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et technologies de l’information, Informatique
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tion à l’analyse de sensibilité
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A ma mère et à la mémoire de mon père.
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Chapter 1

Introduction

1.1 Problem statement

The recent significant advances in computational power have allowed computer modeling

and simulation to become an integral tool in many industrial and scientific applications,

such as nuclear safety assessment, meteorology and oil reservoir forecasting. Simulations

are performed with complex computer codes that model diverse complex real world phe-

nomena. However, despite a high level of sophistication of these models, they are only an

approximation of the reality and as such they are also subject to uncertainty. This is due

to the fact that any model relies upon some hypotheses, inferred from limited information,

which can lead to neglecting some significant physical phenomena of the real system. The

development of an accurate model can require gathering a large amount of information,

which is usually an expensive and sometimes an impossible task.

The context of this thesis’s work is oil reservoir forecasting, which consists in predicting

the hydrocarbon resources and their production during the operating time of a reservoir.

Such predictions are used by engineers and managers to make investment decisions in

order to improve oil recovery, or to decide if starting the recovery process is economically

viable. The fundamental tools to address this challenging problem is by using reservoir

simulators.

Reservoir simulators are complex computer codes that model the physical laws governing

the recovery process, and which are mainly modeled by mathematical equations for the

three phases flow (oil, gas and water) through porous media. These mathematical equa-

tions are solved by numerical methods over discrete computational grids. In order to get

to more accurate solutions the reservoir simulators involve higher number of grid cells and

1



1.1 Problem statement

an increasing number of reservoir details. The accuracy of the model predictions depends

on the input data accuracy, so if there are uncertainties on input factors, the simulator

forecasts will be uncertain. These input parameters are generally related to the geological

properties of the reservoir, and the information gathered on them comes from direct mea-

surements, which are clearly very limited and are marred by considerable uncertainty.

Statistical tools to analyse uncertainty have received an increasing interest from scientists

and engineers. Uncertainty analysis refers to methods, which attempt to quantify the un-

certainty in any quantitative statement, such as for example in estimating the uncertainty

in the reservoir simulator output that results from the simulator’s input factors. Another

important task of uncertainty analysis is to identify the uncertainty sources (factors) that

are relevant to a particular reservoir model. This task is generally performed by the so-

called sensitivity analysis. We will only consider sensitivity analysis procedures in the

work developed in this thesis.

The aim of sensitivity analysis for computer codes is to quantify how the variation (uncer-

tainty) in the output of the computer code is apportioned to different input of the model.

The most useful methods that perform sensitivity analysis require stochastic simulation

techniques, such as Monte-Carlo methods. Such methods usually necessitate several thou-

sands computer code evaluations that are generally not affordable with reservoir simulators

for which each simulation requires several minutes or hours. Consequently, response sur-

face methods become an interesting alternative.

A response surface serves as a simplified model that is intended to approximate the simula-

tor’s input/output relation and that is fast to evaluate. The general idea of this approach

is to perform a limited number of the simulator evaluations (hundreds) at some care-

fully chosen training input values, and then, using statistical regression techniques, such

as, for example, polynomial regression, Gaussian process or smoothing spline regression,

construct an approximation of the simulator. If the resulting approximation is of a good

quality, the estimated response surface is used instead of the complex and computationally

demanding simulator to perform the sensitivity analysis.

Most common regression techniques used to build response surfaces are computation-

ally efficient and accurate provided that the simulator’s input/output relation is smooth

enough and the number of input factors is moderate. However, with such methods, the

computational cost can become very substantial for high dimensional problems. Since it is

more often the case in practice to deal with reservoir simulators that involve a high num-

ber of inputs (more than ten), using the usual regression techniques to build appropriate

2



1.2 Overview of the thesis

response surfaces may be a problem.

The efficiency of sensitivity analysis depends on the accuracy of the response surface, on

the number of input factors and, as already mentioned, sensitivity analysis techniques

can involve Monte-Carlo methods that require huge random samples when dealing with

high dimensional cases. Even when the evaluation of the response surface is much faster

than the simulator, when applied to hundreds of thousands of input values it becomes

computationally demanding and requires an appropriate approach to efficiently perform

the analysis.

Another challenging problem, within the response surface framework, arises with func-

tional output. Reservoir simulators model the evolution of time-dependent physical quan-

tities, so their outputs can be composed by several time series. Using classical response

surface methods by including time as an extra input factor leads to complications in

practice. A first one is the need to deal with extremely large datasets, which results in

computationally demanding problems (sometimes intractable). A second one is that most

response surface related methods are adapted to quite regular variations of the inputs

which is not the case when dealing with time series curves that are irregular.

1.2 Overview of the thesis

The present work aims at developing response surface methods, as well as their applica-

tion to sensitivity analysis of computer codes, taking into account the above remarks. The

organization of the thesis document is as follows.

In Chapter 2, we emphasize and recall some of the main topics that are related to variance

based global sensitivity analysis. The concept of experiment design is also briefly discussed

and finally, the most common response surface methods available in the literature are in-

troduced and discussed.

In Chapter 3, we present the component selection and smoothing operator (COSSO) reg-

ularized nonparametric regression method, which is a general nonparametric model fitting

procedure that also performs variable selection and which is based on analysis of variance

decompositions (ANOVA). These classes of regression methods (ANOVA based one’s) seem

to have been underused for building response surfaces and their use is justified from the

examples treated in this chapter. One of COSSO’s algorithmic steps involves the solution

of a nonnegative garrote (NNG) convex optimization problem. Using classical constrained

3



1.2 Overview of the thesis

optimization techniques to solve the NNG problem is efficient but time consuming, espe-

cially with high dimensional problems and with large sizes of the experimental design. To

bypass this difficulty, we develop a new iterative algorithm based on Landweber iterative

algorithm, which are conceptually simple and easy to implement. For comparison purposes

we have adapted a nonnegative least angle regression algorithm (reviewed in Chapter 2)

which is also known to be efficient. We empirically show, on analytical and reservoir test

cases, that COSSO response surface estimation based on our iterative algorithm is the

fastest one. Moreover, using the fact that COSSO is based on ANOVA type decomposi-

tions allows us to derive a new direct method for computing sensitivity indices.

The response surfaces studied in Chapter 3 involve usually outputs that vary regularly

and in a smooth way with respect to the inputs. They are not adapted to cases for which

the response involves more roughly outputs. For this purpose, in Chapter 4, we introduce

a new regularized nonparametric regression type method, named wavelet kernel ANOVA

(WK-ANOVA). This method is similar to COSSO’s approach but since it deals with ir-

regular outputs is based on wavelet decompositions instead of splines. Once the wavelet

decomposition is adapted to treat irregular designs WK-ANOVA seems as efficient than

COSSO, and similarly to what has been done in the previous chapter allows to develop

a direct method for computing sensitivity indices. We illustrate the effectiveness of the

WK-ANOVA method as well as its limits on analytical and reservoir test cases.

Chapter 5 is devoted to the problem of time series computer code outputs. For such

problems, we introduce an original methodology based on an expansion of the time se-

ries curves in a wavelet basis, followed by a thresholding procedure, specifically designed

for analyzing multiple curve sets. We then use a COSSO-like method to approximate

the selected wavelet coefficients and adapt Sobol’s Monte-Carlo based estimation methods

(presented in chapter 2) to compute time-dependent sensitivity indices. The efficiency is

shown on a reservoir test case.

4



Chapter 2

Response surface for sensitivity

analysis

2.1 Introduction

Consider a mathematical model for a computer code simulator

Y = f(X) (2.1)

where Y is the output scalar of the computer code realisations, X = (X(1), . . . , X(d))

a d-dimensional input vector which represents the uncertain parameters/factors of the

simulator and f : Rd → R is a function that models the relationship between the input

factors and the output of the computer code.

Sensitivity analysis (SA for short) is the study of how the variation (uncertainty) in the

output of the mathematical model can be apportioned, qualitatively or quantitatively,

to different sources of variation in the input of the model. Put in another way, it is a

technique for systematically changing parameters in a model to determine the effects of

such changes on the output. There are several possible procedures to perform sensitivity

analysis (SA). Important classes of methods are:

• Local methods, such as the simple derivative of the output Y with respect to a given

component X(i) of the input vector X: | ∂Y
∂X(i) |x0 , where the subscript x0 indicates

that the derivative is taken at some fixed point in the space of the input (hence the

’local’ in the name of the class).

• Sampling-based methods in which the model is executed repeatedly for combinations

of values sampled from the distribution (assumed known) of the input factors. Once
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2.1 Introduction

the sample is generated, several strategies (including simple input-output scatter-

plots) can be used to derive global sensitivity measures for the factors.

Other methods which are also sampling-based are those based on Monte Carlo filtering

whose objective is to identify regions in the space of the input factors corresponding to

particular values (e.g. high or low) of the output.

Several work are devoted to global SA (GSA). Among them we cite: Sobol (1993), Saltelli

& Sobol’ (1995) and Saltelli & Sobol’ (1999). Particular instances of global stochas-

tic based methods are regression-based methods, which measure the effects of the input

on the output if the mathematical model representing the computer code is linear, and

variance-based methods, where the unconditional variance V (Y ) of Y is decomposed into

terms due to individual factors plus terms due to interaction among the components of the

vector of inputs by means of an analysis of variance decomposition (ANOVA) and which

are, therefore, nonlinear with respect to the original input parameters. Most variance-

based methods are quantitative, and in this work we will focus on this class of methods,

and more specifically on Sobol’s indices.

One of the main issues with variance based methods is computational time. Indeed, a

computer code that is sufficiently realistic is often very costly in terms of computational

time. Furthermore such methods require generally several thousands simulations that are

usually not affordable in common applications. In order to perform sensitivity analysis

with a limited number of runs, response surface methods can then be used. In the latter

the simulator input/output relation is approximated using different statistical regression

techniques starting from an initial set of carefully chosen training runs. Then, if a rea-

sonably good approximation is obtained, the estimated response surface is used instead of

the complex simulator to compute the sensitivity indices. Response surface methods have

known a quick development in the last decade and the resulting mathematical approxi-

mation is also called a metamodel or a surrogate. Many different approaches have been

suggested in many different scientific disciplines. The construction of an efficient response

surface involves determining configurations of inputs (experimental design) for running

the simulator to build a sufficiently accurate response surface with an as small as possible

number of simulator runs.

The purpose of this chapter is to highlight and recall some of the main topics related to

variance based global sensitivity methods that are relevant to the rest of this work. The

concepts of experiment design will also be shortly discussed and finally the most common
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2.2 Global sensitivity analysis

response surface methods for regression will be introduced and discussed together with

their potential applications to the problems we are going to deal with in further chapters.

2.2 Global sensitivity analysis

2.2.1 Variance based Sobol’s indices

In order to describe this concept, let us suppose that the mathematical model is described

by a function f(X),X = (X(1), · · · , X(d)) , and is defined on the unit d-dimensional cube

(X ∈ [0, 1]d):

Ωd = {X| 0 ≤ X(j) ≤ 1; j = 1, . . . , d}. (2.2)

The main idea from Sobol (1993)’s approach is to decompose the response Y = f(X(1), . . . , X(d))

into summands of different dimensions via a so-called ANOVA (ANalysis Of VAriance)

decomposition, defined as follows:

f(X(1), · · · , X(d)) = f0+
d∑
j=1

fj(X(j))+
∑

1≤j<l≤d
fjl(X(j), X(l))+. . .+f1,2,...,d(X(1), · · · , X(d))

(2.3)

where f0 is a constant, fj ’s are univariate functions representing the main effects, fjl’s

are bivariate functions representing the two way interactions, and so on. The integrals of

every summand of the ANOVA decomposition over any of its own variables is assumed to

be equal to zero , i.e. ∫ 1

0
fj1,...,js(X

(j1), . . . , X(js))dX(jk) = 0 (2.4)

where 1 ≤ j1 < . . . < js ≤ d, s = 1, . . . , d and 1 ≤ k ≤ s. It follows from this property

that all the summands in (2.3) are orthogonal, i.e, if (i1, . . . , is) 6= (j1, . . . , jl), then∫
Ωd
fi1,...,isfj1,...,jldX = 0 (2.5)

Using the orthogonality, Sobol showed that such decomposition of f(X(1), . . . , X(d)) is

unique and that all the terms in (2.3) can be evaluated via multidimensional integrals:

f0 = E(Y ) (2.6)

fj(X(j)) = E(Y |X(j))− E(Y ) (2.7)

fj,l(X(j), X(l)) = E(Y |X(j), X(l))− fj − fl − E(Y ) (2.8)
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2.2 Global sensitivity analysis

where E(Y ) and E(Y |X(j)) are respectively the expectation and the conditional expec-

tation of the output Y . Analogous formulae can be obtained for the higher-order terms.

If all the input factors are mutually independent, the ANOVA decomposition is valid for

any distribution function of the X(i)’s and using this fact, squaring and integrating (2.3)

over Ωd, and by (2.5), we obtain

V =
d∑
j=1

Vj +
∑

1≤j<l≤d
Vjl + . . .+ V1,2,...,d (2.9)

where Vj = V [E(Y |X(j))] is the variance of the conditional expectation that measures the

main effect of Xj on Y and Vjl = V [E(Y |X(j), X(l))]−Vj −Vl measures the joint effect of

the pair (X(j), X(l)) on Y . The total variance V of Y is defined to be

V = E(Y 2)− f2
0 (2.10)

Variance-based sensitivity indices, also called Sobol indices, are then defined by:

Sj1,...,js =
Vj1,...,js
V

(2.11)

where Sj is called the first order sensitivity index (or the main effect) for factor X(j),

which measures the main effect of X(j) on the output Y , the second order index Sjl, for

j 6= l, is called the second order sensitivity index expresses the sensitivity of the model to

the interaction between variables X(i) and X(j) on Y and so on for higher orders effects.

The decomposition in (2.9) has the useful property that all sensitivity indices sum up to

one.
p∑
j=1

Sj +
∑

1≤j<l≤p
Sjl + . . .+ S1,2,...,p = 1 (2.12)

The total sensitivity index (or total effect) of a given factor is defined as the sum of all

the sensitivity indices involving the factor in question.

STj =
∑
l#j

Sl (2.13)

where #j represents all the Sj1,...,js terms that include the index j. Total sensitivity in-

dices measure the part of output variance explained by all the effects in which it plays a

role. Note however that the sum of all STj is higher than one because same interaction

terms are counted several times. It is important to note that total sensitivity indices can

be computed by a single multidimensional integration and do not require computing all
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2.2 Global sensitivity analysis

high order indices (see below). Then comparing the total effect indices provides informa-

tion about influential parameters. GSA enables to explain the variability of the output

response as a function of the input parameters through the definition of total and partial

sensitivity indices. The computation of these indices involves the computation of several

multidimensional integrals that are estimated by Monte Carlo method and thus requires

huge random samples. For this reason GSA techniques are prohibitive if used directly

using the computer code (fluid flow simulator for example). In this work the computation

of the required sensitivity indices will be performed using response surface techniques that

are discussed in following sections.

2.2.2 Monte-Carlo procedure for estimating Sobol’ indices

Consider a N i.i.d random sample from the distribution of X, say {xi = (xi1 , . . . , xid)
T , i =

1, . . . , N}. The constant f0 and the total variance V are then estimated by

f̂0 =
1
N

N∑
i=1

f(xi1 , . . . , xid) (2.14)

V̂ =
1
N

N∑
i=1

f2(xi1 , . . . , xid)− f̂
2
0 (2.15)

The estimation of the Sobol’s indices requires the estimation of the variance of the con-

ditional expectation. Sobol (1993) has used a Monte-Carlo procedure to do this. For

example, the estimation of Vj involves two independent i.i.d. N -sample random samples

sets {xi = (xi1 , . . . , xid)
T , i = 1, . . . , N} and {zi = (zi1 , . . . , zid)

T , i = 1, . . . , N} from the

distribution of X. The Monte-Carlo estimate of Vj = V [E(Y |X(j))] = E[E2(Y |X(j))]−f2
0

is then given by

V̂j =
1
N

N∑
i=1

f(xi1 , . . . , xid)f(zi1 , . . . zij−1 , xij , zij+1 , . . . , zid)− f̂
2
0 (2.16)

Thus, the first order indices are estimated as

Ŝj =
V̂j

V̂
(2.17)

The estimation of Vjl = V [E(Y |X(j), X(l))]− Vj − Vl = E[E2(Y |X(j)X(l))]− f2
0 − Vj − Vl

are given by the same procedure as

V̂jl =
1
N

N∑
i=1

f(xi1 , . . . , xid)f(zi1 , . . . zij−1 , xij , zij+1 , . . . , zil−1
, xil , zil+1

, . . . , zid)− f̂
2
0 (2.18)
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2.3 Experimental design

Thus, the second order indices are estimated as

Ŝjl =
V̂jl − V̂j − V̂l

V̂
(2.19)

and so on for obtaining the estimates of the sensitivity indices of higher order. The total

effect indices STj can be estimated directly, without estimating all indices which include

the index j. Indeed, total effect indices can be written as

STj = 1− V [E(Y |X(−j))]
V

= 1− V−j
V

(2.20)

where V−j correspond to the variance of the expectation conditioned to all the inputs

except X(j). The estimation of V−j is given by

V̂−j =
1
N

N∑
i=1

f(xi1 , . . . , xid)f(xi1 , . . . xij−1 , zij , xij+1 , . . . , xid)− f̂
2
0 (2.21)

Hence the estimation of the total effect indices STj

ŜTj = 1− V̂−j

V̂
(2.22)

We will not further discuss such simulation based estimation procedures for Sobol’s indices

since in the following we will mainly deal with metamodels.

2.3 Experimental design

2.3.1 A general framework

An important issue for building predictive response surfaces is the choice of the training

data X. Traditionally called experimental design, it is a set of input points at which the

computer code is run, selected for the purpose of building the most predictive response

surface.

The computer code is considered as a deterministic function, in other words for a given

input values the computer code produce the same results. Consequently, design tech-

niques using a replication of points are useless. Moreover, the input/output relation is

unknown. Hence, the design based on random samples where the points are spread ran-

domly throughout the experimental region, are usually preferred. This type of design are

called space filling design.

