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Prof. Vahid Sandoghdar, co-examiner

2010



b

“In June, 1991, I found an extremely thin needle-like material when examining
carbon materials under an electron microscope. Soon thereafter the material was
proved to have a graphite structure basically, and its details were disclosed. I named
these materials ”carbon nanotubes” since they have a tubular structure of carbon
atom sheets, with a thickness scaled in less than a few nanometers. The name has
been widely accepted now. Carbon nanotubes have attracted a lot of researchers in a
wide range of fields from academia to industry, not only because of their uniqueness
when compared with conventional materials, but also because they are very promising
materials in nanotechnology in future technology. ”

Iijama Sumio, Japanese scientist who discovered Carbon Nanotubes
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Summary

In this dissertation, we report on experimental and theoretical investigations of
the optical properties of semiconducting single-wall carbon nanotubes (SWNTs). We
focus on aspects and phenomena involving typically quantum effects, whose descrip-
tions require going beyond the realm of classical physics and Maxwell equations.

Our most significant experimental result is the observation of photon antibunching
in the photoluminescence (PL) emitted by SWNTs. Considering the particularities of
our sample, in which surfactant-embedded SWNTs are deposited on a functionalized
substrate, we show that the suppression of multi-photon emission events is due to
localization of the excitons in nanometer-scale traps along the nanotubes. Fast and
efficient exciton-exciton annihilation, a consequence of the reduced dimensionality of
carbon nanotubes, is playing a determinant role in forbidding photon-pair emission.

The successful reproduction of the broad and asymmetric PL lineshapes by a phy-
sical model relying on strong exciton confinement supports this picture. We calculate
the PL spectrum of a quantum dot (QD) embedded in a SWNT and demonstrate
that exciton coupling to the low-energy acoustic phonons of the nanotube leads to
ultrafast, non-markovian pure dephasing of the optically excited state. In the spec-
tral domain, the oscillator strength is transferred from the zero-phonon line into
phonon wings baring a strong asymmetry at cryogenic temperatures.

We prove hereby that our PL data are direct evidences of the experimental realiza-
tion of the spin-boson model in the (sub-)ohmic regime. This is a consequence of the
one-dimensionality of the phonon bath reflected in the spectral density governing
the dissipation. We emphasize the qualitative differences compared to traditional
QDs embedded in a three-dimensional matrix, and briefly discuss the consequences
for the use of SWNT-QDs in quantum information processing.

An exciting possibility opened by strong exciton-phonon coupling in carbon na-
notubes is their use as mechanical resonators for laser-assisted cooling. We propose
a device based on a suspended SWNT where exciton confinement is controlled by
sharp tips acting as gates. The potential applied on the tips can additionally be
used to induce exciton coupling to the flexural mode of the SWNT and tune its
strength. Inelastic scattering of a weak red-detuned laser then permits to reduce the
occupation number of the fundamental flexural mode down to the quantum ground
state.

In an attempt to give a unified picture for all our experimental observations,
we also suggest a physical origin for the unintentional formation of SWNT-QDs
in our sample. We consider the presence of a charged impurity in the surrounding
of the nanotube and demonstrate that the resulting electric field effectively traps
the SWNT excitons. The peculiar characteristics of the confining potential would
explain most of the experimental features.

Finally, we show how non-vanishing spin-orbit coupling recently measured in
transport experiments allows for all-optical spin manipulation in carbon nanotubes.
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We perform numerical simulations based on Bloch-equations to demonstrate that
high-fidelity spin-state preparation is achievable. Coherent optical spin manipulation
and possible schemes for the use of SWNT spins in quantum information processing
are also discussed.

Combining surprising novel experimental results with diverse theoretical and nu-
merical studies, this work emphasizes on the fascinating potential of carbon nano-
tubes in the study of quantum physics in materials of reduced dimensionality.
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Zusammenfassung

In dieser Dissertation berichten wir über experimentelle und theoretische Unter-
suchungen der optischen Eigenschaften von halbleitenden einwandigen Kohlenstoff-
Nanoröhrchen (SWNTs). Wir konzentrieren uns auf Aspekte und Phänomene, die
typischerweise Quanteneffekten sind, deren Beschreibungen erfordern, jenseits der
klassischen Physik und der Maxwell-Gleichungen zu gehen.

Unser wichtigstes experimentelles Ergebnis ist die Beobachtung von Photon Anti-
bunching in der aus SWNTs emittierten Photolumineszenz (PL). In Anbetracht der
Besonderheiten unserer Probe, die aus Tensid-eingebetteten, auf einem funktionali-
sierten Substrat liegenden SWNTs besteht, zeigen wir, dass die Unterdrückung von
Multi-Photonen Emission auf die Lokalisierung der Exzitonen in Nanometerskala
Fallen entlang der Nanoröhrchen zurückzuführen ist. Schnelle und effiziente Exziton-
Exziton Vernichtung, eine Folge der reduzierten Dimensionalität der Kohlenstoff-
Nanoröhrchen, spielt eine entscheidende Rolle, um Photon-Paar Emission zu ver-
hindern.

Die erfolgreiche Wiedergabe der breiten und asymmetrischen PL Linienformen
durch ein physikalisches Modell, das auf starke Exziton Entbindung beruht, un-
terstützt dieses Bild. Wir berechnen das PL-Spektrum einer in einem SWNT
eingebetteten Quantenpunkt (QD) und zeigen, dass Exziton Ankopplung zu den
niedrig-Energie akustischen Phononen der Nanoröhrchen zu ultraschneller, Nicht-
Markovscher reiner Dephasierung des optisch-angeregten Zustands führt. Im spek-
tralen Bereich wird die Oszillator-Kraft aus der Null-Phonon Linie in Phononen-
Flügel verlegt, die eine starke Asymmetrie bei kryogenen Temperaturen aufweisen.

Wir beweisen, dass unsere PL Daten direkte Beweise für die experimentelle Reali-
sierung des Spin-Boson Modells in der ohmsche Regime sind. Dies ist eine Folge der
Eindimensionalität des Phonon-Bades, die sich in der spektralen Verlustleistungs-
dichte widerspiegelt. Wir betonen die qualitativen Unterschiede zu herkömmlichen,
in einer dreidimensionalen Matrix eingebetteten QDs, und diskutieren kurz die Fol-
gen für die Nutzung von SWNT-QDs in Quanten-Informationsverarbeitung.

Eine spannende Möglichkeit, die sich aufgrund der starken Exziton-Phonon Kopp-
lung in Kohlenstoff-Nanoröhrchen öffnet, ist ihre Verwendung als mechanische Re-
sonatoren für laserunterstützte Abkühlung. Wir entwerfen ein Gerät, das auf ein
abgehängtes SWNT basiert, in dem die Exziton Entbindung mit scharfen Spitzen
kontrolliert wird, die als Gatter gesteuert werden. Das an den Spitzen angelegte
Potenzial kann zusätzlich verwendet werden, um eine Kopplung des Exzitons an die
Biegeschwingung des SWNTs zu erzeugen und ihre Stärke einzustellen. Inelastische
Streuung von einem schwachen, rot-verschobenen Laser erlaubt dann, die Beset-
zungszahl der ersten Harmonische der Biegeschwingung bis zum Quantengrundzu-
stand herabzudrucken.

In einem Versuch, ein einheitliches Bild für alle unsere experimentellen Beobach-
tungen zu bieten, schlagen wir auch eine physische Ursache fr die Entstehung von
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SWNT-QDs in unserer Probe vor. Wir betrachten die Anwesenheit einer geladenen
Verunreinigung in der Umgebung des Nanoröhrchens, und zeigen, dass das resultie-
rende elektrische Feld eine Falle für die SWNT Exzitonen bewirkt. Die besonderen
Merkmale des entbindenden Potenzials könnte die meisten experimentellen Features
erklären.

Schliesslich zeigen wir, wie die nicht verschwindende Spin-Bahn-Kopplung,
die vor kurzem in Transport Experimenten gemessenen wurde, rein optische
Spin-Manipulation in Kohlenstoff-Nanoröhrchen ermöglicht. Wir führen numeri-
sche, auf Bloch-Gleichungen basierende Simulationen auf, um zu beweisen, dass
hochgenaue Spin-Zustand Vorbereitung erreichbar ist. Kohärente optische Spin-
Manipulation und mögliche Entwürfe für die Nutzung von SWNT-Spins in Quanten-
Informationsverarbeitung werden ebenfalls diskutiert.

Indem überraschende neuartige experimentelle Ergebnisse mit unterschiedlichen
theoretischen und numerischen Untersuchungen kombiniert werden, betont diese
Arbeit die faszinierende Anwendungspotenziale von Kohlenstoff-Nanoröhrchen in
der Untersuchung der Quantenphysik in Materialien reduzierter Dimensionalität.
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Résumé

Dans cette dissertation nous présentons une étude expérimentale et théorique
sur les propriétés optiques de nanotubes de carbone mono-parois (SWNTs) semi-
conducteurs. Nous nous concentrons sur les aspects et phénomènes typiquement
quantiques dont la description nécessite de sortir du cadre de la physique classique
et des équations de Maxwell.

Notre résultat experimental le plus important est l’observation du dégroupement
des photons dans la photoluminescence (PL) émise par les SWNTs. Tenant compte
des particularités de notre échantillon qui consiste de SWNTs enrobés dans un
surfactant et déposés sur un substrat fonctionalisé, nous montrons que l’absence
d’émission simultanée de plusieurs photons est dûe à la localisation des excitons dans
des pièges de quelques nanomètres de long sur nanotube. L’annihilation exciton-
exciton rapide et efficace résultant de la dimension réduite des nanotubes de carbone
joue un role déterminant pour éviter l’émission de paires de photons.

La fidèle reproduction des larges lignes asymétriques en PL par un model physique
reposant sur le confinement des excitons supporte cette vision. Nous calculons le
spectre d’une bôıte quantique (QD) formée sur un SWNT et démontrons que le
couplage de l’exciton avec les phonons acoustiques de faible énergie du nanotube
cause un déphasage ultra-rapide et non-markovien de l’état optiquement excité.
Dans le domaine spectral, la force d’oscillateur est transférée de la transition sans
phonon (ZPL) vers des ailes associées aux phonons et présentant une forte asymétrie
aux températures cryogéniques.

Nous prouvons que nos données sont des preuves directes de la réalisation
expérimentale du modèle spin-boson dans le régime (sous-)ohmique. Ceci est une
conséquence de l’uni-dimensionnalité du bain de phonons se réfléchissant dans la
densité spectrale gouvernant les dissipations. Nous soulignons les différences qua-
litatives par rapport aux bôıtes quantiques traditionnels dans une matrice à trois
dimensions, et discutons brièvement les conséquences pour l’utilisation des SWNT-
QDs dans le traitement d’information quantique.

Une possibilité passionnante ouverte par le fort couplage exciton-phonon dans les
nanotubes de carbone est leur utilisation comme résonateurs mécaniques pour le
refroidissement assisté par laser. Nous proposons un dispositif basé sur un SWNT
suspendu où le confinement de l’exciton est contrôlé par de fines pointes servant
de grilles. Le potentiel appliqué aux pointes peut en outre être utilisé pour induire
le couplage de l’exciton au mode de flexion du SWNT et pour régler sa force. La
diffusion inélastique d’un faible laser désaccordé vers le rouge permet alors de réduire
le nombre d’occupation du mode fondamental de flexion jusqu’à l’état fondamental
quantique.

Dans une tentative de donner une image unifiée pour l’ensemble de nos obser-
vations expérimentales, nous proposons aussi une origine physique à la formation
de SWNT-QDs dans notre échantillon. Nous considérons la présence d’une impureté



h

chargée dans les environs du nanotube et démontrons que le champ électrique qui en
résulte piège les excitons du SWNT. Les caractéristiques particulières de ce potentiel
confinant pourraient expliquer la plupart des caractéristiques expérimentales.

Enfin, nous montrons comment le couplage spin-orbite non-nul récemment me-
suré dans des expériences de transport permet la manipulation purement optique
du spin dans des nanotubes de carbone. Nous effectuons des simulations numériques
basées sur les équations de Bloch pour démontrer que la préparation du spin avec
haute fidélité est réalisable. La manipulation optique cohérente du spin et de pos-
sibles utilisations du spin des nanotubes de carbone dans le traitement quantique
de l’information sont également discutées.

Alliant de nouveaux résultats expérimentaux surprenants et de diverses études
théoriques et numériques, ce travail met l’accent sur le potentiel fascinant des nano-
tubes de carbone dans l’étude de la physique quantique des matériaux de dimension
réduite.
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Introduction: Carbon Nanotubes Spectroscopy 1

1 Introduction: Carbon Nanotubes
Spectroscopy

The simplest carbon nanotube is composed of a single sheet of graphene (a hon-
eycomb network of carbon atoms), rolled up seamlessly into a tubular form. The
first experimental observation of carbon nanotubes was reported by Sumio Iijima
in 1991 (Fig. 1.1 a)). These were composed of many tubes nesting in a concentric
fashion (multi-wall nanotubes, MWNTs) [1]. Two years later he discovered a single-
wall carbon nanotube (SWNT) [2] (Fig. 1.1 b)). Tubular carbon structures may
be categorized in the fourth allotrope of carbon, following diamond, graphite and
fullerenes.

a) b)

Figure 1.1: First observation of carbon nanotubes by S. Iijima. a) Electron micro-
graphs of multi-wall carbon nanotubes, published in [1]. b) Electron micrographs
showing single-wall carbon nanotubes, published two years later in [2].

Another more general difference of carbon nanotubes with respect to conventional
crystalline materials is their sizes: their diameters are on the order of a few nanome-
ters or less while their lengths are typically a few micrometers, and can extend up to
millimeters [3]! Because of this small size and large aspect-ratio, carbon nanotubes
exhibit unique physical and chemical properties. Single-wall nanotubes, in particu-
lar, show more dominant properties originating from this one-dimensionality, which
become more pronounced as their diameters become smaller.

An important factor controlling SWNTs properties comes from a variation of
tubule structures related to how the honeycomb sheet of carbon atoms is rolled up.
There are many possible ways to do this, depending upon the direction of rolling,
which is given by the chiral vector. This could result in many chiral arrangements
(spiral arrangement of carbon atoms) of the nanotube structure as well as a variety
of diameters.

In this dissertation, we will treat exclusively single-wall carbon nanotubes, which
have the richest and most interesting optical properties. As we shall see, statistically
one third of nanotubes are metallic. In a MWNT, electronic and optical properties
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are dictated by the smallest band-gap nanotube, and it is found experimentally
that MWNTs always show metallic (or small band-gap) characteristics. Although
both metallic and semiconducting nanotubes allow for Raman scattering investiga-
tions, the observation of visible to near infrared photoluminescence (PL) is limited
to semiconducting SWNTs with large enough band-gaps. Another difficulty in op-
tical studies is the very efficient quenching of electronic excitations via inter-tube
relaxation and interaction with the substrate. For all these reasons, it took almost
one decade after their discovery before PL form SWNTs was first observed by M. J.
O’Connell and coworkers in 2002 [4].

This first chapter gives an introduction to the optical properties of SWNTs with
a focus on PL. Raman scattering will not be treated here since it is not directly
relevant for our work and is already covered by a vast literature. Similarly, optical
absorption, being a particularly useful tool for the characterization of ensembles,
will not be exposed in detail. We start with a basic theoretical understanding of the
electronic states in SWNTs. Their unique properties originate from their reduced
dimensionality on the one hand, and from the underlying symmetry of graphene (the
presence of two sublattices of carbon atoms), on the other hand. Then we give an
overview of PL spectroscopy of SWNTs. We present the possible types of samples
and materials that can be used and the different measurement methods. We finally
review some important features like phonon-assisted excitation and propensity to
PL fluctuations and PL quenching.

1.1 Band Structure and Excitons

The purpose of this section is to provide a detailed but mostly qualitative un-
derstanding of the electronic states and band structure of SWNTs, especially of
semiconducting type, a more rigorous description being derived in chapter 4.1. We
first explain how an approximate single-particle band structure (neglecting curvature
effects) is easily obtained from graphene tight-binding calculations by the so-called
zone-folding scheme. However, strong confinement of electrons and holes in these
one-dimensional systems lead to enhanced many-particle effects. Therefore optical
excitations form strongly bound excitons. To account faithfully for these states, we
need not only consider their large binding energies, but also their different sym-
metries (involving spin and valley degrees of freedom) which determine whether an
exciton is optically active (bright) or not (dark).

1.1.1 Single particle band structure

Discarding in a first time many-body interactions, we can derive the general elec-
tronic structure of SWNTs from the single-particle spectrum of a graphene sheet
by imposing suitable boundary conditions on the wave functions. This is the zone-
folding method, which we outline here.
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Figure 1.2: a) Graphene real-space lattice with the two sub-lattices A and B. Each
red parallelogram represents a unit cell containing one A and one B carbon atom.
Some dimensions are given in b), with a = 0.246 nm. c) and d) The reciprocal space
is also hexagonal with two inequivalent sites K and K ′. Figure adapted from [5].

Graphene Tight Binding model

Graphene is a two-dimensional realization of carbon, where the carbon atoms are
arranged in a honeycomb network. The honeycomb network itself is not a Bravais
lattice, but can be described as a triangular (or hexagonal) lattice with a basis of
two atoms. The triangular lattice is generated by the primitive basis vectors as
shown in Fig. 1.2. The primitive unit-cell spanned by these vectors is a rhombus
with side length a = 0.246 nm. In the case of the honeycomb network, there are
two basis atoms per unit cell at the positions [5]:

a1 =

(
a
0

)
and a2 =

( 1
2
a√
3

2
a

)
We usually denote these basis atoms as atom A and B respectively. The basis

atoms form two triangular lattices (also named sublattices A and B), that are shifted
with respect to each other to obtain the honeycomb network. In this network,
each atom has three nearest neighbors of the opposite kind. The distance between
neighboring carbon atoms is given as aCC = a/

√
3 = 0.142 nm. In the case of

a triangular lattice, the reciprocal lattice is again triangular, rotated by 90◦ with
respect to the original one (see Fig. 1.2). The reciprocal lattice is spanned by the
primitive basis vectors:

b1 =

( 2π
a

2π√
3a

)
and b2 =

(
0
4π√
3a

)
The first Brillouin zone is constructed as the Wigner-Seitz cell of the reciprocal

lattice and has the shape of a hexagon. However, a wave vector in a Bravais lattice
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is only defined up to some reciprocal lattice vector. Thus, only two of the six corners
in the Brillouin zone are non-equivalent, as always three corners can be connected
with a reciprocal lattice vector. These two inequivalent corners are called K-points
and are labeled K and K ′ respectively. Following T. Ando [6], we choose the wave
vectors:

K =
2π

a

( 1
3
1√
3

)
and K′ =

2π

a

(
2
3

0

)
In a graphene sheet, and when curvature is small also in nanotubes, the s-orbitals

and in-plane px,y-orbitals of the carbon atoms hybridize to form a strongly bound
σ system (sp2 hybridization). Low-energy (i.e. up to few electron-volts) proper-
ties are thus governed by the remaining carbon valence electrons in their pz shells,
perpendicular to the graphene plane. We note Φz(r) the wave function of the pz
orbital of a carbon atom located at the origin. In a tight-binding model, we write
the electronic wave functions of graphene:

Ψ(r) =
∑
RA

ΨA(RA)Φz(r−RA) +
∑
RB

ΨB(RB)Φz(r−RB) (1.1)

We further limit ourself to the nearest-neighbor approximation and denote the cor-
responding transfer integral −γ0. The vectors τl, l = 1, 2, 3 connect the nearest
neighbor carbon atoms (see Fig. 1.4):

τ1 = a

(
0
1√
3

)
, τ2 = a

(
−1

2

− 1
2
√

3

)
, τ3 = a

( 1
2

− 1
2
√

3

)
Neglecting the overlap integral between A and B atoms orbital wave-functions we
get the linear system for the eigenstates:

εΨA(RA) = −γ0

3∑
l=1

ΨB(RA − τl)

εΨB(RB) = −γ0

3∑
l=1

ΨA(RB + τl)

(1.2)

Using Bloch theorem we decompose the coefficients in a product of a slowly
varying envelope and a plane-wave component of wave vector k: ΨA,B(RA,B) =
fA,B(k) exp(ik ·RA,B). After insertion in eq. 1.2 and straightforward simplifications
we obtain the matrix equation:(

0 hAB(k)
hAB(k)∗ 0

)(
fA(k)
fB(k)

)
= ε

(
fA(k)
fB(k)

)
(1.3)

with hAB(k) = −γ0

3∑
l=1

exp(−ik · τ l). Solving this eigenvalue equation finally gives

the valence and conduction bands of graphene:

ε±(k) = ±γ0

√
1 + 4 cos

akx
2

cos

√
3aky
2

+ 4 cos2
akx
2

(1.4)
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Using the coordinates of K and K ′ we see that: ε±(K) = ε±(K′) = 0, and a
development of the cosines near K and K ′ gives for |k|a� 1:

ε±(k + K) = ε±(k + K′) = ±γ
√
k2
x + k2

y

with γ =
√

3
2
aγ0. This dispersion is very peculiar since it is quasi-linear around K

and K ′. Electrons in these states thus behave like mass-less particles, i.e. Dirac
fermions.

M

K’ K

Γ

Figure 1.3: A 2-dimensional representation (right) and 1-dimensional cut along the
main directions (left) of the graphene energy dispersion as determined by equation
1.4. Note the crossing of the conduction and valence bands at K and K ′ and the
electron-hole symmetry close to these points. Left figure adapted from [6].

From Graphene to Nanotubes: Zone Folding

In order to form a SWNT from a graphene sheet, we only need to choose the chiral
vector Ch = n1a1 + n2a2, defining which carbon atoms shall coincide in the rolled
(n1, n2) nanotube (Fig. 1.4). The energy bands of the nanotube are obtained by
imposing the periodic boundary condition on the original graphene wave-function:
Ψ(r + Ch) = Ψ(r), which is satisfied if and only if: exp(ik ·Ch) = 1. This means
that the wave-vector component along the circumferential direction is now discrete,
with allowed values:

k⊥ = n
2π

Ch
, n ∈ N (1.5)

(Ch = |Ch| is the circumference of the nanotube). In the limit of an infinitely long
nanotube the component k‖ along the axis remains continuous. In the reciprocal
space of graphene this defines 1D cutting lines corresponding to the 1D energy bands
of the nanotube (Fig. 1.5 b)). If one of the cutting lines is going through the Dirac
points of graphene (K and K ′) then the nanotube is metallic (in this approximation).
This happens when n1−n2 = 0 mod 3 (see Fig. 1.5 a)). One third of SWNTs is thus
expected to be metallic, and we will concentrate on the properties of the remaining
two thirds of semiconducting single-wall carbon nanotubes interesting for PL studies.

In this simplified single-particle picture, the band-gap is given by the lowest en-
ergy band-to-band transition. It occurs between the bottoms of the valence and
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(n1,n2)

Ch

Figure 1.4: Important vectors and parameters defining a particular species of nan-
otube from the graphene lattice when the sheet is rolled along the chiral vector
Ch = n1a1 + n2a2. η is the chiral angle, (n1, n2) are the chiral indices. Also
shown are the vectors τ1, τ2, τ3 connecting the nearest neighbor atoms in graphene.
Adapted from [6].

KK’

)3,mod( 21 nn −=ν

11E

0=ν 1=ν 1−=ν

Metallic Semi-conducting

a) b)

Figure 1.5: a) Depending on the chiral indices, 3 types of SWNTs are possible.
Nanotubes with ν = 0 are semi-metal, although a small band-gap may open be-
cause of effects neglected in the tight-binding model, like the curvature in narrow
diameter tubes. The other two types are semiconducting, with the first band-to-
band transition occurring on different sides of the K point. b) The one-dimensional
subbands of SWNTs are obtained by plotting the cutting lines defined by eq. 1.5 on
the two-dimensional graphene dispersion.
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conduction bands that are the closest to the K point. Note that an identical tran-
sition exists close to K ′; it is therefore doubly degenerate (in the absence of defect
and magnetic flux threading the nanotube). Shifting the origin of the phase of the
wave functions, we can attribute to these lowest bands a circumferential wave-vector
k⊥ = 0, that is n = 0 in units of 2π

Ch
. The neighboring subbands will have n = ±1,±2,

etc. When light is polarized along the nanotube axis, momentum conservation al-
lows transitions with ∆n = 0 only, whereas light perpendicularly polarized leads to
transitions with ∆n = ±1 (Fig. 1.6).

Although we will see below that the single-particle model is inaccurate to describe
SWNTs, it remains an important tool and serves as a starting point for more evolved
calculations. It also provides valuable understanding of basic optical properties of
carbon nanotubes, like the scaling of the band-gap with 1/d (d is the diameter).
Moreover, the zone-folding scheme is a very intuitive way to explain and understand
a host of physical effects on the electronic structure by referring to the associated
displacements of the cutting-lines on the graphene reciprocal space.

Density of States

E
ne

rg
y

Figure 1.6: The lowest energy optical inter-subband transitions in the single parti-
cle picture occur between Van-Hove singularities in the density of states. Typical
PL experiments involve E22 excitation and E11 detection, both polarized along the
nanotube axis. It is also possible to use cross-polarized excitation of the E12 and
E21 transitions.

1.1.2 Excitonic binding energy

We have so far neglected many-body interactions in our derivation. These have
at least two important consequences on the electronic structure: electron-electron
repulsion tends to blue-shift the energies and re-normalize the band-gap; electron-
hole attraction leads to the formation of bound excitons instead of free electron-hole
pairs (Fig. 1.8). The failure of the single particle description for carbon nanotubes
was first evidenced by the ”ratio problem”. From the linear conic dispersion and
electron-hole symmetry around the K point of graphene, the zone-folding scheme
leads to the expectation of an energy ratio between the second and first optical
transitions being exactly: E22/E11 = 2. This is in contradiction with experimental
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data showing ratios widely spread around ∼ 1.7 (see Fig. 1.7), which motivated
extensive theoretical investigations.

E
22

 / 
E

11

Excitation Wavelength (nm)

Figure 1.7: The ratio of the second to first transition energies for a large number
of nanotube species measured for the first time by Bachilo et al. in 2002 [7]. Circles
are the experimental data.

The reasons for large many particle effects are two-folds: low screening of electro-
static interactions and strong confinement of carriers in one dimension, both trans-
lating into enhanced Coulomb interactions. Whereas the electron-electron repulsion
results in an effective renormalization of the energies and is therefore impossible
to quantify directly in an experiment, the binding energy of the excitons is a very
significant quantity for the photo-physics of nanotubes. For example, the optical
spectrum for bound excitons is dramatically different from what is expected based
on the Van-Hove singularities in the density of states of the single-particle pic-
ture. The oscillator strength is almost completely transferred to the lowest exciton
(Fig. 1.8).

The estimation of the binding energy is equivalent to the problem of the hydrogen
atom (the hole playing the role of the positively charged nucleus). However, in a truly
one-dimensional space, it has been shown by Loudon in 1959 [10] that the binding
energy of the lowest state diverges to infinity. This can be overcome by modifying
the form of the Coulomb interaction to account for the finite extent of the system in
the circumferential direction [10]. With a suitable choice for the effective potential
and the effective permittivities of the nanotube and its surrounding, it is possible
to use this simple model to estimate the binding energies without any knowledge
nor assumption on the detailed electronic structure [8]. Such an approach is also
easily extended to otherwise complicated calculations like the binding of positively
and negatively charged trions [11].

These simplified approaches agree well in general with finer estimations including
ab-initio [12, 13] or density matrix [9] calculations. They all predict exciton binding
energies in excess of few hundreds of milli-electronvolts for tubes with diameters
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Figure 1.8: Top: Schematic of the two main effects arising from two-body interac-
tion. EBGR stands for Band-Gap Renormalization, due to electron-electron Coulomb
repulsion. Ebind is the excitonic binding energy caused by electron-hole attraction.
Left: Energy dispersion in the excitonic picture showing qualitatively the conse-
quences of these two corrections to the single-particle band-gap ESP. The observed
optical transition in PL or absorption has the energy EOptical. Figures adapted from
[8]. Right: The exciton binding energies for the first two optical transitions and a
variety of tube chiralities as calculated by E. Malic et al. [9] using a density matrix
theory based on Bloch equations. Like the single particle band-gap, the binding en-
ergies scale approximately like 1/diameter. The inset shows the absorption spectra
calculated for a (8,4) nanotube, detailing the two effects mentioned above.
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d < 1 nm, and a scaling following the same trend as the band-gap, i.e. increasing
for narrower tubes like ∼ 1/d (Fig. 1.8).

Excitonic Single-Particle

Figure 1.9: Figure from [14] showing the two-photon excitation mechanism.

The first experimental confirmation came in 2005 from Tony Heinz’s group in
Columbia [14]. They used two-photon excitation of the PL to access a higher state
of the excitonic hydrogenic series, namely the 2p-like state. Since this is a bound
state lying above the lowest bright 1s-like exciton, the energy difference E2p − E1s

gives a lower bound to the binding energy. They found values around 300 meV for
nanotubes with diameters ∼ 0.8 nm, in good agreement with theoretical predictions.
This value would be exactly zero in a single-particle picture; their result is thus a
proof of the excitonic nature of optical transitions in carbon nanotubes.

1.1.3 Symmetries, selection rules, Dark and Bright excitons

The large excitonic effects in carbon nanotubes do not only affect the transition
energies, they also have significant implications on the selection rules for optical
processes. We have already seen (Fig. 1.6) that conservation of circumferential
momentum restricts allowed band-to-band transitions for a given light polarization
axis. Whereas this rule can be understood in a single-particle picture, we just saw
above that the observed features from two-photon excitation require an excitonic
picture to be correctly described. This is because such selection rules are dictated
by the symmetries of the wave-function, the latest differing qualitatively between
an exciton and a free electron-hole pair. There are two main approaches to describe
symmetry-related properties of carbon nanotubes. So-called symmetry-based calcu-
lation of the band structure [13], or the ad-hoc inclusion of excitonic effects after
single-particle calculations.

The symmetry groups of SWNTs include various operations and depend on the
particular chirality of the tube. Very good reviews are be found in [15] and [16]. As
far as optical properties are concerned, however, the relevant symmetry operation
dictating the selection rules is the π/2 rotation around an axis perpendicular to the
nanotube, labeled C ′2 in Fig. 1.10. Indeed, the dipole operator for light polarized
along the nanotube axis transforms like a vector and is odd over C ′2. Therefore, only
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Figure 1.10: Left: Schematic electron and hole dispersion labeled by the symmetry
group of the wave functions, as obtained from the zone-folding method. The lowest
energy subbands are represented. ±k0 are the value of the axial component k‖ of the
wave vector at the closest to the graphene K (resp. K ′) point. Right: The symmetry
groups of the resulting exciton is given by the product group of the electron and
hole symmetry groups, which decomposes into a sum of 4 groups. Two excitons have
non-zero momenta (optically forbidden). A2 is odd over the π/2 rotation around C ′2
and thus optically allowed for light polarized along the nanotube axis. The lowest
lying exciton has even parity and is dark. Figure adapted from [15].

odd excitonic states are nominally bright. Even states are dark excitons (absent
perturbation breaking the symmetry).

The particular significance of the formation of excitons is directly linked to the
presence of the two inequivalent sites K and K ′ in graphene. The two degenerate
transitions around these two points are mixed by electron-hole Coulomb interactions.
As shown in Fig. 1.10, the resulting symmetry of the excitonic wave-function is
thus obtained by a decomposition of the product group of electron and hole states.
Among the two states having zero center of mass momentum along the nanotube
axis, only one of them is bright (i.e. odd), corresponding to the bonding combination
of K → K and K ′ → K ′ transitions. It has slightly higher energy than the dark
anti-bonding state. However the direct observation of the dark state and its true
energy has remained an experimental challenge for years.

