J. Boulanger, C. Kervrann, and P. Bouthemy, Space-Time Adaptation for Patch-Based Image Sequence Restoration, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.6, pp.29-1096, 2007.
DOI : 10.1109/TPAMI.2007.1064

URL : https://hal.archives-ouvertes.fr/inria-00071294

J. Besag, Spatial interaction and the statistical analysis of lattice systems, Journal of the Royal Statistical Society. Series BMethodological), vol.36, pp.192-236, 1974.

V. Kolmogorov and R. Zabih, Computing visual correspondence with occlusions via graph cuts, International Conference on Computer Vision, pp.508-515, 2001.

D. Mackay, Bayesian interpolation, Neural computation, 1992.

P. Heas, E. Memin, D. Heitz, and P. D. Mininni, Bayesian selection of scaling laws for motion modeling in images, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459353

URL : https://hal.archives-ouvertes.fr/hal-00473262

]. T. Aach, A. Kaup, R. J. Mester-]-r, and . Adrian, Statistical model-based change detection in moving video Particle-Imaging Techniques for Experimental Fluid Mechanics, Signal Processing Annual Review of Fluid Mechanics, vol.31, issue.23, pp.165-180, 1991.

]. R. Adrian, Twenty years of particle image velocimetry, Experiments in Fluids, vol.10, issue.2, pp.159-169, 2005.
DOI : 10.1007/s00348-005-0991-7

]. P. Allain, N. Courty, and T. Corpetti, Crowd Flow Characterization with Optimal Control Theory, LNCS, editeur, Proc. of 9th Asian Conference on Computer Vision, ACCV'09, pp.279-290, 2009.
DOI : 10.1007/978-3-642-12304-7_27

URL : https://hal.archives-ouvertes.fr/hal-00493443

]. L. Alvarez, F. Guichard, P. Lions, and J. Morel, Axioms and fundamental equations of image processing, Archive for Rational Mechanics and Analysis, vol.11, issue.3, pp.199-257, 1993.
DOI : 10.1007/BF00375127

]. L. Alvarez, C. A. Castano, M. Garcìa, K. Krissian, L. Mazorra et al., A new energy-based method for 3D motion estimation of incompressible PIV flows, Computer Vision and Image Understanding, vol.113, issue.7, pp.802-810, 2009.
DOI : 10.1016/j.cviu.2009.01.005

]. L. Amodei and M. N. Benbourhim, A vector spline approximation, Journal of Approximation Theory, vol.67, issue.1, pp.51-79, 1991.
DOI : 10.1016/0021-9045(91)90025-6

]. E. Arnaud, E. Mémin, R. Sosa, and G. Artana, A fluid motion estimator for Schlieren imaging velocymetry, Proc. European Conf. Comp. Vision (ECCV'06), pp.198-210, 2006.

]. S. Baker and I. Matthews, Lucas-Kanade 20 Years On: A Unifying Framework, International Journal of Computer Vision, vol.56, issue.3, pp.221-255, 2004.
DOI : 10.1023/B:VISI.0000011205.11775.fd

]. S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. Black et al., A Database and Evaluation Methodology for Optical Flow, Int. Conf. on Comp. Vis., ICCV 2007, p.14, 2007.
DOI : 10.1007/s11263-010-0390-2

]. J. Barron, D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt, Performance of optical flow techniques, International Journal of Computer Vision, vol.54, issue.1, pp.43-77, 1994.
DOI : 10.1007/BF01420984

]. F. Becker, B. Wieneke, J. Yuan, and C. Schnoerr, A Variational Approach to Adaptive Correlation for Motion Estimation in Particle Image Velocimetry, Pattern Recognition, vol.5096, pp.335-344, 2008.
DOI : 10.1007/978-3-540-69321-5_34

]. S. Belfiore, M. Grangetto, E. Magli, and G. Olmo, Concealment of whole-frame losses for wireless low bit-rate video based on multiframe optical flow estimation, IEEE Transactions on Multimedia, vol.7, issue.2, pp.316-329, 2005.
DOI : 10.1109/TMM.2005.843347