Several space filling design techniques have been proposed for computer experiments (Sant-

ner et al., 2003), the most popular ones are the Latin Hypercube Designs (LHD) (McKay

et al., 1979).
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2.4 Response surface

2.3.2 Latin hypercube designs

To introduce LHDs, consider an experimental region of d inputs, where without loss of

generality, each input has been rescaled in the interval [0, 1]. To obtain a design con-

sisting of N points, divide each one of the p input axes into N equally spaced intervals

{[0, 1/N ], . . . , [(N − 1)/N, 1]}. This partitions the scaled experimental region Ω ≡ [0, 1]p

into Np cells of equal volume. The design consists first in selecting cells between the Np

and then assigning randomly a design point (by a uniform probability) in the chosen cell.

The selection of the cells is done by taking independent permutations of the intervals of

each axes. The latin hypercube design has the advantage of producing a sampled point

in each of the N partitions of each input. To obtain an LHD with a better space filling

criteria we can sample a high number of different LHDs and select the one maximizing the

minimum distance between two points, also referred to as the maximin criterion (max-

iminLHD). Also note that LHDs can be easily generalized to the case of more general

input distributions such as, for example, triangular or normal distributions. However we

generally prefer using uniform distributions for building response surfaces because other-

wise the risk is to obtain a very inaccurate response surface in the low probability regions.

The number of design points (simulations) necessary to obtain a reliable response sur-

face generally depends on the number of inputs and on the complexity of the response to

analyze.

2.4 Response surface

As previously mentioned the computation of the sensitivity indices requires a huge num-

ber of model evaluations. For example, in the framework of reservoir simulation these

computer models require several minutes or even several hours to perform one simulation.

Thus, computing the sensitivity indices directly is impractical. Therefore, using an ap-

proximation of the computer code which is much faster to evaluate than the corresponding

simulator seems to be a good reasonable alternative.

Response surface techniques are regression analysis methods for building an approxima-

tion of the computer code based on a limited number of evaluations (observations) of this

simulator. These approximation models need to be as accurate as possible, in terms of

prediction, to provide a reliable GSA results. The most commonly used response surface

methods are those based on parametric polynomial regression models, which require to

specify the polynomial form of the regression mean (linear, quadratic, . . . ). However, it
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is often the case that the linear (or quadratic) model can fail to identify properly the

input/output relation. Thus, in nonlinear situations, nonparametric regression methods

are preferred.

Parametric regression models, especially linear models, have many interesting properties

such as computational speed and easy interpretability. When the computer code to be

approximated is nearly linear in the inputs, there are no better methods. However, when

the input/output relationship is not linear, a linear or polynomial parametric regression

has a very poor approximation properties. In such cases alternative regression methods

may be used as response surface. In the last decade many different nonparametric regres-

sion models have been used as a response surface methods. To name a few of them, Sacks

et al. (1989), Busby et al. (2007) and Marrel et al. (2008) utilized a Gaussian Process

(GP). Sudret (2008) and Blatman & Sudret (2010) used a polynomial chaos expansions

to perform a GSA.

In addition, Storlie & Helton (2008a), Storlie & Helton (2008b) and Storlie et al. (2009)

provide a comparison of various parametric and nonparametric regression models, such as

linear regression (LREG), quadratic regression (QREG), projection pursuit regression mul-

tivariate adaptive regression splines (MARS), gradient boosting regression, random forest,

Gaussian process (GP), adaptive component selection and smoothing operator (ACOSSO),

etc . . . for providing appropriate metamodel startegies. The authors note that ACOSSO

and GP perform well in all cases considered nevertheless suffer from higher computational

time.

In the following, we present parametric regression methods and provide a review on a

highly popular technique of the variable selection (regularization). In addition, due to its

reported good performance, we choose to use GP to compare the methods that we will

introduce in the following chapters. For the sake of completeness we will therefore describe

in some details the various response surface methodologies that are going to be used and

compared.

For each of the following procedures, it is assumed that we have n independent realisations

(say observations) {(yi,xi = (xi1 , . . . , xid)
T ), i = 1, . . . , n} of a computer code, generated

via the relation given in (2.1).

2.4.1 Parametric regression

The most frequently used parametric regression models (linear, quadratic, . . . ) are linear

in the coefficients and for that reason are also known as linear regression models in the
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statistics literature. A linear regression model has the following form

f(X) = β0 +
d∑
j=1

βjX
(j) + ε (2.23)

Here the βj ’s are unknown coefficients which we want to estimate and X(j) are the regres-

sors which can be functions of other explanatory variables. The most popular estimation

approach is least-squares, in which the coefficients β̂LS = (β̂0, β̂1, . . . , β̂d) minimize the

residual sum of squares
n∑
i=1

(yi − β0 −
d∑
j=1

xijβj)
2, (2.24)

where xij = X
(j)
i . Denote by X the n × (d + 1) matrix with each column the values of

the corresponding regressor (input) (with 1 in the first position corresponding to β0), and

similarly let Y be the vector of outputs in the observation set. Then β̂LS satisfies

XTXβ̂
LS

= XTY (2.25)

and, assuming that X has full column rank d (d ≤ n and XTX is positive definite and

can be inverted), we obtain a unique solution of the regression coefficients

β̂LS = (XTX)−1XTY

Note that X(j) can correspond to:

• linear term X(j) (quantitative input) which quantify the direct influence of the input

X(j) on the output Y

• quadratic term (X(j))2 which quantify the quadratic effect of the input X(j) on the

output Y

• a product term X(j)X(l) which quantify the interaction influence between inputs

X(j) and X(l) on the output Y

• transformation of X(j), such as logarithm or exponential function.

Linear regression (LREG), which involves the linear terms and the product terms, and

quadratic regression (QREG), which is a LREG plus the quadratic terms are two of the

most commonly used response surface methods in practice.
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2.4.2 Regularized parametric regression

When multicolinearity problems among the regressors are present, the XTX matrix char-

acterizing the system of normal equations (2.25) is ill-conditioned. Moreover, unless one

has many more training cases than inputs, least squares estimates for regression coeffi-

cients may have a too high variance. Several ways exist to reduce the variance and to

enhance the precision of least squares estimates most of them trying to limit the “com-

plexity” of the fitted models by appropriate techniques: either by using a selected subset

of input variables (since, in practice, it is plausible that only a small proportion of input

are influential on the output), or by finding estimates for the regression coefficients by

minimizing the residual sum of squares (RSS) plus a penalty involving the size of the βs

(or equivalently, by minimizing RSS subject to a constraint on the size of the βs, or by

replacing the original inputs with a smaller set of variables that are linear combinations

of the original inputs. These methods overlap somewhat: some penalty methods may set

some β’s exactly to zero, effectively eliminating those input variables. Input selection can

be seen as choosing directions restricted to the coordinate axes. When regularizing the

regression, the coefficients β̂ are defined as the minimum of the penalized least squares

functional defined by

n∑
i=1

(yi − β0 −
d∑
j=1

xijβj)
2 + λPen(β) = RSS + λPen(β), (2.26)

where Pen is the penalty function. Several penalty functions exist and we review some of

them below.

2.4.2.1 Ridge regression

Introduced in Hoerl & Kennard (1970), ridge regression adds a penalty of λ
∑d

j=1 β
2
j to

the residual sum of squares producing a shrinkage on the regression coefficients. More

precisely, β̂ridge minimizes the functional

n∑
i=1

(yi − β0 −
d∑
j=1

xijβj)
2 + λ

d∑
j=1

β2
j (2.27)

where the positive scalar λ is a regularization parameter that controls the amount of

shrinkage and the penalty function is given by the l2 norm. An equivalent form of (2.27)

is
n∑
i=1

(yi − β0 −
d∑
j=1

xijβj)
2, subject to

d∑
j=1

β2
j ≤ s (2.28)
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where s is a positive scalar associated to λ. The intercept β0 is usually not included in the

penalty. This can be done by first centering the inputs and response variables (shifting

them to have mean zero over the training set), then fitting a model with no intercept.

The matrix form of (2.27) is

(Y −Xβ)T (Y −Xβ) + λβTβ.

That is

β̂
ridge

= (XTX + λI)−1XTY

Note that the addition of the positive constant to the diagonal of XTX makes the problem

nonsingular even when d > n. Ridge regression estimate are biased, but have lower

variance than least squares estimates. Also, note that the ridge regression usually includes

all the predictors in the response surface.

2.4.2.2 LASSO

The Least absolute shrinkage and selection operator method (LASSO), introduced by

Tibshirani (1996), is a shrinkage method where the penalty function is based on a l1 norm

of the vector of coefficients. The intercept β0 is usually not included in the penalty. This

can be done by first centering the inputs and response variables (shifting them to have

zero mean over the training set), then fitting a model with no intercept. The LASSO

estimate β̂lasso minimizes the RSS with the l1-penalty

n∑
i=1

(yi − β0 −
d∑
j=1

xijβj)
2 + λ

d∑
j=1

|βj | (2.29)

As for the ridge regression an equivalent form of the lasso in terms of least squares with

a constraint is
n∑
i=1

(yi − β0 −
d∑
j=1

xijβj)
2, subject to

d∑
j=1

|βj | ≤ s. (2.30)

For every choice of s, there is a choice of λ that gives the same result, and vice versa.

Due to the l1-penalty, the solution of LASSO is usually sparse when a sufficiently high

regularization parameter λ is used. This property makes LASSO a variable selection

method. The estimation of LASSO is a convex optimization problem and can be solved,

for a given λ, via a quadratic programming algorithm (solver). It is clear that this become

computationally expensive since it requires solving the optimization problem for a fine

grid of λ’s. However, an efficient algorithm introduced by Efron et al. (2004), Least angle
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regression (LARS), is available for computing the entire path solution as λ is varied with

a small computational cost.

LARS builds a model sequentially by adding one variable at a time. Indeed, the procedure

starts by identifying the variable that is most correlated with the output and puts it in

the active set (at this time the active set contains just one variable). Then LARS moves

the coefficient of this variable continuously from 0 toward its least-squares value, until

another variable has as much correlation with the current residual as does the first one.

The second variable joins the active set and their coefficients are moved jointly in a way

that decreases their correlation with the current residual, until some other variable has as

much correlation with the residual. If q ≤ n the process is continued until all variables

are in the model, and if q > n the algorithm stops after n− 1 steps.

Let Ak be the active set of variables at the kth step, its complementary is denoted by Ac
k,

and let βAk
be the coefficients vector corresponding to the variables from the active set.

Hence, r[k] = Y −Xβ[k] is the current residual.

The modified LARS algorithm which provide the entire paths of LASSO coefficients is

defined as

1. Start from k = 1, β[0]
1 , . . . , β

[0]
q = 0, Ak = ∅ and the residual r[0] equal to the vector

of the observation Y

2. Update the active set by including the variableX(j∗) most correlated with the current

residual r[k]

Ak = Ak−1 ∪ {j∗},with j∗ = arg max
j∈Ack

(XT
j r[k−1])

where Xj the jth column of X

3. Given that, all variables from the active set are equally correlated to the current

residual, the vector of empirical correlations satisfies

XT
Ak

r[k] = α1Ak

where 1Ak is a vector of 1’s of length card(Ak) and α is a constant. Thus the descent

direction vector is defined as

w[k]
Ak

= (XT
Ak
XAk)−1α1Ak

Since w[k]
Ak

is a unit descent direction, α is defined as

α =
1√

1TAk
(XT

Ak
XAk)−11Ak
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4. Now as the vector of descent direction is determined, one needs to select the descent

step γ. This step must be the smallest positive value such that a new predictor X(j)

enters the active set. This condition can be written as

min
l∈Ack

| XT
l r[k] | =| XT

j r[k+1] |,with j is arbitrarily chosen from Ak

where r[k+1] = Y − Xβk+1 = Y − Xβk − γXAkw
[k]
Ak

. In other words, we need to

compute γl for every l ∈ Ac
k that satisfies XT

l r[k+1] = XT
j r[k+1], then the smallest

will be chosen. Hence

XT
l r[k] − γlXT

l XAkw
[k]
Ak

= XT
j r[k] − γlXT

j XAkw
[k]
Ak
,with l ∈ Ac

k and j ∈ Ak

It follows

γl =
XT
j r[k] −XT

l r[k]

XT
l XAkw

[k]
Ak
−XT

j XAkw
[k]
Ak

,with l ∈ Ac
k and j ∈ Ak

In order to consider the positive and the negative correlation, we also study γ such

as

γl =
XT
l r[k] −XT

j r[k]

XT
j XAkw

[k]
Ak
−XT

l XAkw
[k]
Ak

,with l ∈ Ac
k and j ∈ Ak.

As a result, the descent step γ is defined as

γ = min
l∈Ack

+

{
XT
j r[k] −XT

l r[k]

XT
l XAkw

[k]
Ak
−XT

j XAkw
[k]
Ak

,
XT
l r[k] −XT

j r[k]

XT
j XAkw

[k]
Ak
−XT

l XAkw
[k]
Ak

}
where min + indicates that the minimum is taken over only positive components

within each choice of l.

5. Update the coefficients vector corresponding to the variables from the active set

β
[k+1]
Ak

= β
[k]
Ak

+ γw[k]
Ak

6. If a nonzero coefficient βj∗ hits zero, in other words if the sign has changed between

β
[k]
j∗ and β

[k+1]
j∗ , set γ such as β[k+1]

j∗ = 0

γ =
β

[k+1]
j∗ − β[k]

j∗

w[k]
j∗

=
−β[k]

j∗

w[k]
j∗

,

update the coefficients vector by using the new γ

β
[k+1]
Ak

= β
[k]
Ak

+ γw[k]
Ak
,

and drop the variables X(j∗) from the active set Ak+1 = Ak −{j∗}. This step of the

modified LARS ensures that the solution path corresponds to the LASSO solution.

17



2.4 Response surface

7. Set r[k+1] = Y −Xβ[k+1], k = k + 1 and continue until min(q, n− 1) variables have

been entered

2.4.2.3 Nonnegative garrote

The lasso estimates tend to have larger bias, due to the shrinkage of large coefficients.

To remedy this drawback one can use the nonnegative garrote shrinkage method (NNG).

Introduced by Breiman (1995) the NNG is a scaled version of the least square estimate.

Thus, the shrinking factors c = (c1, . . . , cd) minimize

n∑
i=1

(yi − β0 −
d∑
j=1

xijcjβ
LS
j )2 + λ

d∑
j=1

cj , subject to cj ≥ 0 (2.31)

The NNG estimates of the regression coefficients are defined as cjβLSj . In other words, the

NNG can be considered as a method that shrinks the least squares estimator by multiplying

it by some diagonal matrix with shrinking constants. As for the ridge regression and the

LASSO an equivalent formulation of (2.31) is

n∑
i=1

(yi − β0 −
d∑
j=1

xijcjβ
LS
j )2, subject to cj ≥ 0 and

d∑
j=1

cj ≤ s (2.32)

Yuan & Lin (2007) provided an efficient algorithm similar to the modified LARS for

computing the entire path solution as λ is varied.

Let cAk be the coefficient vector corresponding to the variables from the active set. Hence,

r[k] = Y − Zc[k] is the current residual, where Zj = Xjβ
LS
j .

The modified LARS algorithm which provide the entire paths of LASSO coefficients is

defined as

1. Compute the least-squares coefficients βLS and set Zj = Xjβ
LS
j

2. Start from k = 1, c[0]
1 , . . . , c

[0]
q = 0, Ak = ∅ and the residual r[0] equal to the vector

of the observation Y

3. Update the active set

Ak = Ak−1 ∪ {j∗},with j∗ = arg max
j∈Ack

(ZTj r[k−1])

4. Compute the current descent direction vectors

w[k]
Ak

= (ZTAkZAk)−1ZTAkr
[k]
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2.4 Response surface

5. Now, for every l ∈ Ac
k compute γl that satisfies ZTl r[k+1] = ZTj r[k+1]. Hence

ZTl r[k] − γlZTl ZAkw
[k]
Ak

= ZTj r[k] − γlZTj XAkw
[k]
Ak
,with l ∈ Ac

k and j ∈ Ak

It follows

γl =
ZTj r[k] − ZTl r[k]

ZTl ZAkw
[k]
Ak
− ZTj ZAkw

[k]
Ak

,with l ∈ Ac
k and j ∈ Ak

6. For every j ∈ Ak, compute γj = min(αj , 1) where αj = −c[k]
j /w

[k]
j

7. If for every j we have γj ≤ 0 or minj +(γj) > 1, set γ = 1. Otherwise, set γ = γj∗ =

minj +(γj) and update the coefficients vector by using the new γ

c
[k+1]
Ak

= c
[k]
Ak

+ γw[k]
Ak

If j∗ /∈ Ak put the corresponding variable into the active set Ak+1 = Ak ∪ {j∗},
otherwise drop the corresponding variable from the active set Ak+1 = Ak − {j∗}.

8. Set r[k+1] = Y − Zc[k+1], k = k + 1 and continue until γ = 1.

2.4.3 Criteria for choosing the regularization parameter

Since we are searching for the best response surface model, in term of approximation,

a suitable regularization parameter λ must be picked. Several procedures exist to this

end, such as the so-called Cp of Mallows’ (Mallows (1973), Efron et al. (2004) and Zou

et al. (2007)), the most relevant advantage of this criterion is that it does not require

more computation beyond those used for obtaining the estimates. Unfortunately, such a

rule requires an estimation of the error standard deviation. Since we assumed that the

computer codes are deterministic, we cannot therefore use this criterion. We can also cite

AIC and BIC criteria for choosing the regularization parameter. However, empiricaly it

seems that the most adapted criteria for our problem is the v-fold-Cross-Validation. This

criterion consists in splitting the observation set into v subsamples {S1, . . . , Sv} roughly

of equal size (figure 2.1). For each value of λ, the cross-validation procedure is defined as

1. For i = 1, . . . v

a. Build the response surface f̂ [i]
λ with the training set made up of the observation

set except the subsample Si

b. Compute the residual sum of squares RSSi using the observation of the test set

Si.
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2.4 Response surface

Figure 2.1: Test and training sets

2. Compute the mean residual sum of squares 1/v
∑v

i=1RSSi

The optimal estimation of λ is λ∗ which minimizes the mean residual sum of squares.