The situation described above changes when a magnetic field is applied along
the nanotube axis. The Ahoronov-Bohn flux threading the tube corresponds to
an additional phase in the circumferential part of the wave-function. This changes
the boundary condition (1.5) and leads to a lateral displacement of the allowed
cutting-lines in the zone-folding picture. Consequently, the energies of the K → K
and K ′ → K ′ transitions shift oppositely and the degeneracy is lifted (which is
another way of expressing that time reversal symmetry is broken by the magnetic
field flux). For large fields, one expects two optically-allowed transitions split by an
amount proportional to the Aharonov-Bohm flux, as depicted in Fig. 1.11. Thermal
equilibrium between the two states lead to the observation of strong PL from the
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lower dark state, as demonstrated by Ajit Sivrastava and coworkers in [17] (see
Fig. 1.11).

a)

b)

c)

d)

Figure 1.11: (a) Calculated oscillator strengths and (b) energies of the bright and
dark excitons when a magnetic field is applied along the nanotube axis (Figure from
[18]). (c) The magnetic field creates an Aharonov-Bohm flux lifting the degeneracy
between K and K ′, both transitions being now optically allowed (Figure from [19]).
(d) Experimental demonstration of the brightening of the dark exciton under an
axial magnetic field by single nanotube PL spectroscopy at cryogenic temperature
(Figure from [17]).

Whereas theoretical predictions for the dark-bright energy splitting range from a
few to hundreds of milli-electronvolts, it is now becoming clear from recent experi-
mental works that the lower side of this range is most accurate. For example values
between 1 and 7 meV are reported in [17]. As expected there is a trend toward
higher values for narrower tubes, but a wide spread of splitting is found inside a
same chirality and explained by changes in the local environment.

1.2 Photoluminescence

1.2.1 Different types of samples

Experimental observation of PL from carbon nanotubes requires a careful choice
and preparation of the sample. Indeed, SWNTs have very large interface surface
areas with their environments (electrons effectively “live” on the sidewalls!). Highly
efficient energy transfer thus occurs between neighboring tubes in a bundle or into
a nearby substrate, almost completely quenching PL. This conundrum has been
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overcome by two different approaches described below: suspending nanotubes over
trenches etched in the substrate, or dissolving them in water with the help of a
surfactant or DNA (carbon nanotubes may otherwise be directly dissolved in other
solvents, like toluene).

Suspended nanotubes

1 μm

a) b)

Figure 1.12: a) An SEM picture of SWNTs grown on a substrate pre-patterned
with pillars in the group of J. Lefebvre in Montreal. Many nanotubes appear to be
air-suspended, crossing between neighboring pillars. b) Photoluminescence spectra
from (a) a bare pillar substrate and (b) a flat sample covered with CVD-grown
nanotubes, as compared to the spectrum (c) from a pillar area with suspended
tubes showing bright PL. Both figures from [20].

The first report of PL from unprocessed carbon nanotubes grown by chemical
vapor deposition (CVD) came in 2003 from the group of Jacques Lefebvre [20]. They
grew the tubes on a substrate pre-patterned with nano-pillars and observed bright
PL emission from areas where nanotubes bridged the gaps between nano-pillars
(Fig. 1.12). Similar kind of samples can also be obtained by post-etching or transfer-
printing onto a patterned template, but any post-processing reveals detrimental to
the sensitive optical properties of SWNTs. Final growth on pre-etched structures is
thus the method of choice to obtain clean pristine optically active carbon nanotubes.
One hurdle is still the growth of narrow-diameter tubes suited for visible to near-
infrared PL emission, a region where higher efficiency detectors are available. A
recent review on suspended nanotubes is given in [21].

Surfactant-embedded nanotubes

The most popular way of preparing carbon nanotube samples for absorption and
PL experiments remains the one used originally by O’Connell et al. in their pi-
oneering work [4], namely the use of a surfactant to enable efficient isolation and
solvation of the nanotubes in an aqueous solution. We note here that other similar
approaches exist to obtain individual nanotubes in solution:
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Figure 1.13: Left: The surfactant (here SDS) forms micelles around the nanotubes
with the hydrophobic tails pointing toward the nanotube walls. Micelles containing
bundles have a higher density and can be removed by ultra-centrifugation. Right:
Absorption and emission spectra of a solution containing mostly individual nan-
otubes embedded in SDS micelles. Both figures from the ground-breaking work of
O’Connell and coworkers [4].

– Deoxyribonucleic acid (DNA) can be used to isolate nanotubes. Although it is
less efficient than usual surfactants, it is of interest for biological applications
(bio-sensors, drug delivery, biological fluorescent markers, etc.).

– Alternatively, covalent functionalization with suitable chemical groups may al-
low dissolution of nanotubes in water. This method strongly perturbs the pris-
tine electronic structure of SWNTs, which may yet open the way to interesting
applications if the changes are understood and controlled.

– Finally, carbon nanotubes can be directly dissolved in solvents other than water,
like dichloroethane. Such solutions generally have poorer stability over time.

The starting material can be of any kind, but HipCo and CoMoCat carbon nan-
otubes are widely used because of their ideal diameter distributions for optical stud-
ies. HipCo nanotubes have a relatively wide distribution (0.7 nm< d <1.2 nm) with
emission extending in the infrared (up to 1500 nm), whereas CoMoCat tubes are
strongly enriched in narrow diameter semiconducting tubes (d ∼ 0.8 nm) with PL
emission peaked around 1000 nm ((6,5) and (7,5) chiralities are dominant).

Raw material comes as a very volatile black powder which is hardly soluble. More-
over strong Van-der-Waals forces between nanotube walls cause the formation of
bundles detrimental to PL. The addition of a surfactant to an aqueous solution and
subsequent vigourous sonication overcome both problems. Typical surfactants are
long polymers with hydrophobic tails wrapping the nanotube and hydrophilic heads
pointing outwards (see Fig. 1.13). The resulting structure is called a micelle; it is
1-2 nm thick and isolate very efficiently the nanotube from its environment. Impor-
tantly, since no covalent bonds are created, the electronic and mechanical structures
of the pristine SWNTs are preserved. The only significant effect on the optical
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Figure 1.14: Wenseleers et al. studied different surfactants for carbon nanotubes
solvation [22]. Sharper and stronger PL spectra indicate better dissolution and
higher individualization of the nanotubes.



16 Introduction: Carbon Nanotubes Spectroscopy

properties is a change of the dielectric constant, the increased screening leading to
slightly red-shifted transitions compared to air-suspended nanotubes. We note that
different surfactants largely differ in their ability to dilute carbon nanotubes. Recent
studies [22] have shown that sodium deoxycholate (DOC), a bile-salt, is one of the
best surfactants (Fig. 1.14).

1.2.2 Chirality assignment: Kataura Plot

a) b)

Figure 1.15: a) A two-dimensional PL Excitation color map from an ensemble mea-
surement by Bachilo et al. in 2002 [7]. In the white oval region each high intensity
point corresponds to a particular chirality excited resonantly at E22 and emitting at
E11. b) From such PLE maps one can assign the nanotube chiralities and plot the
transition energies against the diameter in a so-called Kataura plot. Weisman et al.
proposed in 2003 the first empirical Kataura plot [23], evidencing family behaviors
(branches) and deviation from simple tight-binding calculations.

Micelle-embedded SWNTs solutions are particularly well suited to ensemble PL
measurements. Whereas it suffers from inhomogeneous broadening and freezing at
low temperature, among others, this method allows the simultaneous observation of
a wide range of nanotube chiralities and thus constitutes a valuable characterization
tool. Specifically, recording PL spectra upon quasi-continuous tuning of the excita-
tion wavelength yields a two-dimensional PL-excitation (PLE) map (Fig. 1.15 a)).
The most prominent features on this map are seen when the excitation is resonant
with the second excitonic transition E22 of a particular chirality. Since PL emission
occurs at the energy E11 one has access to the couples (E11, E22) of all observed
species, which enables univocal identification of the chirality. The data can even-
tually be plotted against the nanotube diameters in a Kataura plot (Fig. 1.15 b)).
In addition to the 1/d scaling of both transition energies, branches are observed in
different directions for ν = ±1 SWNT types, with the chiral angle increasing along
each branch (see Fig. 1.15).

1.2.3 Phonon-assisted excitation

PLE maps also reveal additional resonances in the excitation spectrum related to
phonon sidebands. The main sideband is associated to the optical G-mode with an
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Figure 1.16: Schematic of phonon-assisted PL excitation.

energy of 1600 cm−1 or 200 meV. The presence of a large number of chiralities and
inhomogeneous broadening makes it difficult to observe and assign weaker sidebands
or resonances closer in energy to E11. Here it is desirable to use single-molecule
spectroscopy techniques to study the properties of individual nanotubes. Suitable
samples are obtained by coating a substrate (quartz, silicon oxide, etc.) with a
nanotube solution of the appropriate density. The sample preparation procedure
and the experimental apparatus used in the present work will be detailed in Chapter
2, but we already introduce here and in the next section our own experimental data
to illustrate significant features of single nanotube PL spectroscopy.

A typical example of data taken at liquid nitrogen temperature (77 K) in our lab
is shown in Fig. 1.17. We do observe a phonon sideband in excitation associated
with the G-band, but it is much weaker than other resonances closer in energy to the
PL emission. We tentatively assign these resonances to phonon-assisted relaxation
(Fig. 1.16) from other raman-active phonons which are poorly studied, namely the
intermediate frequency modes (see for example [24]). Our assignment is supported
by the good match between the observed resonances and the phonon energies.

1.2.4 Photoluminescence bleaching, blinking and spectral
diffusion

Although poorly reported and documented in the literature, irreversible photo-
induced PL-quenching plagued our beginnings with single-tube spectroscopy and
still constitutes a major hurdle to our on-going experiments. Figure 1.18 shows
the typical behavior of a CoMoCat SWNT embedded in SDS and deposited on a
glass or SiO2 substrate. At room temperature and under laser excitation, the PL
signal bleaches in more or less pronounced steps, most of them irreversible. The
bleaching rate increases with the laser power, but even under the weakest intensities
we could not measure PL longer than a few minutes. After numerous trials in
sample preparation (different substrates, densities, solutions, etc.) we eventually
solved the problem by cooling the sample down to 77 K or 4 K, at which we believe
condensation of oxygen and other gases account for the improvement.

The first thorough investigation of stepwise PL quenching was published by Lau-
rent Cognet et al. in 2007 [25]. From their study of the step numbers and sizes
and the control exposure to different chemicals, they conclude that the quenching is
caused by the photoinduced chemisorption of initially adsorbed oxygen on the side
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Figure 1.17: a) When a small bundle of nanotubes is excited, strong resonant Ra-
man scattering may be observed. Red numbers indicate the energies of the phonons.
In addition to the widely reported radial-breathing modes (RBM), D- and G- modes
and high energy modes (HEM), we observe a number of raman-active intermediate
frequency modes (IFM) [24]. b) In the PLE map of a single nanotube emitting at
880 nm (top) raman scattering is seen as diagonal lines. When they cross the PL
horizontal line phonon-assisted relaxation causes enhanced emission. A cut along
the emission line reveals the excitation spectrum of the nanotube (bottom) where
we have reported the phonon energies measured in a) (blue bars). The position of
the resonances match well the main phonon groups.
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Figure 1.18: Time traces of PL emissions from different individual CoMoCat nan-
otubes in SDS-micelles at room and liquid nitrogen temperatures, with similar exci-
tation conditions (wavelength and power). In both cases fast intensity fluctuations
on seconds (or less) time scales are observed. At room temperature, very clear ir-
reversible stepwise quenching occurs upon laser excitation. This unwanted effect
is suppressed at low temperature in low-pressure helium atmosphere, presumably
because oxygen and other gases are absent or condensed.
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walls of the tubes, as was confirmed in [26]. Resulting sites act as hole dopants,
quenching the optical excitation through non-radiative Auger process. The exciton
diffusion range derived from these studies is 90 nm [25] to 105 nm [26].
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Figure 1.19: PL time traces of a CoMoCat nanotube at 4 K and two different
excitation powers.

Another feature which is in contrast rather more prominent at lower temperature
is PL blinking, usually accompanied by spectral wandering and/or spectral jumps.
Figure 1.19 displays PL time traces of a CoMoCat nanotube taken at the lowest ac-
cessible temperature in our helium bath cryostat (4 K). The splitting into multiple
lines is a very usual feature of these samples. Remarkably, each line blinks and shifts
independently, and the instability is increased under higher excitation intensity. Al-
though the exact cause for blinking and spectral diffusion is not clear, it seems
definitely related to the presence of the surfactant micelle. Indeed, Olivier Kiowski
et al. found in a comparative study [27] that under identical conditions suspended
CVD-grown nanotubes showed very stable PL emission intensity and wavelength, in
contrast to the SWNTs from a sodium cholate dispersion (see Fig. 1.20). These re-
sults highlight the role of the immediate environment of the nanotube in influencing
its optical and electronic properties. It is very likely that charges get alternatively
trapped in the micelle and released, causing both intensity fluctuations through
Auger-induced partial PL quenching, and spectral shifts from the DC stark effect.

I would like here to point out that the occurrence of large spectral jumps, with no
correlation between the different PL lines from a same nanotube (as we observe in
Fig. 1.19), is a strong indication for localized emitting states. If the different lines
corresponded to delocalized excitonic states of the SWNT, they would shift together
and rather smoothly as a consequence of charge trapping in the micelle (the stark
shift induced by a single charge is expected to be small when averaged over the
nanotube or exciton diffusion length).

The observation of very stable emission from suspended CVD-grown nanotubes
constitutes a strong motivation for us to use similar samples for future experiments.
Unfortunately the growth of very narrow, individual, isolated SWNTs is challenging
and we are still optimizing the fabrication process at the time when I am writing.
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Figure 1.20: In their study, O. Kiowski et al. [27] compared PL time traces of
individual SWNTs at low temperature (between 6 and 8 K). a) SWNTs from a
sodium cholate dispersion show fluctuation in wavelength and intensity, as we also
observe. b) On the contrary, PL from suspended CVD-grown SWNTs is very stable
in time.
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2 Photon Correlation Measurements
on Individual Nanotubes

In this chapter and the following, we will report on the main experimental results
obtained from the PL spectroscopy of individual CoMoCat SWNTs dispersed in
sodium dodecyl benzene sulfonate (SDBS). We first give some details on the samples
and the setup we use, then expose the core of the chapter, namely the observation
of anti-correlated photon emission from SWNTs, and finally discuss the origin and
possible explanations for antibunching.

2.1 Experimental Details

2.1.1 Sample Preparation and Characterization

As mentioned in chapter 1, the easiest and most convenient way to carry out PL
experiments on carbon nanotubes is to start from an aqueous dispersion contain-
ing a suitable surfactant. Moreover, given the very limited detection range of our
equipment (based on silicon technology) in the infrared, we need narrow nanotubes
emitting at wavelength below 980 nm (and even below 900 nm for the streak cam-
era). This means diameters on the order of 0.7 nm. This requires the use of HipCo
or CoMoCat materials, the only reliable sources of narrow nanotubes. Because of
the availability of commercial “ready to use” dispersions of CoMoCat nanotubes
and their ideal diameter distribution, we chose this solution to start the new SWNT
activity in the group.

The general idea to prepare a sample suitable for single nanotube spectroscopy
is to spread homogeneously the nanotube solution on the desired substrate. A key
point for us is the final spatial density, which must be compatible with single-
molecule spectroscopy (less than one nanotube on average in a spot-size area
∼ 1 µm2) and yet high enough to allow for the study of a reasonable number of
nanotubes within a reasonable search time. This parameter is controlled mainly by
the original density of the dispersion, and weakly depends on the coating procedure
(for example the spinning angular velocity) and the substrate’s type.

We also want the nanotubes to adhere well onto the substrate, especially for AFM
imaging. Indeed, after coating with the SWNT dispersion, the sample is virtually
covered by a layer of surfactant which renders AFM imaging of the nanotubes impos-
sible. We therefore need to rinse it thoroughly (with water, methanol or isopropanol)
to get rid of surfactant residues. Of course, if no care is taken, nanotubes may be
removed as well in the process. This can be avoided by engineering a strong inter-
action between SWNTs and the substrate surface. The SDBS micelles surrounding
the nanotubes have their hydrophilic heads positively charged. Unfortunately, most
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oxides are also characterized by positive surface charges, preventing strong and re-
liable adhesion of the micelles. The solution is to functionalize the substrate with
a self-assembled monolayer of polylisin (PLL) which reverts the polarity of the sur-
face. This additional step permits good fixation and subsequent rinsing without
losing the nanotubes.

++ + +

Si02 or ZrO2

PLL monolayer

__ _ _
ZrO2 SIL

n = 2

Figure 2.1: Preparation of a sample for single nanotube spectroscopy. The SDBS
micelles wrapping the CoMoCat nanotubes in the dispersion have negatively charged
outside walls. After functionalization of the substrate with polylisin (PLL), the
surface is positively charged, ensuring strong fixation of the SWNTs. The process
was carried out on silicon dioxide wafers for AFM characterization, then directly on
the flat surface of a hemispherical zirconium solid immersion lens (SIL) for optical
measurements.

A simplified description of the sample preparation procedure is shown in Fig. 2.1.
The initial step is the cleaning of the substrate in an ultrasonic bath of isopropanol
during 10-15 min followed by rinsing with deionized water. The formation of the
PLL monolayer is straightforward: covering the substrate with a PLL solution for
∼ 1 min and rinsing. A droplet of the nanotube dispersion, previously diluted with
DI water and SDBS to get the desired concentration, is then spin-coated (or simply
spread and let repose for a few minutes). Finally, if AFM imaging is planned, the
sample is rinsed in DI water (or another solvent), possibly under sonication to ac-
celerate the process. 1 x 1 cm2 glass or SiO2 wafers were the most usual substrates
because of their convenient handle, their good optical properties (low PL and ra-
man background) and their low roughness for AFM. When all the parameters were
optimized, we repeated the process on the flat side of a zirconium solid immersion
lens (SIL) for high numerical aperture spectroscopy (see next section).

The optimization of the density and the determination of the physical properties of
the CoMoCat nanotubes (in particular their lengths) are most conveniently carried
out by AFM imaging. Although it is possible to get an idea of the density by
scanning the sample and monitoring PL, this gives only partial information because
a small proportion of the nanotubes show detectable PL. Metallic tubes, tubes
emitting outside the detection range or those which PL is quenched for some reason
are discarded, although they may alter the properties of a neighboring nanotube
we wish to investigate. Similarly, our spot-size being at best 500 nm in diameter,
the length of shorter emitting objects will not be resolved. Thus we used AFM in
non-contact tapping-mode on rinsed samples to characterize the density and length
distribution of our nanotubes. Representative images and compiled statistics are
shown in Fig. 2.2.
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Figure 2.2: a) Example of AFM phase images in non-contact tapping-mode. Sam-
ples need to be thoroughly rinsed with water to remove surfactant residues and
enable AFM imaging. Many residues are still visible as high-contrast dots. b) From
a collection of such images taken at different position on a sample, we built some
statistics on the length of the nanotubes. The proportion of very short nanotubes
may be under-estimated because they are difficult to distinguish from impurities.

An important feature revealed by this characterization is that the mean length
of the SWNTs is on the order of, or smaller than, our spot diameter. This renders
difficult any claim about the extent of the emission (localized vs. delocalized) on
the sole ground of spatial PL mapping. We note however that a substantial number
of nanotubes are longer than 1 µm and should be seen as extended objects in PL if
emission were coming from the entire nanotubes.

2.1.2 Confocal Microscope Setup

Although a number of small modifications and improvements have been realized
in the course of my thesis, the basic experimental setup remained the same and
is schematically represented in Fig. 2.3. The central part is a home-build confo-
cal microscope based on the very versatile Thorlabs cage system and components.
Following the path of light from excitation to collection and detection, we briefly
describe the main parts:

– The excitation source is a solid state Ti:Sapphire MIRA 900-F laser from the
company Coherent, pumped by a 10 Watt output VERDI green laser. The
MIRA can be operated in continuous wave (CW) or in pulsed mode with a
pulse length of ∼ 150 fs and a repetition rate of 76 MHz (time separation
between pulsed ∼ 13 ns). The wavelength can be tuned reliably from 720 to
980 nm.

– The output light goes through some optics for power control and stabilization
(Acousto-optic Modulator with PID feedback from the photodiode). It is then
coupled into a single mode optical fiber. Polarization paddles enable to rotate
the axis of the linearly polarized excitation light before it enters the confocal
microscope.

– The laser light is collimated out of the fiber and goes through a sharp high
quality short-pass filter. The filter is needed because the high intensity laser
field in the fiber creates a large, broad background of inelastically scattered
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Figure 2.3: A schematic view of the basic setup used for single nanotube confocal
microscopy at cryogenic temperatures.

light at longer wavelengths. If unfiltered, this light is reflected on the sample
(and other optics on the path) and collected in the spectrometer, covering the
signal from the nanotubes.

– How much light is reflected on the 45◦ glass plate depends strongly on its po-
larization axis. It is minimal (about one percent) for light polarized along a
vertical axis lying in the plane of the figure, whereas it is maximal (∼10%)
for the orthogonal direction (perpendicular to the plane of figure 2.3). Us-
ing the preceding paddles to maximize the intensity reaching the sample thus
determines a well-defined linear polarization axis before passing through the
polarizing optics.

– To control excitation polarization we plug-in one of the two following optical
components: either a quarter-wave plate, transforming linear polarization into
circular polarization; or a half-wave plate, which rotates the linear polarization
axis by twice the angle between the original direction and the fast axis.

– A hermetically glued window with anti-reflecting coating gives access to the
inside of the stainless steel microscope tube. It is initially evacuated and filled
with low pressure helium (∼ 10 mbar) serving as exchange gas to thermalize the
sample at the helium bath cryostat temperature (4 K). The collimated beam
is focused on the nanotubes through the combination of a high NA aspherical
lens and a zirconium solid immersion lens.

– On the close vicinity of the SIL we mount a thermo-resistor for local heating
and temperature control (with resistive read-out). This allows us to tune the
local temperature from the 4 K base temperature up to ∼ 30 K.
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– Reflected, scattered and re-emitted light fields all follow the same path up-
wards. Some is reflected and lost on the first glass plate. A second glass plate
reflects a small portion of the light for real space imaging on a CCD camera.
Unfortunately PL emission from the nanotubes is much to weak to be directly
detected in this way, but reflection of laser light provides a highly valuable help
in aligning the microscope and focusing, as well as for orientation.

– The long-pass filter is critically needed to remove the reflected laser light which
is orders of magnitude more intense than the PL signal and would saturate
the spectrometer. The respective cut-off wavelengths of the short- and long-
pass filters have to be carefully chosen. Their transmission ranges should not
overlap, and their particular values also determine which nanotube chiralities
we are able to detect and at what energies we can excite them. After the filter,
light is coupled in a single-mode fiber and sent to the desired detection and
analysis equipment: spectrograph, HBT-setup or streak-camera.

– The spectrograph is a 500 mm focal-length SpectraPro-2500i from the Acton
Research Corporation. It features an astigmatism-corrected optical system,
triple indexable gratings and triple grating turret. Only two gratings are in-
stalled in our system: a 300 g/mm grating giving a spectral resolution of ∼
0.3 meV (at 900 nm) and a 1200 g/nm grating with which we can reach a res-
olution close to 0.1 meV. If not mentioned otherwise, all the spectra shown in
this thesis were taken with the 300 g/mm grating.

To illustrate the main characteristics of our setup we show in Fig. 2.4 a spatial
map of PL at liquid nitrogen temperature. We designed a Labview routine con-
trolling simultaneously the Attocube piezo-electric positioners and the spectrometer
(through TTL pulses). Such a map is obtained by scanning step by step, line by
line a given area of the sample. After each step a spectrum is integrated over a
few seconds before the next move. Finally a script written in Origin performs the
integration of the signal intensity in each spectrum over the chosen range, providing
the data for the matrix coding the color map. As we can see in Fig. 2.4, a single
nanotube is emitting around 880-890 nm in the mapped area, and it is strongly
selective to the polarization axis of the excitation, as expected from the antenna
effect.

2.1.3 Time-resolved spectroscopy

To measure the PL lifetime of the SWNTs, we use a Hamamatsu streak camera
with maximal time resolution of 7 ps and detection range extending to 900 nm in
the near infrared. This limits its operation to the measurement of the narrowest
tubes in our sample. We give here a short description of the functioning principle
of this instrument (see Fig. 2.5).

A streak camera transforms the temporal profile of a light pulse into a spatial
profile on a detector, by causing a time-varying deflection across the width of the
detector. The light pulse enters the instrument through a narrow slit and hits a
photocathode, where photoelectrons are ejected via the photoelectric effect. The
electrons are accelerated in a cathode ray tube and then deflected through an elec-
tric field produced by a pair of parallel plates. During each repetition cycle, electrons
emitted first hit the detector at a different position compared to electrons produced
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Figure 2.4: a) Automatized PL mapping of the same 5 x 3 µm2 area under two
orthogonal linear polarizations of the excitation light. Each pixel of the color map
is obtained by integrating the corresponding PL spectrum over the wavelengths
between 884 nm and 885.5 nm. It is clear that no other tube emitting in this range
lies in the vicinity, a necessary condition for single nanotube spectroscopy. Note also
that the emission region is significantly smaller than our spot size since the expected
elongated shape in the X-direction is not recognizable. b) The two cross-polarized
spectra from the red spot in a), showing the strong suppression of PL emission when
the nanotube is excited with cross-polarized light.



2.1. Experimental Details 29

Figure 2.5: Functioning principle of an optoelectronic streak camera.

by photons that arrived later. This cycle is synchronized with the MIRA fem-
tosecond pulses and repeated at a rate of 76 MHz. The accumulating frames form
a “streak” of light reproducing the temporal profile of the incoming signal, from
which properties like the PL decay time can be inferred.

We performed time-resolved PL (TRPL) measurements on a dozen of CoMoCat
nanotubes at temperatures ranging from 4 K to 30 K and under different excitation
powers. First let us clarify what dynamics is reveal by TRPL data. It is important
to stress that TRPL measures the PL lifetime which is in general different from
the radiative lifetime of the exciton. Actually, the discrepancy is significant for
carbon nanotubes which are thought to have radiative lifetimes in the nanosecond
range, whereas PL lifetimes are tens to hundreds of picoseconds. This means that
excitons decay mainly through non-radiative channels, which also accounts for the
low quantum efficiency of light emission (a few percents or less).

Figure 2.6 shows a typical TRPL measurement on a CoMoCat nanotube at 4 K,
under moderate excitation intensity. The rise-time of the time trace is mainly de-
termined by the streak camera resolution of 7 ps, since the MIRA pulses are much
shorter. The majority of the SWNTs studied display a bi-exponential decay, with a
short time-constant of 15 to 40 ps and a longer one of 200 to 400 ps. The weight of
the short component was always larger, with some nanotubes even showing mono-
exponential decay (vanishing longer component). In Fig .2.6, we give the form of
the fitting function and the fitting parameters used. For this particular nanotube,
an increase in temperature up to ∼15 K lead to a slight increase in τ1, but in general
changing the temperature had no detectable or reproducible effect on the measured
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Figure 2.6: Example of time-resolved PL (TRPL) measurement at 4 K using the
streak camera.

time dynamics.

The main fast component very likely corresponds to the non-radiative decay of
the optically active exciton, although the particular mechanism is still unknown.
We attribute the longer component to the re-population of the bright state from a
longer-lived dark or quasi dark state, which can be the nominally dark exciton (see
chapter 1) or trap state at some particular site on the nanotube.

2.2 Auto-correlation measurements and Photon
antibunching

2.2.1 Photon correlation: theory and setup

The definition of the normalized first-order correlation function depending on the
time difference τ reads:

g(1)(τ) =
〈E∗(t)E(t+ τ)〉
〈E∗(t)E(t)〉

(2.1)

where E(t) is the total complex amplitude of the electromagnetic field of the beam
of light. A measurement of g(1) evaluates the first-order coherence which is equal
to the statistical average (denoted by angle brackets) of the correlation between
electromagnetic fields. For a stationary source, the statistical average is equal to the
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time average, which is what we effectively measure in single nanotube spectroscopy
when we integrate the signal over time.

The temporal coherence of light is directly related to the spectral density of the
source by a Fourier transformation, according to the Wiener-Khintchine theorem:

F (ω) =
1

π
<
(∫ ∞

0

g(1)(τ) exp(iωτ)dτ

)
(2.2)

where ω is the angular frequency and < denotes the real part of a complex number.
All the information retrieved from spectral analysis is thus derived from the first-
order correlation properties of the source. To access more interesting properties
of the emitter and investigate some of its quantum features, we need to know the
second-order correlation function defined as:

g(2)(τ) =
〈E∗(t)E∗(t+ τ)E(t+ τ)E(t)〉

〈E∗(t)E(t)〉2
(2.3)

An important oft-overlooked point in the above equation is that, generally, the com-
plex electromagnetic fields E do not commute. Therefore, in the general case, the
order of the terms cannot be rearranged. In the case of chaotic light, for example,
the cancelation of cross-terms between random relative phases allows this reorgani-
zation, and we can write:

g(2)(τ) =
〈E∗(t)E(t)E∗(t+ τ)E(t+ τ)〉

〈E∗(t)E(t)〉2
=
〈I(t)I(t+ τ)〉

I2
(2.4)

Since, as we shall see, we have access experimentally only to the zero-delay value
g(2)(τ = 0), the commutation assumption is in our case always satisfied, whatever
the coherence properties of the source.

From eq. 2.4 it is clear that we may measure g(2)(τ) if we are able to correlate the
PL intensity from the nanotube with itself at different times. In other word we need
to measure the amount of correlation between photons emitted (and arriving on the
detectors) at different times. This can be done using a Hanbury-Brown-Twiss setup
[28] as depicted in Fig. 2.7.

APDs

Delay Box

Focusing50/50 
FBS

PL signal

MIRA 
fs-pulses

Figure 2.7: A schematic representation of our HBT setup used for correlation mea-
surements. FBS: Fiber-based Beam Splitter; APD: Avalanche Photodiode; CFD:
Constant Fraction Discriminator; TDC: Time-to-Digital Converter.
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The PL signal coming from our sample is split equally into a pair of beams by
a 50/50 fiber beam splitter (FBS), each of them being focused on the chip of a
silicon avalanche photodiode (ADP) single photon detector (with quantum efficiency
approaching 10% at 900 nm). A photon detection event triggers the emission of an
electric pulse. One of the pulse is delayed by a few tens of nanoseconds before
entering the correlation electronic. Therein, for each input, a constant fraction
discriminator (CFD) distinguishes between noise and real voltage pulses, before a
time-to-digital converter (TDC) translates the time delay between pulses in a digital
output. The outputs from the two arms are finally correlated to form a histogram
of the coincidences.

If two-photon emission never occurs within the duration of a single pulse, we
expect no coincidence for zero time delay. On the contrary the detection of a coinci-
dence between two different pulses (whose time separation is large compared to the
“memory” of our nanotube) is always possible and completely random (reflecting
the fact that g(2)(τ) −−−→

τ→∞
1, as explained below). For an antibunched emitter we

thus expect the formation of equally high and equally spaced peaks, except from a
missing central peak at τ = 0.

We now turn to the particular form of the function g(2) for different kinds of
light sources, and its relation to the time statistics of the emitted photons. We
show in Fig. 2.8 schematic patterns representing the photons emitted over time by
three types of sources. In thermal light, photons tend to be emitted in packets (or
bunches) so that g(2)(0) > 1 (characteristic of a quantum random process). For a
poisonian statistic like the one of a laser (or more generally describing a classical
random process), photons are perfectly uncorrelated for any delay; in particular
g(2)(0) = 1.

