhou 2003] the pose estimation is done by alternating global

hand pose (rotation and translation) and local finger pose estimation. The global

pose is determined using ICP with the finger kept fixed, while the local finger

poses are determined using a particle filter in [Lin 2002] (see section 2.2.4.4) and a

factored sampling in [Zhou 2003]. In [Lin 2002] each model edges is associated with

the nearest one in the image. The camera projection is supposed to be orthographic,

and therefore the minimization with respect to the global pose parameters has a

closed-form solution. In [Zhou 2003] the direction of the image gradient is taken

unto account in order to improve the correspondences. In both papers, the matching

criterion used for finger pose estimation slightly differs from the one used for the

global pose estimation. The two criterion might compete one against another while

alternating finger and global hand pose estimation, and thus their convergence is

problematic.

In [Heap 1996] all hand pose parameters are estimated using a modified version

of ICP. The correspondences are computed by seeking intensity changes along seg-

ments being orthogonal to the edges of the hand model. The pose estimation based

on these correspondences is done using a weighted least square method. The use of

weights aims at improving the convergence rate and robustness to outliers or false

correspondences..

In [Dewaele 2004] a sparse stereo reconstruction of the 3D hand surface is ob-

tained by detecting points-of-interest in the left image and matching them with

the right ones. The model is fitted to this set of points using a method so-called

Expectation-Maximization Iterative Closest Point and Surface (EM-ICPS). This

method is inspired from the EM-ICP introduced in [Granger 2002]. The EM-ICP

derives from a probabilistic formulation of ICP where the matches are considered

as hidden random variables and the criterion is maximized using Expectation-

Maximization (EM). According to [Granger 2002] the EM-ICP is more robust when

compared with the conventional ICP.

2.2. Model-based tracking 41

In [Cheng 2004, Cheng 2006, Tran 2008] a kinematically constrained Gaussian

mixture model is fitted to the set of voxel in the visual hull. This is done using an

adaptation of the classical EM approach for Gaussian mixtures.

2.2.4.3 Generalized forces

An alternative fitting approach exploits physical forces applied on the model. Using

a mechanical metaphor, the model is considered as a rigid body with inertia. The

matching error between the model features and the ones extracted in the image is

used to define external forces that are applied on the model. Based on the Newton

second law or the Euler-Lagrange differential equations, these forces are numeri-

cally integrated to displace the model. If the forces are conservative (i.e. can be

written as the gradient of some scalar potential function referred as potential en-

ergy by analogy to mechanics) and damping forces are introduced to dissipate the

kinetic energy (or if the kinetic energy is set to zeros after each iteration as done

in [Delamarre 1999]), then convergence of such approaches is guarantied. Note

however that, for explicitly defined potential functions, optimization methods ex-

ploiting higher-order derivatives - such as Newton method or Quasi-Newton method

- are likely to converge faster than the method consisting in applying the laws of

mechanic.

In [Delamarre 1998] a 3D model based made of truncated cylinders is fitted to

the dense 3D reconstruction of the visible part of the hand. Two kinds of forces are

applied on the model. For each point on the reconstructed surface, a force is created

to attract the closest model point. For each point on the reconstructed surface that

is within the 3D model, a force in the direction of the normal of the reconstructed

surface is considered. These forces are inspired by the Maxwell’s demons introduced

in [Thirion 1996], they are not conservative forces and therefore the convergence of

the method is questionable. These forces are integrated using an efficient method

for articulated bodies whose complexity is linear to the number of rigid parts. In

[Lu 2003] the pose is estimated using a combination of 2D forces that drive the

model to detected edges and other forces derived from the optical flow equation.

These forces are transformed from 2D forces to 3D forces and integrated to displace

a 3D hand model

In [Lee 1995] the fingers and the palm pose are alternatively estimated. The

palm pose is estimated using forces that aim to attract the projected model markers

toward colored ones detected in the image. The palm is incrementally rotated

around the main axis of the resulting torque forces 3 until the torque vanishes. The

finger poses are estimated using a classical inverse-kinematic method.

In [Ueda 2001b] the hand model is fitted to the visual hull. For each point of

the model that lies outside the visual hull, a 3D forces is created. This force is

oriented towards the main axis of the model phalanx it is associated with.

3Note that the definition of torque they use differs from the classical definition

42 Caput 2. State of the art

2.2.4.4 Non-local methods

Iterative methods based on non-convex local optimization, ICP, or forces are likely

to converge to the right pose estimate only for good initial configurations. However,

in several applications, the motion of the hand can be very quick or the hand can

present large occlusions. In such cases, it might be difficult to obtain a good initial

pose from previous frames and the track could be lost. In order to circumvent such

limitations methods that aim at exploring a wider region in the parameter space

were proposed.

The use of multiple hypothesis testing during the tracking [Lin 2002]

[Bray 2004a] using particle filtering is a promising direction to cope with local

minima. Pose estimation is formalized using a recursive Bayesian filter where a

set of weighted particles approximates the conditional probability density of the

pose. Given a new observation, pose candidates are generated from the ones in

the previous frame using a perturbation model. The importance associated to the

new particles is modified by taking into account the likelihood of the observation

in the new frame. This is done by measuring the matching error between the mod-

el features and the corresponding image features. In [Lin 2002] particle filters are

only used for the hand parameters encoding the finger positions and the global

hand rotation and translation are not sampled. In [Bray 2004a] the particle filter

formulation is modified to allow local refinement of the hand pose estimates using

local search. This allows to concentrate the particles on the peaks of the conditional

probability density of the hand pose. The perturbation mode of the particles is very

important to avoid degeneration of samples. We can cite for example [Wu 2001]

where the set of particles is perturbed using factored importance sampling.

Another popular approach to explore a wide range of hand poses is to use global

optimization methods. In [Nirei 1996] the hand pose is estimated in two steps. A

rough estimation of the hand pose is achieved by minimizing a criterion based on

the silhouette using a genetic algorithm (GA) that allows exploring a wide range

of the hand parameter space. Then, the pose parameters are refined by minimizing

a criterion based on the optical flow using a simulated annealing method (SA). In

[Cui. J-S 2004] the initialization is done using a discriminative method and the hand

pose is refined using a genetic algorithm. In [Sudderth 2004] the objective function

is expressed using a graphical model. The factorization of the objective function

into a factor graph requires each hand part to be parameterized independently from

the other parts. Consequently an increase on the degrees of freedom is introduced.

That induces the necessity of additional terms to impose the kinematic constraints

between pairs of hand parts. Belief propagation, a non local inference technique for

graphical models, is used to perform the pose inference. However certain restrictive

approximation/assumptions have to be adopted to obtain a factorized form of the

energy (in particular while modeling occlusions). Furthermore belief propagation

involving high dimension continuous variables is yet an open problem.

Finally in [Stenger 2006, Thayananthan 2003a] a tree-based filter that performs

Bayesian particle filter with a adaptive tree-based representation of the conditional

2.3. Discriminative methods / Learning-Based Methods 43

probability is considered. This approach is based on a hierarchical subdivision of

the pose space and bears similarities with the branch and bound global optimization

method. In [Thayananthan 2003a] the set of voxel is clustered using the Laplacian

Embedding technique and the set of clusters is used to provide good initialization

for the EM algorithm.

2.3 Discriminative methods / Learning-Based Methods

2.3.1 Principle

Discriminative methods aim at defining a direct mapping from images features to

3D hand pose estimates. The features are extracted either from a single image or

multiple calibrated views. This mapping is learned directly from a large dataset of

hand poses parameters with the associated image features. The dataset is either

generated off-line with a synthetic model or acquired by a camera from a small

set of poses. The mapping from the visual inputs to 3D poses is not necessarily a

function. Due the occlusions for example, the same hand image could be generated

by different hand configurations, which result in visual ambiguities. A one-to-many

mapping, where the outputs is a set of possible candidates, is better suited to cap-

ture such ambiguities. Discriminative approaches have been proposed in the con-

text of hand tracking in [Guan 2007b, Guan 2006, Athitsos 2002, Athitsos 2003b,

Shimada 2001, Athitsos 2002, Athitsos 2003b, Potamias 2008, Stenger 2006,

Zhou 2004, de Campos 2006, Rosales 2001, Nölker 1999, Nölker 2002, Nölker 2000].

We distinguish three classes among the discriminative methods: indexing,

regression-based and classification-based methods.

• Database indexing methods can generally be interpreted as a simple nearest

neighbor search in the database. The estimated hand pose belongs to the

finite set of hand poses that are represented in the database.

• Regression-based methods consist in learning a continuous mapping from

image features to hand pose parameters. The estimated hand poses is not

necessarily represented in the database that is used to learn the mapping.

• Classification-based methods [Ziaie 2009] output a class label among a finite

set of semantically meaningful hand poses classes, rather than a set of hand

parameters. The number or pose classes is smaller than the set of exemplars

in the database. In this thesis we are interested in estimating the hand pose as

a set of hand parameters and thus we will not discuss more the classifications-

based methods.

2.3.1.1 Discriminative versus Generative methods

Opposite to the generative methods that exploit local search, the discriminative

ones do not require pose prediction from previous frame and allow estimating the

hand pose from a single frame. One could apply such a discriminative method to

44 Caput 2. State of the art

each frame of the video in order to do obtain the temporal hand trajectory. This

approach would present a major advantage over the generative ones, based on a

local search around some predicted hand pose. One can cite for example lower

sensitivity with respect to the initial conditions. On the other hand, even if such

a method ensures that poses parameters are not subject to drift (accumulation of

error resulting from propagating estimates from frame to frame), it can produces

very noisy results.

Unfortunately, due to memory limitation, and computational complexity, none

of the existing methods allows yet to estimate accurately and quickly pose param-

eters for a tracking use. Due to the important dimensionality of the space spanned

by possible hand poses (number of hand DOFs), it is not possible to perform dense

sampling of the parameter space. As an example, if we discard the parameters that

encode the global hand pose relatively to the camera, the set of hand poses was con-

strained to 26 poses in [Athitsos 2002, Athitsos 2003b] and 125 in [Shimada 2001].

The sampling of the pose space is either uniform but very sparse, which is likely to

induce inaccuracy in the pose estimate, or concentrated around a small set of hand

poses. Therefore, we can conclude that discriminative methods are well suited for

recognition of a small set of predefined hand poses, such as the sign alphabet, or for

performing rough (re-)initialization of the hand pose if combined with a generative

method.

However, we should mention that the size of the database increases exponen-

tially with the number of DOFs, while such complexity could be amplified due to

other factors that influence the hand appearance in the image. If the features are

sensitive to some external factors (such as the illumination) the possible variations

of these factors have to be well represented in the training data set. The hand size

varies across individuals and an erroneous assumption on the hand size yield wrong

estimation of the hand. This is particularly the case in a monocular setting. There-

fore, one would need to represent different hand sizes in the data-base in order to

obtain good pose estimates, which can be very prohibitive. Another limitation for

most of the discriminative methods (such that [Athitsos 2002]) is that the perfor-

mance degrades significantly in cluttered scene where it is difficult to obtain good

features. Few discriminative approaches, such as [Athitsos 2003b], are designed to

cope with cluttered backgrounds. The generalization of discriminative method to

multi view setting is in general difficult. Either the relative positions of the cameras

have to remain the same during training and tracking, or the method requires the

use of features that are invariant by changes of the relative positions.

Last but not least, discriminative methods refer to a “black box” solution and

therefore provide little insight into the problem.

2.3.2 Database indexing methods

Given an input image of the hand, indexing methods consist in retrieving the most

similar image(s) from a database by comparing image features. The hand pose pa-

rameters of the retrieved image(s) are used to determine the pose of the query image.

2.3. Discriminative methods / Learning-Based Methods 45

This can generally be interpreted as a Nearest-neighbor interpolation method where

the output value is simply the value associated to the nearest point in the database.

The resulting mapping from the image space to the hand pose one is a piecewise

constant function.

The main challenge in these approaches is to find the most similar image(s) in a

reasonable amount of time. Different strategies have been proposed to accelerate the

search by avoiding exhaustive search and thus to obtain sub-linear computational

complexity.

The choice of image features and the one of similarity measure have an

tremendous impact in terms of speed and accuracy. There is a variety of

methods doing pose estimation through image retrieval, like the ones pro-

posed in [Guan 2007b, Guan 2006, Athitsos 2002, Athitsos 2003b, Potamias 2008,

Stenger 2006, Zhou 2004].

In [Potamias 2008], the symmetric chamfer distance between the edges is used as

similarity criterion. Such a measure cannot be expressed as an Euclidean distance

between two vectors representing image features. As a consequence it is not possible

to use fast nearest neighbor methods. Two approximate nearest-neighbor methods

are proposed using this non-Euclidean distance. The first one approximates this

distance by an Euclidean one through mapping into a lower dimensional space using

boost map embedding. Then, a fast methods based on the Euclidean distance is

used to quickly find the nearest neighbor in this lower dimensional space. The

second one uses some distance-based hashing table to quickly select a small set of

candidates and then perform exhaustive search within this small set. Both methods

exhibit speed-up of order-two of magnitude over exhaustive search.

In [Athitsos 2002], the ranks obtained using four similarity measures between

the input and the database images are combined. These measurements are derived

according to edges location, edge orientation histograms, finger locations and the

geometric moments of the silhouette. The search in the database is done using two

passes. In the first pass the majority of the pose candidates is quickly rejected by

combining the two distances that are the quickest to compute. In the second pass,

a ranking among the remaining candidates is obtained by combining all similarity

measures. The main limitation of this method is that it requires the hand seg-

mentation to be precise in order to obtain reasonable estimates for the silhouette

moments and finger locations.

In [Athitsos 2003b] an extension of the previous method is proposed where five

similarity measures are combined. The first one is derived from a data-to-input

directed chamfer distance while the second one approximates the input-to-data

directed chamfer distance using Lipchitz embeddings with 200 reference images.

The last three measurements comprise orientation histograms, symmetric chamfer

distance and a metric derived from a probabilistic line matching analysis. The

search in the database is done using exactly the same two-passes methodology. In

comparison with [Athitsos 2002], the similarity measure yields better pose estimates

while being more robust to clutters.

46 Caput 2. State of the art

In [Guan 2006] a small set of representative hand poses is learned from the

database using a Self-Organizing-Map [Kohonen 2001]. Each of the representative

poses is associated to a neuron in the SOM [Guan 2007a]. Given the input image the

k nearest neighbors are retrieved within the set of representatives. The similarity

measure is derived from the depth edges and the silhouette. The depth edges are

obtained using a multi-flash camera where flashes are positioned in such a way that

shadows are casted along depth discontinuities. These edges are quite reliable and

eliminate background clutter. The silhouette similarity is measured using the Hu

moments (7 moments) and the Fourier coefficients (top 15) of the silhouette.

In [Zhou 2004] the similarity measure is defined using the Euclidean distance

between low dimensional image descriptors. The descriptor is obtained in two steps.

In the first step, a set of orientation histograms of the silhouette edges is computed

and augmented with their relative image coordinates. In the second step, a small

dimensional descriptor is computed by comparing the augmented histograms of the

input image with those of a small set of representatives obtained through cluster-

ing of the database. Locality sensitive hashing is then used to retrieve efficiently

the nearest candidate (based on the Euclidean distance between descriptors).In

[Zhou 2005a] the similarity measure combines an okapi with a chamfer distance. A

set of patches taken along the silhouette is constructed from the database. The local

orientation histogram is computed for each patch and a lexicon is build by cluster-

ing them according to their orientation histograms. Given an input image, patches

are extracted and the occurrence of each “world” from the lexicon is counted. The

similarity measure between the input and an image in the database is defined as

a combination of an okapi distance (world occurrence counts in the images) and a

chamfer distance (2D location of patches). The search for the most similar images

is not done exhaustively but accelerated using an inverted index method inspired

from the text retrieval literature.

2.3.3 Regression techniques

The mapping from an image feature vector to hand pose can be interpreted as a

nearest-neighbor piecewise constant interpolation in the case of indexing methods.

Consequently when the input image gets further and further from its nearest

database exemplar, the error on the pose is likely to increase quickly. The true (but

unavailable) mapping from the image to pose space is continuous and thus one can

expect to obtain better results using a continuous mapping. This mapping can be

learned from exemplars of the database using regression methods [de Campos 2006,

Nölker 1999, Nölker 2002] or interpolation methods. To the best of our knowledge,

the use of interpolation methods - that should pass trough the training points - has

not been considered for discriminative hand pose estimation. This might be due to

the fact that the training points are irregularly distributed in the image descriptor

(input) space. Opposite to interpolation methods, regression techniques can deal

with irregular distribution of the training points. Most regression techniques require

the input to lie on a low-dimensional space. Therefore pose estimation based on

2.4. Other approaches 47

regression is generally composed of two steps. First, a descriptor is computed using

the image features. Then, the hand pose is estimated using a mapping from the

descriptor space to the hand pose space that is learned from the database.

In [Rosales 2001] the image descriptor corresponds to seven Hu moments com-

puted from the segmented hand silhouette. The mapping from the descriptor

to the hand pose is learned using the specialized mappings architecture. In

[de Campos 2006] the hand is captured from 3 cameras. The silhouette is seg-

mented, and shape context descriptors are computed on points sampled along the

silhouette contour. These shape context descriptors are used as basis for a 30 di-

mensional global image descriptor using a codebook. The descriptors from the 3

different cameras are concatenated into a single 90-dimensional one. The mapping

from the descriptor to the hand pose is learned using a regression method pro-

posed in [Agarwal 2006] that is based on Relevant-Vector-Machine [Tipping 2001]

and that implicitly performs feature selection. The descriptors are invariant to 2D

image rotations and scaling, and therefore results are invariant to camera motion

along their optical axis.

In [Nölker 1999, Nölker 2002], the palm is assumed to be coplanar with the im-

age plane and the 2D finger tips position relatively to the hand palm are considered

as descriptors. The finger tips are detected using Gabor filters and two neural net-

works. The mapping from the descriptors to the hand pose is done for each finger

individually. By assuming that each finger has only two degrees of freedom (flexion-

extension and adduction-abduction), a finger-dependent mapping from the relative

2D tip position to the 2D angles is learned using a self-organizing map. The main

limitation of this system is that it assumes that the hand palm is coplanar with the

image plane and that the background is easy to subtract. This method was extend-

ed in [Nölker 2000] to account for stereo information where two small cameras are

used in order to obtain the 3D position of the finger tips using triangulation.

2.4 Other approaches

Let us now review methods that present similarities with the indexing or the

regression ones but cannot be classified to either of them.

[Stenger 2006] proposes a combination of hierarchical detection with Bayesian

filtering. The output of the Bayesian filtering is a piecewise constant approximation

of the posterior probability over the entire pose space. This posterior is computed

by combining the probability obtained in the previous frame with a model of the

hand pose transition and the observation likelihood associated to the current frame.

The pose parameter space is partitioned by recursively splitting regions with the

highest posterior probability density. For each partition the observation likelihood

is determined through the evaluation of the pose corresponding to the region center.

This observation likelihood combines edges and color. Edges similarity is mea-

sured using a quadratic chamfer distance function while for color the hand-like

likelihood is considered according to the hand color distribution. The partition

48 Caput 2. State of the art

centers that are obtained recursively are pre-computed and organized in a tree.

Sub-trees are not explored when the hand image associate to the root of the branch

is not similar enough to the input one. This approach appears to be quite similar

to nearest neighbor search that uses a tree structure in order to quickly prune full

branch of candidates.

In [Shimada 2001] hand pose estimation is done in two phases. In the first phase

the search is constrained among pre-computed poses in a database, that is somehow

similar to indexing methods. However, by using an adjacency map in the database,

the search area is reduced to the neighborhood of a small set of the estimated

pose in the previous frame and therefore global optimality is not guarantied. The

mapping from image to pose is thus not well defined because it depends on the set of

estimated poses in the previous frame. In the second pass the hand pose is refined

using a generative approach where a model is used to synthesized new images at

each iteration

2.5 Related literature

2.5.1 Non-optical systems

a) b) c)

d) e)

Descriptio 2.13: Data glove and exoskeleton: a) the power-glove b) the

shapeHandPlus c) the P5 glove d) TU Berlin exoskeleton e) The cyberGlove II

Several efficient hand motion capture systems that are not based on images

measurements exist. We can cite for example physical measurements using elec-

tromechanical or magnetic sensors. Data gloves offer probably the most reliable

hand pose measurements. Equipped of electromechanical captors and magnetic

sensing devices, these gloves can digitize in real-time and the fingers joint angles

2.6. Limitations of existing methods 49

and the global position of the hand. On the other hand these devices are intru-

sive and thus hinder the naturalness of hand motion while being quite expensive.

Furthermore, they require complex calibration procedures toward precise measure-

ments and generally deteriorate quickly with extended use. Several virtual reality

data gloves are evaluated in [Koji 2002]. The CyberGlove II (by Immersion) allows

to measure 22 joint-angle with high-accuracy (0.5 degree). The P5 Glove (by Es-

sential Reality) and the ShapeHandPlus (by Measurand) allow measuring only 5

finger flexion angles (one per finger) and the global position of the hand.

Exoskeletons, such as the one developed at the TU Berlin [Figure (2.13.d)], are

an alternative to data-gloves that provide mechanical tracking of user limbs, by

aligning mechanical linkage between bone joints. Exoskeleton are typically heavy

(can weigh up to 12 ounces) and consequently unstable, especially when the hand is

shaken or moves rapidly. An a positive note exoskeletons can provide haptic feed-

back. According to [DiZio 2002] cutaneous contact cues “contribute to perception

and adaptation of limb position and force”.

2.5.1.1 Body tracking

The problem of tracking the human body is similar to the one of tracking the

hand. Human body tracking is a more popular research field than hand tracking

and several techniques that have been developed for it could be applied to hand

tracking. The review of body tracking systems is out of the scope of this thesis and

we refer the reader to the following surveys [Weingaertner 1997, Aggarwal 1999,

Moeslund 2001, Moeslund 2006]. Despite their similarity, human body tracking

and hand tracking differ in several crucial aspects. Clothing induces unpredictable

variations of the body shape and appearance. On a positive note clothes make

color or texture features reliable for tracking and often allows to discriminate body

parts based on the color. The human hand has a uniform color which does not

allows separating or identifying hand parts based solely on color. The human body

is often vertical which facilitates the identification of the legs and the head. Due

to the higher inertia of the human body in comparison with the hand, the human

body motions are usually slower than hand motions. The set of typical human

motion (walking and running and sitting) seems more restricted than the set of

typical hand motion. For this reason, predicting body motion seems to be easier

than predicting hand motion.

2.6 Limitations of existing methods

None of the methods that have been proposed in the literature allows to perform

robust and accurate real-time tracking of free hand movements in a monocular set-

ting using regular computers. Methods that use multi-cameras seem more efficient

but generally cannot be adapted to the monocular setting. Discriminative methods

are not suitable for general hand tracking since they are able to estimate only a very

restrictive set of poses. Model-based approaches also suffers from several limitations

50 Caput 2. State of the art

that are related either to the image features or the definition of the matching errors,

or due to the strategy that is used to minimize the matching criterion. Let us first

discuss issues related with the feature space and the definition of the matching cost.

• Absence of shading models. In a monocular setting the depth ambiguities

are a major cause of tracking failure. The information conveyed by the shading

can help to disambiguate between hand poses hypotheses. Nevertheless, it is

interesting that shading has not been used widely for hand tracking or body

tracking (but see [Lu 2003, Balan 2007]). One reason is that shading require

an accurate model of surface shape that is difficult to obtain. Another reason

might be that the error measures based on the shading are quite expensive to

compute in comparison with edge-based or color-based error measures.

a) b) c) d)

Descriptio 2.14: Synthetic edges. A small change on the pose may induce abrupt

changes in the synthetic edge image. When comparing a) and b) we observe new

edges appearing on the middle finger. When comparing c) and d) we observe that

the edges at the right of the middle finger are suddenly occluded by the ring finger

• Discontinuities due to new boundary edges. Matching costs based on

the symmetric chamfer distance between edges may present discontinuities

when the candidate hand pose varies. This is illustrated in [Figure (2.14.a&b)]

where a small change on the middle finger induces the sudden appearance of

new edges, and in [Figure (2.14.c&d)] where a small change on the ring fingers

induce the sudden occlusion of a large fraction of the middle finger edges. This

respectively creates a discontinuity and a sharp variation in the matching cost

that may cause the tracker to fail.

• Discontinuities due to the occlusions. Model-based methods that take in-

to account the self-occlusions generally rely on a formalization that introduce

discontinuities in the matching error (see section 4.4.4).

• Cues weighting. Model-based approaches generally use a combination of

cues (edges, silhouette etc) while defining the matching cost. The costs asso-

ciated to the cues are summed with a set weights controlling their importance.

2.6. Limitations of existing methods 51

Finding the optimal set of weighs might be difficult and the use of not-reliables

feature might actually deteriorate the quality of the poses estimates.

• Lack of appearance information. The hand albedo is not perfectly con-

stant. Wrinkles and other small asperities create small albedo variations. If

the albedo of the hand and its fine variations are known this can be used to

provide dense information to register the model onto the image. This dense

information has not been explicitly used for model-based hand tracking.

Let us now discuss limitations being associated with the inference procedure:

• Local minima. None of the existing model-based methods guaranties global

optimality of the solution. Non-local method have been proposed but the

dimension of the pose space is too high for these method to be really efficient.

• Convergence problems due to the occlusions. Common occlusion han-

dling induces discontinuities in the matching error function. This disconti-

nuities could preclude the convergence of the fitting procedure (see section

4.4.4).

• Low convergence rate. Model-based methods based on local optimization

or generalized forces have low convergence rates. In a monocular setting, the

matching error being minimized is not well conditioned and the convergence

rate of gradient-free or simple gradient descent methods is low in comparison

with Newton or quasi-Newton methods. Method derived from the Iterative-

closest-point (ICP) might have better convergence rates.

ı̈≫¿

Caput 3

Silhouette Based Method

In this chapter, we propose a model-based approach to recover 3D hand pose from

2D images. To this end, we describe the hand structure using a compact 3D ar-

ticulated model and reformulate pose-estimation as a binary image segmentation

problem aiming to separate the hand from the background. We propose generative

models for hand and background pixels leading to a log-likelihood objective func-

tion which aims to enclose hand-like pixels within the projected silhouette of the 3D

model while excluding background-like pixels. Segmentation and hand pose estima-

tion are jointly addressed through the minimization of a single likelihood function.

The pose is determined through gradient descent in the hand parameter space of

such an area-based objective function. Furthermore, we propose a new constrained

variable metric gradient descent and a trust-region method to speed up convergence.

Finally we use the so called smart particle filter to deal with occlusions and local

minima through multiple hypotheses. Promising experimental results demonstrate

the potentials of our approach.

3.1 Method overview

The hand is modeled as an articulated body made of ellipsoids and polyhedra. Limit

constraints are defined on each degree of freedom in order to avoid unrealistic hand

poses. The model is fitted onto the observed image by minimizing, through gradient

descent, a matching cost that quantifies the discrepancy between the projected

model and the observed image. The matching cost we propose is derived from a

Bayesian formulation according to generative models of the color distribution of

the hand and the background pixels. These distributions are used to compute, for

each pixel, the likelihood ratio of being part of the hand or background. In order

to evaluate the matching cost associated to pose candidate, we first synthesize the

hand silhouette by projecting each part in the image plane and computing the

union of these projections. Then we evaluate the matching cost by integrating the

logarithm of the likelihood ratio based on pixel colors over all points within the

projection silhouette.

Assuming the image support to be a continuous subset of R2 and the observed

image to be interpolated between discrete location using nearest neighbor or bilin-

ear interpolation, the matching error is is defined using continuous integrals over

points within the projection silhouette. This matching cost is a continuous and

differentiable function and we derive the expression of the corresponding gradient.

The estimation of the exact value of the matching cost and its gradient is a difficult

54 Caput 3. Silhouette Based Method

Input image

Projection + polygonal approximation

con!guration θ

Ω

Γ

θ ← f (θ , ∂L
∂θ
)

Ω̄

L(θ), ∂L
∂θ

= ∂L
∂Γ
×

∂Γ

∂θΓ(θ), ∂Γ

∂θ

Initial con!guration:
θ ← θ0

integrals over Γ

Descriptio 3.1: Overview of the hand pose refinement through iterative minimiza-

tion. Given a candidate hand pose with parameters θ, we compute the silhou-

ette Ω(θ), its contour Γ(θ) ≡ ∂Ω(θ) and its first order variation ∂Γ(θ)
∂θ . The pose

likelihood L(θ) is computed by integrating, within the silhouette Ω(θ), the pixel

likelihood ratio obtained from the input image using the color distribution models.

Using the first order variation of the hand pose likelihood ∂L(θ)
∂θ , an update of the

hand pose is computed using some operator f

task due to the fact that the silhouette is partly made of ellipsoids. This is dealt

with through the approximation of the ellipses by polygons toward the definition of

an approximate matching cost that we refers as the polygonal matching cost. It can

be numerically evaluated precisely (up to round-off errors) and yet is a continuous

and differentiable function of the hand pose parameters. We derive the exact gra-

dient of the polygonal matching cost and a connection is made with the equation

of active polygons derived in [Unal 2005]. We devise an new efficient algorithms to

evaluate exactly both the polygonal matching cost and its gradient.

The hand pose estimation is done by iteratively minimizing the polygonal match-

ing cost using its exact gradient. One can see a graphical overview of the iterative

minimization method for hand pose refinement in [Figure (3.1)]. We propose a new

constrained variable metric gradient descent and a trust-region method to improve

the convergence rate over steepest descent methods. This local search method is

combined with a particle filter in order to deal with occlusions and local minima

through multiple hypotheses.

Our method bears some similarities with previous approaches [Lin 2002,

Lin 2004, Wu 2001, Kuch 1995, Ouhaddi 1999a] which have considered the segment-

ed hand silhouette or edges as image cues. However such cues may be inaccurate,

especially with a cluttered background, due to the lack of strong shape constraints.

Using directly the likelihood ratio of the pixel, we avoid segmenting the silhou-

ette before matching the model. Our approach somehow unifies the segmentation

and hand pose estimation through the minimization of a single matching cost. A

similar matching cost based on likelihood ratio has been used in combination with

edges-based costs in [Stenger 2006, Sudderth 2004, Stenger 2004a, Stenger 2004b],

but these methods do not make use of the gradient of the matching cost to perform

3.2. Articulated model 55

fast-converging local search.

In regards with limitations of previous method we listed in section 2.6, our

method:

• Avoids the use of chamfer distance maps from detected edges that may create

spurious minima in the vicinity of the global minima. Furthermore, it does

not require edges extraction and silhouette pre-segmentation.

• Uses a single term in the definition of the matching cost and thus avoids the

problem of weighting different terms. The matching cost directly derives from

a Bayesian formulation and thus is principled.

• Relies on a fitting procedure that converges since it is obtained through a

gradient descent on a continuous function that can be evaluated numerically.

• Uses a variable metric or a trust-region method to gain speed over steepest

descent

On the other hand, it exhibits two main limitations. Our method

• Ignores internal edges and therefore cannot distinguish to hand poses with

the same silhouette. In some configurations, the positions of the fingers that

occlude the palm might not have any influence on the silhouette and thus

cannot be estimated.

• Ignores shading and dense information provided by small albedo asperities.

In the remainder of this chapter, first we describe in detail the hand kinematic

structure, the surface model and its projection onto the image plane. Then, we

will introduce the matching cost and discuss numerical difficulties due to the use

of ellipses. Then a polygonal matching cost that approximates each ellipse in the

silhouette by a polygon will be considered to address this numerical difficulties. We

will present a numerical method to compute exactly this polygonal matching cost.

Finally will present experimental results and compare to the method that is based

on an inexact evaluation of the gradient.

3.2 Articulated model

Let use now introduce some mathematical formalism to describe the structure of

articulated bodies in general.

3.2.1 Forward kinematic

3.2.1.1 Solid reference frames

We assume the system to be made of N rigid parts called links (or bones). We

associate a rigid reference frame to each part. The reference frame is defined by

56 Caput 3. Silhouette Based Method

three orthogonal unit vectors xi, yi, zi∈ R
3 and an origin oi ∈ R

3 We define Ri the

3 by 3 matrix obtained by taking the three unit vector ~xi,~yi and ~zi as columns.

Ri =
[
xi yi zi

]

The matrix Ri is in SO3 which is the special orthogonal group of degree 3 over

the reals (i.e the set or orthogonal matrices with determinant equal to 1). We can

associate a 4x4 matrix Ki to each solid

Ki =

[
~xi ~yi ~zi oi
0 0 0 1

]

=

[
Ri oi
01×3 1

]

With 01×3 the 1 by 3 zero matrix. Let denote K the set of such transformation

matrices:

K = {K|K ∈M(4,R), K[1:3,1:3] ∈ SO3, K[4,1:3] = 01×3, K4,4 = 1}

with M(4,R) being the set of 4×4 matrices with entries in R. K is a 6-dimensional

sub-manifold of M(4,R). By construction we have Ki ∈ K.

Furthermore, the matrices Ki allows to obtain the homogeneous coordinates

y ∈ R
4 (homogeneous coordinates are obtained from 3D coordinates by adding 1 for

the forth coordinate) in the world reference frame from its homogeneous coordinates

x ∈ R
4 in the solid frame:

Kix = y

The matrices Ki are invertible and we have:

K−1
i =

[
Rt

i −Rt
ioi

01×3 1

]

The local coordinates xj of a point in the reference Kj can be obtained from its

local coordinates xi in the reference Ki through

xj = K−1
j Kixi

This comes directly from Kjxj = Kixi.

3.2.1.2 Articulated body pose parameterization

In an articulated body the parts do not move independently. Each part is attached

to a least another part and their relative positions are constrained. In a tree struc-

tured articulated body each part is attached to a father and its reference frame is

expressed using the father’s reference frame and some transformation.

One can define a tree structured articulated body as a tree1 made of N nodes

with a matrix-valued function of vectors associated to each edge. We denote G =

(V,E) the tree where the nodes V = {1, . . . N} represent the solid parts (i.e. a

bones), and the edges E represent the articulated joints between them. The tree

1a tree is connected graph with no cycles

3.2. Articulated model 57

G is oriented from the root to the leaves. Without loss of generality, we suppose

the bones are indexed such that i < j for all (i, j) ∈ E. The bone with index 1 is

the root. For each node j ∈ {2, . . . , N} we denote p(j) ∈ V its ancestor in the tree

i.e. the unique element in {i|(i, j) ∈ E}. We parameterize the pose of each bone

j ∈ {2, . . . , N} with respect to its father p(j) using a matrix valued function Fj

which writes :

Fj :
Θj → K

θj 7→ Fj(θj)
(3.1)

Where Θj is the input parameter space of the function Fj . Θj is a manifold of

dimension dj embedded in R
d∗j with d∗j ≥ dj . In practice we have d∗j = dj for all

j ≥ 2 in our model. The parameter θj ∈ Θj parameterizes the relative position of

parts p(j) and j:

Kj(θ) = Kp(j)(θ)Fj(θj) (3.2)

The matrix Fj(θj) is defined as a combination of parameterized rotation matrices

and a translation matrix (see equations 3.22,3.21, 3.24 and 3.25) where the type of

transformation matrices specifies the nature of the articulation. The dimension of

the manifold Θj - denoted dj - corresponds to the number of degrees of freedom

(DOF) associated to the joint between p(j) and j.

Given a set of parameters θ = (θj)j∈{2,...,N} and the pose matrix K1 associated

to the part that corresponds to the root of the tree, the position of the N-1 remaining

bones are obtained using eqn.3.2 from the root to the leafs. We assume that the

root of the articulated object can freely move and rotate in the three directions. For

notation convenience we suppose the matrixK1 to be parameterized by θ1 ∈ Θ1 with

Θ1 a manifold of dimension d1 = 6 (as K is of dimension 6) and write K1 = F1(θ1).

We choose Θ1 = Q × R
3 with Q the set of unit quaternions. The set of unit

quaternions is topologically isomorphic to the sphere S3 and can be seen as three

dimensional sub-manifold of R4 i.e. d1 = 6 and d∗1 = 7. We could parameterize the

rotational part of the matrix using Euler but this could lead to singularities 2 that

may cause the search to stop at saddle points that would not exist with an other

parameterization of the rotations.

We define the internal parameter vector θint to be the concatenation of the

parameters associated to the joints θint = (θ2, . . . , θN) and the internal parameter

space space Θint = Θ2 × · · · × ΘN . Similarly we define the total parameter vector

to be θ = (θ1, . . . , θN) and the total parameter space to be Θ = Θ1 × · · · × ΘN =

Θ1 × Θint Furthermore we define as the forward kinematic function fK , the one

that computes the position of the N rigid parts:

FK :
Θ → K

N

θ 7→ (K1(θ), . . . ,KN (θ))
(3.3)

2A continuous parameterization of the matrix K1 is singular around θ1 if the first order deriva-

tive of the matrix with respect to one of the vector components equals θ1 04×4 at θ1 i.e. if the

representation of the matrix K1 is not unique for the chosen parameterization

58 Caput 3. Silhouette Based Method

This function is defined by applying the equation 3.2 from the root to the leaves.

It can be implemented using this algorithm 1.

Algorithm 1: Forward kinematic function FK

Data: θ1, . . . , θN
Result: K1, . . . ,KN

K1 ← F1(θ0);

for j ← 2 to N do

i← p(j);

Kj ← KiFj(θj);

We denote D the dimensionality of manifold Θ. D is the sum of the number

degrees of freedom associate to each joint plus the dimension of the root pose

parameters i.e

D =
N∑

i=1

di.

Θ is a D-dimensional manifold embedded in R
D∗ with D∗ =

∑N
i=1 d

∗
i . Note that,

in the literature, the root is fixed in the world coordinate system and the forward

kinematic function is generally defined as a function that provides only the position

of the end effectors. These end effectors are points attached to the extremities of

the kinematic tree that can be used to reach some desired target. In the context of

tracking we do not have such end effectors and the positions of all visible links are

of interest in order to compute the matching cost.

The image of Θ by fK , fK(Θ), is a D-dimensional sub manifold of KN and

by construction the mapping fK is an explicit parameterization of this manifold.

Following [Demirdjian 2003], we will call this manifold the articulated motion space

or articulated motion manifold.

3.2.1.3 Displacements in the parameter space

In order to iteratively estimate the hand pose, we need to perform small displace-

ments in the space of pose parameters Θ. For this purpose, we define a retraction,

denoted S, on the manifold Θ. The function s writes

S :
Θ,RD∗ → Θ

(θ,∆θ) 7→ θ∗
(3.4)

Where the parameter vector θ∗ corresponds to the position that is reached while

moving within the manifold Θ from θ in the direction ∆θ/‖∆θ‖ with a step length

‖∆θ‖ (we refer the reader to [Absil 2008] for a detailed explanation of the concept

of retraction). If Θ was a linear manifold we could use θ∗ = θ + ∆θ. However Θ

is not linear due to the use of quaternions to describe the global orientation of the

hand and θ +∆θ /∈ Θ. For all bones i ≥ 2 we have Θi linear and we can use:

θ∗i = θi +∆θi (3.5)

3.2. Articulated model 59

The case of the root bone (i = 1) is slightly more complex. We use a unit quaternion

to parameterize R1, the rotation part of K1 ≡ F1(θ1). During the search of the best

pose candidate, this quaternion has to remain a unit one because we want θ∗1 ∈ Θ1.

The simplest solution is to reproject θ1+∆θ1 on the manifold Θ1 by normalizing the

quaternion after the displacement. A better solution consists in using exponential

maps (we refer the reader to [Absil 2008] for more details). For notation convenience

we decompose θ1 and ∆θ1 into θ1 = [q1:4, t1:3] and ∆θ1 = [∆q1:4 ,∆t1:3]. Then, we

have:

F1(θ1) = K1 =

[
R1 tT1:3
03×1 1

]

(3.6)

We assume that the trajectory of the rotational part ofK1, denoted R′1(t) follows

a geodesic path on the manifold of the rotations matrices denoted SO(3):

R′1(t) ≡ R1exp(At) ≡ R1

∞∑

k=0

1

k!
(At)k (3.7)

where exp corresponds to the matrix exponential and A a skew matrix (antisy-

metric). We want the initial “speed” along the path to match the “unrestricted”

(displacement
∑4

l=1(∂R1/∂qi)∆qi that is tangential to the manifold) i.e.:

∂R′1
∂t

∣
∣
∣
∣
0

=
4∑

i=1

∂R1

∂qi
∆qi (3.8)

By differentiating eqn.3.7 we obtain

∂R′1
∂t

∣
∣
∣
∣
0

= R1A (3.9)

Therefore we can identify the matrix A to be:

A = RT
1

[
4∑

i=1

∂R1

∂qi
∆qi

]

(3.10)

We can verify that A is a skew matrix by differentiating RT
1R1 = I3×3 with respect

to q. The rotation matrix R∗1 is obtained by evaluating R′1(t) at time t = 1:

R∗1 = R′1(1) = R1exp(A) (3.11)

Finally we can return to the quaternion representation by evaluating the inverse

function of F1:

θ∗1 = F−11

([
R∗1 (t1:3 +∆t1:3)

T

03×1 1

])

(3.12)

An advantage related with the use of a geodesic path is that the displacement

on the manifold of rotation matrices SO3 is made invariant of its parameterization.

Consequently the use of other parameterization of the rotational part of K1 (using

the Euler angles or the Rodriguez representation) would provide the same sequence

60 Caput 3. Silhouette Based Method

of matricesK1 during the iterative minimization. We refer the reader to [Absil 2008]

p 58 for a discussion on several retractions on the orthogonal group SO(3). Note

that, even if we do not use a quaternion to parameterize the relative position of

the bones, we can use a “geodesic path” on the manifold SO(3) if a joint has two

or more degrees of freedom. The main drawback is that limit constraints on joint

angles would be harder to take into account while computing a displacement ∆θ

within the local optimization method (while the constraint (θ+∆θ) ≤ b is sufficient

if we use θ∗i = θi +∆θi , see equations 3.173 and 3.181).

3.2.1.4 The articulated motion manifold using nonlinear constraints

The vector pose parameter θ of the articulated object can also be represented using

directly the set of matrices K1, . . . ,KN . However, an arbitrary choice of matrices

(K1, . . . ,KN) is very likely to yield to a configuration that does not belongs to

the articulated motion space fK(Θ) and cannot be obtained with any vector pose

parameter. The condition (K1, . . . ,KN) ∈ fK(Θ) can be expressed using the joint

functions Fij :

(K1, . . . ,KN) ∈ fK(Θ)⇔ K1 ∈ K and ∀j ∈ {2, . . . , N}, ∃θj ∈ Θj : Kj = Kp(j)Fj(θj)

⇔ K1 ∈ K and ∀j ∈ {2, . . . , N}, (KjK
−1
p(j)) ∈ Fj(Θj)

(3.13)

Fj(Θj) is a sub-manifold of K whose dimension equals to dj . It refers to the num-

ber of DOF associated to the joint between bones p(j) and j. Each constraint

(KjK
−1
p(j)) ∈ Fj(Θj is a scleronomous constraint. Depending of the method used to

minimize the matching cost, each of this constraints can be reformulated using a im-

plicit representation of the manifolds Fj(Θj). This can be achieved by introducing

a positive scalar function fj such that

(KjK
−1
p(j)) ∈ Fj(Θj)⇔ fj(Kp(j),Kj) = 0 (3.14)

Minimizing the matching cost between the observed image and the model by

working directly on the matrices K1, . . . ,KN can be of interest in order to exploit

independences between disjoint hand parts while computing the matching cost. In

that case it is important to ensure the obtained configuration does not violate any

of the joint constraints. This can be done by re-projecting (K1, . . . ,KN) onto the

articulated motion manifold fK(Θ) at each iteration or by penalizing poses that

violate articulated constraints using the functions fj as done in [Sudderth 2004].

In our approach we choose to perform local search using the parameter θ. In

section 4.8.2 we propose a method that exploits some of the independences in the

matching cost between disjoint hand parts while working with the reduced repre-

sentation θ ∈ Θ. Note that the use of joints constraints to describe the kinematic

structure, allows the introduction of loops in the kinematic chain. However, this

not a concern in our approach since the hand does not present loops.

3.2. Articulated model 61

3.2.2 Forward Kinematic Differentiation

The pose estimation involves the minimization of a matching cost function L(θ).

We perform a gradient-descent optimization and thus we will need to differentiate

the matching cost with respect to the pose parameter vector θ. The computation of

this gradient will involve the differentiation of the forward kinematic function fK .

The hand pose is fully determined by the matrices Ki therefore we can introduce a

new function LK that computes the matching cost given the matrices (K1, . . . ,KN).

In simple word, the matching cost L(θ) can be rewritten as:

L(θ) = LK ◦ FK(θ) (3.15)

Given the derivative of LK with respect to the matrices Ki, the derivatives of L

with respect to θ can be obtained using the chain rule. From a computational point

of view there exist several manners to compute these derivatives. Let us, without

loss of generality, express in an artificial manner the forward kinematic function as

a composition of N simple functions:

FK = fN
K ◦ · · · ◦ f1K (3.16)

The first function f1K takes the pose parameters vector θ as input and provides

as output the pose parameters vector unchanged (because it will be needed by

successive functions) and the pose matrix K1:

f1K :
Θ → Θ×K

N

θ 7→ (θ,K1 = F1(θ1))
(3.17)

Similar to the previous reasoning, each function f j
K with j ∈ {2, . . . , N−1} takes

as input the full pose parameters vector θ and the matrices Ki for all bones with

index i smaller than j, computes the pose matrix Kj of the bone j, and provides

as output the concatenation of the input and the newly computed matrix Kj :

f j
K :

Θ×K
N−1 → Θ×K

N

(θ,K1, . . . ,Kj−1) 7→
(
θ,K1, . . . , . . . ,Kj−1,Kj = Kp(j)Fp(j)j(θp(j)j)

)

(3.18)

Note that a single matrix product is performed at each evaluation of a function

f j
K .

Finally, for the last operation, θ should be removed and we should provide as

output only pose matrices:

fN
K :

Θ×K
N−1 → K

N

(θ,K1, . . . ,KN−1) 7→
(
K1, . . . ,KN−1,KN = Kp(N)Fp(N)N (θp(N)N)

)

(3.19)

Using the sequence of function f i
K , the matching cost can be rewritten as:

L(θ) = LK ◦ fK(θ) = L1 ◦ fN
K ◦ · · · ◦ f1K(θ) (3.20)

62 Caput 3. Silhouette Based Method

Then, the Jacobian of the function L can be obtained by multiplying the Jaco-

bian of each function f i
K through the chain rule. Each Jacobian is a rectangular

matrix whose square upper part is the identity matrix, since the input remains un-

changed. The matrix product is associative thus there exist at least two strategies

to perform the product of Jacobians. The multiplication of the Jacobians can be

done from left to right or from right to left. Because the actual computation of

L is done by successively applying the function f j
k from right to left, we refer to

forward differentiation when we multiply Jacobians from right to the left and to

reverse differentiation when we multiply Jacobians from left to the right.