Values of v between 5 and 10 produce satisfactory results. It is a fact that v-fold-Cross-

Validation leads to penalty parameters that perform efficient regularization in nonpara-

metric regression models.

2.4.4 Gaussian process

The Gaussian process (GP), also called Kriging, has been introduced in geostatistics by

Matheron (1970). The idea to use this method to analyze a computer code was first

proposed by Sacks et al. (1989). GP is a statistical method that treats the deterministic

output as a realization of a random function, composed by the sum of a deterministic

function and a centered stochastic process indexed by x. The model can be written as:

S(x) =
k∑
j=1

βjhj(x) + Z(x) (2.33)

where the deterministic function f(x) =
∑k

j=1 βjhj(x) provides the mean approximation

of the computer code and is a linear combination of pre-selected (known) real-valued func-

tions h1, . . . , hk, with unknown coefficients β1, . . . , βk (h1 is usually a constant function).

Z is assumed to be a centered Gaussian random process of covariance:

cov[x,x′] = E[Z(x)Z(x′)] = τ2R(x,x′) (2.34)

where τ2 = E[Z(x)2] denotes the process variance, and R(x,x) is the correlation function.

Denote by X the experimental design (the set {x1, . . . ,xn}) and let Y be the corresponding
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2.4 Response surface

vector of outputs, a linear predictor of the output f(x) of the computer code at a new

point x is given by:

Ŝ(x) = aT (x)Y.

The coefficient vector a(x) = (a1(x), . . . , an(x))T is unknown. The best linear unbiased

predictor for the deterministic response f(x) is obtained by minimizing the mean square

error

MSE[Ŝ(x)] = E[aT (x)Y − S(x)]2, subject to E[aT (x)Y] = E[S(x)] (2.35)

where the constraint corresponds to unbiasedness.

Note that (2.35) can be written as

MSE[Ŝ(x)] = τ2[aT (x)Ra(x)− 2aT (x)r(x) + 1], subject to HTa(x) = h(x) (2.36)

where

h(x) = (h1(x), h2(x), ..., hk(x))T

H = (hj(xi))1≤i≤n;1≤j≤k ∈ Rn×k

R = (R(xi,xl))1≤i,l≤n ∈ Rn×n

r(x) = (R(x1,x), . . . , R(xn,x))T .

R is the correlation matrix between the values of Z at the experimental design X and r(x)

is the correlation vector between Z at X and the new point x.

There exist different possible correlation functions that can be used. As discussed in the

literature (see for instance Busby et al. (2007), Sacks et al. (1989) and Welch et al. (1992)),

a commonly used correlation function is the generalized exponential, defined as

R(x,y) = exp

− d∑
j=1

(
|xj − yj |

θj

)pj (2.37)

where θj > 0 and 0 < pj ≤ 2 are the correlation parameters. With pj = 1 for j = 1, . . . , d

(2.37) yields the exponential correlation function and pj = 2 for j = 1, . . . , d yields the

Gaussian correlation function.

By minimizing (2.36), the best linear unbiased prediction Ŝ(x) can be written as

Ŝ(x) = hT (x)β̂ + rT (x)R−1(Y −Hβ̂)

where

β̂ = (HTR−1H)−1HTR−1Y. (2.38)
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2.4 Response surface

is the usual generalized least squares estimate of coefficients β = (β1, . . . , βk) in (2.33).

The maximum likelihood estimation (MLE) is commonly used to determine the GP pa-

rameters θ and pj as well as the parameters σ and β. The log-likelihood for the GP S(x)

is given by

l(β, τ,θ, pj) ∼ −1/2(m ln τ2 + ln det(R) + (Y −Hβ)TR−1(Y −Hβ)/σ2) (2.39)

Note that for a fixed θ and pj the MLE for β is given by the generalized least squares

estimates (2.38). Moreover, the MLE estimate for τ2 is given by

τ̂2 = 1/n(Y −Hβ̂)TR−1(Y −Hβ̂).

Using these estimates β̂ and τ̂2 in (2.39), the parameters θ and pj are then determined

by maximizing

l(θ, pj) ∼ −1/2(m ln τ2 + ln det(R)). (2.40)

Maximizing (2.40) is a global optimization problem, which became computationally ex-

pensive when dealing with high-dimensional models or when many experimental design

points are available.

As in the traditional regression models (2.1) we can add an iid error term to the GP model

(2.33). This can be written as

S(x) =
k∑
j=1

βjhj(x) + Z(x) + ε,

where ε is a vector with iid N(0, σ2) random components. Since Z(x) and ε are assumed

independent, the covariance function is obtained by adding the nugget effect term σ2I

cov[x,x] = τ2R(x,y) + σ2I.

The nugget effect may represent the measurement errors or the effects of non-deterministic

computer codes. The introduction of a very small nugget effect can also be useful in the

MLE computation to avoid numerical instability problems. Thus, it can be seen as a

regularization parameter (see Pepelyshev (2010)).
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2.5 Conclusion

2.5 Conclusion

We reviewed in this chapter the concept of sensitivity indices and the ways that may be

used to estimate them and have seen that their estimation usually requires computation-

ally intensive Monte Carlo simulations. In the framework of computer experiments and

especially with the reservoir simulators, Monte-Carlo simulation based methods lead to

intractable calculations. Therefore, in order to overcome this problem, we may replace

the computer code by a response surface which may be viewed as an approximation and

which is built by appropriate statistical regression methods.

Parametric regression methods have been briefly described and we discussed some of the

most popular regularization methods (Ridge, LASSO and NNG), which permit to improve

the accuracy of the estimates. These methods involve a regularization parameter whose

choice is not straightforward. In addition, the later methods are also used in the nonpara-

metric regression frameworks as we will see in the following chapters.

We also described one of the most popular nonparametric regression methods in the re-

sponse surface frameworks, namely GP which has been empirically shown to often out-

perform other nonparametric methods for approximating deterministic computer codes.

However, a GP process approach does suffer from its computational demand, especially

when many experimental design points are available. Indeed, it requires the inversion of a

correlation matrix whose inversion in terms of complexity scales with n3 elementary opera-

tions. Moreover, computing the sensitivity indices by Monte-Carlo procedure described in

section 2.2.2 and using the GP response surface can become computationally demanding

for high dimensional problems.

In the next two chapters we will investigate some nonparametric regression methods based

on ANOVA decomposition that seem to have been underused in the framework of response

surface. In addition, we will show that the resulting family of estimates leads to a direct

method for estimating the sensitivity indices.
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Chapter 3

Component selection and

smoothing operator based on

iterative regularization algorithms

3.1 Introduction

Consider the mathematical model of the computer code:

Y = f(X) (3.1)

where Y is the output scalar of the simulator, X = (X(1), . . . , X(d)) the d-dimensional

inputs vector which represent the uncertain parameters of the simulator, f : Rd → R
the unknown function that represent the computer code. Our purpose is to propose an

estimation procedure for f .

A popular approach to the nonparametric estimation for high dimensional problems is the

smoothing spline analysis of variance (SS-ANOVA) model (Wahba, 1990). To remind the

ANOVA expansion is defined as

f(X) = f0 +
d∑
j=1

fj(X(j)) +
∑
j<l

fjk(X(j), X(l)) + ...+ f1,...,d(X(1), ..., X(d)) (3.2)

where f0 is a constant, fj ’s are univariate functions representing the main effects, fjl’s are

bivariate functions representing the two way interactions, and so on. Usually the high-

order terms in the ANOVA expansion are negligible and a second-order expansion gives a

satisfactory approximation of f .

A common approach to estimation in SS-ANOVA is the minimization of a penalized least
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3.2 Component selection and smoothing operator

square functional. The goal of SS-ANOVA application is to determine which ANOVA

components should be included in the model. Lin & Zhang (2006) proposed a penalized

least square method with the penalty functional being the sum of component norms. The

component selection and smoothing operator (COSSO) is a regularized nonparametric re-

gression method based on ANOVA decomposition.

In the framework of the response surface, Storlie et al. (2009) have applied an adaptive

version of COSSO (ACOSSO) for GSA application. This version was introduced in Storlie

et al. (2011). However, ACOSSO is computationally more demanding than COSSO and

in addition, after an empirical study we have remarked that the gain for the prediction

accuracy of ACOSSO comparing to COSSO is not obvious for deterministic computer

codes. So we will investigate the COSSO instead of ACOSSO.

In this chapter, we first review the (SS-ANOVA) model, then we will describe the COSSO

method and its algorithm. Furthermore we will introduce two new algorithms which pro-

vide the COSSO estimates, the first one using an iterative algorithm based on Landweber

iterations and the second one using the NN-LARS algorithm presented in the previous

chapter. Next we will describe a new method to compute the sensitivity indices. Finally,

numerical simulations will be presented and discussed.

3.2 Component selection and smoothing operator

3.2.1 Definition

Let f ∈ F, where F is a reproducing kernel Hilbert space (RKHS) (for more details on

RKHS we refer to the Appendix B) corresponding to the ANOVA decomposition (2.3) ,

and let Hj = {1}⊕ H̄j be a RKHS of functions of X(j) over [0, 1], where {1} is the RKHS

consisting of only the constant functions and H̄j is the RKHS consisting of functions

fj ∈ Hj such that 〈fj , 1〉Hj = 0. Then the model space F is the tensor product space of

Hj :

F =
d⊗
j=1

Hj = {1} ⊕
d∑
j=1

H̄j ⊕
∑
j<l

[H̄j ⊗ H̄l]... (3.3)

Each component in the ANOVA decomposition (3.2) is associated to a corresponding sub-

space in the orthogonal decomposition (3.3). Generally, only second order interactions are

considered in the ANOVA decomposition and an expansion to the second order generally

provides a satisfactory description of the model.

Let consider the index α ≡ j for α = 1, . . . , d with j = 1, . . . , d and α ≡ (j, l) for
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3.2 Component selection and smoothing operator

α = d+ 1, . . . , d(d+ 1)/2 (where d(d+ 1)/2 correspond to the number of ANOVA compo-

nents) with 1 ≤ j < l ≤ d. With such notation in (3.3) when the expansion is truncated

to include only interactions up to the second order:

F = {1} ⊕
q⊕

α=1

Fα = {1} ⊕
d∑
j=1

H̄j ⊕
∑
j<l

[H̄j ⊗ H̄l] (3.4)

where F1, . . .Fq are q orthogonal subspaces of F and q = d(d + 1)/2. We denote by ‖ · ‖
the norm in the RKHS F. For some λ the SS-ANOVA estimate is given by the minimizer

of
1
n

n∑
i=1

{yi − f(xi)}2 + λ2
q∑

α=1

θ−1
α ‖ Pαf ‖2 (3.5)

where Pα is the orthogonal projection onto Fα and θα ≥ 0. If θα = 0, then the minimizer

of (3.5) is taken to satisfy ‖ Pαf ‖= 0 and we use the convention 0/0 = 0.

The difference between COSSO and SS-ANOVA is that the first one penalizes the sum

of the norms instead of the squared norms. Then, the COSSO estimate is given by the

minimizer of
1
n

n∑
i=1

(yi − f(xi))2 + λ2
q∑

α=1

‖ Pαf ‖ (3.6)

where λ is the regularization parameter. Since (3.6) is convex, the existence of the COSSO

estimate is guaranteed by the following theorem (Lin & Zhang, 2006):

Theorem 3.2.1 Let’s F be a RKHS of functions over [0, 1]d. Assume that F can be
decomposed as in (3.4). There exists a minimizer of (3.6).

3.2.2 Algorithm

Lin & Zhang (2006) have shown that the minimizer of (3.6) has the form f̂ = b̂+
∑q

α=1 f̂α,

with f̂α ∈ Fα. By the reproducing kernel property of Fα, f̂α ∈ span{Kα(xi, ·), i =

1, . . . , n}, where Kα is the reproducing kernel of Fα. They also have shown that (3.6)

is equivalent to a more easier form to compute, which is

1
n

n∑
i=1

{yi − f(xi)}2 + λ0

q∑
α=1

θ−1
α ‖ Pαf ‖2 +ν

q∑
α=1

θα, subject to θα ≥ 0 (3.7)

where λ0 is a constant and ν is a smoothing parameter. The penalty term of θ’s,
∑q

α=1 θα,

controlling the sparsity of each component fα.

For fixed θ (3.7) is equivalent to the SS-ANOVA and therefore the solution has the form:

f(x) = b+
n∑
i=1

ci

q∑
α=1

θαKα(xi,x) (3.8)
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Let Kα be the n × n matrix {Kα(xi,xj))},i = 1, . . . , n, j = 1, . . . , n, let Kθ stands for

the matrix
∑q

α=1 θαKα. Then f = Kθc + b1n with c = (c1, . . . , cn)T and (3.7) can be

expressed as
1
n
‖ Y −

q∑
α=1

θαKαc− b1n ‖2 +λ0cTKθc + ν

q∑
α=1

θα (3.9)

For a fixed θ, (3.9) can be written as

min
c,b
‖ Y −Kθc− b1n ‖2 +nλ0cTKθc (3.10)

which is a smooting spline problem (a quadratic minimization problem) and the solution

satify:

(Kθ + nλ0I)c + b1n = Y (3.11)

1Tnc = 0 (3.12)

On the other hand, for fixed c and b, (3.9) can be written as

min
θ
‖ z−Dθ ‖2 +nν

q∑
α=1

θα subject to θα ≥ 0 (3.13)

where z = Y − (1/2)nλ0c− b1n and D the n× q matrix with the αth column dα = Kαc.

Note that this formulation is similar to (2.31) which is the NNG estimate.

An equivalent form of (3.13) is given by

min
θ
‖ z−Dθ ‖2 +nν

q∑
α=1

θα subject to θα ≥ 0 and
q∑

α=1

θα ≤M (3.14)

for some M ≥ 0. Lin & Zhang (2006) noted that the optimal M seems to be close to

the number of important components. For computational consideration Lin and Zhang

preferred to use (3.14) rather than (3.13).

Notice that the COSSO algorithm is a two step procedure. Indeed, it iterates between

the smoothing spline (3.10) estimator, which gives a good initial estimate and the NNG

(3.14) estimator, which is a variable selection procedure.

They also observed empirically that after one iteration the result is close to that at con-

vergence. Thus the COSSO algorithm is presented as a one step update procedure:

1. Initialization: Fix θα = 1, α = 1, ..., q

2. Tune λ0 using v-fold-cross-validation.
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3. Solve for c et b with (3.10).

4. For each fixed M in a chosen range, solve for θ with (3.14) with the c and b, obtained

in step 3. Tune M using v-fold-cross-validation. The θ’s corresponding to the best

M are the final solution at this step.

5. Tune λ0 using v-fold-cross-validation.

6. With the new θ, solve for c and b with (3.10)

Notice that we have added step 5 respect to the original COSSO algorithm because we

observed empirically that it improved the method’s performance.

3.2.3 Kernel

The reproducing kernel Kα for the RKHS Fα such as Fα ≡ H̄j , are given by

Kα(X,X′) = Kj(X(j), X(j)′) = k1(X(j))k1(X(j)′) + k2(X(j))k2(X(j)′)− k4(|X(j) −X(j)′ |)

where kl(x) = Bl(x)/l! and Bl is the lth Bernoulli polynomial. Thus, for x ∈ [0, 1]

k1(x) = x− 1
2

k2(x) =
1
2

(k2
1(x)− 1/12)

k4(x) =
1
24

(k4
1(x)− k2

1(x)
2

+
7

240
)

Moreover, the reproducing kernel Kα for the RKHS Fα such as Fα ≡ H̄j ⊗ H̄l, are given

by the following tensor products

Kα(X,X′) = Kj(X(j), X(j)′)Kl(X(l), X(l)′)

For more details we refer to Wahba (1990).

3.3 An iterative projected shrinkage algorithm

We consider statistical models (least squares, LASSO, NNG), already mentioned in the

previous chapter, which are convex optimization problems. A standard way to solve such

problems is via a quadratic programming algorithm. Nevertheless, an iterative algorithm

which is conceptually simple, easy to implement and involves no nested matrix inversion
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has been proposed by several authors to estimate the solution of the LASSO regression

problem, but it seems to have been largely ignored.

In the section that follows, we will first review some iterative algorithms available in the

literature that can be used to solve convex optimization problems. Then, within the

framework of these procedures we propose an iterative algorithm which estimates the

solution of the NNG regression problem. Finally, some numerical results illustrate the

performance of our proposed algorithm.

3.3.1 Some iterative optimization algorithms

3.3.1.1 The Landweber algorithm

A simple iterative algorithm have been proposed by Landweber (1951) to solve the linear

regression problem Y = Xβ. It generates a sequence that approximates the true solution.

The iterative procedure is recursively described as

β[p+1] = β[p] +XT (Y −Xβ[p]) (3.15)

starting from an arbitrary β[0]. Each iteration of this algorithm only involves sums and

matrix multiplication.

More recently, another version of the Landweber iterative algorithm has been introduced:

the projected Landweber algorithm is defined as follows

β[p+1] = PΩ(β[p] + XT (Y −Xβ[p])) (3.16)

starting from an arbitrary β[0], where PΩ is the orthogonal projection onto a closed convex

sets Ω that describes eventual constraints on β. This algorithm converges to a minimizer

of the constrained least square problem when the constraints are expressed in terms of a

convex and closed set Ω:

‖ Y −Xβ ‖2n, subject to β ∈ Ω

with Ω a given convex and closed subset of Rd. The convergence properties of the projected

Landweber algorithm has been investigated in Eicke (1992), Byrne (2002). It also can be

easily implemented if the projection operator PΩ, can be easily computed.
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3.3.1.2 The iterative shrinkage/thresholding algorithm

Consider now the LASSO regression problem. In recent years, several authors have pro-

posed, in different frameworks, an iterative soft-thresholding algorithm to approximate

the βLASSO (among them Daubechies et al. (2004), Friedman et al. (2007) and Figueiredo

& Nowak (2003)). Assume that the design matrix has been normalized, so ‖ XTX ‖< 1,

in other words λmax(XTX) < 1 (where λmax is the maximum eigenvalue) the iterative

shrinkage/thresholding algorithm (IST) is defined as

β[p+1] = δsoftλ (β[p] +XT (Y −Xβ[p])) (3.17)

starting from an initial estimate β[0], where δSoftλ is the soft-thresholding function defined

as

δSoftλ (β̂) =


0 if | β̂ |≤ λ
β̂ − λ if β̂ > λ

β̂ + λ if β̂ < −λ
(3.18)

A rigorous convergence proof for this algorithm is provided in Daubechies et al. (2004).