Finally, a single quantum emitter (e.g. a two-level system) cannot emit two pho-
tons simultaneously. Some delay is needed before the excited state becomes re-
populated and a next photon can be emitted. The resulting light is antibunched,
with g(2)(0) < 1, ideally g(2)(0) = 0. This result cannot be obtained within the realm
of classical electrodynamics and reflects therefore a typically quantum property of
the source. We note that in the long-delay limit the emitter has no memory of its
state long ago: events separated by large delays are always uncorrelated, meaning
that g(2)(τ) −−−→

τ→∞
1. This is a useful remark for the normalization of the experimen-

tal data (collected as raw count numbers).

The forms of the g(2) function for the three cases above are represented in
Fig. 2.9.a). If we disposed on extremely fast detectors and electronics (much faster
than the PL lifetime of the nanotubes) we could theoretically directly measure these
curves, using the HBT setup of Fig. 2.7 with the excitation laser operated in con-
tinuous wave. Unfortunately, our APDs have a time jitter of ∼300 ps which is
significantly larger than the typical nanotube PL lifetime of 30 ps or less. The nar-
row dip expected around τ = 0 would therefore be lost after convolution with the
instrument response function.

Nevertheless, even with this “slow” detectors, we can measure the value of g(2)(0)
by exciting with very short pulses. The MIRA delivers femto-second pulses, much
shorter than the PL lifetime. In a pulsed experiment, provided that the delay
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between pulses is larger than the detector jitter, the time resolution is effectively
determined by the pulse duration. We are indeed limited to the measurement of
g(2)(τ = 0), but as we just saw, it contains the most relevant information to distin-
guish between different types of emitters. Experimental results from a measurement
on the attenuated pulsed laser light and on an antibunched SWNT are shown in
Fig. 2.9, b) and c), respectively.

2.2.2 Photon antibunching from carbon nanotubes

We used the HBT setup described above to perform photon correlation measure-
ments on about a dozen of CoMoCat SWNTs and found for all of them normalized
values of g(2)(τ = 0) less than 0.5. This result cannot be explained by a classical
description of the light emission by the nanotubes and reveals the unique quantum
nature of the emitters. Figure 2.10 shows the data from a particularly strongly an-
tibunched SWNTs at different temperatures. The PL spectrum is relatively broad,
and very asymmetric at the lowest temperatures, with an obvious persistent red tail.
Both features are very representative of the large majority of SWNTs in our sample.
Simultaneous two-photon emission occurs with a probability lower than 3 % below
10 K. Since we did not performed background correction this figure constitutes an
upper bound. Even at 25 K it remains as low as 15 %.

These results are unexpected for ideal one-dimensional emitters. Antibunching is
a well-known characteristic of the light emitted by atoms or systems confined in all
directions like quantum dots and nanocrystals (see for example [29]). In all these
cases the emitter can be described as a two-level system and phase-space filling
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Figure 2.10: Photon antibunching from a SWNT at different temperatures.

ensures the optical anharmonicity causing antibunching. In contrast, carbon nan-
otubes are extended in one spatial direction and should allow for the simultaneous
existence of several optical excitations along their lengths. This in turn should per-
mit multi-photon emission events after each laser pulse, in contradiction with what
we observe. The next section is dedicated to the search and discussion of possible
mechanisms responsible for antibunching.

2.3 The origin of antibunching: discussion

2.3.1 Exciton-exciton annihilation

In a pulsed excitation experiment, several excitons are usually created along the
nanotube length, or within the spot size if the latter is smaller than the SWNT
length. The size of an exciton, its Bohr radius, is expected to be less than 2 nm (see
for example [30] for an experimental determination). The Bohr radius is a measure
of the typical electron-hole separation along the nanotube axis. The lifetime of a
single exciton is the inverse of the total unimolecular decay rate γr+γnr. This is the
sum of the radiative rate γr, calculated to be nanoseconds or tens of nanoseconds,
and the dominating non-radiative decay rate γnr. Since γr � γnr, what we actually
probe in our PL lifetime measurement is γnr ≈ 2π/(30 ps).

During this lifetime, excitons can diffuse along the nanotube. For micelle-
encapsulated carbon nanotubes like the ones we are using, the diffusion length LD
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Figure 2.11: Auger recombination: physical process in (a) energy-momentum space
and (b) real space. In the first stage (1), two nearby excitons interact through the
Coulomb force, one of them recombining non-radiatively. Energy and momentum
conservation are satisfied by the excitation of the remaining electron and hole to
higher states. (2) The excited electron-hole pair subsequently relaxes in tens or
hundreds of femtoseconds to reform a ground state exciton. Finally the remaining
excitons are physically separated by distances too large to interact, and each one
may emit a photon.

of excitons, that is to say the mean distance they probe along the nanotube before
recombining, was found to be 90-100 nm at room temperature (see [25, 31]). When
two excitons are created within a segment of length L < LD, because many-particle
interactions are enhanced due to the reduced dimensionality of the nanotube, they
are extremely likely to undergo exciton-exciton annihilation (EEA), also known as
Auger recombination (or bimolecular recombination), as shown in Fig. 2.11.

During this process, one of the exciton recombines non-radiatively while its energy
is transferred through Coulomb interaction to the second exciton by promoting the
electron and hole to higher energy states. Since there always exists a wave-vector
kA so that Ec(kA) − Ev(kA) = 2E11 (see Fig. 2.11 a)), no restriction is imposed by
energy and momentum conservation, making the process very efficient. The excited
electron-hole pair can subsequently relax on very short time scales to the ground
excitonic state E11. 1

Recently, the validity of this model as been experimentally confirmed by Murakimi
and Kono [32]. They study the saturation of the PL emission intensity from CoMo-
Cat nanotubes in an aqueous solution of sodium cholate under pulsed excitation.
They observe an upper limit to the exciton density that is very well described by
diffusion-limited exciton-exciton annihilation as presented above (with a somewhat
sorter diffusion length ∼ 45 nm).

This observation has highly relevant implications in our discussion on the origin
of antibunching. Both our spot size and the average length of our nanotubes are
∼ 500 nm, therefore several times larger than LD (which is in addition very likely

1. Alternative models of Auger recombination assume that both excitons are lost during the
process, but to fix the ideas we will focus on the former scenario.
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to become much shorter at cryogenic temperatures). It is then to be expected that
each excitation pulse populates the nanotube with excitons separated by distances
larger than their diffusion length (see Fig. 2.11 b)). These excitons will never meet
each other neither come close enough to interact, thereby finally recombining by
one of the possible unimolecular channels γr or γnr. This situation is identical to
the presence of N independent quantum emitters, with N ∼ LNT/LD (LNT is the
nanotube length and may be replaced by the spot diameter). The calculated zero-
delay second-order photon correlation function in this case is g(2)(0) = 1− 1/N . We
note that g(2)(0) ≥ 0.5 as soon as N ≥ 2, which is expected for SWNTs from the
previous discussion. This is in strong contrast with the high level of antibunching
we observe in our experiment.
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Figure 2.12: Calculated emitted photon number statistics for an extended system
after an ultrashort pulsed excitation, adapted from [33]. The Auger rate is fixed to
γA = 50(γnr + γr) and the initial number of excitons created after each laser pulse
in the system is n0

exc = 50. As soon as the effective domain probed by excitons is
smaller than the system size ω < Ω, antibunching is not observed anymore.

Interestingly, K. Seki and M. Tachiya recently calculated the photon emission
statistic for a system where unimolecular decay competes with bimolecular Auger
annihilation (rate γA) [33]. Moreover, they consider the possibility of an extended
system of volume Ω in which excitons interact only when they are both contained
within a smaller domain ω. This describes very well the situation expected from
diffusion-limited exciton-exciton annihilation in carbon nanotubes.

The results obtained by K. Seki and M. Tachiya are reproduced in Fig. 2.12.
When all excitons are susceptible to interact (ω ≥ Ω), a moderately fast Auger rate
γA = 50(γnr + γr) ensures low level of photon pairs emission even at high excitation
level (n0

exc = 50). However, as soon as the system is effectively separated in two
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domains or more, no significant level of antibunching is found and multi-photon
emission occurs with high probability.

2.3.2 Exciton localization in SWNT-Quantum Dots
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Figure 2.13: a) Second-order photon correlation function at zero-delay, calculated
using the formula from [33, 34], as a function of the Auger rate γA normalized to the
total unimolecular decay rate γnr+γr. Note the independence of g(2)(0) on the ratio
γr/γnr. The initial number of excitons created after each laser pulse in the system
is fixed to n0

exc = 10. b) For a given Auger rate γA = 100(γnr + γr), an increase in
pump power translates into an increase in n0

exc, but antibunching remains significant
(g(2)(0) < 0.1).

Although Auger rate in carbon nanotubes is known to be extremely fast (γA >
100(γnr+γr)), the limited diffusion range of excitons should not enable us to observe
detectable level of antibunching. We are thus forced to assume that PL emission
originates mainly from a single site on the nanotube, whose size σ is smaller than LD.
In other word, we must be detecting PL from SWNT-quantum dots (SWNT-QDs).
We use the formula derived in [33, 34] by K. Seki and M. Tachiya to calculate the ex-
pected photon pair correlation when Auger annihilation alone prevents multi-photon
emission in a hypothetical SWNT-QD. Our results are summarized in Fig. 2.13.

Indeed, the significant levels of antibunching we observe experimentally are in
good agreement with the calculated values under the reasonable assumption that
γA ≥ 100(γnr + γr) (i.e. sub-picosecond exciton-exciton annihilation). In these
conditions, we expect robust antibunching, slightly degrading under increasing pump
power (corresponding to an increasing initial number of excitons n0

exc).

Alternatively, the observation of antibunching from a SWNT-QD could be ex-
plained by the existence of a stable and strongly bound bi-exciton. This is indeed
expected to be the case, with calculations predicting binding energies for the bi-
exciton of 100 to 200 meV. Both explanations are thus likely to participate in reality,
but we now present experimental evidences emphasizing on the role played by Auger
recombination.
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2.3.3 Evidence for ultra-fast Auger recombination

Figure 2.14 displays the PL emission characteristics of a single SWNT under
increasing pulsed excitation power. First of all, we do not remark any change in the
line shape nor in the emission energy. In particular, no red-detuned bi-exciton peak
is observed (up to the highest pump power) within our detection range, extending
185 meV below the single exciton peak. The bi-exciton emission peak should show up
at high excitation intensity and its strength should follow a typical quadratic pump
power dependence. Most importantly, we clearly see that the PL intensity rapidly
saturates, as is expected when Auger annihilation prohibits the existence of several
excitons in the quantum dot. Note the irreversible decrease at the highest pump
power which is a widely observed feature in our experiment. This cannot directly
be explained by the exciton dynamics and is more likely due to modifications in the
local environment of the nanotube.
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Figure 2.14: a) PL intensity saturation under pulsed excitation. Two PL spectra
are shown on top; the shape and energy do not change when the power is increased.
The weak red-detuned peak visible at 300 nW is attributed to a RBM phonon
replica (see chaper 3) and its intensity follows the same saturation behavior. The
blue and red solid curves are tentative fits using the functions derived in [32]. None
of them can reproduce the strong intensity drop at high power, which is certainly
due to irreversible modification in the nanotube environment. b) Results of pulsed
HBT measurements at two different powers (indicated by arrows in (a)). The slight
increase in g(2)(0) is indicative from Auger induced antibunching and compares well
with the qualitative behavior expected from the calculation in Fig. 2.13.

At low pump fluence, this particular nanotube shows antibunching level of
g(2)(0) = 0.1. When the power is raised close to the saturation regime, antibunching
degrades somewhat but remains significant with g(2)(0) = 0.13 at 300 nW pump
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power. This behavior closely matches what is expected from the model discussed
above and follows well the calculation presented in Fig. 2.13.

All the arguments presented so far bring us to the conclusion that there must
exist a single confined emitting site on the nanotube responsible for the broad PL
lines showing strong antibunching. The Auger rate being known to be very fast in
pristine carbon nanotubes would be even faster between excitons trapped in a same
quantum dot along the tube, thus explaining very well the origin of antibunching
and in good agreement with experimental observations such as PL saturation.

However, we did not present so far independent evidences for the existence of
axially confined and optically active excitons in our SWNTs. Before developing in
chapter 3 a model relying on strongly confined excitons to reproduce the broad and
asymmetric PL line shapes, we first show in the next section that the PL excitation
spectra display remarkable features supporting the picture of SWNT-QDs.

2.3.4 Resonant excitation of a SWNT-QD

We already argued in chapter 1 that phonon-assisted excitation of the ground-state
exciton is the mechanism responsible for the resonances observed in the PLE spectra
of carbon nanotubes at room and liquid nitrogen temperatures (see Fig. 1.17). At
liquid helium temperature, we are confronted to the fact that a single trapping site
on the nanotube must be dominating the PL emission in order to account for all
experimental features. Yet it would be expected that many different traps should
exist along the nanotube, each being a potential source for PL emission. 2

However the majority of PL spectra were featuring one or a few lines only, so
that there must be a physical mechanism enabling the excitation of a single QD
on the nanotube. One possibility could rely on the usual phonon-assisted excitation
process, but only if the energy detuning between the different dots is large enough to
selectively excite one of them through a phonon sideband. This would be evidenced
by the consecutive increases in intensity of different PL lines as the laser is tuned.
Although we happen to see this in particular cases, no such behavior is systematically
observed.

We report in Fig. 2.15 the PLE map of the nanotube showing strong antibunching
already presented in Fig. 2.10. The data were taken just after the HBT measure-
ments were performed overnight. We can see that the spectrum has split in two
overlapping lines in the meanwhile. Since no narrow spectral filtering was used dur-
ing the HBT experiment, it means that these two lines very likely originate from
the same quantum dot. We will return to this point in chapter 4.

But the most remarkable feature is the huge and sharp PLE resonance around
45 meV which cannot be assigned to a phonon sideband. Its sheer magnitude is not
comparable to the other phonon-related resonances, suggesting that a different and
more effective mechanism is involved. Figure 2.15 is presented as a single example for
the typical pattern we observe in all the PLE spectra of the broad and asymmetric

2. We must point out here that we indeed measured a variety of spectra but usually discarded
the few ones showing too complex features and too many lines. The main reason for this is the
difficulty to distinguish between the PL form a collection of quantum dots on the same SWNT,
and the emission from a bundle of nanotubes.
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Figure 2.15: Two-dimensional PL excitation color map of the nanotube presented
in Fig. 2.10 (g(2)(0) = 0.03), taken at 4 K after the HBT measurements. The line-cut
on the upper-left is obtained by integrating the PL intensity of the higher energy
line. The detuning is calculated between the laser energy and the energy of this
PL-peak’s maximum. On the lower-right we show a PL spectrum under resonant
excitation. The wavelength integration range used for the line-cut is shaded in light
red.
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lines at 4 Kelvin. We usually note strong resonances occurring at energies between
20 meV and 100 meV away from the emission line. Their sharpness, magnitude, and
the randomness in their precise positions strongly contradict the picture of simple
phonon sidebands.

It is much more likely that such PLE peaks are due to the resonant pumping of an
excited state of the SWNT-QD, in analogy to p-shell excitation in traditional bulk
semiconducting quantum dots [35, 36]. We will develop this idea further in chapter
4, where a simple model for the confinement is discussed.
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3 Exciton Dephasing Induced by
Acoustic Phonons

We already presented in chapters 1 and 2 the typical PL line-shapes of CoMoCat
SWNTs at low temperatures. First, they are much broader than the lifetime-limited
line-widths expected from the measured PL lifetimes, by a factor of hundred or
more. Then they display pronounced asymmetries at 4 Kelvin with steep high-energy
shoulders and persistent low-energy tails. Finally, these asymmetric shapes evolves
toward non-Lorentzian but more symmetric lines when temperature is increased to
20-30 K.

Although very similar observations were reported by other groups (see in par-
ticular [37]), no satisfactory explanation had been given. H. Htoon et al. invoked
a Fermi-edge singularity origin (without precise model nor calculations), but this
would require the nanotubes to be significantly p- or n-doped, which has been shown
to quench PL because of Auger recombination of excitons with free carriers. This
unresolved issue pushed me to investigate into the possible physical origin of the
width and asymmetry. I turned my inquiry toward the role of low-energy phonons.
Assuming that PL is coming from confined excitons (SWNT-QDs) I could compute
the theoretical spectra and compare them with our experimental data. The very
acute agreement is strongly supportive of the validity of the model.

In this chapter we start by presenting the physical model we use, then we report on
the analytical solution and numerical calculations performed to fit the experimental
data, before extending our discussion to interesting physical implications of our
results.

3.1 The Physical Model

3.1.1 Carbon Nanotube Quantum Dot

In the two previous chapters we gave very strong evidences for the formation of
SWNT-QDs, meaning that excitons are unintentionally confined along the nanotube
axis. The precise mechanism causing tight localization is unknown, but is likely
caused either by intrinsic defects, by local strain, by charged impurities trapped in
the micelle (see chapter 4), or by varying interactions with the substrate (as recently
proved by Shin et al. [38]). Photon antibunching strongly supports the assumption
that PL is coming from QD-like emitters within the nanotube which can be well
described by two-level systems.

In order to develop a physical model of our system allowing quantitative calcu-
lation of the spectral features, we need a tractable and simplified description of an
optically active SWNT-QD (a more accurate model will be developed in chapter
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Figure 3.1: Schematic view of a strongly confined SWNT-QD interacting with
acoustic phonons. The small confinement length σ oblige the bound exciton to
occupy only discrete energy levels spaced by ∆E. Because of the deformation po-
tential electron-phonon coupling the lattice distortion (black arrows) associated with
an acoustic phonon mode (eg. here the stretching mode) results in a shift of the QD
energies (symbolized by blue arrows).

4.1). As pictured in Fig. 3.1 we assume that the exciton is localized along the nan-
otube axis (coordinate z) by some confining potential. The precise shape of this
potential is a priori unknown, and we choose a quite general parabolic form. Be-
side always being a valid approximation of an analytical function close to a local
minimum, it allows an easy expression of the resulting wave-function envelope. For
confinement length scales larger then the Bohr radius of the exciton (namely 1 to
2 nm, see for example [39, 40]), we can use an envelope wave-function approximation
and express the SWNT-QD states as a superposition of free E11 excitons with non-
zero wave-vectors along z. More precisely, the ground state in a harmonic potential
has a Gaussian envelope:

Ψexc(z) =
1

π1/4σ1/2
exp− z2

2σ2
(3.1)

Here σ is the confinement length, and the envelope is normalized so that∫ +∞
−∞ |Ψ

exc(z)|2dz = 1. In this harmonic potential, the eigenstates are split by the
energy

∆E =
~2

m∗excσ
2

where m∗exc is the effective mass of the exciton. We take m∗exc ' 0.2 · me (see for
example [41]) with me = 9.11 · 10−31 Kg the mass of the electron. When this energy
splitting is large enough compared to the thermal energy (i.e. ∆E � kBT , where
kB = 1.38 · 10−23 J/K is the Boltzmann constant) the higher states have negligible
thermal population and the SWNT-QD can be very well approximated by a simple
two-level system. The ground state |g〉 is the empty dot whereas the excited state
|e〉 corresponds to one exciton occupying the ground state of the quantum dot.
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3.1.2 Exciton-Phonon Coupling

a) b)

Stretching

RBM

Twisting

Bending

n=0

n=1

n=±1n=0 n=±2

Figure 3.2: a) Dispersion of the low-energy acoustic phonons of SWNTs as calcu-
lated by Suzuura et al. [42] from a continuum elastic model. n refers to the quantized
circumferential wave-vector of the mode, and the horizontal axis corresponds to the
quasi continuous component qz along the nanotube axis. The two modes with van-
ishing energies in the long wavelength limit and linear dispersions for small qz are
the stretching and twisting modes (see b)) both having n = 0. Note the particular
quadratic dispersion of the bending mode.

The emission lineshape from isolated the two-level system we just described is
a Lorentzian whose FWHM (full width at half maximum) is given by the inverse
lifetime of the excited state. As mentioned above, this is in stark contradiction with
our observations, since the measured lifetimes would yield PL linewidths on the
order of 0.1 meV instead of the observed several meV. We therefore need to account
for another broadening mechanism: pure dephasing of the excited state caused by
interactions with low-energy acoustic phonons of the nanotube.

We assume that the phonon dispersion of the bare SWNT remains unaltered by
the confining potential. Since no atomic bonds are formed with the embedding sur-
factant, we also assume that coupling to phonons of the surrounding material is
negligible. Long-wavelength acoustic phonons in nanotubes are well described by a
continuum elastic model, as demonstrated in [42] and [43]. Figure 3.2 (adapted from
[42]) shows the calculated dispersion for an armchair (10,10) nanotube. Importantly,
the modes can be classified according to their quantized circumferential component
of the wave-vector (labeled n), in exactly the same way as we encountered in chapter
1 for electronic states in the zone-folding scheme. For phonon modes the meaning of
this circumferential momentum can be easily visualized, as displayed in Fig. 3.2.a).
Among the three n = 0 modes, the stretching and twisting modes have linear dis-
persion for long wavelengths, whereas the radial breathing mode (RBM) is a Raman
active mode. It has an optical-like dispersion, with an energy ωRBM at qz ≈ 0 linked
to the nanotube diameter d by the relation:
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ωRBM [cm−1] ≈ 227

d[nm]
+ 7.3 (3.2)

Acoustic phonons couple to electrons and holes through deformation potentials
[42–44]. This interaction conserves momentum, both its (discrete) circumferential
and (continuous) axial components, which has two important consequences. First,
since our quantum dot state is formed out of E11 exciton states, it has n = 0 circum-
ferential momentum. As long as the circumferential symmetry is not broken, it will
only couple to phonon modes having also n = 0, namely the stretching, twisting and
radial breathing modes. Second, conservation of longitudinal momentum qz would
lead to vanishing coupling to the linearly dispersive modes in the limit of free delo-
calized optical excitations which have qz ≈ 0. However, confinement in the quantum
dot breaks the translation symmetry along the nanotube and results in a superpo-
sition of states with non-zero momenta of the exciton center-of-mass, as we saw in
the previous section. The Gaussian envelope we wrote in real space has a Gaussian
expression in reciprocal (i.e. momentum) space given by its Fourier-transform:

F exc(q) =

∫
dz|Ψexc(z)|2eiq·z = exp−q

2σ2

4
(3.3)
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Figure 3.3: a) A pictorial view of the displacements associated with the three acous-
tic phonon modes having zero circumferential momentum. b) Bottom: The energy
dispersions of the two phonon modes coupling to the SWNT-QD exciton, and (Top)
the form-factor obtained by Fourier-transform of the confined exciton envelope. The
coupling is the strongest for the smallest wave-vectors kz.

We call F exc(q) the form factor, and q will design from now on the axial wave-
vector component qz. We want to stress here an important point. A tighter confine-
ment, i.e. a smaller quantum dot, translates into a broader form factor in momentum
space. This consequently enables the SWNT-QD to couple to phonons of shorter
wavelengths, having higher energies (see Fig. 3.3). 1 We will see that this is directly
mirrored into broader PL linewidths for smaller confinement lengths.

1. A physical picture for this is the following: the effects of phonons whose wavelengths are
shorter than the quantum dot size cancel out after integration over the length of the quantum dot.
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Among the two modes with linear dispersion, the deformation potential of the
twisting mode is calculated to be an order of magnitude smaller than the one of the
stretching mode. We therefore neglect its effects in our analysis. The deformation
potential couplings to the stretching and radial breathing modes can be written,
respectively:

GS(q) =
Ds · q√

2ρL~ωs(q)
and

GRBM(q) =
DRBM√

2ρL~ωRBM

(3.4)

where L the length of the nanotube and ρ its linear mass density. Including the
above-mentioned form factor accounting for momentum conservation, we finally get
the QD-phonon coupling matrix elements:

gj(q) = Gj(q) · F exc(q) (3.5)

where j stands for S (stretching mode) or RBM (radial breathing mode).

3.1.3 Spin-Boson Hamiltonian

ge eeσ=

g

phb 0q
+

qω
egω

)(j qg

DE ⋅
Phonon Bath

SWNT-QD

Figure 3.4: QD-phonons coupling: schematic view and notations used in the text.

We have all the ingredients we need to write the Hamiltonian of our complete
system (see Fig. 3.4), which we write as a sum of four terms. Using the short
notation σαβ ≡ |α〉〈β| for the matrix elements of the two-level system, the bare
SWNT-QD is represented by the term:

Ĥ0 = ~ωegσee (3.6)

ωeg is the energy of the bare SWNT-QD ground state, including all other effects
than phonon interactions (DC stark shift, strain, etc.).

Then we describe the phonon bath by the term:

Ĥbath = ~
∑
q

ωj(q)b
†
j,qbj,q (3.7)
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b†j,q and bj,q are the Boson operators for creation and destruction of a phonon in the
phonon branch j = S or RBM with wave vector q and energy ωj(q).

The exciton-phonon coupling derived in the previous section leads to the QD-bath
interaction:

Ĥe−ph = ~σee
∑
q

gj(q)(b
†
j,q + bj,q) (3.8)

If we restrict ourself to this system we get the Hamiltonian ĤIB = Ĥ0 + Ĥbath +
Ĥe−ph. This is the Hamiltonian of the Independent Boson Model extensively studied
for its universality in describing numerous physical situations where an effective
two-level system (atom, QD, double-well potential...) interacts with a dissipative
environment consisting of a bosonic bath. An extensive study of its properties was
presented by Leggett et al. in 1987 [45]. We will come back in the last section of
this chapter to interesting links of our results with respect to the different regimes
characterizing the dissipations in this model.

Finally, we use the dipole approximation to write the interaction of the SWNT-QD

with electromagnetic field
−→
E :

Ĥdip =
−→
D ·
−→
E (σeg + σge) (3.9)

Our complete Hamiltonian ĤSB = ĤIB+Ĥdip is called the Spin-Boson Hamiltonian
[46].

3.2 Numerical Calculations and Fits

3.2.1 Analytical expression of the spectrum

The dephasing dynamic of the optical polarization of a semiconductor quantum
dot induced by the coupling to acoustic and optical phonons was calculated by B.
Krummheuer et al. using the same form of Hamiltonian [46] (a detailed derivation
was given by A. Vagov et al. in [47]). They obtain an analytical expression for the
line shape of the absorption spectrum by computing the linear polarization induced
by a δ-like laser pulse, up to linear order in the laser field. We use their results and
deduce the PL emission line shape by taking the mirror image of the absorption
spectrum.

We note that the exciton-phonon interaction does not lead to a change in the
occupation of SWNT-QD levels, because the interaction Hamiltonian Ĥe−ph in Eq.
(3.8) commutes with the operator σee. Therefore, this model alone does not provide
for an energy relaxation mechanism. Nevertheless, the phonon coupling still con-
tributes to the dephasing of the polarization which is called pure dephasing and can
be the governing mechanism determining the spectral line shape.

The linear susceptibility χ(t) (t ≥ 0) of the SWNT-QD in response to a δ-shaped
laser pulse at t = 0 can be decomposed into a temperature-independent and a
temperature-dependent contribution:

χ(t) = −ie−iω̃tχ0(t) · χT (t) (3.10)
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with

χ0(t) ∝ i exp
∑
q

|γS(q)|2[e−iωS(q)t − 1] (3.11)

χT (t) ∝ i exp
∑
q

|γS(q)|2[−nS(q)|e−iωS(q)t − 1|2] (3.12)

We have defined γj(q) = gj(q)/ωj(q); and nj(q) =
(
e~ωj(q)/kBT − 1

)−1
are the phonon

thermal occupation numbers (following a Bose-Einstein distribution). The bare
transition energy is renormalized by a temperature independent polaron-shift into:

ω̃ = ωeg −
∑
j,q

|γj(q)|2ωj(q) (3.13)

We also include the relaxation of the excited state population with rate γPL cor-
responding to the measured PL lifetime:

χ(t)→ χ(t)e−γPLt (3.14)

Time [ps] Energy [meV]

Polarization Absorption

Figure 3.5: Polarization and absorption of a 3-nm quantum dot in a bulk semi-
conductor calculated by Krummheuer et al. [46]. Note the vertical logarithmic
scale: the height of the sharp zero-phonon line is about 1000 times higher than the
sideband.

Performing the Fourier transform of χ(t)e−γPLt and taking its imaginary part gives
the absorption spectrum of the SWNT-QD. Following the arguments of Mahan [48],
the PL emission line shape that we measure is very well approximated by the mirror
image of the absorption profile with respect to the zero-phonon line (ZPL).

Figure 3.5 reproduces the results of the calculation by Krummheuer et al. [46]
for a 3-nm quantum dot interacting through deformation potential coupling with
acoustic phonons of the bulk 3-dimensional matrix. There is an obvious asymmetry
at low temperature, but a significant difference with our data on SWNT-QDs must
be highlighted: In their results, the weight of the lifetime-broadened zero-phonon
line remains overwhelming, the phonon sideband having thousands times less inten-
sity. As we will see, the reduced one-dimensionality of the phonon bath in carbon
nanotubes is the key reason explaining why we observe the complete disappearance
of the ZPL.
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3.2.2 Spin-Boson model in the Ohmic regime

As illustrated in Fig. 3.5 the dephasing due to acoustic phonons and the resulting
sidebands also occur in more common systems where quantum dots are embedded
in a bulk three-dimensional (3D) material. Such line shapes have actually been ex-
perimentally observed, for example in [49], [50] and [51]. There is however a striking
difference between these line shapes and our data. In bulk semiconductor QDs, the
zero-phonon line constitutes by far the dominant feature in PL at low temperature,
with a linewidth close to the limit imposed by the Heisenberg uncertainty relation
(i.e. lifetime-broadened). On the contrary, we will show that in the PL spectra from
SWNT-QDs the oscillator strength completely goes into the sidebands, resulting in
very broad and asymmetric line shapes at low temperature. Figure 3.6 presents a
comparison of the line shapes obtained for 3D v.s. 1D embedding materials. In the
following we formalize these observations using the framework of the independent
boson model.

Restricting now the model to one acoustic mode (the stretching mode), we recall
the form of the coupling term in the Hamiltonian (see Eq. (3.8)):

Ĥe−ph = ~σee
∑
q

g(q)(b†q + bq) (3.15)

To analyze the different dissipation regimes in the independent boson model, it is
convenient to define the spectral function (see [45]):

J(ω) =
∑
q

g(q)2δ(ω − ω(q)) (3.16)

We define the infrared cut-off ωI as the lowest energy bath mode effectively coupled
to the two-level system. In the case of SWNT-QD it is given by the fundamental
stretching mode, whose energy is inversely proportional to the nanotube length.
The ultra-violet cut-off ωU is the high energy boundary, which is for us determined
by the width of the form factor. It corresponds to the shortest phonon wavelength
contributing to the dissipation. Between these two boundaries, the spectral function
can usually be written as a power-law:

J(ω) ≈ α · ωs (3.17)

The coefficient α depends in particular on the strength of the coupling. The
exponent s determines the general qualitative behavior of the dissipative system.
We distinguish between three different regimes, commonly referred to as: ohmic
regime, for s = 1, sub-ohmic when s < 1 and super-ohmic when s > 1. As can be
seen from Eq. (3.16), the value of s depends on:

– The particular form of the coupling g(q)
– The form of the phonon dispersion ω(q)
– The phonon density of states (DOS) through the weight-factor δ(ω − ω(q))
If we consider a QD interacting through deformation potential coupling with

acoustic phonons, the two first items are fully determined. The distinction between
3D and 1D systems then arises from the corresponding DOS. In 1D, the linear dis-
persion results in a constant non-zero DOS for long wavelength acoustic phonons,
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Figure 3.6: Effect of the phonon bath dimensionality on the PL line shapes. We
use the same model with identical parameters to calculate the emission spectra of a
quantum dot embedded in three- and one-dimensional systems. In the first case we
assume a cubic QD and isotropic deformation potential coupling to bulk acoustic
phonons with the same sound velocity as the stretching mode (vS = 19.9 km/s).
Other parameters are: DS = 14 eV, σ = 3 nm, γ−1

PL = 36 ps, T = 5 K. The upper
plots are on a linear scale, where the 3D-phonon sideband is hardly visible. It is
better seen on a logarithmic scale (bottom). In one-dimensional systems there is a
dramatic suppression of the lifetime-broadened zero-phonon line; all the oscillator
strength is transferred into the phonon wings.
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whereas it yields a parabolic DOS in 3D. This difference directly translates into
distinct exponents in the spectral function.