Because the function LK is scalar, the Jacobian of the function LK is a line

vector. When we multiply Jacobian from the left to the right (reverse differen-

tiation) each intermediary product is a vector and thus each multiplication is a

vector-matrix product. As a consequence the cost of computing the derivative in

the backward order is small. When the multiplication is done from the right to

the left (forward differentiation), each multiplication is a matrix-matrix product,

which is computationally expensive (in comparison with vector-matrix product).

The algorithms that correspond to each of these computation orders are presented

in Alg.3 and Alg.4. The notation θi,l with l ∈ {1, . . . , d∗i } refers to the scalar that
corresponds to the lth coordinate of the parameters θi ∈ Θi in its embedding space

R
d∗i . Since the decomposition of fK into elementary functions is not explicit the cor-

respondence with the Jacobian product formulation might not be straightforward

to understand.

The computational cost of the forward algorithm is in O(N2) (lines 14-16 in

alg.3) while the reverse algorithm is in O(N) with N the number of bones.

These two approaches for computing the derivatives of complex functions are

thoroughly discussed in the automatic differentiation literature. The automatic

differentiation methods aim at computing the derivatives of any function once this

function has been implemented in the desired language. We refer to [Griewank 2000]

for a detailed introduction to automatic differentiation. This method yields the

exact gradient of the function (up to machine precision) and should not be confound

with the divided difference method that approximate the derivative by f ′(x) ≈
f(x+ε)−f(x))/ε with a small ε and that is not numerically precise due to truncation
errors. In our implementation we use the forward differentiation approach, despite

being a slower method. The computation of ∂Kj/∂θi is required in order to estimate

the metric in our variable-metric and trust-region method used for the optimization.

3.2.3 Hand anatomy terms

The human hand is a complex mechanical structure comprising bones, muscles

serving as tension motors, tendons acting as cables connecting muscles to bone,

and a covering of protective soft tissue and skin. The bones are linked at the

joints and do not change in size. Muscles produce torque and/or joint movements

trough tension. For every muscle there exists one or more muscles that oppose to

it through counter-torque and/or opposing motion. The skeleton of the right hand

3.2. Articulated model 63

Distal phalanx (P3)

Middle phalanx (P2)

Metacarpal (M)

Proximal phalanx (P1)

Distal interphalangeal (DIP)

Proximal interphalangeal (PIP)

Metacarpophalangeal (MP)

Trapezoid bone

Trapezium bone

Capitate bone

Tubercle of scaphoid bone

Pisiform bone

Harnate bone

Triquetral bone

Lunate bone

Interphalangeal (IP)

d
c

b

a

e

Descriptio 3.2: The right hand skeleton from palmar side

observed from the palmar side is shown in [Figure (3.2)]. We use the terminology

and abbreviations from that figure hereafter.

The skeleton of the human hand comprises 27 bones [Figure (2.2)]. The palm

(or metacarpus) comprises 5 bones (one for each finger) and the wrist (or carpus)

8 bones. The 14 remaining bones are digital bones called phalanx. Each finger

other than the thumb comprises 3 phalanxes: the distal phalanx, intermediate

(middle) phalanx and proximal phalanx. The thumb has no middle phalanx but

the corresponding metacarpal bone is well separated from the rest of the palm.

Due to the geometry of the bones head, two adjacent bones cannot move freely. For

joints such as the distal-proximal articulations, the centers of the head and of the

hemispherical shape remain matched during the bones displacement. The relative

orientation is also restricted and this can be roughly modeled by a pivot joint with

one degree of freedom. Depending on the special geometry of the bone, bone pairs

present one or two degrees of freedom.

Some hand movement are presented in [Figure (3.3)]. Adduction consists in

moving the body parts towards the central axis, which in the case of the hand

is between middle and ring fingers. Therefore, it consists in gathering the fingers

together. Flexing and extension are well known terms. Abduction is the opposite of

adduction and thus consists in spreading the fingers. The rotation of the hand along

the forearm axis (called Pronation/supination) is not made at the wrist/forearm

interface but within the forearm using the radius bone.

64 Caput 3. Silhouette Based Method

b)

a) c)

Descriptio 3.3: a) pronation/supination b) abduction/adduction b) flex-

ing/extension

12

15

16

173

4

5

1

2

9
6

7

8

11

10
14

13

12

2

1

15

16

13

14

11

10

9

8

7

6

5

4

3
17

F16
F15

F14

F13

F12

F11

F10

F9

F6

F7

F8

F2

F3

F5

F4

F17

(a) (b)

Descriptio 3.4: The hand skeleton model and associated graph from palmar side

3.2. Articulated model 65

3.2.4 The hand skeleton model

Inspired by existing pose estimation literature, we merge the bones of the palm and

the wrist into a single rigid part. Additionally, we model the forearm, and thus our

articulated model is composed of 17 bones. The bones indexes and the resulting

graph are shown in [Figure (3.4)]

For each pair of connected bones (p(i), i), we have a function Fi that models

the articulation and its parameterization. Fi(θi) is expressed using rotations and

translations. We denote Rx(θ) the 4× 4 matrix associated to the rotation around

the axis x with the angle θ when using the homogeneous coordinates. Similarly we

define rotations Ry,Rz, and the translations Tx,Ty,Tz,Txy.

Each finger other than the thumb is modeled with the same kinematic chain

involving 4 DOF [Figure (3.5)].

• Each of the two interphalangeal joints (Distal and Proximal interphalangeal)

is modeled with 1 DOF for flexing/extension. We orient the solid axes such

that the rotation is done around the axis x.

∀j ∈ {4, 5, 7, 8, 10, 11, 13, 14} : Fj(θj) = Ty(lp(j))Rx(θj) (3.21)

Where, for i ∈ {3, . . . , 17}, li is the length of the bone i (these bones have a

elongated structure and thus their length are well defined). The angles are

equal to 0 when the hand is fully extended.

• The metacarpophalangeal joint is modeled with 2 DOFs for flexing/extension

and adduction/abduction. We combine two rotations, a rotation of angle

θxj around the x axis for flexing/extension and a rotation of angle θzj around

the z axis for abduction/adduction:

∀j ∈ {3, 6, 9, 12} : Fj(θj) =MjRz(θzj)Rx(θxj) (3.22)

We have θj = [θxj , θ
z
j]. For j ∈ {3, 6, 9, 12, 15}, Mj is the fixed translation

matrix associated to the translation vector oj − o2 where oj is the origin of

the reference frame of the bone i when the bone is at the rest position. This

translation allows attaching each finger at the right position onto the palm.

The thumb is modeled as a kinematic chain with 4 DOF [Figure (3.6)]:

• The distal interphalengeal and the metacarpophalangeal joints are modeled

with a one-DOF for flexing/extension. We orient the solid axes such that the

rotation is done around the axis z:

F17(θ17) = Ty(l16)Rz(θ17) (3.23)

F16(θ16) = Ty(l15)Ry(−π/4)Rz(θ16) (3.24)

The rotation of −π/4 allows to model the fact that the rotation axis of the

joints is not aligned with any of the three axis of the metacarpal bone(15).

66 Caput 3. Silhouette Based Method

Palm

PIP

DIP

x2

x5

z5

y5

z3

x3 y3

z4

y4

x4

θz
3

θx
3

L3

θ5

o3

θ4

o4

o5

o2 y2

z2

Descriptio 3.5: Left hand index kinematic chain

• The carpometacarpal articulation is modeled with 2 DOF using two rotations

for flexing/extension and abduction/adduction:

F15(θ15) =M15 ×Ry(θy15)×Rz(θz15) (3.25)

Palm

IP

MP

y17
x17

z17

x2

y2

z2

o17

o16

o15

π

4

θ
y

15

x15

z15

y15

θz
15

L15

L16

x16

z16
y16

θ16

θ17

L17

Descriptio 3.6: Left hand thumb kinematic chain

Several thumb models have been proposed in the past. Most of them as-

sume 5 DOF with orthogonal axes, using two DOF at the MP instead of one (see

[Lee 1995],[Kuch 1995]). However, we think that our 4 DOF model which uses non-

orthogonal axes (π/4 rotation in [Figure (3.6)]) is accurate enough to capture the

thumb movements.

3.2. Articulated model 67

We model the joint between the hand palm of the forearm using 2 DOF using

two rotations:

F2(θ2) =M2 ×Ry(θx2)×Rz(θz2) (3.26)

Finally the global pose of the forearm relatively to the absolute frame can

be described by a unit quaternion θq1 and a three dimensional translation vector

[θx1 , θ
y
1 , θ

z
1]:

F1(θ2) = Tx(θx1)Ty(θ
y
1)Tz(θ

z
1)R(θ

q
1) (3.27)

where R(q) is the 4× 4 matrix corresponding to the normalized quaternion q.

The accumulation of the kinematic parameters for all the fingers provides a

vector θ of dimension D∗ = 29 while the dimension of the manifold Θ is D = 28

which corresponds to the number of degrees of freedom (see section 3.2.1.2 for formal

definitions of D∗ and D).

3.2.5 Linear constraints on joint angles

Bones, muscles and tendons structures lead to a number of natural constraints that

should be embedded in the hand model. Prior art [Lee 1995, Kuch 1995, Lin 2000]

distinguishes two type of constraints: the static and the dynamic ones.

The static constraints correspond to bounds on a single parameter while the dy-

namic ones correspond to linear or non-linear equalities or inequalities that involve

a combination of two or more parameters. The term dynamic does not come from

the fact that the time is taken into account, but from the fact that the limit on

one DOF depends on the values taken by other ones. The adopted constraints are

inspired from [Lee 1995].

3.2.5.1 Static constraints:

For all fingers other than the thumb we have:

∀j ∈ {3, 6, 9, 12} :θj+1 ∈ [0◦, 110◦]
θj+2 ∈ [0◦, 90◦]
θzj ∈ [−15◦, 15◦]
θxj ∈ [0◦, 100◦]

(3.28)

The angles are equal to 0 when the hand is fully extended. For the thumb we have:

θ17 ∈ [0◦, 110◦]

θ16 ∈ [0◦, 80◦]

θz15 ∈ [−15◦, 80◦] (3.29)

θy15 ∈ [−30, 130◦]

68 Caput 3. Silhouette Based Method

The angles between the arm and the palm are also restricted

θx2 ∈ [−80◦, 80◦]
θz2 ∈ [−20◦, 60◦]

(3.30)

3.2.5.2 Dynamic constraints on flexing of the interphalangeal joints:

We notice that, for all fingers, it is nearly impossible to move the DIP

(F5, F8, F11, F14) without moving the adjacent PIP joint (F4, F7, F12, F13) or forcing

one of them to move in an unnatural manner. This dependency as been modeled

in [Lee 1995] by 3θj+2 − 2θj+1 = 0, ∀j{3, 6, 9, 12}. However we noticed that when
the hand is clenched into a fist (θj+2 = θj+1 = 90◦, j ∈ {3, 6, 9, 12}) it is easy to
have the DIP joints extended (θj+2 = 0, j ∈ {3, 6, 9, 12}), which clearly violates the
linear relation given above. Therefore we choose to replace the constraints defined

by:

∀j ∈ {3, 6, 9, 12} :3θj+2 − 2θj+1 ≤ 0

3θj+2 − 2θj+1 ≥ −2θxj
(3.31)

3.2.5.3 Dynamic constraint on flexing of the metacarpophalangeal

joints:

The MP joints have an individual flexing range of 110 degrees. However, since

isolated flexing of a finger is restricted by accompanying tension in the palmar

interdigital ligament, such a flexing might cause flexing of the adjacent fingers. In

the same way, a finger’s extension is hindered by the flexing of others. This can be

modeled using the following linear inequalities:

θx3 ≤ θx6 + 25 (3.32)

θx3 ≥ θx6 − 55 (3.33)

θx6 ≤ inf(θx3 + 55, θx9 + 20) (3.34)

θx6 ≥ sup(θx3 − 25, θx9 − 45) (3.35)

θx9 ≤ inf(θx6 + 45, θx12 + 50) (3.36)

θx9 ≥ sup(θx6 − 20, θx12 − 45) (3.37)

θx12 ≤ θx9 + 45 (3.38)

θx12 ≥ θx9 − 50 (3.39)

(3.40)

3.2. Articulated model 69

3.2.5.4 Dynamic constraint on adduction and abduction of the

metacapophalangeal joints:

In their natural position, the fingers can freely carry out adduction or abduction.

However when clenched into a fist the abduction/adduction range is greatly reduced.

The range of the angle of rotation around the axis z at the MP joint progressively

decreases as the angle of the rotation around x increases. This can be expressed

mathematically as follows:

∀j{3, 6, 9, 12} : |θzj | ≤ 15(1− α) + 5α, α =
θxj
50

(3.41)

3.2.5.5 Inequality system

All these static and dynamic constraints can be resumed in a single inequality

system

Aθ ≤ b (3.42)

With A a sparse matrix with 29 columns and 68 rows (there are 68 inequality

constraints). Because we use linear inequalities the authorized configuration space

is the intersection of 52 half spaces (which are convex spaces) and thus is a convex

set. This set of constraints should be taken into account during the model fitting

process. This is detailed in the section relative to the optimization (3.7.2).

These linear inequalities are not exhaustive. We could define many other in-

equalities constraints. However it could be cumbersome to identify most of them

without a systematic approach. One systematic approach could be to calculate the

N-dimension convex hull of a large set of real configurations (each configuration

corresponding to a point in R
N). Note that such a methodology does not allow

identifying non linear constraints and may lead to many inequalities constraints.

3.2.6 Model calibration

The sizes of the bones of the hand vary across individuals. The size of the pha-

lanx bones are controlled by the length parameters lj with j ∈ {3, . . . , 17}. The

locations of the points where each finger is attached to the palm are controlled by

the parameters oj with j ∈ {3, 6, 9, 12, 15}. In order to calibrate these parameters
to the user’s hand, we ask the user to place his hand in a flat position in a plane

that is parallel to the camera image plane. The model is calibrated manually: the

user is asked to click on the each finger joint and each finger extremity and at two

points at each side of the wrist (where the width of the forearm starts increasing

wile going from the elbow to the hand). The width (the two smaller axis length)

of the ellipse that is used to model each finger (see next section) is also calibrated.

This is done by clicking for each phalanx two points at each side of the finger.

The manual calibration process is important to reduce model-related error and get

accurate hand positions.

70 Caput 3. Silhouette Based Method

(a) (b) (c) (d)

Descriptio 3.7: (a) The hand Surface model (b) the phalanxes (c) the palm (d) the

interdigital skin and the wrist

3.3 Hand surface model and projection

3.3.1 surface model

The model of the hand surface is composed of ellipsoids and polyhedrons. Each

phalanx is modeled using a prolate spheroid i.e. an elongated ellipsoid whose two

smallest axes have the same length and whose greater axis is aligned with the bone.

The palm is modeled with a rigid convex polyhedron. The forearm and the

skin between fingers (called interdigital skin) are modeled using deformable convex

polyhedra. The parameters of the ellipsoids and of the polyhedra are estimated

during the calibration stage. This surface model yields a good speed/accuracy

compromise for the silhouette computation that is critical in our approach. Note

that the use of a triangulated surface does not seem to be appropriate for our

purpose. It would require the calculation of the position of many points which will

be ignored since they do not lie on the silhouette.

3.3.1.1 Ellipsoids

Each phalanx is modeled by a prolate spheroid that is a special type of ellipsoid.

An ellipsoid is a quadric surface that can be expressed implicitly as follows:

{X ∈ R
3|(X − C)TA(X − C) = 1} (3.43)

With A a 3× 3 positive symmetric definite matrix and C ∈ R
3. The point C is the

center of the ellipsoid.

Since A is positive semi definite, there exists a rotation matrix R and (a, b, c) ∈
R
+3 with a ≥ b ≥ c such that:

A = R





1/a2 0 0

0 1/b2 0

0 0 1/c2



RT (3.44)

Each column of R corresponds to a principal direction of the ellipsoid and the values

a, b and c correspond to the radii of the ellipsoid in the three principal directions.

3.3. Hand surface model and projection 71

Prolate spheroid are a special type of ellipsoid where the two smallest radii b and c

are equal. Let denote T the matrix defined as follow:

T ≡
[

RT −RTC

03×1 1

]

(3.45)

This matrix corresponds to a rigid Euclidean transform in the homogeneous

coordinates system. We obtain an equivalent equation for the ellipsoid:

[x, y, z, 1]TQ[x, y, z, 1]T = 0 (3.46)

with

Q = T T







1/a2 0 0 0

0 1/b2 0 0

0 0 1/c2 0

0 0 0 −1






T (3.47)

The hand surface is modeled by attaching a prolate spheroid to each phalanx

bone. The shape of each prolate spheroid is specified by a 4 × 4 matrix Q0 that

remains unchanged. If the spheroid is attached to the bone i, then its equation in

the local frame (~xi, ~yi, ~zi, oi) of the bone i can be expressed as:

[xi, yi, zi, 1]
TQ0[xi, yi, zi, 1]

T (3.48)

with (xi, yi, zi) being the coordinate of the points in the local frame (~xi, ~yi, ~zi, oi).

Then, the equation of the ellipsoid in the world coordinate system becomes:

[x, y, z, 1]TQ[x, y, z, 1]T = 0 (3.49)

with

Q = (K−1
i)TQ0K

−1
i (3.50)

3.3.1.2 Convex polytopes

The palm [Figure (3.7.c)], the forearm and the interdigital skin [Figure (3.7.d)] are

modeled using 3D convex polytopes. Different definitions of polytopes exist in the

literature. We define a convex polytope to be the convex hull of a finite set of points.

Given a set of points X ≡ {x1, . . . , xN}, the convex hull H(X) of these points is

defined to be the minimal convex set enclosing all these points. The convex hull

is the intersection of all convex sets containing X, which constitutes an alternative

definition. One can show that the convex hull can be described as the set of convex

combinations of the points in X:

H(X) =
{

N∑

i=1

λixi | (λ1, . . . , λN) ∈ R
+N ,

N∑

i=1

αi = 1
}

(3.51)

Each part of the hand that is modeled as a convex polytope is described using a

small set of 3D points X. Given a set of points X, the boundary of its convex hull

72 Caput 3. Silhouette Based Method

∂H(X) can be described as a triangulated surface whose vertices are a subset of X.

Such a representation of the convex hull boundary can be computed using standard

convex hull algorithms [Barber 1996] and is useful if one want to visualize the 3D

model. However, as we will see in section 3.3.4, this triangulated representation

of the convex hull boundary is not needed if we only aim at projecting the convex

polytope in the image plane.

For the interdigital skin and the forearm [Figure (3.7.d)] the set of the points

that define each polytope undergo a non-rigid transformation. The points of X that

define the polytope are eventually attached to different bones. Let a(i) ∈ {1, . . . ,K}
be the index of the bone corresponding to the ith point of the polytope. Given a

hand pose θ we compute the matrices (Kj)
N
j=1 defining the rigid frame attached

to each bone using forward kinematic (see eqn.3.3). Then the position of a vertex

[Xi, Yi, Zi] of a polyhedra is obtained from its local coordinates [Xi
0, Y

i
0 , Z

i
0] in the

reference frame of the bone a(i) using the following equation:

[Xi, Yi, Zi]
T = Ka(i)[X

0
i , Y

0
i , Z

0
i] (3.52)

The deformable polytope associated to each hand part is defined as the convex hull

of the points being transformed according the bone displacements. Because the

convex hull is computed after transformation of the points the polytope remains

convex.

In order to evaluate a matching cost between the model in the candidate pose

and the observed image, we first need to project the 3D model into the image plane.

3.3.2 Camera model

Πi

p

~v
oπ oi

f

~u

P
~xc

~zc
~yc

oc

Descriptio 3.8: The pinhole camera model

In order to project the 3D model into the image we need a model of the camera.

We use the simple pinhole model shown in [Figure (3.8)]. A normalized coordinate

system (~xc, ~yc, ~zc, oc) is associated to the camera with oc the optical center (where

the pinhole is) of the camera. Given a point P and [X,Y, Z] its world coordinates,

3.3. Hand surface model and projection 73

its coordinates in the camera coordinate system [Xc, Yc, Zc] are obtained using a

matrix K ∈ K whose columns are made of the coordinates of ~xc,~yc,~zc and oc in the

world coordinate system:







Xc

Yc
Zc

1






= K







X

Y

Z

1







(3.53)

We denote f the focal length of the camera. The image plane Πi is orthogonal

to ~zc and at a distance f of the optical center i.e. Πi = {x|(x − oc).~zc = −f}.
We denote oi the principal point that is defined as the orthogonal projection of the

optical center oc onto the image plane Πi. The perspective projection p of a point

P onto the image plane Πi is the intersection of the line (oc, P) and the plane Π.

If we denote (xc, yc) 2D the coordinates of p in the coordinate system (~xc, ~yc, oi))

using the Thales theorem we get:

xc = −fXc

Zc
(3.54)

yc = −fYc
Zc

(3.55)

(3.56)

The coordinates (xc, yc) do not correspond to the ones of the point in the pixel

coordinate system (~u,~v, oπ). Let us denote (u0, v0) being the coordinates of the

principal point in the pixel coordinate system. We suppose the axes ~u and ~v re-

spectively parallel to ~x and ~y with opposite directions i.e ~u = −|~u|~x and ~v = −|~v|~y.
The norms |~u| and |~v| correspond to the width and the height of a single pixel on
the captor.Then the coordinates (x, y) of the point p in the pixel coordinate system

are given by:

[
x

y

]

=

[−|u|−1 0 u0
0 −|v|−1 v0

]




xc
yc
1



 (3.57)

That can be expressed as follows::
[
x

y

]

=

[
x̂/ẑ

ŷ/ẑ

]

(3.58)

with




x̂

ŷ

ẑ



 = Pc







X

Y

Z

1







(3.59)

And Pc the camera projection matrix being defined as:

Pc =





f/|u| 0 u0
0 f/|v| v0
0 0 1



 [I3×3|0]K (3.60)

74 Caput 3. Silhouette Based Method

Finally we can define the projection on the camera through the function Π:

Π :
R
3 → R

2

x → (Pc[3,:]x)
−1Pc[1:2,:]x

(3.61)

The use of a single camera makes more convenient to set the camera coordinate

system to match the world coordinates system, or K = I4×4

3.3.3 Ellipsoid projection

Each phalanx is modeled using a 3D ellipsoid that is composed of the points whose

coordinates in the world coordinate system satisfy [x, y, z, 1]Q[x, y, z, 1]T = 0.

The perspective projection model will project each 3D ellipsoid into a sub region

of the image plane whose boundary is a 2D ellipse [Figure (3.9)].

oc

~yc
~zc

~xc

P

~u

oi
oπ

~v

p

Π

Descriptio 3.9: Ellispoid projection

Given a point p with coordinates (x, y) in the image coordinate system (oπ, ~u,~v),

the set of points that project onto (x, y) (i.e. the line (oc, p) ≡ Π−1
(
{(x, y)}

)
) are

points of coordinate (X,Y, Z) such that P [X,Y, Z, 1] ∼ [x, y, 1] i.e. such that there

exist an α ∈ R such that Pc[X,Y, Z, 1]T = α[x, y, 1]T The matrix P is 3 by 4 and

therefore is not invertible. We augment the matrix by a forth row to obtain a new

matrix Ps:

Ps ≡
[

Pc

0 0 0 1

]

(3.62)

Using this matrix we have:

Pc[X,Y, Z, 1]T = α[x, y, 1]T ⇔ Ps[X,Y, Z, 1]T = [αx, αy, α, 1]T

⇔ [X,Y, Z, 1]T = P−1s [αx, αy, α, 1]T
(3.63)

A point of the image belongs to the projection of the ellipsoid if and only if the line

(oc, p) intersects the ellipsoid. The set of intersections of the line (oc, p) with the

ellipsoid is the set of solutions of the following system:

3.3. Hand surface model and projection 75

{
[X,Y, Z, 1]Q[X,Y, Z, 1]T = 0

(X,Y, Z, 1)T = P−1s [αx, αy, α, 1]T
(3.64)

We replace [X,Y, Z, 1] in the first equation and introduce Q̂ defined as:

Q̂ ≡ (P−1s)TQP−1s (3.65)

The first equation of the system becomes:

[αx, αy, α, 1]T Q̂[αx, αy, α, 1]T = 0 (3.66)

This equation is quadric with respect to α and can be expressed as

α2[x, y, 1]Q̂[1:3,1:3][x, y, 1]
T + 2αQ̂[4,1:3][x, y, 1]

T + Q̂4,4 = 0 (3.67)

The line (oi, p) intersects the ellipsoid if this equation has at least one solution i.e.

if its discriminant is greater or equal to zero:

[x, y, 1]Q̂T
[4,1:3]Q̂[4,1:3][x, y, 1]

T − Q̂4,4[x, y, 1]tQ̂[1:3,1:3][x, y, 1]
T ≥ 0 (3.68)

which rewrites

[x, y, 1]C[x, y, 1]T ≤ 0 (3.69)

with C being defined as:

C = Q̂44Q̂[1:3,1:3] − Q̂T
[4,1:3]Q̂[4,1:3] (3.70)

Therefore the region A in the image that corresponds to the ellipsoid projection

is defined as:

A = {x ∈ R
2 | [x, y, 1]C[x, y, 1]T ≤ 0} (3.71)

the region A is bounded and its boundary ∂A of this region is an ellipse whose

equation is

∂A = {x ∈ R
2 | [x, y, 1]C[x, y, 1]T = 0} (3.72)

For convenience we will refer to any closed region bounded by an ellipse as a filled

ellipse. Therefore A is a filled ellipse.

3.3.4 Convex polytope projection

The palm and the interdigital skin are modeled with convex polytopes that cor-

respond to convex hulls of finite sets of points being attached to bones of the

skeleton. One could project a polytope by computing the triangulated surface that

corresponds to its boundary and then project each triangular facet. Instead, we

can use the fact that the perspective projection of a convex hull of a set of points

is the convex hull of the perspective projection of that set of points. Therefore we

simply project the points used to define the polytope and then compute the 2D

76 Caput 3. Silhouette Based Method

Descriptio 3.10: projecting a cube. The contour of the projection is obtained by

computing the convex hull of the projected vertices

convex hull of the projected points, which is a convex polygon. This is illustrated

in [Figure (3.10)] where the projection of a cube is obtained as the 2D convex hull

of the projected vertices of the cube.

The boundary of a convex polygon can be described as the union of a finite

set of connected segments and is homeomorphic with the unit circle. The union

of segments constitutes a closed polyline also known as a close polygonal chain. A

polyline (a.k.a. a polygonal chain) is specified by a sequence of points (pj)
N
j=1 called

vertices. The corresponding open polyline is defined as the union of the segments

joining two successive vertices:

Po =

N−1⋃

j=1

pjpj+1 (3.73)

The corresponding closed polyline is obtained by adding the segment joining the

first and last vertex.

Pc =
(
N−1⋃

j=1

pjpj+1
)
∪ p1pN (3.74)

The problem of testing whether a point lies inside, outside or on the boundary

of a polygon is known as the Point-in-polygon problem. A simple method called

the even-odd rule algorithm is to count how many times a ray starting at the point

intersects the polygon boundary. Non-boundary points will produce an even number

of intersections when the point is outside, and odd otherwise.

3.3.5 Filled ellipses/polygons union

Once we projected each ellipsoids into a filled ellipse and each convex polytope

into a convex polygon we can compute the hand silhouette. We define the hand

silhouette Ω to be the union of the filled ellipses and the polygon. We define the

hand silhouette outline Γ ≡ ∂Ω as the boundary of the hand silhouette. There are

several manners to compute the silhouette and obtain a description of its outline.

Given a point x in the image plane, one can test whether it is in the silhouette

by iterating trough each primitive and testing if x is within any projected primitive

using the inequality eqn.3.71 for filled ellipses and the even-odd rule algorithm for

3.3. Hand surface model and projection 77

Descriptio 3.11: The 3D hand model, its projection and the silhouette outline

the convex polygons. Another approach consists in computing the silhouette on a

on a set of points that corresponds to a regular pixel grid. Existing 3D engines,

such as OpenGL, allows to project and to rasterize a polyhedra on a pixel grid. By

converting ellipses into polyhedra, we can use OpenGL to compute a binary image

representing the silhouette on a pixel grid (for example 1 if the center of the pixel fall

within the silhouette, 0 else). It is then possible to test if a point with non integer

coordinates lies on the silhouette boundary by testing if, among the four neighboring

points on the pixel grid, two of them have a different label. However, due to the

finite resolution of the pixel grid, this test might fail when two silhouette edges fall

in the same pixel. These two methods to compute the silhouette do not provide

a full, concise and analytical description of the hand silhouette. An analytical

description of the silhouette is needed if one aim to compute a continuous matching

cost as defined in section 3.4.3.1 and whose practical interest over a discontinuous

matching cost is discussed in section 3.7.5.

The hand silhouette outline can be described as the union of a finite set of

segments and parameterized arcs of ellipses. Therefore while “computing the sil-

houette” we aim to obtain a compact description of its boundary as the union of

segments and arcs.

The necessity to obtain a description of the hand silhouette outline depends on

the definition of matching cost that is used to estimate the quality of a hand pose

hypothesis. The analytical description of the boundary is necessary to compute a

continuous and differentiable matching cost (see section 3.4.3.1).

Several methods for computing the union of two or more polygons have been pro-

posed in the literature [Chazelle 1992, Mairson 1988]. Methods to compute boolean

operations (union,intersection and difference) with conic polygons have been pro-

posed in [Gong 2009, Berberich 2002]. The computational geometry library CGAL

[Fogel 2006] allows the computation of the union of general 2D curves composed of

segments and conic arcs. However this library does not provide the derivatives of

the primitive intersections with respect to primitive parameters, which is needed to

compute the gradient of our matching cost. The handling of all degenerated cases

with ellipses is cumbersome and since we will circumvent this problem by approxi-

78 Caput 3. Silhouette Based Method

mating ellipses by convex polygons (see 3.5.3), we provide only sketch of a method

that can be used to solve this problem

Let us consider a simple example with two filled ellipses C1 and C2 and a single

polygon C3 shown in [Figure (3.12)]. In order to refer indifferently to a filled ellipse

or a polygon we will refer to them as primitives.

∂C3\(Ċ1 ∪ Ċ2)
∂C3 ∩ (Ċ1 ∪ Ċ2)

∂C2\(Ċ1 ∪ Ċ3)
∂C2 ∩ (Ċ1 ∪ Ċ3)

∂C1\(Ċ2 ∪ Ċ3)

∂C1 ∩ (Ċ2 ∪ Ċ3)

Descriptio 3.12: Computing the boundary of the union of primitives

We aim to describe the closed curve Γ ≡ ∂Ω that corresponds to the boundary of

their union Ω ≡ C1∪C2∪C3. We assume that at every point where the boundaries

of two primitives are intersecting, the boundaries are crossing each other. This

assumption can provide the following condition: With this assumption we could

show that we have:

Γ = (∂C1 ∪ ∂C2 ∪ ∂C3)\(Ċ1 ∪ Ċ2 ∪ Ċ3) (3.75)

The boundary Γ is the union of portions of the original primitives boundaries. For

each primitive boundary we keep the portion that does not lies in the interior of

any other primitive [Figure (3.12)]:

Γ =
(
∂C1\(Ċ2 ∪ Ċ3)

)
∪
(
∂C2\(Ċ1 ∪ Ċ3)

)
∪
(
∂C3\(Ċ1 ∪ Ċ2)

)
(3.76)

In order to compute Γ, we first detect all intersections between pairs of primitive

boundaries. Each primitive boundary Ci is a closed curve homomorphic with the

unit circle and. Using the angular coordinate for example, we can parameterize it

using a continuous mapping fi from [0, 1] to R
2 such that

f([0, 1]) = Ci, f(0) = f(1) and f(x) = f(y)⇒ x = y or (x, y) ∈ {(0, 1), (1, 0)}
(3.77)

For each primitive boundary we store a list of intersections with the correspond-

ing coordinates in the curve. We also associate a binary label specifying if, when

walking the boundary counterclockwise, we are going in or out the other intersected

primitive. This is illustrated in [Figure (3.13)]. Note that a similar idea is used to

compute the union of polygons in [Kui Liu 2007, Greiner 1998].

For each primitive boundary we also count how many other primitives cover the

point with coordinate 0 (a0,b0 and c0 in [Figure (3.13)]). Once all intersections are

computed, we walk counterclockwise along each primitive boundary starting from

3.3. Hand surface model and projection 79

a0

c0

b0

0

1

2

1

1

1

0

0

0
0

1

1
1

2

2

1

− +

+

−

−

+−

+
−

+
−

+

+
−

+−

Descriptio 3.13: Computing the boundary of the union of primitives. The head

(respectively the tail) of the arrows are positioned at the intersection when we are

entering (respectively exiting) the other intersected primitive.

the point with coordinate 0 on the curve. We initialize a counter at 0 and, each

time we cross an intersection, we increment or decrement this counter. We keep

only portions of the boundary curves where the counter equals 0.

The hand silhouette outline is the union of these portions of polygon boundaries

and ellipses arcs. We can connect the portions that share an intersection point and

we obtain a set of closed curves. We orient these curves such that the direction

corresponds the counterclockwise direction on each primitive. As a consequence

the hand silhouette outline is composed of a single curve oriented counterclock-

wise (that we refer as the external outline) and a set (generally empty) of curves

oriented clockwise that define holes in the silhouette (see holes in the silhouette

[Figure (3.11)]).

In order to further explain the method, we need to specify how we compute

intersections between pairs of ellipses, pairs of polygon boundaries and between an

ellipse and a polygon boundary. Because we will ultimately approximate ellipses by

convex polygons (see section 3.5.3) we will not explain in detail the methods that

can be used to intersect a pairs of ellipses or an ellipse with a polygon boundary.

We presented these methods only because we want to follow an intuitive succession

of steps and because the justification for approximating ellipses by polygons will

only appear later, when computing the matching cost.

80 Caput 3. Silhouette Based Method

3.3.6 Intersecting two ellipses

Several method to compute ellipses intersections have been proposed in the liter-

ature ([Hill 1995, Gong 2009, Berberich 2002],[Schneider 2002] p255-256). Despite

their different formulations these methods essentially reduce to the same computa-

tions. We briefly explain the method proposed in [Hill 1995] and refer the reader

to the original material for more details.

Let us consider two ellipses E0 and E1 respectively defined as the set of solutions

of equations XTS0X = 0 and XTS1X = 0. Any point in their intersection E0 ∩E1

should simultaneously satisfy both equations. The points in E0 ∩E1 should satisfy

any linear combination of the two ellipses equations and thus for any µ ∈ R:

X ∈ E0 ∩ E1 ⇒ XTS(µ)X = 0 with S(µ) ≡ (S0 + µS1) (3.78)

Therefore, for any µ ∈ R the set E(µ) ≡ {X|XTS(µ)X = 0} is a conic which
contains the intersection of the two ellipses i.e we have (E0 ∩ E1) ⊂ E(µ). We can

choose µ such that the conic E(µ) is degenerate which happens when det(S(µ)) = 0.

The equation det(S(µ)) = 0 is a cubic equation of µ and thus we can find at most

three real solutions µ1, µ2 and µ3 (which are the eigen values of the matrix −S0S−11).

For each real solution, the corresponding conic is degenerated i.e. is composed of

two lines. The problem of finding intersection between the two ellipses reduces to

the problem of finding intersections between a set of lines and a conic. It is possible

to get some extraneous intersections, and one need to check them against both

ellipses.

We illustrate the method on a example of two ellipses with

S0 =





4 3 −4
3 4 −3
−4 −3 −4



 S1 =





4 −3 4

−3 4 −3
4 −3 −4



 (3.79)

The eigen values of the matrix −S0S−11 are µ1 = −4.9404, µ2 = −0.2024, and
µ3 = −1. For each eigen value µ ∈ {µ1, µ2, µ3} we have det(S(µ)) = 0 and the 2D

conic E(µ) degenerates into a set of two lines. We illustrate in [Figure (3.14)] the

conic obtained for each of the tree eigen values. For each eigen value µi we also

display intermediary conics E(µ) with µ sampled uniformly between 0 and µi.

3.3.7 Intersecting an ellipse with a polyline

The boundary of a polygon is the union of a set of connected segments that can be

described by a closed polygonal chain (a.k.a. closed polyline). A possible method

[Schneider 2002] to intersect an ellipse with a polyline consists in intersecting each

segment of the polyline against the ellipse. Given the homogeneous coordinates X1

and X0 of the two extremities of a segment, a point X belongs to the segment if

and only if there exists λ ∈ [0, 1] such that:

X = X0 + λ(X1 −X0) (3.80)

3.3. Hand surface model and projection 81

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

(a) (b) (c)

Descriptio 3.14: intersect two ellipses. a) µ = −0.2024 b) µ = −49404 c) µ = −1

This point belongs to the ellipse of equation XTQX = 0 if and only if

λ2 (X1 −X0)
TQ(X1 −X0)

︸ ︷︷ ︸

ε1

+λXT
0 Q(X1 −X0)

︸ ︷︷ ︸

ε2

+XT
0 QX0

︸ ︷︷ ︸

ε3

= 0 (3.81)

The discriminant of this quadratic equation is given by

δ = ε22 − 4ε1ε3 (3.82)

If δ < 0, then the the equation 3.81 does not have a solution. The line and the ellipse

do not intersect. If δ = 0 there exists a single solution. The line is tangent to the

ellipse. Otherwise δ > 0 and there exist two solutions. The line intersects the ellipse

twice and we can compute these intersections using λ ∈ {(−ε2 +
√
δ)/(2ε1), (−ε2 −√

δ)/(2ε1)}. Each solution in the interval [0, 1] corresponds to an intersection of the
ellipse with the segment. If none of the solution lies in the interval [0, 1] then the

segment does not intersect the ellipse.

Because we test each segment, the complexity of this method is linear with the

number of segments in the polygon. However the polygons we use are not arbitrary

but convex polygons, and thus it might be possible to accelerate the computation

of the intersections with the ellipse toward sub-linear complexity.

3.3.8 Intersecting boundaries of two polygons

The computation of intersections between the boundaries of two polygons is a clas-

sical problem in computational geometry [Boissonnat 1995, Preparata 1985]. If

the polygons have respectively m and n edges, the complexity of a brute force

method, that consist in testing the intersection of each edge of the first polygon

with each edge of the second polygon, would be of O(nm). In some cases, like

for example where all the edges of the first polygon intersect all edges of the sec-

ond polygon, this complexity cannot be reduced. Fortunately, the number of in-

tersections between polygon edges is, in general, much smaller than n × m and

it is possible to avoid testing all pairs of edges. The two algorithms proposed

in [Chazelle 1992] and [Mairson 1988] allow to compute all intersections between

pairs of edges with a complexity of O((m + n)log(n + m + k)) with k being the

82 Caput 3. Silhouette Based Method

number of intersections. A simple algorithm in O((m + n + k)log(n + m + k))

has been proposed in [Žalik 2000]. When the polygons are convex the number

of intersection is at most n + m. Linear time algorithms, i.e with complexity

O(m + n), have been proposed two solve the problem of intersecting two con-

vex polygons [O’Rourke 1982a, Toussaint 1985, O’Rourke 1982b, Yang 2006]. We

propose an algorithm 3 that is of order O(m + n) in the case of convex poly-

gons, but that can also handle arbitrary polygons with a worst complexity of

O(mn). We think our method is conceptually simpler than the methods proposed

in [O’Rourke 1982a, Toussaint 1985, O’Rourke 1982b, Yang 2006].

3.3.8.1 Intersecting two polylines with increasing abscisse

Let first consider the problem of computing all intersection between two open poly-

lines P1 and P2 whose vertex coordinates are increasing in x. Each polyline Pi (a.k.a

a polygonal chain) is defined by a sequence of points (pij)
Ni

j=1 called vertices. Each

open polyline Pi is then defined as the union of the segments joining two successive

vertices:

Pi =

Ni⋃

j=1

pijp
i
j+1 (3.83)

We denote (xij , y
i
j) the two coordinates of the point p

i
j i.e. the j

th point of polyline

Pi. As we will see it is possible to compute all intersections between these two

polylines without testing all pairs of segments. We suppose the vertex coordinates

of both polylines to be increasing in x i.e.

∀i ∈ {1, 2}, j ∈ {1, . . . , Ni − 1} : xij+1 ≥ xij (3.84)

If two edges intersect then their corresponding intervals on the x axis should also

intersects. Therefore we aim to list S of all pairs (i, j) ∈ {1, . . . , N1} × {1, . . . , N2}
such that [x1i , x

1
i+1]∩ [x2j , x2j+1] 6= ∅. Using the fact that xi1 < · · · < xiNi

This can be

done in a linear time using the algorithm 2.

The number of elements in S is less than N1 + N2 and the complexity of this

algorithm is of order O(N1 + N2). In order to intersect the two polyline we test

for each (i, j) ∈ S the intersection between the two segments p1i , p
1
i+1 and p2j , p

2
j+1.

Testing the intersection between two segments can be done easily using additions

and multiplications. If the two segments intersect one needs to perform a division

to compute the location of the intersection. Robust methods to test and com-

pute the intersection of two line segments have been proposed in the literature

[Gavrilova 2000, Zhu 2005]. Because we will need to differentiate the location of

3We found out that our method has some strong similarities with a method implemented in

Matlab by Sebastian Hı̈¿ 1

2
lz. The Matlab file curveintersect.m can be downloaded here http:

//www.mathworks.co.kr/matlabcentral/fileexchange/8908. however their method is not linear

with the number of edges because the Matlab mex function histc.c called line 300 of interp1.m

does binary search for each element and does not takes advantage of the fact that the vectors xiCol

are already ordered.

3.3. Hand surface model and projection 83

Algorithm 2: listIntersectingSegments

Data: Two increasing sequences (xi1, . . . , xNi
)2i=2 with xi1 < · · · < xiNi

Result: S = {(i, j) ∈ {1, . . . , N1} × {1, . . . , N2} | [x1i , x1i+1] ∩ [x2j , x2j+1] 6= ∅}
i← 1;

j ← 1;

S = ∅
while x1

i+1 < x2
j do

i← i+ 1;

while x2
j+1 < x1

i do

j ← j + 1;

while (i < Ni) and (j < Nj) do

if x1
i+1 < x2

j+1 then

i← i+ 1;

S ← S ∪ {(i, j)};

else

j ← j + 1;

S ← S ∪ {(i, j)};

the intersection point with respect to the hand pose parameter, we adopt simple

equations to compute the intersection between two line segments [O’Rourke 1999].

For clarity of the notation we rename the two extremities of the two segments:

a ≡ p1i , b ≡ p1i+1, c ≡ p2j and d ≡ p2j+1. The two line segments write:

ab ≡ {ua+ (1− u)b|u ∈ [0, 1]} (3.85)

cd ≡ {vc+ (1− v)d|v ∈ [0, 1]} (3.86)

The intersection point of the two lines is obtained by solving

ua+ (1− u)b = vc+ (1− v)d (3.87)

The solution writes:

u = [ax(dy − cy) + cx(ay + dy) + dx(cy − ay)]/D (3.88)

v = −[ax(cy − by) + bx(ay − cy) + cx(by − ay)]/D (3.89)

D = (ax − bx)(dy − cy) + (dx − cx)(by − ay) (3.90)

If the two lines are parallel, then the denominator D equals to zero ans this require

special handling. The intersection point x is obtained by substituting u or v i.e

using either x = ua + (1 − u)b or x = vc + (1 − v)d. The intersection belongs

to the two segments if and only if the solution verifies u ∈ [0, 1] and v ∈ [0, 1].

One can perform these two tests without performing the division by comparing the

numerators appearing in the computation of u and v with 0 and D.

84 Caput 3. Silhouette Based Method

3.3.8.2 Intersecting two closed polylines

We now consider the problem of intersecting the boundaries of two polygons. The

boundary of a polygon is a closed polyline. We decompose the closed polyline into

a minimal set of open polylines monotonic in x (i.e increasing or decreasing) and

re-index vertices in each extracted polyline to obtain increasing open chains. For

convex polygons we get only two polylines per polygons. We compare each pair of

polylines extracted from the two polygons. We get only four pairs of polylines if the

two polygons are convex. The method is thus linear with the number of vertices of

the polygons if the polygons are convex.

3.4 Matching cost

We described in the previous section how to compute the hand silhouette Ω and

its boundary Γ = ∂Ω given the hand pose θ. Given an observed image I, we

need to assess the quality of a candidate hand pose, described by the parameter

vector θ. This is done by measuring the consistency between the synthesized hand

silhouette Ω and the observed image. In a Bayesian framework, this is done by

recovering the probability density p(I|θ) of getting the observed image I given a

hand configuration θ. This probability is built from a generative models for pixels of

the hand, the background and other regions. Those regions are ordered in depth and

may occlude each other, leading to a so called 2.1D sketch model [Nitzberg 1990].

Our model leads to a log-likelihood L(θ) = −log(p(I|θ)) that can be interpreted

as a cost function with the lowest value corresponding to the hand configuration

that is most consistent with the observed image. Despite our specific modeling

choice on background and foreground separation, our approach can be adapted to

other well-known contour-based or area based segmentation functional f(Γ, I). This

could be done by taking the Gibbs distribution p(I|θ) ∝ exp(−f(Γ(θ), I)/T) with
T a temperature parameter. Our generative model supposes that the observation

is made of four classes representing four different elements of the image: 1) the

static background, 2) the skin, 3) foreground which might occlude the hand and

4) parts of the body behind the hand. Unlike most silhouette matching methods

[Delamarre 1999, Ouhaddi 1999b], we do not assume pre-segmentation of the image

into those four classes in order to match the hand to a segmented silhouette. Our

method unifies segmentation and hand pose estimation in a single optimization

problem thus improving overall robustness.

3.4.1 Generative colors models

Under the assumption of a static camera, we assume that the background is sta-

tionary or changing in a gradual fashion. The background model presented in

[Stauffer 1999] that uses a mixture of Gaussian Distributions for each pixel is an

excellent compromise between low complexity and fairly good approximation of

stationary signals. This yields the following background log-likelihood:

3.4. Matching cost 85

fbk(x) = −log(
∑

i

wi
xN(µi

x,Σ
i
x)(I(x)) (3.91)

We model the three other classes (the hand skin, the parts of the body behind

the hand and the foreground which might occlude the hand) using a kernel-based

approximation (Parzen windows) of the RGB histograms. Some minimal interaction

is required from the user in order to recover an initial form of this non-parametric

approximation. We denote dhd, dfor and dbd the respective approximated distri-

butions on the RGB space. The histograms are thresholded such that no-zero

probability is given to any color. In the absence of spatial inter-pixel dependencies

within each part, we obtain the following observation log-likelihoods:

fhd(x) = −log(dhd(I(x)))
fbd(x) = −log(dbd(I(x)))
ffor(x) = −log(dfor(I(x)))

(3.92)

We illustrate these function for an image composed of the hand, a red moving

foreground and a moving background composed of the hips region with a dark

brown shirt and blue jean in [Figure (3.15)].