3.3.2 Iterative projected shrinkage algorithm

3.3.2.1 Definition

Consider the (3.13) regression problem:

min
θ
‖ z−Dθ ‖2 +nν

q∑
α=1

θα subject to θα ≥ 0

The functional (3.13) is convex since the matrix DTD is symmetric and positive semidefi-

nite and since the constraints θα > 0 define also a convex feasible set. For the convex opti-

mization problem, the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient

for the optimal solution θ∗, where θ∗ = arg minθ ‖ z−Dθ ‖2 +nν
∑q

α=1 θα subject to θα ≥
0. This KKT conditions are defined as

{−dTα(Y −Dθ∗) + ν}θ∗α = 0

−dTα(Y −Dθ∗) + ν ≥ 0

θ∗α ≥ 0

which is equivalent to

−dTα(Y −Dθ∗) + ν = 0, if θ∗α 6= 0 (3.19)

−dTα(Y −Dθ∗) + ν > 0, if θ∗α = 0 (3.20)
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3.3 An iterative projected shrinkage algorithm

where dα denotes the αth column of D. Therefore, from (3.19) and (3.20) we can derive

the fixed-point equation:

θ∗ = PΩ+(δSoftν (θ∗ +DT (Y −Dθ∗))) (3.21)

where PΩ+ is the nearest point projection operator onto the nonnegative orthant (closed

convex set) Ω+ = {x : x ≥ 0} Thus, in the framework of the projected Landweber and of

the iterative thresholding algorithms, we propose an iterative algorithm, which is defined

by

θ[p+1] = PΩ+(δSoftν (θ[p] +DT (Y −Dθ[p]))) (3.22)

We named this algorithm the iterative projected shrinkage algorithm (IPS). The following

theorem concerns the convergences of IPS algorithm:

Theorem 3.3.1 IPS algorithm defined by (3.22) converge to the solution of (3.13), when-
ever such solution exists, for any starting vector θ[0].

The proof of this theorem can be found in Appendix A. Note that we have assumed

that λmax(DTD) ≤ 1 (where λmax is the maximum eigenvalue). Otherwise we solve the

equivalent minimization problem

min
θ
‖ z
c
− D

c
θ ‖2 +

nν

c

q∑
α=1

θα subject to θα ≥ 0

where the positive constant c ensures that λmax(DTD) ≤ 1.

3.3.2.2 Stopping conditions

IPS algorithm is an iterative procedure (3.22) which produces a sequence of solutions

θ[0],θ[0], . . . ,θ[p] converging to the optimal solution θ∗. There is a need to stop the al-

gorithm when the solution θ[p] is sufficiently close to the optimal solution θ∗. Several

stopping conditions have been proposed in the literature (for example M. Defrise (1987)).

We choose to use a stopping condition based on the KKT conditions, which are easy to

evaluate. This ε−KKT conditions are defined as

dTα(Y −Dθ∗) = ν − ε, if θ∗α 6= 0

dTα(Y −Dθ∗) ≤ ν − ε, if θ∗α = 0

where ε > 0 is a constant which defines the precision of the solution.
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3.3 An iterative projected shrinkage algorithm

3.3.2.3 Accelerated iterative projected shrinkage algorithm

In practice, slow convergence, particularly when D is ill-conditioned or ill-posed, is an

obstacle to a wide use of this method in spite of the good results provided in many cases.

Indeed, IPS procedure is a composition of the projected thresholding with the Landweber

iteration algorithm, which is a gradient descent algorithm with a fixed step size, known

to converge usually slowly. Unfortunately, combining the Landweber iteration with the

projected thresholding operation does not accelerate the convergence, especially with a

small value of ν. Several authors proposed different methods to accelerate the various

algorithms (Landweber, projected Landweber and IST), among them Piana & Bertero

(1997), Daubechies et al. (2008) and Bioucas-Dias & Figueiredo (2007) , the later brought

an efficient procedure, named two-step IST (TwIST), which has faster convergence rates

than IST especially for ill-conditioned problems. This procedure is defined as

θ[1] = δSoftν (θ[0]) (3.23)

θ[p+1] = (1− α)θ[p−1] + (α− β)θ[p] + βδSoftν (θ[p] +DT (Y −Dθ[p])) (3.24)

Observing the equivalence between (3.24) and (3.17) with α = β = 1, we propose to modify

TwIST so it converge to the solution of (3.13). Thus we replace δSoftν by PΩ+(δSoftν ) in

(3.23) and in (3.24). The accelerated projected iterative shrinkage thresholding algorithm

is defined as

θ[1] = PΩ+(δSoftν (θ[0])) (3.25)

θ[p+1] = (1− α)θ[p−1] + (α− β)θ[p] + βPΩ+(δSoftν (θ[p] +DT (Y −Dθ[p]))) (3.26)

In accordance with Theorem 4 given by Bioucas-Dias & Figueiredo (2007) the parameters

α and β are set to

α = ρ̂2 + 1

β = 2α/(1 + ζ)

where ρ̂ = (1−
√
ζ)/(1 +

√
ζ) and ζ = λmin(DTD) (where λmin is the minimal eigenvalue)

if λmin(DTD) 6= 0, or ζ = 10−κ with κ = 1, . . . , 4 need to be tuned by running a few

iterations. The condition κ = 1 correspond to mildly ill-conditioned problems and κ = 4

for severely ill-conditioned problems. For more detail about the choice of these parameters

we refer to Bioucas-Dias & Figueiredo (2007).
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3.4 COSSO based on NN-LARS algorithm

3.3.3 COSSO based on the IPS algorithm

In the previous section we have developed an iterative algorithm to solve like (3.13) re-

gression problems. Indeed, instead of iterating between (3.10) and (3.14) in the COSSO

algorithm we will iterate between (3.10) and (3.13). Thus the COSSO algorithm based on

IPS (or AIPS) can summarized as:

1. Initialization: Fix θα = 1, α = 1, ..., q

2. Tune λ0 using v-fold-cross-validation.

3. Solve for c et b with (3.10).

4. For each fixed ν, solve (3.13) by using the IPS (or AIPS) algorithm with the c and

b, obtained in step 3. Tune ν using v-fold-cross-validation. The θ’s corresponding

to the best ν are the final solution at this step.

5. With the new θ tune λ0 using v-fold-cross-validation.

6. With the new θ and λ0, solve for c and b with (3.10)

Note that it can be shown that θ = 0 for ν ≥ νmax, with νmax ≡ maxα | dTαY |. Hence,

the value of ν, which needs to be estimated, is bounded by νmax and νmin, with νmin small

enough. Then, ν is tuned by v-fold-cross-validation.

3.4 COSSO based on NN-LARS algorithm

Previously we have noted that the COSSO is a two step procedure that iterates between

the smoothing spline and the NNG. In Chapter 2 we presented an algorithm (NN-LARS)

which provides the entire path for the NNG coefficients. To apply NN-LARS we assume

that Zj = Xjβ
LS
j = dTj , which means that we substitute the step 1 of the NN-LARS

algorithm by:

1. Set D = Z

Thus the COSSO algorithm based on NN-LARS is presented as

1. Initialization: Fix θα = 1, α = 1, ..., q

2. Tune λ0 using v-fold-cross-validation.
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3.5 Global sensitivity analysis by COSSO

3. Solve for c et b with (3.10).

4. Solve (3.13) by using the NN-LARS algorithm with the c and b, obtained in step 3.

Choose the best model using v-fold-cross-validation. The θ’s corresponding to the

best model are the final solution at this step.

5. With the new θ tune λ0 using v-fold-cross-validation.

6. With the new θ and λ0, solve for c and b with (3.10)

Notice that even if the NN-LARS algorithm provides the entire solution path the choice

of the best model (as we will empirically show later) becomes computationally expensive

for a high dimensional problem.

3.5 Global sensitivity analysis by COSSO

It has been shown in the previous chapter that, when the input vector components are

independently distributed (and X ∈ [0, 1]d), the component functions in the ANOVA

decomposition are orthogonal and contain relevant information on the input/output rela-

tionships. Moreover, the total variance V of the model can be decomposed into its input

variable contributions. Using the variance decomposition (2.9) and the COSSO solution

form (3.8) we have

V ≈
d∑
j=1

Vj +
∑

1≤j<l≤d
Vjl (3.27)

≈
q∑

α=1

∫ 1

0

[
θα

n∑
i=1

ciKα(xi,X)
]2

dX(α) (3.28)

where dX(α) ≡ dX(α) for α = 1, . . . , d and dX(α) ≡ dX(j)dX(l) for α = d + 1, . . . , q with

1 ≤ j < l ≤ d.

Let us consider aN i.i.d random sample from the distribution of X, say {zi = (zi1 , . . . , zid)
T , i =

1, . . . , N}. The Monte-Carlo estimate of Vj is given by

V̂j =
1
N

N∑
m=1

[
θj

n∑
i=1

ciKj(xij , zmj )
]2

(3.29)

Hence the main effect indices (first order sensitivity indices) are estimated as

Ŝj =
V̂j

V̂
(3.30)
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3.6 Simulations

where V̂ is the total variance estimation. The estimation of Vjl are given by

V̂j =
1
N

N∑
m=1

[
θjl

n∑
i=1

ciKj(xij , zmj )Kl(xil , zml)
]2

(3.31)

Thus, the second order indices are estimated by

Ŝjl =
V̂jl

V̂
(3.32)

Since we assume that a truncated form of ANOVA decomposition provides a satisfactory

approximation of the model, the total effect indices estimation is given by

ŜTj = Ŝj +
∑
l 6=j

Ŝjl (3.33)

Notice that to compute all the indices (main effect, interaction and total effect) we need

only N evaluations of the response surface.

3.6 Simulations

The present section is focused on studying the empirical performance of the four different

versions of COSSO estimate and compares it to the GP method. The four version of

COSSO are COSSO-IPS, COSSO-AIPS, COSSO-NN-LARS and COSSO-solver which use

a standard convex optimizer (matlab code developed by the COSSO’s authors Lin & Zhang

(2006)).

The empirical performance of estimators will be measured in terms of prediction accuracy

and global sensitivity analysis (GSA). The measure of accuracy is given by Q2 defined as

Q2 = 1−
∑ntest

i=1 (yi − f̂(xi))2∑ntest
i=1 (yi − ȳ)2

,with ntest = 1000 (3.34)

where yi denotes the ith test observation of the test set, ȳ is their empirical mean and

f̂(xi) is the predicted value at the design point xi. We also compare the methods for differ-

ent experimental design sizes, uniformly distributed on [0, 1]d and built by maximinLHD

procedure. For each setting of each test example, we run 50 times and average. Thus we

define the quantity Q̄2 = 1/50
∑50

k=1Q
k
2.

Concerning the performance in terms of GSA, we will study the accuracy of the total

effect indices estimation. Furthermore, we will study the size effect of the sample used to

estimate the total effect indices by Monte-Carlo integration. We will compare the results
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3.6 Simulations

to those obtained by Sobol’s method described in the previous chapter and combined with

the GP.

To fit COSSO models using a standard convex optimizer we have used the matlab code

developed by the COSSO’s authors Yi Lin and Hao Helen Zhang. COSSO-IPS, COSSO-

AIPS and COSSO-NN-LARS are adapted versions of the original matlab code. The GP

models are done in R, with IFP code contributed by COUGAR’s team.

3.6.1 Example 1

Consider the g-Sobol function which is strongly nonlinear and is described by a non-

monotonic relationship. Because of its complexity and the availability of analytical sen-

sitivity indices, this function is a well known test case in the studies of GSA. Figure 3.1

illustrates the g-Sobol function against the two most influential parameters X(1) and X(2).

The g-Sobol function (Saltelli et al. (2000)) is defined for 8 inputs factors as

gSobol(X(1), . . . , X(8)) =
8∏

k=1

gk(X(k)) with gk(X(k)) =

∣∣4X(k) − 2
∣∣+ ak

1 + ak

where {a1, . . . , a8} = {0, 1, 4.5, 9, 99, 99, 99, 99}. The contribution of each input X(k) to

the variability of the model output is represented by the weighting coefficient ak. The

lower this coefficient ak, the more significant the variable X(k). For example:
ak = 0→ x(k) is very important,
ak = 1→ x(k) is relatively important,
ak = 4.5→ x(k) is poorly important,
ak = 9→ x(k) is non important,
ak = 99→ x(k) is non significant.

The analytical values of Sobol’s indices are given by (Sudret, 2008)

Vj =
1

3(1 + aj)2
, V =

d∏
k=1

(Vk + 1)− 1,

Sj1,...,js =
1
V

s∏
k=1

Vk

where 1 ≤ j1 < . . . < js ≤ d and s = 1, . . . , d. The analytical values of the total effect

indices are shown in table (3.1).
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Figure 3.1: Plot of g-Sobol function versus inputs X(1) and X(2) with other inputs fixed
at 0.5

Input Total effect

X(1) 0.787

X(2) 0.242

X(3) 0.034

X(4) 0.011

X(5,...,8) 0

Table 3.1: Analytical values of the total effect indices of the g-Sobol function

3.6.1.1 Assessment of the prediction accuracy

Table 3.2 summarizes the results for the 50 realizations of the g-Sobol model with three

different experimental design sizes (n = 100, n = 200 and n = 400). It appears that for

this example the GP outperforms all of the COSSO versions for n = 100 and n = 200.

However, when the experimental design size increases, the performance of the GP does

not get much better while all the COSSO methods increase their accuracy by increasing

the sample size. Indeed, for n = 400 the COSSO methods outperforms GP especially

COSSO-NN-LARS, COSSO-AIPS and COSSO-solver which have Q̄2 quantity equal to

0.99 which indicates that those response surfaces explain 99% of the model variance. All
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3.6 Simulations

the COSSO versions provide quite similar result for this example. Moreover, as expected,

the AIPS method is clearly faster than IPS. Notice that even if the NN-LARS provides the

entire path of the solution, the COSSO-NN-LARS method has the same computational

cost as COSSO-IPS and COSSO-solver, the reason of that is the choice of the best model

by v-fold-cross-validation which is computationally costly.

n Q̄2 time (s)

COSSO-NN-LARS
100 0.86(0.03) 4
200 0.91(0.02) 14
400 0.99(0.01) 59

COSSO-IPS
100 0.82(0.08) 28
200 0.90(0.01) 45
400 0.97(0.02) 195

COSSO-AIPS
100 0.84(0.07) 6
200 0.90(0.01) 15
400 0.99(0.01) 53

COSSO-solver
100 0.85(0.06) 8
200 0.90(0.01) 18
400 0.99(0.01) 59

GP
100 0.93(0.01) 29
200 0.96(0.01) 86
400 0.95(0.01) 342

Table 3.2: Q2 results from the g-Sobol function. The estimated standard deviation of Q2

is given in parentheses.

3.6.1.2 Global sensitivity analysis

In this subsection, we apply the COSSO-AIPS method in order to estimate the total effect

indices. The choice of COSSO-AIPS instead of other COSSO was motivated by the good

performance of the method and it fast execution. We first focus on the robustness of

the size effect of the sample used to estimate the indices. To this end, we repeated the

experiment 100 times with two different sample size N = 500 and N = 5000 built using

maximinLHD. We estimate the indices using a response surface build by COSSO-AIPS of

an experimental design of size n = 400 and having a Q2 equal to 0.99. We compare the

results to those obtained by Sobol’s method of indices estimation based on response surface
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build by GP on an experimental design of size n = 400 and having a Q2 equal to 0.96. As

introduced previously Sobol’s methods to estimate the total effect needs 2 samples, thus we

build, using a maximinLHD procedure, 200 samples of two sizes: N = 500 and N = 5000.

Figure 3.2 summarizes the results for the 100 different samples and the two sizes (N = 500

and N = 5000). Each panel is a boxplot of the 100 estimations of the total effect index

ŜTj , j = 1, . . . , 8. Dashed lines are drawn at the corresponding analytical values of the

total effects indices. We see that our direct method of indices estimation based on COSSO

procedure is more robust than Sobol’s one using the GP response surface especially when

the sample size is small (N = 500). Moreover our method needs only N evaluation of

the COSSO-AIPS response surface while Sobol’s method needs 2Nd evaluations of GP

response surface (for N = 5000, 80000 evaluations are used).

To study the performance of the total effect indices estimations versus the sizes of the

experimental design we compute the indices, using sample of size N = 5000, for each

of the 50’s realizations and for the three different experimental design sizes (n = 100,

n = 200 and n = 400). Figure 3.3 summarizes the results, each panel is a boxplot of

the 50 estimations of ŜTj , j = 1, . . . , 8. Dashed lines are drawn at the corresponding

analytical values of the total effects indices. As expected the estimations based on GP

response surface outperforms those based on COSSO-AIPS for n = 100 and n = 200,

which is due to the better performances in terms of Q2 of the GP for these experimental

design sizes. Nevertheless, for n = 400 the estimations based on COSSO-AIPS are better

than those based on GP.

3.6.2 Example 2

Let consider the same example that has been used in the COSSO paper (Example 3).