The common case of a QD embedded in a bulk 3D matrix corresponds to s = 3,
i.e. the super-ohmic regime. This happens to be the most usual regime occurring
in experimental realizations of the independent boson model, and also the most
boring one. Indeed, when s > 1 the spectral function as a vanishing slope close
to ω = 0, meaning that the coupling to low energy modes is strongly suppressed.
Therefore the sharp ZPL of the unperturbed two-level system remains unaffected
by the dissipation (see Fig. 3.6, left).

1.42 1.43 1.44 1.45
101
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 PL spectrum
 T  =  6  K
 T  =  0  K

Energy [meV]

Figure 3.7: The calculated PL spectrum obtained for the fit in Fig. 3.10 (open dots)
is de-convoluted to show the distinct temperature-independent and temperature-
dependent contributions defined in Eq. (3.11) and (3.12). We plot in blue the spec-
trum derived from χ0(t) (Eq. 3.11) and in red the one derived from χT (t) (Eq. 3.12).
All curves are scaled to span the same integrated area. The red tail seen in the
experiment is a signature of the zero-temperature pure-dephasing of the SWNT-
QD optical transition. The power-law singularity of the ZPL, however, cannot be
resolved in our experiment due to the thermally-induced dephasing. It may be
observed at much lower temperatures.

Much more interesting is the case of 1D phonons, as in carbon nanotubes. Here
s = 1 (ohmic regime) meaning that we have a non-vanishing coupling to low energy
phonons. Even at very low temperature, dissipation occurs because of these modes
and pure-dephasing of the optical transition remains extremely fast. This is directly
seen in Fig. 3.7 where the persistence of the red-tail in the PL spectrum at 4 K is a
signature of fast pure-dephasing in the zero-temperature limit.

Moreover, it can be shown that the Dirac function associated with the ZPL be-
comes under ohmic dissipation a power law singularity in the zero-temperature limit
(see Fig. 3.7). What actually determines if it is possible to recover the lifetime-
broadened ZPL is the infrared cut-off ωI . Concretely, as we will develop in chapter
4.1, if we make the nanotube short enough, the fundamental phonon mode can have
a non-negligible energy ~ωI which can be made larger than the natural linewidth
of the ZPL. In this case the effect of exciton-phonon coupling becomes similar to
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what we saw for the radial breathing mode: we expect the appearance of satellite
PL lines shifted from the ZPL by the phonons’ energies.

Our results are of extreme significance in the study and the potential applica-
tions of quantum dots embedded in quasi one-dimensional structures. Moreover
we now demonstrate that our work constitutes the first experimental observation
and confirmation of the ultra-fast dephasing predicted by the independent boson
model in a 1D system. It evidences the value of carbon nanotubes, the present
material approaching the closest to the one-dimensional limit by its aspect-ratio, in
investigating the new physics of confined systems.

3.2.3 Fits and Parameters

We use this simple model to compute the PL spectra and fit our experimental
data. In this section we restrict ourself to the effects of stretching mode phonons,
which are responsible for the broadening of the PL lines and their asymmetric shapes
at low temperature. The effects of the RBM phonons are qualitatively different and
will be treated in the next section.

Let us first expose the parameters we used for all the calculations we performed,
independently of the particular nanotube spectrum being fitted. Since all the nan-
otubes we studied have comparable diameter d ∼ 0.8 nm, we take the same lin-
ear mass density ρ = 1.67 · 10−15 kg/m for all of them. The sound velocity of the
stretching mode phonons is vs = 19.9 Km/s [42] and the exciton mass m∗exc = 0.2·me

[41]. The electron-phonon deformation potential for the stretching mode is expected
from calculations to lie between 9 and 30 eV [42, 43]. The only experimental value
DS = 14 eV has been extracted from data on low-field mobilities in semiconducting
SWNTs [44]. Moreover, it should depend on the chirality of the SWNT. We there-
fore consider DS as well as the confinement length σ as two nanotube-dependent
fitting parameters.

Since our model is not designed to predict the band structure and excitonic ener-
gies, we naturally have to arbitrarily choose the bare SWNT-QD transition energy.
We note that the large and apparently random energy shifts of the PL lines of dif-
ferent nanotubes under varying temperatures is not reproduced by our model. The
bare transition energy has thus to be adapted for the fits at different temperatures
on a same SWNT. As we mentioned previously these shifts are certainly due to local
changes in the environment (see also chapter 4 for possible explanations).

We fitted the PL line shapes of about 30 different nanotubes with very successful
results, as demonstrated in Fig. 3.8). The deformation potentials we found varied
from 9 to 14.7 eV, consistent with the existing literature. The confinement lengths σ
are between 3 and 5 nm, corresponding to a FWHM of the center-of-mass envelope
function of the SWNT-QDs around 10 nm. This justifies a-posteriori the validity of
the effective-mass approximation and the wave function envelope approach. Also,
the resulting level splittings in the quantum dots range from 20 to 45 meV, in
agreement with our assumption that ∆E � kBT ≈ 2.8 meV (at 35 K).

The general fitting procedure is the following: we start by finding the best values
of DS and σ fitting the spectrum at 4 K, adjusting also the temperature Tfit used
in the model to account for local laser heating. Even for excitation powers below
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Figure 3.8: Left: experimental PL spectra for two different SWNTs. For SWNT 1,
laser power is kept constant while the local temperature is increased thanks to
the thermo-resistor. Inversely, the temperature is unchanged for SWNT 2 but we
ramp up the laser power. Right: calculated fits to the experimental data. For
each nanotube, the temperature used in the calculation Tfit and the bare transition
energy are the only variables changed from a spectrum to another. The evolution
induced by increasing the laser intensity (SWNT 2) are very well reproduced by
increasing Tfit, suggesting local heating due to the laser. Other parameters are given
in the text, apart from the deformation potentials and confinement lengths slightly
adapted for each nanotube: for SWNT 1, we use DS = 12.7 eV and σ = 4.2 nm; for
SWNT 2 DS = 13 eV and σ = 4.4 nm. Note that these values of σ correspond to a
FWHM of the center-of-mass envelope function in the SWNT-QD of ∼ 10 nm.
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1 kW/cm2 we usually find the best fit for Tfit ≥ 6 K. Then we check how the evolution
of the experimental PL line shape with increasing temperature is reproduced by the
model, only adjusting the bare transition energy ωeg. Typical series of fits for two
different nanotubes are presented in Fig. 3.8. The fidelity of the fits is remarkable
and very supportive of the validity of our model.

In order to better understand the role of exciton-phonon coupling in the broad-
ening and asymmetry of the PL lines, we give in Fig. 3.9 an intuitive picture for
the underlying physical process. Exciton-phonon interaction conserves energy and
momentum. The latter constraint has already been considered when we noted the
importance of strong longitudinal confinement to allow effective coupling to phonons
with non-zero wavevectors. Provided we have a small SWNT-QD, the form factor
will have a large width in reciprocal space, and momentum-conserving phonon emis-
sion (or absorption) are rendered possible through deformation potential coupling.
Since energy is also conserved, the photon simultaneously emitted is detuned from
the ZPL.

 Energy 

Phonon
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Phonon
absorption

ZPL

g

e

Red-
detuned
photon
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a cb a cb

ZPLegω~

Figure 3.9: An intuitive picture of phonon-induced broadening. The shape of a
typical PL spectrum at 4 K shown on the left can be explained by the contributions
of phonon-assisted transitions. The red tail originates from simultaneous phonon
emission (b) and is possible at arbitrarily low temperatures. Phonon absorption (c)
relies on the presence of thermal phonons in the bath and is therefore unlikely at
low temperature, explaining the steep high-energy shoulder in PL.

Phonon absorption results in the emission of a blue-detuned photon, and its prob-
ability scales like the phonon thermal occupation number nS(q). At the lowest tem-
peratures, this process becomes very unlikely and we observe a steep high-energy
shoulder in the PL lines. On the contrary, phonon emission probability goes as
nS(q) + 1 (like stimulated emission in a laser) and remains possible in the zero-
temperature limit. It is responsible for the persistent red tail at low temperature.
Although we restricted the discussion to first-order processes for clarity, higher-order
multi-phonon emission / absorption should naturally be considered in a perturbative
calculation, but the qualitative picture remains valid.
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3.2.4 Radial Breathing Mode replica

We now turn to the consequences of the coupling to the Raman-active RBM
phonons on the PL line shape. Following the qualitative picture just developed, we
expect the photons being emitted during this interaction to be detuned from the
ZPL by a fix large energy ωRBM , resulting in a well separated phonon sideband.
Moreover, from Eq. (3.2), ~ωRBM is tens of meV for our nanotubes and thermal
occupation is vanishingly small, so that we only expect a red-detuned sideband, even
at high temperature. This large energy also makes the process quite unlikely and
the intensity of the sideband is orders of magnitude smaller than the main PL line,
making the experimental observation challenging.
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Figure 3.10: Experimental PL spectrum (open dot) and calculated PL line shape
(solid red line) for a particularly bright nanotube, plotted on a vertical logarithmic
scale. For the fit we used the parameters DS = 14 eV, DRBM = 1.4 eV/Å, ~ωRBM =
37.2 meV, σ = 3 nm and Tfit = 6.3 K. The blue lines show the calculations for
different strengths of the QD-RBM coupling, resulting in poorer fits. The inset
presents the evolution of the PL intensity from the main peak and from the replica
as a function of the excitation power. Both peaks show a saturation behavior and
a sub-linear increase, excluding a biexcitonic origin of the sideband (which would
have a quadratic power dependence).

We were however be able to find an unusually bright nanotube for which a small
red-detuned satellite was detectable in PL at 4 K. Figure 3.10 displays the ex-
perimental PL data and the fit obtained from our model by including the cou-
pling to the radial breathing mode. The two additional parameters needed are the
coupling constant DRBM and the RBM energy ~ωRBM . We find the best fit for
DRBM = 1.4 eV/Å, in agreement with the literature (see for example [52]). The
energy detuning between the main peak and the satellite directly reflects the RBM
energy and we find ~ωRBM = 37.2 meV. Using Eq. (3.2), this corresponds to a
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nanotube diameter of d ∼ 0.78 nm, exactly in the range expected for CoMoCat
nanotubes with chiralities emitting at our detection wavelengths.

The blue curves in Fig. 3.10 demonstrate that the quality of the fit is very sensitive
to the input value for DRBM , thus allowing us to effectively measure the strength of
the exciton-phonon coupling through the relative intensity of the phonon replica.

Beside the remarkable accuracy of the fit, the power dependence of the peak
intensities further supports our picture of RBM replica. Emission from a bound
biexcitonic state would show a quadratic increase of its intensity with excitation
power, in stark contrast with what we observe (see the inset in Fig. 3.10).

3.3 Discussion and implications: Non-Markovian
decoherence

The results and fits presented in the previous section and the agreement of the
fitting parameters with values expected from other theoretical and experimental
studies constitute strong evidences for the validity of our model. Although our
work is not universal to carbon nanotubes since it applies only to confined excitons,
i.e. SWNT-QDs, it does apply to any localized emitter embedded in a quasi one-
dimensional structure. It has therefore far-reaching implications, ranging from quite
academic issues to potential applications of nanotubes and 1-D systems in optoelec-
tronic devices or for quantum information processing. In this section we concentrate
on the effects of true acoustic modes, namely the stretching mode in nanotubes.

Quantum error correction Quantum dots, whether in bulk (3D) or one-
dimensional substrates, are intensively studied for their potential applications in
quantum information processing (QIP). The general idea is to use the state of the
QD as a qubit, on which operations are to be carried out. Because of dephasing,
the coherence of the qubit rapidly decays and successful quantum computation re-
quires quantum error correction (QEC) schemes in order to keep error levels below
a certain value ε, typically of order 10−3. A determining quantity for the feasibility
of quantum computation is thus the rate ωQEC at which error correction must be
carried-out in order to keep the error level below ε. Systems having longer coherence
times demand lower correction rates and are thus better suited for QIP.

The coherence of a two-level system is given by the value of the off-diagonal
elements in the density matrix, in our notation σeg. Since the dipole operator is also
proportional to σeg, the decay of the polarization reflects the loss of coherence. A
direct measurement of this decay is challenging, typically based on four-wave mixing
experiments like in [53]. In our case, although we measure the spectral characteristics
of the SWNT-QDs, we have nonetheless indirect access to the underlying dynamic
of the coherence. Assuming the model we use to fit the data is correctly describing
the system, we can retrieve the tome evolution of the polarization as obtained from
the calculations. The corresponding curves are presented in Fig. 3.11.

Of particular significance for QEC is not only the rate of the initial decoherence,
but also the nature of the decay. Most error correction schemes are indeed designed
assuming the Markov approximation to be valid. In this approximation, the bath
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Figure 3.11: Non-Markovian decoherence of the SWNT-QD exciton. Top: the red
solid lines are the calculated pure-dephasing of the SWNT-QD polarization (using
Eq. 3.10 and assuming no population decay) for typical parameters DS = 14 eV,
σ = 3 nm, at T = 4 K (left) and T = 30 K (right). The black line is the exponen-
tial decay obtained within the Markov approximation, with T2(4K) = 1.5 ps and
T2(30K) = 0.2 ps. The insets show the corresponding PL line shapes. Bottom:
close view on the short-time decay of the polarization during the first pico-second.
In addition we plot separately the temperature-independent (i.e. the T = 0 K limit)
and the temperature-dependent contributions, as defined in Eq. (3.11) and (3.12),
respectively. At T = 4 K, dephasing is governed by the zero-temperature component
and is faster than the Markovian decay. At T = 30 K, however, coherence is lasting
longer than expected in the Markov approximation.
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causing decoherence (here the phonons) is assumed to be “memory-less”, meaning
that its first-order correlation function is a delta peak δτ=0. This widely used as-
sumption yields an exponential decay of the coherence due to pure-dephasing, with
time constant T2. In the spectral domain, it corresponds to a Lorentzian line shape of
width ∼ ~/T2. Our data from SWNT-QDs clearly show non-Lorentzian line shapes
at low temperatures, which is an indication of non-Markovian decay taking place.
This is indeed confirmed by the analysis of the polarization dynamic (see Fig. 3.11).

For a more quantitative estimation of the decoherence in our system and to enable
a comparison with quantum dots in bulk substrates in the perspective of QIP, we
follow the approach and the results recently published by R. Doll et al. [54]. Inspired
in particular by our work, they analyzed the decoherence dynamic and required
correction rates ωQEC for QDs in bulk and 1D substrates, using the independent
boson model. As already known, they find and confirm non-Markovian decay in 1D
systems.

To go further, it is very instructive to compare the analytically computed dynamic
with the one obtained in the Markov approximation. In the latest framework, master
equations would give an exponential decay for short times, with a temperature-
dependent dephasing time [54]:

T2(T ) =
~

4παkBT
(3.18)

with α ∼ 0.1 defined in Eq. (3.17). In Fig. 3.11, we plot for comparison the expo-
nential Markovian decay expected at T = 4 K and 30 K. First it is obvious that
at both temperatures the actual decoherence is strongly non-Markovian. This is a
very interesting feature arising from the reduced dimensionality of the phonon bath.
But it would be a shortcut to deduce that decoherence is always faster than for
Markovian dissipation.

Here the role of the “zero-temperature” pure dephasing is determinant. In the
lower panels of Fig. 3.11, we plot explicitly the two contributions χ0 and χT to
the polarization decay (see Eqs. 3.11 and 3.12). For T = 4 K, the dynamic is
clearly governed by χ0(t) and the resulting decay occurs on a shorter time-scale
than T2(4K) = 1.5 ps. However, at T = 30 K, both components have similar
and relatively long decay times compared to T2(30K), yielding to a longer-lasting
coherence than in the Markovian case.

These results evidence on the one hand the dramatic effects of the reduced di-
mensionality of the substrate in the resulting loss of coherence due to QD-bath
interactions. On the other hand, we see that non-Markovian decoherence is not ob-
viously synonym for worse situation in view of QIP. In fact, the detailed calculations
of R. Doll et al. [54] reported in Fig. 3.12 even show that QD in one-dimensional
substrates allow slightly slower error correction rates than QD in three-dimensional
substrates. This is always true for coupling strength α larger than 0.01. In our
SWNT-QD systems we have α ≥ 0.1 (see chapter 4), which is also a typical value
for QDs in bulk. Unfortunately, in both cases the required correction rates ωQEC are
on the order of, or larger than, the cutoff frequency ωU ∼ 1013 s−1, as can be seen
in Fig. 3.12. Although such rates may well remain out of experimental reach for
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Figure 3.12: Temperature dependence of the quantum error correction rate ωQEC
for different spectral densities J(ω) = αs · ωs with equal couplings αs, and several
threshold values ε. For coupling strengths α ∼ 0.1 actually observed in experiments,
one-dimensional substrates (s = 1) lead to slower rates than bulk matrices (s =
3). Only for very low values of α could bulk systems be advantageous for QIP.
As shown in the inset, when α3 = 10−3 the coherence level never decays below
0.99 at temperatures lower than the cutoff, meaning that error correction would
then become needless (ωQEC → 0). Of course other dephasing processes and the
population decay would eventually lead to decoherence, but on much larger time-
scales.
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long, other approaches, like engineering systems with smaller α or developing new
correction algorithms, might enable the effective use of QDs in QIP applications.





Quantum-dots in Carbon nanotubes 63

4 Quantum-dots in Carbon
nanotubes

4.1 Controlled formation and device design

4.1.1 Wave-functions and implementation of a SWNT-QD

Our goal in this first section is two-folds. First we want to give a simplified but
rigorous expression of the wave-function of a confined SWNT exciton. Second we
propose a practical way of confining the exciton by applying an external DC electric
field.

SWNT-QD wave-functions

In order to give a more rigorous description of the wave function of an exciton
confined in a small SWNT-QD, we pursue the tight-binding approach of chapter
1 further to derive an effective-mass description of the electronic states of carbon
nanotubes. Based on the results and calculations of chapter 1, we can restrict our
analysis to the band-edge electronic states corresponding to the two Dirac-points of
graphene.

We introduce for this the following notation,
(

1 0 0 0
)
· Ψ(r) (resp.(

0 0 1 0
)
·Ψ(r) ) corresponds to a graphene Bloch function with wave-vector

K (resp. K′) constructed from pz orbitals of carbon atoms from the A sublattice
with the phase at the origin being 1 (resp. eiθ). The other two spinors have a similar
signification with pz orbitals of carbon atoms from the B sublattice.

We can now consider the formation of the nanotube by folding around the chiral
vector Ch, imposing the periodic boundary condition on the circumferential wave-
vector:

exp(ik ·Ch) = 1 ⇒ kϕ = n
2π

Ch
, n ∈ N (4.1)

The resulting cutting lines (Fig. 1.5) define one dimensional subbands (represented
in Fig. 1.6). Conduction bands are labeled by increasing circumferential momentum
n = 0,±1,±2... (idem with n → m for the valence bands). Semiconducting tubes
(i.e. chiralities for which ν ≡ mod (n1 − n2) = ±1) have a band gap energy
corresponding to the lowest band-to-band transition n = 0→ m = 0, usually called
E11. It can be shown that the boundary condition (4.1) leads to the following
wave-functions for the band-edge states of the nanotube at K and K ′:

|Kn,±〉 =
1√
4π
ei(n−ν/3)ϕ

(
sgn(3n− ν) ±1 0 0

)
·Ψ(r) (4.2)
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|K ′n,±〉 =
1√
4π
ei(n+ν/3)ϕ

(
0 0 sgn(3n+ ν) ±1

)
·Ψ(r) (4.3)

with ± for conduction resp. valence states. For example, |K0,+〉 is the lowest
energy state for an electron in the K-valley, whereas |K ′1,−〉 describes a hole in the
K ′-valley occupying the subband with m = 1 1. Within this formalism, the complete
wave-function of an exciton formed by promoting an electron to the n-band leaving
a hole in the m-band can be written in the compact form:

|Ψnm,±〉 =
1

2

(
|Kn,+K

∗
m,−〉 ⊗ |Fnm〉 ± |K ′−m,+K

′∗
−n,−〉 ⊗ |F ′nm〉

)
⊗ (| ↑⇓〉+ | ↓⇑〉)

(4.4)
(The spin-singlet part (| ↑⇓〉+ | ↓⇑〉) will be omitted hereafter.) The K-K ′ de-

generacy results in the existence of two possible excitons for each pair of bands
labeled by ± (bonding and anti-bonding combination). In particular it has been
explained in chapter 1 that |Ψ00,+〉 is optically allowed (bright) whereas |Ψ00,−〉 is a
dark exciton, absent any external perturbation or internal defect breaking the K-K ′

symmetry (such as a magnetic flux through tube).
The real-space envelope functions satisfy: Fnm(ze, zh) = F ′nm(zh, ze). They intro-

duce an ad hoc localization of the electron and hole along the nanotube axis. We
shall use these envelopes to describe the binding of the electron and hole inside the
exciton (with typical length scale being the exciton Bohr radius: aB ∼ 1−2 nm), on
the one hand, and the externally induced confinement of the exciton center-of-mass
motion, on the other hand. Thus we define the axial coordinates for the relative
motion:

zeh = zh − ze (4.5)

and the exciton center-of-mass:

znmCM =
m(n)ze +m(m)zh
m(n) +m(m)

(4.6)

with m(n) designing the effective mass of an electron at the bottom of the n-band.
Idem for the hole effective mass m(m), with electron-hole symmetry implying m(n) =
m(m) if n = m. We shall omit the indices n,m and write zCM for the sake of clarity.

Confining potential

We now turn to the actual implementation of a SWNT-QD by confining the exci-
ton along z. The difficulty here is that the exciton is a globally neutral entity which
cannot be trapped in a simple potential well, created for example by modulating the
Fermi-level with a back-gate. However we demonstrate that an electric field gradient
along the nanotube indeed results in a trapping potential for the exciton. We note
U(z) the electric potential associated with the external field. If we decompose the
electron and hole coordinates in the center-of-mass and relative motion components

1. As can be seen in Fig. 1.6 the next higher energy electron or hole state after n,m = 0 may
have n,m = 1 as well as n,m = −1, depending on the valley and the value of ν = ±1.
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Figure 4.1: Schematic of exciton confinement by a longitudinal electric field gra-
dient. We choose the axis z along the nanotube, x perpendicular to it, and ϕ is

the circumferential coordinate. In an axial electric field
−→
E ‖, the exciton becomes

polarized and acquires an electric dipole
−→
d proportional to the field strength. This

dipole then interacts with the externally applied electric field, resulting in a confining
potential Veff proportional to the square of the longitudinal field.

(given by Eq. 4.5 and 4.6, respectively) and use the fact that |zCM| � |zeh| ∼ aB for
smooth confinement, we can derive the following approximation for the Hamiltonian
describing the exciton-field interaction:

H‖int = e [U(zh)− U(ze)]

= e

[
U(zCM +

µ

mh

zeh)− U(zCM −
µ

me

zeh)

]
≈ e ẑeh

∂U

∂z
(zCM)

(4.7)

where e = +1.6 × 10−19 C is the absolute value of the electron charge, and µ is
the reduced mass of the exciton. We now need the form of the envelope function
of the relative coordinate zeh. As we mentioned in chapter 1, the exciton binding
relates directly to the one-dimensional hydrogen atom problem. Using a regularized
Coulomb potential to avoid infinite binding energy, one obtains for the eigenstates
the 1D hydrogenic series |l〉, l ≥ 0. The explicit form of these wave-functions is not
relevant to us, but the important point is the alternating symmetry of the states:
even |l〉 are symmetric upon electron-hole exchange (i.e. zeh → −zeh) whereas states
with odd l are anti-symmetric. This means that the ground state of the exciton has
no dipole moment along the nanotube axis and does not interact with the field to
first order in a perturbative approach. In other word, since 〈0|ẑeh|0〉 = 0, we have
to first order:

〈Ψnm,±|H‖int|Ψnm,±〉 = 0 (4.8)

To second order in perturbation theory, we obtain an effective interaction medi-
ated by the excited states of the hydrogenic series, leading to the effective potential
for the exciton:
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Veff ≈
∑
l>0

| 〈l|H‖int|0〉 |2

E0 − El
≈ −αnmX

(
∂U

∂z

)2

(zCM)

≈ −αnmX E 2
‖ (zCM)

(4.9)

where we have defined the quantity:

αnmX = e2
∑
l>0

| 〈l|ẑeh|0〉 |2

El − E0

> 0 (4.10)

In a classical picture, the external electric field polarizes the exciton that subse-
quently experiences a force proportional to the field squared, as displayed in Fig. 4.1.
Therefore, if we create a field gradient along the nanotube, the exciton can be
trapped around the position where the field is maximal. It is legitimate to assume a
parabolic confining potential close to the minimum of Veff . In this harmonic poten-
tial, the ground state for the exciton center-of-mass motion is a Gaussian. Moreover,
the lowest-energy state of the exciton relative motion (i.e. the ground state |0〉 of the
regularized 1D hydrogenic series) is very well approximated by a Gaussian envelope
as well [40]. The envelope function for each of the SWNT-QD ground states |ψnm,±〉
can thus be explicitly written:

Fnm(ze, zh) =
1√

πσnmeh σ
nm
CM

G(σnmeh , zeh) G(σnmCM, zCM) (4.11)

where we defined a general Gaussian function:

G(σ, z) = exp− z2

2σ2
(4.12)

4.1.2 Controlling the exciton-phonon coupling

As we show in the Appendix 6, carbon nanotube resonators hold promising per-
spective for opto-mechanical cooling. To achieve this we need an effective coupling
between the quantum dot embedded in the nanotube and the relevant phonon mode.
For the bending mode, this is a non-trivial issue: in a pristine unperturbed carbon
nanotube, the lowest energy SWNT-QD state |ψ00,±〉 has zero net circumferential
momentum (corresponding to the E11 transition). In other words, electron and
hole wave functions (and thus probability distributions) have rotational symmetry
around the nanotube axis. The exciton is fully delocalized along the circumferential
direction. On the other hand, the flexural phonon mode locally leads to compression
and dilation on opposite sides of the tube, as pictorially shown in Fig. 4.2.a). The
net deformation potential couplings thus cancel out. Mathematically, this is a result
of circumferential momentum conservation, for the bending mode is a n = 1 phonon
mode (see Fig. 3.2, chapter 3).

Perturbative effect of a perpendicular electric field on the QD ground state

In order to create a non-vanishing coupling between our SWNT-QD and the bend-
ing mode, we therefore need to break the rotational symmetry of the exciton, i.e. to
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Figure 4.2: a) The bending mode leads to a local compression on one side ûzz(r̂) < 0
and an extension on the opposite side ûzz(r̂) > 0 (meaning it has one unit of cir-
cumferential momentum). In the absence of external perpendicular field, the charge
distribution of the SWNT-QD states |ψ00±〉 (with zero circumferential momentum)
have rotational symmetry. Therefore the net coupling vanishes after integration of
the interaction around ϕ (which is equivalent to say that circumferential momen-
tum is conserved by the interaction). b) When an external electric field is applied

with a component
−→
E ⊥ perpendicular to the nanotube (i.e. along x) it breaks the

rotational symmetry by pulling apart electron and hole. The result is an effective
tunable coupling of the exciton to the flexural mode

polarize the exciton in the x direction orthogonal to the nanotube axis. A natural
way of doing so is to apply a strong DC electric field perpendicular to the nanotube,
as presented in Fig. 4.2.b).

More precisely, we consider the effect of the perpendicular component E⊥ of the
external electric field on |ψ00±〉 to lowest order in perturbation theory. In principle

the linear correction |ψ(1)
00±〉 involves contributions from all four excitonic manifolds

for which |n| = 1, m = 0 or n = 0, |m| = 1, namely E12, E21, E13, E31. Indeed, all
these excitons have one unit of circumferential momentum and their interaction with
the bending mode satisfies the conservation rules. They have non-vanishing exciton-
phonon coupling to the bending mode. We find however that the contributions from
E12 and E21 vanish identically and obtain

|ψ(1)
00±〉 ≈ ξ

∑
l

(|ψ(0)
−ν0±,l〉+ |ψ(0)

0−ν±,l〉)〈F−ν0,l|E⊥(ẑe)|F00〉 (4.13)

where ξ = eR/2ε⊥(E11 − E13) (R = d/2 is the radius of the nanotube), E⊥(z) =
−∂U

∂x
(0, z), and l labels a complete set of envelope functions for the E13 and E31

manifolds. 2 ε⊥ ≈ 1.6 denotes the intrinsic relative permittivity normal to the CNT
axis [58] and accounts for the so-called depolarization effect. The small diameter
of the nanotube is responsible for a significant screening of the external field in the
perpendicular direction.

Perturbative expression of the QD-phonon coupling

As discussed in chapter 3, since the low energy acoustic phonons in carbon nan-
otubes have relevant phonon wavelengths λ much larger than the SWNT radius R,
they are very well described in a continuum shell model (”thin rod elasticity”, TRE)
[42, 59]. To the lowest orders in R/λ, the complete electron-phonon interaction reads
in the four-dimensional space introduced in the previous section:

2. To estimate the energy difference E11−E13 we use as a guideline the analysis in Refs. [55–57].
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He−ph =


Ĥ

(1)
DP Ĥ

(2)
DP 0 0

Ĥ
(2)∗
DP Ĥ

(1)
DP 0 0

0 0 Ĥ
(1)
DP −Ĥ(2)∗

DP

0 0 −Ĥ(2)
DP Ĥ

(1)
DP

 (4.14)

The diagonal term is the “true” deformation potential coupling:

Ĥ
(1)
DP = g1 [ûϕϕ(r̂) + ûzz(r̂)] (4.15)

It corresponds to a shift of the Fermi energy proportional to the local change in
surface area of the nanotube lattice. Because of electron-hole and K-K ′ symmetry
this term alone does not lead to any finite coupling to the exciton. Non-zero coupling
only arises from the off-diagonal part of this Hamiltonian:

Ĥ
(2)
DP = g2e

3iθ [ûϕϕ(r̂)− ûzz(r̂) + 2iûϕz(r̂)] (4.16)

with ûij(r̂) the corresponding Lagrangian strain. Both compressional and flexural
deformations have the structure of a local stretching so that the strain components
satisfy uϕz=0, uϕϕ=−σuzz; with

uzz = −R cosϕ
∂2φf
∂z2

(4.17)

for flexural modes and

uzz =
∂φc
∂z

(4.18)

for compressional modes where φf/c are the 1D fields introduced in [60] and σ ≈ 0.2
is the SWNT Poisson ratio [61, 62]. Then Eq. (4.13), the aforementioned approxi-

mation for |ψ(1)
00±〉, and the single particle Hamiltonian (4.16) allow us to obtain the

lowest order contributions in the electric field to the interaction Hamiltonian He−ph

between the exciton states |ψ00±〉 of the SWNT-QD and low frequency phonons

〈ψ00±|He−ph|ψ00±〉 = −2νg2(1+σ) cos 3θ×〈F00|

[
∂φ̂c
∂z

(ẑe) + ξR
∂2φ̂f
∂z2

(ẑe)E⊥(ẑe)

]
|F00〉

where we have exploited the completeness of {|F−ν0,l〉}.
The most important point to note in Eq. (4.19) is the effective coupling we obtain

to the flexural mode (through the second derivative
∂2φ̂f

∂z2 (ẑe)) which is proportional
to the perpendicular component of the external electric field E⊥(ẑe). We have thus
demonstrated that our scheme enables a tunable interaction between the SWNT-QD
and the bending mode phonons of the suspended nanotube.