3.4.2 The discontinuous likelihood

We suppose the image to be of size W by H with W the width and H the height

in pixels. Let Ld ≡ {0, . . . ,W − 1}× {0, . . . , H − 1} denote the set of discrete pixel
coordinates. The image I, the functions fhd,fbd and ffor are defined on set on

discrete pixel locations Ld.

We denote Mfor, Mhd, Mbd and Mbk respectively the characteristic functions

(or masks) of the regions (including occluded parts) corresponding to foreground,

hand, body and background. These functions are defined on the discrete pixel grid,

therefore a mask can be associated to an element of {0, 1}M×N . The continuous
characteristic function of the hand silhouette is defined as follows:

χΩ :
[0, H]× [0,W]×Θ → {0, 1}

(x, y; θ) 7→ 1 if (x, y) ∈ Ω(θ), 0 else (3.93)

The discrete mask of the hand is obtained by restricting the function to the

integer coordinates:

Mhd :
{0, . . .W − 1} × {0, . . . H − 1} ×Θ ← {0, 1}

(i, j; θ) 7→ 1 if (i, j) ∈ Ω(θ), 0 else (3.94)

This mask can be computed by testing for each x in Ld if it is inside the silhouette

Ω. For each x this can be done by iterating trough each primitive and testing if x

is within any projected primitive - using the inequality eqn.3.71 for filled ellipses

and the even-odd rule algorithm for the convex polygons. This could be done easily

86 Caput 3. Silhouette Based Method

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Descriptio 3.15: negative Log-likelihood maps: (a) video frame (b) mean image

of the background (c) random samples of the hand distribution (d) random sam-

ples of the foreground distribution (e) random samples of the moving background

distribution (f) background minus log-likelihood fbk(thedarkerthemostlikely) (g)

hand background minus log-likelihood fhd (h) foreground background minus

log-likelihood ffor (i) moving background minus log-likelihood fbd

by rasterizing the hand into a binary image using a library such as OpenGL. For

the two mask Mfor and Mbk we assume the prior probabilities to be uniform i.e.

p(Mfor) = 2−M×N and p(Mbk) = 2−M×N . The background mask Mbk(x) remains

equal to 1 on the entire image. We do not require the regions to form a partition

of the image, but we give a depth order: Foreground, hand, body and background.

Each part may occlude deeper parts. The probability of observing I given the hand

parameter θ is obtained by marginalization over the possible configurations of the

masks Mfor and Mbd. The background mask Mbk(x) remains equal to 1 on the

entire image support and it is therefore not marginalized.

p(I|θ) ≡ p(I|Mhd(θ)) ∝
∫

Mfor

∫

Mbd

p(I|Mhd(θ),Mfor,Mbd)

p(Mfor)p(Mbd)dMbddMfor

(3.95)

Defining ≺ the depth order relation we get the ordering for ≺ hd ≺ bd ≺ bk

and we can write the observation likelihood taking occlusions into account:

3.4. Matching cost 87

p(I|Mhd,Mfor,Mbd) =
∑

x∈Ld

∑

i

dj(I(x))
[
Mi(x)

∏

j≺i

(1−Mj(x))
]
dx (3.96)

In order to simplify the computation we approximate by maximizing rather than

marginalizing over the other masks Mfor and Mbd. Maximizing the expression in

(eqn.3.96) with respect to Mfor and Mbd and taking the negative logarithm of the

maximum leads to an approximate log-likelihood of the hand configuration given

the observed image. This functional, also referred to as the data cost function, is

finally expressed as:

Lb(θ) =
∑

x∈Ld

Mhd(x; θ)fin(x) + (1−Mhd(x; θ))fout(x) (3.97)

=
∑

x∈Ld

fout

︸ ︷︷ ︸

K

+
∑

x∈Ld

Mhd(x; θ) (fin(x)− fout(x))
︸ ︷︷ ︸

f(x)

(3.98)

with

fin(x) = min(fhd(x), ffor(x)) (3.99)

fout(x) = min(fbk(x), fbd(x), ffor(x)) (3.100)

Using the silhouette characteristic function χΩ(x, y; θ) the discontinuous matching

cost can be rewritten as follows:

Lb(θ) = K +
∑

(i,j)∈Ld

f(i, j)χΩ(i, j; θ) (3.101)

The value K does not depend on the synthesized silhouette and can be calculated

only once for a given frame. We refer to f as the image of differences of log-

likelihoods (which is equivalent to the logarithm of likelihood-ratios). This image

equals zeros whenever the likelihood of being inside the hand silhouette equals the

one of being outside the silhouette. Pixels that looks like the moving foreground

may or may not cover the hand, and this cannot be decided based on the pixel color,

therefore f(x) = 0 for these points, which is illustrated in [Figure (3.16)] where the

region of the red object is gray.

Unfortunately the matching cost Lb is a discontinuous function of θ. Because

Mhd is a binary image, the matching cost Lb cannot take more than 2
W×H distinct

values and thus it is piecewise constant. When θ varies, the boundary Γ of the

silhouette Ω continuously displace in the image plane. When Γ crosses a point (i, j)

in Ld, i.e. with integer coordinates, the binary values ofMhd(i, j; θ) suddenly change

from 0 to 1 or from 1 to 0 which results in a discontinuous change in the matching

cost. This matching cost is not suitable for local optimization simply because it is

piecewise constant and therefore its gradient is null almost everywhere. Local search

88 Caput 3. Silhouette Based Method

(a) (b)

Descriptio 3.16: (a) the observed image (b) the image of differences of

log-likelilhoods (or logarithm of likelihood-ratio)

could be performed using gradient free optimization routines such as the downhill

simplex method. However the convergence rate of such methods is slow. One can

overcome this limitation through the definition of a continuous and differentiable

matching cost, for which we can derive the analytical expression of the gradient and

the Hessian. This will allow to perform the local search efficiently.

3.4.3 The continuous likelihood

3.4.3.1 Using a continuous integration

In order to define a continuous and differentiable matching cost, we define a new

function fc that interpolates the functions f on the continuous image domain Lc.

Then we replace, in the equartion eqn.3.101, the finite sum over the finite set

of discrete pixels Ld by a continuous integrals over the continuous image domain

Lc ≡ [0,W]× [0, H]. The continuous matching cost is defined by:

L(θ) = K +

∫∫

fc(x, y)χΩ(x, y; θ)dxdy, (3.102)

and can be rewritten as:

L(θ) = K +

∫∫

Ω(θ)
fc(x, y)dxdy (3.103)

We formulate the interpolation of f as a convolution by a kernel k:

fc(x, y) =
∑

(i,j)∈Ld

f(i, j) k(x− i, y − j) (3.104)

The kernel depends on the type of interpolation we use:

• The nearest neighbor (shifted by 0.5) interpolation is obtained using the kernel

that is constant and equal to 1 within the square [0, 1]2 and zeros outside the

square:

kn(x, y) = 1 if (x, y) ∈ [0, 1]2, 0 else (3.105)

3.4. Matching cost 89

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Descriptio 3.17: kernel for bilinear interpolation

Some basic variables manipulation will lead to:

fc(x, y) =
∑

(i,j)∈Ld

f(i, j)kn(x− i, y − j) = f(⌊x⌋ , ⌊y⌋) (3.106)

with ⌊x⌋ the greatest integer that is smaller or equal to x.

• The bilinear interpolation is obtained using the kernel kb defined as follows:

kb(x, y) = (1− |x|)(1− |y|) if (x, y) ∈ [−1, 1]2, 0 else (3.107)

The kernel kb is shown in [Figure (3.17)]. We define the function ε(x) =

x− ⌊x⌋. With some rewriting we get:

fc(x, y) =(1− ε(x))(1− ε(y))f(⌊x⌋ , ⌊y⌋)
+ (ε(x))(1− ε(y))f(⌊x⌋+ 1, ⌊y⌋)
+ (1− ε(x))(ε(y))f(⌊x⌋ , ⌊y⌋+ 1)

+ (ε(x))(ε(y))f(⌊x⌋+ 1, ⌊y⌋+ 1)

(3.108)

The advantage of the continuous matching cost L(θ) over the matching cost

Lb(θ) (that was defined in the previous section) is that L(θ) can be differentiated.

3.4.3.2 Relationship with antialiasing

There is a strong relationship between the problem of computing exactly the con-

tinuous matching cost and performing anti-aliasing. In the context of computer

graphics and signal processing in general the aliasing problem appears when a sig-

nal with high frequencies (spacial frequencies for an image) is sampled at a frequency

smaller than fe/2 (fe being the highest frequencies with no negligible energy in the

signal). In computer graphics this appears when rendering geometric primitives

with sharp boundaries on a discrete pixel grid. The abrupt intensity discontinu-

ities at the boundaries cause high amplitude spectral components at extremely high

frequencies. In practice if one discretizes an image composed of object with sharp

boundaries, this result in jaggies or stair-like artifacts (see first column in [Fig-

ure (3.18)]. In real cameras the optics creates some low-pass filtering (blurring)

and pixel have spacial extension, which removes the aliasing effect.

90 Caput 3. Silhouette Based Method

(a) (c) (e)

(b) (d) (f)

Descriptio 3.18: Masks of the hand and a zoom on the index extremity: (a-b)

the binary mask Mhd (c-d) the antialiased mask M̃ (see eqn.3.109) corresponding

to nearest neighbor interpolation (e-f) the antialiased mask M̃ corresponding to

bilinear interpolation

Three techniques are now commonly used to reduce aliasing: pre-filtering, uni-

form super-sampling, and stochastic sampling. Pre-filtering consists in filtering the

image in order to remove high spatial frequencies before sampling at pixel rates.

For each pixel, the combination of the filtering and sampling operations can be

interpreted as the computation of the scalar product of the filter kernel centered

at the pixel with the continuous image. The super-sampling methods consist in

increasing the sampling rates (and hence the Nyquist rates) to some small mul-

tiple of pixel rates and then form each pixel intensity of the discrete image from

a weighted average of neighboring samples. The super-sampling methods do not

remove the discontinuous intensity changes, but reduce their magnitude, when the

objects being drawn move continuously. Stochastic super-sampling methods ran-

domly displace the super-sampling positions so that any aliased components appear

as uncorrelated noise in the discrete image. The noise induces temporal disconti-

nuities in the discrete image when the objects being drawn displace continuously.

Only the pre-filtering method can provide a discrete image that varies continuously

when the rendered object displace continuously.

When the filter is the characteristic function of a unit square and the object

being drawn are polygons with uniform colors, the antialiasing process can be re-

3.4. Matching cost 91

interpreted as follows: Each polygon is clipped to the extend of the pixel and the

contribution of each polygon to the pixel is weighted by area of the clipped region.

This method is referred as the unweighted area sampling in [Foley 1996](p133-134)

and exact algorithms have been proposed in [Catmull 1978] and [Duff 1989] to com-

pute the weights. In [Catmull 1978], each polygon is clipped to each pixel using

the Weiler-Atherton method which is quite expensive. In [Duff 1989] the approach

is extended by replacing the area computation with a contour integral. Several

optimizations that exploit the coherence of scan-conversion are also proposed. A

method to compute exact antialiased triangles with any prisme spline filter (which

include the 2D box filter and the filter kb that is used for bilinear interpolation) has

been proposed in [McCool 1995].

In order to see the relationship between the problem of computing the continuous

matching cost and performing anti aliasing we rewrite the integral defining L(θ) as

follows:

L(θ) = K +

∫∫

fc(x, y)χΩ(x, y; θ)dxdy

= K +

∫∫



∑

(i,j)∈Ld

f(i, j)k(x− i, y − j))



χΩ(x, y; θ)dxdy

= K +
∑

(i,j)∈Ld

f(i, j)

∫∫

k(x− i, y − i))χΩ(x, y; θ)dxdy

︸ ︷︷ ︸

M̃(i,j)

(3.109)

The matching cost is rewritten as a finite sum over the image pixels where the

contribution of each pixel is weighted by M̃(i, j). The image M̃ can be interpreted

as an anti-aliased version of the hand silhouette binary maskMhd or the character-

istic function χΩ(x, y). Indeed M̃(i, j) corresponds to the evaluation at the integer

location (i, j) ∈ Ld of χΩ convolved with the kernel k. This convolution filters

out (or reduce) high spatial frequencies. The obtained images M̃ corresponding

to the nearest neighbor interpolation and the bilinear interpolation are shown in

[Figure (3.18)].

If we use the nearest neighbor interpolation shifted by 0.5 (eqn.3.106) one can

easily interpret M̃ as the antialiased version to the silhouette characteristic function

using the unweighted area sampling method. We rewrite the equation using the

corresponding kernel k:

M̃(i, j) =

∫∫

k(x− i, y − j)χΩ(x, y)dxdy

=

∫∫

(x,y)∈[i,i+1]×[j,j+1]
χΩ(x, y)dxdy

=

∫∫

Ω(θ)∩[i,i+1]×[j,j+1]
1dxdy

(3.110)

92 Caput 3. Silhouette Based Method

For each pixel (i, j) the value M̃(i, j) is the measure of the area of intersection

of the silhouette Ω with the pixel (i, j) that is spatially extended into a unit square

[i, i+1]×[j, j+1]. The matching cost is a finite sum over the image pixels where the

contribution of each pixel is weighted according to the surface of the intersection

between the pixel and the silhouette.

In order to compute the exact matching cost we could use the antialiasing al-

gorithms proposed in [Catmull 1978] and in [Duff 1989]. However, as shown in the

next section, it is not actually needed to compute the antialiased image M towards

computing L(θ). Our method uses the Green theorem to reduce the computation

complexity by replacing the integral within the silhouette by an integral along the

silhouette outline.

3.5 Numerical computation of the matching cost

Hand pose estimation through iterative minimization of the matching cost requires

the ability to compute the gradient of matching cost for some hand pose candidate.

The need of computing exactly the continuous matching cost itself during the op-

timization is not obvious. The computation of the discontinuous cost Ld could be

sufficient. This could be done easily by i) rasterizing the hand into a binary image

using a library such as OpenGL ii) summing the function f at location that have

been labeled as the hand silhouette in the binary image. This approach is simple

and avoids the need of computing the intersections between projected primitives.

However, in section 3.7.5, we compared the use of the approximate (discontinuous)

and the exact (continuous) matching cost while performing local optimization. This

comparison demonstrated that the use of the exact matching cost is preferable.

The exact or analytical computation of the continuous cost can be be done using

the analytical description of the silhouette contour Γ ≡ ∂Ω using the green’s theo-

rem (the two-dimensional special case of the more general stokes’ theorem). The for-

mulas are in closed form, thus providing the exact area in terms of real-valued arith-

metic. Given a 2-valued function of two real variables F (x, y) = (Fx(x, y), Fy(x, y))

such that its divergence ∇ · F ≡ ∂Fx

∂x +
∂Fy

∂y equals fc. The Green’s divergence

theorem states that we have the equality:

∫∫

Ω
fc(x, y)dxdy =

∮

Γ=∂Ω
< F (s), n̂(s) > ds (3.111)

where n̂ denotes the outward unit normal to Γ, ds the Euclidean arc length element

and the circle in the right-hand integral indicates that the curve is closed. We

choose Fy = 0 and

Fx(x, y) =

∫ x

t=0
fc(t, y)dt (3.112)

3.5. Numerical computation of the matching cost 93

We have F (s) = Fx(s).x̂. If we use the shifted nearest neighbor interpolation then

Fx can be rewritten as:

Fx(x, y) =

⌊x⌋−1
∑

u=0

f(u, ⌊y⌋) + (x− ⌊x⌋)f(⌊x⌋ , ⌊y⌋) (3.113)

Using this function the matching cost becomes:

L(θ) = K +

∫∫

Ω
fc(x, y)dxdy = K +

∮

Γ=∂Ω
Fx(s) < n̂(s).~x > ds (3.114)

The integral over Ω is reduced to an integral over the silhouette outline Γ, which

is composed of line segments and arcs of ellipses. We will now detail an efficient

method to compute the contributions to the integrals due to line segments. Because

we will ultimately avoid the use of ellipses by converting them into polygons, we

will only sketch a method that could be used to compute the contributions due to

arcs of ellipses.

3.5.1 Line segments

Let consider a segment qkqk+1 whose extremities are qk ≡ (xk, yk) and qk+1 ≡
(xk+1, yk+1) (like the segment ab in [Figure (3.19.a)]) The contribution of the

segment qkqk+1 to the matching cost is:

Ck ≡
∫

qkqk+1

Fx(s) < x̂, n̂k > ds (3.115)

The normal vector of the segment n̂k writes n̂k = J(qk+1 − qk)/lk with J =
[
0
−1

1
0

]
and lk ≡ |qk − qk+1| the length of the segment.

< x̂, n̂k >= (yk+1 − yk)/lk

We can parameterize each segment linearly using a parameter t ∈ [0, 1]:

qkqk+1 = {(1− t)qk + tqk+1 | t ∈ [0, 1]} (3.116)

Using this parameterization for each segment, the matching cost rewrites:

Ck = (yk+1 − yk)

∫ 1

0
Fx((1− t)qk + tqk+1)dt (3.117)

Supposing yk < yk+1, the segment can also be parameterized using the following

curve

r :
[yk, yk+1] → R

2

v 7→ (αv + β, v)
(3.118)

with α = (xk −xk+1)/(yk − yk+1) and β = xk −αyk. We get qkqk+1 = r([yk, yk+1]).

Using this parameterization of the segment, its contribution rewrites:

Ck =

∫ yk+1

v=yk

Fx(r(v)) < n̂k, ~x > |r′(v)|dv (3.119)

94 Caput 3. Silhouette Based Method

x

y

b

a

!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!

!!!!!
!!!!!
!!!!!

(0, ya)

(0, yb)

y

x

b

c

!!!!
!!!!
!!!!
!!!!

!!!!!!
!!!!!!
!!!!!!
!!!!!!
!!!!!!

!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!

y

x

!!!!!!!!
!!!!!!!!
!!!!!!!!c

d

x

y

!!!!!!
!!!!!!
!!!!!!
!!!!!!

d

a
x

y

!!!!!!!!
!!!!!!!!

!!
!!

e

f

x

y

!!!!!!!!
!!!!!!!!
!!!!!!!!

!!!!
!!!!
!!!!

f

g

x

y

!!!!!!!!
!!!!!!!!

!!!!
!!!!

h

g

x

y

!!!!!!!
!!!!!!!
!!!!!!!

!!!
!!!
!!!h

e

 !!

!!
!!

Regions where integral of fc is removed to the matching cost i.e n̂.~x > 0

n̂ unit normal vector oriented toward the ouside of the silhouette

Silhouette Ω

Regions where integral of fc is removed to the matching cost i.e n̂.~x < 0

Descriptio 3.19: trapezoid integrals

Assuming that we are walking counterclockwise around the silhouette outline,

the outside normal n̂ points towards the right while going from qk to qk+1 (i.e. the

inside of the silhouette is on the left when going from qk to qk+1). Because yk < yk+1
one can show that the outside normal points toward the right and we have < n̂k, ~x >

positive. With some calculus one can show that we have < n̂k, ~x > |r′(v)| = 1 and

we get:

Ck =

∫ yk+1

v=yk

Fx(r(v))dv

=

∫ yk+1

v=yk

Fx(αv + β, u)du

=

∫ yk+1

v=yk

∫ αv+β

u=0
fc(u, v)dudv

(3.120)

The last equation allows to re-interpret easily the contribution of the segment

to the contour integral. It corresponds to the integral of fc in the trapezoidal

region on the left of the segment [Figure (3.19)] i.e with corners of coordinates

3.5. Numerical computation of the matching cost 95

(xk, yk),(xk+1, yk+1),(0, yk+1), and (0, yk). If the edge is on a hole boundary, the

contribution of the segment to the contour integral is the integral of −fc in the

trapezoidal region on the left of the segment.

Depending on the interpolation scheme (shifted-nearest neighbor or bilinear)

the function fc is either constant or quadric on each pixel. In order to compute

exactly the integral of Fx along the segment qkqk+1 one needs to split this line

segment into sub-pixel fragments. An example of such a fragmentation in shown

in [Figure (3.20)]. Each subpixel fragment is contained in an unit square pixel

[x, x + 1] × [y, y + 1], with (x, y) ∈ Ld. This is done by clipping the segment

against each pixel using for example the method introduced in [Sutherland 1974].

However this is likely to be quite slow. We propose an new efficient algorithm to

clip a line segment against a pixel grid whose pseudo code is provided in 5. The

segment qkqk+1 is clipped by computing its intersections with the pixel grid that

is composed of vertical lines with integer x coordinates and horizontal lines with

integer y coordinates. The intersections are detected in an order such that their

distance from qk is increasing. Each segment whose extremities are two successive

intersections with the pixel grid is contained in a pixel square.

0 1 2 3 4 5
0

1

2

3

4

5

Ai

pi+1 = (2.75, 3)

qk+1 = (3.5, 4.5)

qk = (1.5, 0.5)

pi = (2.25, 2)

Descriptio 3.20: Sub-pixel fragmentation of a segment. Example with qk = (1.5, 0)

and qk+1 = (3.5, 4.5)

Once the segment is partitioned into sub-pixel fragments we can easily perform

integration on each fragment. Let pi ≡ (xi, yi) and pi+1 ≡ (xi+1, yi+1) be the

extremities of a subpixel segment of qkqk+1. We have pipi+1 ⊂ qkqk+1. The two

extremities pi and pi+1 belong to the same pixel which means that we have

{
(xi, yi) ∈ [k, k + 1]× [l, l + 1]

(xi+1, yi+1) ∈ [k, k + 1]× [l, l + 1]
(3.121)

with k = ⌊(xi + xi+1)/2⌋ and l = ⌊(yi + yi+1)/2⌋. Note that we may have ⌈xi⌉ 6=
⌈xi+1⌉ of ⌈yi⌉ 6= ⌈yi+1⌉ if xi or yi are integers. We denote ci ≡ (xic, yci) the center

of the ith subpixel segment. we have xci = (xi + xi+1)/2 and yci = (yi + yi+1)/2.

We introduce the two variables ∆yi ≡ yi+1 − yi and ∆xi ≡ xi+1 − xi.

96 Caput 3. Silhouette Based Method

3.5.1.1 Nearest neighbor interpolation

If we use the shifted nearest neighbor interpolation with the kernel kn, then the

function fc is constant within each unit square corresponding to a pixel. Further-

more, the function Fx is linear within each of these squares. Because pi and pi + 1

belong to the same pixel and we use the shifted nearest neighbor interpolation, the

function u 7→ Fx(r(u)) is linear on the interval [yi, yi+1] and we can evaluate the

integral by simply evaluating the center point ci of the interval:

Ci = (yi+1 − yi)Fx

(
r((yi + yi+1)/2)

)

= ∆yiFx(xci, yci)
(3.122)

We get from eqn 3.113:

Ci = (yi+1 − yi)

⌊xc⌋−1∑

u=0

f(u, ⌊yc⌋) + (yi+1 − yi)(xc − ⌊xc⌋)
︸ ︷︷ ︸

Ai

f(⌊xc⌋ , ⌊yc⌋) (3.123)

The value of Ai is the area of the intersection of the trapezoidal region on the

left of the fragment pipi+1 and the pixel as shown in [Figure (3.20)].

Consequently, our algorithm could be easily adapted to implement the antialias-

ing method we referred as the “unweighted area sampling” in the previous section.

After meticulous search of similar algorithm in the literature, it appeared that our

method bears similarities with the one proposed in [Cheng 1992] that adapts the

Bresenham [Bresenham 1965] line rasterization method using two error variables.

However, our method that clips segment on pixel grids appears to be simpler. The

source code can be found on the Graphic Gems Repository 4. Our method also bears

similarities with antialiasing methods proposed in [Pitteway 1980] 5,[Wu 1991] and

[Fujimoto 1983]. These algorithms adapt the Bresenham [Bresenham 1965] raster-

ization line algorithm to perform antialiasing. These algorithms differ from our

contribution because they consists in clipping the line segment only against vertical

lines of the pixel grid or only against horizontal lines, depending on the direction of

the line segment. The resulting approximate coverage agrees with the exact cover-

age only when the edge does not cross a line on the pixel grid that is orthogonal to

the set of lines chosen for the clipping. Furthermore these algorithms do not handle

line ends properly.

3.5.1.2 Bilinear interpolation

From the equation eqn.3.108 that defines the bilinear interpolation and the equation

eqn.3.112 that defines Fx we get:

4http://tog.acm.org/resources/GraphicsGems/gemsiii/edgeCalc.c
5A pseudo code can be found here http://www710.univ-lyon1.fr/~jciehl/Public/educ/ENS/

2003/antialiassage.pdf

3.5. Numerical computation of the matching cost 97

Fx(x, y) =ε(y)





⌊x⌋
∑

u=0

f(u, ⌈y⌉)− 1

2
f(0, ⌈y⌉)− 1

2
f(⌊x⌋, ⌈y⌉)





+ (1− ε(y))





⌊x⌋
∑

u=0

f(u, ⌊y⌋)− 1

2
f(0, ⌊y⌋)− 1

2
f(⌊x⌋, ⌊y⌋)





+ ε(x)fc(⌊x⌋+
ε(x)

2
, y)

(3.124)

The contribution of the ith sub-pixel fragment can be shown to be:

Ci = ∆yiFx(⌊xci⌋, yci) + c00f(⌊xci⌋, ⌊yci⌋) + c10f(⌊xci⌋+ 1, ⌊yci⌋)
+ c01f(⌊xci⌋, ⌊yci⌋+ 1) + c11f(⌊xci⌋+ 1, ⌊yci⌋+ 1)

(3.125)

with c00,c10,c01 and c11 defined as:

c11 ≡
∆xi∆

2
yi

12
ε(xci) +

∆yi∆
2
xi

24
ε(yci) (3.126)

c10 ≡ −c11 +
∆yi∆

2
xi

24
(3.127)

c01 ≡ −c11 +
∆xi∆

2
yi

12
(3.128)

c00 ≡ −c10 −
∆xi∆

2
yi

12
(3.129)

These equations are quite tedious to derive and we used the Maple symbolic

computation tool. Note that a method to integrate 2D polynomials into poly-

gons have been proposed in [Tumblin 2006, Steger 1996, Liggett 1988, Singer 1993,

Strachan 1990] and their result might be useful to extend the integration in the

silhouette for other polynomial interpolation schemes such as bi-cubic interpolation

The method proposed in [McCool 1995] to render antialiased triangles is also of

interest.

3.5.2 Ellipsoid arcs

Like for line segment edges we need to clip the ellipse arcs to the pixel grid in order

to compute their contribution to the matching cost. An arc is defined by a ellipse

matrix Q and a ordered couple of extremities (a, b) with a and b 2D points on the

ellipse. We assume that the two extremities are ordered such that the arc is joining

a and b by traversing the ellipse in the counterclockwise direction. In order to clip

the arc onto the pixel grid we need first to decompose the arc into a set of monotonic

arcs. This is done by computing the extremal points of the ellipse in the x and y

directions. The left-most point, (xl, yl), and right-most point, (xr, yr), of the ellipse

are points on the ellipse where the normal to the curve is aligned with the x axis:

∂

∂y
([x, y, 1]Q[x, y, 1]T) = 0⇔ Q12x+Q22y +Q23 = 0 (3.130)

98 Caput 3. Silhouette Based Method

The extremal point in the x direction belongs to the ellipse and the two points point

should verify the following system:

{
Q11x

2 +Q22y
2 + 2Q12xy + 2Q13x+ 2Q23y +Q33 = 0

Q12x+Q22y +Q23 = 0
(3.131)

Using the second line we can eliminate y from the first line.

(Q22Q11 −Q2
12)

︸ ︷︷ ︸

α

x2 + 2(Q13Q22 −Q12Q23)
︸ ︷︷ ︸

β

x+Q33Q22 −Q2
23

︸ ︷︷ ︸

γ

= 0 (3.132)

The two solutions of the system are the found easily:

xl = (−β −
√

β2 − 4αβ)/(2α) (3.133)

yl = (−Q12xl +Q23)/Q22 (3.134)

xr = (−β +
√

β2 − 4αβ)/(2α) (3.135)

yr = (−Q12xr +Q23)/Q22 (3.136)

The two extremal points in the y direction are obtained with the same equation by

swapping the x and y coordinates.

Using the extremal points of the ellipse in the x and y direction we can decom-

pose the ellipse arc in monotonic subparts. Then we clip each monotonic part of the

ellipsoid with the pixel grid using an algorithm that is very similar to the algorithm

that clips a segment on a grid. We need exact floating point intersection and thus

cannot use methods proposed in [McIlroy 1992, Fellner 1993a, Fellner 1993b]. The

pseudo code of the method that clips the ellipse arc onto the pixel grid is depicted

in alg.6.

Then we can compute the contribution of each subpixel fragment. This require

to compute area Ai of the intersection of the region at the left of the ith ellipse

fragment with the pixel. We denote c the center of the segment ab. Using the

nearest neighbor interpolation kernel kn the cost associated to the i
th sub-pixel arc

writes

Ci = (yi+1 − yi)

⌊xi
c⌋−1
∑

u=0

f(u,
⌊
yic
⌋
) +Aif(

⌊
xic

⌋
,
⌊
yic
⌋
) (3.137)

the region Ai can be decomposed into a trapezoidal region at the left of the line

segment ab connecting the two endpoints of the arc and the region bounded by the

elliptical arc and the line segment ab.

3.5.3 Approximating filled-ellipses by polygons

As one can see, the use of ellipses make the computation of the silhouette contour

Γ and of the matching cost difficult. The computation of the contribution of ellipse

arcs to the matching cost is slow due to repeated use of the square-root function

(see alg.6).

3.5. Numerical computation of the matching cost 99

But the main difficulties using ellipses are yet to come, when deriving the gradi-

ent of the matching cost with respect to the hand pose parameters. The differenti-

ation of the terms in the matching cost due to the ellipses arcs is quite challenging.

Two solutions can be considered. The first one consists in converting each ellipsoid

in to a convex polyhedron. The second solution is to convert each ellipse (result-

ing from projection of the ellipsoids) into a convex polygon, before computing the

silhouette Γ. Compared to the second solution, the first is simpler could produce a

matching cost with more local minima. This can be understood if we consider the

case of a prolate spheroid that is discretized into a polyhedron. When the prolate

spheroid rotates about its main axis, the projected ellipse remains unchanged. That

is also the case for its polygonal approximation and the matching cost. When the

polyhedron rotates about the main axis, the silhouette (a convex polygon) slightly

moves and the matching cost is not constant but oscillates.

Let consider an ellipse:

A = {(x, y) ∈ R
2|[x, y, 1]C[x, y, 1]T ≤ 0} (3.138)

This ellipse could be approximated with a N edges polygon. To this end, we find

the center µ of the ellipse. The center corresponds to the extrema of the 2-variables

scalar function x, y 7→ [x, y, 1]C[x, y, 1] and is found by solving the following system:

C1:2,1:2µ = −C1:2,3 (3.139)

We find the direction and length of main axis of the ellipse by diagonalizing the

submatrix C1:2,1:2 using eigenvalue decomposition:

C1:2,1:2 = V DV T avec V V T =

[
1 0

0 1

]

, D =

[
d1 0

0 d2

]

, d1 ≥ d2 (3.140)

The directions of the main axis correspond to the columns of the matrix V . the

2-dimensional vector V1:2,1 corresponds to the direction of the small axis and V1:2,1
corresponds to the one of the great axis. The lengths a and b of the small and great

axes are obtained by:

a =
√

−β/d1, b =
√

−β/d2 (3.141)

With β = Q3,3 + µTQ1:2,3.

We approximate the ellipse with a polygon with N vertices defined by:

pn = V × [a cos(2πn/N), b sin(2πn/N), 1]T + µ, n ∈ {0, . . . , N − 1} (3.142)

The approximations of the ellipse x2 +
(y
3

)2
= 1 with N = 4, N = 8, N = 16

and N = 32 are illustrated in [Figure (3.21)]. We choose N = 16 during

experimentations.

Note that this approximation is continuous (when d1 6= d2), and therefore if the

ellipse moves continuously, then the polygon vertices move continuously as well.

The case d1 = d2 (when the ellipsoid projects onto a circle) remains problematic.

Another discretization scheme based on the extremal points in a set of fixed direction

100 Caput 3. Silhouette Based Method

(a) (b) (c) (d)

Descriptio 3.21: Approximating an ellipse by a polygon with (a) 4 edges (b) 8 edges

(c) 16 edges (d) 32 edges

could help to avoid such degenerated case. Given a direction ~d ∈ R
2 the extremal

point of the ellipse is the point p∗ defined by

p∗ ≡ argmaxp < ~d, p > s.t p ∈ A (3.143)

The approximation of ellipses by polygons induces an approximation of the match-

ing cost. This is not problematic for the optimization procedure because such

an approximation does not result in discontinuity and non-differentiability of the

matching cost (this is not true for the degenerated case d1 = d2).

Once the ellipses are converted into polygons, we need to compute the silhouette

outline defined as the boundary of the union of these polygons. For each polygon we

add the list of intersection with other polygon as vertices and remove all edges that

are not part of the silhouette outline. The hand silhouette outline is composed of a

polyline oriented counterclockwise (that we referred as the external outline) and a

set (generally empty) of polylines oriented clockwise that define the boundaries of

holes in the silhouette.

Γ =
K⋃

k=1

qkqk+1) (3.144)

We use the notation qk+1 to denote the next vertex succeeding the vertex qk
in the polyline it belongs to (which might be the silhouette external outline or the

boundary of a hole in the silhouette). The vertices (qk)
K
k=1 of these polylines are

either vertices of the polygons obtained after polyhedra projection and ellipse-to-

polygon conversions or are intersection points between two of such polygons.

3.6 The Matching Cost Derivatives

In order to use efficient local optimization techniques we need the gradient of the

matching cost L with respect to the hand pose parameters θ. The gradient can

3.6. The Matching Cost Derivatives 101

be obtained by performing numerical differentiation using the definition of the

directional derivative:
∂L

∂θi
= lim

ε→0

L(θ + εei)− L(θ)

ε
(3.145)

where θi is the ith scalar component of the vector the vector θ and ei is the vector

composed of zeros with the exception of the ith components that equals 1. Note

that θi differs from θi ∈ Θi which is a vector of dimension di that specifies the pose

of bone i with respect to its parent in the kinematic tree. In practice one does

not compute the limit but choose ε very (but not too) small. This method is quite

slow since it requires D∗ + 1 evaluations of the matching cost with D∗ = 29 being

the number of component in the vector θ. Furthermore, the approximated gradient

becomes imprecise when ε is too small due to the limitation of the floating point

representation (roundoff errors). It can be difficult to determine which ε yield a

good compromise between the roundoff error and the error due to fact ε is too large

for the limit to be well approximated.

A better approach is to compute the gradient exactly using the chain rule. For

each successive operation performed in order to obtain the matching cost from a

given θ, we need to propagate the derivatives with respect to θ.

3.6.1 Differentiation of the polytope transformation and projec-
tion

The 3D word coordinates [Xj , Yj , Zj] of a point defining a polytope are obtained

from its coordinates [X0
j , Y

0
j , Z

0
j] in the local frame attached to the bones a(j) using

eqn.3.52. This equation is easily differentiated:

∂[Xj , Yj , Zj]
T

∂θi
=

∂Ka(j)

∂θi
[X0

j , Y
0
j , Z

0
j]

T (3.146)

Then the coordinates of its projection onto the camera are obtained using eqn.3.59.

We differentiate the projection equations:

∂[x̂, ŷ, ẑ]T

∂θi
= P

∂[Xj , Yj , Zj]
T

∂θi
(3.147)

and

∂ [xj , yj]

∂θi
=

1

ẑ2

[
∂x̂

∂θi
ẑ − x̂

∂ẑ

∂θi
,
∂ŷ

∂θi
ẑ − ŷ

∂ẑ

∂θi

]

(3.148)

3.6.2 Differentiation of the ellipsoid transformation and projection

While projecting an ellipsoid composing the hand surface model, the first step is to

compute the matrix of the ellipsoids Q from Q0 after applying the rigid transfor-

mation of the bone it is associated with, using the equation 3.50. We differentiate

this equation as follows:

∂Q

∂θi
=

∂(K−1
j)

∂θi

T

Q0K
−1
j + (K−1

j)TQ0

∂(K−1
j)

∂θi
(3.149)

102 Caput 3. Silhouette Based Method

With
∂(K−1

j)

∂θi
= −K−1

j

∂Kj

∂θi
K−1

j (3.150)

The matrix C defining the ellipse that corresponds the projection of the el-

lipsoid is obtain in two step using equations eqn. 3.65 and eqn.3.70 which are

straightforward to differentiate.

3.6.3 Differentiation of ellipses to convex polygons conversion

Once each matrices C defining an ellipse is computed, each ellipse is approximated

by a polygon. The center of the ellipse µ is obtained using eqn.3.139. The derivative
∂µ
∂θi

is obtained by solving the system:

C1:2,1:2
∂µ

∂θi
= −∂C1:2,3

∂θi
− ∂C1:2,1:2

∂θi
µ (3.151)

Then the direction and lengths of the main axis are obtained by using eigenvalue

decomposition of the matrix C1:2,1:2 (eqn.3.140). Differentiation of the eigenvalue

decomposition (computing the derivative of eigen values and eigen vectors with

respect to the entries of the matrix C1:2,1:2) is somehow technical. For simplicity

we will use B ≡ C1:2,1:2. We need the first order variation of the eigen vectors and

eigen values of B. Given the definition of eigen vector we have:

(B − dkI)V1:2,k = [0, 0]T (3.152)

Let us determine the derivative with respect to Bij . We have dB
∂Bij

= eie
T
j with

(e1, e2, e3) being the canonic base of R
3 and therefore we can get:

(eie
T
j −

∂dk
∂Bij

I)V1:3,k + (B − dkI)
dV1:3,k
∂Bij

= 0 (3.153)

Furthermore the constraint that the eigen vector are of unit length can be differen-

tiated, which lead to
∂V1:2,k

∂Bij

T
V1:2,k = 0. This produce a linear system made of four

equations with four unknowns. We consider V T
1:2,k × (3.153):

V T
1:2,k(eie

T
j −

∂dk
∂Bij

I)V1:2,k + V T
1:2,k(B − dkI)

∂V1:2,k
∂Bij

= [0, 0]T (3.154)

as V T
1:2,k(B − dkI) = [0, 0] we get:

∂dk
∂Bij

=
V1:2,keiejV1:2,k

V1:2,k
TV1:2,k

= VikVjk (3.155)

The first order variation of the eigen vectors is obtained by solving, for each eigen

value, the following linear system:

[
B − dkI

(V1:2,k)
T

]
∂V1:2,k
∂Bij

=

[
∂dk
∂Bij

V1:2,k − eiVjk

0

]

(3.156)

The derivative of the axes lenghts a and b (eqn.3.141) and the points of the

polygon (pn)
N
n=1 (eqn.3.142) are easily obtain using the chain rule.

3.6. The Matching Cost Derivatives 103

3.6.4 Differentiation of segment intersections

Once ellipses are converted into polygons we need to compute the silhouette outline

that is the boundary of the union of the polygons. The vertices qi of the polylines

defining this outline are either vertices of the polygons or are intersection points

between two of such polygons. Given the derivatives with respect to the pose

parameters vector θ of the extremities of two intersecting segments, we need to

compute the derivative of the position of the intersection point. This is done by

differentiating eqn.3.90 which is straightforward. Once all intersection are computed

we obtain the vertices qj of the polylines composing the silhouette outlines and their

derivatives ∂qj/∂θi.

3.6.5 Force on silhouette vertices

In order to compute the gradient matching cost with respect to θ we still need

the derivatives ∂L/∂qj . For this, we follow [Unal 2005] but provide two alternative

demonstrations. An intuitive demonstration is given here while a more formal

demonstration is given in the appendix A.1. Given a vertex of the outline qk we

use qk−1 and qk+1 to denote the preceding and succeeding vertices in the polyline

(which might be the external silhouette outline or a hole in the hand silhouette)

In order to derive the gradient of the matching cost with respect to a vertex of

the silhouette, let consider a displacement of the vertex qk in a direction V with a

scaling factor ∆t i.e qk(∆t) = qk + ~V∆t as shown in [Figure (3.22)].

!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!
!!!!!!!!

!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!
!!!!!!!!!!

qk(∆t)

qk+1

qk−1

qk

∆t
~V

Ω

Descriptio 3.22: Displacement of a single vertex qk and the two triangles that are

added (and could be removed for other directions ~V) from the silouette

The matching cost is defined as the integral of fc within the silhouette polygon.

When the vertex qk is displaced, the variation ∆L(V,∆t) of the matching cost is

obtained by integrating fc in two triangles (qk−1, qk, qk(∆t) and (qk, qk+1, qk(∆t)

104 Caput 3. Silhouette Based Method

(dashed in [Figure (3.22)] or:

∆L(V,∆t) =

∫ 1

t=0

∫ t

u=0
fc(qk−1 + t(qk − qk−1) + u∆t

~V)det([∆t
~V , (qk − qk−1)])dtdu

+

∫ 1

t=0

∫ t

u=0
fc(qk−1 + t(qk − qk−1) + u∆t

~V)det([∆t
~V , (qk+1 − qk)])dtdu

(3.157)

Using J =
[
0
−1

1
0

]
, we can rewrite the infinitesimal surfaces element in the

triangles as follows:

det([∆t
~V , (qk − qk−1)])dtdu = ∆t

〈

~V , J(qk − qk−1)
〉

dtdu (3.158)

det([∆t
~V , (qk+1 − qk)])dtdu = ∆t

〈

~V , J(qk+1 − qk)
〉

dtdu (3.159)

and then we can obtain the following derivative:

∆L(~V ,∆t)

∆t
=

〈

~V , J(qk − qk−1)

∫ 1

t=0

∫ t

u=0
fc(qk−1 + t(qk − qk−1) + u∆t

~V)dtdu

+ J(qk+1 − qk)

∫ 1

t=0

∫ t

u=0
fc(qk−1 + t(qk − qk−1) + u∆t

~V)dtdu

〉

(3.160)

By definition of directional derivatives, for any ~V in R
2 we have:

〈

~V ,
∂L

∂qk

〉

= lim
∆t→0

∆L(~V ,∆t)

∆t
(3.161)

Therefore by identification, the derivative of the functional L(θ) with respect to

a vertex qk of the polygon is:

∂L

∂qk
=J(qk − qk−1)

∫ 1

0
fc(tqk + (1− t)qk−1)tdt

+ J(qk+1 − qk)

∫ 1

0
fc(tqk + (1− t)qk+1)tdt

(3.162)

Let us introduce lk and n̂k being the length and the normal of the segment qk−1qk.

The the following condition holds:

J(qk − qk−1) = n̂klk (3.163)

One should point out that, for each vertex qk, the information of the functional

fc is being integrated along its adjacent edges. Using a mechanical metaphor,

the resulting vector ∂L/∂qk can be interpreted as a 2D data force acting on the

silhouette vertex qk. An example of the resulting 2D force given the silhouette and

the image/function fc is shown in [Figure (3.23)]. One can notice that the forces

3.6. The Matching Cost Derivatives 105

Descriptio 3.23: Derivative of the matching cost with respect to the vertices posi-

tions that can be interpreted as Forces on the vertices using a mechanical metaphor

(a) over-layered on the observed image (b) over-layered on the cost image f

have greater magnitude when adjacent edges are long. This is due to the fact that

these forces are proportional to the length lk and lk+1 of the two adjacent edges.

Note that fc does not have to be continuous everywhere for the matching cost

L(θ) to be differentiable. When using shifted-nearest-neighbor interpolation, fc is

discontinuous for any point that lies on a vertical or an horizontal line of the pixel

grid. However the first order derivative ∂L
∂qk

of the matching cost is defined and

continuous as long as none of the two adjacent silhouette edge matches a vertical

line or an horizontal line of the pixel grid.

In order to compute the exact derivative given by equation 3.162, we need to

clip each segment onto the pixel grid and to integrate on each subpixel fragment.

By stating that the gradient is exact we mean that, given a definition of fc as

nearest neighbor or bilinear interpolation of f , we are able to compute exactly the

equation 3.162. The method to compute exactly the gradient is very similar to

the method that is used to compute exactly the matching cost. The pseudo code

for shifted nearest neighbor interpolation is at alg.9 and the pseudo code for the

bilinear interpolation at alg.10 (this second algorithm also compute second order

derivatives whose derivation is explained in the section 3.6.6).

Note that one could approximate the integral by sampling uniformly points

on each segments and evaluate fc at each point. The results obtained using this

approximation are compared with the ones obtained with the exact computation of

the gradient in section 3.7.5.

106 Caput 3. Silhouette Based Method

3.6.6 Second order derivatives

We can approximate the Hessian (second order derivatives) of the matching cost in

order to uses quasi-Newton optimization techniques. The second order derivative

of the matching cost writes:

∂2L

∂θk∂θl
=

∑

ij

∂qi
∂θk

∂2L

∂qi∂qj

∂qj
∂θl

+
∑

i

∂L

∂qi

∂2qi
∂θk∂θl

(3.164)

The second term
∑

i
∂L
∂qi

∂2qi
∂θk∂θl

is tedious to derive and can be neglected. The

approximation of the Hessian is then defined as:

H̃θ(k, l) ≡
∑

ij

∂qi
∂θk

∂2L

∂qi∂qj

∂qj
∂θl

(3.165)

This approximation might not be very precise, but the optimization method is

robust to approximations errors on the Hessian. The experimental results also

tend to validate that the approximated Hessian remains useful to speed up the

convergence rate, despite it is not the exact Hessian.

The second order derivative of the functional L(θ) with respect to a vertex of the

polygon is derived by differentiating the equation eqn.3.162. For any pair of vertices

(qi, qj) of the silhouette polygon the second order derivative ∂2L/∂qiqj is a 2 by 2

matrix. If the two vertices are not connected by an edge then ∂2L/∂qiqj = 02×2. As

a consequence, if we gather all the derivatives ∂2L
∂2qj

into a single matrixM composed

of 2×2 sub-matrices M2i:2i+1,2j:2j+1 corresponding to the 2×2 matrices ∂2L/∂qiqj ,
then this matrix M is expected to be sparse and symmetric.