]. K. Belyaev, C. A. Tanajura, and J. J. Brien, A data assimilation method used with an ocean circulation model and its application to the tropical Atlantic, Applied Mathematical Modelling, vol.25, issue.8, pp.655-670, 2001.
DOI : 10.1016/S0307-904X(01)00003-8

]. J. Benediktsson, P. H. Swain, and O. K. Ersoy, Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data. Geoscience and Remote Sensing, IEEE Transactions on, vol.28, issue.4, pp.540-552, 1990.

]. A. Bennett, Inverse Methods in Physical Oceanography, p.31, 1992.
DOI : 10.1017/CBO9780511600807

J. R. Bergen, P. Anandan, K. J. Hanna, R. J. Hingorani-]-m, P. Black et al., Hierarchical Model- Based Motion Estimation Robust dynamic motion estimation over time, IEEE Conf. on Comp. Vis. and Patt. Rec, pp.237-252, 1991.

]. M. Black, Robust incremental optical flow, p.14, 1992.

M. Bosc, F. Heitz, J. Armspach, I. Namer, D. Gounot et al., Automatic change detection in multimodal serial MRI : application to multiple sclerosis lesion evolution Space-time adaptation for patch-based image sequence restoration, NeuroImage Pattern Analysis, vol.20, issue.29 6, pp.643-656, 2003.

]. A. Bowman and A. Azzalini, Applied Smoothing Techniques for Data Analysis, p.69, 1997.

]. L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees, p.88, 1984.

N. Brisson, F. Ruget, P. Gate, J. Lorgeou, B. Nicoullaud et al., STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize, European Conference on Comput. Vis. (ECCV'04, pp.69-92, 2002.
DOI : 10.1051/agro:2001005

]. A. Bruhn, J. Weickert, C. Schnörr, and . Lucas, Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods, International Journal of Computer Vision, vol.61, issue.3, pp.211-231, 2005.
DOI : 10.1023/B:VISI.0000045324.43199.43

]. L. Bruzzone and S. B. Serpico, An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images, IEEE Transactions on Geoscience and Remote Sensing, vol.35, issue.4, pp.858-867, 2002.
DOI : 10.1109/36.602528

]. L. Bruzzone and C. Persello, A Novel Approach to the Selection of Spatially Invariant Features for the Classification of Hyperspectral Images With Improved Generalization Capability. Geoscience and Remote Sensing, IEEE Transactions on, vol.47, issue.9, pp.3180-3191, 2009.

]. L. Bruzzone and M. Marconcini, Domain Adaptation Problems : A DASVM Classification Technique and a Circular Validation Strategy. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.32, issue.5, pp.770-787, 2010.

]. A. Carleer, O. Debeir, and E. Wolff, Assessment of Very High Spatial Resolution Satellite Image Segmentations, Photogrammetric Engineering & Remote Sensing, vol.71, issue.11, pp.1285-1294, 2005.
DOI : 10.14358/PERS.71.11.1285

]. V. Caselles, R. Kimmel, and G. Sapiro, Geodesic active contours, Proceedings of IEEE International Conference on Computer Vision, p.46, 1997.
DOI : 10.1109/ICCV.1995.466871

P. Hu, ]. N. De-reffye, T. Courty, and . Corpetti, Structural Factorization of Plants to Compute Their Functional and Architectural Growth Crowd Motion Capture, Simulation Journal of Visualization and Computer Animation, vol.82, issue.18 4, pp.427-438, 2006.