4.1.3 Device proposal and simulations

Let us summarize the results of the two previous sections: we have shown first
that the exciton can be confined along z by the application of a longitudinal electric
field gradient E‖, and that the confining potential is proportional to −E 2

‖ (zCM)

(see Eq. 4.9). Then we have proved that a tunable interaction between exciton and
flexural phonons can be achieved, with a strength proportional to the perpendicular
component of the external field.
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Device geometry

The question that arises now is: how to implement the above-mentioned features
in a device, allowing independent control over the confinement and over the QD-
phonon interaction? The answer we propose is to use a double-tip configuration, as
shown in Fig. 4.3. We consider a nanotube suspended over a narrow trench (we will
comment on the width later) and two sharp conducting tips approaching the tube
from both sides in its central part. Both sides of the trench are grounded whereas
the potentials V1 and V2 are applied to the top (resp. bottom) tip.

30nm

20nm

V1

V2

CNT

SiO2

120nm

z

x

y

Figure 4.3: Schematic view
of the device we envision.

It is then easy to see that the field component E‖
along the nanotube depends only on the symmetric
combination 1

2
(V1 + V2) whereas the perpendicular

component is determined by the potential difference
between the tips 1

2
(V1 − V2). This versatility in con-

trolling independently the confinement length and the
strength of the QD-phonon coupling would constitute
a huge experimental advantage, and it gives a realistic
support to the following calculations.

We note here that the device is completely symmet-
ric upon reflection about a central plane orthogonal to
the nanotube containing the tips’ axis. Therefore, the
confining potential will have the shape of a double-
well, with one QD formed on each side of the middle
point of the nanotube. However, since the distance be-
tween these two wells (∼ 40 nm) is much shorter than
the wavelength of the light tuned on the QD transi-
tion (typically on the order of 1 µm), only the bright
linear combination of the two QD states is relevant
in our study. This remark is yet of importance for the correct estimation of the
coupling strength, for example, when a factor of 2 could easily be forgotten.

Finite element method

In order to validate this proposal, to determine the optimal dimensions of the
device, and to obtain figures for the confinement and the QD-phonon coupling along
with the required potentials to be applied to the tips, we performed finite element
method (FEM) numerical simulations. We used the electrostatics module available
in the commercial FEM software COMSOL (version 3.5a) within the Multiphysics
package. A completely faithful simulation of the 3D geometry of the device is very
demanding and would require defining boundary conditions at infinity along the
y direction (Fig. 4.3). Instead we approximate the real device by a cylinder with
revolution symmetry around the tips (the symmetry axis is shown in Fig. 4.4). We
also checked that the chosen vertical x dimension of the trench (typically 500 nm)
is large enough so that the field distribution around the nanotube does not depend
on its particular value.

After having defined the geometry and the boundary conditions corresponding to
the device we want to simulate, the next step is to construct an adequate mesh.
In addition to automatically refining the mesh around angles and curved surfaces,
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Mesh parameters

Number of mesh points 15 437
Number of elements (triangular)  30 376
Number of degrees of freedom  61 249

Number of boundary elements 1 312
Number of vertex elements 16

Minimum element quality 0.6030
Element / area ration 7.43 x10-6

Figure 4.4: View of the mesh used in the FEM simulations. The entire device
extends between x = −500 nm and x = +500 nm to exclude any dependence of the
field around the nanotube on this dimension. The view is restricted to the region
of interest, with a zoom-in on the refined mesh in the central part. The higher
mesh density gives a better resolution when plotting the relevant quantities along a
cross-section of the nanotube, as in Fig. 4.5. We also show the mesh parameters as
reported by COMSOL. The element quality can take values between 0 and 1.

COMSOL offers the possibility to reduce locally the mesh size. Since we want to
obtain detailed knowledge of the field only along the nanotube, we take advantage
of this feature to increase the mesh density around the central part of the nanotube
and the tip ends, without considerably slowing the calculation of the complete field
distribution. Figure 4.4 displays the mesh used in the final simulation along with
important parameters.

Finally, the Poisson equation is solved over the entire domain on the constructed
mesh. The result of the calculation is the static electric field distribution in the
device created by the applied potential to the tips. From this, all quantities of
interest, for example Veff along the nanotube axis, can be obtained and plotted.

Device’s characteristics optimization

The particular shape of the tips, their diameters and the width of the gap between
them all critically affect the field pattern and strength. The most time-consuming
work was therefore to optimize these parameters by running a number of simula-
tions. But what is the quantity to optimize in first place? Because of the screening
of the perpendicular electric field in the nanotube, and the perturbative origin of the
tunable exciton-phonon coupling, reaching the interaction strength between the QD
and the flexural phonons for efficient opto-mechanical cooling requires very large per-
pendicular field E⊥ around the SWNT-QD position z0 (on the order of 200 V/µm).
On the other hand, the highest value of the electric field Emax will always occur close
to the sharp tip ends, and care must be taken that no electric breakdown occurs.
This is expected to happen for fields larger than a few V/nm.
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Some useful heuristic considerations serve as a guide in the optimization process.
In particular, the position of the confining potential minimum along the nanotube
should satisfy |z0| ∼ w where w is the gap between the tips. This position does
not depend much on the numerical values of the applied potentials. As a result,
the ratio E⊥(z0)/Emax is virtually constant for a given geometry, regardless of the
particular values of the potential on the tips. We thus have a methodology for the
optimization procedure: we choose a fixed potential configuration (preferably close
to the one we expect to be eventually required) and vary the tips’ shape, diameter
d and gap w in order to maximize the ratio E⊥(z0)/Emax. The best device should
allow to apply the maximal perpendicular field on the SWNT-QD without electrical
breakdown; therefore maximizing this ratio is our goal.

The results of the final “fine tuning” of the device dimensions is presented in the
following table:

Diameter d [nm] Gap width w [nm] z0 [nm] E⊥(z0)/Emax

30 15 21 0.304

30 18 21 0.315

30 21 21 0.319

30 24 22.5 0.282

30 27 23.25 0.260

30 27 23.25 0.260

33 18 23.25 0.313

33 24 24.75 0.288

36 21 25.5 0.301

27 18 19.5 0.294

27 24 21 0.263

24 21 19.5 0.257

The best ratio is obtained for a tip diameter d = 30 nm and a gap of w = 21 nm,
values that we used for the simulation in Fig. 4.4 and 4.5.

The results of the FEM simulation for this optimized geometry and realistic pa-
rameters are summarized in Fig. 4.5.

4.2 Unintentional confinement induced by a charged
impurity

4.2.1 Introduction and physical model

As we have demonstrated in chapters 2 and 3, we have several reasons to think
that the antibunched PL, featuring broad and asymmetric line shapes, observed
at low temperature, originates from strongly confined excitons. We further deduce
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Figure 4.5: Results of the FEM simulations for the optimized tip geometry and the
potentials V1 = −4.5 V, V2 = +5.5 V. a) Electric field magnitude (color scale) and
field lines (field direction given by the arrows) in the region close to the tips’ ends.
b) Cross-sectional plot along the nanotube axis of E⊥(z), Veff and the corresponding
Gaussian envelope of the exciton center-of-mass motion, obtained after a parabolic
approximation of Veff around z0.

from the width of the spectra that the confinement length scale should be on the
order of a few nanometers only. Finally, spectral diffusion, line splitting, large energy
shifts with temperature, etc. all indicate a high sensitivity of the SWNT-QD to its
environment.

Emission Wavelength (nm)

a) b) c)

Figure 4.6: Observation of localized PL from a negatively charged defect by Indhira
O. Maciel et al. [63]. a) Photoluminescence emission from the emissive spot. The
nanotube chirality is attributed to be (9,1). Note the slight blue detuning of the
PL (central emission at 904 nm) compared to the expected emission wavelength of
912 nm for a (9,1) SWNT. b) Near-field photoluminescence image of the SWNT
revealing localized excitonic emission. The scale bar denotes 250 nm. c) Near-
field Raman imaging of the same SWNT, where the image contrast is provided by
spectrally integrating over the defect-induced D bands. Independent analysis of the
high energy G’ raman peak reveals that the defect is negatively charged.

The unintentional confinement of carriers in carbon nanotubes has been observed
by many other groups, mainly in transport experiments through the observation
of Coulomb blockade. A recent example is the finding by Li et al. that DNA-
wrapped carbon nanotubes naturally split in an array of consecutive quantum dots
[64]. Another powerful technique for such investigations is optical near field spec-
troscopy, mainly lead by the group of Achim Hartschuh in Munich. In a collaboration
with other groups, they reported in 2008 in Nature Materials [63] that PL emission



4.2. Unintentional confinement induced by a charged impurity 73

from CVD-grown nanotubes was localized on a single negatively-charged defect (see
Fig. 4.6). Their spatial resolution put an upper bound on the trap’s size to 25 nm.
Simultaneous Raman scattering measurements enabled them to reveal the presence
of the negatively-charged defect at the very same position.

This last observation is of uppermost interest for us. First of all we may just be in
the very same situation and see PL from intrinsic charged defects in the nanotubes.
This is nonetheless hard to prove with our data and remains a speculative statement.
But this report also emphasizes on the role that a charged impurity in the close
vicinity of the nanotube may play in inducing exciton confinement and localized
PL. We presented in chapter 2 how we fabricated our sample. The zirconium solid-
immersion lens is functionalized by a polylisin monolayer to enable strong binding
of the micelles. The interaction occurs between oppositely charged interfaces, so
that the presence of trapped charged impurities around the micelles is indeed very
likely. Another possibility could be the charging of the substrate itself under laser
illumination, as was reported by Freitag et al. [65].
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Figure 4.7: Sketch of a charged impurity trapped in the close vicinity of a SWNT
at a distance d from its axis. The origin of the z axis (along the nanotube) is set at
the impurity position.

On the light of these encouraging remarks, we would like to propose in this chap-
ter a model that could account for all the peculiar experimental features we have
reported so far (strong exciton localization, spectral shifts, line splitting, resonant
p-shell excitation, etc.). In addition, this will naturally lead us to consider an al-
ternative origin for the lineshape’s asymmetry and width by invoking the coupling
to the bending mode phonons, which results in a sub-ohmic dissipation regime. We
will show in the second part that we can also fit the data very accurately within this
assumption.

Figure 4.7 displays a schematic view of the physical situation we consider through-
out this chapter. A charged impurity is supposed to be trapped close to the nan-
otube, at a distance d (typically a few nanometers) from its axis. To fix the ideas we
will take the charge to be a single negative one: q = −e. We also take into account
the screening of the field in the surfactant micelle through the relative permittivity
εS = 2. The impurity position along the nanotube axis defines the origin z = 0.

The electric field caused by the charge at a position z along the carbon nanotube
is then:
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E(z) =
−e

4πεSε0

1

z2 + d2
(4.19)

where ε0 ≈ 8.8 × 10−12 C/(Vm) denotes the vacuum permittivity. The axial com-
ponent of the field (i.e. along the nanotube axis) is:

E‖(z) =
−e

4πεSε0

z

(z2 + d2)3/2
(4.20)

4.2.2 Calculation of the confinement potential

We showed in section 4.1 that the exciton experiences a force proportional to the
square of the electric field axial component. As a result it is trapped at the field
maxima. More precisely, we derived an effective potential:

Veff(z) = −αXE 2
‖ (z) (4.21)

where z = zCM is the center of mass coordinate of the exciton, and:

αX ≈ 2 (4πε‖ε0)σ3
X (4.22)

Here σX ∼ 1.5 nm is the exciton Bohr radius and ε‖ ∼ 7 is the relative longitudinal
permittivity along the carbon nanotube. With these numbers we obtain: αX ≈
10−35 C.m2/V.

Panel (a) in Figure 4.8 presents the calculated longitudinal field profiles created
by a single negatively charged impurity for two possible values of the distance d.
Note the exact analogy of this situation to the one described in section 4.1 where we
considered the double-tip device. The main difference resides in the length scales
being roughly an order of magnitude smaller. The associated effective trapping
potential is shown below in panel (b). We find a double-well potential whose depth
V 0

eff strongly depends on the distance d.
To find an analytic expression to the position of the potential minima ±z0 we

solve the equation:

∂

∂z
E 2
‖ (z) =

2z(d2 − 2z2)

(z2 + d2)4
= 0 (4.23)

and find z0 = ±d/
√

2 3. These are also mentioned in Fig. 4.8 (b) and depend linearly
on d.

For each of these wells we can do, to lowest non-zero order, the parabolic approx-
imation around z = ±z0:

Veff(z) ≈ 1

2
V ′′z2

with V ′′
.
= ∂2

∂z2Veff(z) |z=z0 . Within this approximation, the zero-point center of mass
motion, in other word the confinement length of the exciton, is given by:

σCM =

√
~

(mexcV ′′)1/4

3. The third solution z = 0 corresponds to a maximum of the potential.
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Figure 4.8: (a) Parallel field and (b) effective exciton confinement potential caused
by a charged impurity residing at a distance d from the nanotube axis. We fix
the relative permittivity of the surfactant micelle to εS = 2. For the red curves
d = 3 nm and the potential Veff(z) has its maximal depth V 0

eff ∼ −60 meV at
z0 = d/

√
2 ∼ 2.1 nm. The blue curves show the calculations for d = 2 nm, yielding

V 0
eff ∼ −300 meV and z0 ∼ 1.4 nm.



76 Quantum-dots in Carbon nanotubes

]m[ d ]m[ d

]m[ ,0 σz

20
dz =

CMσ

[meV]  ,0
eff EV Δ

0
effV

EΔ

0
effV

-
d

EΔ
0E

Figure 4.9: Left: Exciton center of mass zero-point motion σCM and position of
the potential minimum z0 as a function of the nanotube-charge distance d. Both
lengths are comparable, justifying the assumption that tunneling between the two
wells should lead to strong mixing. Right: Potential depth |V 0

eff | and QD-levels
energy splitting ∆E (in meV) as a function of the distance d, on a logarithmic
vertical scale.

The effective mass of the exciton is taken to be: mexc ∼ 0.2 me ∼ 2× 10−31 Kg. We
plot in Figure 4.9 (left panel) the calculated evolution of σCM with the distance d,
along with the trap’s center position z0. There are two important remarks to make
regarding these quantities:

– For a charged impurity trapped somewhere around the micelle, the distance d
will be a few nanometers, and so will be the confinement length of the exciton,
in agreement with the values derived from the fits of the experimental data in
chapter 3.

– For the whole range of distances considered here we have |z0| ∼ σCM. This
means that tunneling between the two wells will be quite strong and couple
efficiently the two identical quantum dots. As a result we should expect the
eigenstates of the system to be bonding and anti-bonding superpositions of
single-dot states. For a perfectly symmetric potential only one of those would
be optically active and emitting PL. But a breaking of the symmetry would
lift the degeneracy and lead to the formation of two non-degenerate partially
bright quantum dot states.

On the right part of Fig. 4.9, the calculated potential depth |V 0
eff | and the level

splitting ∆E = 1
2mexc

(
~

σCM

)2

are plotted against d. Here again, we would like to

point out important characteristics:

– For all distances d contemplated we find that |V 0
eff | � kBT ∼ 0.32 meV at 4 K.

Therefore the potential is always deep enough to trap the exciton at cryogenic
temperatures and up to several tens of Kelvin.

– The dependence of |V 0
eff | on d is extremely steep. It is easy to see from the

analytical expressions that it is proportional to 1/d4.
– The level energy splitting ∆E on the other hand scales like 1/d3. We see that

the first quantum dot excited state (referred to as the “p-shell”) is expected to
lie some tens to hundreds of meV above the ground state.
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Figure 4.10: Potential depth |V 0
eff | and level splitting ∆E as a function of the dis-

tance d, for two slightly different values of the relative permittivity of the surfactant
micelle. Increased screening yields much shallower potential (at equal d) whereas
the confinement length determining the level splitting is hardly affected.

– Because of the different scaling exponents we observe a cross-over of the two
curves for d ∼ 3 nm. Strictly speaking this means that for d > 3 nm the first
excited state would already be in the continuum. However, we must remark
that the position of this crossing is strongly dependent on the value of the
relative permittivity chosen for the surfactant micelle, as illustrated in Fig. 4.10.
Indeed, the potential depth is proportional to the square of the field strength,
and therefore scales like 1/ε2

S. In contrast the level splitting is a function of the
curvature of the potential around ±z0 (through σCM) and is much less sensitive
to variation in εS. Given the simplicity of our model and the approximations
we make, we should not however give too much relevance to these features, but
rather concentrate on qualitative behaviors and orders of magnitude.

4.2.3 Comparison with the experimental observations

We now wish to discuss in more detail some peculiar experimental features already
mentioned in previous chapters that may find natural explanation in the model
presented here. In each case we first recall the experimental observations before
comparing them to the predictions of the model.

Energy shifts and spectral diffusion

One surprising and quite anomalous behavior is the very large energy shifts of
the PL peak emission with temperature. We observe for the majority of nanotubes
shifts being as large as several tens of meV upon a temperature increase of less than
30 K. Moreover, these shifts are not always monotonous, although usually going
towards lower energies. Large spectral jumps may also happen suddenly at some
critical temperature, not always reversibly. Figure 4.11 shows in the left panel a
typical temperature evolution of a SWNT PL line.

It is obvious that all these features strongly contrast with the smooth and weak
temperature dependence of the E11 energy for pristine carbon nanotubes. As pre-
dicted by theory [66] and confirmed in experiments [67, 68], the pure temperature
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Figure 4.11: (a) Example of the dramatic energy shift in the PL emission occurring
when we heat the sample through the thermo-resistor. We also frequently observe
sudden jumps of several tens of meV. (b) Data from another nanotube illustrating
quite typical spectral diffusion on a seconds time scale. Note the intensity variation
as well as the on/off blinking of a blue-detuned peak.

shift (ignoring external strain) cannot exceed 20-30 µev/K. This would translate in
a shift of less than 1 meV for the accessible temperature range in our experiment,
more than one order of magnitude smaller than what we report. It seems very diffi-
cult to account for this discrepancy under the assumption of non-localized excitons
as the origin of the PL emission.

Another related phenomena presented in the right panel of Fig. 4.11 is spectral
diffusion (or spectral wandering). The peak emission energy is seen to fluctuate on
timescales ranging form seconds to minutes, and it is likely that fluctuations do occur
on even shorter timescales, partly responsible for the linewidth of the peak. Again,
shifts of several meV are quite usual, along with intensity fluctuations, blinking and
spectral jumps.

][meV  0E

0
effV

-
d

EΔ
0E

]A[meV/  0
o

d
E
∂
∂

]m[ d ]m[ d

Figure 4.12: Left: Calculated energy of the quantum dot ground state E0 measured
positively from the free exciton energy (see inset on the upper right), as a function
of the distance d. Right: Derivative of E0 with respect to the impurity distance d,
in meV/Å. Both graphs are plotted on a logarithmic vertical scale.
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Although we are well aware that all these features most certainly have complex and
multiple physical origins, we would like to show here that our simplified confinement
model allow for a very plausible and unified explanation. As we demonstrated in
the previous section, our model consistently predicts the formation of a quantum
dot having the characteristics we want (confinement length, potential depth, level
splitting) if we assume that it is caused by a charged impurity trapped somewhere
around the micelle, presumably at a distance of ∼ 2 nm from the nanotube.

The confinement energy of the quantum dot ground state, defined as E0 = |V 0
eff |−

1
2
∆E, is plotted as a function of d in Fig. 4.12. Assuming that the energy of the free
E11 exciton remains virtually constant, any change in E0 will be directly observed as
a corresponding shift in the PL wavelength of the SWNT-QD. Therefore we calculate
the derivative of E0 with respect to the impurity distance d (Fig. 4.12, right).

It is striking to see how strongly the PL is calculated to shift upon small displace-
ment of the charged impurity, with typical values of 10 to 100 meV/Å for realistic
mean distances. Such small movements are quite likely to occur naturally over time
under laser illumination, or during the heating of the sample. Small configurational
changes in the micelle/impurity complex would also lead to appreciable spectral
jumps like the one we observe, in analogy to what happens in polymers [69]. We
therefore argue that our model is, if not explaining, at least consistent with the
observation of spectral diffusion and large temperature-related energy shifts typical
in our sample.

Line splitting and cross-correlation

Another widespread and very singular observation of ours is the splitting of the
PL spectra in two distinct lines. It must be stated here that we found at numerous
places on the sample even more than two PL peaks from a single spot, but in those
cases it is hard to exclude the possibility of small nanotube bundles or spatially
separated quantum dots along the same nanotube. This is in particular true when
the lineshapes are dissimilar and behave differently with respect to excitation energy,
temperature change, etc.

In this section we concentrate on more specific, yet commonly occurring, situations
in which the PL emission is split (or splits over time) in two similar peaks (although
their respective intensities can vary quite substantially). A typical example is shown
in Fig. 4.13: we started our measurement on a single line which split in two distinct
peaks during ongoing laser illumination. On the third day of the experiment, the
energy splitting between the two peaks was as large as 13 meV.

In order to try and understand the origin of the photons emitted at the two
different wavelengths, we performed cross-correlation measurements on the two lines.
For this purpose, the HBT setup used for auto-correlation (see chapter 2) is slightly
modified by placing two bandpass filters, one in each arm, each transmitting the
photons coming from one of the two lines only. Even if each peak separately shows
perfect antibunching, we should measure g

(2)
cross(0) ≥ 0.5 in the case of independent

emitters.
In contrast, we find that the level of cross-correlation is similar to the auto-

correlation value of each separate peak and g
(2)
cross(0) ≈ 0.27, clearly smaller than 0.5.
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Figure 4.13: Under continuing laser illumination, the PL spectrum from this nan-
otube splits and the energies of the two lines change further over time. Remark-
ably, photons emitted at the two different peak wavelengths are strongly correlated
(g(2)cross(0) well bellow 0.5), ruling out the existence of two spatially separated quan-
tum dots, and supporting the picture of two emitting states from the same quantum
dot. Further evidence for this interpretation is shown in the central top panel: cal-
culated spectra in the sub-ohmic coupling regime (see second part of this chapter)
with identical parameters (confinement length and coupling strength) fit both lines
equally well. Completely similar fits were obtained within the ohmic regime (cf.
chapter 3).
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This means that the two peaks are strongly quantum correlated, which seems to
exclude the possibility of two spatially separated quantum dots. Much more likely
is the existence of two optically-allowed states in a single SWNT-QD, decaying into
the same final state. An alternative explanation would rely on one QD-like emission
site having two temporal states of different energies. In this case, the nonzero
central peak in cross-correlation implies that the switching between the two distinct
temporal states must occur on a time scale shorter than the characteristic PL decay
time of 20-40 ps, which appears quite unlikely.

Further support for any of these two scenarios is given in Fig. 4.13 in the top
panel. We used two variants (only one is shown) of the exciton-phonon coupling
model presented in chapter 3 (and extended in the next part) to fit the two PL
peaks. Remarkably, the same set of parameters can reproduce both lines with equal
accuracy, from which we deduce that the confinement length and exciton-phonon
coupling strength is the same for the two states involved. This is very suggestive of
a single quantum dot with two own emitting states.

How does this interpretation relates to the confinement model we are discussing
now? As pointed out previously, a very peculiar feature of the confinement potential
created by the charged impurity is its symmetric double-well shape (see Fig. 4.8).
If the tunnel coupling between the two wells is non-negligible, the true eigenstates
of the system are linear combinations of these single-dot states. In particular, when
nothing breaks the symmetry between the two sides, the eigenstates are exact bond-
ing and anti-bonding superpositions, one of which only is optically allowed. These
two eigenstates are split by an energy ∆Etun characterizing the strength (or rate)
of the tunnel coupling.

It is well known that the tunneling rate depends exponentially on the height and on
the width of the barrier, so that it would be misleading to try and derive meaningful
precise values within such a simplistic model. It is however instructive to look for
an order-of-magnitude estimate of the tunnel coupling we expect. For this we make
a crude approximation for the potential and consider a simple rectangular barrier
separating the two wells. Under this assumption, a lowest order approximation for
the tunnel coupling is:

∆Etun ≈
8

π

√
E 3

V0 − E
e−κw (4.24)

Here E and V0 are the energy of the single-well ground state and the barrier
height, respectively, both measured from the minimum of the potential. In our case
we have E = 1

2
∆E (ground state energy) and V0 = |V 0

eff | (see inset in Fig. 4.14).
The width of the barrier is w and we define:

κ =
1

~
√

2mexc(V0 − E)

Since our potential barrier is not rectangular, we choose for its width w = d, which
should be quite a good approximation based on the fact that z0 = ±d/

√
2. We thus

finally obtain an expression for ∆Etun depending only on the variable d through the
three parameters |V 0

eff |, 1
2
∆E and w.
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Figure 4.14: Estimated energy splitting due to tunnel coupling ∆Etun (in meV) as
a function of the distance d.

We plot the calculated tunneling energy splitting obtained in this way in Fig. 4.14.
We repeat that no relevance should be given to the precise value of ∆Etun nor to
its exact dependence on d. Yet it is quite remarkable that the size of the splitting
predicted here compares very well with the splitting actually measured in the ex-
periment. In addition, we remark that the curve in Fig. 4.14 is surprisingly flat,
given the exponential sensitivity to the parameters. This is so because a change in
d has two compensating effects. When d is decreased, the potential barrier becomes
higher (the wells become deeper) but its width is simultaneously reduced, leading
to small net variations in e−κw. This weak dependence of the splitting on d is a re-
quirement for the plausibility of the model, and could even be seen as an indication
of its validity.

On the light of this finding, we propose the following mechanism to account for
the PL line splitting. Due to the complexity of the environment and the extreme
sensitivity of the potential to the charge position mentioned just before, one may
reasonably expect that the symmetry between the two wells should be easily broken
by any kind of perturbation in the surrounding micelle, induced for example by the
laser excitation (free carriers, local heating, etc.).

Once the degeneracy is lifted, the two double-dot eigenstates will split further
and, most importantly, will become both optically-allowed, resulting in a double
PL emission peak. Since these two emitting states are eigenstates of the very same
double quantum-dot and decay into the same final “empty-dot” state, it is natural to
expect the cross-correlation results reported above, as well as their similar lineshape.

Single quantum-dot resonant excitation

We conclude this section by very briefly coming back to the issue of resonant
excitation of the SWNT-QD discussed at the end of chapter 2. The main argument
we can bring forward in this context is that our model predicts the right energy
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scale for the first (“p-shell”) excited state, as can be seen from Fig. 4.9. The sharp
resonances we observe in the PL excitation spectra between 20 and 100 meV (see
Fig. 2.15) could therefore be accounted for by resonant excitation of an excited state
of the SWNT-QD. This is a well-known feature in the spectroscopy of II-VI [35] and
III-V [36] semiconductor self-assembled quantum-dots. In our case, the quantum-
dot excited state would play a role similar to the E22 exciton, providing a real state
for the optical excitation, greatly enhancing the absorption cross-section.

If this picture is correct, it does not, nevertheless, completely explains why we
usually find only a single or a few SWNT-QDs emitting from the same nanotube,
even as we tune the excitation energy. But here again, our trapping model could
provide a plausible explanation. As soon as a trap is created along the nanotube,
the presence of a (say) negatively charged particle would forbid any other negative
impurity to form a second stable trapping site in the vicinity, because of the strong
Coulomb repulsion. A logical consequence would be the existence of a single SWNT-
QD within our spot size in a majority of cases.

4.3 Exciton coupling to the bending mode:
sub-ohmic lineshapes

We demonstrated in the previous part that the “charged impurity” picture could
possibly account for a wide range of experimental observations. In addition, as we
will show in the following sections, it opens up an exciting alternative interpretation
of the peculiar broad asymmetric lineshapes typical of our sample. Indeed, the
physical model presented in chapter 3 and used to fit the data is not specific to the
stretching mode phonons nor to the corresponding ohmic regime. Moreover, we saw
in section 4.1 that an effective coupling of the exciton to the bending mode phonons is
induced as soon as a perpendicular electric field breaks the circumferential symmetry
of the SWNT exciton. Interestingly, a charged impurity close to the nanotube do
create a strong perpendicular field at the place where the exciton is confined.

Putting these pieces together leads us to investigate whether the PL lineshapes
could be reproduced by the same spin-boson model, but involving the bending mode
instead of the stretching mode phonons. As a result of the quadratic energy dis-
persion of the former, the spectral function is proportional to

√
ω: the so-called

sub-ohmic regime. After introducing the relevant theoretical framework, we show
in the second section that equally good fits may be derived under this assumption,
opening new possibilities in the interpretation of the data. We discuss the supportive
elements for the validity of either regime in the last section.

4.3.1 The effective exciton-phonon coupling

Our approach in this chapter is somewhat different from the one adopted in chap-
ter 3, although the underlying physic is basically the same. In order to compare the
spectra and fits derived from the two possible phonon modes involved, we choose a
more formal description to deal with the ohmic and sub-ohmic regimes on an equal
footing. For this, we write the spectral density (or spectral function), which contains
all the information on the exciton-bath interaction:
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J(ω) = 2πα ω
(1−s)
U ωsθ(ω − ωI)e−ω/ωU (4.25)

The exponent s determines the dissipative regime. It depends, through the phonon
density of states, on the form of the phonon dispersion and on the bath dimensional-
ity. The cases we need to consider here are: s = 1 (ohmic regime) for the stretching
mode; and s = 1/2 (sub-ohmic regime) for the bending mode. The constant α
measures the strength of the exciton-phonon coupling. We will see that it depends
in both cases on the chiral angle of the carbon nanotube, and for the bending mode
additionally on the perpendicular electric field.

The remaining two parameters are ωU and ωI , the ultra-violet (UV) and infrared
(IR) cutoff frequencies, respectively. In chapter 3 we gave a quite precise physical
meaning to the UV cutoff frequency by relating it to the form-factor (the Fourier
transform of the exciton center-of-mass envelope function). Here the exponential
form of the cutoff function is more arbitrary but ωU is still related to the size of the
quantum dot.

Conversely, the IR cutoff is determined by the total length of the nanotube and
the resulting lowest energy phonon mode. We assume that our nanotubes are few
hundreds of nanometers long, which is in practice enough to make the results inde-
pendent of the precise value of ωI . Therefore we omit the factor θ(ω − ωI) in the
following expressions, although we did include it in all the numerical calculations.

Stretching mode and ohmic regime

The coupling to the stretching acoustic phonons yields an ohmic spectral density:

J(ω) = 2πα ω e−ω/ωU (ω ≥ ωI) (4.26)

The UV cutoff is given by ωU ≈ vS/σCM where vS ≈ 2 × 104 m/s is the sound
velocity. The expression for α is:

α =
1

2π2~

(
g2

2(1 + σP )2

√
σG

(EY h)3

)
cos2(3θ) (4.27)

The parameters appearing in eq. 4.27 and their numerical values are:
– g2 ≈ 3 eV; the off-diagonal (“bond-length change”) electron-phonon coupling

matrix element.
– σP ≈ 0.2; the Poisson ratio of the carbon nanotube.
– σG ≈ 7.7× 10−7 Kg/m2; the surface mass density of graphene.
– EY ≈ 1 TPa; the Young-modulus of the carbon nanotube.
– h ≈ 0.66 Å; the effective shell thickness describing carbon nanotubes in the

thin-rod elasticity model.
– θ; the chiral angle of the carbon nanotube.