If two vertices are connected (i = j + 1), then by setting k = j in the equation

eqn.3.162 and differentiating, we obtain:

∂2L

∂qj+1∂qj
=+ J

∫ 1

0
fc((1− t)qj+1 + tqj)tdt

+ J(qj+1 − qj)

∫ 1

0
∇fc((1− t)qj+1 + tqj)(1− t)tdt

(3.166)

Because of the symmetry of derivatives we also get
[

∂2L
∂qj∂qj+1

]

=
[

∂2L
∂qj+1∂qj

T
]

. Note

that the matrix
[

∂2L
∂qj∂qj+1

]

can also be derived from eqn.3.162 by taking k = j + 1.

The equivalence between the expression we would obtain can be shown using in-

tegration by parts. Note that the function fc should be differentiable almost ev-

erywhere along the two adjacent edges in order to have the second order derivative

being properly defined. One should recall the bilinear interpolation fc is not dif-

ferentiable for any point that lies on a vertical or an horizontal line of the pixel

grid. Therefore the second order derivative ∂2L/∂qj+1∂qj is defined for the bilinear

interpolation if and only if the silhouette edge qjqj+1 does not match a vertical or

an horizontal line of the image grid.

The second order derivative when i = j writes

3.7. Pose estimation 107

∂2L

∂2qj
=J

∫ 1

0
fc((1− t)qj−1 + tqj)tdt− J

∫ 1

0
fc((1− t)qj+1 + tqj)tdt

+ J(qj − qj−1)

∫ 1

0
∇fc((1− t)qj−1 + tqj)t

2dt

+ J(qj+1 − qj)

∫ 1

0
∇fc((1− t)qj+1 + tqj)t

2dt

(3.167)

The symmetry of the 2 × 2 matrix ∂2L/∂2qj is not obvious when considering this

equation but can be proved using integration by parts. The second order deriva-

tive ∂2L/∂2qj is defined for bilinear interpolation and if none of the two adjacent

silhouette edge qj−1qj qjqj+1 matches a vertical or an horizontal line of the image

grid.

The pseudo-code to compute first and second order derivative for bilinear

interpolation of f is provided in alg.10

Note that we could approximate the integrals by finite sums through uniform

sampling of points along each segment and evaluation of fc and ∇fc at these lo-

cations. However the equation 3.167 does not exhibit obvious symmetry and the

approximate Hessian we would obtain is not symmetric. Therefore we would have

to impose the symmetry of the Hessian by averaging the computed Hessian matrix

and its transpose.

The Hessian we obtain using the exact integration along the edges using the

algorithm alg.10 is symmetric up to round-off errors. The experimental comparison

done in section 3.7.5 to proves that the use of the exact integration improves the

results. Having exact computation is also very useful from a practical point of view

when it comes to test if there are not error in the manner the equations have been

implemented. This point is also discussed in section 3.7.5.

Note that in the context of active contour, several authors [Hintermüller 2007,

Burger 2003, Hintermüller 2004, Bar 2009] proposed the use of second order deriva-

tives to accelerate the convergence. Their formulations are done for general con-

tinuous and differentiable curves, generally require Gı̈¿12teaux derivatives in the

derivation and are implemented using level set methods. In our case we have an

explicit formulation of the silhouette outline Γ as a polygon and, as a consequence,

the second order derivatives are simpler to obtain.

3.7 Pose estimation

Given an observed image we can formulate the problem of estimating the most-

likely hand pose to be the vector θoptim that minimize the matching cost L(θ) while

satisfying the constraints on the pose parameters i.e:

θoptim = argmin
θ

L(θ)

s.c Aθ ≤ b
(3.168)

108 Caput 3. Silhouette Based Method

with Aθ ≤ b the set of linear inequalities defined in eqn.3.42. The fact that the

function L(θ) is neither linear nor quadratic results to a nonlinear programming

problem. Solving exactly this problem, i.e. finding the global minimizer of L(θ)

restricted to the set of valid hand pose cannot be done in the general case. Due

to the dimensionality of θ one cannot perform exhaustive search or perform exact

global minimization.

In the context of tracking, one can assume that a rough approximation of the

hand pose from previous frame is available. Then iterative refinement through

local exploration of the matching cost function could produce satisfactory results.

The problem of estimating the hand pose in the first frame remains problematic

and is not withing the scope of this thesis, therefore it is done through user aided

initialization.

Despite the fact that a rough initialization can generally be derived from esti-

mates in previous frames, the iterative search may lead to local minima. In order

to improve the robustness we perform local search starting from several pose can-

didates. This is done by combining the particle filter with local search, which has

been proposed in [Bray 2004b]. Given an initial hand pose that is provided by

the particle filter, we iteratively refine the pose estimate by exploring locally the

matching cost function toward reducing its value. Several methods exist in order

to perform local minimization of differentiable functions under linear constraints.

In the context of our method, the use of the gradient of the matching cost and

its approximate Hessian . For this purpose we adopt three methods and compare

their performances. We will first describe efficient local search procedures given an

initial estimate, and then describe the smart particle filter that allows to propagate

multiple hypothesis.

3.7.1 Sequential Quadratic Programing with BFGS update

The first method we test is a classic quasi newton method implemented in the func-

tion fmincon from the Matlab R©optimization toolbox (Matlab R©release 7.5.0.342).

Two algorithms are implemented in fmincon: a medium scale and a large scale

method. We use the medium-scale method because the large scale method does not

handle linear inequality constraints of the form Aθ ≤ b. Unfortunately, the medium

scale method does not allow using an approximate Hessian provided by the user.

The Matlab optimization functions do not allows to constraint the input vector to

be restricted in a manifold Θ that differs from R
D∗ (with D∗ the size of the vector

θ) without resorting to non-linear inequalities. If we use a quaternion to parame-

terize the global orientation of the hand, then it has to remain a unit quaternion.

This can be formalized using a non-linear inequality constraint ‖q‖ = 1. Such a

non-linear inequality can be handled by the Matlab’s minimization method with

the drawback that it reduces the convergence rate. Therefore we use the Euler

angles to describe the global orientation of the hand instead of using a quaternion

and we obtain Θ = R
D∗. The medium-scale method uses a sequential quadratic

3.7. Pose estimation 109

programming (SQP) method. At each iteration it minimizes a convex quadratic

form mk(θ) that approximates locally the function being minimized

θ∗ ← argmin
θ

mk(θ) s.c Aθ ≤ b (3.169)

with:

mk(θ) = L(θk) + 〈∇L(θk), θ − θk〉+
1

2
〈θ − θk), Hk(θ − θk)〉 (3.170)

Here θk denote the estimated hand pose at the kth iteration and not its kth

component of the parameter describing the pose of the kth bone. The matrix Hk

is a positive definite matrix approximate of the Hessian d2L/dθ of L at θk. The

matrixHk is updated at each iteration using the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) formula 3.171 [Broyden 1970, Fletcher 1970, Goldfarb 1970, Shanno 1970].

The minimization of a quadratic function under linear constraints is referred as

a quadratic programing (QP) problem in the literature. Because a QP problem is

solved at each iteration, the method is referred as a sequential quadratic programing

(SQP) method. Because Hk is not the exact Hessian, the quadratic model mk(θ)

is only valid up to the first order in a small region around θk and therefore the

minimizer θ∗ is likely to be a poor candidate for the next iteration. In order to

obtain a good candidate, a one-dimensional minimization, referred as line search is

performed along the line ray starting from θk passing thought θ∗. Using a merit

function, this line search aims a finding a positive scalar αk ∈ R
+ such that the

candidate vector θk+1 ≡ θk + αk(θ
∗ − θk)) sufficiently reduces the function L. In

Matlab R©, this line search is done using a method similar to [Powell 1978].

At each iteration the matrix Hk is obtained from the matrix Hk−1 and the the

function gradient at location θk using the BFGS formula:

Hk+1 = Hk +
yky

T
k

yTk sk
−

Hksk(Hksk)
T

sTkHksk
. (3.171)

With sk = αk(θ
∗ − θk) and yk = ∇L(θk+1)−∇L(θk). Using this formula, the

equation Hk+1(θk+1− θk) = ∇L(θk+1)−∇L(θk) is verified at each iteration, which

is what would be expected with the exact Hessian. The Hessian matrix is actually

updated only if yksk > 0), which ensures that the matrix remains positive definite

through iterations. A choice has to be made for H0. Even in the best case, i.e when

the function being minimized is a convex quadratic, the quasi-newton requires as

many iterations as the dimensions of θ in order to obtain a good approximation

of the true Hessian. The most common choice for H0 is the identity matrix (or

a multiple of it) which produces the first search direction to be the steepest one.

Such a choice results in very poor Hessian approximations during the first iterations

whenever he problem is not well conditioned, i.e when the ratio between the biggest

and lowest eigen values of the Hessian is important. Opposite to exact Newton

methods, whose behavior does not change when a linear re-parameterization is

done on the input vector, the quasi newton method has a behavior that depends on

110 Caput 3. Silhouette Based Method

the parameterization through the choice of the initial matrix H0. Matlab R©does not

allows to specify an initial matrix H0 and so we have to re-parameterize the problem

θ = Sx with S a diagonal matrix. We chose S empirically such that changes on each

component of x has about the same amount of variation on the 3D hand position.

Near a local minima, the BFGS-SQP method is super-linear [Chen 1996, Liu 2007].

However, when the hand pose is far from a local minima the BFGS method suffers

from the fact that the approximation of the cost function cannot be done accurately

with a convex quadratic function.

3.7.2 Variable metric descent

The second optimization method is a variable-metric method that we proposed in

[de La Gorce 2006]. This method bears similarities with the Matlab R©method de-

scribed in the previous section. It also involves the resolution of a convex quadratic

program at each iteration, and thus can be considered as a SQP method. It differs

from the previous method in two aspects: 1) we do not use linear search anymore

and 2) the the quadratic model mk now approximate the function fk defined by:

fk : ∆θ 7→ L
(
S(θk,∆θ)

)
− L(θk) (3.172)

with S the manifold reduction function we introduced in section 3.2.1.3. The

function fk models the decrease of the matching cost we would observe if a dis-

placement in the direction ∆θ/‖∆θ‖ with a length ‖∆θ‖ is performed. The use of
S allows to handle properly a quaternion representation of the global orientation

of the hand. The model mk combines the linear approximation of the cost function

(based on the gradient) with a quadratic penalization of the step.

At each iteration we solve the following quadratic programing problem:

∆θ ← argmin
θ

mk(∆θ) s.t A(θ +∆θ) ≤ b (3.173)

With:

mk(∆θ) = 〈∇L(θk),∆θ〉+
1

ρ
〈∆θ, Cθ∆θ〉 (3.174)

The positive coefficient ρ and the symmetric definite matrix Cθ will be defined

later. The solution of (eqn.3.173) is obtained using a standard quadratic program-

ming method like the function quadprog in Matlab R©. The model mk(∆θ) approxi-

mates to the first order the function fk only for small ‖∆θ‖ and thus θ
∗ ≡ S(θk,∆θ)

might be a bad candidate for the next iteration. Instead of using a linear search in

order to cope with this problem, we use the positive scalar coefficient ρ in eqn.3.174

that is adapted to control the step length. Indeed, without the linear constraints,

the solution of (eqn.3.173) would be given by ∆θ = ρC−1θ ∇L(θk). The coefficient ρ

is adapted such that the decrease of the objective function is close enough to the

predicted one. We should have:

fk(∆θ)

mk(∆θ)
≥ µ (3.175)

3.7. Pose estimation 111

with µ = 1/2. At each iteration, the coefficient ρ is progressively until θ∗ sufficiently

decreases the function being minimized. The difference with the method described

the previous section also appears in the choice of the matrix defining the quadratic

term in mk(∆θ) i.e Hk in eqn.3.170 and Cθ in eqn.3.174. This matrix is obtain

using a BFGS approximation of the Hessian in the previous method. Here we

use a quadratic penalization on the step based on the chamfer distance between

silhouettes. More precisely, we choose Cθ such that the quadratic term in mk

locally matches (up to the second order) the quadratic chamfer distance between

the silhouettes for small variations, i.e.:

Dqc(Γ(θ),Γ(θ +∆θ)) = ∆T
θ Cθ∆θ + o(‖∆θ‖2) (3.176)

with Dqc(Γ1,Γ2) the quadratic Chamfer distance between two parametric curves

that is defined as:

Dqc(Γ1,Γ2) ≡
∫

Γ1

min t(Γ1(s)− Γ2(t))
2ds (3.177)

where s a curvilinear coordinate. One can calculate Cθ given the set Q = (qk) of

silhouette vertices. With some calculation, the second order Taylor expansion of

Dqc around ∆θ = 029×1 writes:

Dqc(Γ(θ),Γ(θ +∆θ)) =
∑

k

lk

∫ 1

0

(
(1− t)∆qk .n̂k + t∆qk+ .n̂k

)2
dt+ o(‖∆θ‖2)

=
1

3

∑

k

lk
[
(∆qk .n̂k)

2 + (∆qk+ .n̂k)
2

+(∆qk .n̂k ×∆qk+ .n̂k)
2
]
+ o(‖∆θ‖2)

(3.178)

with ∆qk =
∑

j
∂qk
∂θj

∆θj , lk = ‖qk+1 − qk‖ and n̂k = J(qk+1 − qk)/lk
The second term on the right side of (eqn.3.178) is quadratic with respect to

∆θ and therefore can be rewritten under the form of (eqn.3.174). This term penal-

izes large steps and leads to a natural scaling between rotations and translations.

Directions with small influence on the silhouette are penalized less than directions

with a greater influence. This penalization can be interpreted as a “natural” metric

that measure the amount of change on the silhouette induced by a change in the

parameters space. The metric depends on the the pose but not on the parameter-

ization and the penalization is not defined as the euclidean norm of the step but

using a metric that may change at each iteration. Therefore our new optimization

method can be assimilated to a variable metric gradient descent under linear con-

straints. Using this alternative norm, we define a “natural” metric and the behavior

of our method does not change when a linear re-parameterization is done on the

input vector. Probably due to the limitation of the BFGS update method when the

search is not close enough to the local minima, this variable-metric method yields

112 Caput 3. Silhouette Based Method

faster convergence rates [Figure (3.25)]. We believe that it could be possible to

combine the BFGS approximation of the Hessian with the proposed metric in order

to improve efficiency.

3.7.3 Trust-Region method

Unlike the two methods we presented in the two previous section, the third

method uses the approximate Hessian H̃ that we defined in the equation 3.165

and implemented in the algorithm 10. We adopt a SQP approach in order to

be able to handle easily the linear constraints. We use the approximate Hessian

H̃ instead of the BFGS or the variable metric to define the quadratic term in

mk(θ). We obtain a quadratic form mk(∆θ) that locally approximates the function

fk : ∆θ 7→ L(S(θk,∆θ))− L(θk):

mk(∆θ) = 〈∇L(θk),∆θ〉+
〈

∆θ, H̃θ∆θ

〉

(3.179)

Instead of using a linear search to handle the fact that the model is only local

(see the two previous methods) we use the trust region approach [Conn 2000]. In

this approach, the trust region corresponds to the region in which we believe the

quadratic model mk to approximates sufficiently well the function fk. It is defined

as the set of points

Bk = {∆θ ∈ R
D∗| ‖∆θ‖k ≤ ∆k} (3.180)

where ∆k is called the trust-region radius, and ‖.‖k is an iteration-dependent norm.
At each iteration we find the minimum of the approximation mk in the trust

region by solving the problem

∆θ ← argminmk(θ) s.t A(θ +∆θ) ≤ b and ∆θ ∈ Bk (3.181)

This problem is denoted as the trust-region sub-problem and the technique used

to solve it will be detailed latter. Like in the previous methods, the model mk(∆θ)

approximates to the first order the function fk only for small ‖∆θ‖ and thus θ
∗ ≡

S(θk,∆θ) might be a bad candidate for the next iteration if the trust region radius

∆k is large. The radius is adapted (increased or decreased) according to whether

θ∗ is a good candidate or not. If sufficient decrease is achieved for the objective

function, then the trial point is accepted and is considered in the next iteration. If

the model turns out to be a poor predictor of the actual behavior of the objective

function, the trial point θ∗ is rejected and the trust region is contracted, with the

hope that the model provides better prediction in the smaller region. One advantage

of the trust region approach over the previous method is the fact that mk(∆θ) is

not required to be convex, which is the case when H̃θ has negative eigen values. If

H̃θ has directions of negative curvature, then the trust region algorithm can take

advantage of them directly.

An important aspect of any trust-region method is the shape of the trust region

itself which is determined by the norm ‖.‖k. Ideally, this shape should reflect the

3.7. Pose estimation 113

region where we believe the model approximate the objective function well, that is

where the ratio r defined by

r(∆θ) =
fk(∆θ)

mk(∆θ)
, (3.182)

is close to 1. As explained in [Conn 2000] the ideal shape of trust region can be

extremely complicated. The variable metric defined in the previous section, through

the matrix Cθ defined equation 3.176, seems to be a relevant choice to define the

norm in the trust region definition eqn.3.180, or

‖∆θ‖k = ∆T
θ Cθk∆θ (3.183)

Using this metric the trust region would be an ellipsoid centered around θk. Unfor-

tunately the trust region sub-problem with such an ellipsoidal trust region becomes

a difficult in the presence of a set of linear constraints (A(θ + ∆θ) ≤ b). In order

to use standard quadratic programing to solve the trust-region subproblem we de-

fine the metric using the L∞ norm after re-parameterization. To this end we first

rewrite the term ∆T
θ Ck∆θ as a L2 norm after some re-parametrization. The matrix

Ck is positive definite and can be decomposed using an eigen values decomposition

with an orthogonal set of normalized vectors Vi and positive eigen values λi such

that Ck =
∑

i λiViV
T
i . We define the matrix T such that each line Ti,: writes:

Ti,: ≡
√

λiV
T
i (3.184)

using this matrix we have ∆T
θ Ck∆θ = ‖T∆θ‖2. We now approximate the L2 by

and L∞ norm and define the trust region to be:

‖∆θ‖k ≡ ‖T∆θ‖∞ (3.185)

The trust regionBk is now a box centered at θk whose axis are aligned with the

main axis of the ellipsoid ∆T
θ Ck∆θ < ∆k and whose side lengths equal the main axis

lengths of the ellipsoids. The advantage of such a trust region is that the constraint

‖∆θ‖k < ∆k now writes as a set of linear constraints ∆k ≤
√
λiV

T
i ∆θ ≤ ∆k that are

simply added to the constraints A(θ+∆θ) ≤ b while calling the quadratic program

solver.

Note however that solving exactly an indefinite quadratic programing is NP hard

in the general case. For example −‖x‖2 subject to −1 < xi < 1 has 2n minimizers.

When H̃θk is positive semidefinite there exist polynomial time interior point to solve

problem

Despite the fact that solving indefinite quadratic programming is NP in the

general case, the solutions provided by the Matlab R©function quadprog are good

enough for this third approach to converge faster than the two previous ones.

3.7.4 Comparing the three Optimization methods

We compared the three optimization methods using an image shown in

[Figure (3.25)] where the hand is flat with the finger stretched.

114 Caput 3. Silhouette Based Method

We initialized the hand pose manually in order to define a reference hand pose

and then we generated 100 hand pose configurations θ̃1, . . . , θ̃100 in the vicinity

of this reference hand pose by adding noise on the 29 hand parameters. For each

sample we reprojected the hand poses in the set of valid hand constraints by solving

the quadratic problem:

θk ← argmin
θ

〈

θ − θ̃k), Cθ(θ − θ̃k)
〉

s.t Aθ ≤ b (3.186)

0 10 20 30 40 50 60 70 80 90
3.55

3.6

3.65

3.7

3.75

3.8

3.85
x 10

6

Matlab’s BFGS−SQP

Variable Metric

Trust Region

Descriptio 3.24: Comparison of convergence rates for the Matlab R©fmincon function

that implements a BFGS-SQP method, the variable-metric method and the trust

region method

We used each of these samples to initiate a local search using each of the three

suggested optimization techniques. For each method we average the hundred curves

of the matching cost versus the number of iterations. The resulting curves are shown

in [Figure (3.24)]. As we can see, the trust region method is the fastest to converge

while the Matlab R©fmincon (BFGS-SQP) method is the slowest to converge.

By considering the columns 1 and 3 in [Figure (3.25)] we see that the Trust-

Region and the Matlab R©method seems better at not falling into bad local minima.

3.7. Pose estimation 115

Descriptio 3.25: Each raw corresponds respectively to 1) the initial pose 2) the opti-

mal pose found with the Matlab R©function fmincon (BFGS-SQP) after 90 iteration

2) the optimal pose found with the variable-metric method after 90 iterations 3)

the optimal pose found with the trust-region method after 90 iterations.

3.7.5 Exact versus Approximate Matching cost and derivatives

3.7.5.1 Performance comparisons

In section 3.4.2 we introduced the continuous matching cost in order to formally

define its gradient whose expression is derived in section 3.6.5. Furthermore, for

the continuous matching cost and its derivatives, we provided practical methods to

compute them exactly (using respectively the algorithms 5 and 10). The adjective

exactly means that, if we assume fc to be defined using the bilinear interpolation,

then the continuous matching cost and its derivatives are computed exactly without

the need to approximate integrals by finite sums or the derivatives by finite differ-

ences. The bilinear interpolation of f and the approximation of ellipses by polygons

are approximations that preceded the definition of the matching cost, and thus are

already included in the continuous matching cost. We will refer to this approach as

the exact approach.

The need of actually implementing the exact evaluation of the continuous match-

ing cost and its derivatives is not obvious. Indeed, a classical approach in the lit-

116 Caput 3. Silhouette Based Method

0 10 20 30 40 50 60 70 80 90
3.55

3.6

3.65

3.7

3.75

3.8

3.85
x 10

6

Inexact − Matlab’s BFGS−SQP

Exact − Matlab’s BFGS−SQP

Inexact − Variable Metric

Exact − Variable Metric

Inexact − Trust Region

Exact − Trust Region

Descriptio 3.26: Comparison of convergence rates for the Matlab R©fmincon function

that implements a BFGS-SQP method, the variable-metric method and the trust

region method using either the inexact computation or the exact computation of

the matching cost and its derivatives

erature consists in 1) formulating a continuous objective function using continuous

integrals 2) express its derivatives using the continuous expression and finally 3)

implement an approximative evaluation of the energy and its derivatives by replac-

ing integrals by finite sums and derivative by finite differences. Details on the third

step are often omitted in the computer vision literature, maybe because these are

considered as technical details of minimal interest.

We compare in this section our approach with an approach that we refer to

the inexact method and that consists in using finite sums and finite differences

to replace respectively the integrals and the derivatives. In order to implement

an inexact evaluation of the matching cost we simply use the Matlab R©function

poly2mask that compute a binary image given a simple polygon. This image equals

1 for the pixel that lies inside the polygon. While computing the derivatives with

respect to the silhouette vertices (eqn.3.162), we approximate integrals by finite

sums on uniformly distributed points. For each segment qkqk+1 we sample Nk

3.7. Pose estimation 117

points with Nk a number that roughly equals the length of the segment expressed

in pixels and that is defined by Nk ≡ ⌈‖qk+1 − qk‖⌉. We obtain:

∂L

∂qk
≈J(qk − qk−1)

1

Nk−1

Nk−1−1∑

n=0

fc((n/Nk)qk + (1− n/Nk)qk−1)(n/Nk)

+ J(qk+1 − qk)
1

Nk

Nk−1∑

t=0

fc((n/Nk)qk + (1− n/Nk)qk+1)(n/Nk)

(3.187)

The integrals appearing in the second order derivatives (equations 3.166 and

3.167) are replaced by finite sums in the same manner.

We now compare the performance between the exact and the inexact approach

using the same methodology as in section 3.7.4. When we visualize the curves

we obtain by averaging the hundred curves corresponding to different random ini-

tialization around the reference pose, it clearly appears that the exact approach

performs better than the inexact approach when using the variable metric or the

trust region method. This could be explained by the fact that these optimizations

method expect that, for a very small step, the first order model is valid i.e the

predicted change in the energy should be close the the scalar product of the step

and the gradient. When using the inexact approach, a small step in the parameters

space induces a change of the silhouette binary mask on very few pixels. Therefore

the variation on the matching cost is not well predicted by the first order model.

For small steps in the parameter space, the silhouette binary mask will not even

change. Because the coefficient ρ in eqn.3.174 and ∆k in eqn.3.180 are decreased

until the first model becomes valid, this might cause the method to stop too early

during the optimization.

While using the exact approach, small step will always induce a small change on

the antialiased silhouette image M̃ defined in section 3.109 and thus will induce a

change on the matching cost that is well predicted by the first order approximation

based on the exact gradient.

When using the inexact computation of the second order derivative, we can nu-

merically observe that the Hessian is not symmetric. This due to the approximation

made in the discretization. We have to impose its symmetry by averaging the ap-

proximate Hessian with its transpose. Otherwise the trust-region method could fail

due to the fact that non symmetric matrices have complex eigen values. With the

exact computation of the Hessian we numerically observe that the Hessian is almost

symmetric, and the dissymmetry is only due to the limitation of the floating point

representation (round-off errors). We also enforce the symmetry of the Hessian in

order to avoid any numerical error due to complex eigen values.

Note that a recent paper [Wilke 2009] proposed an optimization method that

do not require to evaluate the matching cost but only its gradient. In particular,

the line search uses only the gradient information. It would be interesting to see

how well this method performs with the inexact gradient in comparison with our

exact methods.

118 Caput 3. Silhouette Based Method

In the case of the Matlab R©method based on the BFGS-SQP method we did

not observe a change in the performance. We believe that this is due to the fact

that the Matlab R©method converges quickly enough to reach regions where the step

length has to be decreased, i.e close to a local minima or a critical point. It seems

also possible that the Matlab R©function has a greater tolerance to errors on the

gradient than our variable metric and our trust region implementations.

3.7.5.2 Methodological advantages of the Exact computation

As we said in the previous section, the first order model mk(θ) - provided around

some pose vector θk by the exact approach - is exact up the first order. This means

that, for a very small step, the variation predicted by the model and the actual

matching cost will be very close. Besides being desirable for the optimization rou-

tines, this is also very useful to assess if no coding errors have been made during the

implementation of the matching cost and its derivative. By using small increments

on θk on can compute a numerical approximation ∇̃L(θ) for the gradient of the

objective function. More precisely, one can approximate the limit in the definition

of the derivative eqn.3.145 by evaluating the ratio for a small (but not too small)

ε. Due to round-off errors, the approximate gradient is not precise if ε is taken too

small. We tested several values for ε in order to obtain some measure of uncertainty

on the approximate gradient This numerical gradient can be compared component

by component with the gradient we implemented in the algorithm 10. If the ratio

between two corresponding components is not close to 1, then an other ε is used to

compute a second approximation of the gradient. If this two approximated gradient

are close to each other then this is a indicator of the fact that there is an error in

the computation of the exact gradient. Using the same methodology we can also

verify that the Hessian ∂2L/∂qi∂qj is valid using differences of gradients.

This was achieved for the exact method. Furthermore, we verified that the

Hessian matrix is symmetric for the exact method, which could not be verified for

the inexact approach.

3.7.6 Smart Particle Filtering

The local optimization methods presented in the previous section allow reaching

a nearby minimum quite efficiently. However occlusions and depth ambiguities

tend to create multiple local minima. Consequently, given the absence of temporal

constraints in our approach, the method could fail after several frames. Such a

limitation can be dealt with through multiple hypotheses testing. Particle filters

are a common approach to implement such a framework.

Particle filtering is proposed to tackle the problem of Bayesian estimation of the

hand trajectory.

Given the set of frames I1:t ≡ (I1, . . . , It) we aim to recover the hand pose and

speed Xt = [θt, θ̇t]
T . We aim to compute the probability density function p(Xt|I1:t)

of present state Xt, based on observations from time 1 to time t i.e. I1:t. This

3.7. Pose estimation 119

probability density function can be computed in a recursive manner: given our

previous probability density function p(Xt−1|I1:t−1) and a new observation It, the

updated a posteriori probability density function p(Xt|I1:t) can be computed using
Bayes’ rule:

p(Xt|I1:t) =
p(It|Xt)p(Xt|I1:t−1)

p(It|I1:t−1)
(3.188)

We model the dynamic process Xt using a simple constant speed model:

P (Xt+1|Xt) =
1

Z
exp(−1

2
(DX −X)TΣ−1d (DX −X)) if Aθt+1 < b, 0 else (3.189)

Where D =
[
1
0

δt
1

]
(δt being the time interval between two successive frames), Z is

a normalizing factor, and Σd a covariance matrix which we defined manually (by

taking a diagonal matrix). Note that this matrix could be estimated from training

data using the method proposed in [Ghahramani 1996]. The observation probability

P (It|Xt) is obtained using the matching cost L(θ) defined in equation 3.103. We

defined the matching cost as a log-probability of the observed image given the hand

pose and thus we should take P (It|Xt) = exp
(
− L(θt)

)
(remember Xt = [θt, θ̇t]

T).

The use of the observation probability in the particle filter framework is problematic

from a practical point of view. The mass of the resulting observation probability is

concentrated in very narrow regions of the hand parameter space. As a consequence,

a single particle will get a weight (see eqn. 3.192) close to 1, while the other particle

will get a quasi-null weight after weight renormalization, even if the number of

particle is large. In order to smooth and flatten the observation distribution we use

a temperature parameter T and redefine P (It|Xt) to be P (It|Xt) ≡ 1
Z exp(−L(θt/T)

with Z an normalization factor (we took T=1000 in the experiments).

Because the process is Markovian (i.e p(Xt|Xt−1) = p(Xt|X1:t−1) we have:

p(Xt|I1:t−1) =

∫

p(Xt|Xt−1)p(Xt−1|It−1)dXt−1 (3.190)

The normalization factor in [eqn.3.188] is given by:

p(It|I1:t−1) =

∫

p(It|Xt)p(Xt|I1:t−1)dXt−1

The recursive computation of the prior and the posterior probability density func-

tion leads to the exact computation of the posterior density. Nevertheless, due to

the dimension of the hand configuration space, it is impossible to compute the pos-

terior probability density function p(Xt|I1:t), which must be approximated. Particle
filters, which are sequential Monte-Carlo techniques, estimate the Bayesian poste-

rior probability density function with a set of samples. Sequential Monte-Carlo

methods have been first introduced in [Gordon 1993]. For a more complete review

of particle filters, one can refer to [Gordon 2002]. Particle filtering methods ap-

proximate the posterior pdf p(Xt|I1:t) by a weighted sum of M Dirac distributions

centered at {Xm
t ,m = 1..M} with the weights {wm

t ,m = 1..M}:

p(Xt|I1:t) ≈
N∑

n=1

wn
t δ(Xt −Xn

t). (3.191)

120 Caput 3. Silhouette Based Method

The set of pairs {Xn
t , w

n
t }Nn=1 is called the weighted particle set. Each weight wn

t

reflects the importance of the sample Xn
t in the pdf.

Different methods exist for updating the approximated posterior probability

density function, i.e the set of particles, each time a new frame is observed. One

possible method is called Sequential Importance Sampling (SIS) and consists in two

steps:

• Draw each new state Xm
t from the previous state Xm

t−1 using a proposal

distribution q(Xt|Xm
t−1, It)

• Update the importance of each sample wm
t according to the fitness measure

between the generated solution and the observed data.

wm
t ∝ wm

t−1

p(It|Xm
t)p(X

m
t |Xm

t−1)

q(Xm
t |Xm

t−1, It)
. (3.192)

The algorithm’s performance depends on the choice of the importance distribu-

tion. Even if the the transition prior distribution is not the optimal choice, it can be

used as the importance function. In order to keep a reasonable number of particles

and avoid degeneracy of the algorithm one could re-sample the set of particles after

each probability density function update. The approximated distribution with N

particles of heterogeneous weights {Xn
t , w

n
t }Nn=1 is re-sampled into an approxima-

tion with N particles of same weight {Xn
t ,

1
N }Nn=1. The combination of SIS with

re-sampling is called Sampling Importance Resampling (SIR).

Hand pose estimation aims to recover parameters in a high-dimensional space.

Therefore, a huge number of particles should be considered in order to get a reason-

able approximation of the posterior probability. Unfortunately, this is not practical

due to the heavy computational cost of evaluating p(It|Xt) for a single particle.

Therefore, particle filter with a reasonable number of hypotheses is likely to fail.

In order to address this limitation while being able to deal to some extent with

the presence of multiple local minima, we adopt the concept of “smart particle

filter” [Bray 2004b]. Such an approach combines multiple hypotheses generation

with local search. After propagating the particles, each particle is duplicated with

half of the original weight for both particles and a local maximization (which is the

variable-metric method in our case) of p(It|Xn
t) with respect to X

n
t is performed (by

minimizing L(θ) using Variable-Metric gradient-descent). Because we change some

particles’ positions, the represented probability density function p(Xt|I1:t) would
be altered if the weights were kept unchanged. The resulting new particle set is

therefore re-weighted such that the original Bayesian distribution is not altered.

This helps to get more particles near the center of each mode of the distribution

and allows efficient particle filtering using far fewer samples. We refer the reader

to the original paper [Bray 2004b] for a fully detailed explanation.

3.8. Discussion 121

3.8 Discussion

3.8.1 Validation

Descriptio 3.27: The hand is clutched and extended without loosing track

Descriptio 3.28: Robustness to occlusion is demonstrated in this sequence

Descriptio 3.29: Eight frames from a tracking sequence provided by authors of

[Sudderth 2004] in which the hand makes grasping motions and individual finger

movements. The result are qualitatively equivalent

In order to validate the proposed technique, several sequences with important

variations of the hand configurations were considered. We also tested our method on

two sequences provided by authors [Stenger 2003] and [Sudderth 2004]. Experimen-

tal tracking results are shown in [Figures (3.27,3.28,3.29,3.30)]. User-aided initial

hand configuration and calibration were provided for the first frame, as well as an

estimate of the color distributions of the hand and the foreground using user-aided

labeling. For the sequences in [Figures (3.27,3.28)], we constrained the number of

particles to 30 and the number of iteration to 10, thus limiting to 300 the number

of function evaluations per frame. For the sequences [Figures (3.29,3.30)], we used

122 Caput 3. Silhouette Based Method

a single particle with 300 iterations. The runtime per frame is proportional to the

number of function evaluations and is about 3 minutes on a 3Ghz intel XeonTMCPU

Matlab R©and not vectorized. Note that it is common to obtain a speedup by at

last two orders of magnitude by rewriting non-vectorized Matlab R©code in C. In the

first sequence [Figure (3.27)], the hand is clutched and extended. In the second se-

quence [Figure (3.28)], robustness to occlusion is demonstrated as tracking does not

fail when the foreground object occludes parts of the hand. In the third sequence

[Figure (3.29)], the hand makes grasping motions and individual finger movements,

as been provided by authors of [Sudderth 2004]. We show the same frame as the

ones shown in [Sudderth 2004]. We obtain results that are qualitatively as good.

Unfortunately, ground truth is not available in order to perform finer comparisons

of the results.

Descriptio 3.30: Tracking results with a sequence provided by authors in

[Stenger 2003] with a grasping movement of the hand. the first and second are

obtained with some additional linear constraint between fingers angles. The third

and forth row are obtained without additional linear constraints.

In the forth sequence [Figure (3.30)], the hand is closed and then opened, as

been provided by authors of [Stenger 2003]. For computational reasons, the results

3.8. Discussion 123

presented in [Stenger 2003] were obtained with important reduction in the dimen-

sion of the hand pose-space, adapted to each sequence individually (8D movements

for second sequence - 2 for articulation and 6 for global motion - and 6D rigid

movement for third sequence). We tested our algorithm both with and without

such reductions (with reduction rows 1 and 2, without reduction rows 3 and 4). To

reduce the space of poses, linear inequalities were defined between pairs or triplets

of angles. Inequalities were preferred to equalities toward reducing the range of pos-

sible poses while locally keeping enough freedom of pose variation. As one would

expect, the results are better when the pose space is reduced (see the first and third

images from the left in the forth row). A limitation of our approach appears while

inspecting the results on these sequences. When the hand is closed, the positions

of the phalanges that fully project within the hand palm are not well estimated.

This can be explained by that fact that these phalanges do not contribute to the

synthetic hand/background boundary and thus their positions do not affect the

objective function being minimized. In other words, our objective function cannot

capture information relative to edges of fingers are not part of the hand/background

silhouette.

Descriptio 3.31: Tracking results comparisons: each row corresponds respectively

to the smart particle filter, the classical particle filter and the single hypothesis

method

We compared the results between the classic particle filter method (where no

local search is performed to update the particle set) and a single hypothesis method

where the quasi-newton local search is initialized with the best pose found in the

previous frame. We limited the number of particles to 300 for the former and the

number of iteration to 300 for the latter, thus obtaining the same overall number

of function evaluations per frame.

Some selected frame are presented in [Figure (3.31)]. The classical particle filter

124 Caput 3. Silhouette Based Method

method fails after few iterations. The dimensionality of the pose space is too high

for the particle filter to be stable with only 300 particles. The single-hypothesis

method fails the first time the hand gets occluded by an object. This is due to the

fact that the single-hypothesis tracker is unable to escape local minima.

3.8.2 Summary

In this chapter we have proposed a novel hand model along with two novel opti-

mization methods for hand pose estimation from monocular images. Our method is

based on a hand model with 28 degrees of freedom for the articulations, while fin-

gers refer to a succession of ellipsoids. Anatomical conditions are considered through

constraints within the minimization process. Pose is estimated in a Bayesian man-

ner through a particle filter combined with local optimization of the observation-

likelihood function. In contrast to prior work that use region based terms, we esti-

mate the gradient of the cost function with respect to the model parameters and an

approximation of its Hessian. We propose a new constrained variable metric gradi-

ent descent method and a trust-region method that exploit the approximate Hessian.

Both methods improves the convergence to the optimal hand parameters when com-

pared with the standard BFGS-SQP method implement in the Matlab R©function

fmincon. The particle filter framework addresses the limitations of local optimiza-

tion methods as it introduces multiple hypotheses in the process, reducing the risk

of convergence to local minima.

The observed shortcoming of such an approach are multiple.

• The smart particle filter increases the chance to fall in a good local minima but

this might still not be sufficient to guarantee convergence to a good estimate

in the case of large inter-frame movements.

• The method requires a manual initialization, which is the case of most model-

based methods

• The matching cost is only a function of the silhouette Ω and thus does not

capture some important visual informations. The fitting process only tends

to align the silhouette of the model with the silhouette in the observed image.

The internal edges (i.e the edges that do not contribute to the silhouette)

are removed while computing the silhouette and do not participate to the

matching cost. As a consequence nothing in the matching cost favors hand

pose candidate whose internal edges matches the edges in the observed image.

The matching cost do not allows to discriminate between two pose that lead to

similar silhouettes, which causes failures such as those in the second columns

of [Figure (3.30)]. Using edges, one might be able to disambiguate, but such

measurements are often ambiguous due to clutter. Furthermore the edge

information is sometimes not sufficient to disambiguate depth ambiguities,

which is illustrated in [Figure (1.4)], and might create sharp variation of the

matching cost as illustrated in [Figure (2.14)]

3.8. Discussion 125

Introducing a more sophisticated model of the hand appearance as well as an ap-

propriate cost function that goes beyond simple silhouette matching might helps us

to address some of the aforementioned limitations. The use of a detailed triangu-

lated skin surface with texture and shading along with an objective function that

exploits this model refinements is the most prominent direction to help to disam-

biguate configurations that lead to the same silhouette. This is the direction taken

in the following chapter.

Caput 4

Method with texture & shading

In this chapter, we propose a model-based approach to recover 3D hand pose from

2D images. The hand pose, the hand texture and the illuminant are dynamically

estimated through minimization of an objective function. This function is composed

of a data-fidelity term, measuring discrepancy between the observed image and the

synthetic image of the model, and a prior term defined using the kernel principal

component analysis (KPCA) of some training set of hand poses. Derived from an

inverse problem formulation, the data term enables explicit use of texture temporal

continuity and shading information, while handling important self-occlusions and

time-varying illumination. The prior term aims at improving the robustness of the

tracking by enforcing the inferred hand pose to remain close to the training set. As

a non linear extension of the principal component analysis, KPCA allows to define

an adequate measure of closeness to the training set despite its nonlinearity The

minimization is done efficiently using a quasi-Newton method, for which we propose

a rigorous derivation of the objective function gradient. Particular attention is given

to terms related to the change of visibility near self-occlusion boundaries that are

neglected in existing formulations. Toward this end we introduce new occlusion

forces and show that using all gradient terms greatly improves the performance of

the method. Experimental results demonstrate the potential of the formulation.

4.1 Overview

As mentioned in the introduction, the key problems in 3D monocular hand tracking

consist of the high dimensional search problem, noisy or missing measurements due

to occlusion, and the existence of depth ambiguities. To minimize uncertainty and

cope with ambiguities, one must effectively exploit the available constraints coming

from the image measurements.

As we explained in section 3.8.2, the first method we proposed in this thesis

does not make an optimal use of the image measurements. In particular, the only

source of depth information that is exploited in this method derives from sizes of

the hand parts in the images. According to the pinhole camera model presented in

3.3.2, these sizes are inversely proportional to the depth in the camera coordinate

system. If the estimated depth of a hand part is erroneous, then its size will be too

large or to small in comparison with the image one. By minimizing the matching

cost, the fitting procedure will eventually find a depth for each part such that their

projected sizes matches the image ones. Unfortunately the depth estimate will be

128 Caput 4. Method with texture & shading

reliable only if one knows the orientations of the hand parts, and one has a very

accurate deformable 3D model, which is not the case.

In section 1.3 we illustrated the fact that using edges is not always sufficient

to resolve depth ambiguities [Figure (1.4)]. We also mentioned that shading is a

powerful cue for surface orientation and relative depth. Nevertheless, shading has

not been used widely for articulated tracking (but see [Lu 2003, Balan 2007]). The

main reason is that shading constraints require an accurate model of surface shape

and the estimation of the illuminant. Models of hand geometry where hand parts

are approximated using simple ellipsoidal or cylindrical solids might not be detailed

enough to obtain useful shading constraints. Surface occlusions also complicate the

use of shading constraints.

In this chapter we advocate the use of a model-based approach with a richer

generative models of the hand, both in terms of geometry and appearance. In

terms of geometry, the hand surface is now modeled as a fine triangulated surface

that is deformed to follow the articulations of the underlying skeleton. In terms of

appearance, the model is now shaded and textured.

The hand pose is estimated by minimizing a matching cost that is derived from

a principled analysis-by-synthesis formulation. Given a parametric hand model,

and a well-defined image formation process, we seek the hand pose parameters

which produce the synthetic image that is most similar to the observed image. Our

similarity measure (referred as the data term) simply comprises the sum of residual

errors, taken over the image domain. This measure is composed of a single term

and thus we avoid the problem of weighting different terms related to different cues

extracted in the image. We define our matching cost as the combination of this

data term with a second one, referred as the prior term, that is independent of the

observation and that penalizes poses estimates that are presupposed to be less likely

in some specific context or unnatural. This second term is learned from examples

using Kernel Principal Component Analysis.

The use of a fine triangulated mesh-based model allows for finer modeling of

the surface than allowed by ellipsoids and thus allows for a good shading model.

During the tracking process we determine, for each frame, the hand and illumina-

tion parameters by minimizing the objective function. The hand texture model is

updated after convergence in each frame (using the pose objective function), and

then remains static while fitting the model pose and illumination in the next frame.

By explicitly modeling texture of the hand, we obtain a method that naturally

captures the key visual cues without the need to add new ad-hoc terms to the ob-

jective function. This can be understood by the following reasoning: if the pose

of the hand or the estimated orientation are wrong, the shading in the synthetic

image will not agree with the observed shading and then the discrepancy measure

will be large. While minimizing the discrepancy measure we will favor poses that

generates the right shading, without the need for extracting explicitly the shading

information from the image using some ad-hoc methods. Using the same reasoning,

the use of texture allows to exploit the dense information provided by fine asperities

of the albedo without the need for performing optical flow or patch matching. In

4.2. Hand geometry 129

contrast to the approach described in [Lu 2003], which relies on optical flow, our ob-

jective function does not assume small inter-frame displacements in its formulation;

it therefore allows large displacements and depth discontinuities.

Finally we do not require extra terms related to the distance between synthetic

edges and edges in the observed image. If the edges in the synthetic image are not

aligned with the edges in the observed image, then this induces a large residual error

at the pixels in the vicinity of the synthetic and of observed edges. By minimizing

the residual error we tend to automatically align the synthetic and observed edges.

The optimal hand pose is determined through a quasi-Newton descent using the

gradient of the objective function. The presence of discontinuities in the synthetic

image at occlusion boundaries is somehow problematic when deriving the gradient

of the matching cost. We provide a novel, detailed derivation of the gradient in

the vicinity of depth discontinuities, showing that there are specific terms in the

gradient due to occlusions; we call such terms occlusion forces.

While describing our method it is natural to start by introducing the generative

model that allows synthesizing an image of the hand. This generative model includes

the hand geometry, appearance, and its projection onto the image.

4.2 Hand geometry

4.2.1 The choice of triangulated surface

From section 2.2.2.3 we know that several techniques have been considered in the

hand tracking or body tracking literature to model the surface of an articulated

body. Each of these techniques has its advantages and drawbacks in comparison

with others.

Implicit surfaces [Dewaele 2004, Plänkers 2001] are smooth almost everywhere

which can be useful to obtain a smooth matching cost. However we did not choose

to use an implicit surface for three reasons 1) it is difficult to define an accurate

surface model using implicit surfaces 2) it is difficult to perform texture mapping

on an implicit surface and 3) There is generally no closed-form expression for the

silhouette boundary, which complicates the derivation of continuous approximation

of the objective function as done in section 4.7.3. In particular it appears to be

difficult to obtain the full set of occlusion boundaries Γθ (see section 4.6.1.2). The

solution proposed in [Schmidt 2006] and [Bremer 1998] are approximative. These

approximation errors may induce temporal discontinuities of the silhouette repre-

sentation when the surface continuously deforms through time, which is not suitable

for our continuous optimization approach.

The hand surface models based on convex polyhedral and ellipsoids, such as

the one we used in the previous chapter, are easy to project onto the image plane

using the perspective geometry. However such surface models also suffer in term of

accuracy and make the use of texture difficult, especially near the joints where the

ellipsoids are inter-penetrating.