]. N. Courty and T. Corpetti, Data-Driven Animation of Crowds, Proceedings of Mirage 2007 ? Computer Vision / Computer Graphics Collaboration Techniques and Applications, pp.377-388, 2007.
DOI : 10.1007/978-3-540-71457-6_34

URL : https://hal.archives-ouvertes.fr/hal-00494248

]. G. Cui, C. X. Xu, L. Fang, Z. S. Zhang, and L. Shao, A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence, Journal of Fluid Mechanics, vol.582, pp.377-397, 2007.
DOI : 10.1017/S002211200700599X

URL : https://hal.archives-ouvertes.fr/hal-00272158

]. A. Cuzol and E. Memin, A stochastic filter for fluid motion tracking, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1, pp.396-402, 2005.
DOI : 10.1109/ICCV.2005.21

URL : https://hal.archives-ouvertes.fr/hal-00386461

]. A. Cuzol, P. Hellier, and E. Mémin, A Low Dimensional Fluid Motion Estimator, International Journal of Computer Vision, vol.21, issue.3, pp.329-349, 2007.
DOI : 10.1007/s11263-007-0037-0

URL : https://hal.archives-ouvertes.fr/inserm-00140892

]. A. Cuzol, E. Mémin-]-p, P. Deer, . Eklund, . Values et al., A stochastic filter technique for fluid flows velocity fields tracking, 9th Int. Conf. on Information Processing and Management of Uncertainty, pp.16-187, 2002.

]. A. Delanay and Y. Bresler, Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography, IEEE Transactions on Image Processing, vol.7, issue.2, pp.204-221, 1998.
DOI : 10.1109/83.660997

]. V. Dey, Y. Zhang, and M. Zhong, A review on image segmentation techniques with remote sensing perspectives, ISPRS TC VII Symposium, volume XXXVIII, pp.31-42, 2010.

M. N. Do and M. Vetterli, Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance, IEEE Transactions on Image Processing, vol.11, issue.2, pp.146-158, 2002.
DOI : 10.1109/83.982822

]. J. Fitzpatrick, The existence of geometrical density-image transformations corresponding to object motion, Computer Vision, Graphics, and Image Processing, vol.44, issue.2, pp.155-174, 1988.
DOI : 10.1016/S0734-189X(88)80003-3

]. H. Foroosh, J. Zerubia, and M. Berthod, Extension of phase correlation to subpixel registration, IEEE Transactions on Image Processing, vol.11, issue.3, pp.188-200, 2002.
DOI : 10.1109/83.988953

]. T. Fourcaud, X. Zhang, A. Stokes, H. Lambers, C. T. Korner-]-w et al., Plant Growth Modelling and Applications : The Increasing Importance of Plant Architecture in Growth Models The design and use of steerable filters, Annals of Botany IEEE Trans. on Patt. Anal. and Mach. Intell, vol.101, issue.13 9, pp.1053-1063, 1991.

]. M. Friedl and C. E. Brodley, Decision tree classification of land cover from remotely sensed data, Remote Sensing of Environment, vol.61, issue.3, pp.399-409, 1995.
DOI : 10.1016/S0034-4257(97)00049-7

]. T. Fujita, D. L. Bradbury, Ð. Murino, and L. Mull, A Study of Mesoscale Cloud Motions Computed from ATS-1 and Terrestrial Photographs from Satellite, Mesometeorological Research Project Research Paper No 71, pp.25-40, 1968.

]. B. Galvin, B. Mccane, K. Novins, D. Mason, and S. Mills, Recovering motion fields : an analysis of eight optical flow algorithms, Proc. British Mach. Vis. Conf, p.14, 1998.

]. D. Geman and G. Reynolds, Constrained restoration and the recovery of discontinuities, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.14, issue.3, pp.367-383, 1992.
DOI : 10.1109/34.120331

]. C. Germain, J. P. Da-costa, O. Lavialle, and P. Baylou, Multiscale estimation of vector field anisotropy application to texture characterization, Signal Processing, vol.83, issue.7, pp.1487-1503, 2003.
DOI : 10.1016/S0165-1684(03)00064-1

URL : https://hal.archives-ouvertes.fr/hal-00160721

]. M. Giles, On the use of Runge-Kutta time-marching and multigrid for the solution of steady adjoint equations. Rapport technique 00, p.34, 2000.