Bending mode and sub-ohmic regime

In the presence of a perpendicular (to the nanotube axis) component of the electric
field E⊥, we obtain an effective coupling to the bending (flexural) mode and a sub-
ohmic spectral density:
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J(ω) = 2πα
√
ωU
√
ω e−ω/ωU (ω ≥ ωI) (4.28)

As is apparent in eq. 4.28, the true “physical” strength of the exciton-phonon
coupling is expressed by the factor α

√
ωU , instead of α alone in the ohmic expression.

It is therefore more convenient for physical interpretation and for comparison with
the ohmic density to write eq. 4.28 in the form:

J(ω) =
√
πω∗
√
ω e−ω/ωU (ω ≥ ωI) (4.29)

with the implicit relation:
√
πω∗ = 2πα

√
ωU . The coupling strength is now

characterized by the square root of the frequency:

ω∗ = 25/2π

(
ξ2g2

2

2π2~EY h

)2
(1 + σP )4

R3

√
σG
EY h

cos4(3θ) (4.30)

The new parameters appearing in eq. 4.30 are the nanotube radius R and the
dimensionless parameter ξ = eE⊥R/2ε⊥(E11 − E13) measuring the perturbation in-
duced by the perpendicular electric field. We have introduced the effective field E⊥
which can be computed exactly by integrating the bare field E⊥ along the nanotube,
weighted by the exciton center-of-mass envelope function. We have no analytical ex-
pression for the confined wavefunction, but since the exciton is tightly localized close
to the charged impurity we can take to a good approximation: E⊥ ≈ E⊥(z = 0).

]m[ d

]V/m[ ⊥E

Figure 4.15: Perpendicular electric field created by the charged impurity at the
origin z = 0.

The UV cutoff in this case is related to the confinement length by ωU ≈ cB/(σCM)2

where cB is the coefficient in the bending mode energy dispersion: ω(q) = cBq
2. The

thin-rod elasticity theory predicts cB = vSR/
√

2, yielding cB ≈ 5 × 10−6 m2/s for
R ≈ 0.35 nm.



86 Quantum-dots in Carbon nanotubes

Figure 4.15 shows the computed value of the electric field component perpendic-
ular to the nanotube induced by the charged impurity at the origin z = 0. Once
more, it is not the exact value but rather the order of magnitude of the field that
is relevant to us. We see that we expect the confined exciton in the SWNT-QD to
experience a perpendicular field close to 1 V/nm.

4.3.2 A new eye on the experimental data: ohmic vs. sub-ohmic
fits

The absorption spectrum as a function of the detuning δω from the zero phonon
line is given by 4:

A(δω) ∝ <
∫ +∞

−∞
dτei(δω)τe−

Γ
2
|τ |eϕ(τ) (4.31)

where Γ = γPL is the total PL decay rate and we have defined:

ϕ(τ) = − 1

π

∫ ∞
0

dω
J(ω)

ω2

[
(1− cosωτ) coth

βω

2
+ i sinωτ

]
(4.32)

with the usual notation β = 1/kBT . This is equivalent to the formula we use in
chapter 3 in the particular case of the stretching mode (see eq. 3.10 and followings),
but expressed in the frequency variable ω instead of the wavevector q. The great
advantage of eqs. 4.31 and 4.32 is their dependence on the spectral function J(ω)
(and on the temperature T ) only. This allows us to compute the ohmic and sub-
ohmic spectra within the same Matlab code, simply by choosing the parameter:
s = 1 or 1/2.

We follow the fitting procedure presented in chapter 3 for each SWNT-QD, re-
peating it independently with the ohmic and sub-ohmic spectral densities. We con-
centrate our efforts on nanotubes for which we have data at several temperatures,
but extend our study to a larger set of nanotubes, including some for which the 4 K
spectrum only was available. We determine the optimal values of α and ωU to fit
the complete data set by changing only the temperature in the computation. The
temperature measured in the experiment unfortunately contains high uncertainty
above 15-20 K. In this range, we thus allow for some freedom in the choice of the
best fitting temperature. Yet this issue does not have noticeable impact on the
uncertainty in α and ωU because the sensitivity of the lineshape on their values is
maximal at the lowest temperatures (below 10 K, see Fig. 4.17), for which Texp is
known within 1 K. Nevertheless, note that local heating on the laser spot would not
be detected by the thermo-resistor (glued on the side of the sample), explaining why
we usually need to assume slightly higher temperatures in the fits.

A typical result is presented in Fig. 4.16. It is quite remarkable how accurately
both spectral densities can be used to fit the experimental data. This finding is
completely general and valid for the 35 different SWNT-QDs on which we applied
the procedure. Consequently, it is impossible from the mere quality of the fit to

4. Source: Ignacio Wilson-Rae, personal communication.
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Figure 4.16: Comparison of the fitting spectra obtained for the same SWNT-QD
within the ohmic (left) and sub-ohmic (right) coupling regimes. Open dots are
the experimental data; solid lines show the computed lineshapes. The temperature
deduced from the measured thermo-resistance is indicated by Texp. In each series, the
parameters α (coupling strength) and ωU (ultra-violet cutoff) are kept constant while
the temperature Tfit is changed. Better fits are usually obtained for temperatures Tfit

differing slightly between the two models, but within the experimental uncertainty
in Texp.
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argue which model is more likely to correspond to the physical reality. It could also
be that both phonon modes are contributing more or less equally to the dephasing.
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Figure 4.17: Assessing the uncertainty in the fits. Experimental PL spectra (open
dots) from the SWNT-QD shown in Fig. 4.16 fitted by ohmic lineshapes computed
with three different sets of parameters (α , ωU) (solid lines). The deviation of
the blue (α = 0.60) and red (α = 0.85) curves from the experimental data is
most obvious at low temperature (T = 4 K) and cannot be compensated by the
independent optimization of ωU . The best fit is obtained for α = 0.70 (black curve).
We conclude that our uncertainty in extracting the value of α is typically ±15%.

Before arguing further, we have to ask ourselves: with what precision can we
determine the value of α and ωU from the fitting procedure? Of particular concern
is whether a change in one of the parameters can be compensated for by modifying
the second one. This would allow for a wide range of couples of values to yield
acceptable fits, and would therefore seriously question the validity of the whole
procedure. Qualitatively, it is our experience that changes in the two parameters
have different effects on the resulting lineshape, so that they can be optimized quite
independently.

Increasing the coupling strength α tends to uniformly broaden the spectrum and to
render the high energy shoulder less steep. Increasing the cutoff frequency ωU mainly
affects the extent and weight of the low-energy tail prominent at lower temperatures.
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It is therefore difficult to cancel out the effect of modifying one parameter by simply
changing the other.

To address the issue quantitatively we present in Fig. 4.17 the results of different
choices for (α , ωU) values (in the ohmic model) on the quality of the fits. In partic-
ular, we are most interested in the value of α, for which we have explicit expressions
depending on the nanotube chirality. Starting from the optimal couple found in
Fig. 4.16 (black curve), we increase (resp. decrease) the value of α, simultaneously
trying to compensate for the change by tuning the cutoff ωU , until no acceptable
fit can be obtained anymore. The most obvious deviations from the experimental
data are observed at the lowest temperature T = 4 K. The parameter α can thus be
determined within ±15% with reasonably high confidence. The sub-ohmic fits (not
shown) are even more sensitive to changes in parameters, so that at least the same
level of confidence can be attributed to them.

4.3.3 Statistical analysis and conclusions

At this point of our data analysis, we are confronted with the impossibility of
adopting or rejecting any one hypothesis on the basis of the fits’ accuracies. We try
here an alternative statistical approach by comparing the range of values obtained
for α (respectively ω∗) with the expectations from eqs. 4.27 and 4.30. After having
addressed the self-consistency of the charged impurity picture, we conclude that this
new analysis is also unable to definitely discard one of the possible model.

Difficulties

As mentioned previously we applied the comparative fitting procedure to the PL
spectra from 35 different nanotubes measured on our sample. Although we tried to
consider the largest variety of PL characteristics, there is inevitably some selectivity
in the data. Firstly, our detection and excitation ranges are technically limited, so
that only a subset of nanotube chiralities can be studied. Secondly, further filtering
occurs because a minimum PL intensity is required to enable data acquisition. It is
possible that we selected only specific kinds of nanotubes or strongly confined exci-
tons simply due to their stronger PL emissions (e.g. resulting from higher quantum
efficiencies or cross sections). Finally many other effects like blinking, bleaching,
spectral instabilities, multiple lines, etc. led us to discard many experimental data
from thorough analysis.

The next difficulty we encounter is the attribution of a clear-cut chirality to each
SWNT. The only information we dispose of is the PL emission energy. Each chiral-
ity should have a well-defined E11 transition energy. Experimental tables of those
are readily available in the literature (see for example the empirical Kataura-plot
from Weisman and Bachilo [23]), but are limited to carbon nanotubes in aqueous
suspension at room temperature.

The first problem is thus to extrapolate these values to single nanotubes lying
on a substrate at cryogenic temperatures. Indeed, band gap and exciton binding
energies in carbon nanotubes are extremely sensitive to the surrounding media, to
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temperature changes and increasing strain likely associated. Consequently, there
may be substantial deviation of the PL emission wavelength in our sample from the
values tabulated in the literature.

The second complication arises from the axial confinement of the exciton in
SWNT-QDs, which is obviously causing additional energy shifts from the free ex-
citon E11. Although we expect exciton trapping to result in a red-shift, it is quite
challenging to estimate its precise magnitude. Moreover, this confinement energy is
certainly different from dot to dot. Altogeher, the best we can hope to achieve for
each SWNT is an educated guess of possible chiralities, based in large part on the
limited range of species expected to be dominant in CoMoCat material. Unfortu-
nately, this make a one-to-one comparison of the empirically determined α and ω∗
with the theoretical predictions quite pointless.

For all these reasons we adopt here a comprehensive approach and consider sta-
tistical results like averages, minimal or maximal values.

Table 4.1: Theoretical predictions

Chirality Ohmic Sub-ohmic, E⊥ = 1 V/nm

n m E11 [eV] Radius [nm] α
√
πω∗ [×106 s−1/2]

7 2 1.55 0.32 0.53 0.15
6 4 1.42 0.34 0.09 0.07
9 1 1.36 0.37 0.65 0.24
8 3 1.3 0.39 0.33 0.19

First of all, we try to determine what nanotube chiralities are most likely to be
observed in our experiment. For this, we consider the expected diameter distribution
of CoMoCat SWNTs (centered around d ∼ 0.7− 0.8 nm) along with the limitation
imposed by our PL detection range ( 1.25 eV ≤ EPL ≤ 1.46 eV). Table 4.1 summa-
rizes the selected nanotube chiralities and their E11 energies at room temperature
in aqueous solution, taken from [23]. The theoretically predicted values for α and√
πω∗ (under the assumption of a perpendicular electric field E⊥ = 1 V/nm) are

also presented.

Consistency of the impurity picture

In order to analyze the data resulting from the previously described fitting proce-
dure applied to about 30 different SWNTs, we proceed as follow. We calculate the
average, minimum, maximum and standard deviation of the experimental values of√
πω∗ and σCM deduced from the best fits. Then we want to compute the same

statistics on the theoretical values in a manner meaningful for comparison. For this,
we tentatively attribute a chirality to each measured SWNT from the ones listed in
Table 4.1, based solely on the PL emission energy. This is a very speculative exercise
and is only intended to obtain a weighted distribution of chiralities occurring in our
data set 5. This distribution can then be used to simulate the statistical results that

5. Indeed, we note that higher emission energies are slightly over-represented
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would be obtained with the theoretical values of Table 4.1. We also scale
√
πω∗ by

a factor corresponding to the presence of a perpendicular electric E⊥ = 2.8 V/nm.
Since we have no a priori knowledge of the real field, this particular value was chosen
to bring the average (weighted by the empirically determined chirality distribution)
in equation to the experimental average. It can thus be viewed as an empirical
deduction of the mean real electric field in the SWNT-QDs, under the assumption
that we are actually in the sub-ohmic regime.

Table 4.2: Summary of the results from 30 SWNT-QD sub-ohmic fits.

√
πω∗ [×106 s−1/2] Conf. length σCM [nm]

Experiment Theory, E⊥ = 2.8 V/nm Experiment

Minimum 0.61 0.58 1.3
Maximum 2.78 1.99 2.7

Average 1.29 1.29 1.75
Stand. Dev. 0.42 0.51 0.37

Table 4.2 summarizes the results of this analysis.
– The last column lists the exciton center-of-mass confinement lengths deduced

from the UV cutoff frequencies used in the fits. These values are in remarkable
agreement with the length-scales predicted by the charged impurity model.
Although the calculations of Fig. 4.9 predict σCM < 1 nm, we demonstrated
earlier that the exciton is certainly delocalized over the two potential wells due
to strong tunnel coupling. The effective confinement length defining the cutoff
frequency may thus rather be given by ∼ 2z0 instead of σCM, bringing it in the
range of the experimental findings of Table 4.2.

– The statistical distribution of
√
πω∗ also compares very well to the theoretical

expectation. However, the strength of the perpendicular electric field E⊥ =
2.8 V/nm required to reproduce the experimental data is somewhat higher
than expected from our model (see Fig. 4.15). A possible explanation lies
in the fact that none of the numerous parameters appearing in eq. 4.27 is
known with good accuracy. Due to the highly sensitive scaling of ω∗ on most of
these parameters, the uncertainty on the theoretically derived value is hard to
evaluate, but certainly very large. Therefore we should concentrate here again
on orders of magnitudes.

The instructive conclusion we can draw from the above analysis, comments and
discussion is that the charged impurity model provides a self-consistent picture for
the experimental observations.

Ohmic or sub-ohmic?

We now apply exactly the same statistical treatment to the data obtained from
the ohmic fits on the same set of nanotubes. The results are summarized in Table
4.3.

Here again, the agreement between the experimental and theoretical values of α is
pretty good, considering the uncertainty in the parameters entering eq. 4.27. Small
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Table 4.3: Summary of the results from 30 SWNT-QD sub-ohmic fits.

α Conf. length σCM [nm]

Experiment Theory Experiment

Minimum 0.30 0.09 19.0
Maximum 0.85 0.65 66.7

Average 0.53 0.41 31.83
Stand. Dev. 0.13 0.22 12.36

adjustments in any of them could easily scale the “theory” column by a suitable
factor to bring it closer to the experimental values.

The careful reader may note that the confinement lengths presented here differ
quite substantially from the ones we reported in chapter 3. This is first partly due
to the fact that we restricted our report in chapter 3 to much fewer different SWNT-
QDs, chosen for their particularly obvious broad and asymmetric PL emission. Such
spectra are obtained for large UV cutoff frequencies, corresponding in turn to small
confinement lengths. The present data set is much more comprehensive and includes
SWNT-QDs with lower UV cutoffs, thus larger confinement lengths.

A second cause to the discrepancy is the artificial form of the cutoff function
used here. The exponential cutoff in frequency (eq. 4.26) corresponds to the same
functional cutoff in wavevector space due to the linear dispersion of the stretching
mode. This is certainly a much poorer physical picture than the Gaussian cutoff
used in chapter 3, which resulted directly from the choice of a Gaussian envelope
function for the exciton center-of-mass motion.

An important issue that we have overlooked until now and that may affect equally
the comparison to the ohmic and sub-ohmic models is the contribution of spectral
diffusion to the lineshape and linewidth. Indeed, we have reported in previous
chapters that most PL lines show spectral fluctuations over seconds and longer
timescale. Since we cannot measure the spectra with much better time resolution,
it remains open whether significant spectral shifts occur on shorter timescales. If
this were the case, this would translate into an additional broadening of the time-
averaged PL spectra. In this sense, we should consider the values empirically derived
for α and

√
πω∗ as upper-bounds rather than exact estimates.

We have however a good reason to think that the low-temperature spectra are in
most cases only weakly affected by such potential broadening mechanism. Assuming
very fast spectral fluctuations do occur, it is natural to model them has a symmet-
ric, typically Gaussian, broadening of the lineshape. This in turn should result in
blurring out the steep high energy shoulder characterizing the low-temperature PL
spectra. Since we can fit the experimental spectra assuming temperatures close to
4 K in the model, it seems that spectral diffusion is not prominently contributing
to the lineshape.
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Conclusion

In the light of the previous findings and discussions, we conclude this chapter
by evoking a third possibility that may actually best describe the physical origin
of our PL data. We saw in the first section that the charged impurity picture
is a promising candidate to account for the exciton trapping and agree well with
a wealth of experimental observations. In the second section we contemplated an
alternative interpretation of the PL lineshapes based on the new possibility of exciton
coupling to the bending mode phonons. We could not, nevertheless, decide on a
particular phonon mode (stretching or bending) being responsible for the exciton
pure dephasing.

Yet, if we assume that the parameters used in the theoretical evaluation of the
ohmic and sub-ohmic α are reasonably trustworthy, we could argue that the statis-
tical analysis presented above favors the ohmic regime as yielding better agree-
ment between experiment and theory. Indeed, the perpendicular electric field
E⊥ = 2.8 V/nm required in the sub-ohmic model appears very large and unlikely.
The computation would rather predict a field on the order of 0.1 V/nm, and this
would lead to undetectable effects on the PL lineshape.

The remaining open possibility consistent with all these considerations is that the
confinement is actually due to the presence of a nearby charged impurity, but the
induced perpendicular is too weak to make the sub-ohmic dissipation relevant. On
the other hand, the coupling to the stretching mode does not rely on any external
perturbation and is expected to cause fast pure dephasing irrespective of the origin
of exciton confinement. This means that ohmic dissipation is most likely accounting
for the asymmetric PL lineshapes and is the dominating source of pure dephasing.

We finally repeat that we cannot give any definite evidence of the validity of the
particular trapping mechanism we propose. However we hope to have convinced the
reader in this chapter of the consistence of our model. It seems to us quite likely
that the kind of mechanism described here, if not exactly this one, is responsible for
the formation of SWNT-QDs and the associated experimental features.
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5 All optical manipulation of a
SWNT-QD spin

5.1 Spin-Orbit coupling in carbon nanotubes

The spin-orbit interaction (SOI, also called spin-orbit effect or spin-orbit coupling)
refers to any interaction of a particle’s spin with its own motion. The first and best
known example of this is that spin-orbit interaction causes shifts in the electron’s
atomic energy levels (detectable as fine structure splitting of the spectral lines), due
to electromagnetic interaction between the electron’s spin and the nucleus’s electric
field, through which it moves. In condensed matter, in particular in the field of
spintronics, spin-orbit effects for electrons in semiconductors and other materials
can be used to control the spin degree of freedom by optical or electrical means.

The SOI energy increases with the atomic number because stronger fields exist
around the nucleus. The intrinsic (i.e. atomic) SOI is therefore very small in carbon,
which naturally leads to think that spin-orbit effects should be negligible in carbon
nanotubes. Although this seems to be the case in flat graphene sheets, the curvature
of the nanotube’s wall and the cylindrical topology induces a coupling of the electron
and hole spins to their own circumferential momenta. The resulting interaction has
recently been shown in transport experiments to cause a zero-magnetic field splitting
and to break the electron-hole symmetry [70].

5.1.1 Physical origin of Spin-orbit coupling

We begin with a short derivation of the spin-orbit interaction for an electron in a
hydrogenic atom, using semiclassical electrodynamics and non-relativistic quantum
mechanics. A more rigorous derivation of the same result would start with the
Dirac equation, and achieving more precision would require small corrections from
quantum electrodynamics. This is of course out of the scope of this work.
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Figure 5.1: Spin-Orbit interaction in a hydrogenic atom.

As presented in Fig. 5.1 we consider an electron (charge −e, mass me) orbiting
with velocity v at a distance r from a nucleus with charge +Ze (the atomic number
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Z = 6 for carbon). In the rest frame of the electron (right in Fig. 5.1), ignoring for
now that this frame is not inertial, the nucleus moving with speed −v around the
electron produces a magnetic field:

B = −(−v)× E

c2
=

v × E

c2
(5.1)

The electric field being radial, we can write it E = −(E/r)r. Using also p = mev
we obtain:

B =
r× p

mec2
(E/r) (5.2)

Next, we express the electric field as the gradient of the electric potential. Here
we make the central field approximation, that is, that the electrostatic potential is
spherically symmetric, so is only a function of the radius 1. In this case |E| = 1

e
∂V
∂r

,
where V is the potential energy of the electron in the central field. Remembering
from classical mechanics that the angular momentum of a particle reads L = r× p
we get from equation (5.3):

B =
1

meec2r

∂V

∂r
L (5.3)

The intrinsic angular momentum of the electron is represented by the spin vecto-
rial operator S = ~

2
σ, where σ is the vector of Pauli matrices. Associated with it is

an intrinsic magnetic dipole moment:

µS = −gµb
S

~

where µb ≡ e~
2me

is the fundamental unit of magnetic moment called the Bohr magne-
ton, and g ' 2 is the spin gyromagnetic ratio of the electron. Finally, the interaction
energy HSO = −µS ·B reads:

H̃SO =
2µb

~meec2r

∂V

∂r
(L · S) (5.4)

However, the electron is not in an inertial frame of reference. In transforming
back into the inertial frame, a relativistic effect called Thomas precession results in
a factor 1/2 so that:

HSO =
µb

~meec2r

∂V

∂r
(L · S) (5.5)

Explicitly, in the hydrogenic atom model considered above, we have ∂V
∂r

= Ze2/r2,
which yields after substituting also µb = e~

2me
in (5.5):

HSO =
Ze2

2m2
ec

2r3
(L · S) (5.6)

Another way of writing Hamiltonian (5.5) which is more general and can be used
as a starting point for calculations in solid state systems is:

1. This approximation is exact only for hydrogen-like systems
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HSO = ∆(L · S) (5.7)

where ∆, the intra-atomic spin-orbit coupling constant, can be either directly evalu-
ated from first principles (using eq. 5.5) or empirically determined from experimental
data.

5.1.2 Spin-orbit interaction in SWNTs: theoretical predictions

The complete spin-orbit Hamiltonian

We keep the notations of chapter 4.1 and use the same coordinate system: z is
along the nanotube axis and ϕ is the circumferential coordinate, whereas x and y are
both orthogonal to the nanotube, forming with z an orthonormal direct basis. To
simplify the heavy 4×4 matrix notation used in chapter 4.1, we introduce the Pauli
matrices σ1,2,3 (resp. τ1,2,3) acting on the sublattice A/B (resp. valley K/K ′) space.
We chose numerical indices 1, 2, 3 to emphasize on the non-geometrical nature of
the spaces in which the operators act, in contrast to the spin Pauli matrices sx,y,z,
whose eigenbasis | ↑〉, | ↓〉 corresponds to the possible spin projections along z.

Considering Hamiltonian (5.5) or (5.7) as a perturbation in a tight-binding calcu-
lation, T. Ando [71] and Daniel Huertas-Hernando et al. [72] were the first to derive
an effective spin-orbit hamiltonian for the relevant states of carbon nanotubes close
to the Fermi level (i.e. in the vicinity of K and K ′). We concentrate here on the
final expressions and follow the notation used by D. V. Bulaev et al. [73] to discuss
the different terms appearing in the total spin-orbit interaction Hamiltonian:

HSO = Hint
SO +HE

SO +Hcurv
SO (5.8)

– The intrinsic SOI: Hint
SO = ∆intτ3σ3sz is the same as in graphene where it opens

a tiny gap ∆int ∝ ∆2 at the Dirac points. The effect is however extremely small
because of the weakness of the intra-atomic spin-orbit coupling of carbon ∆. It
is estimated to be ∆int ≈ 1 µeV [72] and has not been experimentally evidenced
so far.

– The Rashba (or Bychkov-Rashba) term: HE
SO = ∆E(τ3σ1sz−σ2sx) is an extrin-

sic effect related to a breaking of the mirror symmetry about the graphene plane.
This happens when an electric field is applied orthogonally to the graphene
sheet (or the nanotube). More precisely ∆E corresponds to processes due to
the intra-atomic spin-orbit coupling and the intra-atomic Stark effect between
different orbitals of the π and σ bands, together with hopping between neigh-
boring atoms. This term vanishes in the absence of electric field, and remains
very small for realistic field strengths (∆E < ∆int for E < 0.1 V/nm).

– The dominant term in carbon nanotubes is very clearly the curvature induced
SOI: Hcurv

SO = ∆
‖
curvτ3σ1sz − ∆⊥curvσ2sx. In this case the local curvature of the

graphene surface couples the π and σ bands. The strengths of the two different
terms are comparable and estimated to be: ∆

‖
curv ≈ 0.17 meV/R[nm] and

∆⊥curv ≈ −0.26 meV/R[nm]. From now on we therefore neglect the two first
terms (intrinsic and Rashba SOI) and focus on the curvature-induced SOI.

The first term: ∆
‖
curvτ3σ1sz is proportional to the spin operator sz and its sign de-

pends on the valley K or K ′ through τ3. Because it involves σ1, it corresponds
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to a shift in the allowed wave-vectors k⊥ [71] and leads to a zero-field spin split-

ting ∆SO = 2∆
‖
curv between states with parallel and anti-parallel spin and orbital

magnetic moments.
Let us analyze the second term: −∆⊥curvσ2sx. Because it involves the operator

sx, it mixes states with opposite spins sz. But the coupling only occurs between
states differing by one unit of circumferential momentum ∆n = ±1. This is again
a consequence of angular momentum conservation. In other words, we can write
the operator sx in the nanotube coordinates sx = i(−s+e

iϕ + s−e
−iϕ) where s± are

the raising / lowering operators, i.e. correspond to spin-flip events. It is then clear
that states between which this term induces non-vanishing coupling must differ by
a factor e±iϕ, that is to say by one unit of circumferential momentum.

We may use first order perturbation theory to evaluate how the eigenstates ofH0+
∆
‖
curvτ3σ1sz are modified by −∆⊥curvσ2sx. Because the energy differences between the

lowest subbands are on the order of several 100 meV in narrow nanotubes, energy
denominators of the type (En−En±1)−1 account for a very weak state mixing 2. We
therefore discard this term in what follows and consider exclusively the spin-orbit
interaction reduced to: H‖SO = ∆

‖
curvτ3σ1sz.

Spin-orbit coupling as a topological effect

We already explained in chapter 1 that a magnetic field applied along the longitu-
dinal direction of the nanotube breaks the time-reversal symmetry and therefore lifts
the K-K ′ degeneracy. For a quantitative understanding of this we have to consider
the Aharonov-Bohm (AB) effect. The latter is a general result from the requirement
that quantum physics be invariant with respect to the gauge choice for the electro-
magnetic potential, part of which is formed by the magnetic vector potential A. A
particle with charge q traveling along a path P thus acquires a phase shift:

∆ϕ =
q

~

∫
P

A · dx (5.9)

Using Stokes’ theorem and B
.
= ∇×A we can write eq. 5.9:

∆ϕ =
qφAB

~
(5.10)

where φAB =
∮
S

B · dn is the Aharonov-Bohm flux. Here S is the surface enclosed
by the path P and n is a unit vector normal to it. For an electron circling around
the nanotube in a uniform axial magnetic field B‖ it is clear that the AB flux takes
the form: φAB = B‖πR

2 (see Fig. 5.2), with R = d/2 the radius of the SWNT. In
the absence of AB flux, the circumferential periodic boundary condition (cf. chap-
ter 1): Ψ(r + Ch) = Ψ(r) imposes: exp(ik ·Ch) = 1, leading to the quantization:
(2πR)kϕ = n(2π) responsible for the opening of the gap in semiconducting nan-
otubes (Fig. 5.2 a)). The additional AB phase-shift modifies this condition into:

n(2π) = (2πR)kϕ + ∆ϕ = (2πR)kϕ −
2πe

h
φAB (5.11)

2. Using this term to manipulate the spin would also require using transverse electric fields
which couple weakly to the nanotube because of the antenna effect
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Figure 5.2: Aharonov-Bohm flux lifting the K-K ′ degeneracy. a) At zero mag-
netic field, because of the circumferential periodic boundary conditions, the two
degenerate lowest conduction bands miss K ′ (resp. K) by an amount kϕ,0 (resp.
−kϕ,0) (idem for the valence bands). This corresponds to a single-particle band-gap
Eg = (2~vF )kϕ,0, where vF ≈ 106 m/s is the Fermi velocity in graphene [74]. b)
Under a parallel external magnetic field B‖, the associated Aharonov-Bohm flux
φAB = B‖πR

2 introduces a phase shift in the circumferential component of the

wave-function displacing the allowed kϕ by kAB = 1
R
φAB

φ0
. This results in opposite

energy shifts at K and K ′, with ∆AB = 2~vF |kAB| = evFR|B‖|. c) The K-K ′ de-
generacy is lifted and two distinct transitions energies appear: EK

g = Eg−∆AB and

EK′
g = Eg + ∆AB.
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This translates directly into a shift of the allowed wave-vectors by:

kAB =
1

R

φAB

φ0

where φ0 = h/e is the flux quantum. As is evidenced in Fig. 5.2 b), the resulting
changes in the lowest subbands’ energies have opposite signs at K and K ′, lifting
the degeneracy. Figure 5.2 c) summarizes the dependence of the lowest conduction
and highest valence bands’ energies under a magnetic field, neglecting for now the
Zeeman splitting associated with the electron’s spin.

We now come back to the effect of spin-orbit coupling on the electronic states and
energies of SWNTs close to the Dirac points. Figure 5.3 a) gives a pictorial view of
the topological flux associated with spin-orbit interaction. Consider an electron with
spin sz pointing along the nanotube axis. The electron occupies the π orbitals of
the carbon atoms, which are pointing perpendicular to the nanotube surface. States
around K and K ′ correspond to electrons having a fast circular motion around the
nanotube’s circumference (related to the momentum ~kϕ). In the rest frame of the
electron the underlying π orbital revolves around the spin exactly once every rota-
tion. In the presence of atomic spin-orbit coupling, ∆, a constant phase accumulates
during each rotation (independently of the circumference’s length), which can be de-
scribed by a spin-dependent topological flux, ±φSO ∝ ∆, threading the nanotube
cross-section.

This flux has exactly the same effect as the “real” Aharonov-Bohm flux φAB cre-
ated by an external magnetic field, except that its sign depends on the spin projection
along z, and that it is independent of the nanotube diameter (thus topological). As
shown in Ref. [71], this flux modifies the quantization condition of the wave-function
around the circumference according to:

kϕ = kϕ,0 −
1

R
sz
φSO

φ0

= kϕ,0 ±
1

R

φSO

φ0

(5.12)

with φSO ≈ 10−3φ0. The resulting effect is presented in Fig 5.3 b). As before, we
can attribute a wave-vector shift kSO = sz

1
R
φSO

φ0
related to the SO flux. Interestingly,

the sign of the energy shift is now depending both on the spin sz = ± and the valley
K-K ′. In other words, spin-orbit interaction in carbon nanotubes couples the spin
and orbital degrees of freedom and results in a zero-magnetic field energy splitting:

∆SO = 2∆‖curv = 2~vF |kSO|

=
2~vF
R

φSO

φ0

(5.13)

Here vF ≈ 106 m/s is the Fermi velocity in graphene [74]. Note the dependence:
∆SO ∝ 1

R
, in contrast to ∆AB ∝ R (Fig. 5.2 b)).