130 Caput 4. Method with texture & shading

Following [Bray 2004a, Bray 2004b, Ogawara 2003, Du 2008, Chik 2007] we

used a triangulated surface. This appeared to be the most convenient choice. Ren-

dering a triangulated surface is quite simple in comparison with other representa-

tions, and this allows us to reach a good trade-off between the computational cost

associated to the rendering and the precision of the surface. Having an accurate

surface model is critical for shading because normal directions are quite sensitive

to surface shape. Furthermore, triangulated surfaces are also convenient for tex-

ture mapping. For these reasons, the triangulated surface representation is the

most common surface representation in computer graphics. Nevertheless, triangu-

lated surfaces present some inherent drawbacks. The surface is continuous but not

smooth along edges of the triangular facets. Depending on the definition of the

matching cost, this may induce its non-differentiability with respect to the location

of the surface vertices. This limitation has been addressed in [Ilic 2003] but the pro-

posed solution is not easily adaptable to our problem : Similarly to general implicit

surfaces it seems difficult to combine these implicit meshes with texture mapping

and shading. Furthermore the fact that there is no close-form expression of the

occlusion boundary makes difficult the numerical implementation of a differentiable

approximation as done in section 4.7.3.

Given our matching cost, non-differentiability occurs only when the projection

of a triangular facet degenerates into a segment. We did not experience trouble in

the fitting procedure due to such non-differentiability. However we do not exclude

the possibility that using a smoother surfaces model - using B-splines, non-uniform

rational basis splines (NURBS) or subdivision surfaces for example - would allow

faster convergence rates of the iterative fitting process.

Our hand surface model is made of 1000 facets [Figure (4.1)]. In order to

obtain this model we started from a fine triangular mesh of the right hand with

stretched fingers that has been acquired with a 3D scanner. With the freeware

Blender we simplified this mesh and reduced the number of facets to 1000. Using

the method explained in the next section we deform this triangulated surface when

the hand pose and morphological parameters, respectively denoted θ and ϑ, are

modified. Our hand surface is an orientable closed manifold. A formal definition

of the triangulated surface will be used to define equations of the image formation

process, to discuss the problem of texture continuity, and to derive the texture

smoothness term in the texture update formulation. The surface is defined by:

• Nv = 500 is the number of vertices of the triangulated surface

• (V (i; θ, ϑ))Nv

i=1 ∈ R
3×Nv is the parametrized list of 3D vertex positions with

V (j; θ, ϑ) ∈ R
3 being the jth 3D vertex.

• Nf = 1000 is the number of faces in the triangulated surface.

• FV ∈ {1, . . . , Nv}3×Nf is the list of vertex indices associated to each of the

Nf faces. FV (i, j) is the index of the ith vertex for face j. We denote Sj

the jth facet of the surface. Sj is the triangle whose three extremities are

4.2. Hand geometry 131

V (FV (1, j)),V (FV (2, j)) and V (FV (3, j)). We assume that for each face these

three vertices are ordered such that the vector (V (FV (2, j))− V (FV (1, j))) ∧
(V (FV (3, j))− V (FV (1, j))) is pointing toward the exterior of the surface

We describe the position of a point in the surface using a four component vector

w ≡ (w1, w2, w2, w4). The component w4 is the index of the facet whose point

belongs and (w1, w2, w3) are the three barycentric coordinates of the point within

this facet. We have w4 ∈ {1, . . . , Nf} and (w1, w2, w2) ∈ B with B ≡ {w ∈ R
3 | wi ≥

0,
∑3

i=1wi = 1}. We denote W ≡ B×{1, . . . , Nf} the set of such point coordinates.
Using B, the jth facet, denoted Sj , is written as:

Sj ≡
{

3∑

i=1

wiV (FV (i, j); θ, ϑ) | w ∈ B

}

, (4.1)

Given a pose configuration θ and morphological parameters ϑ, we define the

mapping from mesh coordinates to R
3 as follows:

g :
W×Θ×Υ → R

3

(w; θ, ϑ) → ∑3
i=1wiV (FV (i, w4); θ, ϑ)

(4.2)

Once such a mapping has been defined, the jth facet can be re-expressed as:

Sj ≡ g([B, j]; θ, ϑ) ≡ {g([b, j]; θ, ϑ) | b ∈ B} (4.3)

The full 3D hand surface can be expressed as:

S(θ, ϑ) ≡ g(W; θ, ϑ) ⊂ R
3 (4.4)

Note that, given some parameters θ and ϑ, the one-variable function w 7→ g(w; θ, ϑ)

is not an injective function. If a vertex V (i) is adjacent to k facets then the pre-image

of the singleton {V (i)} denoted

g−1θ,ϑ({V (i)}) ≡ {x ∈W|g(w; θ, ϑ) = V (i)} (4.5)

has exactly k distinct elements. This means that the vertex has k corresponding

points in W. Similarly a point along an edge is represented twice in W. We could

remove some elements of W to solve this problem, however we keep this redundant

representation which will facilitate the discussion on the continuity of the texture.

We will now describe how we define the vertex positions (V (i; θ, ϑ))Nv

i=1 given the

pose and morphological parameters θ and ϑ.

4.2.2 Linear Blend Skinning

In order to deform the triangulated surface when the hand pose parameters are

modified we need to define a method to compute the new position of the surface

vertices. Several methods exist in the literature. Because we ultimately want to use

a gradient descent approach to estimate the hand pose, we need to use a deformation

132 Caput 4. Method with texture & shading

(a) (b)

Descriptio 4.1: (a) The skeleton (b) The deformed hand triangulated surface c)

blending weights associated to the ring finger proximal phalanx

model that is not too complicated to differentiate with respect to the pose param-

eters. Following [Bray 2004a, Bray 2004b, Ogawara 2003, Du 2008, Chik 2007], we

use the skeleton subspace deformation method (SSD) [Magnenat-Thalmann 1988,

Lewis 2000]. This technique is widely used for interactive applications and is also

known as enveloping, smooth skinning (in Autodesk Maya R©) or linear blend skin-

ning. This method is used in the freeware Blender to deform a mesh under the

influence of a skeleton.

Using Blender, we start by placing an articulated skeleton inside the hand sur-

face with all fingers extended. While defining the skeleton, Blender does not provide

a simple method to define the Π/4 rotation we used in the definition of the thumb

articulations in the previous chapter (see equation 3.24). As a consequence we have

to add an extra degree of freedom to the thumb. We also replace the bone in the

forearm by two bones that are rigidly fixed. This doubles the set of morphological

parameters for the forearm and allows better adaptation of the model to the mor-

phology of the user (see section 4.2.3). The new skeleton comprises 18 bones with

29 degrees of freedom (DOF). The pose is fully determined by a vector θ that com-

prises the 22 articulation parameters, 3 translational parameters and a quaternion

which specifies the global position and orientation of the wrist with respect to the

camera’s coordinate frame.

Then, each vertex of the triangulated surface is associated to one or more bones.

The influence of ith bone on the jth vertex is determined according to the blending

weight wij . For each vertex the set of weights is normalized i.e.
∑

iwij = 1. Using

Blender we have been able to manually edit these blending weights [Figure (4.1.c)].

Each vertex V (j) follows the movement of the bone(s) it is attached to, i.e. of the

bone(s) i such that wij > 0. Let denote θ0 the parameter vector that corresponds

to the reference pose with all fingers extended. Then, for any pose configuration θ,

4.2. Hand geometry 133

Descriptio 4.2: candy-wrapper artifact when the forearm rotates with an the angle

π

the new position of each vertex is computed as follows:

V (j; θ) =
∑

i

wijKi(θ)Ki(θ0)
−1V 0

j (4.6)

Where V 0
j is the homogeneous coordinate f vertex j for the reference pose θ0 in

the world coordinate system. The two 4 by 4 matrices Ki(θ) and Ki(θ0) are the

transformation matrix that maps from ith joint coordinates to world coordinates

respectively for poses θ and θ0. These matrices are obtained using the forward

kinematic equation (see eqn.3.3). Using progressive transitions while specifying the

blending weights wij , we obtain smooth deformations of the surface around joints

of the hand [Figure (4.1.b)].

This skinning algorithm has some well known limitations. When the skeleton de-

formation is large, it suffers from characteristic artifacts such as the candy-wrapper

[Figure (4.2)]. The artifacts occur because vertices are transformed by a linear

combination of rigid transformations matrices Ki(θ)Ki(θ0)
−1. Because the set of

rigid transformation matrices is not convex, the linear combination of these ma-

trices does not defines a rigid transform. If the matrices Ki(θ)Ki(θ0)
−1 are very

dissimilar, as in a rotation of nearly π, the interpolated transformation degenerates

and the geometry collapses. Some methods to overcome this limitations exist in the

literature [Kry 2002, Mohr 2003]. The artifacts are not too visible on our model

and the SSD appeared to be sufficient for hand tracking purposes.

4.2.3 Morphological variations

We expect the sizes of the palm and fingers to vary across individuals. In order

to allow morphological variations between users, we introduce 54 additional scaling

parameters (3 per bone), called morphological parameters. Those parameters are

estimated during the calibration process explained in Section 4.9.1. Let denote the

morphological parameter vector ϑ ∈ Υ with Υ ≡ R
3×N . Those parameters are not

susceptible to temporal change for the same person, but rather from one person to

another. Because we use a triangulated surface, modifying the length of a bone is not

as simple as in the method presented in the previous chapter. When we modify the

scale of bone, we also need to displace the vertices that are associated to this bone.

For notation convenience we decompose the parameters θ0 into θ0 ≡ (θ01, . . . , θ
0
N),

134 Caput 4. Method with texture & shading

where θj parameterize the articulation between the bone j and its parent. We also

decompose the vector of morphological parameters into N three-dimensional sub-

vectors ϑ ≡ (ϑ1, . . . , ϑN). For each bone j ≥ 2 we define the matrix Mj ≡ Fj(θ
0
j)

that express the pose of he bone j in the coordinated system associated to parent

bone p(j) in the reference position. For each distal and middle phalanx the matrix

Mj is a translation matrix Ty(lp(j)) (see eqn.3.21) with lp(j) the length of the bone j

before morphological rescaling. The vector Mj,[1:3,4] is the coordinates of the center

of the joint between the bones p(j) and j expressed in the local coordinate system

of the bone p(j). If the parent bone p(j) undergoes rescaling with parameters

ϑp(j) ∈ R
3 then the homogeneous coordinates of the center of the joint expressed

in the parents coordinate system should be [ϑp(j), 1]
DMj,[1:4,4] with [ϑp(j), 1]

D the

diagonal matrix whose diagonal elements are the three components of ϑp(j) and 1.

Therefore for each bone j ≥ 2 we define the new matrix valued functions F s
j which

is a modified version of Fj (see eqn3.1) that take the morphological parameters into

account:

F s
j :

Θj ×Υ× R
3 → K

θj , ϑ 7→
[
Mj,[1:4,1:3], [ϑp(j), 1]

DMj,[1:4,4]

]
(Mj)

−1Fj(θj)
(4.7)

Given a pose parameter θ and morphological parameters ϑ constructK1, . . . ,KN

using the recursive equations

Kj(θ, ϑ) = Kp(j)F
s
j (θj , ϑ) (4.8)

Then we need to redefine the SSD equation (see eqn4.6) in order to take the

morphological variation into account:

V (j; θ, ϑ) =
∑

i

wijKi(θ, ϑ)[ϑp(i), 1]
DKi(θ0)

−1V 0
j (4.9)

Now that we define the hand geometry, given the hand pose parameters and the

morphological parameters, we need to precise the hand appearance. This is done

by texturing and shading the hand.

4.3 Hand appearance & projection

Since most hands have relatively little texture, shading has a major impact on hand

appearance. We therefore incorporate illumination and shading (using the Gouraud

shading algorithm) in our synthesis model. We assume a Lambertian surface for

the hand reflectance with a simple model for the illuminant, and an adaptive model

for the albedo function over the surface of the hand (to model texture and other

otherwise unmodelled appearance properties).

4.3.1 Shading the hand

The illuminant model includes a distinct point source and an ambient term. Its

parameters are specified by a 4D vector denoted by L, comprising three elements

4.3. Hand appearance & projection 135

for a directional component, and one for an ambient component. The irradiance

at each vertex of the surface mesh is obtained by the scalar product between the

homogenized surface normal at the vertex and this 4D vector. The irradiance

across each face is then obtained through bilinear interpolation. Multiplying the

reflectance and the irradiance yields the appearance for any point on the surface.

In order to formalize the shading computation we define normal vectors on

vertices
(
n̂i(θ, ϑ)

)Nv

i=1
∈ R

3×Nv by averaging the normal vectors on adjacent faces.

We compute the luminance associated with each vertex given L as follows:

Lv(i; θ, ϑ, L) =
〈
n̂i(θ, ϑ), L[1:3]

〉
+ L4 (4.10)

Once the luminance of the vertices is computed, we linearly interpolate the

luminance on the surface using the barycentric coordinates:

L :
W×Θ×Υ× R

4 → R

(w; θ, ϑ, L) → ∑3
i=1wiLv

(
FV (i, w4); θ, ϑ, L

) (4.11)

4.3.2 Texturing the hand

Texture (albedo variation) can be handled in two ways. The first associates an RGB

triplet with each vertex of the surface mesh, from which one can linearly interpo-

late over mesh facets. This approach is conceptually simple but computationally

inefficient as it requires many small facets to accurately model smooth surface ra-

diance. The second approach, widely used in computer graphics, involves mapping

an RGB reflectance (texture) image onto the surface. This technique guarantees

details preservation with a reasonably small number of faces.

In contrast with previous methods in the field of computer vision that used

textured models (such as the morphable model [Blanz 1999]), our pose estimation

formulation (Sec. 4.6) requires that the surface reflectance is continuous over the

entire surface. Using bilinear interpolation of the discretized texture we ensure

continuity of the reflectance properties within each face.

However, since the hand is a closed surface it is mathematically impossible to

define a continuous bijective mapping between the whole surface and a 2D planar

surface. As a consequence there is no simple way to ensure continuity of the texture

over the entire surface.

Following [Soucy 1996] and [Hernández 2004], we use patch-based texture map-

ping. Each facet is associated with a triangle (also refered as patch) in the texture

map. These triangles are uniform in size and have integer vertex coordinates. As de-

picted in [Figure (4.3)], each facet with an odd (respectively even) index is mapped

onto a triangle that is the left-upper-half (respectively right-lower-half) of a square

of size KT by KT with KT ∈ N divided along its diagonal. In practice we used

KT = 5. Because we use bilinear interpolation we need to reserve some pixels in

the texture map (a.k.a texels) outside the diagonal edges for points with non-integer

coordinates [Figure (4.3)].

The formal definition of the hand texture mapping can be done as follows:

136 Caput 4. Method with texture & shading

• T is a color texture image. For each texel (texture pixel)of coordinate (i, j)

its color is defined by Ti,j ∈ R
3.

• Nt is the number of texture vertices in the texture map. Because we use

separated triangular patch for each facet of the hand surface we have Nt =

3Nf .

• (VT (i))
Nt

i=1 ∈ [0, 1]2×Nt , a list of Nt 2D vertex positions in the texture

map (usually referred as UV coordinates vertices in the computer graphic

community).

• FT ∈ {1, . . . , Nt}3×Nf associates texture vertices to the extremities of each

of the Nf faces. This differs from the most common method in computer

graphics where a single UV coordinate is associated with each 3D vertex of

the triangulated surface, independently of the faces. As a consequence a single

vertex V (j) that is adjacent to k facets is mapped into k vertices in the texture

map.

We define the mapping from mesh coordinates to UV coordinates as follows:

h :
W → [0, 1]2

w → ∑3
i=1wiVT (FT (i, w4))

(4.12)

Given a point on the surface s ∈ S(θ, ϑ) its color is defined through three steps

by 1) taking a coordinate w ∈ g−1θ,ϑ({s}) 2) finding the corresponding point h(w) in
the texture image and 3) computing its color r(h(w);T) with r the function that

bilinearly interpolates the texture image :

r :
R
2,T → R

3

(px, py;T) → ∑

i

∑

j Ti,jkb(px − i, py − j)
(4.13)

Where kb is the bilinear interpolation kernel defined in eqn.3.107. We combine these

three steps into a single function fT such that fT (s) represents the color of the point

s on the surface: fT (s) ∈ R
3 with

fT (s) ≡ r(h(w);T) with w ∈ g−1θ,ϑ({s}). (4.14)

The function g is actually not an injective which means that g−1({s}) might not
be a singleton. This is due to the fact that our representation of the surface based

on W is redundant for vertices of the triangulated surface or points along edges of

the triangulated surface. Each point on an edge occurs twice in the texture map,

while each vertex occurs an average of 6 times (according to the Eulerian properties

of the mesh). Because of this redundancy, some constraints must be introduced to

ensure consistency between RGB values of texture map points that map to the same

edge or vertex of the 3D mesh. If we denote {w1, . . . , wk} the k elements of the

set g−1θ,ϑ({s}), that is the pre-image of the singleton {s}, then this constraint can be
formalized as

r(h(w1);T) = · · · = r(h(wk);T) (4.15)

4.3. Hand appearance & projection 137

3D mesh

Texture T

j first patch

second patch

unused texels

consistency along edges for integer coordinates

linearity of the interpolation along diagonal edge

i

0

1

2

3

1 2 3 4 650

T2,0 + T3,1 = T3,0 + T2,1

T1,1 + T2,2 = T2,1 + T1,2

T0,2 + T1,3 = T1,2 + T0,3

T3,0 = T3,3; T2,1 = T3,4;T1,2 = T3,5; T0,3 = T3,6

Descriptio 4.3: Two adjacent facets of the triangulated surface project in two sep-

arated triangles in the 2D texture map T . Since the shared edge projects in two

distinct segments in the texture map, it is necessary to specify constraints that the

texture elements along the shared edge must be consistent. This is done here using

7 linear equality constraints.

By enforcing this consistency we also ensure the continuity of the texture across

edges of the triangulated mesh. Due to the use of bilinear texture mapping, this

consistency is straightforwardly enforced with two sets of linear constraints on the

RGB intensities of the texture pixels. The first set of linear constraints specifies that

the intensities of points along mesh edges with integer-coordinates in the texture

map must be consistent. The second set of constraints enforces the interpolation

of the texture to be linear along edges of the triangular patches. As long as the

texture interpolation is linear along each edge and is texture intensities are consis-

tent at points with integer texture coordinates, the mapping will be consistent for

all points along the edge. The bilinear interpolation is already linear along vertical

and horizontal edges, so we only need to consider the diagonal edges while defining

the second set of constraints.

Let (i+1, j) and (i, j+1) denote two successive points with integer coordinates

along a diagonal edge of some triangular patch in the texture map. Using bilinear

texture mapping, the texture intensities of a point with non-integer coordinates

(i+ 1− λ, j + λ), λ ∈ (0, 1) along this edge is expressed as

λ(1− λ)(Ti,j + Ti+1,j+1) + λ2Ti,j+1 + (1− λ)2Ti+1,j . (4.16)

By twice differentiating this expression with respect to λ, we find that it is linear

with respect to λ if and only if the following linear constraint is satisfied:

Ti,j + Ti+1,j+1 = Ti+1,j + Ti,j+1 . (4.17)

By considering all points on diagonal edges, this constitutes the second set of linear

constraints. Finally, let T denote the linear subspace of valid textures, i.e. textures

138 Caput 4. Method with texture & shading

whose RGB values satisfy the linear constraints that ensure continuity over the

surface.

The combination of the surface geometry, the texture, the lighting condition as

well as the shading can now be used to produce realistic appearances of the surface.

The appearance of a point s of the surface Sθ is define by

A(s) = L(w; θ, ϑ, L)r
(
h(w);T

)
where w ∈ g−1θ,ϑ(s) (4.18)

While defining the texture we have ensured that the choice of w in the set g−1θ,ϑ(s)

does not change the appearance of a point given our texture and shading models.

We need now to describe how the surface along with its appearance projects into

the image domain to produce the synthetic image that we aim to compare to the

observed image.

4.3.3 Hand Model projection & Occlusions

Given the illuminant, the texture mapping, and the mesh geometry, the formation

of the model image at each point x in the 2D image plane can be determined in

a two step procedure. First, as in ray-tracing, we determine the first intersection

between the triangulated surface mesh and the half-line (or ray) starting at the

camera center and passing through x. Second, the appearance of this intersection

point is computed given the illuminant and the information at the vertices of the

intersected face. If no intersection exists, then the image is determined by the

background. Therefore, in addition to the hand, a model for the background is also

considered. When it is static, we simply assume that an image of the background is

available. Otherwise, we assume a probabilistic model for which background pixel

intensities are drawn from a background distribution pbg(·) (e.g., it can be learned
in the first frame with some user interaction).

The two step procedure to estimate the synthetic color at a given point x can be

formalized as follows. Using the camera projection function Π defined in eqn.3.61

and the function g defined in eqn.4.2, the mapping from the mesh coordinate to

the image coordinate is is expressed as Π ◦ g. This mapping is homographic for

each planar triangular face. A point with coordinates (i, j) in the texture image is

mapped onto the point Π ◦ g ◦ h−1(i, j). This yields to the so called perspective

texture mapping in computer graphics [Heckbert 1989]. A common assumption in

computer graphics is that the mapping from mesh to image coordinates can be fairly

well approximated by a linear function rather than homographic for each triangular

face, when the size of projected triangles is small enough. Once the projection of

the vertices V̄ (i; θϑ) ≡ Π
(
V (i; θ, ϑ)

)
is computed, we can define the approximated

projection of a point on the surface directly from its mesh coordinates:

Π̂ :
W×Θ×Υ → R

2

(w; θ, ϑ) → ∑3
i=1wiV̄ (FV (i, w4); θ, ϑ)

(4.19)

In order to compute the appearance of a point x in the image domain, we first

recover the closest point (with respect to the camera) of the surface that projects

4.4. Data-fidelity function 139

onto it and then attribute its appearance to the point x. This is formalized by the

back-projection function:

Π̂−1θ,ϑ :
R
2 ← P (W)

x 7→ arg inf
(〈

ẑc,
(
g(w; θ, ϑ)

)〉
|w ∈W, Π̂(w; θ, ϑ) = x

) (4.20)

where ẑc is the direction of the camera principal axis and P (W) is the power set of

W i.e the set of all subsets of W. This maps any point that does not back project

on the surface, i.e that belongs to the background, to the empty set ∅. Let denote
by χ(θ, ϑ) ⊂ Ω the set of 2D points within the hand silhouette i.e. that back-

project onto the hand surface. We have χ(θ, ϑ) ≡ Π(S(θ, ϑ)). The mapping Π̂−1θ,ϑ is

linear within the visible part of the projection of each facet, and thus is piecewise

linear. One should note that the set Π̂−1θ,ϑ(x) has more than one element when x

lies projected edges or vertices because g(θ, ϑ, .) is not an injective function. This

is not problematic due to the choice made on the on shading and texturing models

which will produce the same appearance for all points in this set.

Now that we have defined the inverse projection function, we can write a formal

expression for the synthesized image. Let Isyn(x; θ, ϑ, L, T) denote the synthetic

image comprising the hand and the background, at the point x for a given pose θ,

texture T and illuminant L.

Isyn(x; θ, ϑ, L, T) =

{

L(w; θ, ϑ, L) r(h(w), T) with w ∈ Π̂−1θ,ϑ(x) if x ∈ χ(θ, ϑ)

Ibk(x) else

(4.21)

where Ibk is an image of the background that is obtain in a semi-supervised manner.

In practice, the image is computed on a discrete grid and the image synthesis

can be done efficiently using the triangle rasterization technique in combination

with a depth buffer

This completes the definition of the model synthesis process for images of the

hand. We next consider the estimation problem that consist in inferring the surface

from real 2D observations.

4.4 Data-fidelity function

4.4.1 Discrete image domain

Our task is to estimate the pose parameters θ, the texture T , and the illuminant L

that produce a synthesized image which best matches the observed image, denoted

by Iobs(). Our objective function is based on a simple discrepancy measure between

these two images. First, we define a residual image Rd [Figure (4.4.c)] as

Rd(x; θ, ϑ, T, L) = ρ
(
‖Isyn(x; θ, L, T)− Iobs(x)‖

)
, (4.22)

where ρ is either the classical squared-error function or a robust error function

such as the Huber function used in [Sidenbladh 2000]. With ρ being the classical

140 Caput 4. Method with texture & shading

squared-error function, the pixels errors are implicitly assumed to be IID Gaussian.

Similarly, with a robust error function, the pixels errors are implicitly assumed to

be heavy-tailed IID. Contrary to this simple IID assumption, modeling errors tend

to produce highly correlated errors between nearby pixels. But as the quality of

the generative model improves (as we strive to do in this chapter) the significance

of this correlation is lessened.

Descriptio 4.4: The first raw represents from the left to the righ: the observed

image Iobs, the synthetic image Isyn and the residual image Rd. The second raw

represents zooms on index extremity.

When the background is not static, but rather defined probabilistically, we can

separate the image domain Ω (a continuous subset of R2) into the region χ(θ, ϑ)

covered by hand, given the pose, and the background region Ω\χ(θ, ϑ). Then the
residual can be expressed using the background color distribution as:

Rd(x; θ, ϑ, L, T) =

{
ρ
(
‖Isyn(x; θ, L, T)− Iobs(x)‖), ∀x ∈ χ(θ, ϑ)

− log
(
pbg(Iobs(x)

)
, ∀x ∈ Ω\χ(θ, ϑ) (4.23)

Examples of the residual obtained using pbf to model the background are shown in

the third and sixth rows of [Figure (4.19)].

Our discrete discrepancy measure, Ed, is defined to be the sum of the residual

errors over the discrete image domain Ωd:

Ed(θ, ϑ, T, L) =
∑

x∈Ωd

Rd(x; θ, L, T) (4.24)

Unfortunately, due to the aliasing along edges of the occluding contour (i.e.,

discretization noise), Ed(θ, T, L) is not a continuous function of θ (e.g., when an

4.4. Data-fidelity function 141

occlusion boundary crosses the center of a pixel). The aliasing artifacts are visi-

ble in images [Figure (4.4)]. As a consequence the gradient ∇θEd is not defined

everywhere and the first order approximation of the objective function based on

its gradient is only valid in a very small (sub-pixel) displacement range. Based on

this discontinuous objective function and its gradient it is not possible to perform

efficient continuous optimization to estimate the hand pose. Some tests based on

this objective function and its gradient have provided very poor results even if ini-

tialized in the vicinity of the right solution. As a consequence we define another

version of this objective function that is continuous everywhere and whose gradient

provide a first-order approximation that is valid in a wider range of displacements.

4.4.2 Antialiasing formulation

Descriptio 4.5: The first raw represents from the left to the righ: the observed image

Iobs, the antialiased synthetic image Īsyn and the residual image Ra. The second

raw represents zooms on index extremity.

In actual cameras, the optical system filters out high frequencies above half the

spacial frequency of the captor. This helps to avoid aliasing in the captured image.

As a consequence, the intensity measured at a given pixel is a weighted integral

of the image Isyn in the vicinity of the pixel’s center. This can be modeled by a

convolution of the image Isyn by a kernel. Using an interpolation kernel k as the

ones introduced in eqn.3.105 or eqn.3.107 this yields:

Īsyn(i, j; θ, ϑ, T, L) =

∫

x

∫

y
k(x− i, y − j)Isyn(x, y; θ, ϑ, T, L) (4.25)

142 Caput 4. Method with texture & shading

This discrete antialiased image Īsyn [Figure (4.5.b)] is a continuous function of θ,ϑ,

T and L. When the boundary of a finger displace continuously, the intensities of

this image changes continuously. Based on this antialiased image we define a new

residual Ra [Figure (4.5.c)]

Ra(i, j; θ, ϑ, T, L) = ρ‖Īsyn(i, j; θ, ϑ, T, L)− Iobs(i, j)‖) (4.26)

And an objective function

Ea(θ, ϑ, T, L) =
∑

i,j

Ra(i, j; θ, ϑ, T, L) (4.27)

This objective function is a continuous function of θ,ϑ, T and L. However this

function is not very well adapted to efficient local search methods. In order to

illustrate this we consider a simple one-dimensional case where the parameter θ is

a scalar and the synthetic image is a white rectangle [θ, θ + L] × [0, H]. L is an

integer that represent the width of the rectangle. This rectangle is fully extended

in the Height direction. The synthetic image is:

Isyn(x, y; θ) =

{
1 if (x, y) ∈ [θ, θ + L]× [0, H]

0 otherwise
(4.28)

Using the shifted nearest neighbor interpolation kernel kn (eqn.3.105) we have the

antialiased image:

Īsyn(i, j; θ) =







1 if i ∈ [⌊θ⌋+ 1, ⌊θ⌋+ L− 1]

1− ε(θ) if i = ⌊θ⌋
ε(θ) if i = ⌊θ⌋+ L

0 else

(4.29)

Supposing the observed image to be constant and equal to zero, and ρ : x 7→ x2, we

have

Ea(θ) = H(L− 1 + (1− ε(θ))2 + ε(θ)2) (4.30)

Using the bilinear interpolation kernel kb (eqn.3.107) we have the antialiased

image:

Īsyn(i, j; θ) =







1 if i ∈ [⌊θ⌋+ 2, ⌊θ⌋+ L− 1]
1
2 − ε(θ) + 1

2ε(θ)
2 if i = ⌊θ⌋

1− 1
2ε(θ)

2 if i = ⌊θ⌋+ 1
1
2 + ε(θ)− 1

2ε(θ)
2 if i = ⌊θ⌋+ L

1
2ε(θ)

2 if i = ⌊θ⌋+ L+ 1

0 else

(4.31)

Supposing again the observed image to be constant and equal to zero, and

ρ : x 7→ x2 we have

Ea(θ) = H(L− 1

2
+ (1− ε(θ))2ε(θ)2) (4.32)

4.4. Data-fidelity function 143

1 1.5 2 2.5 3 3.5 4 4.5 5

3.6

3.8

4

a)

1 1.5 2 2.5 3 3.5 4 4.5 5
3.5

3.52

3.54

3.56

b)

Descriptio 4.6: Objective function Ea(θ) for the rectangle example with a) the

shifted nearest-neighbor interpolation kernel kn and b) the bilinear interpolation

kernel kb

A plot of the function Ea(θ) for the two kernels kn and kb are shown in

[Figure (4.6)] for H = 1 and L = 4.

While using the nearest neighbor kernel kn, the function Ea is not differentiable

everywhere. While using the bilinear kernel, this function is continuous and differ-

entiable but also bumpy. It “oscillates” and thus the local gradient provides a first

order approximation that is valid only in a very limited range. In order to avoid this

problem and obtain a constant value for this simple one-dimensional case involves

the interpolation of the observed image in the continuous image domain.

4.4.3 Continuous Image domain formulation

In order to define a continuous matching cost we denote by Ĩobs the continuous

image obtained using bilinear interpolation.

Ĩobs(x, y) =
∑

ij

Iobs(i, j)kb(x− i, y − j) (4.33)

where kb is the bilinear interpolation kernel defined in eqn.3.107. We define the

residual image R based on the interpolated observed image:

R(x; θ, ϑ, T, L) = ρ
(
‖Isyn(x; θ, L, T)− Ĩobs(x)

∥
∥) , (4.34)

When the background is not static, but rather defined probabilistically, we

express the residual as follows:

R(x; θ, ϑ, L, T) =

{
ρ
(
‖Isyn(x; θ, L, T)− Ĩobs(x)‖), ∀x ∈ χ(θ, ϑ)

− log
(
pbg(Ĩobs(x)

)
, ∀x ∈ Ω\χ(θ, ϑ) (4.35)

144 Caput 4. Method with texture & shading

Our discrepancy measure, Ec, is now defined to be the continuous integral of

the residual errors over the image domain Ω:

Ec(θ, ϑ, T, L) =

∫

Ω
R(x; θ, L, T)dx (4.36)

The resulting objective function is less realistic from a generative point of view

than the objective function formulate in the previous section (eqn.4.27) but is

smoother. On the example of the constant size rectangle with a constant zero

observation, this objective function will remain constant. Note that unlike in the

previous chapter we do not have an equivalence between the pre-filtered antialiasing

formulation (eqn.4.27) and the continuous image-domain formulation (4.36). This

is a very simple discrepancy measure which is, in several ways, preferable to more

sophisticated measures that combine heterogeneous cues such as optical flow, sil-

houettes, or chamfer distances between detected and synthetic edges. First, the

measure in (4.36) avoids the tuning of weights associated with different cues that

is often problematic; in particular, a simple weighted sum of errors from different

cues implicitly assumes (usually incorrectly) that errors in different cues are sta-

tistically independent. Second, the measure in (4.36) avoids early decisions about

the relevance of edges through thresholding, about the area of the silhouette by

segmentation, and about the position of discontinuities in optical flow. Third, the

equation (4.36) is a continuous function of θ, that is not the case for measures based

on distances between edges like the symmetric chamfer distance. These measures

usually present discontinuities or sharp variations when an edge of one finger is

suddenly occluded by another finger.

4.4.4 Surface domain formulation

By changing the domain of integration, the integral of the residual error within

the hypothesized hand region can be re-expressed as a continuous integral over the

visible part of the surface. We define Eχ the contribution of the hand surface to

the data-fidelity term, i.e. the integral of the residual within the hand silhouette:

Eχ(θ, ϑ, T, L) ≡
∫

χ(θ,ϑ)
ρ
(
‖Isyn(x; θ, L, T)− Ĩobs(x)‖)dx (4.37)

Note that Eχ and Ec differ. We have:

Ec(θ, ϑ, T, L) ≡ Eχ(θ, ϑ, T, L) +

∫

Ω/χ(θ,ϑ)
R(x; θ, L, T)dx (4.38)

In order to reformulate this integral as an integral on the surface S(θ, ϑ) we

need to introduce an visibility function v with v(s; θ, ϑ) the visibility of point s that

is binary variable that equals 1 if the point s is visible and 0 if the point is hidden

by other parts of the hand. This visibility function can be formalized as:

v(s; θ, ϑ) =1 if Π−1(Π(s)) = {s}
0 otherwise

(4.39)

4.4. Data-fidelity function 145

Using this visibility function we can rewrite Eχ using an the integral onto the

surface:

Eχ(θ, ϑ, T, L) =

∫

S(θ,ϑ)
v(s; θ, ϑ)ρ

(
‖Isyn(Π(s); θ, L, T)− Ĩobs(Π(s))‖)w(s; θ, ϑ)ds

(4.40)

where (s; θ, ϑ) is the ratio between the surface element in the image and the cor-

responding surface element on the surface s(θ, ϑ). Using some calculation one can

show that we have:

w(s; θ, ϑ) ≡ det
(
[JsΠ

T , n̂(s; θ, ϑ)]
)

(4.41)

where JsΠ is the 2 by 3 Jacobian matrix of the projection function evaluated at s

and n̂(s) the normal vector to the surface at point s.

Eχ can then be approximated by a discretized approximation, denoted Ēχ, using

a finite weighted sum over centers of all visible faces:

Ēχ(θ, ϑ, T, L) ≈
K∑

k=1

‖Sk‖v(ck; θ, ϑ)ρ
(
‖Isyn(Π(ck); θ, L, T)− Ĩobs(Π(sk))‖

)
w(ck)

(4.42)

with ck the barycenter of the kth facet and ‖Sk‖ its surface area. Much of the lit-
erature on 3D deformable models adopts this approach, and assumes the visibility

of each face to be a binary state (fully visible or fully hidden) that can be obtained

from a depth buffer (e.g., see [Blanz 1999]). Unfortunately, such a discretization

introduces discontinuities in the approximate functional when θ varies. When the

surface moves or deforms, the binary visibility state of a face near self-occlusion is

likely to change. This would cause a discontinuity in the sum of residuals. Such

discontinuities are undesirable if one aims to use gradient-based optimization meth-

ods. In order to preserve continuity of the discretized functional with respect to

θ, the visibility state should not be binary. Rather, it should be real-valued be-

tween zero and one, and should behave smoothly as the surface becomes occluded

or unoccluded. The term v(ck; θ, ϑ) could be replace by the ratio of the area of

the visible part of the facet over the area of the facet (i.e 0.5 is half of the facet is

visible). In practice, this appears rather cumbersome to implement and the an-

alytic derivation of the functional gradient may be complicated. Furthermore the

term corresponding to the integral of the residual in Ω/χ(θ, ϑ) seems important to

take into account if we want the silhouette of the hand model to align with the

silhouette in the observed image. To address the continuity problem due to change

of visibility of the facets, in contrast with much of the literature on 3D deformable

models, we keep the formulation in the continuous image domain when deriving the

expression of functional gradient. Deriving the analytical gradient of Eχ(θ, ϑ) using

the surface domain formulation would also be possible but seems more complex.

146 Caput 4. Method with texture & shading

4.5 Pose Prior

4.5.1 Motivation & existing methods

Hand pose estimation in monocular setting is often under-determined. Due to

presence of occlusions and lack of depth information, 3D hand poses hypothesis can

equally well explain the observed image. Model-based methods formulate the pose

estimation as the minimization of some objective function based on the observed

image. The above mentioned ambiguities induce the objective function to have

several equally low minima or even flat regions. Reflection ambiguities are a reason

for such minima multiplicity. While performing tracking, the search is generally

localized around some predicted pose from previous frames. Therefore, making at

some instant an erroneous choice among these ambiguous hypotheses might quickly

lead to loose track. Several methods could be considered to improve robustness of

hand tracking:

• Keeping track of several hypotheses and taking deferred decisions on the hand

pose (e.g. using particle filtering smoothing [Stenger 2004a, Bray 2004b]).

Unfortunately the number of hypothesis to track may become quickly

unmanageable whenever the observations become highly ambiguous.

• Making extensive use of the available image information in order to reduce

ambiguities (see [de La Gorce 2008, Lu 2003]). Two distinct hand hypotheses

could explain the same segmented silhouette but are less likely to explain the

same pixel intensities due to the shading for example.

• Exploiting prior knowledge about the expected hands poses. This could be

done by penalizing poses estimates that are presupposed to be less likely in

some specific context or unnatural (i.e. using a prior in the Bayesian formu-

lation). An alternative is to constrain the hand pose to remain within a low

dimensional sub-manifold of the Cartesian product of the individual param-

eter ranges. This could be derived from physical considerations on the hand

or learned from a training set of poses that is assumed to be representative of

the kind of gestures we aim to track.

Exploiting prior knowledge on expected articulated poses has been extensive-

ly used for human body tracking where motions generally correspond to either

walking or running. Autoregressive models [Agarwal 2004], hidden Markov mod-

els [Pavlovic 2000], Gaussian process dynamical models [Urtasun 2006], piecewise

linear models in the form of mixture of factor analyzers [Li 2007] or manifold learn-

ing based on spectral [Sminchisescu 2004] or Isomap [Wang 2003] embedding are

example of method to model prior knowledge.

In the context of hand tracking several approaches has been proposed [Lin 2000,

Wu 2001, Zhou 2003, Thayananthan 2003a]. In [Wu 2001] the pose manifold as

been modeled as the union of low dimensional manifolds obtained from training

data collected with a CyberGlove. In [Zhou 2003] the manifold has been obtained

4.5. Pose Prior 147

using a 6 dimensional PCA on training data collected with a CyberGlove. The

authors proposed a model of the dynamic of the hand using a structured dynamic

model of order 10 within this 6 dimensional space, where each fingers bends and

extends nearly independently.

Methods that constrain the hand to remain within some sub manifold

[Sminchisescu 2004, Wang 2003, Wu 2001, Zhou 2003] of the Cartesian product of

the individual parameter ranges are likely to be inaccurate because the variability

needed to fully explain the observed image is inevitably lost. A better approach

could be to increasingly penalize hand configuration as its Euclidean distance from

the sub-manifold increases. However computing such a distance or the Euclidean

projection onto the manifold is generally intractable for non linear cases. Some

approximations could be derived using the embedding transformation and its in-

verse mapping but this would generally require an iterative scheme (out-of-sample

problem and pre-image problem) and would result in discontinuities in the approx-

imating distance. Existing approach using non linear pose prior are Monte-Carlo

methods that do not specifically require the objective function to be continuous.

Our approach relies on efficient continuous optimization and therefore requires the

prior term to be continuous and differentiable.

In order to fulfill such requirements, we advocate the use of Kernel Principal

Component analysis. It allows to define a continuous and tractable penalization

function in the pose space that measure closeness of the hypothesized hand pose

from a training set. The combination of this prior term with a data-fidelity one

would improve performance over the use of the data-fidelity term alone. As we aim

to use efficient Quasi-Newton minimization of the objection function, we derive the

gradient of both the data-fidelity term and the prior term.

4.5.2 Prior based on Kernel PCA

In order to define the hand pose prior we apply KPCA onto a set of 22-dimensional

vectors αi. Each of these vector corresponds to a set of 22 angular parameters of an

hand poses . This training set has been obtained with a specific multi-view setting

described in the experimental section. For notation convenience we replace αi by

xi in the sequel of the section.

Introduced in [Schölkopf 1998], Kernel PCA is a dimensionality reduction

method that can be considered as a generalization of linear components analysis

using the kernel trick [Aizerman 1964].

Given a non linear operator φ that maps the training data points xi in an higher

dimensional space (with φ defined explicitly or implicitly using a mercer kernel k

such that k : I × I → R such that k(x, y) =< φ(x), φ(y) >), this method implicitly

amounts to

• map the training data points xi in an higher dimensional space through the

non linear operator φ

148 Caput 4. Method with texture & shading

• perform PCA analysis of the mapped points φ(xi) in order to find the affine

sub-space of dimension l (where l is either fixed in advance , or compute such

that some percentage of the variance is kept) that best approximate this set

of feature points in a least square sense

• define the reduced coordinates of xi to be the coordinates (within some or-

thonormal base of the plane) of the projection of the mapped point onto the

plane.

Using the kernel trick, this can performed using the kernel k without the need

to explicitly compute φ(xi) (see Appendix). This eventually allows the use of non

linear mapping into infinite dimensional space, using Gaussian kernels for example.

An interesting aspect of the kernel PCA approach is that one can directly use

the squared distance of the mapped point to the PCA plane in the feature space

as a measure of closeness to the training set. Denoting P l the projection operator

onto the kernel PCA space this measure writes

D2
F (φ(x), P

l(φ(x))) = ‖φ(x)− P l(φ(x))‖ (4.43)

Again the kernel trick allows to computed this distance measure without actually

mapping the points with φ.

Note that this distance is expressed in the feature space and thus is not homo-

geneous with respect to the Euclidean distances in the input space. This might be

problematic while combining this measure with a data-fidelity term.

With the kernel PCA approach, we can use the variance along each principal

direction in the feature space to define a Mahalanobis distance between the pro-

jection of the point P l(φ(x)) and the mean point denoted φ0 [Cremers 2003]. This

results in another closeness measure, whose derivation is detailed in the appendix

(eqn. A.49), and that is a dimensionless quantities and thus might not need to be

rescaled. We choose this closeness measure as our prior term during our tracking

experiments and refer to it as Eprior(x).

During the tracking process, the model is registered to each new frame by min-

imizing the objective function that combine both the data term Ec and the pose

prior Eprior with respect to the pose θ and the illuminant L. We denote E2 the

combined objective function:

E(θ, L, T) = Ec(θ, L, T) + βEprior(θ) (4.44)

where β is a coefficient that provides control on the relative importance of the prior

term over the data term.

Because we advocate the use of Quasi-Newton local optimization, we need to

compute the derivate or gradient of the prior term with respect to the hand pose

parameter θ. This derivation is described in the appendix.

4.6. Pose and Lighting Estimation 149

4.6 Pose and Lighting Estimation

In order to estimate the pose θ and the lighting condition L for each new incoming

frame, or to update the texture T , we look for minima of the objective function.

During tracking, the optimization procedure involves two steps. First we minimize

(4.36) with respect to θ and L to register the model with respect to the new image

frame. Then we minimize the error function with respect to the texture T to find

the optimal texture update. This alternating minimization can be interpreted as

form of coordinate descent, limited to a single iteration per frame. We first consider

the problem of estimating θ and L given a new frame as it constitutes the core of

the tracking problem.

The simultaneous estimation of the pose parameters θ and the illuminant L is a

challenging non-linear, non-convex, high-dimensional optimization problem. Global

optimization is impractical and therefore we resort to an efficient quasi-Newton,

iterative local optimization. This method requires that we are able to efficiently

compute the gradient of Ec in (4.36) with respect to θ and L.

The gradient of Ec with respect to lighting L is straightforward to derive. At any

point x of the image the synthetic intensity is differentiable with respect to L, i.e

the function function L 7→ R(x; θ, L, T) is differentiable. Therefore differentiation

and integration operators commute, and we obtain

∂Ec

∂L
(θ, L, T) =

∂

∂L

∫

Ω
R(x; θ, L, T)dx

=

∫

Ω

∂R

∂L
(x; θ, L, T)dx .

(4.45)

Computing ∂R
∂L (x; θ, L) is straightforward with application of the chain rule to the

synthesis process.

Formulating the gradient of Ec with respect to pose θ is not straightforward to

derive. For any point x along an occlusion boundaries, the residual is a discontinu-

ous function of the pose parameters, i.e θ 7→ R(x; θ, L, T) is not differentiable with

respect to θ As a consequence, we cannot commute differentiation and integration.

However, while the residual is a discontinuous function of the pose, the data-fidelity

function remains continuous in θ and therefore the gradient with respect to θ can

still be specified analytically. Its derivation is the focus of the next section.

4.6.1 Gradient with respect to Pose and Lighting

The synthesis process defined above was carefully formulated so that scene radiance

is continuous over the hand surface (using Gouraud shading and patch-based tex-

ture mapping with bilinear interpolation). We further assume that the background

and the observed image are known and continuous. Therefore the residual error is

spatially continuous everywhere except at the self-occlusion (hand/hand) and oc-

clusions boundaries (hand/background) denoted by Γθ. Because these boundaries

move when θ varies, the spatial discontinuity of the residual implies a lack of dif-

ferentiability with respect to θ along Γθ. The occlusion boundaries require special

150 Caput 4. Method with texture & shading

near occluded side

!!!!
!!!!
!!!!
!!!!

!!!!
!!!!
!!!!
!!!!
!!!!
!!!!
!!!!

occluding side

Γθ

n̂Γθ
(x)

x

(a) (b) (c)

Descriptio 4.7: a) Example of a segment that crosses an occlusion boundary. b) A

curve representing the residual along this segment and c) The occlusion contour Γθ

attention when deriving the gradient of Ec with respect to pose θ. To sketch the

main idea behind the gradient derivation, we first consider a 1D residual function

on a line segment that crosses a self-occlusion boundary.

4.6.1.1 1D illustration

We consider the residual function and the discrepancy measure along a 1D line seg-

ment that crosses a self-occlusion boundary as shown in [Figure (4.7)]. The residual

is continuous everywhere on the segment except at the self-occlusion boundary lo-

cation, denoted by β. The residual function on the line can be written in two parts,

namely, the residual to the left of the boundary (r0) and the residual on the right

of the boundary (r1):

r(x, θ) =

{
r0(x, θ), x ∈

[
0, β(θ)

)

r1(x, θ), x ∈
(
β(θ), 1

] . (4.46)

The data-fidelity term is then the sum of the integral of r0 on the left and the

integral of r1 on the right side.