]. B. Girod, A. M. Aaron, S. Rane, D. Rebollo-monedero, ]. X. Gong et al., Distributed Video Coding Change detection using patches of various size, Proceedings of the IEEE IEEE Transactions on Image Processing, vol.93, issue.91, pp.71-83, 2005.

]. W. Hastings-]-h, D. J. Haussecker, and . Fleet, Monte Carlo sampling methods using Markov chains and their applications Computing optical flow with physical models of brightness variation, Biometrika IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.57, issue.15, pp.97-109, 1970.

]. P. Héas, E. Mémin, N. Papadakis, and A. Szantai, Layered Estimation of Atmospheric Mesoscale Dynamics From Satellite Imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.45, issue.12, pp.4087-4104, 2007.
DOI : 10.1109/TGRS.2007.906156

]. P. Héas and E. Mémin, 3D motion estimation of atmospheric layers from image sequences Bayesian selection of scaling laws for motion modeling in images, International Conference on Computer Vision (ICCV'09), pp.16-16, 2008.

]. P. Heermann and N. Khazenie, Classification of multispectral remote sensing data using a back-propagation neural network. Geoscience and Remote Sensing, IEEE Transactions on, vol.30, issue.1, pp.81-88, 1992.

]. D. Heitz, P. Héas, E. Mémin, and J. Carlier, Dynamic consistent correlation-variational approach for robust optical flow estimation, Experiments in Fluids, vol.28, issue.3, pp.595-608, 2008.
DOI : 10.1007/s00348-008-0567-4

URL : https://hal.archives-ouvertes.fr/hal-00914361

]. D. Heitz, E. Mémin, and C. Schnoerr, Variational fluid flow measurements from image sequences: synopsis and perspectives, Experiments in Fluids, vol.28, issue.4, pp.369-393, 2009.
DOI : 10.1007/s00348-009-0778-3

URL : https://hal.archives-ouvertes.fr/hal-00456162

]. D. Bibliographie, A. Helbing, and H. Johansson, Dynamics of crowd disasters : An empirical study, Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), vol.75, issue.4, pp.46109-54, 2007.

]. P. Holland and R. Welsch, Robust regression using iteratively reweighted least-squares, Communications in Statistics - Theory and Methods, vol.3, issue.9, pp.813-827, 1977.
DOI : 10.1214/aos/1176342503

]. B. Horn-1981, B. G. Horn, and . Schunck, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.
DOI : 10.1016/0004-3702(81)90024-2

H. Hsu, G. Nagel, and . Rekers, New likelihood test methods for change detection in image sequences. Computer vision, graphics, and image processing, pp.73-106, 1984.

]. P. Huber, Robust Statistics, p.42, 1981.

]. R. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, vol.36, issue.6, pp.507-535, 2002.
DOI : 10.1016/S0191-2615(01)00015-7

]. T. Isambert, J. Berroir, and I. Herlin, A Multi-scale Vector Spline Method for Estimating the Fluids Motion on Satellite Images, European Conference on Computer Vision, pp.665-676, 2008.
DOI : 10.1007/978-3-540-88693-8_49

URL : https://hal.archives-ouvertes.fr/inria-00264727

]. K. Jafari-khouzani, H. Jafari-khouzani, and . Soltanian-zadeh, Radon transform orientation estimation for rotation invariant texture analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.6, pp.1004-1008, 2005.
DOI : 10.1109/TPAMI.2005.126

]. B. Jahne, H. W. Haussecker, H. Spies, D. Schmundt, and U. Schurr, Study of dynamical processes with tensor-based spatiotemporal image processing techniques, 1998.
DOI : 10.1007/BFb0054750

]. B. Josso, D. R. Burton, and M. K. Lalor, Texture orientation and anisotropy calculation by Fourier transform and Principal Component Analysis, Mechanical Systems and Signal Processing, vol.19, issue.5, pp.1152-1161, 2005.
DOI : 10.1016/j.ymssp.2004.07.005