This 10 dimensional regression problem is defined as

f(X) = g1(X(1))+g2(X(2))+g3(X(3))+g4(X(4))+g1(X(3)+X(4))+g2(
X(1)X(3)

2
)+g3(X(1)X(2))

(3.35)

where

g1(t) = t; g2(t) = (2t− 1)2; g3(t) =
sin(2πt)

2− sin(2πt)
;

g4(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin2(2πt) + 0.4 cos3(2πt) + 0.5 sin3(2πt)

Therefore X(5), ..., X(8) are uninformative. This analytical model is fast enough to evaluate

so we can calculate the total effect indices with great precision. Thus the reference values
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Figure 3.2: Total effect indices vs. sample effect (example 1)
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Figure 3.3: Total effect indices vs. experimental design size effect (example 1)
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of the indices are computed by direct Monte-Carlo simulation using Sobol’s method (with

N = 250000, which correspond to 5.106 evaluations of the example 2). Table 3.3 shows 95%

confidence intervals (95% CI) provided by 100 different samples and the chosen reference

values

Input Total effect 95% CI Reference value

X(1) [0.343, 0.346] 0.344

X(2) [0.213, 0.215] 0.214

X(3) [0.285, 0.288] 0.286

X(4) [0.377, 0.380] 0.379

X(5,...,10) 0 0

Table 3.3: 95% CI and the reference values of the total effect indices for the example 2

3.6.2.1 Assessment of the prediction accuracy

Table 3.4 summarizes the results for the 50 realizations of the example 2 model with three

different experimental design sizes (n = 100, n = 200 and n = 400). Here we see that for

all versions and for all sizes of experimental designs the COSSO method outperforms GP.

The accuracy for all methods improves as the experimental design increases. Notice that

the COSSO-AIPS method is the fastest one, especially with a large experimental design

size as opposed to the GP which is the slowest method.

3.6.2.2 Global sensitivity analysis

As in the previous subsection, we apply the COSSO-AIPS method in order to estimate

the total effect indices. We first focus on the size effect of the sample used to estimate

the indices. Thus we build, using a maximinLHD procedure, 100 samples of two sizes:

N = 500 and N = 5000; then we estimate the indices using a response surface built by

COSSO-AIPS of an experimental design of size n = 400 and having a Q2 equal to 0.99.

We compare the results to those obtained by Sobol’s method of indices estimation based

on response surface built by GP on an experimental design of size n = 400 and having a

Q2 equal to 0.95. We build, using a maximinLHD procedure, 200 samples of two sizes:

N = 500 and N = 5000.

Figure 3.6 shows the results obtained by the 100 different samples and for the two sizes

(N = 500 and N = 5000). Each panel is a boxplot of the 100 estimations of the total
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n Q̄2 time (s)

COSSO-NN-LARS
100 0.80(0.09) 6
200 0.94(0.03) 30
400 0.99(0.01) 118

COSSO-IPS
100 0.82(0.08) 27
200 0.95(0.02) 50
400 0.99(0.01) 140

COSSO-AIPS
100 0.82(0.08) 7
200 0.94(0.02) 22
400 0.99(0.01) 84

COSSO-solver
100 0.82(0.08) 19
200 0.93(0.03) 37
400 0.98(0.01) 110

GP
100 0.76(0.03) 25
200 0.88(0.02) 95
400 0.94(0.02) 490

Table 3.4: Q2 results from example 2. The estimated standard deviation of Q2 is given in
parentheses.

effect indices ŜTj , j = 1, . . . , 10. Dashed lines are drawn at the corresponding reference

values of the total effects indices. We see that our direct method of indices estimation

based on COSSO method is more robust than Sobol’s one using the GP response surface

especially when the sample size is small (N = 500).

A summary of the indices estimation on 50 realizations and for the three different exper-

imental design size (n = 100, n = 200 and n = 400) is shown in figure 3.5. Each panel

is a boxplot of the 50 estimations of ŜTj , j = 1, . . . , 10. Dashed lines are drawn at the

corresponding analytical values of the total effects indices. It appears that the indices

estimation using COSSO-AIPS suffers more from the small experimental design sizes than

GP, especially for those indices corresponding to the uninformative inputs. However, as

the sample size increases, our COSSO-AIPS method have performs better than Sobol’s

with GP.
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Figure 3.4: Total effect indices vs. sample effect (example 2)

3.6.3 Example 3

This third example is a high dimensional model with d = 20. This model is defined as

f(X) = g1(X(1)) + g2(X(2)) + g3(X(3)) + g4(X(4)) + 1.5g2(X(8)) + 1.5g3(X(9))

+ 1.5g4(X(10)) + 2g3(X(11)) + 1.5g4(X(12)) + g3(X(1)X(2)) + g2(
X(1) +X(3)

2
)

+ g1(X(3)X(4)) + 2g3(X(5)X(6)) + 2g2(
X(5) +X(7)

2
)

where the functions g1, g2, g3 and g4 are the same as for example 2. Notice that

X(13), ..., X(20) are uninformative. The reference values of the total effect indices are
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Figure 3.5: Total effect indices vs. experimental design size effect (example 2)
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3.6 Simulations

computed by direct Monte-Carlo simulation using Sobol’s method (with N = 250000,

which corresponds to 5.106 evaluations of the example 3 model). Table 3.7 shows 95%

confidence intervals (95% CI) provided by 100 different samples and the chosen reference

values.

Input Total effect 95%CI Reference value

X(1) [0.050, 0.051] 0.050

X(2) [0.031, 0.032] 0.031

X(3) [0.042, 0.043] 0.042

X(4) [0.055, 0.057] 0.056

X(5) [0.139, 0.141] 0.140

X(6) [0.129, 0.132] 0.130

X(7) [0.033, 0.034] 0.033

X(8) [0.050, 0.051] 0.050

X(9) [0.116, 0.119] 0.117

X(10) [0.147, 0.149] 0.148

X(11) [0.207, 0.210] 0.209

X(12) [0.147, 0.149] 0.148

X(13,...,20) 0 0

Table 3.5: 95% CI and the reference values of the total effect indices for example 3.

3.6.3.1 Assessment of the prediction accuracy

Table 3.6 summarizes the results for the 50 realizations of the example 3 model with

two different experimental design sizes (n = 200 and n = 400) build using maximinLHD

procedure. For this example we choose to do not test COSSO-IPS since we shown with

the previous tests that AIPS have better computational performance. It can be seen that

for this model GP has a bad performance for the both sizes of the experimental design.

Concerning the COSSO methods we can see that as the size of the experimental design

increases, both COSSO-AIPS and COSSO-solver provide increasingly accurate estimates.

However, we can note that COSSO-NN-LARS does not increase its performance as others

and as one would expect. As for previous examples, notice that COSSO-AIPS is the fastest

method especially comparing to COSSO-solver and GP.
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3.7 The reservoir test cases

n Q̄2 time (s)

COSSO-NN-LARS
200 0.73(0.10) 120
400 0.75(0.08) 281

COSSO-AIPS
200 0.78(0.08) 78
400 0.94(0.04) 274

COSSO-solver
200 0.78(0.09) 355
400 0.94(0.02) 720

GP
200 0.40(0.05) 240
400 0.56(0.03) 1105

Table 3.6: Q2 results from example 3. The estimated standard deviation of Q2 is given in
parentheses.

3.6.3.2 Global sensitivity analysis

In this section, total effect indices are computed using COSSO-AIPS. Here we do not

compare the results to those using Sobol’s method with GP response surface, because of

its bad prediction performance (see Table 3.6 ). As previously, we will first study the

effect of the sample size N on indices estimations. Thus, we build using maximinLHD

procedure, 100 samples of two sizes N = 500 and N = 5000 and we compute the indices

using our direct method based on predictive COSSO-AIPS response surface (Q2 = 0.98).

We can see in the figure 3.6 that those estimates are close to the reference values of the

indices and that robustness of estimations increases by increasing N , nevertheless with

N = 500 estimations are still quite good.

Table 3.7 summarize the results from using response surfaces build with the two different

sizes of experimental design (n = 200 and n = 400). As one would expect the accuracy

of the indices estimations improves as the experimental design increases (in other words

as the predictivity improves). This study was done using the 50 response surfaces used in

the previous section using a N = 5000 sample to compute the total effect indices.
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Figure 3.6: Total effect indices vs. sample effect (example 3)
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Input Reference value n = 200 n = 400

X(1) 0.050 0.035(0.017) 0.047(0.008)
X(2) 0.031 0.022(0.019) 0.023(0.012)
X(3) 0.042 0.021(0.019) 0.040(0.015)
X(4) 0.056 0.029(0.022) 0.052(0.008)
X(5) 0.140 0.127(0.033) 0.124(0.009)
X(6) 0.130 0.107(0.051) 0.120(0.011)
X(7) 0.033 0.034(0.028) 0.034(0.006)
X(8) 0.050 0.041(0.034) 0.054(0.006)
X(9) 0.117 0.146(0.018) 0.118(0.011)
X(10) 0.148 0.172(0.025) 0.145(0.008)
X(11) 0.209 0.248(0.05) 0.210(0.011)
X(12) 0.148 0.158(0.026) 0.144(0.009)
X(13) 0 0.003(0.004) 0.001(0.001)
X(14) 0 0.002(0.004) 0.001(0.001)
X(15) 0 0.004(0.006) 0.001(0.002)
X(16) 0 0.001(0.003) 0.002(0.001)
X(17) 0 0.003(0.003) 0.001(0.001)
X(18) 0 0.001(0.002) 0.001(0.002)
X(19) 0 0.003(0.004) 0.001(0.002)
X(20) 0 0.004(0.009) 0.001(0.002)

Table 3.7: Total effect indices vs. experimental design size effect (example 3). The
estimated standard deviation of the total effect index are given in parentheses.
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Figure 3.7: Top structure map of the reservoir field (PUNQS test case).

3.7 The reservoir test cases

3.7.1 PUNQS test case

3.7.1.1 Reservoir model description

The PUNQS case is a synthetic reservoir model taken from a real field located in the North

Sea. The PUNQS test case, which is qualified as a small-size model, is frequently used as a

benchmark reservoir engineering model for uncertainty analysis and for history-matching

studies .

The geological model contains 19 × 28 × 5 grid blocks, 1761 of which are active. The

reservoir is surrounded by a strong aquifer in the North and the West, and is bounded

to the East and South by a fault. A small gas cap is located in the centre of the dome

shaped structure. The geological model consists of five independent layers, where the

porosity distribution in each layer was modelled by geostatistical simulation. The layers

1, 3, 4 and 5 are assumed to be of good quality, while the layer 2 is of poorer quality. The

field contains six production wells located around the gas-oil contact. Due to the strong

aquifer, no injection wells are required. For more detailed description on the PUNQS
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3.7 The reservoir test cases

model, see Dejean & Blanc (1999). Twenty uncertain parameters uniformly distributed

and independent, are considered in this study:

• DensityGas U [0.8; 0.9] Kg/m3: gas density

• DensityOil U [900; 950] Kg/m3: oil density

• MPH U [0.5; 1.5]: horizontal transmissibility multipliers for each layers (from 1 to

5)

• MPV U [0.5; 5]: vertical transmissibility multipliers for each layers (from 1 to 5)

• PermAqui1 U [100; 200] mD: analytical permeability of the aquifer 1

• PermAqui2 U [100; 200] mD: analytical permeability of the aquifer 2

• PoroAqui1 U [0.2; 0.3]: analytical porosity of the aquifer 1

• PoroAqui2 U [0.2; 0.3]: analytical porosity of the aquifer 2

• SGCR U [0.02; 0.08]: critical gas saturation

• SOGCR U [0.2; 0.3]: critical oil gas saturation; largest oil saturation at which oil is

immobile in gas

• SOWCR U [0.15; 0.2]: critical oil water saturation; largest oil saturation at which

oil is immobile in water

• SWCR U [0.2; 0.3]: critical water saturation

For this study we focus on an objective function output, defined as:

OF (X) =
(f(X)− d)TC−1

D (f(X)− d)
2

(3.36)

where CD is the covariance matrix of the observed data and d the observed data. This OF

is given by equation (3.36) and represents the mismatch between observed and simulated

data. The observed data is synthetically generated using a random value for the uncertain

parameters in the simulator and adding noise (10% of the average value of each time

series) to the results. This data consists in time series given with two months frequency

during the first 6 years for the following simulator outputs: Gas Oil Ratio, Bottom Hole

Pressure, Oil Production Rate, and Water Cut. To define the weights in the objective

function definition, we consider independent measurement errors for each time dependent

output. This error was taken to be equal to 10% of the average value of each time series.
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3.7 The reservoir test cases

3.7.1.2 Assessment of the prediction accuracy

Each of the input range has been rescaled to the interval [0, 1] and the reservoir simulator

is run on two experimental designs of size n = 200 and n = 400, which were built using

maximinLHD. Then we construct response surfaces using COSSO-AIPS, C0SSO-solver,

COSSO-NN-LARS and GP. In order to estimate Q2 the simulator was run at an additional

sample set of size ntest = 500. Table 3.8 shows the results of this study. We see that for

this test case GP outperforms COSSO’s methods, but differences between Q2 given by the

used methods are small when the design size is n = 400. In addition, as previously shown

COSSO-AIPS is less time consuming than others especially if we compare it with GP.

Consequently COSSO and particularly COSSO-AIPS is well adapted to perform GSA.

n Q2 time (s)

COSSO-NN-LARS
200 0.67 200
400 0.81 450

COSSO-AIPS
200 0.69 70
400 0.82 300

COSSO-solver
200 0.67 280
400 0.81 700

GP
200 0.75 402
400 0.84 794

Table 3.8: PUNQS model Q2 results

3.7.1.3 Global sensitivity analysis

Here we use COSSO-AIPS and GP to produce response surfaces which are built using

the experimental design of size n = 400. To compute the total effect and main effect

indices via COSSO-AIPS we use a sample of size N = 5000 and two samples of the same

size for the case using GP. We provided here the main effect indices to show the reader

the importance of the interaction effects in this model. Tables 3.9 shows the computed

indices, thus we can see that the main effect and the interactions of MPH5 explain more

than 65% of the model variance, then we have a group of five inputs (SWCR, MPH1,

SOGCR, SGCR and PermAqui1 ) with relatively important effects and a group of five

or six (depending on the method used) inputs with poor importance (0.05 > ŜTj > 0.01).
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3.7 The reservoir test cases

While the remaining are considered as uninformative. The GSA results using COSSO-

AIPS and GP are almost equivalent, which was expected knowing that their Q2 are close.

GP

Input Total effect Main effect

MPH5 0.656 0.396
SWCR 0.193 0.013
MPH1 0.143 0.035
SOGCR 0.122 0.003
SGCR 0.112 0.021

PermAqui1 0.060 −0.011
MPH3 0.049 0.001

DensityOil 0.040 −0.007
PermAqui2 0.035 −0.010
SOWCR 0.024 −0.019
MPV 4 0.023 −0.016
MPV 1 0.005 −0.019
MPV 2 0.005 −0.019
MPV 5 0.004 −0.018
MPV 3 0.002 −0.018

PoroAqui1 0.003 −0.017
DensityGas 0.001 −0.019
MPH4 0.001 −0.018
MPH2 0.001 −0.019

PoroAqui2 0 −0.019

COSSO-AIPS

Input Total effect Main effect

MPH5 0.664 0.402
SWCR 0.203 0.034
MPH1 0.160 0.058
SGCR 0.104 0.041
SOGCR 0.091 0.019

PermAqui1 0.062 0.003
MPH3 0.034 0.007

PermAqui2 0.021 0.002
MPV 1 0.021 0

DensityOil 0.019 0.008
MPV 4 0.018 0.004
SOWCR 0.011 0.003
PoroAqui2 0.005 0.001
PoroAqui1 0.004 0.002
MPV 3 0.003 0
MPV 5 0.002 0
MPV 2 0.002 0

DensityGas 0.001 0
MPH2 0 0
MPH4 0 0

Table 3.9: GSA from PUNQS model

3.7.2 IC Fault Model

3.7.2.1 Reservoir model description

The geological model consists of six layers of alternating good and poor quality sands

(see Figure 3.8 ). The three good quality layers have identical properties, and three poor

quality layers have different set of identical properties. The thickness of the layers has

arithmetic progression, with the top layer having a thickness of 12.5 feet, the bottom layer
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3.7 The reservoir test cases

Figure 3.8: IC Fault Model

a thickness of 7.5 feet, and a total thickness of 60 feet. The width of the model is 1000 feet,

with a simple fault at the mid-point, which off-sets the layers. There is a water injector

well at the left-hand edge, and a producer well on the right-hand edge. Both wells are

completed on all layers, and operated at a fixed bottom hole pressures.

The simulation model is 100× 12 grid blocks, with each geological layer divided into two

simulation layers with equal thicknesses, each grid block is 10 feet wide. The model is

constructed such that the vertical positions of the wells are kept constant and equal, even

when different fault throws are considered. the well depth is 8325 feet to 8385.

The porosity and permeabilities in each grid block were randomly drawn from uniform

distributions with no correlations. The range for the porosities was ±10 of the mean value,

while range for the permeabilities was ±1 of the mean value. The means for the porosities

were 0.30 for the good quality sand and 0.15 for the bad quality sand. The means of the

permeabilities were 158.6 mD for the good quality sand and 2.0 mD for the poor quality

sand.

This simplified reservoir model has three uncertain input parameters, corresponding to the

fault throw h, the good and the poor sand permeability multipliers kg and kp. The three

parameters are selected independently from uniform distributions with ranges : h ∈ [0, 60]

kg ∈ [100, 200] and kp ∈ [0, 50]. The analysed output is in this test case the oil production
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rate Qop at 10 years. Figure 3.9 illustrates this output against kg and kp at a fixed high

value of h. For more detailed description on the IC Fault model, see Tavassoli et al. (2004).

Figure 3.9: Oil production rate after 10 years vs. kg and kp at a fixed high value of h
(obtained with 1000 simulations)

3.7.2.2 Assessment of the prediction accuracy

The simulator is run on four experimental designs of size n = 100, n = 200, n = 400

and n = 1600 generated by maximinLHD procedure. Then we construct response surfaces

using COSSO-AIPS and GP. In order to estimate Q2, the simulator was run at an addi-

tional sample set of size ntest = 25000. Table 3.10 shows the results of this study. Clearly,

COSSO-AIPS outperforms GP in this test case, however an experimental design of size

n = 400 is necessary to provide a reasonably accurate estimate. Moreover, we can note

that as the experimental design increases the accuracy of COSSO-AIPS estimate increases,

this is not the case for GP as remarked in Example 1. Indeed, by increasing the design

from 200 to 400 instead of improving, the estimate becomes worse in terms of predictivity.