Ec =

∫ β(θ)

0
r0(x, θ)dx+

∫ 1

β(θ)
r1(x, θ)dx . (4.47)

Note that β is a function of the pose parameter θ. Intuitively, when the pose

parameter θ varies the integral Ec is affected in two ways. First each of the residual

functions r0 and r1 will vary, e.g. due to shading changes. Second, the boundary

location β will also move as a function of the pose θ.

Mathematicaly the total derivative of Ec with respect to θ is the sum of two

terms:
dEc

dθ
=

∂Ec

∂θ
+

∂Ec

∂β

∂β

∂θ
. (4.48)

The first term, the partial derivative of Ec with respect to θ with β fixed, cor-

responds to the integration of the residual derivative everywhere except at the

4.6. Pose and Lighting Estimation 151

discontinuity.
∂Ec

∂θ
=

∫

[0,1]\{β}

∂r

∂θ
(x, θ) dx . (4.49)

The second term (4.48) is obtained by differentiating Ec with respect to the location

of the boundary β. Using the fundamental theorem of calculus, one can show

that this term reduces to the difference between the residuals at both sides of the

occlusion boundary, multiplied by the derivative of the boundary location β with

respect to the pose parameters θ; i.e., from (4.47) it follows that

∂Ec

∂β

∂β

∂θ
= [r0(β, θ)− r1(β, θ)]

∂β

∂θ
. (4.50)

Therefor, while the residual r(x, θ) is a discontinuous function of θ at the occlusion

location β, the data-fidelity term Ec is still a continuous and differentiable function

of θ.

4.6.1.2 General 2D case

The 2D case is a generalization of the 1D example. As in the 1D case, the residual

image is spatially continuous almost everywhere, except for points at occlusion

and self-occlusion boundaries; i.e., those points where the hand starts occluding

the background or other parts of the hand [Figure (4.7.c)]. Let Γθ be the set of

boundary points. One can interpret Γθ to be the support of depth discontinuities

in the image domain.

Because we are working with a triangulated surface mesh, Γθ can be decomposed

into a set line segments. More precisely, Γθ is the union of the projections of all

visible portions of edges of the triangulated surface that separate front-facing facets

from back-facing facets. For any point x along Γθ, the corresponding edge projection

locally separates the image domain into two sub-regions of Ω\Γθ that we call the

occluding side and the near-occluded side.

Let V̄k be the 2D image projection of the kth vertex of the 3D hand mesh. For

any image point x on the self-occlusion boundary Γθ, there exist projections of two

vertices indexed by mx and nx such that x belongs to the image line segment with

end points V̄mx
and V̄nx

. Further, we define tx ∈ [0, 1] to be the scalar satisfying

x = (1− tx)V̄mx
+ txV̄nx

.

The normal to the line segment is given by

n̂Γθ
(x) =

[
0 1

−1 0

]
V̄nx

− V̄mx

‖V̄nx
− V̄mx

‖ (4.51)

By ordering nx and mx properly we can ensure that n̂Γθ
(x) is the outward normal

to the line segment; that is, it faces toward the near-occluded side [Figure (4.7.c)].

Finally, the partial derivative of the curve Γθ with respect to a given pose parameter,

say θj in θ, is given by

vj(x) = (1− tx)
∂V̄mx

∂θj
+ tx

∂V̄nx

∂θj
. (4.52)

152 Caput 4. Method with texture & shading

Along Γθ, the residual image R() is discontinuous both with respect to x and θ.

Thus ∂R(θ,x)
∂θj

is not defined on Γθ. To deal with such discontinuities, we introduce

a new residual image R+(θ,x) that extends R() by continuity in Γθ. This is done

by replicating the content in Ω\Γθ of R() from the near-occluded side. In forming

R+, we are recovering the residual of occluded faces in the vicinity of the occluding

boundary points, x. Formally, this is done using a infinite sequence of points that

approaches x from the near-occluded side:

R+(θ,x) = lim
k→∞

(

R

(

θ, x+
n̂Γθ

(x)

k

))

(4.53)

One can also interpret R+(θ,x) on Γθ as the residual we would have obtained if the

near-occluded surface had been visible instead of the occluding surface.

When the pose parameter θj is changed with an infinitesimal step dθj , the

occluding contour Γθ in the neighborhood of x ∈ Γθ moves with an infinitesimal step

vi(x)dθ and the residual in the vicinity of x will change in a discontinuous manner,

jumping between R+(θ,x) and R(θ,x). However, the surface area where this jump

occurs is also infinitesimal and proportional to
(
vj(x)n̂Γθ

(x)
)
dθj . Therefore this

jump induces an infinitesimal change in the objective functional after integration

over the continuous image domain Ω.

Like the 1D case, one can formally derive the exact functional gradient ∇θEc ≡
(∂Ec

∂θ1
, . . . , ∂Ec

∂θn
) using two terms:

∂Ec

∂θj
=

∫

Ω\Γθ

∂R

∂θi
(x; θ, L, T)dx−

∫

Γθ

[
R+(x; θ, T, L−R(x; θ, L, T))

]
n̂Γθ

(x)
︸ ︷︷ ︸

foc

vi(x)dx

(4.54)

The first term captures the data-fidelity term variation due to the smooth variation

of the residual in Ω\Γθ. It integrates the partial derivative of the residual R with

respect to θ everywhere but at the occluding contours Γθ, where it is not defined.

The analytical derivation of these partial derivatives simply requires application of

the chain rule to the functions that define the full synthesis process.

The second term captures the data-fidelity term variation due to the displace-

ment of the occluding contours. It integrates the difference between the residual

function on both sides of the occluding contour, multiplied by the normal speed of

the boundary when the pose varies. The term foc is a vector field that associates a

2D vector to each point on the occluding contour:

foc :Γθ → R
2

foc(x) =
[
R+(x; θ, T, L)−R(x; θ, L, T)

]
n̂Γθ

(x)
(4.55)

The vector field directions are normal to the curve, and their norms are proportional

to the difference of the local cost at each side of the curve. We call these vectors oc-

clusion forces by analogy with mechanics. These forces account for the displacement

of occlusion and self-occlusion contours when θ varies. They bear some similarities

to the forces obtained with 2D active regions [Paragios 1999]. This similarity with

4.7. Numerical computation of Ec and ∇θEc 153

2D active regions derives from the fact that we kept the image domain Ω continuous

while computing the functional gradient. Because the surface is triangulated, Γθ

can be decomposed into a set of image line segments and we can rewrite expressions

similar to the ones reported in [Unal 2005] for active polygons.

Our occlusion forces also bear similarity to the gradient flows of [Gargallo 2007,

Delaunoy 2008] for multi-view reconstruction, where some terms account for the

change of visibility at occlusion boundaries. However, in their formulation no

shading and texture are attached to the reconstructed surface, which results in

substantial differences in the derivation.

4.7 Numerical computation of Ec and ∇θEc

Computing the data term in the objective function Ec and its gradient with respect

to the pose parameters must be done carefully. We devote the next section to ex-

plaining the implementation of the objective function and its gradient computation

in greater detail.

4.7.1 Exact computation of the matching cost

Computing the discontinuous matching cost Ed is straightforward. One simply

needs to synthesize the image for each the discrete location of the pixel grid. As

in the previous chapter, computing the continuous matching cost Ec is very desir-

able because this could be used to numerically test the validity of the analytical

derivation and implementation of the gradient (which became quite complex to im-

plement due to the complexity of the rendering process) using small increments on

the pose parameters. This is also desirable for the descent-gradient optimization

routine that requires the minimized function to be continuous and derivable.

We have mentioned in section 4.4.3 that the objective functions derived from a

pre-filtered anti-aliasing formulation (eqn.4.27) and the continuous image-domain

formulation are not equivalent (eqn.4.36). However we could still derive some theo-

retical connection between the problem of computing the exact matching cost and

the one of performing exact pre-filtered anti-aliasing. Unfortunately, computing

the exact matching cost or performing exact pre-filtered anti-aliasing is much more

difficult than in the previous chapter. In order to perform exact (up to the ma-

chine precision) we can decompose the integral of the residual within the silhouette

χ(θ, ϑ) as the sum of integral on the visible part of each facet. To this aim we can

re-express the integral in equation 4.40 as a sum on integral on each facet:

Eχ(θ, ϑ, T, L) =
K∑

j=1

∫

Sj(θ,ϑ)
v(s; θ, ϑ)R(x; θ, ϑ, L, T)w(s; θ, ϑ)ds (4.56)

We define the visible part of the jth facet the set:

Sv
j (θ, ϑ) ≡ {x ∈ Sj(θ, ϑ)|v(x; θ, ϑ = 1)}, (4.57)

154 Caput 4. Method with texture & shading

which can be equivalently be defined as:

Sv
j (θ, ϑ) ≡ Π−1(Π(Sj(θ, ϑ))) ∩ Sj(θ, ϑ). (4.58)

The integral on the surface domain rewrites

Eχ(θ, ϑ, T, L) =

K∑

j=1

∫

Sv
j (θ,ϑ)

R(x; θ, ϑ, L, T)w(s; θ, ϑ)ds (4.59)

We define the projected visible part of the jth triangular facet S̄v
j ≡ Π(Sv

j (θ, ϑ)).

With this notation, the cost function rewrites:

Eχ(θ, ϑ, T, L) =

K∑

j=1

∫

S̄v
j

R(x; θ, ϑ, L, T)dx

=
K∑

j=1

∫

S̄v
j

ρ
(
‖Isyn(x; θ, L, T)− Ĩobs(x)‖)dx

(4.60)

Each projected visible part of a triangular facet can be described as empty

set (if the facet is completely hidden), a single polygon or a set of polygons with

eventually polygonal holes. In order to compute exactly (up to machine preci-

sion) the cost function, we need an analytical description of these polygons, i.e

a list of real valued vertices and lists of edges. Within the computer graph-

ics literature this is referred as model-space hidden surface removal, by opposi-

tion to image-space hidden surface removal that works on the discrete pixel lat-

tice on the projection plane, deciding visibility point by point a each discrete

pixel position, like the well known depth-buffer (a.k.a z-buffer) algorithm. The

methods described in [Roberts 1963, Appel 1967, Galimberti 1969, Nakamae 1972,

Weiler 1977, Hornung 1984, Markosian 1997] are examples of such object-space

methods. The problem of removing hidden surface is related to hard shadow

casting, and some shadow casting method [Nishita 1974, Crow 1977, Chin 1989,

Atherton 1978, Chrysanthou 1995, Lischinski 1992, Stewart 1994] actually perform

model-space hidden surface removal from the light point of view as a first pass in

order to subdivide polygon into sub-polygons that are fully visible from the light

source (lit) and ones that are fully hidden (shadowed) as seen in figure 4.8.

In contrast with most methods found in the literature, the methods proposed in

[Appel 1967, Hornung 1984, Markosian 1997] take advantage of the connectivity of

polyhedral objects to reduce the computational complexity. These methods are of

great interest in our context as the hand surface is composed of a single connected

triangulated surface. We use the method presented in [Markosian 1997] in the con-

text of non-photo-realistic rendering. The method used for hidden-surface removal

can be summarized in two steps.

• The first step consists in computing the set of segments composing the sil-

houette and self-occlusions (denoted Γθ in section 4.6.1.2) by performing

4.7. Numerical computation of Ec and ∇θEc 155

Descriptio 4.8: Scene with split polygons from [Chin 1989]

a) b) c)

Descriptio 4.9: Image extracted from [Hornung 1984]: a) the scene composed of two

torus b) the set of silhouette and self-occlusion segments c) The visible part of the

partially occluded polygons

hidden-line removal on the set of edges connected to both a front-facing and

a back facing facet (referred as silhouette edges in the paper). This is done

using a modified version of the Appel’s algorithm [Appel 1967] that decrease

the number of ray-surface intersection tests by using the topology of singu-

lar maps of a surface into the plane. The original method use a randomized

search of silhouette edges to gain speed. Instead, we perform an exhaustive

search as we aim at computing exactly the cost function.

• The second step consists in deriving visibility information across surface re-

gions. This implies subdividing each partially visible facet into fully visible

({S̄v
j }Kj=1) or fully hidden polygons (see fig.4.9). In [Markosian 1997] this is

done using a method proposed in [Hornung 1984] that takes the connectivi-

ty of the mesh into account in order to reduce the number of of ray-surface

intersections tests.

Once we obtained the polygonal regions {S̄v
j }Kj=1 we can tackle the problem of

computing the integral of the residual in each region. Within each polygonal region

S̄v
j , thanks to the use of our approximate linear projection Π̂ defined in eqn.4.19, the

156 Caput 4. Method with texture & shading

mapping of from the texture coordinate systme the image plan coordinate system

is a linear function. As a consequence, Isyn is piecewise quadratic with respect to x,

on a grid that is composed of uniform parallelograms (texels grid linearly mapped

in the image plan). The function Ĩobs is piecewise bilinear on the square grid defined

by the pixels. Therefore, using ρ(t) = t2, the residual is a piecewise polynomial of

order four in x, where each element of the associate plane partition is an intersection

of a square pixel region and a parallelogram. By splitting each segment of the

polygons defining S̄v
j against both grids and using a method that allows to integrate

general polynomial functions within polygonal regions [Tumblin 2006, Steger 1996,

Liggett 1988, Singer 1993, Strachan 1990] (as already mentioned in section 3.5.1.2),

the exact integral could eventually be computed. However this seems a bit too

complex for our purpose. In section we justified the choice of using texture rather

than using of a single albedo associated to each vertex (and linearly interpolated

across each facet) by that fact that retaining albedo details would require very fine

triangulation. However this choice lead to the technical difficulty we are facing

here. We will therefore temporally resort to per-vertex definition of the albedo,

where the albedo is linearly interpolated on each facet. In order to get Isyn to be

linear in the region S̄v
j , and not homographic, we continue using the approximate

projection Π̂ defined in 4.19 while mapping the surface albedo into the image plan.

Using ρ(t) = t2 and a nearest neighbor interpolation to define Iobs, the residual is

now piecewise linear on the pixel grid. The exact integral of this piecewise linear

function into the polygonal region S̄v
j could be computed using a method similar to

the one detailed in section 3.5.1.1. If Iobs is defined using a bilinear interpolation, the

residual is a piecewise polynomial of order three and it could be possible to use the

methods in [Tumblin 2006, Steger 1996, Liggett 1988, Singer 1993, Strachan 1990],

as already mentioned in section 3.5.1.2. A method proposed in [McCool 1995] allows

to perform exact antialiasing for linearly shaded triangles could also be of interest.

The computation of the gradient as expressed in eqn.4.54 could also be computed

exactly by decomposing the 2D integrals within the silhouette as a sum of integrals

over the projection of the visible parts of the facets, and the 1D integrals as a sum

of integral on visible part of silhouette edges. One advantage of such an approach

is that the analytical expression of the Hessian of the cost function could also be

formulated and exactly computed, which allow to use advance trust region methods

for the optimization. Such an optimization approach led to a important increase

of the convergence rate of the hand fitting process using the silhouette-base cost

function (see section 3.7.4), and one could expect such in improvement using the

texture and shading based cost function.

Note that the exact visibility computation could be also be use to introduce hard

cast shadows in our model by splitting each facet into lighted and shaded regions

(using the visibility from the light point of source). The speed of the displacement

of the shadow boundaries in the image plane as the hand pose change could be

formulated easily using this object-space approach of the visibility computation,

and again exact computation of the cost function including projected shadows and

4.7. Numerical computation of Ec and ∇θEc 157

its derivatives could be carried out. This would yield to shadow forces obtained by

integrating the difference of the residual between the two sides of each cast shadow

boundary.

At the time of the writing of this manuscript, the method discussed in this

section to compute the visible regions projections {S̄v
j }Kj=1 has been only partially

implemented and thus further experiment based on the exact computation of the

cost function have not been carried out. However, as explained in section 4.7.3, this

does not mean that we had to settle for the discontinuous matching cost Ed in the

optimization procedure.

4.7.2 Direct discretization of the gradient

A possible approach to computing the gradient ∇θEc involves the discretization of

the two terms in the (4.54). The integral over Ω\Γθ could be approximated by a

finite sum over image pixel in Ω∩N
2 while the integral along contours Γθ could be

approximated by sampling uniformly points along each segment.

Let denote ∇̃θEc the numerical approximation to the gradient we obtain this

way.There are two practical problems with this approach.

The first difficulty occurs when using ∇̃θEc in conjunction with Ed while using

standard gradient-descent optimization methods. Most1 iterative gradient-based

optimization methods require direct access to a routine that allows the numerical

evaluation of the objective function (here Ed + βEprior). This routine is used in

order to ensure that matching cost decreases at each iteration. Such optimization

methods expect the energy to be continuous and the computed gradient to be valid

i.e to be consistent with the objective function up to first-order. Unfortunately this

is not the case while using ∇̃θEc. Using ∇θEd would provide a valid the first order

approximation of Ed but this approximation is only valid for sub pixel displacements

where none of the occlusion boundary crossed the center of a pixel.

The second difficulty stems from the fact that the gradient is intricate to im-

plement. It would be highly desirable to have a method that allows checking the

validity of the implemented gradient. One could compare the implemented gradient

with the gradient obtained by numerical differentiation of Ed (Ec being not com-

putable). Unfortunately the two gradients are not comparable: Due to the image

aliasing, the numerical derivative of Ed does not capture the variation of the visi-

bility around the occlusion boundaries. The gradient ∇̃θEc does not allow one to

approximate Ed even at the first order and thus ∇θEd cannot be used to test the

validity of the gradient computation.

1A recent paper [Wilke 2009] proposes some optimization methods that do not require to eval-

uate the matching cost but require only its gradient. It could be of interest to test how robust are

these methods when using an approximate gradient such as the one defined here

158 Caput 4. Method with texture & shading

anti−aliased region occluding regionnear occluded region

x

p(x)

n̂

w=0

w=0.5

w=1

~x

~y

V̄m

V̄n

Descriptio 4.10: Antialiasing weights for points in the vicinity of the segment

4.7.3 Differentiable discretization of the energy

Another approach is to introduce a discretization of the energy, denoted Ēc, which

is a continuous function of θ, and then derive its exact gradient ∇θĒc using the

chain rule. Using a special anti-aliasing technique inspired by the discontinuity

edge overdraw method proposed by [Sander 2001], we adopt a new residual R̄ that

is a continuous a differentiable function of θ. The summation Ēc of this residual

over pixels is also a continuous function of θ.

Our anti-aliasing technique is applied to pixels along occlusion boundaries and

progressively blends the residuals at both sides of the occlusion boundary. If the

point x is close to an edge segment that corresponds to an occlusion boundary we

compute a blending weight that is proportional to the signed distance to the edge.

w(x) =
(x− p(x)) · n̂

max(|n̂x|, |n̂y)|)
, (4.61)

where n̂ = (n̂x, n̂y) is the unit normal to the segment pointing toward the

near-occluded side of the occlusion boundary. Dividing the signed distance by

max(|n̂x|, |n̂y|) will help to identify terms of the gradient ∇θĒc with the occlusion

forces (see the Appendix section A.3).

Given a segment V̄mV̄n on the occluding contour, we define an associated anti-

aliased region, denoted A, to be a set of points that lie in the vicinity of the segment
on the occluded side [Figure (4.10)]. In particular, it is defined to be the set of points

that projects within the segment with weights in [0, 1):

A = {x ∈ R
2|w(x) ∈ [0, 1), p(x) ∈ V̄mV̄n} (4.62)

For each point in this anti-aliased region we define the anti-aliased residual to be

a linear combination of the residual on the occluded side and the residual on the

occluding side:

R̄(x; θ, L, T) = w(x)R(x; θ, L, T) + (1− w(x))R(p(x); θ, L, T) (4.63)

4.7. Numerical computation of Ec and ∇θEc 159

The blending is non-symmetric with respect to the line segment, but shifted to-

ward the occluded side. This allows the use of a Z-buffer to handle occlusions (see

[Sander 2001] for more detail). For all points outside the anti-aliased regions we

simply takeR̄(x; θ, L, T) = R(x; θ, L, T).

Using this new anti-aliased residual image, R̄, we define a new approximation

to the objective function, denoted Ēc:

Ēc(θ, T, L) =
∑

x∈Ω∩N2

R̄(x; θ, L, T) (4.64)

This anti-aliasing technique makes R̄ and thus Ēc continuous with respect to θ even

along occlusion boundaries. When θ varies continuously, the blending weights w

and the residual also vary continuously.

One can consider other standard anti-aliasing methods such as over-sampling

[Crow 1981] or A-buffer [Carpenter 1984] for example. These techniques would

reduce the magnitude of the jump in the residual when an occlusion boundary

crosses the center of a pixel as θ changes, making this jump visually imperceptible,

but the residual would numerically remain a discontinuous function of θ. The edge

overdraw method ensures the continuity of the residual with respect to θ. Ēc is now

continuous and differentiable almost everywhere.

We derive ∇θĒc by differentiating R̄ using the chain rule.

∇θĒc =
∑

x∈Ω∩N2

∂

∂θ
R̄(x; θ, L, T) . (4.65)

Using a backward ordering of derivative multiplications (called adjoint coding in

the algorithm differentiation literature [Griewank 2000]), we obtain an evaluation

of the gradient with a computational cost that is comparable to the evaluation of

the objective function.

The gradient of Ēc with respect to θ, i.e., ∇θĒc, is one of the possible discretiza-

tion of the analytical ∇θEc. The differentiation of the anti-aliasing process with

respect to θ yielded terms that sum along the edges and that can been interpreted

as a possible discretization of the occlusion forces in equation 4.55). This is demon-

strated in the appendix A.3. The advantage of this second approach over the first

one is that now ∇θĒc is the exact gradient of a continuous function Ēc and this

function can be numerically evaluated. This also allows one to check validity of the

gradient ∇θĒc obtained using the chain rule by direct comparison with the gradient

obtained by divided differences on Ēc. Divided differences are known to be prone to

round-off errors and computationally inefficient, but they provide one way to check

the validity of the gradient computation.

160 Caput 4. Method with texture & shading

4.8 Model Registration

4.8.1 Sequential Quadratic Programming

During the tracking process, the model of the hand is registered to each new frame

by minimizing the objective function Ec with respect to the pose θ and the illu-

minant L. Let P = [θ, L]T comprise the unknown pose and lighting parameters,

and assume that we are given an initial guess by extrapolating estimates from the

previous frames. We refine the pose and lighting estimates by minimizing Ec with

respect to X, subject to linear constraints that model the articulated joint limits.

P̃ = argmin

P

such that AP ≤ b

Ec(P) (4.66)

Because the gradient of the objective function is available, we minimize (4.36)

efficiently using a sequential quadratic programming method (SQP) [Conn 2000]

with an adapted Broyden-Fletcher-Goldfarb-Shanno (BFGS) Hessian approxima-

tion. This allows us to combine the well-known BFGS quasi-Newton method with

the linear constraints that limit the range of the articulation angles of the hand

pose.

The method comprises four steps:

• First, a quadratic program is used to determine a descent direction. This

makes use of the energy gradient and an approximation to the Hessian based

on a modified BFGS procedure denoted H̃t:

∆P = argmin

∆P

s.t. A(Pt+∆P) ≤ b

(
dEc

dP
(Pt)∆P +

1

2
∆t

P H̃t∆P

)

(4.67)

• A line search is then performed in that direction:

λ∗ = argmin
λ

Ec(Pt + λ∆P) s.t. λ ≤ 1 . (4.68)

The inequality λ ≤ 1 ensures that we stay in the linearly constrained subspace.

• The pose and lighting parameters are updated with the line optimum

Pt+1 = Pt + λ∗∆P . (4.69)

• And finally the approximate Hessian H̃t+1 is updated using the adapted BFGS

formula.

These four steps are iterated until convergence.

Note that the BFGS update method was adapted slightly to take advantage of

the partial independence of separated fingers regarding the data term. With such

4.8. Model Registration 161

0 5 10 15 20 25

0

5

10

15

20

25

nz = 646

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

110

nz = 7595
10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

110

nz = 833

(a) (b) (c)

Descriptio 4.11: Sparsity structure: (a) θ ∈ R
28 (b) θ ∈ R

119 (c) approximated

structure

independence, some sparseness of the Hessian of the data term can be exploited.

We adapted the BFGS update method to define a Block-wise BFGS update that

takes advantage of this structure explained in the next section. The Hessian of

the prior term Eprior does not exhibit such sparsity pattern we choose to maintain

separately the Hessian approximation of each of the two terms, applying the BFGS

update formula independently for the data-fidelity term and the prior term. Using

this method we increased the convergence rate by a factor ranging from 3 to 6.

Because our optimization method is local, we need to initialize the search. To

obtain reasonable starting points we first perform a one-dimensional search along

the line that linearly extrapolates the two previous pose estimates. Each local

minima obtained during this 1D search is used as a starting point for our SQP

method in the full pose space. The number of starting points found is usually just

one, but when there are several local minima, the results of the SQP method are

compared and the best solution is chosen. Once the model has been fit to a new

image frame using this optimization method, we update the texture model that is

used for registration with the next frame.

4.8.2 Blockwise BFGS update

The better the approximation of the Hessian is, the faster a Quasi-Newton opti-

mization method will converge. To obtain a good convergence rate even during the

first iterations, it is also important to carefully initialize the approximated Hessian.

Therefore, rather than using the identity matrix as often done, we used a scaled

version of the matrix J V̄
θ

t
J V̄
θ where J V̄

θ is the Jacobian of the projected vertices with

respect to θ. This initialization favors the displacements in the depth direction for

which the gradient is small due to weak support from the image data.

Because the contributions to the overall data cost of two well-separated fingers

are independent, the true Hessian of Ec will not be fully populated but will exhibit

blocks of zeros [Figure (4.11.a)]. The sparsity of the Hessian of the data term Ec

is accentuated if, instead of using joints angles, we parameterize individually the

162 Caput 4. Method with texture & shading

pose of each of the 18 bones using a 7D vector consisting of a quaternion and a

translation vector such that θ ∈ R
119 [Figure (4.11b)]. Non-zero entries of the 119

by 119 Hessian appear on 7 by 7 blocks. Each block that is not on the diagonal

corresponds to a pair of hand parts that either occlude each other or share some

facets in their influence area when the pose space deformation method is used.

Using quaternions for the hand pose parameterization would facilitate the use of

finger independences in the minimization process. Unfortunately this would require

additional non-linear equality constraints between quaternions to enforce validity

of relative poses between linked bones. Such non-linear equality constraints are

difficult to handle in a continuous optimization framework and are likely to decrease

the convergence rate.

To exploit the sparsity of the Hessian of the data term when quaternions are used

for the pose parameterization without the need for additional non-linear constraints,

we first decompose the function Ec(θ) into Ec(θ) = Eq(Q(θ)), where Q maps the

joints-angles pose representation to the quaternion representation. The Hessian
∂2Eq

∂2θ
is then approximated by (∂Q∂θ)

tHq(
∂Q
∂θ) where Hq = (

∂2Eq

∂2Q
). At each step, we

refine the approximation to the Hessian Hq with an adapted BFGS update.

We approximate the structure of Hq by assuming complete independence be-

tween parts of the hand. This results in a block-diagonal structure [Figure (4.11.c)]

where non-zero entries are restricted to the 7 by 7 blocks along the diagonal. The

standard BFGS update does not exploit the sparsity structure of the approximat-

ed Hessian and would populate the entire matrix with non-zeros values. Using the

BFGS formula, we do not update the whole matrixHq, but we update each non-zero

7 by 7 block on the diagonal of the matrix independently. About 7 gradient evalua-

tions are then necessary to obtain a reasonable local approximation of the Hessian

of the data term whereas the standard BFGS method would require about 28 eval-

uations. This has a direct impact on the convergence rate of the minimization. The

method induces more zeros than in the true Hessian but still leads to significant im-

provement over the standard BFGS update. As we keep performing increments on

the θ vector during the optimization, we do not need to add non-linear constraints

to enforce validity of relative poses between linked bones that would be necessary if

increments where done in the quaternion representation space. The improvement in

the minimization process, in terms of the number of calls to the objective function,

is illustrated in [Figure (4.12)] where we estimated the pose for a single frame and

we average the matching cost curve for 100 trials with random initialization around

the optimal pose. We also present in [Figure (4.13)] five results obtained after 100

iteration with the classic BFGS method and the Blockwise BFGS method.

4.8. Model Registration 163

0 20 40 60 80 100
0

1

2

3

4

5

6
x 10

7

Descriptio 4.12: Averaged (100 trials) functional decrease with respect to number

of functional evaluations. blue: adapted BFGS. green: normal BFGS

164 Caput 4. Method with texture & shading

Descriptio 4.13: Each raw corresponds respectively to 1) the observed image 2) the

initial pose 3) the residual for the initial pose 4) the optimal pose found with BFGS

after 100 iteration 5) The residual for BFGS after 100 iterations 6) the optimal pose

found with Blockwise BFGS after 100 iterations 3)The residual of Blockwise BFGS

after 100 iterations

4.8. Model Registration 165

Descriptio 4.14: Observed image and extracted texture mapped on the hand under

the camera view point and two other view points. The texture is smoothly diffused

into regions that are hidden from the camera view point

4.8.3 Texture update

4.8.3.1 Formulation

Various methods for mapping images onto a static 3D surface have been proposed in

the literature [Zhou 2005b, Wang 2001]. Perhaps the simplest method involves, for

each 3D surface point, (1) computing its projected coordinates in the image plane,

(2) checking its visibility by comparing its depth with the depth buffer at those

image coordinates, and (3) if the point is visible, interpolating image intensities

at those coordinates and then recovering the albedo by dividing the interpolated

intensity by the model irradiance at that point. This approach is not suitable for

our formulation for several reasons. First, we need to interpolate values in hidden

parts of the hand, as those regions may become visible in the next frame. Second,

we need to update the texture robustly to avoid progressive contamination by the

background color, or self-contamination between different parts of the hand.

Here, we formulate texture estimation as the minimization of the same objective

functional as that used for tracking, in combination with a smoothness regulariza-

tion term (which does not depend on pose or lighting). That is, for texture T ∈ T

we minimize:

T̂ = arg min
T

Etext(T) s.t T ∈ T (4.70)

With:

Etext(T) = Ed(θ, L, T) + βEsm(T) (4.71)

Where β control the weight of a smoothing term Esm(T) that is defined in eqn4.72

and that penalize the local variations of the surface color. Due to the smoothness

term, the albedo is smoothly diffused (inpainted) to the texels that do not contribute

to the image i, either because they are associated to a part that is hidden from the

camera [Figure (4.14)] or because of texture aliasing artifacts. Due to the image

domain discretization some texels that belongs to visible parts of the surface may

not contribute to any pixel of the image. This is likely to happen when image

resolution is coarser than projected texture resolution.

166 Caput 4. Method with texture & shading

4.8.3.2 The smoothness term

In order to ease the minimization of Etext we use a smoothness term that is a

convex quadratic function of the texture image T . We use the notation fT defined

in eqn.4.14.

We write this smoothing term as:

Esm(T) ≡
1

2

∫

S(θ,ϑ)
‖JS

fT
(s)‖2ds (4.72)

where JS
fT
(s) is the 3 by 3 intrinsic Jacobian matrix of fT on the manifold

S(θ, ϑ). Denoting fT (x) = [fT [1](x), fT [2](x), fT [3](x)]
T , the ith line of this Jacobian

matrix JS
fT
(s) corresponds to the intrinsic gradient of the function x 7→ fT [i](x) on

the manifold S(θ, ϑ). Therefore the Frobenius norm ‖JS
fT
(s)‖2 can be written as

‖JS
fT
(s)‖2 =

3∑

i=1

‖∇SfT [i](s)‖2 (4.73)

with ‖∇SfT [i](s)‖2 the first differential parameter of Beltrami [Kreyszig 1991] of
the function x 7→ fT [i](x). The surface is composed of triangular facets (S(θ, ϑ) =
⋃Nf

j=1 Sj(θ, ϑ)) and thus the smoothing term can be decomposed into a sum over

the facets:

Esm(T) ≡
Nf∑

j=1

Ej
sm(T) (4.74)

with

Ej
sm(T) =

∫

Sj(θ,ϑ)
‖JS

fT
(s)‖2ds (4.75)

In order to compute JS
fT

for the points in the facet Sj we consider the local pa-

rameterization of the facet using two dimensional variable α = (α1, α2) ∈ R
2 with

α1 ≥ 0 and 0 ≤ α2 ≤ 1−α1. In order to be able to use the function h defined with

barycentric coordinates, we define the mapping w:

w : (α1, α2) 7→ (1− α1 − α2, α1, α2, j) (4.76)

The parameterization is of the surface is done using p defined as:

p(α) ≡ g ◦ w(α) = v1 + α1(v2j − v1j) + α2(v3j − v1j) (4.77)

with vij ≡ V (F (i, j))

From 4.14 we obtain

fT ◦ p(α) = r(h ◦ w(α), T) (4.78)

Following [Jin 2003, Delaunoy 2009] we rewrite the term using the fundamental

forms.

4.8. Model Registration 167

The Jacobian matrix of p is a 3 by 2 matrix that remain constant over the

domain spanned by α and writes

Jp = [v2j − v1j , v3j − v1j] (4.79)

We denote JfT ◦p(α) the 3 by 2 Jacobian matrix of fT ◦p evaluated at α. The intrinsic
Jacobian matrix JS

fT
(p(α)) can be defined as the minimum norm (Frobenius) matrix

that verifies JS
fT
(p(α))Jp = JfT ◦p(α) i.e.:

JS
fT
(p(α)) = argminX‖X‖ s.t XJp = JfT ◦p(α) (4.80)

This is solved using the left inverse of Jp defined by Bj ≡ (JT
p Jp)

−1JT
p :

JS
fT
(p(α)) = JfT ◦p(α)Bj (4.81)

Note that the matrix (JT
p Jp) is a 2 by 2 matrix whose coefficients are called the

first fundamental form coefficients.

The smoothness term is quadratic with respect to T and we can compute a

sparse matrix Hsm such that

Esm(T) = [T]Tl Hsm[T]l (4.82)

Whose derivation is detailed in the next section.

4.8.3.3 Texture Smoothness Matrix

In section 4.3.2 we assumed that a facet in the triangulated surface is associated

with a triangle in the texture image that has is either the upper-left or the lower-

right half part of a square whose size is KT by KT and whose vertices have integer

coordinates. Without loss of generality let consider a facet indexed by j whose

associated triangle is the upper-left part of a square. For notations convenience we

also assume that we have:

VT (FT (1, j)) = [0, 0]T

VT (FT (2, j)) = [KT , 0]
T

VT (FT (3, j)) = [0,KT]
T (4.83)

We have h ◦ w(α) = KTα. The 2 by 2 Jacobian matrix of h ◦ w is constant for

the facet j and writes

Jh◦w = KT I2×2 (4.84)

The 3 by 2 Jacobian matrix of fT ◦ p writes

JfT ◦p(α)) = Jr(h ◦ w(α))Jh◦w
= KTJr(h ◦ w(α))

(4.85)

168 Caput 4. Method with texture & shading

With r defined in eqn.4.13 and Jr its 3 by 2 Jacobian matrix. The smoothing term

for the facet Si(θ, ϑ) writes

Ej
sm(T) = cj

∫ 1

α1=0

∫ 1−α1

α2=0
‖JS

fT

(
p(α1, α2)

)
‖2dα1dα2

= cj

∫ 1

α1=0

∫ 1−α1

α2=0
‖JfT ◦p(α1, α2))Bj‖2dα1dα2

= cjKT

∫ 1

α1=0

∫ 1−α1

α2=0
‖Jr(h ◦ w(α1, α2))Bj‖2dα1dα2

(4.86)

With Bj = (JT
p Jp)

−1JT
p and ci the ration of surface elements on the surface and

dα and corresponds to twice the surface of the facet. cj = 2Aj with

Aj ≡
1

2
det([Jp, n̂j]) =

1

2
‖Jp[:,1] ∧ Jp[:,2]‖ =

1

2
‖(v2j − v1j) ∧ (v3j − v1j)‖ (4.87)

Because we use a bilinear interpolation of the texture while defining r (see

eqn.4.13), the jacobian Jr is piecewise linear. In order to simplify the computation

of eqn.4.86, we reformulate r using the following linear interpolation:

r(u, v) =

{
A(u, v) if ε(u) + ε(v) ≤ 1

B(u, v) else
(4.88)

With

A(u, v) = (1− ε(u)− ε(v))T⌊u⌋,⌊v⌋ + ε(u)T⌊u⌋+1,⌊v⌋ + ε(v)T⌊u⌋,⌊v⌋+1

B(u, v) = +(1− ε(u))T⌊u⌋,⌊v⌋+1 + (1− ε(v))T⌊u⌋+1,⌊v⌋

+(ε(u) + ε(v)− 1)T⌊u⌋+1,⌊v⌋+1 (4.89)

The function r is now linear on each triangle that is either the upper-left or the

lower-right part of a texel. The Jacobian matrix Jr is now constant on each texel

subpart:

Jr(u, v) =

{
JA(u, v) if ε(u) + ε(v) ≤ 1

JB(u, v) else
(4.90)

With

JA(u, v) =
[
T⌊u⌋+1,⌊v⌋ − T⌊u⌋,⌊v⌋, T⌊u⌋,⌊v⌋+1 − T⌊u⌋,⌊v⌋

]

JB(u, v) =
[
T⌊u⌋+1,⌊v⌋+1 − T⌊u⌋+1,⌊v⌋, T⌊u⌋+1,⌊v⌋+1 − T⌊u⌋,⌊v⌋+1

]
(4.91)

We change the integration variables in the integral eqn.4.86 by (u, v) = h ◦
w(α1, α2) = Kt(α1, α2):

Ej
sm(T) = 2Aj

∫ KT

u=0

∫ KT−u

v=0
‖Jr(u, v)Bj‖2 (4.92)

Jr(u, v) is piecewise constant on we can decompose the integrals into a sum. We

obtain

4.8. Model Registration 169

Ej
sm(T) = Aj

KT∑

u=0

[
KT−u∑

v=0

‖JA(u, v)Bj‖2 +
KT−u−1∑

v=0

‖JB(u, v)Bj‖2
]

(4.93)

JA and JB are linear with respect to the texture image T and thus this smoothing

term is quadratic with respect to T . As a consequence we can define derive from

this equation a symmetric positive matrix H i
sm such that

Ej
sm(T) = [T]Tl H

j
sm[T]l (4.94)

We denote Hsm the smoothing matrix defined by

Hsm =

Nf∑

j=1

Hj
sm (4.95)

From eqn.4.74 we obtain

Esm(T) =

Nf∑

j=1

Ej
sm(T) = [T]Tl Hsm[T]l (4.96)

where [T]l corresponds to the vectorized version of T that is obtained by

concatenating all columns of T .

Note that in [de La Gorce 2008] we defined the smoothness measure Ẽsm(T) to

be the sum of squared differences between colors associated to pixels (texels) that

are adjacent in the texture and that are associated to the same facet. That is,

Ẽsm(T) =
∑

i

∑

j∈NT (i)

‖Ti − Tj‖2 (4.97)

where NT (i) represent the neighborhood of the texel i that is associated to the same

facet as T (i). The smoothness term Ẽsm(T) is a good approximation of Esm(T)

whenever all facet are about the same size and nearly equilateral.

4.8.3.4 Minimization with Augmented Half-Quadric form

Once L θ and ϑ fixed, the RGB value of each pixel of the synthesized image Isyn
is a linear combination of the RGB values of the four texels in the texture image

T that are used in the bilinear interpolation. We assume the texture image T to

contain Nt texels and denote [T]l the one-column (3Nt by 1) matrix obtained by

concatenating all RGB values in T . For each pixel x ∈ Ωd in the synthetic image

we can write:

Isyn(x) = Ax[T]l

with Ax a 3 by 3Nt matrix with only 12 non-zeros values (3 per texel that contribute

to the bilinear interpolation). The data-term Ed(θ, ϑ, L, T) rewrites:

Ed(θ, ϑ, L, T) =
∑

ij

ρ(‖Aij [T]l − Iobs(i, j)‖) (4.98)

170 Caput 4. Method with texture & shading

If one chooses ρ to be the Huber function or a truncated quadratic function

in (4.36), then the minimization of the function Etext(T) with T ∈ T can be done

efficiently by introducing an auxiliary variables wx for each pixel x ∈ Ωd in the

image. We assume that ρ verifies x 7→ ρ(
√

(x)) is concave, x 7→ ρ(x) is increasing,

ρ is C1 and ρ′(0) = 0 and ρ′′(0) > 0 is finite. Using the theory of convex conjugacy,

it has been established in [Geman 1992] that if we denote β the function defined on

R
+∗ by

β(α) = sup
x
[ρ(x)− α‖x‖2] (4.99)

The we can rewrite ρ as

ρ(x) = min
α>0

[α‖x‖2 + β(α)] (4.100)

an the minim of the side term of this equation is reached for

α̂ =
1

2|x|2
〈

x ,
dρ(x)

dx

∣
∣
∣
∣
x

〉

(4.101)

If ρ(x) = x then β(α) = 1
4α . If ρ(x) = min(x2, τ) then β(α) = τ(1− α).

Using the function β and auxiliary variables W ≡ (wx)x∈Ωd
, the texture

estimation rewrites

T̂ = arg min
T

(min
W

Ētext(T,W)) s.t T ∈ T (4.102)

with the augmented function:

Ētext(T,W) ≡ [T]Tl Hsm[T]l +
∑

x∈Ωd

wx‖Ax[T]l − Iobs(i, j))‖2 + β(wx) (4.103)

The function Ētext is quadric with respect to T and thus is an half-quadric function.

The minimization of Ētext is done by minimizing alternatively with respect to T

and with respect to the auxiliary variables W . The minimization with respect to T

is done by solving a linear system. The minimization with respect to the auxiliary

variables W is done using eqn.4.101. One can draw a parallel between this method

and the iterative-reweighted-least square (IRLS) method as done in [Nikolova 2007].

The choice of ρ as a truncated quadratic function gave the best results.

To improve robustness we also remove pixels near the occlusion boundary from

the summation domain Ωd when computing the term Ed(θ, L, T), and we bound

the difference between the texture in the first frame and the subsequent texture

estimates.

Finally, we note that cast shadows are not modeled directly in our approach,

and are therefore modeled as texture, as any other color information. Introducing

cast shadows in our continuous optimization framework is not straightforward as

it would require computation of related terms in the functional gradient. Shadows

would then constitute an additional source of information to guide the registration

of the model. Nevertheless, despite lack of cast shadows in our model, our results

show adequate, robust tracking.

4.9. Experimental Results 171

Descriptio 4.15: Estimation of the pose light and morphologic parameters in the first

frame: the first line show the first observed frame, the synthetic image corresponding

to rough initialization given by the user and the corresponding residual. The second

line show the result obtained after convergence

While fitting the hand model onto the first frame, very little is known about

color and texture of the hand and the background. A simple prior is to assume that

the texture can be fairly approximated by a single color. This is detailed din the

section on initialization

4.9 Experimental Results

4.9.1 Initialization

The hand pose tracker requires a reliable initial guess in the first frame. Estimating

the hand pose in a single frame without a strong prior of the hand pose is chal-

lenging. In our case the morphological parameters are also estimated in the first

frame.

One could attempt to use a discriminative method to obtain a rough initializa-

tion (e.g., [Rosales 2001]). However, since this is outside the scope of our approach

at present, we assume prior information about the initial hand pose.

In particular, the hand is assumed to be parallel to the image plane at initializa-

tion [Figure (4.15)] and linear constraints were defined on the relative lengths of the

parts within each finger. Furthermore, since we do not yet have a texture estimate

in the first frame, we suppose the model hand color albedo to be constant across

the surface. With this assumption the appearance of the model hand is largely due

to shading. The three RGB values of the hand color, along with the hand pose, the

morphological parameters and the illuminant are estimated simultaneously using

172 Caput 4. Method with texture & shading

the quasi-Newton method (see the results in second row [Figure (4.15)]2). We sup-

pose that the background image or its histogram are provided by the user. Once

the morphological parameters are estimated in the first frame, they remain fixed

for the remainder of the image sequence.

4.9.2 Tracking without pose prior

We test our tracking algorithm on various image sequences. In the first sequence

[Figure (4.16)] each finger bends in sequential order, eventually occluding parts of

other fingers and the palm 3. The cluttered background image is static, and was

obtained from a frame where the hand was not visible. The resolution of each frame

is 640 by 480 pixels. We can notice that the edges of the synthetic hand image edges

matches the edges in the observed image, despite we did not use any explicit edge-

related term in our objective functional. Misalignment of the edges in the synthetic

and observed images creates a large residual in the area between these edges and

produces occlusion forces on the hand edges pointing in the direction that reduces

the gap between these edges.

To illustrate the improvements provided by self-occlusion forces, we simply re-

moved the occlusion-forces while computing the functional gradient. The effect is

dramatic as the resulting algorithm is unable track any displacement.

The comparisons with the conventional sum-on-surface approach outlined in

Section 4.4.4 is more relevant. This alternative approach involves summing errors

on 3D points that remain fixed on the triangulated surface throughout the itera-

tions. Those points are uniformly distributed on the hand surface and their binary

visibility is computed at each step of the quasi-Newton minimization process. To

account for the change of summation domain (from image to the surface), the error

associated to each point is weighted by the inverse of the ratio of surfaces between

the 3D triangular face and its projection. The errors associated with the back-

ground are also taken into account, in order to remain consistent with the initial

cost function. Furthermore, this will prohibit the model from shrinking in the im-

age domain by increasing its distance to the camera. We kept occlusion forces

between the hand and the background to account for variations of the background

visibility while computing the functional gradient. The functional computed in

both approaches would ideally be equal and their difference is bounded by the error

induced by the discretization of integrals. For both methods we limited the number

of iterations to 100.

This alternative approach produces overall good results [Figure (4.16) rows 5-7]

but fails to recover the precise location of the finger extremities when they bend

and occlude the palm. This is most significant in the third column where a large

portion of the little finger is missing. Our approach (rows 2-5) compares favorably,

yielding accurate tracking through the entire sequence. The alternative approach

2the video Video1.avi encoded with the xvid codec can be downloaded here:

http://www.mas.ecp.fr/vision/Personnel/martin/PAMI09/
3see Video2.avi and Video3.avi

4.9. Experimental Results 173

fails because the hand/background silhouette is not particularly informative about

the position of fingertips when fingers are bending. The residual error is mostly

localized near the outside extremity of the synthesized finger, and self-occlusion

forces are necessary to pull the finger toward this region.