C. R. Jung-kang, T. Corpetti, and P. De-reffye, Combining wavelets and watersheds for robust multiscale image segmentation, Remote Sensing of Biomass : Principles and Applications, pp.24-25, 2007.
DOI : 10.1016/j.imavis.2006.01.002

]. M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.5, issue.6035, pp.321-331, 1988.
DOI : 10.1007/BF00133570

]. J. Kim, H. J. Kim, R. Kimmel, and J. Sethian, Multiresolution-based watersheds for efficient image segmentation, Pattern Recognition Letters, vol.24, issue.1-3, pp.473-488, 2001.
DOI : 10.1016/S0167-8655(02)00270-2

]. A. Kurganov-2000a, D. Kurganov, ]. Levy, E. Kurganov, . Tadmor-]-g et al., A Third-Order Semidiscrete Central Scheme for Conservation Laws and Convection-Diffusion Equations, SIAM Journal on Scientific Computing, vol.22, issue.4, pp.1461-1488, 2000.
DOI : 10.1137/S1064827599360236

L. Dimet, Le Dimet et O. Talagrand. Variational algorithms for analysis and assimilation of meteorological observations : theoretical aspects. Tellus, pp.97-110, 1986.

L. Pouliquen, F. Le-pouliquen, J. Costa, C. Germain, P. Baylou-]-r et al., A new adaptive framework for unbiased orientation estimation in textured images, Third International Workshop on the Analysis of Multitemporal Remote Sensing Images, Multitemp ACM SIGGRAPH/Eurographics Symp. on Computer Animation, SCA'07 IEEE International Conference on Image Processing, ICIP '09, pp.2032-2046, 1971.
DOI : 10.1016/j.patcog.2005.05.004

URL : https://hal.archives-ouvertes.fr/hal-00166456

]. A. Lefebvre, T. Corpetti, L. Hubert-moy, ]. A. Lefebvre, T. Corpetti et al., Estimation of the orientation of textured patterns via wavelet analysis. Pattern Recognition Letters, to appear Segmentation of very high spatial resolution panchromatic images based on wavelets and evidence theory Agriculture et périurbanisation : Détection et suivi de changements d'occupation et d'usage des sols par télédétection, Vineyard identification and characterization based on texture analysis in the Helderberg basin SPIE International Conference on Image and Signal Processing for Remote Sensing, pp.78-78, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01107554

]. V. Bibliographie, S. Lempitsky, C. Roth, and . Rother, FusionFlow : Discrete-Continuous Optimization for Optical Flow Estimation, Proc. IEEE Comp. Vis. Patt. Rec. (CVPR), p.14, 2008.

]. E. Lévêque, F. Toschi, L. Shao, and J. P. Bertoglio, Shear-improved Smagorinsky model for large-eddy simulation of wall-bounded turbulent flows, Journal of Fluid Mechanics, vol.570, pp.491-502, 2007.
DOI : 10.1017/S0022112006003429

]. D. Levy and E. Tadmor, Non-Oscillatory Central Schemes for the Incompressible 2-D Euler Equations, Lions 1971] J.-L. Lions. Optimal control of systems governed by PDEs, pp.321-340, 1971.
DOI : 10.4310/MRL.1997.v4.n3.a2

]. T. Liu and L. Shen, Fluid flow and optical flow, Journal of Fluid Mechanics, vol.51, pp.253-268, 2008.
DOI : 10.1023/A:1013614317973

]. D. Lu, P. Mausel, E. Brondízio, and E. Moran, Change detection techniques, International Journal of Remote Sensing, vol.66, issue.12, pp.2365-2401, 2004.
DOI : 10.1659/0276-4741(2001)021[0175:LCCATA]2.0.CO;2

]. B. Lucas and T. Kanade, An iterative image registration technique with an application to stereo vision, International joint conference on artificial, pp.121-130, 1981.