Even if there are only three uncertain inputs in this test case, the approximation of the

input/output relation is a complicated problem, this is due to the presence of the fault

that provide discontinuities in the model.
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n Q2 time (s)

COSSO-AIPS

100 0.34 1
200 0.63 4
400 0.72 15
1600 0.81 280

GP

100 0.33 8
200 0.57 25
400 0.52 63
1600 0.66 1128

Table 3.10: IC fault model Q2 results

3.7.2.3 Global sensitivity analysis

As for PUNQS test case we use COSSO-AIPS and GP to produce response surfaces which

are built using the experimental design of size n = 1600. To compute the total effect

and main effect indices via COSSO-AIPS we use a sample of size N = 5000 and two

samples of the same size for the case using GP. Tables 3.11 shows the computed indices.

Following the GSA results produced via COSSO-AIPS, we can see that the variance of the

oil production rate mainly depend on the fault throw h and the poor sand permeability

kp. With respect to GSA, results produced via GP gives more interaction effect to the

good sand permeability kg than COSSO-AIPS. The better Q2 of COSSO-AIPS suggests

that its GSA results are more robust.

GP

Input Total effect Main effect

h 0.381 0.100
kg 0.173 0.021
kp 0.809 0.596

COSSO-AIPS

Input Total effect Main effect

h 0.375 0.225
kg 0.030 0.011
kp 0.733 0.586

Table 3.11: GSA from IC fault model

3.8 Conclusion

In this chapter, we presented the COSSO regularized nonparametric regression method,

which is a model fitting and variable selection procedure. One of the COSSO’s algorithm
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steps is the NNG optimization problem. The original COSSO algorithm uses classical con-

strained optimization techniques to solve the NNG problem, these techniques are efficient

but time consuming, especially with high dimensional problems (as empirically shown)

and with big size of experimental design (high number of observations). A new iterative

algorithm was developed, so-called IPS with its accelerated version (AIPS). Based on the

Landweber iterative algorithms these procedures are conceptually simple and easy to im-

plement.

We also applied the NN-LARS algorithm to COSSO which, as expected, has competitive

computation time performance comparing to the original COSSO (COSSO-solver). We

empirically show that COSSO based on the AIPS algorithm is the fastest COSSO version.

Moreover, we used the ANOVA decomposition basis of the COSSO to introduce a direct

method to compute the Sobol’ indices. We applied COSSO to the problem of GSA for

several analytical models and reservoir synthetic test cases, and we compared its perfor-

mance to GP method combined with Sobol’ Monte-Carlo method. For all the test cases

COSSO shows very good performances, especially the COSSO-AIPS version, for which

the computational gain was significant compared to COSSO-solver and GP. Consequently,

COSSO-AIPS constitutes an efficient and practical approach to GSA. We have also no-

ticed that the COSSO did not provide good results in the example 1, which is a function

with discontinuities on its derivatives. To address this type of functions we decoded to

investigate the use wavelets basis instead of smoothing splines. Indeed, it is well known

that wavelets are well suited to fit functions with discontinuities. In the next chapter a

new multivariate nonparametric regression method is presented, which can be seen as a

wavelet view of the COSSO.

58



Chapter 4

Wavelet kernel ANOVA

4.1 Introduction

In recent years there has been an important development in the application of wavelet

methods in statistics, especially in signal processing, in image and function representation

methods, with many successes in the efficient analysis and compression of noisy data. As a

result, wavelets have became another standard tool for the statistician. Broadly speaking,

wavelets are functions constructed to satisfy certain mathematical properties, and wavelet

algorithms process data at different resolutions (multiresolution analysis). In other words,

to notice the gross features of the signal we look at it within a large window and to no-

tice the small features we look at a signal within a small window (zoom-in and zoom-ou

property).

The multiresolution analysis provides a good time-frequency localization, which makes

wavelet methods efficient to estimate functions with sharp spikes, and discontinuities.

Thus wavelets are used in various nonparametric regression methods. However, most of

these methods are implemented only for one (signal) or two (image) dimensional problems,

the reason for this is that these algorithms are constructed with the assumptions for the

data to be of dyadic size and with equally spaced points.

Several algorithms have been proposed to overcome the setting of non-dyadic and non-

equispaced design. Among them, Antoniadis et al. (1997) transform the random design

into equispaced data via binning method. Kovac & Silverman (2000) apply the linear

transformation to the data to map it to a dyadic and equispaced set of points. Kerky-

acharian & Picard (2004) project the data on an unusual non-orthonormal basis, called

warped wavelet basis. Amato et al. (2006) suggested a regularization method relying on
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4.2 Wavelet kernel nonparametric regression for non equispaced design

wavelet kernel reproducing Hilbert spaces, which does not require a pre-processing of data.

The method also achieves optimal convergence rates in the Besov spaces when the esti-

mation error is calculated at the design points only no matter how irregular the design is.

Given that, it seems that this method is well adapted to be generalized for the multivariate

regression using wavelets. See Appendix C for more details on wavelets.

Inspired by the COSSO (COmponent Selection and Smoothing Operator) (Lin & Zhang,

2006) and the wavelet kernel penalized estimation for non-equispaced design regression

proposed by Amato et al. (2006), we introduce in this chapter a new approach in es-

timation of ANOVA components. Given a wavelet type expansion of f we consider a

class of wavelet estimators for the nonparametric regression problem using a penalized

least-squares approach with penalties. The penalties are chosen in order to control the

smoothness of the resulting estimator. For this we use the same penalty as the one used

for COSSO, in other words the semi-norm penalty. So we take for penalty, a weighted

sum of wavelet details norms.

In this chapter, we first broadly review some definitions which are given in Amato et al.

(2006). Then we present our nonparametric regression method, named WK-ANOVA, as

well as its algorithm. Finally, numerical simulations are presented and discussed.

4.2 Wavelet kernel nonparametric regression for non equis-

paced design

Consider the univariate regression problem:

yi = f(xi) + εi, i = 1, · · · , n (4.1)

where (xi)i=1,··· ,n is the irregular design, the εi are i.i.d. and N(0, σ2) random errors and

f an unknown regression function to be estimated.

4.2.1 Wavelet kernels

Let G−1 = {−1}× {0}, G0 = {0}× {0, 1} and for each integer J ≥ 1 let GJ = {J}× {k ∈
{0, ..., 2J}; k/2 /∈ Z}, i.e. GJ is the index set of wavelets at resolution level J . The whole

set of indexes pairs (j, k) that describes all wavelets will be denoted by G =
⋃
j≥−1Gj .

Therefore, any function f ∈ L2([0, 1)) admits the infinite wavelet expansion:

f =
∑
g∈G

fgψg
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4.2 Wavelet kernel nonparametric regression for non equispaced design

where ψg is the wavelet basis function indexed by g ∈ G, fg is the correponding expansion

coefficient and ψ−1,0 = φ0,0.

We now define a class of wavelet-based Hilbert spaces. For any function:

Γ : G→ [0,∞)

define the Hilbert space:

HΓ = {f ∈ L2([0, 1]) :
∑
g∈G

Γ(g)|fg|2 <∞}

with scalar product:

〈f, h〉Γ =
∑
g∈G

fghgΓ(g)

and let be ‖ · ‖Γ the associated norm. As GJ is a finite subset of G, we have VJ ⊂ HΓ for

every J ≥ 0. Moreover, for any f ∈ HΓ,

lim
J→∞

‖ f − PJ(f) ‖Γ= 0 (4.2)

where PJ(f) is the projection of a function f into the space VJ . The space HΓ is a RKHS

and the corresponding reproducing kernels are given by

KΓ(x, y) =
∑
g∈G

ψg(x)
Γ(g)

ψg(y), x, y ∈ [0, 1)

where ψg(x) is a wavelet function (see appendix C for more details). By definition of the

index set G, the kernel K can also be written as a sum of the reproducing kernels:

KΓ
j (x, y) =

2j−1∑
k=0

ψj,k(x)
Γ(j, k)

ψj,k(y)

This implies that the RKHS HΓ, can be decomposed into a direct sum of wavelet RKHS’s

(spanned by a set of wavelets of scale j) as

HΓ = V0 ⊕
⊕
j≥0

WΓ
j (4.3)

where each space WΓ
j is the RKHS associated to the kernel KΓ

j . This representation

involves an infinite decomposition of the detail space, in practice we truncate (4.3) up

to a maximum resolution J , in other words, the RKHS HJ,Γ = V0 ⊕
⊕J

j=0 WΓ
j defines a

multiresolution analysis of HΓ and the associated kernel is

KΓ
J (x, y) =

∑
g∈∪0≤j≤JGj

ψg(x)
Γ(g)

ψg(y), x, y ∈ [0, 1)
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4.2 Wavelet kernel nonparametric regression for non equispaced design

Furthermore, from (4.2)

lim
J→∞

‖ KΓ −KΓ
J ‖∞= 0

We assume that Γ is only a function of j and equals to 22js on Gj and s > 1/2, then HΓ

equals to the Sobolev space Bs
2,2([0, 1]) of index s. For more mathematical details we refer

to Amato et al. (2006).

4.2.2 Wavelet kernel penalized estimation

As discussed previously Amato et al. (2006) define a least square procedure for estimating

the unknown regression function f ∈ HJ,Γ by minimizing:

1
n

n∑
i=1

(yi − f(xi))
2 + λ2

J∑
j=0

‖PΓ
j f‖Hj,Γ

where we denote by PΓ
j f the orthogonal projection of f onto WΓ

j . The penalty term is a

sum of the wavelet-based RKHS norm.

Amato et al. (2006) have shown that penalizing the norm by blocks produces a better

regularization. Thus, they propose finding f ∈ HJ,Γ to minimize:

1
n

n∑
i=1

(yi − f(xi))
2 + λ2

J∑
j=0

∑
m

‖PΓ
j,mf‖Hj,m,Γ

(4.4)

where Hj,m,Γ is the RKHS corresponding to the kernel defined by

KΓ
j,m(x, y) =

∑
k∈Tj,m

ψj,k(x)
Γj

ψj,k(y)

where Tj,m correspond to the partition on blocks at resolution j of lenght Mj .

The existence of the estimate obtained by the penalization procedure (4.4) is guaranteed

by the following theorem (Amato et al., 2006).

Theorem 4.2.1 Let HJ,Γ be the wavelet-based RKHS of functions over [0, 1] and consider
its decomposition:

HJ,Γ = V0 ⊕
J⊕
j=0

WΓ
j

Then there exists a minimizer of (4.4) in HJ,Γ.

Note that this method does not require the knowledge of the distribution of the design

points.
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4.3 The wavelet kernel ANOVA

4.3 The wavelet kernel ANOVA

Consider now a multivariate regression problem:

yi = f(xi) + εi, i = 1, · · · , n

where xi = (xi1 , . . . , xid)
T is d dimensional vector of inputs, the εi are i.i.d. and N(0, σ2)

random errors and f an unknown univariate regression function to be estimated.

We choose to study here a more general problem, instead of the deterministic computer

code, to show the good denoising performance of the method.

4.3.1 Definition

The idea behind the well known smoothing spline ANOVA model is to construct a RKHS

F = {f ∈ L2([0, 1]d)} corresponding to the decomposition (3.2). Then the model space F

is the tensor product space of Hl
Γ:

F =
d⊗
l=1

Hl
Γ = {1} ⊕

d∑
l=1

H̄l
Γ ⊕

∑
l<m

[H̄l
Γ ⊗ H̄m

Γ ]... (4.5)

where Hl
Γ = {1}⊕H̄l

Γ and H̄l
Γ are RKHS associated to the first-order component functions

fl of ANOVA expansion. The tensor products [H̄l
Γ ⊗ H̄m

Γ ] are associated to the second-

order component function flm. We denote by Wl
j the RKHS associated to wavelet kernel

Kj (a detail space at scale j) and the variate X(l), thereby the function space Hl
Γ can be

written as

Hl
Γ = V0 ⊕

J⊕
j=0

Γ−1
j Wl

j (4.6)

and the tensor product [Hl
Γ ⊗Hm

Γ ] as

Hl
Γ ⊗Hm

Γ = (V l
0 ⊗ V m

0 )
J⊕
j=0

Γ−2
j (Wl

j ⊗Wm
j ) (4.7)

It is easy to see that V0 is also the subspace of L2([0, 1]) spanned by the constant function

on [0, 1], one has V0 = V l
0 ⊗ V m

0 = {1}.
Thus, the function space F, which is a wavelet-based RKHS, can be also written as

F = {1} ⊕
q⊕

γ=1

Fγ (4.8)
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4.3 The wavelet kernel ANOVA

where Fγ ’s are orthogonal subspaces of F and correspond to the subspaces H̄l
Γ, [H̄l

Γ⊗H̄m
Γ ],

etc . . . In the additive model q = d where d is the number of input parameters and in the

model with two way interaction q = d(d+ 1)/2. We assume that a second order ANOVA

expansion gives a satisfactory approximation of f .

We denote by PΓ
γ f the orthogonal projection of f onto Γ−1

j Wj and ‖ · ‖ the norm in the

RKHS Γ−1
j Wj . Under the framework of smoothing spline ANOVA one way to estimate f

is to find f ∈ F that minimizes:

1
n

n∑
i=1

(yi − f(xi))
2 + λ2

q∑
γ=1

J∑
j=0

2j−1∑
k=0

θ−1
γ,j,k ‖ P

Γ
γ,j,kf ‖2 (4.9)

where θγ,j,k ≥ 0. If θγ,j,k = 0, then the minimizer is taken to satisfy ‖ PΓ
γ,j,kf ‖2= 0, using

the convention 0/0 = 0. The parameter λ controls the trade-off between the first term

in the above expression which discourages the lack of fit of f and the second one which

penalizes the roughness of f .

In analogy with COSSO (Lin & Zhang, 2006) and wavelet kernel penalized estimation

(Amato et al., 2006) we propose the WK-ANOVA procedure, another way to estimate f ,

given by f ∈ F that minimize:

1
n

n∑
i=1

(yi − f(xi))
2 + λ2Rq(f) (4.10)

with Rq(f) =
∑q

γ=1

∑J
j=0

∑2j−1
k=0 ‖ PΓ

γ,j,kf ‖ is a sum of wavelet-based RKHS norms,

instead of the squared RKHS norm employed in (4.9). We note that Rq(f) is not a

norm in F but a pseudo-norm in the following sense: Rq(f) ≥ 0, Rq(cf) =| c | Rq(f),

Rq(f + h) ≤ Rq(f) + Rq(h) ∀ f, h ∈ F, and, Rq(f) > 0 for any non constant f ∈ F.

Futhermore

q∑
γ=1

J∑
j=0

2j−1∑
k=0

‖ PΓ
γ,j,kf ‖2≤ Rq(f)2 ≤ q

q∑
γ=1

J∑
j=0

2j−1∑
k=0

‖ PΓ
γ,j,kf ‖2 (4.11)

Note that there is only one smoothing parameter λ which should be properly chosen,

instead of multiple smoothing parameters θ’s in (4.9).

The existence of the WK-ANOVA estimate, which is due to the convexity of (4.10), is

guaranteed by adapting Theorem 1 of Lin & Zhang (2006).

Theorem 4.3.1 Let F be the wavelet-based RKHS of functions over [0, 1]d. Assume that
F can be decomposed as (4.8). There exists a minimizer of (4.10).
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4.3 The wavelet kernel ANOVA

Define ‖ · ‖n as the Euclidian norm in Rn. Under our previous assumption, s > 1/2 and

Γj = 22sj . The following theorem is equivalent to theorem 2 of Lin & Zhang (2006) and

shows that the WK-ANOVA estimator in the additive model has a rate of convergence

n−s/(2s+1), where s is the order of smoothness of the components.

Theorem 4.3.2 Consider the regression model yi = f0(xi) + εi, i = 1, ..., n, where xi’s
are given deterministic points in [0, 1]d, and the εi’s are independent N(0, σ2) noise vari-
ables. Assume f0 lies in F = {1}⊕

⊕d
l=1 Hl

Γ, with H
γ
Γ = {1}⊕ H̄

γ
Γ being the Sobolev space

Bs
2,2([0, 1]) of index s. Consider the WK-ANOVA estimator f̂ at the design points as de-

fined by (4.10). Then (i) if f0 is not a constant, and λ−1
n = Op(ns/(2s−1))R(2s−1)/(4s+2)

q (f0),
we have ‖ f̂ − f0 ‖n= Op(λn)R1/2

q (f0); (ii) if f0 is a constant, we have ‖ f̂ − f0 ‖n=
Op(max{n−s/(2s−1)λ

−2/(2s−1)
n , n−1/2}).

The following Lemma shows that the solution of (4.10) is in finite dimensional space and

the WK-ANOVA estimate can be computed directly from (4.10) by linear programming

techniques.

Lemma 4.3.3 Let f̂ = b̂ +
∑q

γ=1 f̂γ be a minimizer of (4.10), with fγ ∈ Fγ. Then
f̂γ ∈ span{Kγ(xi, ·), i = 1, ..., n}, where Kγ =

∑
j≥0K

Γ is the reproducing kernel of the
space Fγ

Using the suggestion of Antoniadis & Fan (2001) for solving penalized problems with l1

penality, we can give an equivalent formulation of (4.10) for computational consideration.