A closer look to Fig 5.3 b) reveals a very important feature of SOI. Let us focus
for example on the K valley. It is obvious that for a given spin eigenstate, the
energies of the conduction and valence states shift in opposite directions. Therefore,
SOI breaks the electron-hole symmetry in carbon nanotube, a point on which we
will come back later since it is essential in the scheme we propose for optical spin
manipulation.
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Figure 5.3: Spin-Orbit coupling as a topological flux. a) A heuristic explanation
for the SO flux can be given by considering the circumferential motion of an elec-
tron occupying a π orbital. In the rest frame of the electron, the orbital performs
a complete rotation around the carbon nucleus. Since the π orbital’s angular mo-
mentum is l = 1, the non-vanishing intra-atomic SO coupling ∆ leads to a phase
accumulating during each revolution. This is equivalent to the presence of a spin-
dependent topological flux ±φSO ≈ ±10−3φ0. b) In exact similitude with the AB
flux, we can associate a spin-dependent wave-vector shift kSO = sz

1
R
φSO

φ0
, leading to

an energy shift dependent on both spin and valley degrees of freedom. The result is
a zero-field spin-splitting ∆SO = 2~vF

R
φSO

φ0
.
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Spin-orbit coupling in a semi-classical picture
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Figure 5.4: a) Orbital and Spin magnetic moments independently couple to the
applied magnetic field B‖. The first leads to the Aharonov-Bohm splitting ∆AB,
the second to the Zeeman splitting ∆Z. b) When SOI is taking into account, it
accounts for an effective coupling between these two otherwise independent degrees
of freedom. To stress the analogy between orbital and spin magnetic moments, we
label the valley degree of freedom with D (for “Down”) instead of K ′, and U (for
“Up”) instead of K.

This analogy between magnetic field and SOI can also be expressed in a more
classical picture, as shown in Frig. 5.4. The circular motion of the charged electron
occupying a state close to K or K ′ produces an orbital magnetic moment, µorb,
pointing along the nanotube axis. Under an external magnetic field B‖, we expect
this magnetic moment to interact with the field according to the Hamiltonian:

HAB = −µorb ·B (5.14)

If we go back to the expression for the energy splitting derived above:

1

2
|∆AB| = ~vF |kAB| =

h

2π
vF

1

R

|B‖|πR2

h/e
=
evFR

2
· |B‖| (5.15)

we see that the interaction is indeed of the form µorb · B‖ with µorb = RevF

2
∝ R.

States originating from different valleys have opposite circumferential momenta and
thus exhibit orbital magnetic moments pointing in opposite directions. Similarly,
the electron’s spin corresponds to an intrinsic magnetic moment along z: µS = gµb

2
sz,

which couples to the external field through the Hamiltonian:

HZ = −µS ·B‖ (5.16)
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This produces the well-known Zeeman splitting: |∆Z| = gµb|B‖| between opposite
spin eigenstates. The resulting energy diagram in a magnetic field is presented in
Fig. 5.4 a).

In this picture, the zero-field spin-splitting due to SOI can be seen as a consequence
of an effective coupling between orbital and intrinsic (spin) magnetic moments. As
shown in Fig. 5.4 b), the zero-field four-fold degeneracy is lifted, with the formation
of two doublets of states with parallel (resp. anti-parallel) alignment of orbital and
spin magnetic moments.

5.1.3 Experimental observation

It was not until late 2007 that the expected effect of spin-orbit interaction in
carbon nanotube could be observed and measured directly in a transport experiment
by Ferdinand Kuemmeth et al. [70]. Our proposal presented in the next section was
significantly motivated by these beautiful results and by exciting discussions with
one of the author (Shahal Ilani) during a winter-school in Kirchberg-in-Tirol early
2008. We would like to give here a brief account of the experiment and the results
obtained by the P. McEuen group.

For the reason cited above it was widely believed that spin-orbit interaction in
carbon nanotubes was too small to have significant effects on the electronic structure.
In particular, all experiments were hinting at a four-fold degeneracy at zero magnetic
field, as expected for independent spin and orbital degrees of freedom. The reasons
why spin-orbit coupling effects were not detected previously are likely related to the
poor quality of the nanotubes, with disorder-induced lifting of the K-K ′ degeneracy
hiding the small zero-field spin splitting. Also electron-electron interactions in multi-
electron quantum dots may have hindered this observation.

The breakthrough from the McEuen group was the use of ultra-clean carbon
nanotubes: the CVD-growth was the last step to be performed, avoiding degradation
and defect creation during post-processing. Moreover, their design (see Fig. 5.5)
allows the controlled charging of the SWNT-QD with single electrons and holes.
Their system is thus perfectly suited to study the evolution of a single-particle state
under an externally applied magnetic field, in a close to ideal defect-free nanotube.

The idea of the experiment is to perform low temperature transport spectroscopy
on a gate-defined carbon nanotube quantum dot containing a single charge-carrier,
under different magnetic fields B‖. The measurement of the differential conductance,
G = dI/dVsd, when varying source-drain (Vsd) and back-gate (Vg) voltages allows
the observation of the single-particle energy levels. Beyond the well-known Coulomb
diamond marking the transition between an empty and singly-charged SWNT-QD,
they observe distinct resonances corresponding to excited states of the first electron.
Their main results are reproduced in Fig. 5.6.

Without going into the experimental details, we focus here on the conclusions of
their work. As can be seen in Fig. 5.6 c), the energy diagram they obtain from their
measurements exactly reproduces the one we derived from theoretical considerations
in Fig. 5.4 b), when spin-orbit coupling is taken into account. In particular the lifting
of the four-fold degeneracy and the splitting in two doublets at zero field is a clear
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a) b)
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Figure 5.5: Experimental device used by Kuemmeth et al. (Adapted from [70]). a)
A single nanotube is contacted between source and drain electrodes, separated by
500 nm, and is gated from below by two gate electrodes made of highly p-doped
silicon. The two gate voltages (Vgl, Vgr) are used to create a quantum dot localized
either above the right or above the left gate electrode. The energy band diagram is
shown for the first case, in which an electron is trapped above the right gate. b) The
measured linear conductance, G = dI/dVsd, as function of gate voltage, Vg, for a dot
localized above the right gate (B‖ = 6 T, temperature T = 30 mK). The number of
electrons or holes in the dot is indicated. The conductance of the top two peaks is
scaled by 1/10.
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Figure 5.6: Experimental results from Kuemmeth et al. (Adapted from [70]):
Excited-state spectroscopy of a single electron in a nanotube dot. a) Differential
conductance, G = dI/dVsd, measured as a function of gate voltage, Vg, and source-
drain bias, Vsd, at B‖ = 300 mT, displaying transitions from zero to one electron in
the dot. b) A line cut at Vsd = −1.9 mV reveals four energy levels α, β, γ and δ as
well as another peak w corresponding to the edge of the one-electron Coulomb dia-
mond. c) G = dI/dVsd, as a function of Vg and B‖ at a constant bias Vsd = −2 mV.
The resonances α, β, γ, δ and w are indicated. They obtain the energy scale on
the right by scaling ∆Vg with the conversion factor extracted from the slopes in a).
Inset: orbital and spin magnetic moments they assign to the observed states. d)
Energy splitting they extract between the states α and β as a function of B‖ (dots).
The linear fit (red line) gives a Zeeman splitting with g = 2.14±0.1, and a zero-field
splitting of ∆SO = 0.37± 0.02 meV.
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signature of non-vanishing SOI. From the slope of the energy shift with magnetic
field they can assign to each state its spin and orbital magnetic moments, and
subsequently confirm their parallel and anti-parallel configuration in each doublet.

In addition to this qualitative observations, they obtain a very valuable quantita-
tive estimation of the zero-field splitting ∆SO = 0.37±0.02 meV. Since they estimate
the diameter of their nanotube to be ∼ 5 nm, and since ∆SO scales inversely with
the diameter d, we can deduce a value of ∆e

SO ≈ 1.9/d meV/nm for electrons. The
splitting for holes is found to be slightly smaller, ∆h

SO ≈ 1.6/d meV/nm. Finally
they confirm the breaking of the electron-hole symmetry by mapping also the first
hole energy levels under a magnetic field.

D↑e

D↓e

U↑e

U↓e

Ee

B//

D↑h

D↓h

U↑h

U↓h

e
SOΔ

h
SOΔ

Eh

Figure 5.7: First electron and first hole energy levels as a function of the external
longitudinal magnetic field B‖, as expected from the theory and confirmed by the
experiment. We introduce the notation that we will use in the next sections.

We summarize the conclusions of this section in Fig. 5.7 with a plot of the first
electron and first hole energy levels as a function of the magnetic field, according to
the agreeing theory and experimental data. Electron-hole symmetry would imply
that the energy diagram for the first hole should be the mirror image of the electron
levels about the horizontal axis. This, however, is not the case, indicating the
breaking of the particle-hole symmetry typical of graphene. As a result, whereas the
ground state of a single electron in the SWNT-QD at zero magnetic field corresponds
to a parallel orientation of its spin and orbital magnetic moments, the lowest hole
state favors on the contrary anti-parallel configurations.
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5.2 Optical Spin Pumping

Our goal in this section is to show that the non-vanishing spin-orbit interaction
and the resulting electron-hole symmetry breaking in carbon nanotubes allow for op-
tical spin pumping of a SWNT-QD electron spin using resonant laser fields. We first
present our scheme and build a simplified model of the optically-addressed singly-
charged SWNT-QD as a 4-level system. We propose a Hamiltonian including all
coherent processes and add the relaxation terms to obtain optical Bloch-equations
for the time evolution of the density matrix. Next we perform the numerical cal-
culations of the steady-state populations and the optical polarization for realistic
parameters and different magnetic fields, showing that high fidelity spin-state prepa-
ration is readily achievable. We finally discuss possible complications to the 4-level
system and relaxation pathways assumed here, and conclude by suggesting interest-
ing perspectives for applications in quantum information.

5.2.1 Presentation of the scheme and the model

Introduction

Let us begin by recalling the results of the previous section and introducing our
scheme and notations in Fig. 5.8 a). U and D label states from different valleys K ′

and K according to the direction of their orbital moment, i.e. to the clockwise or
anti-clockwise circular motion of the electron around the nanotube circumference.
Similarly, the spin projection along z is used for the spin eigenbasis (↑, ↓), eigenstates
of the operator ŝz with eigenvalues (+1,−1). The subscripts “e” or “h” denote
electron or hole states, respectively.

As we just saw, the first electron and hole states in a (weekly confined) SWNT-QD
couple to the axial component of the external magnetic field simultaneously through
their orbital magnetic moment µorb and their spin magnetic moment µS. The first
coupling is responsible for the Aharonov-Bohm splitting ∆AB between states U and
D from different valleys, whereas the second gives rise to the Zeeman splitting ∆Z

between states of opposite spin along z. Because even for small-diameter nanotubes
(d ∼ 1 nm) we have |µorb| > |µS|, the slope due to the Aharonov-Bohm effect is
steeper than the one due to the Zeeman effect.

In the presence of spin-orbit interaction the four-fold degeneracy expected at zero-
field is lifted and a splitting appears between states with parallel (U↑ and D↓) and
anti-parallel (D↑ and U↓) orbital and spin magnetic moments. This energy splitting
is not obligatory the same for electrons and holes, so we assume two possibly different
values ∆e

SO and ∆h
SO. Moreover it was shown by Kuemmeth et al. [70] that the lowest

hole state has the opposite configurations than the lowest electron state (breaking
electron-hole symmetry).

The existence of the zero-field splitting leads to new features in the energy diagram
of Fig. 5.8 a), namely two level-crossings (for each direction of B‖). The first crossing
involves states with identical spins originating from different valleys. In an ideal
defect-free carbon nanotube, the K-K ′ symmetry is perfect and the states should
just cross without mixing. However, even in “ultra-clean” nanotubes studied by
Kuemmeth et al., they observe a small anti-crossing and a corresponding splitting
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Figure 5.8: a) Energy diagram of the lowest electron and hole states in a nanotube
quantum dot as a function of the applied axial magnetic field B‖. We assume that a
strong enough magnetic field is applied to lift the valley degeneracy and focus on the
two lowest electron and hole levels. b) Simplified energy level diagram of a singly
charged quantum dot under this assumption, showing only the directly accessible
optically excited states (numbered 1 to 4) and the coherent couplings between them
(entering the Hamiltonian part of the master equation). Because of the Aharonov-
Bohm flux, the effective optical gap is given by: ~ωg = Eg − 2µorbB‖, where Eg is
the gap at zero field (see also Fig. 5.2).
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∆KK′ . This effect will be neglected in a first time, but we shall discuss it in the
third subsection.

The second crossing is of higher significance for our purpose. When the Zeeman
splitting equals the spin-orbit splitting for holes or electrons, the two spin eigenstates
are degenerate and a coherent interaction can efficiently couple them and lead to
ultra-fast spin-flip. This situation occurs for the axial magnetic fields:

Be,h
SO = ∆e,h

SO/(gµb) (5.17)

Such a coherent spin-flip interaction can be provided for by a perpendicular com-
ponent B⊥ of the magnetic field (orthogonal to the nanotube axis). It is represented
as a purple double arrow in Fig. 5.8.

Model: the 4-level system and its Hamiltonian

Assuming that a strong enough axial magnetic field is applied, the valley degen-
eracy can be completely lifted and we may consider only the lowest two electron
states (U↑e and U↓e) and lowest two hole states (U↓h and U↑h) of the SWNT-QD.
An appropriately tuned laser field, polarized along the nanotube axis z, couples elec-
tron and hole states from the same valley (U→U or D→D transitions) and opposite
spins, so that optically excited pairs have zero total spin projection along z (↑e↓h or
↓e↑h).

Considering now a singly-charged SWNT-QD containing a resident electron, we
can restrict our analysis to the four-level system presented in Fig. 5.8 b). the two
ground states are the two possible spin states of the electron (we drop here the U
index for clarity): |1〉 =↑e and |2〉 =↓e. The optically excited states are the two
trions: |3〉 =↑e↓e↑h and |4〉 =↓e↑e↓h, in which the two electrons form a singlet state,
so that the net spin corresponds to the hole’s one. With this labeling of the states
it is convenient to define the matrices

σ̂ij = |i〉〈j| , i, j = 1, 2, 3, 4 (5.18)

The full Hamiltonian of the system is decomposed as follows:

Hfull = (H0 +H‖B) + (HSO +HZ) + (H⊥B +HLaser) (5.19)

The first part (H0 +H‖B) defines the effective energy gap ~ωg shown in Fig. 5.8 b)
for a given axial magnetic field B‖:

H0 +H‖B = (Eg − 2µorbB‖)(σ̂33 + σ̂44) = ~ωg(σ̂33 + σ̂44) (5.20)

H0 describes the electronic band structure of the nanotube at zero magnetic field
and without spin-orbit interaction, and the SWNT-QD confinement, leading alto-
gether to an effective optical gap Eg. Under an axial magnetic field, the Aharonov-

Bohm effect represented by H‖B modifies this energy gap to ~ωg = Eg − 2µorbB‖.
This part of the Hamiltonian will play a minor role since it will be eliminated when
we later do the rotating-wave approximation (RWA).

The second part (HSO +HZ) also consists of purely diagonal terms leading to fur-
ther energy detunings between the different levels. The zero-field spin-orbit induced
level splitting is described by:
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HSO = ∆e
SOσ̂22 + ∆h

SOσ̂33 (5.21)

whereas the Zeeman splitting under a magnetic field is:

HZ = −g
2
µbB‖ŝz = −g

2
µbB‖(−σ̂11 + σ̂22 − σ̂33 + σ̂44) (5.22)

where we have translated the spin Pauli matrix ŝz into our 4-level matrix notation.
we note here that these terms are responsible for the above-mentioned crossing when
the Zeeman splitting just cancels the electron or hole zero-field splitting.

The third part represents the off-diagonal elements (i.e. the coherent couplings).
The perpendicular component of the magnetic field induces a coherent interaction
between spin eigenstates:

H⊥B = gµbB⊥ŝx = ~ΩT(σ̂12 + σ̂21 + σ̂34 + σ̂43) (5.23)

where we have defined the coupling rate ΩT = gµbB⊥/~. The laser field polarized
along the nanotube axis, with optical frequency ωL and Rabi frequency ΩL, leads to
the term:

HLaser = HLaser(t) = ~ΩL cos(ωLt)(σ̂13 + σ̂31 + σ̂24 + σ̂42) (5.24)

We define the detuning δω = ωg−ωL. Since the energy scale ~ωg is much larger than
all other energy detunings and coupling strengths in the system, it is legitimate to
use the rotating-wave approximation (RWA) to eliminate the fast oscillating terms
and conserve only the terms with frequency δω. This is achieved by the unitary
transformation given by the matrix:

U = σ̂11 + σ̂22 + eiωgt(σ̂33 + σ̂44) (5.25)

In the new basis the new Hamiltonian is:

HRWA = UHU † − i~ U ∂U
†

∂t
= UHU † − ~ωLI4×4 (5.26)

with I4×4 designing the 4×4 identity matrix. Substituting cos(ωLt) = 1
2
(eiωLt+e−iωLt)

in (5.26) and eliminating the term oscillating at high frequencies: ±(ωg + ωL), we
finally obtain our effective time-independent Hamiltonian:

H = HSO +HZ +H⊥B +HL (5.27)

with the new (time-independent) expression for the interaction with the laser field:

HL =
~ΩL

2
(σ̂13 + σ̂31 + σ̂24 + σ̂42) (5.28)
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Figure 5.9: Diagram of the four-level system showing all relaxation terms we include
in the master equation. γdeph is a pure-dephasing rate responsible for the observed
linewidth of the optical transitions.

Relaxation mechanisms and master equation

We now turn to the different relaxation mechanisms present in the system. These
terms lead to population decay and decoherence and cannot be included in the
hermitian Hamiltonian describing the coherent evolution. They enter the master
equation through the non-hermitian Lindblad operators Lj. The relevant relaxation
pathways and rates are represented in Fig. 5.9.

– The lifetimes of the optically-excited states |3〉 and |4〉 are assumed to be iden-
tical and are described by the decay rate Γ from |3〉 to |1〉 and from |4〉 and |2〉.
It accounts for both radiative and non-radiative decays.

– Incoherent spin-flip events can occur due to co-tunneling (interaction with the
electrons in the leads) or more probably through hyperfine interaction with the
fluctuating nuclear field from residual carbon 13 nuclei. Such processes are
described by the rates ξe and ξh; they are expected to be slow compared to
other rates in our system.

– Finally, for a realistic account of the experimental PL linewidths, we intro-
duce a Markovian pure-dephasing of the optical transition: γdeph � Γ. We
will moreover contemplate two possible situations in the following subsection,
depending on whether or not the coherence between the two trions |3〉 and |4〉
also undergoes dephasing at the same rate. This may not be the case if the
interaction causing pure-dephasing is insensitive to the spin degree of freedom,
as is probably true for phonon-induced decoherence.

We can finally write a master equation of the Lindblad form for the time-evolution
of the system:

∂

∂t
ρ̂(t) =

i

~
[ρ̂(t),H] + L[ρ̂(t)] (5.29)

where ρ̂ij(t) = ρij(t)σ̂ij is the density matrix of the four-level system and L is the
Lindblad super-operator accounting for all the above-mentioned relaxations.
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5.2.2 Numerical simulations

Methodology

From the master equation (5.29) one gets a set of 16 differential equations for
the 16 components of the 4 × 4 density matrix: ∂

∂t
ρij(t) = .... Since the density

matrix has to be Hermitian, only 6 of the 12 off-diagonal elements are independent.
Moreover the diagonal elements are real positive numbers corresponding to the pop-
ulations of the states. In a closed system, the sum of the populations (or occupation
probabilities) is constant and normalized to one:

∑
j ρjj(t) = 1, at all time. As a

result only 3 of the 4 diagonal elements are independent. Finally, we have a system
of 9 independent linear differential equations plus a normalization condition.

We are not interested in solving the real-time dynamics of the system, but we just
want to calculate the steady-state solution. Therefore we have to solve equation
(5.29) for: ρij(t) = constant, meaning ∂

∂t
ρij(t) = 0 , ∀i, j. After re-ordering the

elements ρij in a single vector, we obtain a system of linear equations expressed in
a matrix form. Solving it requires the diagonalization of the system’s matrix, which
is easily carried out numerically in Matlab.

The quantities of interest we then extract from the calculated steady-state density
matrix are:

– The steady-state populations of the two single-electron ground states: |1〉 =↑e

and |2〉 =↓e, given by ρ11 and ρ22, respectively.
– The scattering rate of the laser light, which is proportional to: =(ρ13 +ρ24). For

meaningful interpretation, this quantity has to be normalized to the scattering
rate in the absence of spin pumping (for example by setting B⊥ = 0, see next
section). This is the quantity measured during a differential-transmission exper-
iment, in which the laser frequency is tuned over the SWNT-QD resonance(s)
while monitoring the transmitted light intensity with a photodiode.

Parameters’ values

In order for our proposal to fulfill realistic requirements imposed by current optical
technologies, we choose to consider a quantum dot defined on a semiconducting
carbon nanotube with a diameter: d ∼ 1.2 nm, therefore having its lowest optical
transition in the near-infrared (∼ 1.5 µm) 3, i.e. in the telecommunication window.
In addition to ensuring the existence of suitable equipments at this wavelength
(although NIR single photon detectors are not well developed), this would make such
a device potentially useful for quantum communication and information processing.

We now briefly present the values we use for the system’s parameters in the
simulations.

– To determine the orbital and spin magnetic moments and the spin-orbit split-
tings for electrons and holes, we refer to the latest published experimen-
tal data [70, 75] and use the scaling laws predicted by the theory to de-
rive numbers for our particular nanotube’s diameter. The transport measure-
ments under magnetic field reported in [75] yield an orbital magnetic moment:
µorb ≈ 0.3 · d[nm] meV/T, which mean for our nanotube: |µorb| = 0.36 meV/T.

3. Confinement in the quantum dot will of course lead to a small energy shift compared to the
bare nanotube transition, but its relative magnitude is small.
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In the work presented in section 5.1.3 [70], the authors measure similar g-factors
for electrons and holes both close to g = 2, which is the value we adopt, yield-
ing: |µS| = 0.06 meV/T. From the spin-orbit splittings they report we expect
for a diameter d = 1.2 nm: ∆e

SO ≈ 1.5 meV for electrons and ∆h
SO ≈ 0.9 meV

for holes. From these numbers we deduce the axial magnetic fields at which the
electron and trion states with opposite spins cross (see Fig. 5.8 a)):

Be
SO = −∆e

SO/(gµb) = −12.5 T and Bh
SO = ∆h

SO/(gµb) = 7.5 T

– The decay rate Γ of both excited states is given by the PL lifetime; we can
therefore use the value measured in our own experiments (1/Γ ≈ 40 ps) and
take: Γ/2π = 4 ns−1. The pure dephasing rate γdeph is responsible for the
broader linewidths actually observed. Importantly, we consider here a weakly
confined SWNT-QD and the results presented in chapter 3 do not apply. This
means that the PL linewidth should be close to the one of a free exciton. Recent
experiments in our lab on HiPco nanotubes have revealed narrow PL peaks
down to 120 µeV FWHM. We therefore assume the value ~γdeph = 0.25 meV
(i.e. γ/2π = 15 Γ = 60 ns−1), which is supported by reports from other groups.

– The last unknown rates are the electron and hole spin relaxations. One cause
of relaxation is hyperfine interaction with carbon 13 nuclear spins, but it is
expected to be very slow, and can be made arbitrarily small by growing pure
carbon 12 nanotubes. The dominant rate is likely to be spin-orbit-mediated,
phonon-assisted spin-flip processes. Estimations in [73] predict rates varying
from 1 µs−1 to slower than 1 ms−1, and we choose the safe side by assuming
ξe = ξh = (2π) 0.1 µs−1.

The remaining parameters all correspond to experimental “knobs” that can be
tuned and varied: the magnetic field components B‖ and B⊥, the laser Rabi-
frequency ΩL (proportional to the laser intensity) and the laser detuning ~δω = ∆e

SO.
In all simulations we keep the Rabi-frequency ΩL ∼ Γ/10 below saturation, and all
the results obtained do not depend significantly on the precise value of ΩL as long
as this condition is fulfilled.

Results

We use the commercial software Matlab to solve numerically the steady-state
optical Bloch equations and plot the quantities of interest for different sets of ex-
perimental control-variables. The implementation of optical spin-pumping relies on
differential-transmission experiments as mentioned in the previous section. Before
analyzing complete simulated laser-transmission curves obtained during frequency-
scans, we focus on the maximal spin-state preparation fidelity that can be achieved
when the laser is tuned on the lower-energy transition |2〉 → |4〉. For this we set
~δω = ∆e

SO (see Fig. 5.8 b)) and calculate the steady-state population difference
∆ρ

.
= ρ11 − ρ22 = ρ↑e − ρ↓e under a wide range of axial and perpendicular magnetic

fields. Figure 5.10 presents the most important result of our work.
The only difference between panels a) and b) is whether or not the coherence

between the two optically-excited states is conserved by the pure-dephasing mech-
anism described by the rate γdeph. It is an important check for the credibility of
our claims that the two scenarios offer qualitatively and quantitatively very similar
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Figure 5.10: Color map of the spin-state preparation fidelity (i.e. the steady-state
population difference ∆ρ = ρ11 − ρ22 between |1〉 =↑e and |2〉 =↓e ) as a function of
the external magnetic field components B‖ (horizontal axis) and B⊥ (vertical axis).
The laser is resonant with the transition: |2〉 → |4〉 (the detuning is ~δω = ∆e

SO).
In a) pure-dephasing is assumed to conserve the coherence between the two trion
states. In b) this coherence also undergoes fast dephasing at rate γdeph. The axial
magnetic field values Be

SO and Bh
SO correspond to the level crossings indicated in

Fig. 5.8 a).

results. We choose to concentrate from now on on the second case (panel b) in
Fig. 5.10), since it is quite likely that the excited trions undergo faster dephasing
than the single-electron ground states.

The first obvious feature is the existence of a wide range of magnetic fields for
which a population transfer approaching unity is readily achievable, as evidenced by
the large red areas in Fig. 5.10. More precisely, the favorable region is centered on
a vertical line B‖ = Bh

SO = 7.5 T, when the axial magnetic field value is such that
the two trion states are in resonance. Around this line, even a small perpendicular
magnetic field component of a few hundreds of mT is enough to induce a sufficient
spin-precession rate of the hole in the trion and lead to high fidelity spin-state
preparation of the SWNT-QD electron.

On the contrary, we observe a blue band centered on B‖ = Be
SO = −12.5 T where

spin-pumping remains impossible at any perpendicular magnetic field, hinting at a
very efficient electron-spin randomization mechanism.

To gain better understanding of these features we present in Fig. 5.11 the level
diagrams corresponding to the two particular configurations B‖ = Be

SO and B‖ =
Bh

SO. When B‖ = Be
SO, the two electron-spin ground states are in resonance and are

efficiently mixed by the perpendicular magnetic field. Spin is therefore randomized
in spite of optical pumping, leading to ρ11 = ρ22 and explaining the blue region in
Fig. 5.10.

In contrast, when B‖ = Bh
SO, resonant coupling occurs between the trion states

and allows for very efficient spin-flip Raman transition (represented by the curved
red arrow in Fig. 5.11). This inelastic scattering process corresponds to the sequence:



5.2. Optical Spin Pumping 115

↑e

↓e

↓e↑e↓h↑e↓e↑h
E

TΩ
0//

h
SO =−Δ Bg bμ

↑e ↓e

↓e↑e↓h

↑e↓e↑h

TΩ

0//
e
SO =+Δ Bg bμ

eBB SO// =
hBB SO// =

Figure 5.11: Simplified picture of the spin pumping mechanism for the two reso-
nance conditions B‖ = Be

SO = ∆e
SO/(gµb) (left) and B‖ = Bh

SO = ∆h
SO/(gµb) (right).

The laser is tuned on the “red” (lower energy) transition: ~δω = ∆e
SO.

laser excitation → spin precession → decay, and results in population transfer from
|2〉 =↓e to |1〉 =↑e. Using rate equation we can show that in the absence of any
broadening or spin relaxation the effective rate for this process is proportional to:

γ↑↓ ∝
B2
⊥

(∆h
SO − gµbB‖)2

(5.30)

We indeed see that this rate diverges for ∆h
SO ∼ gµbB‖, i.e. for B‖ ∼ Bh

SO, accounting
for the very efficient spin-flip mechanism. In addition, the large energy detuning
between ↑e and ↓e states ensures weak mixing and slow spin depolarization, resulting
in very high fidelity for spin-state preparation.

To conclude this section on spin-state preparation we present some calculations of
the directly accessible experimental quantity, namely the rate of laser light scattering
by the SWNT-QD. In a differential-transmission experiment, a weak laser is slowly
tuned over the QD optical resonance. The transmitted light intensity is monitored
by a photodiode placed below the sample, revealing how much light is resonantly
scattered by the QD. The acquisition time of the signal during each frequency step
is much longer than all physical time scales in the system so that steady-state
properties are measured.

The amplitude of the actual signal naturally depends on the optical cross-section
of the quantum-dot and on experimental characteristics such as the laser spot size
and the collection efficiency. Even with light focused to the diffraction-limit and high
numerical apertures, the contrast is usually very low, and amplification techniques
such as lock-in modulation have to be used. The resulting data are plotted as
transmission curves against the laser energy, like the black solid lines simulated in
Fig. 5.12.

Let us first consider the situation at zero perpendicular magnetic field
(Fig. 5.12 (a), point A in (c)). Since the spin relaxation rates ξe,h are very slow,
the two optical transitions form two almost isolated 2-level systems. The Rayleigh
scattering line-shape of each transition is a Lorentzian of width ~γdeph and we do



116 All optical manipulation of a SWNT-QD spin

-2 0 2 4
-1

0

1

-1.0

-0.5

0.0

↑e

↓e

↑e↓e↑h↓e↑e↓h

0T =Ω

he
SOSO Δ+Δ

0=⊥B

T 5.7SO// == hBB

T 1.0=⊥B

T 2.0=⊥B

T 2.0=⊥B
T 5.7// =B

T 0.5// =B

T 5.7// =B

97.0=Δ ↑↓ρ
%5.3=ΔT

2.5 5.0 7.5 10.0
0.0

0.1

0.2

0.3
hBSO

(T) ⊥B

(T) //B

A

B

C D

A

-2 0 2 4-1

0

1

-0.1

0.0

-1

0

1 -2 0 2 4

-0.1

0.0

B

C

D

(meV) SO δωh−Δe(meV) SO δωh−Δe

95.0=Δ ↑↓ρ
%8.5=ΔT

91.0=Δ ↑↓ρ
%0.9=ΔT

TΔ↑↓Δρ

0=Δ ↑↓ρ

%100=ΔT

a) b)

c)

TΔ↑↓Δρ

Figure 5.12: Differential transmission and spin preparation during laser scans. a)
In the absence of perpendicular magnetic field, no mixing occurs between the spin
states and we have actually two independent 2-level systems. A simulated laser scan
displays two Lorentzian transmission dips detuned by the energy ∆e

SO + ∆h
SO. We

use the depth of these dips as a reference to normalize the differential transmission
∆T . b) Simulated laser scans for different magnetic field configurations (indicated
in c) on the fidelity map extracted from Fig. 5.10 b)) presenting the population
difference ∆ρ↑↓ = ρ11 − ρ22 (red solid lines) and normalized laser transmission ∆T
(black solid lines). We report these values at ∆e

SO− ~δω = 0 in each case (when the
laser is resonant with the lower energy transition).
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obtain two corresponding dips in the calculated transmission. They are detuned by
the energy ∆e

SO + ∆h
SO as expected. Note that this detuning is independent of the

magnetic field.
We now switch-on a perpendicular magnetic field mixing the spin states sz =
±1 and keep the axial magnetic field close to the trion crossing point Bh

SO. As
explained in the previous paragraphs, efficient spin-flip Raman transition leads to
spin population transfer into state ↑e. In other words, the single electron trapped
in the SWNT-QD has with very high probability (that is, most of the time) his
spin pointing up (↑e). Because of Pauli exclusion principle, it is impossible to excite
another electron with spin up also occupying the QD ground state. Therefore,
the only optically-allowed transition is to the trion |3〉 =↑e↓e↑h, but it is largely
detuned (by the energy ∆e

SO + ∆h
SO) and completely off-resonance from the laser

light. The reverse spin-flip Raman rate is thus extremely slow. This results in
vanishing scattering of the incoming laser field, which is directly measurable as
increased differential-transmission: the QD becomes transparent to the laser.