]. D. Mackay, Bayesian Interpolation, Neural Computation, vol.49, issue.3, pp.415-447, 1992.
DOI : 10.1093/comjnl/11.2.185

]. S. Mallat, Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R) Transactions of the, pp.69-87, 1989.

]. N. Mansour, J. H. Ferziger, and W. C. Reynolds, Large-eddy simulation of a turbulent mixing layer, p.32, 1978.

]. R. Mehran, A. Oyama, and M. Shah, Abnormal crowd behavior detection using social force model, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.935-942, 2009.
DOI : 10.1109/CVPR.2009.5206641

]. E. Mémin and P. Pérez, Dense estimation and object-based segmentation of the optical flow with robust techniques, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, pp.703-722, 1998.
DOI : 10.1109/83.668027

]. W. Menzel, Cloud Tracking with Satellite Imagery: From the Pioneering Work of Ted Fujita to the Present, Bulletin of the American Meteorological Society, vol.82, issue.1, pp.33-48, 2001.
DOI : 10.1175/1520-0477(2001)082<0033:CTWSIF>2.3.CO;2

]. N. Metropolis-1953, A. W. Metropolis, M. N. Rosenbluth, A. H. Rosenbluth, E. Teller et al., Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1092, 1953.
DOI : 10.1063/1.1699114

]. F. Michelet, J. Costa, O. Lavialle, Y. Berthoumieu, P. Baylou et al., Estimating local multiple orientations, Signal Processing, vol.87, issue.7, pp.1655-1669, 2007.
DOI : 10.1016/j.sigpro.2007.01.017

URL : https://hal.archives-ouvertes.fr/hal-00166478

]. I. Mikic, S. Krucinski, and J. D. Thomas, Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates, IEEE Transactions on Medical Imaging, vol.17, issue.2, pp.274-84, 1998.
DOI : 10.1109/42.700739

]. A. Mitiche and P. Bouthemy, Computation and analysis of image motion: A synopsis of current problems and methods, International Journal of Computer Vision, vol.7, issue.4, pp.29-55, 1996.
DOI : 10.1007/BF00131147

]. P. Monasse and F. Guichard, Fast computation of a contrast-invariant image representation, IEEE Transactions on Image Processing, vol.9, issue.5, pp.860-872, 2000.
DOI : 10.1109/83.841532

]. H. Nagel, Extending the ???Oriented smoothness constraint??? into the temporal domain and the estimation of derivatives of optical flow, Proc. First European Conference On Comput. Vis, pp.139-148, 1990.
DOI : 10.1007/BFb0014860

]. P. Nesi, Variational approach to optical flow estimation managing discontinuities, Stochastic differential equations, pp.419-439, 1993.
DOI : 10.1016/0262-8856(93)90046-J

]. S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

]. N. Pal and S. K. , A review on image segmentation techniques, Pattern Recognition, vol.26, issue.9, pp.1277-1294, 1993.
DOI : 10.1016/0031-3203(93)90135-J

]. N. Papadakis-]-n, T. Papadakis, E. Corpetti, and . Mémin, Assimilation de données images : application au suivi de courbes et de champs de vecteurs Dynamically consistent optical flow estimation, IEEE International Conference on Computer Vision, ICCV'07, pp.30-31, 2007.

]. N. Papadakis and E. Memin, Variational Assimilation of Fluid Motion from Image Sequence, SIAM Journal on Imaging Sciences, vol.1, issue.4, pp.343-377, 2008.
DOI : 10.1137/080713896

URL : https://hal.archives-ouvertes.fr/hal-00596149

]. N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert, Highly Accurate Optic Flow Computation with Theoretically Justified Warping, International Journal of Computer Vision, vol.14, issue.3, pp.141-158, 2006.
DOI : 10.1007/s11263-005-3960-y

]. C. Papin, P. Bouthemy, E. Mémin, and G. Rochard, Tracking and Characterization of Highly Deformable Cloud Structures, Proc. Europ, 2000.
DOI : 10.1007/3-540-45053-X_28

. Conf and . Comput, Vis., volume II notes in computer science 1843, pp.428-442, 2000.