We further validate our approach by choosing the erroneous estimated hand

pose in [Figure (4.16) column 3 rows 5-7] as an initialization of the new tracking

method that uses the occlusion forces [Figure (4.17)]4. The initial hand pose and the

corresponding residual are shown in the first column. The pose obtained after 25 and

50 iterations are in the second and the third column. After 30 iterations the hand

pose is properly recovered. This illustrates the eventual inability of the alternative

approach to converge to a local minima of the cost function as a consequence of its

poor treatment of occlusions.

The second and third sequences [Figure (4.18)] and [Figure (4.19)] were pro-

vided by the authors of the tree-based Monte Carlo method that constitutes the

state-of-the-art in monocular hand tracking [Stenger 2004a]. Both sequences have

a resolution of 320 by 240 pixels. In the second sequence the hand is closing and

opening while rotating. In the third sequence the index finger is pointing and the

hand rotates in a rigid manner. Both sequences present important self-occlusion

and large inter-frame displacements. The background in the third sequence is not

static and the associated cost has been expressed using a histogram (see Section

4.4). For computational reasons, the results presented in [Stenger 2004a] were ob-

tained with a reduction in the dimension of the hand pose-space, adapted to each

sequence individually (8D movements for second sequence - 2 for articulation and

6 for global motion - and 6D rigid movement for third sequence).

We tested our algorithm both with 5 and without 6 such reductions (respectively

rows 2 and 3). To do so, linear inequalities were defined between pairs or triplet

of angles. Inequalities were preferred to equalities because this limits the range

of possible poses while locally keeping enough freedom of pose variation to make

fine registration possible. We did not update the texture for those sequences after

the first frame. As one would expect the results are better when the pose space

is reduced. Nevertheless, the results obtained with the full pose space are still

satisfying. The loss of accuracy during tracking in the second and third sequences,

in comparison with the first sequence, can be attributed to two key factors. The

interframe movement in the second and third sequences is large. This challenges

our local search approach as a starting point for the minimization (i.e., it has to be

predicted from previous estimated poses). Also, in the second and third sequences

the fingers are often touching each other. This challenges our method because

collision avoidance has not been incorporated to prohibit parts from penetrating

one another in our optimization framework.

The last sequence [Figure (4.20)] illustrates robustness to self-occlusion using

4see Video4.avi
5See Video5.avi and Video7avi
6See Video6.avi and Video8.avi

174 Caput 4. Method with texture & shading

two hands 7. The left hand occludes progressively the right hand. Each column

corresponds successively to the observed images, the best synthesized images, the

difference images, and the images obtained with shading only (without texture).

One can notice that, due to the shading and texture, the synthetic image look very

alike the observed image. In the second row, the ring finger and the little finger

of the right hand are still properly registered despite the large occlusion. Despite

the translational movement of the hands, we kept all 28 DOFs on each hand while

performing tracking on this sequence.

4.9.3 Tracking with pose prior

In order to validate the qualitative improvement while using the prior term, we

test our tracker on a sequence of signed letter from the American manual alphabet

where “CVPR is spelled several times. A cyberGlove could be used to acquire the

set of training and poses. However number of DOF that can be tracked is smaller

than the number of DOF in our model, and the error on joint angles is often large.

Instead, we record a video of an hand spelling “CVPR simultaneously from two

different view point (front and side) using calibrated cameras. We perform multi-

view tracking by simply minimizing the sum of two data terms that respectively

correspond to the residual in the front view and the side view. This illustrates

the fact that our approach can easily be extended to the multi-view settings. The

combination of the two views reduces depth ambiguities and significantly improves

the quality of the inferred pose. Toward improving further the accuracy of the

tracking, we help the tracker by manually labeling the position of each finger tip in

both sequences, and add a third term in the objective function that measure the

distance between each finger tips projection and its manually labeled position in

the image. We track four occurrence of the “CVPR with this multi view setting and

obtained a total of about 600 training poses. The corresponding set of joint angles

parameters vectors α1, . . . , α600 is used to learn the kernel PCA plane using a radial

basis function kernel of the form exp(−‖x−y‖2/r2). We center and normalize each

angle parameter by its range in the extracted tracks, thus obtaining scaled values

ranging from −1 to 1. The bandwidth r of the kernel is chosen to be 1.5 times the

mean of the Euclidean distance to the closest scaled point in the training set, after

having removed points that temporally closer than some duration τ :

r2 =
1

N

∑

i

minj,‖i−j‖>τ‖xi − xj‖ (4.104)

This avoid comparisons with poses from the same letter occurrence, which would

lead to very small bandwidth and thus lead to over fit the training set. We chose

to keep 90% of the variance in the kernel PCA plane and took λ⊥ = λl (see eqn.

A.49).

We test the performance of the tracking on three new occurrences of the world

“CVPR using the front images only, thus performing monocular tracking. We

7see Video9.avi

4.9. Experimental Results 175

estimated the texture of the hand in the first frame and did not update the texture of

the model. We use the side view to assess the quality of the inferred pose. Without

the prior term, the methods loose track of the actual pose of the hand after the first

letter C [Figure (4.21)]. This is due to the fact that the inter-frame motion is quite

important during the transition between the letters. With the KPCA prior term

[Figure (4.22)] the methods is quantitatively able to track the hand pose during

the three occurrence of the word CVPR. We tested several weighting factor β for

the prior term and found the best results with β = 5.104. Note that the inferred

depth of the hand is not very precise (this is visible in the side view images), but

this is inevitable in the monocular setting. This validation clearly illustrates the

gain in robustness imputable to the prior term. Note that after the first letter the

method without the prior term yielded to pose where finger self-collide. No collision

avoidance is explicitly incorporated in the optimization framework to prohibit parts

from penetrating one another. However, since the set of trained configuration do

not exhibit self-collision, the inferred position are also mainly free of collisions.

176 Caput 4. Method with texture & shading

Descriptio 4.16: First sequence illustrating improvement due to self-occlusion forces.

The three columns contain results from three separate frames in the sequence. Each

row shows (from top to bottom) (1) the observed image, (2) the final synthetic

image, (3) the final residual image, (4) a synthetic side view at 45◦, (5) the final

synthetic image with residual summed on surface, (6) the residual for visible points

on the surface, and (7) the synthetic side view

4.9. Experimental Results 177

Descriptio 4.17: Recovery of the failure mode of the sum-on-surface method (section

4.9.2) by our method with occlusion forces.

178 Caput 4. Method with texture & shading

Descriptio 4.18: Second sequence. Each row shows (from top to bottom) (1) the

observed image, (2) the final synthetic image with limited pose space, (3) the final

residual image, (4) the synthetic side view with an angle of 45◦, (5) the final syn-

thetic image with full pose space, (6) the residual image and (7) the synthetic side

view

4.9. Experimental Results 179

Descriptio 4.19: Third sequence. Each row shows (from top to bottom) (1) the

observed image, (2) the final synthetic image with limited pose space, (3) the fi-

nal residual image, (4) the synthetic side view with an angle of 45◦, (5) the final

synthetic image with full pose space and (6) the residual image, the synthetic side

view

180 Caput 4. Method with texture & shading

Descriptio 4.20: Sequence with two hands illustrating robustness to large

self-occlusions

4.9. Experimental Results 181

Descriptio 4.21: “CV tracking without any hand pose prior. Each column corre-

spond successively to the observe front image, the synthetic front image of with the

estimated hand pose, the residual image , the observed image from side view (un-

used will estimating the hand pose), and the synthetic image front the side view.

Lines 1 and 3 respectively to letters C and V and the other lines correspond to

transition between letters. The track is lost during the transition between C and

V.

182 Caput 4. Method with texture & shading

Descriptio 4.22: “CVPR tracking with the KPCA prior, Lines 1,3,6,8 and 10 cor-

responds respectively to letters C,V,P,R and C. The other lines correspond to

transition between these letters.

Caput 5

Conclusion & Perspectives

5.1 Contributions

In this thesis we studied the problem of hand pose estimation in a sequence of

monocular images. We have introduced two model-based approaches where the

hand pose is estimated through the minimization of an objective function.

The first method is based on a simple hand surface model made of polyhedra and

ellipsoids. The objective function aims to separate the characteristics of the skin

with the ones of the cluttered background. This function depends only on the hand

silhouette once projected to the image plane and thus does not allows to discriminate

between pose that yield to the same hand silhouette. In order to address this

limitation we presented a second approach that exploits the shading and textural

information of the observed hand. This is done using a detailed triangulated surface

model whose appearance encompass shading and texture. Because the generative

model is realistic enough, we have been able to define the objective function directly

as the sum of errors within the observed image at each pixel.

For both approaches we have devised a differentiable objective function and we

have derived the exact expression of its gradient. For the silhouette method we

have devised numerical method to compute exactly (up to machine precision) the

matching cost and its gradient. For the method that combine texture and shading,

The exact computation of the matching cost has not been devised. We devised an

approximate matching cost that can be numerically evaluated exactly and yet is be

continuous and differentiable function of the hand pose parameters. The gradient

of the approximate matching cost has been derived an can be computed exactly.

This contrasts with most hand model-based approaches in the literature where the

matching cost is not computed exactly or is a discontinuous function of the hand

pose parameters

Based on the gradient of the objective function we have been able to use efficient

local optimization methods to estimate the hand pose. For the method based on

ellipsoids, we introduced a variable metric gradient descent and a efficient trust-

region method for model fitting. We also have devised an approximation of the

Hessian that further increase the convergence rate. For the model based on a trian-

gulated surface, we introduced a block-wise BFGS formula to exploit independences

between hand parts and speed up the convergence rate over the standard BFGS

formula. The exact derivation of the gradient in the case of the triangulated surface

has yield to occlusions forces that allow to deal with the change of visibility around

occlusion, which has not been done in previous methods.

184 Caput 5. Conclusion & Perspectives

Towards addressing limitations of local optimization methods we have consid-

ered a multiple-hypotheses testing algorithm. Introducing multiple hypotheses in

the process eliminates the risk of convergence to local minima that is often the

case of gradient descent optimization techniques. Furthermore we have introduced

a prior on the hand pose base on the Kernel principal-component-analysis toward

improving the robustness of the tracking whenever the context allows to have strong

assumption on the possible hand poses.

5.2 Perspectives

Promising qualitative results, as well as comparisons with the state of the art meth-

ods demonstrated the potentials of our contributions. Nevertheless, our method

does fails in long sequence with large self-occlusions and is not real-time. Several

improvements could be considered:

• Self-Collisions. It is desirable to avoid self-collision towards getting realistic

hand poses.Furthermore, self-occlusion may introduce a change of visibility

at surface intersections. The facet that do intersect might be partially visi-

ble and change of their visibility should also be treated when computing the

exact gradient of the matching cost. This would further complicate the ex-

pression of the gradient and is not desirable. On the other hand, self-collision

avoidance not straightforward to handle in the pose estimation procedure.

One need first to define the set valid pose in regard to self-collision, which we

denote Θc ⊂ Θ. Unfortunately, and that is not a convex set. Most efficient

optimization routines requires nonlinear(constraints to be define through a

set of continuous functions fi : θ 7→ R such that Θc ≡ {θ ∈ Θ|fi(θ) ≤ 0 ∀i}.
Defining such function fi to model the self-collision is very challenging. Most

collision-distance measure found in the literature are either defined for pairs

of convex objects [Cameron 1986, Ong 2000] or not differentiable around the

set {θ ∈ Θ | fi(θ) = 0} [Fisher 2001].

• Cast shadows. Regions that correspond to cast shadow often produce a

large residual. By modeling cast-shadows in the generative model, we could

reduce this residual if the hand pose is well estimated. Meanwhile we would

take advantage of the information conveyed by the cast shadows to improve

the pose estimate. Furthermore, if the hand casts a shadow on a simple flat

surface in the background , then it could be exploited to improve the depth

estimation of the hand pose. However, adding cast-shadow to our generative

model is not straightforward. The self cast-shadows continuously displace

when the hand moves and this as to be taken into account when deriving the

gradient of the objective function. Similarly to the occlusion forces deriving

from the variation of visibility, new forces would result from the variation

of the boundaries of the shadows. In order to compute these forces, ones

would need to describe the shadows boundaries analytically as polylines. Most

5.2. Perspectives 185

existing cast-shadow algorithms uses some discretization on the pixel grid and

therefore do not provide such an exact description of the shadow boundaries.

The model-space method to compute visibility discussed in section 4.7.1 is a

promising approach to include cast shadows in the model.

• Automatic initialization. The proposed methods are not fully automatic.

For both methods we either need to provide a full image of the static back-

ground or to select a large region in the background in order to learn some

color backgrounds statistics. The hand pose color distribution is obtained in

a supervised manner for the method based on ellipses. The mean hand color

is provided by the user for the method based on the triangulated surface. For

both methods, a rough estimate of the pose is requested from the user in the

first frame. Methods that localize a 2D flat hand with extended finger in the

image [Thayananthan 2003b, Wang 2008], can be considered to automatically

obtain a rough initial pose estimate. These estimated location could facilitate

the estimation of the color statistics of the hand and the background.

• Second order derivatives. We devised second and approximation of the

Hessian of the objective function for the method based on ellipsoids. Similarly

we could derive an approximation of the Hessian for the method based on the

triangulated surface. Using the trust-region method where the approximate

Hessian is not required to be positive, it is likely that we would improve the

convergence rate of the method.

• Globalizing the search. We advocate the use of a smart particle filter in

order to cope with the presence of several local minima in the objective func-

tion. Even if it allows to improve robustness, it might be insufficient to recover

the right pose in case of important ambiguity. Methods based on a very lim-

ited set of 2D poses such as [Thayananthan 2003b, Wang 2008] could allow

to perform re-initialization of the tracker if the user is informed in real-time

that the tracking has failed. In order to robustly pose estimation one would

either need to use an efficient discriminative approach or improve the search

using global optimizations methods. Several direction could be envisioned.

One possibility is to decompose the energy into a factor graph and use mes-

sage passing methods. An important difficulty while re-writing the objective

function as a sum of of factor come from the fact that the occlusion is difficult

to decompose into a graph. The method proposed in [Wang 2009] is a first

step toward modeling occlusion on discrete graphs. An additional challenge

is inherited from the dimensionality of the problem, since each phalanx is

represented by a node in the graph, the associated variable has 6 dimension

(rotation and translation). Message passing using 6D variable remain a diffi-

cult problem. Method based on Monte-Carlo integration [Sudderth 2004] do

not provide accurate results in such high dimensional spaces. An other pos-

sibility is to perform some Branch and bound optimization, where the pose

space is iteratively sectioned and large parts are discarded using some lower

186 Caput 5. Conclusion & Perspectives

bound of the actual objective function. The method proposed in , thought not

being rigorously stated as a branch and bound approach, is very close to the

idea. Unfortunately, like the discriminative methods, this method requires to

compute a huge set of hand images of the hand in different poses in order to

obtain precise hand pose estimates.

• Gesture analysis.Modeling and understanding hand gestures as a succession

of articulation parameters through autoregressive models could be a natural

extension of the proposed framework. Such an extension could lead to sign-

language recognition that is one of the most challenging tasks of gesture anal-

ysis. The method based on the kernel-PCA prior allows to recognize letter of

the American-manual-alphabet but does not allows to recognize a succession

of hand pose as a dynamic gesture like those of the America-sign-language.

Note however that the information conveyed by the hand hand might not be

sufficient because lips also convey crucial information while signing.

Other perspectives are the extension of some results to other applications. It

could be of interest, for medical applications for example, to extend the exact

integration of interpolated image into a polygon to the three dimensional case.

This would require to clip a polyhedra against the voxels of the 3D image and then

the integration of polynomials into each sub-voxel polyhedra using results from

[Li 1993, Sheynin 2001, Shu 2001, Grant 1985] for example. Then first order and

second derivatives of this integral could also be computed exactly. This would allow

to use efficient trust region schemes with active polyhedra [Slabaugh 2005].

Additamentum A

Appendix

A.1 forces on the silhouette : alternative proof

In order to demonstrate the equation eqn.3.162 in a more rigorous but less intuitive

manner than previously done, we first derive some equalities using integration by

parts along the line segment. Given a continuous function g we have:

[g(t)tn]10 =

∫ 1

0

∂g

∂t
(t)tndt+

∫ 1

0
g(t)ntn−1dt (A.1)

if we take g(t) = h(q(t)) with h a scalar function of two variable and q(t) =

(qx(t), qy(t)) with qx(t) = txk + (1 − t)xk+1 and qy(t) = tyk + (1 − t)yk+1 we

get :

h(qk)− 0nh(qk+1) =

∫ 1

0

(
∂h

∂x
(q(t))

∂qx
∂t

(t) +
∂h

∂y
(q(t))

∂qy
∂t

(t)

)

tndt (A.2)

+

∫ 1

0
h(q(t))ntn−1dt

=

[

(xk − xk+1)

∫ 1

0

∂h

∂x
(q(t))tndt

]

(A.3)

+

[

(yk − yk+1)

∫ 1

0

∂h

∂y
(q(t))tndt

]

+

∫ 1

0
h(q(t))ntn−1dt (A.4)

From 3.144 and 3.117 we can rewrite the matching cost as :

L(θ) =
∑

k

Ck =
∑

k

(yk+1 − yk)

∫ 1

0
Fx((1− t)qk + tqk+1)dt (A.5)

By replacing t by (1− t) in equation 3.117 we get :

Ck = (yk+1 − yk)

∫ 1

0
Fx(q(t))dt (A.6)

We differentiate Ck with respect to xk and yk :

188 Additamentum A. Appendix

∂Ck

∂xk
= (yk+1 − yk)

∫ 1

0

∂Fx

∂x
(q(t))

∂qx
∂xk

dt (A.7)

= (yk+1 − yk)

∫ 1

0
fc(tqk + (1− t)qk+1)tdt (A.8)

∂Ck

∂yk
= −

∫ 1

0
Fx(q(t))dt+ (yk+1 − yk)

∫ 1

0

∂Fy

∂x
(q(t))

∂qx
∂yk

dt (A.9)

= −
∫ 1

0
Fx(q(t))dt+ (yk+1 − yk)

∫ 1

0

∂Fy

∂y
(q(t))tdt (A.10)

Using eqn.A.4 with h = Fx and n = 1 we get :

∂Ck

∂yk
= −Fx(xk, yk)− (xk+1 − xk)

∫ 1

0
fc(tqk + (1− t)qk+1)tdt (A.11)

Finally we can differential L with respect to qk. The displacement of a vertex

qk has an influence only on the cost associated to the two neighboring segments i.e

we have ∂Cl

∂qk
= 0∀l /∈ {k − 1, k}. As a consequence we get:

∂L

∂qk
=

[
∂Ck−1

∂xk
+

∂Ck

∂xk
,
∂Ck−1

∂yk
+

∂Ck

∂yk

]T

(A.12)

= J(qk − qk−1)

∫ 1

0
fc(tqk + (1− t)qk−1)tdt (A.13)

+J(qk+1 − qk)

∫ 1

0
fc((tqk + (1− t)qk+1)tdt (A.14)

A.2. Algorithms 189

A.2 Algorithms

Algorithm 3: Forward differentiation

Data: θ, (∂E
∂Ki

)i=1,...,N

Result: ∂E
∂θ

// Compute all derivatives ∂Kn

∂θj
with (n, j) ∈ {1, . . . , N}2

K1 ← F1(θ1);

for l = 1 to d∗1 do
∂K1

∂θ1,l
← ∂F1

∂θ1,l

∣
∣
∣
θ1
;

for j = 2 to N do

for l = 1 to d∗1 do
∂K1

∂θj,l
← 04×4;

for j ← 2 to N do

i← p(j);

Kj ← KiFj(θj);

for l = 1 to d∗1 do
∂Kj

∂θj,l
← Ki

∂Fj

∂θj,l

∣
∣
∣
θj
;

for k ∈ V \{(j)} do

for l = 1 to d∗1 do
∂Kj

∂θk,l
← ∂Ki

∂θk
Fj(θj,l);

// Combine ∂Kn

∂θj
with ∂E

∂Kn
to obtain the final results

for j = 1 to N do

for l = 1 to d∗1 do
∂E
∂θj,l

←
∑N

n=1

∂E
∂Kn

∂Kn

∂θj,l
;

190 Additamentum A. Appendix

Algorithm 4: Backward differentiation

Data: θ, (∂E
∂Ki

)i=1,...,N

Result: ∂E
∂θ

// Recompute matrices K1, . . . ,KN if not stored in memory

K1 ← F1(θ1);

for j ← 2 to N do

i← p(j);

Kj ← KiFj(θj);

// Initialize matrices K̄1, . . . , K̄N

for i← 1 to N do

K̄i ←
∂E
∂Ki

;

// Back-propagate derivatives

for j ← N to 2 do

i← p(j);

K̄i ← K̄i + K̄jF
T
i (θj);

for l = 1 to d∗1 do
∂E
∂θj
← KT

i K̄j
∂Fj

∂θj,l

∣
∣
∣
θj,l

;

for l = 1 to d∗1 do
∂E
∂θ1,l

← K̄1
∂F1

∂θ1

∣
∣
∣
θ1,l

;

A.2. Algorithms 191

Algorithm 5: clipSegmentOnPixelGrid

Data: Two segment extremities a ≡ (xa, ya) and b ≡ (xb, yb)

Result: a list of Point p1, . . . , pN and their normalized curvilinear

coordinate t1, . . . tN ∈ [0, 1] on the segment such that p1 = (xa, ya),

pN = (xb, yb), ab =
⋃N

i=1 pi, pi+1 and for each i the two segments

extremities pi and pi+1 lies inside the same pixel

// get the first intersection with a vertical line

if xb > xa then

δxv ← 1; xv ← ⌊xa⌋+ 1;

else

δxv ← −1; xv ← ⌈xa⌉ − 1;

if δxxv < δxxb then

Nv ← ⌈δx(xb − xv)⌉; δTv ← δxv/(xb − xa); δ
y
v ← (yb − ya)δ

T
v ;

yv ← δxv δ
y
v(xv − xa) + ya; tv ← δxv δ

T
v (xv − xa);

else

Nv = 0;tv = 1;

// get the first intersection with an horizontal line

if yb > ya then

δyh ← 1; yh ← ⌊ya⌋+ 1;

else

δyh ← −1; yh ← ⌈ya⌉ − 1;

if δyyh < δyyb then

Nh ← ⌈δy(yb − yh)⌉; δTh ← δyh/(yb − ya); δxh ← (xb − xa)δ
T
h ;

xh ← δxhδ
y
h(yh − ya) + xa; th ← δyvδTv (yv − ya);

else

Nh ← 0;th = 1;

p1 = (xa, ya); t1 = 0;

// Loop until it reaches the extremity b

N ← Nh +Nv + 2;

for k ← 2 to N do

if tv < th then

// the next intersection is with a vertical line

pk ← (xv, yv); tk ← tv;

// get the next intersection with an vertical line

(xv, yv, tv)← (xv + δxv , yv + δyv , tv + δTv);

else

// The next intersection is with an horizontal line

pk ← (xh, yh); tk ← th;

// get the next intersection with an horizontal line

(xh, yh, th)← (xh + δxh, yh + δyh, th + δTh);

pN ← (xb, yb); tN = 1;

192 Additamentum A. Appendix

Algorithm 6: clipMonotonicEllipseArcOnPixelGrid

Data: a 3 by 3matrix Q associate to the ellipse and two arc extremities

(xa, ya) and (xb, yb)

Result: a list of Point P1, . . . , PN on the ellipse arc such that p1 = (xa, ya),

pN = (xb, yb) and for each i the ellipse arc between pi and pi+1 lies

inside the same pixel

// Check if the two extremities belong to the ellipse

if [xa, ya, 1]Q[xa, ya, 1]
T 6= 0 or [xb, yb, 1]Q[xb, yb, 1]

T 6= 0 then
error

// get the first intersection with a vertical line

if xb > xa then

δx ← 1;xv ← ⌊xa⌋+ 1;

else

δx ← −1;xv ← ⌈xa⌉ − 1;

if δxxv < δxxb then

yv ← intersectV(Q, xv,−δx); Nv ← ⌈δx(xb − xv)⌉;

else

Nv = 0;

// get the first intersection with an horizontal line

if yb > ya then

δy ← 1;yh ← ⌊ya⌋+ 1;

else

δy ← −1;yh ← ⌈ya⌉ − 1;

if δyyh < δyyb then

xh ← intersectH(Q, yh, δy); Nh ← ⌈δy(yb − yh)⌉;

else

xh ← δx + xb; Nh ← 0;

p1 = (xa, ya);

// Loop until it reaches the extremity b

N ← Nh +Nv + 2;

for k ← 2 to N do

if δxxv < δxxh then

// the next intersection is with a vertical line

pk ← (xv, yv);

// get the next intersection with an vertical line

xv ← xv + δx; yv ← intersectV(Q, xv,−δx);

else

// The next intersection is with an horizontal line

pk ← (xh, yh);

// get the next intersection with an horizontal line

yh ← yh + δy; xh ← intersectH(Q, yh, δy);

pN ← (xb, yb);

A.2. Algorithms 193

Algorithm 7: intersectV(Q,x,sv)

Data: a 3 by 3matrix Q associate to the ellipse, a vertical line coordinate x

and sv ∈ {−1, 1} that specify if we are in the upper(1) of lower
(−1)part of the ellipse

Result: The coordinate of the intersection (x, y) of the line and the ellipse

upper or lower part

α← Q22;

β ← 2Q12x+ 2Q23;

γ ← Q11x
2 + 2Q13x+Q33;

∆ = β2 − 4αγ;

y ← (−β + sv
√
∆)/(2α);

Algorithm 8: intersectH(Q,y,sh)

Data: a 3 by 3matrix Q associate to the ellipse,an horizontal line coordinate

y and sh ∈ {−1, 1} that specify if we are in the right(1) of left (−1)
part of the ellipse

Result: The coordinate of the intersection (x, y)

α← Q11;

β ← 2Q12y + 2Q13;

γ ← Q22y
2 + 2Q23y +Q33;

∆ = β2 − 4αγ;

x← (−β + sh
√
∆)/(2α);

194 Additamentum A. Appendix

Algorithm 9: integrateSegmentDerivativeNearestNeighbor

Data: The polygon vertices (qi)
N
i=1 and a discretized function f(x, y)

Result: The derivatives q̇i ≡ ∂I
∂qi

of the integral I of fc inside the polygon

with fc the shifted nearest neighbor interpolation of f

for i← 1 to N do

q̇i ← [0, 0]T ;

// loop over edges of the polygon

for i← 1 to N do

j = mod(i, N) + 1;

// clip the segment qi, qj on the pixel grid

(pk, tk)
K
k=1 ← intersectSegment(qi, qj);

// loop over subpixel fragments

for k ← 1 to K − 1 do

// compute the middle point of the subpixel fragment

xc = (xk + xk+1)/2;

yc = (yk + yk+1)/2;

tc = (tk + tk+1)/2;

∆t = (tk+1 − tk);

// add contribution of fragment to the derivative

q̇i ← q̇i +
[
0
1
−1
0

]
(qj − qi)(tk+1 − tk)tcf(⌊xc⌋ , ⌊yc⌋);

q̇j ← q̇j +
[
0
1
−1
0

]
(qj − qi)(1− tc)f(⌊xc⌋ , ⌊yc⌋);

A.2. Algorithms 195

In order to make the pseudo-code 10 comprehensive, we explain some of the

intermediary variables:

x(t) = (1− t)xi + txj = Ax[1, t]
T

y(t) = (1− t)yi + tyj = Ax[1, t]
T

x(t)y(t) = Axy[1, t, t
2]T (A.15)

vd =

∫ tk+1

tk

td−1dt (A.16)

c0 =

∫ tk+1

tk

td−1dt

cx =

∫ tk+1

tk

ε(x(t))td−1dt

cy =

∫ tk+1

tk

ε(y(t))td−1dt

cxy =

∫ tk+1

tk

ε(x(t))ε(y(t))td−1dt (A.17)

After summation over all subpixel fragments of a segment we have:

β =

∫ 1

0
[1, t, t2]T fc(x(t), y(t)))dt

γ =

∫ 1

0
[1, t, t2]T∇fc(x(t), y(t)))dt (A.18)

And we finally obtain.

α1 =

∫ 1

0
fc((1− t)qi + tqj)tdt

α2 =

∫ 1

0
fc((1− t)qi + tqj)(1− t)dt

α3 =

∫ 1

0
∇fc((1− t)qi + tqj) t

2dt

α4 =

∫ 1

0
∇fc((1− t)qi + tqj)(1− t)2dt

α5 =

∫ 1

0
∇fc((1− t)qi + tqj)(1− t) t dt (A.19)

196 Additamentum A. Appendix

Algorithm 10: integrateSegmentDerivativesBilinear

Data: The polygon vertices (qi)
N
i=1 and a discretized function f(x, y)

Result: The derivatives q̇i ≡ ∂I
∂qi

and Hij ≡ ∂2I
∂qiqj

of the integral I of fc inside

the polygon with fc the bilinear interpolation of f

// loop over edges of the polygon

for i← 1 to N do

j = mod(i, N) + 1;

β ← 03×1; γ ← 03×2
(pk, tk)

K
k=1 ← intersectSegment(qi, qj);// clip the segment qi, qj on

the pixel grid

// loop over subpixel fragments

for k ← 1 to K − 1 do

xc = (xk + xk+1)/2; yc = (yk + yk+1)/2; tc = (tk + tk+1)/2;

∆x = xk+1 − xk; ∆y = yk+1 − yk; ∆t = tk+1 − tk;

Ax ← [ε(xc)− (∆xtc/∆t), ∆x/∆t]; // see eqn.A.15

Ay ← [ε(yc)− (∆ytc/∆t), ∆y/∆t];

Axy = [Ax(1)Ay(1), Ax(1)Ay(2) +Ax(2)Ay(1), Ax(2)Ay(2)];

for d← 1 to 5 do

vd = ((tk+1)
d − (tk)

d)/d; // see eqn.A.16

f00 ← f(⌊xc⌋ , ⌊yc⌋); f01 ← f(⌊xc⌋ , ⌊yc⌋+ 1);

f10 ← f(⌊xc⌋+ 1, ⌊yc⌋); f11 ← f(⌊xc⌋+ 1, ⌊yc⌋+ 1);

b0 ← f00; bx ← f10 − f00; by ← f01 − f00;

bxy ← f11 − f10 + f00 − f01;

for d← 1 to 3 do

c0 ← vd;

cx ← Ax[vd, vd+1]
T ; // see eqn.A.17

cy ← Ay[vd, vd+1]
T ;

cxy ← Axy[vd, vd+1, vd+2]
T ;

βd ← βd + b0c0 + bxcx + bycy + bxycxy; // see eqn.A.18

γ[d,:] ← γ[d,:] + bxycy + [bx, by]
T c0;

α1 ← [0, 1, 0]β; // see eqn.A.19

α2 ← [1,−1, 0]β; α3 ← [0, 0, 1]γ; α4 ← [1,−2, 1]γ; α5 ← [0, 1,−1]γ;

J ←
[
0
1
−1
0

]
;

q̇j ← q̇j + J(qj − qi)α1;

q̇i ← q̇i + J(qj − qi)α2;

Hii ← Hii − Jα2 + J(qj − qi)α4;

Hjj ← Hjj + Jα1 + J(qj − qi)α3;

Hji ← Jα2 + J(qj − qi)α5;

Hji ← HT
ji;

A.3. identifying occlusion forces 197

anti−aliased region occluding regionnear occluded region

|∆y|

|∆x| = 1

√

1 + ∆2
y

x

p(x)

n̂

1

w=0

w=0.5

w=1

~x

~y

py(x)

V̄m

V̄n

1/|n̂x|

Descriptio A.1: Antialiasing weights for points in the vicinity of the segment

A.3 identifying occlusion forces

Let consider the residual along a segment joining two successive vertices V̄m and

V̄n along the occlusion boundary. Let assume this segment to be rather horizontal

i.e |n̂y| > |n̂x| and that we have n̂y > 0. We denote in the sequel V̄m = (xm, ym)

and V̄n = (xn, yn). Let assume without loss of generality that n̂y is positive i.e

that the occluding side lies below the segment. While computing ∇θĒ we need

to differentiate R̄ (eqn.4.63) with respect to θ. Some term are due to changes in

the residuals R while other are due to changes in the anti-aliasing weights w. We

consider here the terms due to the change in weights and thus assume the residuals

R to remain constant as θ varies. For notation concision we remove θ,L and T of

R from the list of parameters of R. We aim at identifying the term due to change

in weights with the second line in the equation 4.54. We denote this term C

C =
∑

x∈A∩N2

∂w(x)

∂θj
[R(x)−R(p(x))] (A.20)

We assumed the segment to be rather horizontal (|n̂y| > |n̂x|) and that n̂y > 0,

therefore w can be rewritten as follow:

w(x) =
(x− p(x)) · n̂

n̂y
(A.21)

We denote py(x) the projections along the vertical direction of the point x onto

the line that extend the considered segment. We denote (~x, ~y) the coordinate system

of the image plane. For any point x in A we can show that we have

w(x) = (x− py(x)).~y (A.22)

Differencing w with respect to θi gives:

∂w(x)

∂θj
= −∂py(x)

∂θj
.~y (A.23)

198 Additamentum A. Appendix

the vertically projected point py(x) lies in the segment joining V̄m and V̄n,

therefore there exist t ∈ [0, 1] such that

py(x) = (1− t)V̄m + tV̄n (A.24)

We can then differentiate py(x) with respect to θj :

∂py(x)

∂θj
=

∂t

∂θj
(V̄n − V̄m) + (1− t)

∂V̄m

∂θj
+ t

∂V̄n

∂θj
(A.25)

Because (V̄n − V̄m).n̂ = 0 and given the definition of the curve speed vj (eqn.4.52),

we get:

n̂.
∂py(x)

∂θj
= n̂.vj(py(x)) (A.26)

Because ~x.
∂py(x)
∂θj

= 0 we get :

n̂.
∂py(x)

∂θj
= (n̂x~x+ n̂y~y).

∂py(x)

∂θj
= n̂y(

∂py(x)

∂θj
.~y) (A.27)

Therefore
∂w(x)

∂θj
= −∂py(x)

∂θj
.~y = − n̂

n̂y
.
∂py(x)

∂θj
= − n̂.vj(py(x))

n̂y
(A.28)

We can rewrite A as follow:

C =
1

n̂y

∑

x∈A∩N2

−[R(x)−R(p(x))]n̂.vj(py(x)) (A.29)

We show now that, with some approximation we could identify this term with

the second term in the equation 4.54. We assume R and R+ to be smooth and we

get

R(p(x)) ≈ R(py(x)) (A.30)

R(x) ≈ R+(py(x)) (A.31)

Therefore, given the definition of the occlusion forces (eqn.4.55), C can be

approximated by C̃ defined as :

C̃ =
1

n̂y

∑

x∈A∩N2

−foc(py(x)).vj(py(x)) (A.32)

The division by max(|n̂x|, |n̂y|) in our definition of the weight [eqn.4.61] ensure that
(for a segment that is rather horizontal) within each vertical line there is a single

point x with integer coordinates and its weight in [0, 1). This appears more clearly

in [eqn.A.22]. Given a vertical line with constant x, this point has the coordinates

x = (x, ⌈ȳ(x)⌉) where
ȳ(x) = ym + (x− xm)∆y (A.33)

with

∆y = (yn − ym)/(xn − xm) (A.34)

A.3. identifying occlusion forces 199

∆y is slope of the segment or the increment we need to perform on the y coordinate

when x is incremented by 1 if one want to stay on the segment. We obtain from

[eqn.4.62]:

A ∩ N
2 = {(x, ⌈ȳ(x)⌉)|x ∈ N, p((x, ⌈ȳ(x)⌉) ∈ V̄mV̄n} (A.35)

We assume now that the condition that the point x should orthogonally project

into the segment (i.e p((x, ⌈ȳ(x)⌉) ∈ V̄mV̄n) can be approximated by the condition

x ∈ [xn, xm] as the line is rather vertical. The resulting approximate anti-aliased

region is no more a rectangle but a but parallelogram with two vertical sides. After

discretization on the grid this might result in some cases in neglecting a single point

near the extremities of the segment.

A ∩ N
2 ≈ {(x, ⌈ȳ(x)⌉)|x ∈ {⌈xn⌉, . . . , ⌊xm⌋}} (A.36)

This approximation of the anti-aliased region and the fact that py(x, ⌈ȳ(x)⌉) =
(x, ȳ(x)) allows us to approximate C̃ by C̃2 as follow:

C̃2 =
1

n̂y

⌊xm⌋∑

x=⌈xn⌉

−foc
(
(x, ȳ(x))

)
.vj

(
(x, ȳ(x))

)
(A.37)

We introduce ∆V = (1,∆y) to denote the 2D displacement along the segment

V̄mV̄n when x is incremented by one. We have

|∆V | =
√

1 + ∆2
y =

1

n̂y
(A.38)

We also introduce t = x− ⌈xn⌉ , N = ⌊xm⌋ − ⌈xn⌉ and ε = ⌈xn⌉ − xn. We obtain

after some derivation:

C̃2 = |∆V |
N−1∑

t=0

−foc(V̄n + (t+ ε)∆V).vj(V̄n + (t+ ε)∆V) (A.39)

This last approximation of C can be easily identified as an discrete

approximation of the integral along the segment V̄mV̄n of the function

f(x) = −foc(x).vj(x) (A.40)

This term corresponds to the contribution of the considered segment in the

second term of the equation 4.54. We demonstrated that the implementation based

on a discrete image domain with anti-aliasing yield, after differentiation, terms that

are consistent (up to some approximations) with the occlusion forces that where

obtained by differentiating the objective function defined with a continuous image

domain.

200 Additamentum A. Appendix

A.4 Kernel PCA

We briefly describe the Kernel PCA method [Schölkopf 1998] and it use to define the

pose prior. Let x1, . . . , xn the set of training points land φ a non linear mapping

from the input space to a higher dimensional space F called the f eature space.

The mapping φ can either be defined explicitly or implicitly through the use of

Mercer kernel. In the latter case one first define a Mercer kernel k(., .) such that

for all set of data points (xi)
n
i=1, the kernel matrix with elements Kij = k(xi, xj) is

symmetric positive definite. Then using Mercer’s theorem [Schölkopf 1998] it can

been shown that there exist a mapping φ into some high dimensional feature such

that k(x, y) =< φ(x), φ(y) >.

Given the training point we define the kernel matrix Kij = k(xi, xj) we denote

φ0 :=
1
N

∑N
i=1 φ(xi) the mean of the mapped points, and φ̄(xi) := φ(xi) − φ0 the

set of points after centering. Let Σφ denote the covariance matrix of the elements

of the training set mapped by φ.

Σφ =
1

N

∑

i

φ̄(xi).φ̄(xi)
t (A.41)

The centered kernel function is defined as k̄(x, y) =< φ̄(x).φ̄(y) > And can be

rewritten using the kernel function̈ı¿12 :

k̄(x, y) =k(x, y)− 1

n

n∑

i=1

(k(x, xi) + k(y, xi))

+
1

n2

n∑

i,j=1

k(xi, xj)

(A.42)

The centered kernel matrix is defined bÿı¿12K̄ij = k(xi, xj). It can easily be shown

that K̄ = HKH where H = I − 1
N 11t and 1 = [1, . . . , 1]t is a N × 1 vector. We

denote λk the eigen values of the covariance matrix in feature space Σφ and the Vk

associated eigen vectors. These vector lie in the span of the mapped training data

and thus decompose as follow:

Vk =

n∑

i=1

αikφ̄(xi) (A.43)

Scholkopf et al. showed that the eigen values λk of the covariance matrix Σφ and

the associated expansion coefficients αik can be obtained using eigen decomposition

of the centered kernel matrix K̄. Using eigen value decomposition

K̄ = USU (A.44)

where S = diag(γ1, . . . , γn) is a diagonal matrix containing eigen values of K̄. the

matrix U is an orthonormal matrix whose columns are eigen vectors. The element

uik represent the ith coordinates of the kth eig en vector. The eigen values λk are

given by λk = γk/n and the expansion coefficients αik are given by : αik = uik/
√
γk;

A.4. Kernel PCA 201

Given a dimension l we define the l-dimensional kernel PCA plane to be the

affine space containing φ0 and spanned by the l eigen vector associated to the l

largest eigen values of the covariance matrix. We denote P l the projection onto the

kernel PCA plane. Given a point x in the input space, the squared distance of its

corresponding feature point to the kernel PCA plane writes:

D2
F (φ(x), P

l(φ(x)) = ‖φ(x)− P l(φ(x))‖

= ‖φ̄(x)‖2 −
l∑

k=1

< Vk, φ̄(x) >
2

= k̄(x, x)−
l∑

k=1

(
n∑

i=1

αikk̄(xi, x))
2

= k̄(x, x)− k̄txMk̄x

(A.45)

where kx = [k(x, x1), . . . , k(x, xn)]
t, k̄x = H(kx− 1

nK1), k̄(x, x) = k(x, x)+ 1
N 1tK1−

2
N 1tkx and the elements of the matrix M defined by:

Mij =

l∑

k=1

αikαjk =

l∑

k=1

1

γk
uikujk (A.46)

Following [Cremers 2003] we can use the eigen values λk to compute the squared

Mahalanobis distance within the kernel PCA plane between the projected point

P l(φ(x)) and the mean φ0:

D2
M (P

l(φ(x)), φ0) =

l∑

k=1

1

λk
(

n∑

i=1

αk
i k̄(xi, x))

2 = k̄txDk̄x (A.47)

where elements of the matrix D are

Dij =
l∑

k=1

(αikαjk)/λk (A.48)

One can finally choose the closeness measure to the set of training points

x1, . . . , xn to be a combination of the distance to the plan and the Mahalanobis

distance within the plane :

Eprior(x) = (x)D2
F (φ(x), P

l(φ(x))/λ⊥ +DM (P
l(φ(x)), φ0)

=
1

λ⊥
(k̄(x, x)− k̄txMk̄x) + k̄txDk̄x (A.49)

where 0 < λ⊥ ≤ λl such that distance to the kernel PCA plane is more penalized

than the distance along any direction within the plane (see [Cremers 2003]).

The gradient of the energy can simply be obtained using chain derivation rule :

∂Eprior(x)

∂x
=

1

λ⊥

(
∂

∂x
(k̄(x, x))− 2k̄txM

∂k̄x
∂x

)

+ 2k̄txD
∂k̄x
∂x

(A.50)

202 Additamentum A. Appendix

where

∂kx
∂x

=

[
∂k(x, x1)

∂x
, . . . ,

∂k(x, xn)

∂x

]t

(A.51)

∂

∂x
(k̄(x, x)) =

∂

∂x
k(x, x)− 2

N
1t

∂kx
∂x

(A.52)

∂k̄x
∂x

= H
∂kx
∂x

(A.53)

Conspectus librorum

[Absil 2008] P.A. Absil, R. Mahony and R. Sepulchre. Optimization algorithms on

matrix manifolds. Princeton University Press, Princeton, NJ, 2008. 58, 59,

60

[Agarwal 2004] A. Agarwal and B. Triggs. Tracking Articulated Motion Using a

Mixture of Autoregressive Models. In ECCV, volume 3, pages 54–65, 2004.

146

[Agarwal 2006] A. Agarwal and B. Triggs. Recovering 3D human pose from

monocular images. PAMI, vol. 28, no. 1, pages 44–58, 2006. 47

[Aggarwal 1999] J.K. Aggarwal and Q. Cai. Human Motion Analysis: A Review.

CVIU, vol. 73, pages 428–440, 1999. 49

[Aizerman 1964] A. Aizerman, E.M. Braverman and L.I. Rozoner. Theoretical

foundations of the potential function method in pattern recognition learning.

Automation and Remote Control, vol. 25, pages 821–837, 1964. 147

[Appel 1967] A. Appel. The notion of quantitative invisibility and the machine

rendering of solids. In ACM National Conference, pages 387–393, 1967.

154, 155

[Atherton 1978] P. Atherton, K. Weiler and D. Greenberg. Polygon shadow

generation. In SIGGRAPH, pages 275–281, 1978. 154

[Athitsos 2002] V. Athitsos and S. Sclaroff. An Appearance-Based Framework for

3D Hand Shape Classification and Camera Viewpoint Estimation. In AFGR,

pages 45–48, 2002. 20, 22, 43, 44, 45

[Athitsos 2003a] V. Athitsos and S. Sclaroff. Database Indexing Methods for 3D

Hand Pose Estimation. In Gesture Workshop, pages 288–299, 2003. 20

[Athitsos 2003b] V. Athitsos and S. Sclaroff. Estimating 3D Hand Pose from a

Cluttered Image. In CVPR, pages 432–442, 2003. 43, 44, 45

[Balan 2007] A.O. Balan, M.J. Black, H. Haussecker and L. Sigal. Shining a Light

on Human Pose: On Shadows, Shading and the Estimation of Pose and

Shape. In ICCV, pages 1–8, 2007. 50, 128

[Bar 2009] L. Bar and G. Sapiro. Generalized Newton-Type Methods For Energy

Formulations In Image Processing. SIIMS, vol. 2, no. 2, pages 508–531,

2009. 107

[Barber 1996] C.B. Barber, D.P. Dobkin and H. Huhdanpaa. The quickhull al-

gorithm for convex hulls. TMS, vol. 22, no. 4, pages 469–483, 1996.

72

204 Conspectus librorum

[Berberich 2002] E. Berberich, A. Eigenwillig, M. Hemmer, S. Hert, K. Mehlhorn

and E. Schömer. A Computational Basis for Conic Arcs and Boolean Oper-

ations on Conic Polygons. In Annual European Symposium on Algorithms,

pages 174–186, 2002. 77, 80

[Blanz 1999] V. Blanz and T. Vetter. A Morphable Model for the Synthesis of 3D

Faces. In SIGGRAPH, pages 187–194, 1999. 135, 145

[Boissonnat 1995] J.D. Boissonnat and M. Yvinec. Géométrie algorithmique.

Ediscience international, 1995. 81

[Bray 2004a] M. Bray, E. Koller-Meier and L.J. Van Gool. Smart particle filtering

for 3D hand tracking. In AFGR, pages 675–680, 2004. 29, 30, 37, 42, 130,

132

[Bray 2004b] M. Bray, E. Koller-Meier, L.J. Van Gool and N.N. Schraudolph. 3D

Hand Tracking by Rapid Stochastic Gradient Descent Using a Skinning Mod-

el. In European Conference on Visual Media Production (CVMP), pages

59–68, 2004. 22, 26, 29, 30, 37, 39, 108, 120, 130, 132, 146

[Bremer 1998] D. Bremer and J.F. Hughes. Rapid Approximate Silhouette Render-

ing of Implicit Surfaces. In Proceesings of Implicit Surfaces, pages 155–164,

1998. 129

[Bresenham 1965] J.E. Bresenham. Algorithm for Computer Control of a Digital

Plotter. IBM System Journal, vol. 4, no. 1, pages 25–30, 1965. 96

[Broyden 1970] C.G. Broyden. The Convergence of a Class of Double-rank Min-

imization Algorithms. Journal of the Institute of Mathematics and Its

Applications, vol. 6, pages 76–90, 1970. 109

[Buchmann 2004] V. Buchmann, S. Violich and A. Billinghurst M.and Cockburn.