Figure 5.12 b) presents the simulated laser scans for three different magnetic field
configurations at which spin-pumping takes place. We also plot on the same graphs
the calculated population imbalance ∆ρ. As expected, when the laser detuning is
~δω = ∆e

SO, the spin population is transferred to state ↑e and laser transmission
drops below 10 % of its value in the absence of spin-pumping. The experimental
observation of this drop in absorption is the signature of optical spin pumping, and
its magnitude is a measure of the spin-state preparation fidelity.

We point out that optical pumping into the other electron spin state (↓e) with the
same level of fidelity is straightforward, by just tuning the laser on the “blue” (higher
energy) transition: (|1〉 =↑e) → (|3〉 =↑e↓e↑h). This corresponds to the laser
detuning ~δω = −∆h

SO (see Fig. 5.8 b)). The associated features are indeed clearly
observed in Figure 5.12 b), with ∆ρ approaching−1 and a corresponding suppression
of the laser absorption peak. This is completely expected and in accordance with
the perfect symmetry of our system model with respect to the reversal of the spin
along z.

We finally stress that the critical requirement for the realization of optical spin
pumping is the breaking of the electron-hole symmetry resulting from the spin-
orbit interaction. This is quite obvious that our scheme relies on a large enough
energy detuning between the two optical transitions |1〉 → |3〉 and |2〉 → |4〉. The
presence of electron-hole symmetry means in our notations: ∆h

SO = −∆e
SO. The

two transitions would then be degenerate, whatever the magnetic field, and spin-flip
Raman scattering would always occur with identical rates in both directions. No net
spin population imbalance would be created. The asymmetry induced by spin-orbit
coupling in carbon nanotubes is therefore the key to our proposal for optical spin
manipulation.

5.2.3 Discussion of possible complications

In this section we address several effects and unsettled issues that have been
neglected in the calculations and may alter the possibility or the fidelity of optical
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spin pumping.

K-K ′ mixing

In a pristine carbon nanotube the perfect symmetry between the two sublattices
A and B is reflected in reciprocal space by the K-K ′ degeneracy. Long range dis-
order and smooth external potentials varying on length scales much longer than
the interatomic distance aCC = 0.142 nm do not perturb the A-B symmetry. The
presence of lattice defects, however, like atomic vacancies or Stone-Wales defects 4,
breaks the A-B symmetry, which results in an effective mixing between the states
from the K and K ′ valleys.

he
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Figure 5.13: Effect of K-K ′ mixing on the spin-pumping scheme. a) Experimental
data from [70] evidencing the avoided crossing between states from different valleys
as a signature of K-K ′ coupling. b) Because of this mixing, the 4-level system we
have considered so far has to be extended to account for the possibility of laser-
assisted valley-flip γKK′ .

Although investigating “ultra-clean” carbon nanotubes, F. Kuemmeth and co-
workers did observe such an effect in their transport spectroscopy measurements,
as reproduced in Fig. 5.13 a) [70]. In a carbon nanotube with unbroken K-K ′

symmetry, states from different valleys should cross without mixing when an axial
magnetic field is applied. Experimental data however clearly reveal an avoided
crossing with an energy gap ∆KK′ characterizing the strength of the K-K ′ coupling.
In our spin-pumping scheme this valley-coupling will result in a finite probability
for the electron spin to leave the Hilbert space spanned by U↓e and U↑e.

To quantify this effect, we first define an effective magnetic field BKK′ by:
gµbBKK′ = ∆KK′ . We denote as before the effective spin-flip Raman scattering
rate from state U↓e to U↑e with γ↑↓. As shown in Fig. 5.13 b) we introduce an ad-
ditional “valley-flip” Raman transition from U↓e to D↓e and note its effective rate:

4. the Stone Wales defect creates a pentagon and heptagon pair by rearrangement of the bonds.
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γKK′ . Using rate equations we obtain:

γ↑↓
γKK′

≈
B2
⊥/(∆

h
SO − gµbB‖)2

B2
KK′/(∆e

SO − 2µorbB‖)2
(5.31)

which is maximum when B‖ → Bh
SO.
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Figure 5.14: Ratio γ↑↓/γKK′

from eq. (5.31)

We take for ∆KK′ the value measured in [70]:
∆KK′ = 65 µeV and evaluate expression (5.31) in the
magnetic field range around B‖ = Bh

SO where opti-
cal spin pumping is the most efficient (see Fig. 5.10).
The resulting color plot is shown in Fig. 5.14 on a
logarithmic scale. We see that a very broad region
exists where the spin-flip rate γ↑↓ remains more than
three orders of magnitude faster than the valley-flip
rate γKK′ .

Even if γKK′ � γ↑↓, once the system goes through
a valley-flip Raman scattering to state D↓e, the ap-
plied laser field will be detuned from the transition
to the state D↓eU↑eU↓h by an amount ∆ωex (see
Fig. 5.14 b)) due to the exchange terms of Coulomb
interaction. The reverse valley-flip process γ̃KK′ may
therefore be very slow and the electron could be stuck
in the D valley. It may therefore be necessary to use a second re-pumping laser on
this transition (blue in Fig. 5.14) to reintroduce the electron in the U valley. An-
other complication can still arise if ∆ωex ∼ ∆h

SO + ∆e
SO because this second laser

would be close to resonance with the higher-energy transition of our 4-level system,
thus inducing spin-pumping in the opposite direction to the first laser. Even in this
worst-case scenario, since we have γKK′ � γ↑↓ it should be possible to use much
weaker intensity for the blue laser. Unfortunately, we are not aware of any calcu-
lation nor experimental determination of the exchange coulomb interaction in trion
states, so that it is difficult to estimate ∆ωex.

Nature of the non-radiative decay

In most experiments it has been observed that the lifetime of excitons is more
than an order of magnitude shorter than the predicted radiative lifetime. While
radiative broadening can be enforced by embedding CNTs in cavity structures with
a large Purcell factor [76], understanding the nature of non-radiative relaxation is
crucial for identifying the limits of optical spin manipulation. In particular, if this
relaxation is not spin-conserving, then spin pumping becomes efficient for an even
larger range of applied magnetic field strengths. Most probable mechanisms for fast
non-radiative decay proposed so far are phonon-assisted relaxation and/or multi-
particle Auger processes [77]. Since these processes are spin conserving, they will
not alter the efficiency of spin-pumping.

Strong confinement and phonon sidebands

A useful device for quantum information processing or quantum communication
applications would exploit the spin-state of a single electron (or hole) as a qubit. For
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this the implementation of a quantum-dot on a carbon nanotube is necessary, and it
is one of our assumption that the confinement of the carriers in the axial dimension of
the SWNT does not induce drastic changes in the electronic and optical properties of
the pristine nanotube. Yet we demonstrated with experimental data and calculations
in chapter 3 that strong confinement of the exciton enhances the interaction with
acoustic phonons and results in broad and asymmetric emission/absorption line-
shapes.

↑e
↓e

0~↑↓Δρ

↓e↑e↓h↑e↓e↑h

b)

↑e
↓e

↑e↓e↑h ↓e↑e↓h
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Figure 5.15: Optical spin-pumping in the presence of broad asymmetric absorption
lines. a) A laser tuned on the blue transition also excites the red transition because
of the phonon sideband in absorption. This results in two-way spin-flip processes
and renders spin-pumping inefficient. b) To achieve high fidelity, we need to tune
the laser on the red transition. The sharp red edge in absorption at low temperature
ensures that the laser remains off-resonance with the blue transition, forbidding the
reverse spin-flip Raman scattering.

It is of course legitimate to assume that the confinement potential is indeed smooth
and has no effect on the free-exciton spectrum. Nevertheless, we want to show here
that even in the case of strong confinement (i.e. on a length scale of ∼10 nm)
optical spin pumping with high fidelity is still possible, albeit restricted to a one-way
transfer. This is schematically explained in Fig. 5.15 where we assume asymmetric
absorption lines as expected for tightly localized trions. The blue tail in absorption
that would persist at low temperature would hinder optical pumping into state ↓e
because both transitions would be effectively addressed by the laser (Fig. 5.15.a).
On the contrary, tuning the laser on the red transition still enables high fidelity
optical spin-state preparation in state ↑e (Fig. 5.15.b). Indeed the absorption red
tail is caused by processes where the missing photon energy is provided by the
thermal phonon bath. The thermal population can be made vanishingly small at
cryogenic temperatures, and the experimental data presented in chapter 3 actually
reveal sharp transition edges at 4 K. Therefore the higher-energy optical transition
remains unaddressed by the red-detuned laser, and spin-flip Raman scattering occurs
unidirectionally.
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Quantitatively, we measure linewidths at 4 K of 2-4 meV mainly due to the red
tail in PL emission, corresponding to the blue tail in absorption. Since the energy
detuning between the two optical transitions of the 4-level system is ∆h

SO + ∆e
SO ≈

2.4 meV, the situation depicted in Fig. 5.15 a) is quite realistic and the present
discussion is highly relevant when addressing the limitations of spin pumping fidelity
in strongly confined quantum-dots.

5.2.4 Extensions

Coherent spin manipulation

Having demonstrated how to prepare a single spin optically in a SWNT-QD with
fidelity approaching unity, we briefly evoke coherent spin rotation and spin mea-
surement. By using two laser fields satisfying two-photon Raman resonance condi-
tion under the same external magnetic field configurations that allow for efficient
spin pumping, we can implement deterministic spin rotation, as demonstrated in
Ref. [78].

To realize all-optical spin measurement, the field B⊥ mixing the electron (hole)
spin-states must be turned off. In this limit, presence or absence of light scattering
(or absorption) upon excitation by a resonant laser conveys information about the
spin-state [78]. For spin measurements, minimizing spin-flip non-radiative relaxation
and inter-valley scattering is crucial. We accidentally point out here that all of our
results would apply for a single-hole charged SWNT-QD as well.

Spin-photon interface
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Figure 5.16: a) Sketch of the cavity-QED setup discussed in the text. Both laser
pulses are polarized along the nanotube axis. Provided that the pulse separation
t2 − t1 is larger than all the other time scales (inverse Rabi-frequency and cavity
enhanced exciton decay rate) quantum information can be efficiently encoded in a
photon time-bin qubit. b) Energy diagram of the nanotube quantum dot with the
relevant transitions and rates used in the scheme.

Next, we address the possibility of transferring quantum information stored in
the SWNT-QD electron spin to a generated photon. Given that the polarization of
the photon is fixed by the geometry, the logical choice is to use time-bin entangle-
ment [79]. We assume that our SWNT-QD is coupled to an optical cavity whose
energy ωcav is resonant with the transition U↓e→U↓eU↑eU↓h (Fig. 5.16). Using
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combinations of laser pulses one can prepare an initial state in the coherent spin
superposition:

|ψin〉 = (α|U ↑e〉+ β|U ↓e〉)⊗ |0c〉

where |0c〉 is the empty cavity mode. We now send two well separated π-pulses at
time t1 and t2 with respective energies ωa and ωb as shown in Fig. 5.16. We define the
two creation operators a† (b†) for cavity-mode photons emitted immediately after
pulse 1 (pulse 2). The optical transition at frequency ωb is allowed because of the
mixing induced by B⊥, and the rates of both transitions can be made identical by
adjusting the pulse intensities.

The first pulse excites the trion state if and only if the spin is initially down. In
this case Purcell effect ensures very fast spontaneous emission and projection onto
the state |U↓e〉 ⊗ a†|0c〉. If the spin is initially up, the transition is Pauli-blocked
and we are left with |U↑e〉 ⊗ |0c〉. The initial state has thus evolved to:

|ψ1〉 = α|U ↑e〉 ⊗ 0c〉+ β|U ↓e〉 ⊗ a†|0c〉

We can do the same analysis for the second pulse and find that the final state is:

|ψf〉 = |U ↓e〉 ⊗ (αb† + βa†)⊗ |0c〉

where quantum information has been mapped onto a photon time-bin qubit. We
emphasize that time-bin qubits are promising candidates for long range quantum
communication using optical fibers [80] and that single-wall carbon nanotubes can
be chosen to emit in the desired wavelength window.

Nuclear-spin ensembles manipulation

We conclude this section by evoking one of the most interesting perspectives en-
abled by the considerations of this chapter, namely the study of nuclear spin physics.
The possibility of electron spin pumping should allow for the optical manipulation of
nuclear spin ensembles, which has been successfully achieved in GaAs based struc-
tures (see for example [81]). However, experimental knowledge of the strength and
characteristics of hyperfine interaction in carbon nanotubes is still limited. Of par-
ticular interest in this context would be dynamic nuclear spin polarization in a
SWNT-QD where hundreds or thousands of 13C atoms would form an ideal I = 1

2

spin bath. Alternatively, using high-purity 12C carbon nanotubes, one may realize
QDs interacting with only 1 or 2 nuclear spins [82].
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6 Conclusion & Outlook

Optical studies of carbon nanotubes, in particular based on single nanotube spec-
troscopy, are still a very young field. Many basic properties of excitons in SWNTs
are poorly known and much experimental work is required to fully understand them.
Examples range from the exact nature of the non-radiative decay channel dominat-
ing the PL dynamics, to the origin of PL intensity and spectral fluctuations in
surfactant-embedded nanotubes.

The present work contributes to improving our knowledge and understanding of
optical properties of SWNTs. In chapter 2, we reported on the first observation of
photon antibunching in the photoluminescence of SWNTs. Strong localization of
the exciton combined with extremely efficient exciton-exciton annihilation together
forbid simultaneous emission of more than one photon. This opens the prospect of
using SWNT-QDs as single photon sources.

In chapter 3 we gained further insight in the physics of SWNT-QDs. Using the
formal spin-boson hamiltonian to model exciton-phonon coupling, we fitted the ex-
perimental PL spectra with remarkable accuracy. This evidences the enhanced ef-
fects of electron-phonon interactions in one-dimensional systems and has general
and far-reaching implications.

Chapters 2 and 3 clearly demonstrate that we observe PL from optically active
SWNT-QDs rather than free excitons. This led us to consider in chapter 4 some
possible mechanisms causing exciton localization. We first developed an accurate
description of quantum-dot states in a SWNT, and suggested a device architecture
enabling intentional and controlled creation of SWNT-QDs. We then gave a tenta-
tive explanation for the origin of unintentional confinent occurring in our sample,
considering a charged impurity trapped close to the nanotube. We demonstrated
that this picture agrees with most of the experimental features, but could not give
definitive proof of its validity.

The two previous scenarios rely on the same field-induced confinement mecha-
nism. Moreover, both implicitly allow for exciton-phonon coupling to the bending
mode due to the presence of a strong perpendicular electric field. If controlled, this
interaction could enable laser-assisted cooling of a nanotube resonator, as shown in
the appendix. If naturally present in our sample, it could provide an alternative
description of the asymmetric PL lineshapes involving the sub-ohmic dissipation
regime.

Beside opto-mechanical resonators, a second implementation of carbon nanotubes
in quantum mechanical devices was proposed in chapter 5. Motivated by recent ex-
perimental reports, we formally demonstrated that non-vanishing spin-orbit coupling
enables all-optical spin manipulation in SWNTs. Our results highlight the promises
held by carbon nanostructures as building blocks of future quantum computers.

The experimental part of our work highlights an important characteristic of car-
bon nanotubes. Because of their high sensitivity on the surrounding environment,
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experiments on SWNTs can produce widely divergent results. Some of our con-
clusions are obviously not universal and apply to a limited type of samples and
materials. Consequently, one of the biggest challenge in the field is to achieve suit-
able control over single SWNTs and their environment. We suggested a way to do
this in section 4.1 and we showed in chapter 5 and in the appendix the exciting
possibilities this would open.

Outlook This remark naturally brings us to consider which future directions are
to be followed. It seems to us that ultra-clean, suspended, CVD-grown carbon
nanotubes are the material of choice to gain further physical insight. This has
been evidenced by ground-breaking experiments in low-temperature transport spec-
troscopy, where the use of such material was essential in obtaining high resolution
measurements and revealing the intrinsic properties of unperturbed pristine SWNTs.

We have therefore recently oriented our efforts toward the CVD-growth of SWNTs
suitable for optical studies. This remains a challenging task to achieve the level of
control required for the production of narrow-diameter nanotubes. However, we
believe it is worth the effort, because available instrumentation in the near visible
wavelength range would allow advanced optical studies, like photon correlation and
other time-resolved measurement.

Many fundamental properties are still to be discovered by studying very sim-
ple SWNT-based devices. Recent papers already report on very different results
obtained in suspended nanotubes compared to their surfactant-embedded counter-
parts. An example is the much longer exciton diffusion length, reflecting the higher
material’s quality and the reduced environmental disturbances. Finally, the ulti-
mate goal is to achieve complete control over the system by designing elaborate
nano-scale architectures around single SWNTs.
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Appendix

1 Opto-mechanical cooling of a SWNT resonator

As we saw in chapter 3, electron-phonon interactions in carbon nanotubes have
significant effects on their optical properties, enhanced by the reduced dimensionality
of the system. While this may be detrimental for those applications where the
phonon bath is mainly a source of decoherence, electron-phonon coupling can also
be advantageously used to optically control the mechanical motion of the SWNT.
This is the general idea underlying the expanding field of nano-opto-mechanics.

Motivated in addition by the very high mechanical quality factors recently mea-
sured [83], we would like to design an experiment allowing the optical cooling of the
fundamental flexural mode of a suspended carbon nanotube. We show in this section
that using the device proposed in chapter 4 ground state cooling of the nanotube
resonator should be within reach, opening exciting perspectives.

1.1 Preliminary remarks

We have extensively studied in chapter 3 the effects of exciton-phonon coupling
on the PL line shape (or equivalently on the absorption spectrum) of a SWNT-
QD. We had then discarded the bending mode on ground of the selection rules:
conservation of circumferential momentum forbids deformation potential coupling
of the E11 excitons to this n = 1 phonon mode. In the previous sections, we just
showed how to overcome this restriction and engineer a tunable interaction between
the SWNT-QD and the bending mode.

As we already noticed in chapter 3, the coupling to long-wavelength phonons can
lead to qualitatively different effects on the optical spectrum (see Fig. 1). In one
case, the spectral density of low-energy phonons can be close to a continuum, i.e.
the energy spacing between the consecutive harmonics (the free spectral range) can
be small compared to the ZPL line-width or the experimental resolution. Then,
for an ohmic (stretching mode) or sub-ohmic (bending mode) spectral density, we
expect to observe a broadening of the ZPL, as is nicely confirmed in our experiments
(Fig. 1.a). In the other case, for a very short nanotube, the free spectral range can
be larger than the natural ZPL line-width. We then have a situation similar to the
one encountered for the radial breathing mode, i.e. the appearance of well-resolved
replicas (phonon sidebands) detuned from the ZPL (Fig. 1.b).

The general idea behind opto-mechanical cooling is pictured in Fig. 2: one uses
the sideband corresponding to the fundamental resonance of a phonon mode to
decrease its occupancy by inelastically scattering the photons from a laser (near-
resonant with this sideband). The significance of having a large splitting between
phonon harmonics, and therefore a short nanotube, is thus twofold:
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Figure 1: Qualitatively different effects from phonon coupling in (a) long vs. (b)
short nanotubes. The boundary conditions at the ends of the nanotube determine
the allowed longitudinal phonon wave-vectors: q = k 2π

L
(k ∈ Z∗) spaced by ∆q = 2π

L
.

Depending how the corresponding free spectral range ∆E = ~vS∆q compares with
the natural width of the zero-phonon line Γ, two scenarios may occur. a) For long
nanotubes, the acoustic phonons form a quasi-continuum and ∆E < Γ, resulting in a
broadened asymmetric absorption spectrum at low temperature. b) If the nanotube
is made short enough, the discrete nature of the allowed phonon wavelengths may
become evident. When ∆E > Γ one can resolve distinct phonon absorption replicas
detuned from the zero-phonon line by multiples of ∆E.
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Figure 2: In this level ladder, the states are labeled |α, β〉 where α = g, e denotes the
state of the SWNT-QD (empty or with one exciton) and β = n ∈ N stands for the
occupation number of the fundamental flexural mode. When the laser is detuned by
an amount −~δ ∼ ~ω0 from the QD bare transition, it is near-resonant with the red-
detuned phonon sideband. Cooling occurs through two possible paths: absorption of
one phonon simultaneously with photon absorption (path vL), or phonon emission
during the photon re-emission (path vS). Both lead to a decrease of the phonon
occupancy by one unit, and the process can reiterate itself.
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– for the bending mode (the fundamental resonance of which we want to cool),
we need a high enough frequency to get a well-resolved sideband, and a high
quality factor.

– for the stretching mode we want to avoid the resulting broadening of the ZPL
which would otherwise prevent us from addressing the flexural sideband.

This is why we consider a device where the nanotube is suspended over a length of
only L = 120 nm (Fig. 4.3). Interestingly, because of the quadratic dispersion of the
bending mode close to q = 0, the resulting energy of the fundamental resonance is
much smaller than the one of the stretching mode (with linear dispersion). The situ-
ation is thus ideal for our purpose, because a short nanotube offers a readily address-
able flexural phonon sideband and a sharp ZPL. Quantitatively, for L = 120 nm,
the fundamental in-plane flexural resonance has a frequency ω0/2π = 725 MHz,
whereas the lowest stretching mode occurs at ωS,0/2π = vS/L = 167 GHz. This
last frequency corresponds to an energy of 0.7 meV, well above the lifetime-limited
width of the SWNT-QD ZPL.

Another important characteristic of our scheme is to use the nominally dark, lower
lying exciton |ψ00−〉. Applying a magnetic flux threading the nanotube renders the
dark exciton weakly optically allowed [17]. This enables experimental control over
the radiative rate of the SWNT-QD transition, which can thus be made arbitrarily
small, in order to reduce lifetime broadening.

1.2 Summary of the calculations

We now give a short account of the calculations describing opto-mechanical cooling
of the fundamental flexural resonance, needed for a quantitative estimation of the
final occupancy within experimental reach. They were carried out by Ignacio Wilson-
Rae on the line of previously published work [60, 84, 85]. Similar calculations were
already performed for QD embedded in semiconducting beam structures [84] and
our present work relies mainly on new parameters. We do not want do report here
on all the technical aspects of this derivation, but we summarize instead the main
steps.

1. In a first time, we single-out the fundamental flexural mode from the “bath
modes” including all other phonon modes of the nanotube coupled to the sub-
strate through phonon tunneling at the physical junctions. For this we follow
the formalism developed in [60] and adopt a resonator-bath representation.
The resonator mode has the annihilation operator b0, angular frequency ω0

and quality factor Q. The scattering eigenmodes of the bath are labeled by q
with the corresponding operators bq, angular frequency ω(q) and lateral dis-

placement components ux,q(z) and uz,q(z). The effective field operators φ̂f/c
introduced in Eq. (4.17) and (4.18) are decomposed accordingly:

∂2φ̂f
∂z2

(ẑe)→
∂2φ0

∂z2
(ẑe)

√
~/2µlω0(b0 + b†0)

+
∑
q

∂2ux,q
∂z2

(ẑe)
√

~/2ρsω(q)(bq + b†q)
(1)
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∂φ̂c
∂z

(ẑe)→
∑
q

∂uz,q
∂z

(ẑe)
√

~/2ρsω(q)(bq + b†q) (2)

Here φ0(z) is the normalized resonator 1D eigenmode, µl is the linear mass
density of the nanotube and ρs is the substrate’s density.

2. We can now follow Ref. [84] and write the hamiltonian of the complete system,
namely the SWNT-QD coupled to the resonator mode, to the phonon bath
and to the radiation field (with annihilation operators ak and couplings gk),
in a polaronic representation (i.e. shifted by the polaron energy):

H = Hsys +Hint +HB (3)

Taking ~ = 1, the three terms read:

HB =
∑
q

ωqb
†
qbq +

∑
k

(ωk − ωL)a†kak (4)

Hsys = − δ
2
σz + Ω

2

(
σ+B

† + H.c.
)

+ ω0b
†
0b0 (5)

Hint =
∑
k

gkσ+B
†ak +

∑
q

(
ζqb
†
0 + λq

2
σz

)
bq + H.c. (6)

where δ is the laser detuning from the ZPL and Ω the Rabi frequency. Pauli
matrix notation refers to the optical pseudo-spin (σz = 1 corresponds to |ψ00−〉
and σz = −1 to the empty SWNT-QD). We have applied a shift to the phonon
modes q, and adopted a rotating frame at the laser frequency ωL. We have also

defined the translation operator B ≡ eη(b0−b†0). The parameter η, which char-
acterizes the strength of the exciton-resonator coupling (e−η

2/2 is the Frank-
Condon factor) is given by:

η = −23/4ν(1 + σ)
g2σ

1/4
G ξE⊥

R(Eh)3/4 (q0L)

√
L

π~
cos 3θ (7)

Here we have introduced the effective field (see Eq. (4.19) for its origin):

E⊥ ≡ (
√
L/q2

0)〈F00|
∂2φ0

∂z2
(ẑe)E⊥(ẑe)|F00〉 (8)

where q0 is the TRE phonon wavevector for the resonator mode, h = 0.66 Å is
the effective thickness for the continuum shell model [61, 62], E = 1 TPa is the
nanotube’s Young modulus, and σG = 7.7 × 10−7 Kgm−2 is the mass density
of graphene. The couplings ζq and λq to the bath modes lead, respectively, to
the resonator mode’s phonon tunneling dissipation and to pure dephasing of
the SWNT-QD.

3. We find that for all realistic environmental couplings the Born-Markov approx-
imation is valid. After eliminating the bath phonon modes and the radiation
field, we obtain a master equation for the SWNT-QD coupled to the resonator
with a Hamiltonian contribution given by Hsys and a dissipative contribution
of Lindblad form with collapse operators:

√
Γσ−
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√
γD/2σz√

ω0n(ω0)/Q b†0

and √
ω0[n(ω0) + 1]/Q b0

Here Γ is the SWNT-QD exciton decay rate, n(ω0) is the thermal equilib-
rium occupancy at the ambient temperature and γD is the phonon-induced
dephasing rate. The master equation thus reads:

ρ̇ =− i [Hsys, ρ] + Γ
2

(
2σ−BρB

†σ+ − ρσ+σ− − σ+σ−ρ
)

+ γD

2
(σzρσz − ρ) + ω0

n(ω0)
2Q

(2b†0ρb0 − b0b
†
0ρ− ρb0b

†
0)

+ ω0
n(ω0)+1

2Q
(2b0ρb

†
0 − b

†
0b0ρ− ρb

†
0b0)

Other relevant sources of dissipation beyond those considered in Hamiltonian
(3) can be incorporated by adopting in Eq. (9) modified values of Q [83] 1 and
Γ 2. The dephasing rate γD is determined by the low frequency behavior of the
phonon spectral density J(ω) = π

∑
q |λq|2δ(ω − ωq) (with q ∈ compressional

branch). For a bridge geometry the scattering modes derived in [60] result
in J(ω) = 2παconω, for ω much smaller than the fundamental compressional
resonance ωS,0 � ω0 (i.e. Ohmic behavior), which leads to γD = 2παconkBT/~.
In turn, it can be shown that the “confined” dimensionless dissipation param-
eter satisfies αcon = α/πQc, where Qc is the clamping-loss limited Q-value of
the fundamental compressional resonance [60] and α the dissipation parame-
ter that would result for an infinite length. The latter can be calculated using
Eq. (4.19) and reads:

α = g2
2

√
σG(1 + σ)2 cos2 3θ/2π2~R(Eh)3/2

It markedly depends on the chirality and for small radius zigzag tubes may
approach unity. Then the smallness of αcon warrants the aforementioned Born-
Markov approximation in the treatment of the pure dephasing in the regime
γD & Γ/2 where the latter influences the dynamics.

4. Finally, in complete analogy with the Lamb-Dicke limit, one can expand up
to second order the translation operator B and adiabatically eliminate the
SWNT-QD to obtain from Eq. (9) a rate equation for the populations of the
resonator’s Fock states. This incorporates both the mechanical dissipation
and the dissipative effects induced by the scattering of laser light. The latter
result in cooling and heating rates A∓ that read the same as in [84] with
the quantum dot Liouvillian LQD including now the pure dephasing γD given
by the third term in Eq. (9). We note that as γD → 0, the steady state
occupancy for Q → ∞, i.e. the quantum backaction limit A+/(A− − A+),
becomes independent of Ω (in stark contrast to atomic laser cooling) and
reduces to the same simple expression valid for the cavity-assisted backaction

1. For relevant parameters the phonon tunneling contribution to 1/Q is only of order 10−7 [60].
2. This has an additional contribution from the non-radiative recombination rate [86] which for

an ultra-clean nanotube dark exciton has not been measured so far.
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cooling [85, 87] with the cavity decay rate 1/τ replaced by the spontaneous
emission rate. For the optimal detuning δ = −ω0 this fundamental limit for
the occupancy yields (Γ/4ω0)2.

1.3 Numerical results: ground-state cooling

Within the formalism developed above, we arrive at the following expression for
the final steady-state resonator occupancy, starting from the ambient thermal occu-
pation number neq(ω0):

nf (ω0)
.
= 〈b†0b0〉SS =

neq(ω0) + η2QA+/ω0

1 + η2Q(A− − A+)/ω0

From the available experimental knowledge on carbon nanotubes, we consider the
following parameters: Q = 2× 105, η = 0.17, Γ = ω0/3, and ~γD/kBT = 4.7× 10−4.
These values correspond, for example (cf. Fig. 4.5), to a (9, 4) nanotube (α = 0.2
and R = 0.45 nm) of length L = 120 nm (ω0/2π = 725 MHz, Qc = 908) with
E⊥ = 147 Vµm−1 (this last value is directly calculated in the ComSol simulation).

Ambient  temperature  T = 4.2 K

neq ~ 120

nf = 0.045

Equilibrium Occupancy  neq (ω0 )
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Figure 3: Numerical results: temperature dependence of the optimal steady-state
resonator occupancy.

The remaining free parameters are the laser Rabi-frequency Ω and detuning δ.
For any given temperature T we therefore minimize the quantity nf (ω0) with re-
spect to δ and Ω to obtain the curve shown in Fig. 3. In particular, for an ambient
temperature T = 4.2 K (easily accessible in a conventional Helium cryostat), our
scheme allows the optical cooling of the fundamental flexural mode from an equilib-
rium occupancy neq(ω0) ' 120 down to nf (ω0) = 0.045. The corresponding input
power for a diffraction-limited spot size being below 1 nW, radiation pressure effects
are completely negligible.
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This result highlights the promises held by carbon nanotube resonators for achiev-
ing the quantum ground-state cooling of a macroscopic mechanical degree of free-
dom. The impacts would be considerable in numerous fields: high precision metrol-
ogy, investigation of the quantum-to-classical transition, development of quantum
technologies, to mention just a few.
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[78] A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss,
M. Sherwin, and A. Small. Quantum information processing using quantum
dot spins and cavity qed. Phys. Rev. Lett., 83(20):4204–4207, Nov 1999. 121

[79] J. Brendel, N. Gisin, W. Tittel, and H. Zbinden. Pulsed energy-time entangled
twin-photon source for quantum communication. Phys. Rev. Lett., 82(12):2594–
2597, Mar 1999. 121

[80] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin.
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1. J. Dreiser, M. Atatüre, C. Galland, T. Müller, A. Badolato, and A. Imamoğlu.
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2. A. Högele, C. Galland, M. Winger, and A. Imamoğlu. Photon Antibunching in
the Photoluminescence Spectra of a Single Carbon Nanotube. Physical Review
Letters 100, 217401 (2008)
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