Consider the problem of finding θ = {θγ,j,k, γ = 1, ..., q; j = 0, ..., J ; k = 1, ..., 2j − 1} and

f ∈ F to minimize:

1
n

n∑
i=1

(yi − f(xi))
2 + λ0

q∑
γ=1

J∑
j=0

2j−1∑
k=0

θ−1
γ,j,k ‖ P

Γ
γ,j,kf ‖2 +ν

q∑
γ=1

J∑
j=0

2j−1∑
k=0

θγ,j,k (4.12)

subject to θγ,j,k ≥ 0,γ = 1, ..., q, j = 0, ..., J , k = 1, ..., 2j − 1, where λ0 is a fixed positive

constant and ν is a smoothing parameter. We fix λ0 at some value. Then

Lemma 4.3.4 Set ν = λ4/(4λ0). (i) if f̂ minimizes (4.10), set θ̂γ,j,k = λ
1/2
0 ν−1/2 ‖

PΓ
γ,j,kf ‖, then the pair (θ̂, f̂) minimizes (4.12). (ii) On the other hand, if a pair (θ̂, f̂)

minimizes (4.12), then f̂ minimizes (4.10).

As already introduced by Amato et al. (2006) we can penalize the norm of coefficients by

blocks, which allows reducing the number of θ’s that need to be estimated and can provide

a better regularization. Hence, as defined before

KΓ
jm(x, y) =

∑
m

ψj,k(x)
Γj

ψj,k(y)
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4.3 The wavelet kernel ANOVA

where m = 1, ...,Mj and Mj denotes the number of blocks at scale j. In the same way

consider the decomposition Hl
Γ = V0 ⊕

⊕J
j=0

∑
m Γ−1

j Wl
j,m replace (4.12) by

1
n

n∑
i=1

(yi − f(xi))
2 + λ0

q∑
γ=1

J∑
j=0

Mj∑
m=1

θ−1
γ,j,m ‖ P

Γ
γ,j,mf ‖2 +ν

q∑
γ=1

J∑
j=0

Mj∑
m=1

θγ,j,m (4.13)

We can note that the form of (4.13) is similar to the smoothing spline ANOVA (4.9)

with multiple smoothing parameters and an additional penalty on the θ’s. There is only

one smoothing parameter ν in (4.13) and θ’s are part of the estimate, rather than three

smoothing parameters. For the WK-ANOVA procedure the sparsity on the detail compo-

nents is controlled by the additional penalty on θ’s in (4.13) makes possible to have some

θ’s to be zero, thus producing a sparse kernel estimate in sense of Gunn & Kandola (2002).

4.3.2 Algorithm

We will use an iterative optimization algorithm which is equivalent to the one used in Lin

& Zhang (2006) and Amato et al. (2006). On each step of iteration, for any fixed θ we

minimize (4.13) with respect of f , and then for this choice of f we minimize (4.13) with

respect of θ. Note that for any fixed θ (4.13) is equivalent to the smoothing spline ANOVA

procedure. Therefore from Wahba (1990) the solution f of (4.13) has the following form

f(x) = b+
n∑
i=1

ci

q∑
γ=0

J∑
j=0

Mj∑
m=1

θγ,j,mK
Γ
γ,j,m(xi,x) (4.14)

Where c = (c1, ..., cn)T , b ∈ R, KΓ
γ,j,m is the reproducing kernel of Γ−1

j Wl
γ,j,m if γ ≤ d

and is the reproducing kernel of Γ−2
j Wl

γ,j,m ⊗W
p
γ,j,m else. In what follows, we denote

by KΓ
γ,j,m the n × n matrix {KΓ

γ,j,m(xi,xt)}, i = 1, ..., n, t = 1, ..., n, by KΓ
θ the matrix∑q

γ=0

∑J
j=0

∑Mj

m=1 θγ,j,mK
Γ
γ,j,m(xi,x) and 1n be the column vector consisting for n ones.

Then we can write f = KΓ
θ c + b1n, it follows that (4.13) can be expressed as

1
n
‖ Y −

q∑
γ=0

J∑
j=0

Mj∑
m=1

θγ,j,mK
Γ
γ,j,mc− b1n ‖2n +λ0cTKΓ

θ c + ν

q∑
γ=0

J∑
j=0

Mj∑
m=1

θγ,j,m (4.15)

where θγ,j,m ≥ 0, γ = 1, ..., q, j = 0, ..., J , m = 1, ...,Mj .

If θ’s are fixed, then (4.15) can be written as

min
c,b
‖ Y −KΓ

θ c− b1n ‖2n +nλ0cTKΓ
θ c (4.16)
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4.3 The wavelet kernel ANOVA

which is a quadratic minimization problem and the solution is given in Wahba (1990).

Let b and c were fixed at their values from (4.16), denote dγ,j,m = KΓ
γ,j,mc, and let D

be the n× (
∑

γ

∑
j(2

j − 1)) matrix with the (γ, j,m)th column being dγ,j,m. The θ that

minimizes (4.15) is the same as the solution to

min
θ
‖ z−Dθ ‖2n +nν

q∑
γ=0

J∑
j=0

Mj∑
m=1

θγ,j,m subject to θγ,j,m ≥ 0 (4.17)

where z = Y − (1/2)nλ0c − b1n. The formulation in (4.17) is a high-dimensional NNG

problem for which there exists many algorithms to find the solution (as discussed in chapter

2 and 3).

By starting from a simpler estimate such as the one obtained by penalized least squares

with quadratic penalties on the coefficients, a one step update procedure is sufficient to

improve on the WK-ANOVA estimator. Then we propose a one step update procedure:

1. Initialization: Fix θγ,j,k = 1, γ = 1, ..., q, j = 0, ..., J , m = 1, ...,Mj .

2. Tune λ0 using v-fold-cross-validation.

3. Solve for c and b with (4.16).

4. For each fixed ν, solve (4.17) with the c and b obtained in step 3. Tune ν using

v-fold-cross-validation. The θ’s corresponding to the best ν are the final solution at

this step.

5. With the new θ tune λ0 using v-fold-cross-validation.

6. With the new θ and λ0, solve for c and b with (4.16)

A discussion of a one step procedure and fully iterated procedure can be found in An-

toniadis & Fan (2001). The performance of the WK-ANOVA estimator depends on the

smoothing parameter ν and the chosen resolution J . The choice of these parameters ob-

viously involves an arbitrary decision. In our work we will fix J = log2 n, but by varying

the resolution level we can explore features of the data arising on different scales. We will

use v fold cross validation to tune ν. It seems reasonable to take v equal to 5.

We also choose to use compactly supported wavelets, it follows that the numerical algo-

rithm for the kernel computation is based on Daubechies cascade procedures (Daubechies,

1992). Specifically, the cascade algorithm computes the values of wavelets at dyadic points.
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4.4 Global sensitivity analysis by WK-ANOVA

In order to evaluate the kernel matrices KΓ
γ,j,m the values of the wavelets have been com-

puted on a fine dyadic grid and stored in a table. Values of wavelets at arbitrary points,

necessary for evaluation of KΓ
γ,j,m, were then computed by considering the value at the

closest point on the tabulated grid. The table construction of wavelet kernel matrices

requires O(n2S) elementary operations where S denotes the length of with wavelet filter.

However, the table is constructed once and stored in memory. In addition, as the dimen-

sion of the problem grows, the number of matrices KΓ
γ,j,m also grows as well, and because

of the v-fold-cross-validation these matrices must be re-computed several times. All this

increases significantly the computational time, and therefore it is necessary to compute

the matrices once and stored them in memory.

4.4 Global sensitivity analysis by WK-ANOVA

It has been shown in chapter 2 that the component functions in the ANOVA decomposition

are independent and give information on the input/output relationships. Moreover, the

total variance V of the model can be decomposed into its input variable contributions.

Using the variance decomposition (2.9) and the WK-ANOVA solution form (4.14) we have

V ≈
d∑
l=1

Vl +
∑

1≤l<p≤d
Vlp (4.18)

≈
q∑

γ=1

∫ 1

0

[ J∑
j=0

Mj∑
m=1

θγ,j,m

n∑
i=1

ciK
Γ
γ,j,m(xi,x)

]2

dX(γ) (4.19)

where dX(γ) ≡ dX(γ) for γ = 1, . . . , d and dX(γ) ≡ dX(l)dX(p) for γ = d + 1, . . . , q with

1 ≤ j < l ≤ d.

Let’s consider aN i.i.d random sample from the distribution ofX, say {xi = (xi1 , . . . , xid)
T , i =

1, . . . , N}. The Monte-Carlo estimate of Vj is given by

V̂l =
1
N

N∑
α=1

[ J∑
j=0

Mj∑
m=1

θl,j,m

n∑
i=1

ciK
Γ
l,j,m(xij , xαl)

]2

(4.20)

Hence the main effect indices (first order sensitivity indices) are estimated as

Ŝj =
V̂l

V̂
(4.21)

where V̂ is the total variance estimation. The estimation of Vlp are given by

V̂γ=lp =
1
N

N∑
α=1

[ J∑
j=0

Mj∑
m=1

θγ,j,m

n∑
i=1

ciK
Γ
l,j,m(xij , xαl)K

Γ
p,j,m(xip , xαp)

]2

(4.22)
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Thus, the second order indices are defined as

Ŝjl =
V̂jl

V̂
(4.23)

Assuming that a truncated form of ANOVA decomposition provides a satisfactory descrip-

tion of the model, the total effect indices estimation is given by

ŜTj = Ŝj +
∑
l 6=j

Ŝjl (4.24)

Notice that to compute all the indices (main effect, interaction and total effect) we need

only N evaluations of the response surface.

4.5 Simulations

In this section we will study the empirical performance of WK-ANOVA, in terms of pre-

diction accuracy and global sensitivity analysis (GSA). The measure of the prediction

accuracy is given by Q2 which is defined as

Q2 = 1−
∑ntest

i=1 (yi − f̂(xi))2∑ntest
i=1 (yi − ȳ)2

,with ntest = 500 (4.25)

where yi denotes the ith test observation of the test set, ȳ is their empirical mean and

f̂(xi) is the predicted value. We compare the obtained results with those obtained by

COSSO-AIPS and GP. We also compare the methods for different experimental design

sizes, uniformly distributed on [0, 1]d and built by maximinLHD procedure. Moreover,

different signal to noise ratio were applied SNR ≡ 1 : 3 (high noise) SNR ≡ 1 : 7

(medium noise) and SNR ≡ ∞ (without noise), with SNR = [Var(f(X))]/σ2. For each

setting of some test examples, we perform 50 times the test.

Concerning the performance in terms of GSA, we will study the accuracy of the total

effect indices estimation. Furthermore, we will study the size effect of the sample used to

estimate the total effect indices by Monte-Carlo integration.

We used the iterative projected shrinkage algorithm (IPS) to solve the NNG step of the

algorithm. Moreover, we fixed Mj = 2j−1 for γ = 1, . . . , d and Mj = 1 for γ > d, in other

words we penalize by the translation parameter k for the main effects and by resolution j

for the interaction. This assumption permits us reducing significantly the computational

time. The wavelets used in our tests were Daubechies wavelets with 3 vanishing moments.

The WK-ANOVA was developed in R. We run the simulations on a computer operated by
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32bits-Windows OS, this latter imposes limits on the total memory allocation. Knowing

that the storage of the matrices KΓ
γ,j,m is memory consuming, we limit the dimension to

our examples to 8 and the sample size to estimate Q2 and the sensitivity indices to 500.

The GP models are fitted by a R code contributed by COUGAR team (IFP).

4.5.1 Example 1

Let’s consider an additive model with X ∈ [0, 1]6, with the following function

f(X) = g1(X(1)) + g2(X(2)) + g3(X(3)) + g4(X(4)) (4.26)

where

g1(t) = t; g2(t) = (2t− 1)2; g3(t) =
sin(2πt)

2− sin(2πt)
;

g4(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin2(2πt) + 0.4 cos3(2πt) + 0.5 sin3(2πt)

Therefore X(5), X(6) are uninformative. We use an experimental design of size n = 200,

built by maxminLHD, and SNR ≡ ∞. Figure 4.1 gives the plot of data observation

with the true ANOVA component fl and theirs WK-ANOVA estimates against inputs

X(l), l = 1, . . . , 6. The Q2 of this WK-ANOVA estimate is equal to 0.96 which is a good

performance. However, we can note that the estimation of the linear function component

f1 does suffer from using a wavelet method. Part of the reason is the boundary effects

caused by using periodic wavelets.

4.5.2 Example 2

In this first test case, consider an additive model with X ∈ [0, 1]8, with the following

function

f(X) = g1(X(1)) + g2(X(2)) + g3(X(3)) + g4(X(4)) + ε

where

g1(t) = 0.1 sin(2πt) + 0.2 cos(2πt) + 0.3 sin(2πt) + 0.4 cos3(2πt) + 0.5 sin3(2πt)

g2(t) = (2t− 1)2

g3(t) = | sin(3πt)|+ 0.5| sin(5πt)|
2− sin(4πt)

g4(t) =
| sin(2πt)|

2− sin(2πt)
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Figure 4.1: Plot of the six true functional components, fl, l = 1, . . . 4 along with the data
observations and theirs estimates given by WK-ANOVA for a realization from example 1
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Therefore X(5), ..., X(8) are uninformative. Note that all informative input of f have

nonlinear response, in addition g3 and g4 have discontinuities on the derivative. This

analytical model is fast enough to evaluate so we can calculate the total effect indices with

great precision. Thus the reference values of the indices are computed by direct Monte-

Carlo simulation using the Sobol’ method (with N = 250000, which correspond to 5.106

evaluations of the example 2 model). Table 4.1 shows 95% confidence intervals (95%CI)

provided by 100 different samples and the reference values that we choose.

Input Total effect 95%CI Reference value

X(1) [0.623, 0.627] 0.625

X(2) [0.125, 0.127] 0.126

X(3) [0.131, 0.133] 0.132

X(4) [0.117, 0.118] 0.117

X(5,...,8) 0 0

Table 4.1: 95% CI and the reference values of the total effect indices for the example 2

4.5.2.1 Assessment of the prediction accuracy

The true ANOVA components fl, l = 1, . . . , n with their WK-ANOVA, COSSO-AIPS and

GP estimates are given in figure 4.2. These estimates were built with an experimental

design of size n = 200 and with noise ratio SNR = 3. The WK-ANOVA has more fidelity

to the reality than COSSO-AIPS and GP especially for the components f3 and f4. Indeed,

WK-ANOVA captures more the discontinuities of the components f3 and f4. This good

fit is due to the properties of wavelets analysis. In other words, our algorithm based on

wavelets is well suited to this type of functions (with discontinuities on the derivatives).

We run the simulation 50 times for different sizes of experimental design (n = 50, 100, 200)

and different signal to noise ratio SNR ≡ 1 : 3, SNR ≡ 1 : 7 and SNR ≡ ∞. The results

are summarized in figure 4.3 each panel is a boxplot of the 50 estimations of Q2. As

expected, the accuracy of WK-ANOVA estimates increases when the sample size raise.

We can see that WK-ANOVA procedure outperform COSSO-AIPS and GP in all the

studied settings. Moreover, even though there are much more parameters to estimate

with WK-ANOVA comparing to COSSO-AIPS, this procedure does not seem to suffer

from small sample size effect. For this example, WK-ANOVA has shown better denoising
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Figure 4.2: Plot of fl, l = 1, . . . 4 along with theirs estimates given by WK-ANOVA,
COSSO-AIPS and GP for a realization from example 2

properties and better predictivity. In addition, for n = 100 and n = 200 WK-ANOVA is

the most robust.

4.5.2.2 Global sensitivity analysis

In this section, we apply the WK-ANOVA in order to estimate the total effect indices. We

will focus here only on a deterministic problem. We first study the effect of different sample

used to compute the indices. Indeed, as discussed previously our WK-ANOVA algorithm

has some memory limit, so to avoid this problem we limited the sample size to N = 500,

which is not sufficient to have a very good robustness for indices estimations. Thus we

build using maximinLHD procedure, 100 samples of size N = 500, then we estimate

the indices using a WK-ANOVA response surface built on an experimental design of size
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Figure 4.3: Q2 results from example 2
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n = 200 and with Q2 = 0.96. Figure 4.4 summarizes the results for this 100 samples.

Each panel is a boxplot of the 100 estimations of the total effect index ŜTj , j = 1, . . . , 8.

Dashed lines are drawn at the corresponding reference values of the total effect indices.

We see that even if we use a small sample to estimate the indices the robustness of the

method remains good.

To study the performance of the estimation of the total effect indices versus sizes of the

experimental design, we compute these indices for each of the fifty realizations for SNR ≡
∞ and the for three different sizes (n = 50, n = 100 and n = 200). Figure 4.5 summarizes

the results, each panel is a boxplot of the 50 estimations of ŜTj , j = 1, . . . , 8. Dashed lines

are drawn at the corresponding reference values of the total effects indices. It appears

that the indices estimation suffers from the small experimental design (n = 50). Indeed,

WK-ANOVA fails to estimate the input/output relation of X(3), which corresponds to

the most non-linear component. In addition, it happens that WK-ANOVA includes some

uninformative input into the model. However, the estimation of the total effect indices as

well as the variable selection become accurate for experimental designs of sizes n = 100

and n = 200.
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Figure 4.4: Total effect indices vs. sample effect (example 2)

4.5.3 Example 3

Consider the g-Sobol function, described in chapter 3, which is strongly nonlinear, and

have non-monotonic relationship. To remind, the g-Sobol is defined for 8 inputs as

gSobol(X(1), . . . , X(8)) =
8∏

k=1

gk(X(k)) + ε with gk(Xk) =

∣∣4X(k) − 2
∣∣+ ak

1 + ak
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Figure 4.5: Total effect indices vs. experimental design size effect (example 2)
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4.5.3.1 Assessment of the prediction accuracy

We run the simulation 50 times for different sizes of experimental design (n = 50, 100, 200)

and different signal to noise ratio SNR ≡ 1 : 3, SNR ≡ 1 : 7 and SNR ≡ ∞. The results

are summarized in figure 4.6 each panel is a boxplot of the 50 estimations of Q2. We can see

that for all the tested experimental design sizes and noise ratios WK-ANOVA outperforms

COSSO-AIPS and GP. Moreover, the accuracy of the prediction is very good (Q̄2 = 0.98)

even with n = 50 for the seatting without noise, when a design with n = 200 design is

necessary to perform a response surface with Q̄2 = 0.94 for GP and with Q̄2 = 0.90 for

COSSO. Clearly, for this example WK-ANOVA has the best results in term of predictivity,

denoising property and robustness.