]. T. Pecot and C. Kervrann, Patch-based markov models for change detection in image sequence analysis, Workshop on Local and Non-local Approximation in Image Processing, pp.1-6, 2008.

]. T. Pecot, A. Chessel, S. Bardin, J. Salamero, P. Bouthemy et al., Conditional Random Fields for object and background estimation in fluorescence video-microscopy, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.734-737, 2009.
DOI : 10.1109/ISBI.2009.5193152

URL : https://hal.archives-ouvertes.fr/hal-00794876

]. R. Radke, S. Andra, O. Al-kofahi, and B. Roysam, Image change detection algorithms: a systematic survey, IEEE Transactions on Image Processing, vol.14, issue.3, pp.294-307, 2005.
DOI : 10.1109/TIP.2004.838698

]. M. Bibliographie, C. E. Raffel, S. Willert, and . Wereley, Particle image velocimetry : a practical guide, p.15, 2007.

]. M. Ridd and J. Liu, A Comparison of Four Algorithms for Change Detection in an Urban Environment, Remote Sensing of Environment, vol.63, issue.2, pp.95-100, 1998.
DOI : 10.1016/S0034-4257(97)00112-0

]. P. Rosin, Thresholding for Change Detection, Computer Vision and Image Understanding, vol.86, issue.2, pp.79-95, 2002.
DOI : 10.1006/cviu.2002.0960

]. P. Ruhnau, T. Kohlberger, C. Schnoerr, and H. Nobach, Variational optical flow estimation for particle image velocimetry, Experiments in Fluids, vol.14, issue.1, pp.21-32, 2004.
DOI : 10.1007/s00348-004-0880-5

]. P. Ruhnau and C. Schnoerr, Optical Stokes Flow Estimation : An Imaging- Based Control ApproachSaint-Venant (De) 1871] A.J.C. Saint-Venant (De) Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit, Sakaino. Fluid Motion Estimation Method based on Physical Properties of Waves Proceedings of the 21st IEEE Conference on Computer Vision and Pattern Recognition CVPR 08, pp.61-78, 1871.

]. J. Schiewe, L. Tufte, and M. Ehlers, Potential and problems of multi-scale segmentation methods in remote sensing, GeoBIT/GIS, vol.6, pp.34-39, 2001.

]. J. Schmetz-1987, M. Schmetz, and . Nuret, Automatic tracking of high-level clouds in Meteosat IR images with a radiance windowing technique, ESA J, vol.11, pp.275-286, 1987.

]. B. Schunck-1986 and . Schunck, The image flow constraint equation, Computer Vision, Graphics, and Image Processing, vol.35, issue.1, pp.20-46, 1986.
DOI : 10.1016/0734-189X(86)90124-6

]. J. Sethian, Level Set Methods and Fast Marching Methods : Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision and Materials Science, p.46, 1999.

]. G. Shafer, Mathematical Theory of Evidence, p.72, 1976.

]. E. Smith and D. R. Phillips, Automated Cloud Tracking Using Precisely Aligned Digital ATS Pictures, IEEE Transactions on Computers, vol.21, issue.7, pp.21-715, 1971.
DOI : 10.1109/T-C.1972.223574

]. Y. Sugii, S. Nishio, T. Okuno, and K. Okamoto, A highly accurate iterative PIV technique using a gradient method, Measurement Science and Technology, vol.11, issue.12, pp.1666-1682, 2000.
DOI : 10.1088/0957-0233/11/12/303

]. D. Sun, S. Roth, and M. J. Black, Secrets of optical flow estimation and their principles, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.2432-2439, 2010.
DOI : 10.1109/CVPR.2010.5539939

]. D. Suter, Motion estimation and vector splines, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR-94, pp.939-942, 1994.
DOI : 10.1109/CVPR.1994.323929

]. O. Talagrand and P. Courtier, Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. I: Theory, Quarterly Journal of the Royal Meteorological Society, vol.8, issue.10, pp.1311-1328, 1987.
DOI : 10.1002/qj.49711347812

]. G. Taylor, The transport of vorticity and heat through fluids in turbulent motion Tetriak et L. Pastor. Velocity estimation from image sequences with second order differential operators, Proc London Math Soc. Ser A Int. Conf. on Pattern Recogition, pp.151-421, 1932.