FingARtips: gesture based direct manipulation in Augmented Reality. In 2nd

international conference on Computer graphics and interactive techniques in

Australasia and South East Asia (GRAPHITE), pages 212–221, 2004. 22

[Burger 2003] M. Burger. Levenberg-Marquardt Level Set Methods for Inverse

Obstacle Problems. Inverse Problems, vol. 20, pages 20–259, 2003. 107

[Cameron 1986] S.A. Cameron and R.K. Culley. Determining the minimum trans-

lational distance between two convex polyhedra. In International Conference

on Robotics and Automation, pages 591–596, 1986. 184

[Carpenter 1984] L. Carpenter. The A-buffer, an antialiased hidden surface method.

In SIGGRAPH, pages 103–108, 1984. 159

[Catmull 1978] E. Catmull. A hidden-surface algorithm with anti-aliasing. In

SIGGRAPH, pages 6–11, 1978. 91, 92

Conspectus librorum 205

[Chazelle 1992] B. Chazelle and H. Edelsbrunner. An optimal algorithm for inter-

secting line segments in the plane. ACM, vol. 39, no. 1, pages 1–54, 1992.

77, 81

[Chen 1996] X. Chen. Convergence of the BFGS Method for LC1 Convex Con-

strained Optimization. SIAM J. Control Optim., vol. 34, no. 6, pages

2051–2063, 1996. 110

[Cheng 1992] R.C.H Cheng. Fast Linear Color Rendering. Graphics gems, vol. 3,

pages 343–354, 1992. 96

[Cheng 2004] S.Y Cheng and M.M. Trivedi. Hand Pose Estimation Using

Expectation-Constrained-Maximization From Voxel Data. Rapport tech-

nique, Computer Vision and Robotics Research (CVRR) Laboratory,

University of California, San Diego, 2004. 30, 37, 38, 41

[Cheng 2006] S.Y. Cheng and M.M. Trivedi. Multimodal Voxelization and Kinemat-

ically Constrained Gaussian Mixture Models for Full Hand Pose Estimation:

An Integrated Systems Approach. In CVS, page 34, 2006. 21, 30, 37, 41

[Chik 2007] D. Chik, J. Trumpf and N.N. Schraudolph. 3D Hand Tracking in a

Stochastic Approximation Setting. In HUM, pages 136–151, 2007. 20, 29,

39, 130, 132

[Chin 1989] N. Chin and S. Feiner. Near real-time shadow generation using BSP

trees. In SIGGRAPH Comput. Graph., pages 99–106, 1989. 154, 155

[Chrysanthou 1995] Y. Chrysanthou and M. Slater. Shadow volume BSP trees for

computation of shadows in dynamic scenes. In symposium on Interactive

3D graphics, pages 45–50, 1995. 154

[Chua 2000] C.S. Chua, H.Y. Guan and Y.K. Ho. Model-based finger posture

estimation. In ACCV, pages 43–48, 2000. 30

[Chua 2002] C.S. Chua, H.Y. Guan and Y.K. Ho. Model-based 3D hand posture

estimation from a single 2D image. IVC, vol. 20, no. 3, pages 191–202,

2002. 20

[Clarke 1998] T.A. Clarke and J.G. Fryer. The Development of Camera Calibration

Methods and Models. The Photogrammetric Record, vol. 16, no. 91, pages

51–66, 1998. 20

[Conn 2000] A.R Conn, N.I.M. Gould and P.L. Toint. Trust-region methods. Soci-

ety for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

112, 113, 160

[Cremers 2003] D. Cremers, T. Kohlberger and C. Schnorr. Shape statistics in

kernel space for variational image segmentation. PR, vol. 36, no. 9, pages

1929–1943, 2003. 148, 201

206 Conspectus librorum

[Crow 1977] F.C. Crow. Shadow algorithms for computer graphics. In SIGGRAPH,

pages 242–248, 1977. 154

[Crow 1981] F.C. Crow. A Comparison of Antialiasing Techniques. Computer

Graphics and Applications, vol. 1, no. 1, pages 40–48, 1981. 159

[Cui 2004] J-S Cui and Z-Q Sun. Vision-Based Hand Motion Capture Using Genetic

Algorithm. Lecture Notes in Computer Science, vol. 3005, pages 289–300,

2004. 20, 31, 42

[de Campos 2006] T.E. de Campos and D.W. Murray. Regression-based Hand Pose

Estimation from Multiple Cameras. In CVPR, pages 782–789, 2006. 21, 43,

46, 47

[de La Gorce 2006] M. de La Gorce and N. Paragios. Monocular Hand Pose Esti-

mation Using Variable Metric Gradient-Descent. In BMVC, volume 3, page

1269, 2006. 15, 110

[de La Gorce 2008] M. de La Gorce, D. Fleet and N. Paragios. Model-Based Hand

Tracking with Texture, Shading and Self-occlusions. In CPVR, pages 1–8,

2008. 15, 146, 169

[de La Gorce 2010a] M. de La Gorce, D.J. Fleet and N. Paragios. Model-based 3D

Hand Pose Estimation from Monocular Video. PAMI, 2010. 15

[de La Gorce 2010b] M. de La Gorce and N. Paragios. A variational approach to

monocular hand-pose estimation. CVIU, vol. 114, pages 363–372, 2010. 15

[Delamarre 1998] Q. Delamarre and O. Faugeras. Finding Pose of Hand in Video

Images: A Stereo-Based Approach. In AFGR, page 585, 1998. 20, 26, 28,

37, 41

[Delamarre 1999] Q. Delamarre and O. Faugeras. 3D Articulated Models and Multi-

View Tracking with Silhouettes. In ICCV, pages 716–721, 1999. 41, 84

[Delaunoy 2008] A. Delaunoy, E. Prados, P. Gargallo, J-P Pons and P. Sturm.

Minimizing the Multi-view Stereo Reprojection Error for Triangular Surface

Meshes. In BMVC, pages 1–10, 2008. 153

[Delaunoy 2009] A. Delaunoy, K. Fundana, E. Prados and A. Heyden. Convex

Multi-Region Segmentation on Manifolds. In ICCV, pages 662–669, 2009.

166

[Demirdjian 2003] D. Demirdjian. Enforcing constraints for human body tracking.

In CVPR Workshop on Multi-Object Tracking, page 102, 2003. 58

[Dewaele 2004] G. Dewaele, F. Devernay and R.P. Horaud. Hand Motion from 3D

Point Trajectories and a Smooth Surface Model. In ECCV, volume 1, pages

495–507, 2004. 20, 26, 29, 34, 36, 40, 129

Conspectus librorum 207

[DiZio 2002] P. DiZio and J. Lackner. Proprioceptive adaptation and aftereffects.

Handbook of Virtual Environments, pages 751–777, 2002. 49

[Dorfmuller-Ulhaas 2001] K. Dorfmuller-Ulhaas and D. Schmalstieg. Finger Track-

ing for Interaction in Augmented Environments. Rapport technique TR-186-

2-01-03, Institute of Computer Graphics and Algorithms, Vienna University

of Technology, Favoritenstrasse 9-11/186, A-1040 Vienna, Austria, February

2001. human contact: technical-report@cg.tuwien.ac.at. 22

[Dorner 1994] B. Dorner. Chasing the colour glove : Visual hand tracking. Master’s

thesis, Simon Fraser Univ. (Canada), 1994. 22, 30, 36

[Du 2008] H. Du and E. Charbon. A Virtual Keyboard System based on Multi-Level

Feature Matching. In HIS, pages 170–175, 2008. 22, 28, 29, 35, 130, 132

[Duff 1989] T. Duff. Polygon Scan Conversion by Exact Convolution. Raster

Imaging & Digital Typography, 1989. 91, 92

[Erol 2007] A. Erol, G. Bebis, M. Nicolescu, R.D. Boyle and X. Twombly. Vision-

based hand pose estimation: A review. CVIU, vol. 108, no. 1-2, pages 52–73,

2007. 12, 19

[Fellner 1993a] D.W. Fellner and C. Helmberg. Best Approximate General Ellipses

on Integer Grids. Rapport technique, University of Bonn, 1993. 98

[Fellner 1993b] D.W. Fellner and C. Helmberg. Robust rendering of general ellipses

and elliptical arcs. ACM Trans. Graph., vol. 12, no. 3, pages 251–276, 1993.

98

[Fisher 2001] S. Fisher and M.C. Lin. Deformed distance fields for simulation

of non-penetrating flexible bodies. In Eurographic workshop on Computer

Animation and Simulation, pages 99–111, 2001. 184

[Fletcher 1970] R. Fletcher. A New Approach to Variable Metric Algorithms.

Computer Journal, vol. 13, pages 317–322, 1970. 109

[Fogel 2006] E. Fogel, R. Wein, B. Zukerman and D. Halperin. 2D Regularized

Boolean Set-Operations. CGAL-3.2 User and Reference Manual, 2006. 77

[Foley 1996] J.D. Foley, A. van Dam, S.K. Feiner and J.F. Hughes. Computer

graphics (2nd ed. in c): principles and practice. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1996. 91

[Fujimoto 1983] A. Fujimoto and K. Iwata. Jag-Free Images on Raster Displays.

Computer Graphics and Applications, vol. 3, no. 9, pages 26–34, 1983. 96

[Galimberti 1969] R. Galimberti. An algorithm for hidden line elimination.

Commun. ACM, vol. 12, pages 206–211, 1969. 154

208 Conspectus librorum

[Gargallo 2007] P. Gargallo, E. Prados and P. Sturm. Minimizing the Reprojection

Error in Surface Reconstruction from Images. In ICCV, pages 1–8, 2007.

153

[Gavrilova 2000] M.L. Gavrilova and J.G. Rokne. Reliable line segment intersection

testing. Computer-Aided Design, vol. 32, no. 12, pages 737–745, 2000. 82

[Ge 2008] S.S. Ge, Y. Yang and T.H. Lee. Hand gesture recognition and tracking

based on distributed locally linear embedding. Image and Vision Computing,

vol. 26, no. 12, pages 1607 – 1620, 2008. 20

[Geman 1992] D. Geman and G. Reynolds. Constrained Restoration and the Re-

covery of Discontinuities. PAMI, vol. 14, no. 3, pages 367–383, 1992.

170

[Ghahramani 1996] Z. Ghahramani and G. Hinton. Parameter estimation for lin-

ear dynamical systems. Rapport technique CRG-TR-96-2, Department of

Computer Science, University of Toronto, 1996. 119

[Goldfarb 1970] D. Goldfarb. A Family of Variable Metric Updates Derived by

Variational Means. Mathematics of Computation, vol. 24, pages 23–26,

1970. 109

[Gong 2009] Y-X. Gong, Y. Liu, L. Wu and Y-B. Xie. Boolean Operations on

Conic Polygons. Journal Of Computer Science And Technology, vol. 24,

pages 568–577, 2009. 77, 80

[Gordon 1993] N. Gordon. Novel Approach to Nonlinear/Non-Gaussian Bayesian

State Estimation. Radar and Signal Processing, vol. 140, pages 107–113,

1993. 119

[Gordon 2002] N. Gordon. A Tutorial on Particle Filters for On-line Non-

linear/Non-Gaussian Bayesian Tracking. Signal Processing, vol. 50, pages

174–188, 2002. 119

[Granger 2002] S. Granger and X. Pennec. Multi-scale EM-ICP: A Fast and Robust

Approach for Surface Registration. In ECCV, pages 418–432, 2002. 40

[Grant 1985] C.W. Grant. Integrated analytic spatial and temporal anti-aliasing for

polyhedra in 4-space. In SIGGRAPH, pages 79–84, 1985. 186

[Greiner 1998] G. Greiner and K. Hormann. Efficient clipping of arbitrary polygons.

ACM Trans. Graph., vol. 17, no. 2, pages 71–83, 1998. 78

[Griewank 2000] A. Griewank. Evaluating derivatives: principles and techniques of

algorithmic differentiation. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 2000. 62, 159

Conspectus librorum 209

[Griffin 2000] W.B. Griffin, R.P. Findley, M.L. Turner and M.R. Cutkosky. Cali-

bration and Mapping of a Human Hand for Dexterous Telemanipulation. In

Symposium on Haptic Interfaces for Virtual Environments and Teleoperator

Systems, 2000. 26

[Guan 1999] H.Y. Guan, C.S. Chua and Y.K. Ho. Hand posture estimation from

2D monocular image. In 3DIM, pages 424–429, 1999. 20

[Guan 2006] H. Guan, R.S. Feris and M. Turk. The Isometric Self-Organizing Map

for 3D Hand Pose Estimation. In AFGR, pages 263–268, 2006. 43, 45, 46

[Guan 2007a] H. Guan. Vision-based three-dimensional hand posture estimation

using hierarchical-isosom. PhD thesis, University of California at Santa

Barbara, Santa Barbara, CA, USA, 2007. 21, 46

[Guan 2007b] H.Y. Guan and M. Turk. The Hierarchical Isometric Self-Organizing

Map for Manifold Representation. In CVPR, pages 1–8, 2007. 43, 45

[Heap 1996] T. Heap and D. Hogg. Towards 3D hand tracking using a deformable

model. In AFGR, page 140, 1996. 20, 25, 29, 31, 40

[Heckbert 1989] P.S. Heckbert. Fundamentals of Texture Mapping and Im-

age Warping. Rapport technique UCB/CSD-89-516, EECS Department,

University of California, Berkeley, 1989. 138

[Hernández 2004] C. Hernández. Stereo and Silhouette Fusion for 3D Object Mod-

eling from Uncalibrated Images Under Circular Motion. PhD thesis, ENST,

May 2004. 135

[Hill 1995] K.J. Hill. Matrix-based Ellipse Geometry. In Graphics gems V, pages

75–77. 1995. 80

[Hintermüller 2004] M. Hintermüller and W. Ring. A Second Order Shape Op-

timization Approach for Image Segmentation. SIAM Journal of Applied

Mathematics, vol. 64, no. 2, pages 442–467, 2004. 107

[Hintermüller 2007] M. Hintermüller. A combined shape Newton and topology

optimization technique in real time image segmentation. In Real-Time

PDE-Constrained Optimization, volume 3, pages 253–274. 2007. 107

[Holden 1997] E. Holden. Visual Recognition of Hand Motion. PhD thesis,

University of Western Australia, 1997. 22, 30, 36

[Hollister 1992] A. Hollister, W. L. Buford, L. M. Myers, D. J. Giurintano and

A. Novick. The axes of rotation of the thumb carpometacarpal joint. J.

Orthop. Res., vol. 10, no. 3, pages 454–460, 1992. 26

[Hornung 1984] C. Hornung. A Method for Solving the Visibility Problem.

Computer Graphics and Applications, vol. 4, pages 26–33, 1984. 154, 155

210 Conspectus librorum

[Howe 2004] N.R. Howe and A. Deschamps. Better Foreground Segmentation

Through Graph Cuts. Rapport technique, Smith College, 2004. 32

[Ilic 2003] S. Ilic and P. Fua. Implicit Meshes for Modeling and Reconstruction. In

CVPR, volume 2, page 483, 2003. 130

[Imai 2004] A. Imai, N. Shimada and Y. Shirai. 3-D Hand Posture Recognition by

Training Contour Variation. In AFGR, pages 895 – 900, 2004. 20

[Jin 2003] H. Jin, A.J. Yezzi, Y-H. Tsai, L-T. Cheng and S. Soatto. Estimation

of 3D Surface Shape and Smooth Radiance from 2D Images: A Level Set

Approach. J. Sci. Comput., vol. 19, no. 1-3, pages 267–292, 2003. 166

[Kadous 1995] M.W. Kadous. GRASP: Recognition of Australian Sign Language

Using Instrumented Gloves. Honours Thesis. School of Computer Science

and Engineering, University of New South Wales, 1995. 9

[Kato 2006] M. Kato, Y-W. Chen and G. Xu. Articulated Hand Motion Track-

ing Using ICA-based Motion Analysis and Particle Filtering. Journal of

Multimedia, vol. 1, no. 3, pages 52–60, 2006. 20

[Kim 2004] H. Kim and D.W. Fellner. Interaction with Hand Gesture for a Back-

Projection Wall. In Computer Graphics International, pages 395–402,

Washington, DC, USA, 2004. IEEE Computer Society. 22

[Kohonen 2001] T. Kohonen, M.R. Schroeder and T.S. Huang, editeurs. Self-

organizing maps. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 3rd

édition, 2001. 46

[Koji 2002] T. Koji and Y Michiaki. Ubi-Finger: Gesture Input Device for Mobile

Use. Transactions of Information Processing Society of Japan, vol. 43, pages

3675–3684, 2002. 49

[Kreyszig 1991] E. Kreyszig. Differential geometry. Dover, 1991. 166

[Kry 2002] P.G. Kry, D.L. James and D.K. Pai. EigenSkin: real time large defor-

mation character skinning in hardware. In SSIGGRAPH, pages 153–159,

New York, NY, USA, 2002. ACM. 28, 133

[Kuch 1994] J.J Kuch and T.S. Huang. Human computer interaction via the human

hand: a hand model. In Asilomar Conference on Signals, Systems, and

Computers, volume 2, pages 1252–1256, 1994. 30

[Kuch 1995] J.J. Kuch and T.S. Huang. Vision based hand modeling and tracking

for virtual teleconferencing and telecollaboration. In ICCV, page 666, 1995.

20, 22, 26, 27, 29, 30, 31, 32, 38, 54, 66, 67

[Kui Liu 2007] Y. Kui Liu, X. Qiang Wang, S. Zhe Bao, Ma. Gomboši and B. Alik.

An algorithm for polygon clipping, and for determining polygon intersections

and unions. Comput. Geosci., vol. 33, no. 5, pages 589–598, 2007. 78

Conspectus librorum 211

[Lee 1995] J. Lee and T.L. Kunii. Model-Based Analysis of Hand Posture. Com-

puter Graphics and Applications, vol. 15, no. 5, pages 77–86, 1995. 26, 27,

35, 38, 41, 66, 67, 68

[Lee 1996] C. Lee and Y. Xu. Online, Interactive Learning of Gestures for

Human/Robot Interfaces. In International Conference on Robotics and

Automation, volume 4, pages 2982–2987, 1996. 9

[Lee 2004] S.U. Lee and I. Cohen. 3D hand reconstruction from a monocular view.

In ICPR, volume 3, pages 310–313, 2004. 20, 28, 29

[Lewis 2000] J.P. Lewis, M. Cordner and N. Fong. Pose space deformation: a

unified approach to shape interpolation and skeleton-driven deformation. In

SIGGRAPH, pages 165–172, 2000. 132

[Li 1993] B. Li. The Moment Calculation of Polyhedra. PR, vol. 26, no. 8, pages

1229–1233, 1993. 186

[Li 2007] R. Li, T.P. Tian and S. Sclaroff. Simultaneous Learning of Nonlinear Man-

ifold and Dynamical Models for High-dimensional Time Series. In ICCV,

pages 1–8, 2007. 146

[Liang 1998] R.H. Liang and M. Ouhyoung. A Real-Time Continuous Gesture

Recognition System for Sign Language. In AFGR, pages 558–567, 1998.

9

[Lien 1998] C.C. Lien and C.L. Huang. Model-Based Articulated Hand Motion

Tracking For Gesture Recognition. IVC, vol. 16, no. 2, pages 121–134, 1998.

22, 30, 35, 38

[Lien 2005] C.C. Lien. A scalable model-based hand posture analysis system. MVA,

vol. 16, no. 3, pages 157–169, 2005. 22, 30, 35, 36

[Liggett 1988] J.A. Liggett. Exact formulae for areas, volumes and moments of

polygons and polyhedra. Communications in applied numerical methods,

vol. 4, pages 815–820, 1988. 97, 156

[Lin 2000] J.Y. Lin, Y. Wu and T. S. Huang. Modeling the Constraints of Human

Hand Motion. In Workshop on Human Motion, pages 121–126, 2000. 11,

27, 28, 67, 146

[Lin 2002] J. Lin, Y. Wu and T.S. Huang. Capturing human hand motion in image

sequences. In Workshop on Motion and Video Computing, pages 99–104,

2002. 22, 28, 31, 32, 33, 40, 42, 54

[Lin 2004] J.Y. Lin, Y. Wu and T.S. Huang. 3D model-based hand tracking using

stochastic direct search method. In AFGR, pages 693–698, 2004. 20, 27, 28,

29, 31, 32, 33, 38, 39, 54

212 Conspectus librorum

[Lischinski 1992] D. Lischinski, F. Tampieri and D.P. Greenberg. A Discontinu-

ity Meshing Algorithm for Accurate Radiosity. Computer Graphics and

Applications, vol. 12, pages 25–39, 1992. 154

[Liu 2004] Y. Liu and Y. Jia. A Robust Hand Tracking and Gesture Recognition

Method for Wearable Visual Interfaces and Its Applications. In International

Conference on Image and Graphics, pages 472–475, 2004. 19

[Liu 2007] T-W. Liu and D-H. Li. A practical update criterion for SQP method.

Optimization Methods Software, vol. 22, no. 2, pages 253–266, 2007. 110

[Lu 2003] S. Lu, D. Metaxas, D. Samaras and J. Oliensis. Using Multiple Cues for

Hand Tracking and Model Refinement. In CVPR, volume 2, pages 443–450,

2003. 20, 28, 30, 31, 34, 41, 50, 128, 129, 146

[Magnenat-Thalmann 1988] N. Magnenat-Thalmann, R. Laperrière and D. Thal-

mann. Joint-dependent local deformations for hand animation and ob-

ject grasping. In Graphics Interface, pages 26–33, Toronto, Ont., Canada,

Canada, 1988. Canadian Information Processing Society. 132

[Mairson 1988] H.G. Mairson and J. Stolfi. Reporting and counting inter-sections

between two sets of line segments. Theoretical Foundations of Computer

Graphics and CAD, pages pp. 307–325, 1988. 77, 81

[Malassiotis 2008] S. Malassiotis and M. G. Strintzis. Real-time hand posture recog-

nition using range data. Image Vision Comput., vol. 26, no. 7, pages

1027–1037, 2008. 22

[Markosian 1997] L. Markosian, M.A. Kowalski, D. Goldstein, S.J. Trychin, J.F.

Hughes and L.D. Bourdev. Real-time nonphotorealistic rendering. In

SIGGRAPH, pages 415–420, New York, NY, USA, 1997. 154, 155

[McCool 1995] M.D. McCool. Analytic antialiasing with prism splines. In SIG-

GRAPH, pages 429–436, New York, NY, USA, 1995. ACM. 91, 97,

156

[McIlroy 1992] M.D. McIlroy. Getting raster ellipses right. ACM Trans. Graph.,

vol. 11, no. 3, pages 259–275, 1992. 98

[Mitobe 2007] K. Mitobe, J. Sato, T. Kaiga, T. Yukawa, T. Miura, H. Tamamo-

to and N. Yoshimura. Development of a high precision hand motion cap-

ture system and an auto calibration method for a hand skeleton model. In

SIGGRAPH, page 159, New York, NY, USA, 2007. ACM. 6

[Mo 2006] Z. Mo and U. Neumann. Real-time Hand Pose Recognition Using Low-

Resolution Depth Images. In CVPR, pages 1499–1505, Washington, DC,

USA, 2006. IEEE Computer Society. 22

Conspectus librorum 213

[Moeslund 2001] T.B. Moeslund and E. Granum. A survey of computer vision-based

human motion capture. CVIU, vol. 81, no. 3, pages 231–268, 2001. 49

[Moeslund 2003] T.B. Moeslund and L. Nørgaard. A Brief Overview of Hand Ges-

tures Used in Wearable Human Computer Interfaces. Rapport technique,

Laboratory of Computer Vision and Media Technology, Aalborg University,

Denmark, 2003. 10

[Moeslund 2006] T.B. Moeslund, A. Hilton and V. Krüger. A survey of advances

in vision-based human motion capture and analysis. CVIU, vol. 104, no. 2,

pages 90–126, 2006. 49

[Mohr 2003] A. Mohr and M. Gleicher. Building efficient, accurate character skins

from examples. ACM Trans. Graph., vol. 22, no. 3, pages 562–568, 2003.

133

[Murakami 1991] K. Murakami and H. Taguchi. Gesture recognition using recurrent

neural networks. In SIGCHI Conference on Human factors in Computing

Systems, pages 237–242, New York, NY, USA, 1991. ACM. 9

[Nakamae 1972] E. Nakamae and T. Nishita. An Algorithm for Hidden Line Elim-

ination of Polyhedra. Information Processing in Japan, vol. 12, pages

134–141, 1972. 154

[Nikolova 2007] M. Nikolova and R.H. Chan. The Equivalence of Half-Quadratic

Minimization and the Gradient Linearization Iteration. IP, vol. 16, no. 6,

pages 1623–1627, 2007. 170

[Nirei 1996] K. Nirei, H. Saito, M. Mochimaru and S. Ozawa. Human Hand Track-

ing from Binocular Image Sequences. In International Conference on Indus-

trial Electronics, Control, and Instrumentation, pages 297 – 302, 1996. 21,

28, 33, 34, 42

[Nishita 1974] T. Nishita and E. Nakamae. An algorithm for Half-Toned Repre-

sentation of three Dimensional objects. Information Processing in Japan,

vol. 14, pages 93–99, 1974. 154

[Nitzberg 1990] M. Nitzberg and D. Mumford. The 2.1-D Sketch. In ICCV, pages

138–144, 1990. 84

[Nölker 1998] C. Nölker and H. Ritter. Detection of Fingertips in Human Hand

Movement Sequences. In International Gesture Workshop on Gesture and

Sign Language in Human-Computer Interaction, pages 209–218, 1998. 30,

34

[Nölker 1999] C. Nölker and H. Ritter. GREFIT: Visual Recognition of Hand Pos-

tures. In International Gesture Workshop, page 61, 1999. 30, 34, 43, 46,

47

214 Conspectus librorum

[Nölker 2000] C. Nölker. Parametrized SOMs for Hand Posture Reconstruction. In

International Joint Conference on Neural Networks, volume 4, pages 139–

144, 2000. 43, 47

[Nölker 2002] H. Nölker C. Ritter. Visual recognition of continuous hand postures.

In Neural Networks, pages 2983– 994, 2002. 43, 46, 47

[Ogawara 2003] K. Ogawara, J.Takamatsu, K. Hashimoto and K. Ikeuchi. Grasp

recognition using a 3D articulated model and infrared images. In Intelligent

Robots and Systems, volume 2, pages 1590 – 1595, 2003. 20, 21, 29, 30, 37,

130, 132

[Ong 2000] C-J. Ong, E. Huang and S-M. Hong. A fast growth distance algorithm

for incremental motions. IEEE Transactions on Robotics, vol. 16, no. 6,

pages 880–890, 2000. 184

[O’Rourke 1982a] J. O’Rourke, C-B. Chien, T. Olson and D. Naddor. A New Linear

Algorithm for Intersecting Convex Polygons. CGIP, vol. 19, no. 4, pages

384–391, 1982. 82

[O’Rourke 1982b] J. O’Rourke, C-B. Chien, T. Olson and D. Naddor. A new linear

algorithm for intersecting convex polygons. Comput. Graph. Image Process.,

vol. 19, pages 384–391, 1982. 82

[O’Rourke 1999] J. O’Rourke. Computational geometry in C, second edition, cup,

cambridge, uk, 1998, 376 pages, volume 17. Cambridge University Press,

New York, NY, USA, 1999. 83

[Ouhaddi 1999a] H. Ouhaddi and P. Horain. 3D hand gesture tracking by model

registration. In International Workshop on Synthetic-Natural Hybrid Coding

and 3D Imaging, pages 70–73, 1999. 20, 22, 28, 29, 31, 32, 33, 38, 39, 54

[Ouhaddi 1999b] H. Ouhaddi and P. Horain. Hand tracking by 3D model regis-

tration : a comparison of optimisation methods. In International Scientific

Workshop on Virtual Reality and Prototyping, pages 51–59, 1999. 84

[Paragios 1999] N. Paragios and R. Deriche. Geodesic Active Regions for Supervised

Texture Segmentation. In ICCV, volume 2, pages 926–932, 1999. 152

[Pavlovic 2000] V. Pavlovic, J.M. Rehg and J. MacCormick. Learning Switching

Linear Models of Human Motion. In NIPS, pages 981–987, 2000. 146

[Pitteway 1980] M.L.V. Pitteway and D.J. Watkinson. Bresenham’s algorithm with

Grey scale. Commun. ACM, vol. 23, no. 11, pages 625–626, 1980. 96

[Plänkers 2001] R. Plänkers and P. Fua. Tracking and Modeling People in Video

Sequences. CVIU, vol. 81, no. 3, 2001. 129

Conspectus librorum 215

[Potamias 2008] M. Potamias and V. Athitsos. Nearest neighbor search methods for

handshape recognition. In International conference on Pervasive Technologies

Related to Assistive Environments, pages 1–8, 2008. 20, 43, 45

[Pottmann 2006] H. Pottmann, Q-X. Huang, Y-L. Yang and S-M. Hu. Geome-

try and Convergence Analysis of Algorithms for Registration of 3D Shapes.

IJCV, vol. 67, no. 3, pages 277–296, 2006. 40

[Powell 1978] M.J.D. Powell. The convergence of variable metric methods for

nonlinearly constrained optimization calculations. O.L. Mangasarian, R.R.

Meyer, and S.M. Robinson, eds., Academic Press, 1978. 109

[Preparata 1985] F.P Preparata and M.I Shamos. Computational geometry.

Springer-Verlag - New York, 1985. 81

[Rehg 1993] J. Rehg and T. Kanade. DigitEyes: Vision-Based Human Hand Track-

ing. Rapport technique CMU-CS-93-220, Computer Science Department,

Carnegie Mellon Universit, Pittsburgh, PA, December 1993. 30, 35

[Rehg 1994a] J. Rehg and T. Kanade. Visual Tracking of High DOF Articulated

Structures: An Application to Human Hand Tracking. In ECCV, volume 2,

pages 35–46, 1994. 26

[Rehg 1994b] J. Rehg and T. Kanade. Visual Tracking of Self-Occluding Ar-

ticulated Objects. Rapport technique CMU-CS-94-224, Computer Science

Department, Carnegie Mellon University, Pittsburgh, PA, 1994. 31, 39

[Rehg 1995] J. Rehg and T. Kanade. Model-Based Tracking of Self-Occluding

Articulated Objects. In ICCV, pages 612–617, 1995. 31, 39

[Roberts 1963] L.G. Roberts. Machine perception of three-dimensional solids. Out-

standing Dissertations in the Computer Sciences. Garland Publishing, New

York, 1963. 154

[Rosales 2001] R. Rosales, V. Athitsos, L. Sigal and S. Scarloff. 3D Hand Pose

Reconstruction Using Specialized Mappings. In ICCV, volume 1, pages 378–

385, 2001. 20, 43, 47, 171

[Sander 2001] P.V. Sander, H. Hoppe, J. Snyder and S.J. Gortler. Discontinuity

edge overdraw. In Symposium on Interactive 3D graphics, pages 167–174,

New York, NY, USA, 2001. ACM Press. 158, 159

[Schlattmann 2007] M. Schlattmann, F. Kahlesz, R. Sarlette and R. Klein. Mark-

erless 4 gestures 6 DOF real-time visual tracking of the human hand with

automatic initialization. Computer Graphics Forum, vol. 26, no. 3, pages

467–476, 2007. 21, 37

[Schmidt 2006] R. Schmidt, T. Isenberg and B. Wyvill. Interactive pen-and-ink

rendering for implicit surfaces. In SIGGRAPH, 2006. 129

216 Conspectus librorum

[Schneider 2002] D.H. Schneider P.J. Eberly. Geometric tools for computer

graphics. Elsevier Science Inc., New York, NY, USA, 2002. 80

[Schölkopf 1998] B. Schölkopf, A. Smola and K-R. Müller. Nonlinear component

analysis as a kernel eigenvalue problem. Neural Comput., vol. 10, no. 5,

pages 1299–1319, 1998. 147, 200

[Segen 1999] J. Segen and S. Kumar. Shadow Gestures: 3D Hand Pose Estimation

Using a Single Camera. In CVPR, volume 1, pages 479–485, 1999. 22, 35

[Shanno 1970] D.F. Shanno. Conditioning of Quasi-Newton Methods for Function

Minimization. Mathematics of Computation, vol. 24, pages 647–656, 1970.

109

[Sheynin 2001] S.A. Sheynin and A.V. Tuzikov. Explicit formulae for polyhedra

moments. PRL, vol. 22, no. 10, pages 1103–1109, 2001. 186

[Shimada 1998] N. Shimada, Y. Shirai, Y. Kuno and J. Miura. Hand Gesture Esti-

mation and Model Refinement Using Monocular Camera - Ambiguity Lim-

itation by Inequality Constraints. In AFGR, page 268, Washington, DC,

USA, 1998. IEEE Computer Society. 30, 35

[Shimada 2001] N. Shimada. Real-time 3-D Hand Posture Estimation based on 2-D

Appearance Retrieval Using Monocular Camera. In RATFG, page 23, 2001.

20, 43, 44, 48

[Shu 2001] H.Z. Shu, L.M. Luo, W.X. Yu and J.D. Zhou. Fast computation of

Legendre moments of polyhedra. PR, vol. 34, no. 5, pages 1119–1126, 2001.

186

[Sidenbladh 2000] H. Sidenbladh, M.J. Black and D.J. Fleet. Stochastic Tracking

of 3D Human Figures Using 2D Image Motion. In ECCV, volume 2, pages

702–718, 2000. 139

[Sigal 2007] L. Sigal. Continuous-state Graphical Models for Object Localiza-

tion, Pose Estimation and Tracking. Phd. manuscript, Brown University,

September 2007. 31

[Singer 1993] M.H. Singer. A General Approach to Moment Calculation for Poly-

gons and Line Segments. PR, vol. 26, no. 7, pages 1019–1028, 1993. 97,

156

[Slabaugh 2005] G. Slabaugh and G. Unal. Active Polyhedron: Surface Evolution

Theory Applied to Deformable Meshes. In CVPR, pages 84–91, Washington,

DC, USA, 2005. IEEE Computer Society. 186

[Sloan 2001] P-P. J. Sloan, C.F. Rose and M. F. Cohen. Shape by example. In

Symposium on Interactive 3D graphics, pages 135–143, New York, NY, USA,

2001. ACM. 28

Conspectus librorum 217

[Sminchisescu 2004] C. Sminchisescu and A. Jepson. Generative modeling for con-

tinuous non-linearly embedded visual inference. In ICML, page 96, 2004.

146, 147

[Soucy 1996] M. Soucy, G. Godin and M. Rioux. A texture-mapping approach for

the compression of colored 3D triangulations. The Visual Computer, vol. 12,

no. 10, pages 503–514, 1996. 135

[Starner 1998] T. Starner, A. Pentland and J. Weaver. Real-Time American Sign

Language Recognition Using Desk and Wearable Computer Based Video.

PAMI, vol. 20, no. 12, pages 1371–1375, 1998. 19

[Stauffer 1999] C. Stauffer and W. Grimson. Adaptive Background Mixture Models

for Real-time Tracking. In CVPR, volume 2, pages 246–252, 1999. 84

[Steger 1996] C. Steger. On the Calculation of Moments of Polygons. Rapport tech-

nique FGBV–96–04, Forschungsgruppe Bildverstehen (FG BV), Informatik

IX, Technische Universität München, August 1996. 97, 156

[Stenger 2001a] B. Stenger, P.R.S. Mendonça and R. Cipolla. Model Based 3D

Tracking of an Articulated Hand. In CVPR, volume 2, pages 310–315, 2001.

28, 31

[Stenger 2001b] B. Stenger, P.R.S. Mendonça and R. Cipolla. Model-Based Hand

Tracking Using an Unscented Kalman Filter. In BMVC, volume 1, pages

63–72, 2001. 20, 28

[Stenger 2001c] B. Stenger, V. Ramesh, N. Paragios, F. Coetzee and J.M. Buh-

mann. Topology Free Hidden Markov Models: Application to Background

Modeling. In ICCV, volume 1, pages 294–301, 2001. 20, 26, 28

[Stenger 2003] B. Stenger, A. Thayananthan, P.H.S. Torr and R. Cipolla. Filtering

Using a Tree-Based Estimator. In ICCV, volume 2, pages 1063–1070, 2003.

28, 121, 122, 123

[Stenger 2004a] B. Stenger. Model-Based Hand Tracking Using A Hierarchical

Bayesian Filter. PhD thesis, University of Cambridge, 2004. 28, 31, 33,

54, 146, 173

[Stenger 2004b] B. Stenger, A. Thayananthan, P.H.S. Torr and R. Cipolla. Hand

Pose Estimation Using Hierarchical Detection. In Intl. Workshop on Human-

Computer Interaction, pages 105–116, 2004. 28, 31, 33, 54

[Stenger 2006] B. Stenger, A. Thayananthan, P.H.S Torr and R. Cipolla. Model-

Based Hand Tracking Using a Hierarchical Bayesian Filter. PAMI, vol. 28,

no. 9, pages 1372–1384, 2006. 29, 31, 32, 33, 42, 43, 45, 47, 54

218 Conspectus librorum

[Stewart 1994] A.J. Stewart and S. Ghali. Fast computation of shadow boundaries

using spatial coherence and backprojections. In SIGGRAPH, pages 231–238,

1994. 154

[Strachan 1990] N.J.C. Strachan, P. Nesvadba and A.R. Allen. A Method for Work-

ing out the Moments of a Polygon. PRL, vol. 11, pages 351–354, 1990. 97,

156

[Sturman 1992] D.J. Sturman. Whole-hand input. PhD thesis, Massachusetts

Institute of Technology, Cambridge, MA, USA, 1992. 11, 12

[Sturman 1994] D.J. Sturman and D. Zeltzer. A Survey of Glove-based Input.

Computer Graphics and Applications, vol. 14, no. 1, pages 30–39, 1994.

11

[Sudderth 2004] E. Sudderth, M. Mandel, W. Freeman and A. Willsky. Visual

Hand Tracking Using Nonparametric Belief Propagation. In CVPR, page

189, 2004. 20, 26, 31, 33, 42, 54, 60, 121, 122, 185

[Sutherland 1974] I.E. Sutherland and G.W. Hodgman. Reentrant polygon clipping.

Commun. ACM, vol. 17, no. 1, pages 32–42, 1974. 95

[Svoboda 2005] T. Svoboda, D. Martinec and T. Pajdla. A convenient multicam-

era self-calibration for virtual environments. Presence: Teleoper. Virtual

Environ., vol. 14, no. 4, pages 407–422, 2005. 21

[Takahashi 1991] T. Takahashi and F. Kishino. Hand gesture coding based on exper-

iments using a hand gesture interface device. SIGCHI Bull., vol. 23, no. 2,

pages 67–74, 1991. 9

[Thayananthan 2003a] A. Thayananthan, B. Stenger, P.H.S. Torr and R. Cipolla.

Learning a Kinematic Prior for Tree-Based Filtering. In BMVC, volume 2,

pages 589–598, 2003. 11, 27, 28, 31, 42, 43, 146

[Thayananthan 2003b] A. Thayananthan, B. Stenger, P.H.S. Torr and R. Cipol-

la. Shape Context and chamfer matching in cluttered scenes. In CVPR,

volume 1, pages 127–133, 2003. 185

[Thirion 1996] J-P. Thirion. Non-Rigid Matching Using Demons. In CVPR, page

245, Washington, DC, USA, 1996. IEEE Computer Society. 41

[Tipping 2001] M.E. Tipping. Sparse bayesian learning and the relevance vector

machine. J. Mach. Learn. Res., vol. 1, pages 211–244, 2001. 47

[Toussaint 1985] G. Toussaint. A simple linear algorithm for intersecting convex

polygons. The Visual Computer, vol. 1, no. 2, pages 118–123, 1985. 82

[Tran 2008] C. Tran and M.M. Trivedi. Hand modeling and tracking from voxel

data: An integrated framework with automatic initialization. In ICPR, pages

1–4, 2008. 21, 41

Conspectus librorum 219

[Tumblin 2006] J. Tumblin. Exact Two-Dimensional Integration inside Quadrilat-

eral Boundaries. Journal of Graphics, GPU and Game Tools, vol. 11, no. 1,

pages 61–71, 2006. 97, 156

[Ueda 2001a] M. Ueda, M. Imai and T. Ogasawara. Hand Pose Estimation

for Vision-based Human Interface. In Workshop on Robot and Human

Commnunication, pages 473–478, 2001. 37

[Ueda 2001b] M. Ueda, M. Imai and T. Ogasawara. Hand Pose Estimation Us-

ing Multi-Viewpoint Silhouette Images. In International Conference on

Intelligent Robots and Systems, pages 1989–1996, 2001. 41

[Ueda 2003] M. Ueda, M. Imai and T. Ogasawara. Hand Pose Estimation for

Vision-based Human Interface. IEEE Transactions on Industrial Electronics,

vol. 50, pages 676–684, 2003. 37

[Ueda 2005] E. Ueda, Y. Matsumoto and T. Ogasawara. Virtual Clay Modeling

System Using Multi-Viewpoint Images. In International Conference on 3-D

Digital Imaging and Modeling, pages 134–141, 2005. 20, 21, 26, 29, 30, 37

[Unal 2005] G. Unal, A. Yezzi and H. Krim. Information-Theoretic Active Polygons

for Unsupervised Texture Segmentation. IJCV, vol. 62, no. 3, pages 199–220,

2005. 54, 103, 153

[Urtasun 2006] R. Urtasun, D.J. Fleet and P. Fua. 3D People Tracking with Gaus-

sian Process Dynamical Models. In CVPR, volume 1, pages 238–245, 2006.

146

[Usabiaga 2006] J. Usabiaga, A. Erol, G.N. Bebis, R. Boyle and X. Twombly. Glob-

al Hand Pose Estimation by Multiple Camera Ellipse Tracking. In ISVC,

volume 1, pages 122–132, 2006. 22

[Žalik 2000] B. Žalik. Two efficient algorithms for determining intersection points

between simple polygons. Comput. Geosci., vol. 26, no. 2, pages 137–151,

2000. 82

[Wang 2001] L. Wang, S.B. Kang, R. Szeliski and H.Y. Shum. Optimal Texture

Map Reconstruction from Multiple Views. In CVPR, pages 347–354, 2001.

165

[Wang 2003] Q. Wang, G.Y. Xu and H.Z. Ai. Learning object intrinsic structure

for robust visual tracking. In CVPR, volume 2, pages 227–233, 2003. 146,

147

[Wang 2008] J. Wang, V. Athitsos, S. Sclaroff and M. Betke. Detecting Objects of

Variable Shape Structure With Hidden State Shape Models. PAMI, vol. 30,

no. 3, pages 477–492, 2008. 185

220 Conspectus librorum

[Wang 2009] C. Wang, M. de La Gorce and N. Paragios. Segmentation, Ordering

and Multi-Object Tracking using Graphical Models. In ICCV, 2009. 185

[Weiler 1977] K. Weiler and P. Atherton. Hidden surface removal using polygon

area sorting. In SIGGRAPH, volume 11, pages 214–222, 1977. 154

[Weingaertner 1997] T. Weingaertner, S. Hassfeld and R. Dillmann. Human Motion

Analysis: A Review. Workshop on Motion of Non-Rigid and Articulated

Objects, page 90, 1997. 49

[Wilke 2009] D. Wilke, S. Kok and A. Groenwold. The application of gradient-only

optimization methods for problems discretized using non-constant methods.

Structural and Multidisciplinary Optimization, 2009. 117, 157

[Wu 1991] X. Wu. An efficient antialiasing technique. In SIGGRAPH, volume 25,

pages 143–152, 1991. 96

[Wu 1999a] Y. Wu and T.S. Huang. Capturing Articulated Human Hand Motion:

A Divide-and-Conquer Approach. In ICCV, pages 606–611, 1999. 20

[Wu 1999b] Y. Wu and T.S. Huang. Human hand modeling, analysis and anima-

tion in the context of human computer interaction. IEEE Signal Processing

Magazine, Special issue on Immersive Interactive Technology, pages 6–10,

1999. 9

[Wu 1999c] Y. Wu and T.S. Huang. Vision-Based Gesture Recognition: A Review.

In International Gesture Workshop on Gesture-Based Communication in

Human-Computer Interaction, pages 103–115, 1999. 9

[Wu 2001] Y. Wu, J.Y. Lin and T.S. Huang. Capturing Natural Hand Articulation.

In ICCV, pages 426–432, 2001. 11, 20, 22, 27, 28, 29, 31, 32, 33, 42, 54, 146,

147

[Xin 2007] X. Xin, H. Ma and C. Vogel. Motion Capture as a User Research Tool

in Dynamic Ergonomics. International Association of Societies of Design

Research, 2007. 8

[Yang 2006] C. Yang, P. Shi, W. Zao, L. Wang, X. Meng and J. Wang. New

Intersection Algorithm of Convex Polygons Based on Voronoi Diagrams. In

International Symposium on Voronoi Diagrams in Science and Engineering,

pages 224–231, 2006. 82

[Zhou 2003] H. Zhou and T.S. Huang. Tracking Articulated Hand Motion with

Eigen Dynamics Analysis. In ICCV, page 1102, 2003. 11, 12, 20, 27, 28, 33,

40, 146, 147

[Zhou 2004] H. Zhou, D.J. Lin and T.S. Huang. Static Hand Gesture Recognition

based on Local Orientation Histogram Feature Distribution Model. In CVPR

Workshop, volume 10, page 161, 2004. 43, 45, 46

Conspectus librorum 221

[Zhou 2005a] H.N. Zhou and T.S. Huang. Okapi Chamfer Matching for Articulated

Object Recognition. In ICCV, volume 2, pages 1026–1033, 2005. 20, 22, 46

[Zhou 2005b] K. Zhou, X. Wang, Y. Tong, M. Desbrun, B. Guo and H-Y. Shum.

TextureMontage: Seamless Texturing of Arbitrary Surfaces From Multiple

Images. SIGGRAPH, pages 1148–1155, 2005. 165

[Zhu 2005] Y-K. Zhu, J-H. Yong and G-Q. Zheng. Line Segment Intersection

Testing. Computing, vol. 75, no. 4, pages 337–357, 2005. 82

[Ziaie 2009] P. Ziaie, T. Müller, M.E. Foster and A. Knoll. A Näıve Bayes Clas-

sifier with Distance Weighting for Hand-Gesture Recognition. Advances in

Computer Science and Engineering, vol. 6, pages 308–315, 2009. 43