]. C. Thomas, T. Corpetti, and E. Mémin, Data assimilation for convective cells tracking in MSG images, 2009 IEEE International Geoscience and Remote Sensing Symposium, pp.813-816, 2009.
DOI : 10.1109/IGARSS.2009.5418217

]. C. Thomas, T. Corpetti, and E. Mémin, Data Assimilation for Convective-Cell Tracking on Meteorological Image Sequences, IEEE Transactions on Geoscience and Remote Sensing, vol.48, issue.8, pp.3162-3177, 2010.
DOI : 10.1109/TGRS.2010.2045504

URL : https://hal.archives-ouvertes.fr/inria-00619101

C. Tison, F. Tupin, and H. Maitre, A Fusion Scheme for Joint Retrieval of Urban Height Map and Classification From High-Resolution Interferometric SAR Images. Geoscience and Remote Sensing, IEEE Transactions on, vol.45, issue.2, pp.496-505, 2007.

]. M. Varanasi and B. Aazhang, Parametric generalized Gaussian density estimation, The Journal of the Acoustical Society of America, vol.86, issue.4, pp.1404-1415, 1989.
DOI : 10.1121/1.398700

]. J. Weber, J. Malik, ]. A. Wedel, T. Pock, and J. Braun, Robust computation of optical flow in a multi-scale differential framework, 1993 (4th) International Conference on Computer Vision, pp.14-14, 1995.
DOI : 10.1109/ICCV.1993.378240

]. J. Weickert and C. Schnoerr, A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion, International Journal of Computer Vision, vol.45, issue.3, pp.245-264, 2001.
DOI : 10.1023/A:1013614317973

]. J. Weickert and C. Schnörr, Variational optic-flow computation with a spatio-temporal smoothness constraint, Journal of Mathematical Imaging and Vision, vol.14, issue.3, pp.245-255, 2001.
DOI : 10.1023/A:1011286029287

]. T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, Overview of the H, AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, pp.560-576, 2003.

. Bibliographie, A Correlation-Relaxation-Labeling Framework for Computing Optical Flow -Template Matching from a New Perspective, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.17, issue.8, pp.843-853, 1995.

]. Q. Wu, S. J. Mcneill, and D. Pairman, Correlation and relaxation labelling: An experimental investigation on fast algorithms, International Journal of Remote Sensing, vol.18, issue.3, pp.651-662, 1997.
DOI : 10.1080/014311697218980

]. L. Xu, J. N. Chen, and J. Y. Jia, A Segmentation Based Variational Model for Accurate Optical Flow Estimation, Eur. Conf. Comp. Vis., pages I, pp.671-684, 2008.
DOI : 10.1007/978-3-540-88682-2_51

]. Y. Yacoob and L. S. David, Recognizing human facial expressions from long image sequences using optical flow. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.18, issue.6 11, pp.636-642, 1996.

]. H. Yahia and J. P. Berroir, Segmentation of deformable templates with level sets characterized by particle systems, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170), pp.1421-1423, 1998.
DOI : 10.1109/ICPR.1998.711969

URL : https://hal.archives-ouvertes.fr/inria-00423796

]. J. Yuan, C. Schnoerr, and E. Mémin, Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation, Journal of Mathematical Imaging and Vision, vol.34, issue.2, pp.67-80, 2007.
DOI : 10.1007/s10851-007-0014-9