4.5.3.2 Global sensitivity analysis

As in the previous example we apply the WK-ANOVA in order to estimate the total

effect indices. We will focus here only on a deterministic problem. We first study the

effect of different sample used to compute the indices. Thus we build using maximinLHD

procedure, 100 samples of size N = 500, then we estimate the indices using a WK-ANOVA

response surface built on an experimental design of size n = 200 and with Q2 = 0.99.

Figure 4.7 summarizes the results for these 100 samples. Each panel is a boxplot of the

100 estimations of the total effect index ŜTj , j = 1, . . . , 8. Dashed lines are drawn at the

corresponding analytical values of the total effects indices. We see that even if we use a

small sample to estimate the indices the robustness of the method remains good.

To study the performance of the estimation of the total effect indices versus sizes of the

experimental design, we compute this indices for each of the fifty realizations for SNR ≡ ∞
and for the three different sizes (n = 50, n = 100 and n = 200). Figure 4.8 summarizes

the results, each panel is a boxplot of the 50 estimations of ŜTj , j = 1, . . . , 8. Dashed

lines are drawn at the corresponding reference values of the total effects indices. It is clear

that GSA with WK-ANOVA response surface provides excellent results with all chosen

experimental design sizes.
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Figure 4.6: Q2 results from example 3
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Figure 4.7: Total effect indices vs. sample effect (example 3)

4.6 The reservoir test case

4.6.1 IC Fault model

A description of IC Fault model has been given in section 3.7.2.1. Numerical results

performed in the previous chapter demonstrated the complexity of this model due to some

discontinuities caused by the presence of a fault. So we expect that using wavelets methods

can improve the prediction accuracy.

We remind that the three uncertain parameters are selected independently from uniform

distributions with ranges : h ∈ [0, 60] kg ∈ [100, 200] and kp ∈ [0, 50]. The analysed output

is the same as that used in the chapter 3: the oil production rate Qop at 10 years.

4.6.1.1 Assessment of the prediction accuracy

We construct response surfaces using WK-ANOVA of experimental designs of sizes n =

100, n = 200 and n = 400. Q2 has been estimated on the same sample set (ntest =

25000) used in the previous chapter for COSSO-AIPS and GP estimate. Table 4.2 shows

the performance of WK-ANOVA comparing to the results obtained using COSSO-AIPS

and GP. We can see here that COSSO-AIPS outperforms WK-ANOVA and GP for the

experimental designs of sizes n = 200 and n = 400. In addition, WK-ANOVA has very

similar results to those obtained by GP. The underperformance of WK-ANOVA comparing

to the COSSO-AIPS can be explained by boundary effects caused by the use of periodic

wavelets on a non periodic model.
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Figure 4.8: Total effect indices vs. experimental design size effect (example 3)
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4.6 The reservoir test case

n Q2

COSSO-AIPS

100 0.34
200 0.63
400 0.72
1600 0.81

GP

100 0.33
200 0.57
400 0.52
1600 0.66

WK-ANOVA

100 0.36
200 0.52
400 0.59
1600 −

Table 4.2: Q2 results from IC Fault model

4.6.1.2 Global sensitivity analysis

To perform GSA we use the response surface built using the n = 400 experimental design.

To compute the sensitivity indices we use a sample of size N = 500. Table 4.3 shows

the results compared to those obtained by COSSO-AIPS and GP using the n = 1600

experimental design (see chapter 3). Compared with others the GSA results of WK-

ANOVA are qualitatively good for this test case.

GP

Input Total effect Main effect

h 0.381 0.100
kg 0.173 0.021
kp 0.809 0.596

COSSO-AIPS

Input Total effect Main effect

h 0.375 0.225
kg 0.030 0.011
kp 0.733 0.586

WK-ANOVA

Input Total effect Main effect

h 0.261 0.193
kg 0.085 0.038
kp 0.753 0.681

Table 4.3: GSA results from IC Fault model
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4.7 Conclusion

In this chapter, we introduced a new regularized nonparametric regression method, that

we named WK-ANOVA. Differently than other wavelet methods, WK-ANOVA does not

require a equispaced experimental design points. In addition, WK-ANOVA is based on

ANOVA decomposition, which permits the model output variance to be decomposed into

its input contributions. This latter property led us to introduce a direct method to com-

pute Sobol’s indices, in the same way as we did for the COSSO method.

We applied WK-ANOVA to a more general multidimensional nonparametric regression

problem (by adding a noise term to the model), instead of using WK-ANOVA only as a

response surface with deterministic computer codes. This choice was motivated by our

desire to show the good denoising property of WK-ANOVA.

For the tested analytical examples which contains some discontinuities, WK-ANOVA out-

performs COSSO-AIPS and GP. This good performance is due to the use of wavelets.

However, the wavelet methods have undesirable boundary effects (as seen in example 1

and in the IC Fault model) appearing with the estimation of nonperiodic input/output

relationship, which are introduced by the use of a periodic wavelets.
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Chapter 5

Computer model with time series

output

5.1 Introduction

Another challenging problem of response surface frameworks comes up when the analyst

plans to study the functional output of the computer models, especially for performing a

sensitivity analysis. Some recent works has been done to address this problem. To name

few of them, Campbell et al. (2006) express the functional output in terms of appropriate

functional basis and retain the most important components in its decomposition, then

perform the sensitivity analysis on the selected coefficients. Zhang et al. (2007) propose a

kriging model to investigate computer codes with multiple responses and use an extended

functional ANOVA for multiple responses in order to analyze the input effects. Marrel et al.

(to appear) introduce a method based on wavelet decompositions and Gaussian processes

to model the spatial map outputs and then use appropriate Monte-Carlo techniques to

estimate the Sobol’s indices.

In our considered application, reservoir simulation produce time series datasets. The

simplest method, which is widely used, is to include the time as an extra input factor in the

model, see, for example, Drignei (2010). In doing so, classical response surface methods

can be applied, such as the ones based on Gaussian process modelling. Unfortunately,

two complications arise in practice with such an approach: the need to deal with large

datasets, which results in a computationally demanding problem (sometimes intractable),

and, when the functional outputs are irregular, it may produce oversmooth estimates of

the response surface. In a recent work, Bayarri et al. (2007) have proposed an original
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5.2 The functional response surface methodology

strategy to handle this problem, which consists in constructing a GP response surface

for the selected coefficients of the output’s decomposition in a wavelet basis. Indeed, the

output corresponding to each design point is a time-series curve, so it is easy to decompose

on a wavelet basis. Inspired by this approach, we present in this chapter a methodology

based on a COSSO-like method and use a kind of vertical-energy thresholding procedure

to select the wavelet coefficients. The goal of this methodology is to perform sensitivity

analysis on functional outputs, so we will study sensitivity indices based on a functional

ANOVA decomposition.

5.2 The functional response surface methodology

5.2.1 Problem formulation

Consider again a mathematical model of a computer code:

Y = f(X) (5.1)

where Y = (Y (1), . . . , Y (T )) is a T -dimensional output vector of the computer code reali-

sations, X = (X(1), . . . , X(d)) a d-dimensional input vector which represents the uncertain

parameters/factors of the simulator and f : Rd → RT is an unknown function that models

the relationship between the input factors and the output of the computer code.

It is assumed that we have n independent observations {(yi,xi), i = 1, . . . , n} of a com-

puter code, generated by the relation given in (5.1), where yi = (yi1 , . . . , yiT ) and xi =

(xi1 , . . . , xid). It also assumed that each yi = (yi1 , . . . , yiT ) represent a time series curve,

where T is the number of time sampling points. In many scenarios these curves are

irregular, so a wavelet decomposition would be a good choice for basis representation.

5.2.2 Wavelet decomposition

For simplicity, in the following we assume that T is dyadic, which means that T = 2J for

some positive integer J . We also assume that the time sampling points are equally spaced.

Then a discrete wavelet transform (DWT) is applied to each yi as follow

di = Wyi

where di = (si0,0, d
i
0,0, . . . , d

i
J−1,2J−1−1

)T is an T -dimensional vector with components (the

discrete) scaling coefficient si0,0 and (the discrete) wavelet coefficients dij,k. For more sim-

plicity denote di = (di1, . . . , d
i
T )T where dit is the wavelet coefficients at the tth wavelet-

position. The matrix W is an orthogonal T × T matrix associated with the orthonormal
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5.2 The functional response surface methodology

wavelet basis. In addition, yi can be recovered using the inverse discrete wavelet transform

(IDWT). For more details on DWT and IDWT see appendix C. Note that if there are T

time sampling points there will be T wavelet coefficients (include the scaling coefficient at

resolution 0).

One of the most important property of wavelet is that many of the coefficients are non-

significant so we can use a thresholding procedure to keep only the important ones and

set to zero all the others (thresholding). As discussed in appendix C many thresholding

procedures exist. The most common strategy in the wavelet literature for treating several

data curves, is to apply thresholding procedures to each curve separately. Then, using the

union or intersection of wavelet coefficients selected after such individual curves thresh-

olding, the resulting combined set of coefficients is assumed to represent adequately and

simultaneously all curves that have been analyzed (see for example Lada et al. (2002) and

Bayarri et al. (2007)). In the framework of meta-modeling the functional outputs of a

computer code, Bayarri et al. (2007)) apply a hard thresholding to each curve yi and then

use the union of selected wavelet coefficients to construct a representative set of coefficients

for approximating the whole set of original curves. It is clear that this kind of strategy

is mainly based on a thresholding criterion that has been developed and is optimal for a

single curve analysis, and not for a whole set of curves. Hereafter, we propose to use a

criterion that is better adapted to analyze a set of multiple curves.

5.2.3 Vertical energy thresholding

Jung & Lu (2004) introduced the vertical energy thresholding (VET) procedure, which is

similar to the classical hard thresholding procedure (see appendix C for more details) and

is defined as follows

δV ETλ (dt) =
{

0 if ‖ dt ‖2≤ λ
dt if ‖ dt ‖2> λ

(5.2)

where 0 is a n-dimensional vector of zeros, dt = (d1
t , . . . , d

n
t )T with t = 1, . . . , T and , for

each t = 1, . . . , T , ‖ dt ‖2 denotes the squared Euclidian norm of dt defined by

‖ dt ‖2= (d1
t )

2 + . . .+ (dnt )2.

The thresholding parameter λ is chosen by minimizing the following criterion

ORRE(λ) =
∑T

t=1 ‖ dt − δV ETλ (dt) ‖2∑T
t=1 ‖ dt ‖2

+
∑T

t=1 I(‖ dt ‖2> λ)
T

(5.3)
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5.2 The functional response surface methodology

where I(·) denotes the indicator function. Notice that using (5.2) means that when a

wavelet coefficient (time index) is selected, the coefficients from all curves at this position

will be selected.

Let us define the reconstruction relative error for each curve as follows

REi =
(
∑T

t=1 (yit − ŷit)2)1/2

(
∑T

t=1 y
2
it

)1/2
, i = 1, . . . , n

The criteria ORRE (overall relative reconstruction error) is composed by two components.

The first one represents a normalized reconstruction error for the approximated wavelet

model. The second one is the normalized number of coefficients selected, which, depending

on λ, discourages using a high number of coefficients. It also can be seen as a penalty

term for the minimization of the first term in (5.3). Consequently, the idea of the ORRE

criterion is to balance the need for approximation accuracy and the need to minimize the

complexity of the whole set of curves decompositiont. Ideally, only a small number of

coefficients should be selected, which permit us to decrease the computational complexity.

For a better approximation accuracy we have decided to retain all the scaling coefficients

as well as all wavelets coefficients for levels j ≤ 2. In other words we threshold the wavelet

coefficients vectors dt only for t = 9, . . . , T .

5.2.4 Approximating wavelet coefficients with COSSO

Once applied, assume that the VET procedure described above has selected T ∗ coefficients

vectors dt, and let D be the index set of the corresponding time indices (i.e. wavelet-

positions). Given the fact that a wavelet decomposition has a tendency to decorrelate the

resulting coefficients, we will assume that for each time index that has been retained, any

component (i = 1, . . . , n) of the corresponding wavelet coefficient dt, generically say Dt

can be considered as a scalar output of a simulator given by the following relation

Dt = ht(X), t ∈ D (5.4)

where X = (X(1), . . . , X(d)) is a d-dimensional input vector which represents the uncertain

parameters/factors of the simulator and ht : Rd → R is an unknown function that models

the relationship between the input factors and the wavelet coefficient corresponding to the

tth wavelet-position. It is furthermore assumed that, for each t ∈ D, the components of

corresponding wavelet dt form n independent observations {(dit,xi = (xi1 , . . . , xid)), i =

86



5.2 The functional response surface methodology

1, . . . , n}, generated by the relation (5.4).

The COSSO estimate of ht is given by the minimizer of

1
n

n∑
i=1

{dit − ht(xi)}2 + λ2
q∑

α=1

‖ Pαht ‖ (5.5)

The algorithm to solve this convex problem has already been described in chapter 3. Thus,

the solution of (5.5) has the following form

ht(x) = bt +
n∑
i=1

cti

q∑
α=1

θtαKα(xi,x) (5.6)

where bt, cti and θtα are the estimates of the parameters corresponding to the approximation

of the tth wavelet coefficient. Finally, the approximation of dt takes the form d̂t =

Kθc + b1n.

5.2.5 Approximating the computer code

In the previous section we have presented a method to approximate the wavelet coefficients

that remain selected after the thresholding procedure. Our goal now is to use these

coefficients to build an approximation of the computer code represented by the function

f . Indeed, the time series curve Y can be efficiently approximated using the IDWT by Ŷ

which is defined as follows:

Ŷ = W T d̂

where d̂ = (d̂1, . . . , d̂T ) with d̂t = 0 if t /∈ D.

5.2.6 The methodology

In summary, to approximate the relationship between the input factors and the functional

output of the computer code we apply the following procedure:

1. Wavelet decomposition : apply to each output curve yi the DWT.

2. Dimension reduction: perform the VET procedure to the wavelet coefficients ob-

tained in the step 1.

3. Approximation of wavelet coefficients: approximate each ht functions, which models

the relationship between the input factors and the wavelet coefficients retained in

the step 2, using COSSO.

4. Approximation of the computer code: apply the IDWT to the approximated wavelet

coefficients (in step 3) to obtain the approximation of the time series output Y.
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5.3 Monte-Carlo procedure for estimation of time dependent Sobol’s indices

5.3 Monte-Carlo procedure for estimation of time depen-

dent Sobol’s indices

In this section we will use the original Sobol’s Monte-Carlo estimation method and our

methodology to estimate the set of time dependent sensitivity indices. Thus, again, we

consider observing an N i.i.d random sample from the distribution of X, say {xi =

(xi1 , . . . , xid)
T , i = 1, . . . , N}. For each time index t, the constant f (t)

0 and the total

variance V t are estimated by

f̂
(t)
0 =

1
N

N∑
i=1

ŷit (5.7)

V̂ (t) =
1
N

N∑
i=1

ŷ2
it − (f̂ (t)

0 )2 (5.8)

As already described in Chapter 2, Sobol (1993) has used a Monte-Carlo procedure to

estimate the variance of the conditional expectations. Thus, the estimation of V (t)
j involves

two independent i.i.d. N -sized random samples sets {xi = (xi1 , . . . , xid)
T , i = 1, . . . , N}

and {zi = (zi1 , . . . , zid)
T , i = 1, . . . , N} from the distribution of X. The Monte-Carlo

estimate of V t
j is then given by

V̂
(t)
j =

1
N

N∑
i=1

ŷit ŷ
∗
it − (f̂ (t)

0 )2 (5.9)

where ŷ∗it is the approximated output of the computer code at time t corresponding to the

input vector (zi1 , . . . zij−1 , xij , zij+1 , . . . , zid)
T . Thus, the first order indices are estimated

as

Ŝ
(t)
j =

V̂
(t)
j

V̂ (t)
(5.10)

The estimations of V (t)
jl are given by the same procedure as

V̂
(t)
jl =

1
N

N∑
i=1

ŷit ŷ
∗∗
it − (f̂ (t)

0 )2 (5.11)

where ŷ∗∗it is the approximated output of the computer code at time t corresponding to the

input vector (zi1 , . . . zij−1 , xij , zij+1 , . . . , zil−1
, xil , zil+1

, . . . , zid)
T . Thus, the second order

indices are estimated by

Ŝ
(t)
jl =

V̂
(t)
jl − V̂

(t)
j − V̂

(t)
l

V̂ (t)
(5.12)

88



5.4 Numerical results

and so on for obtaining the estimates of the sensitivity indices of higher order. The total

effect indices at time t, S(t)
Tj

, can also be estimated directly, without estimating all indices

which include the index j. Indeed, once again total effect time dependent indices can be

written as

S
(t)
Tj

= 1− V [E(Y (t)|X(−j))]
V (t)

= 1−
V

(t)
−j

V (t)
(5.13)

where V (t)
−j correspond to the variance of the expectation conditioned to all the inputs

except X(j). The estimation of V (t)
−j is given by

V̂
(t)
−j =

1
N

N∑
i=1

ŷit ŷ
∗∗∗
it − (f̂ (t)

0 )2 (5.14)

where ŷ∗∗∗it is the approximated output of the computer code at time t corresponding to

the input vector (xi1 , . . . xij−1 , zij , xij+1 , . . . , xid)
T . Hence the estimation of the total effect

indices STj

Ŝ
(t)
Tj

= 1−
V̂

(t)
−j

V̂ (t)
(5.15)

5.4 Numerical results

We illustrate here the proposed methodology on an example involving the IC Fault reser-

voir test case. The empirical performance of the model approximation will be measured

at each considered time step using Q2, which is defined as follows

Q
(t)
2 = 1−

∑ntest
i=1 (yit − ŷit)2∑ntest
i=1 (yit − ȳ(t))2

,with ntest = 1000 (5.16)

where yit denotes the ith test observation of the test set at time t, ȳ(t) is their empirical

mean and ŷit is the predicted value at the design point xi and time t.

To fit the appropriate COSSO models we have used our COSSO-AIPS algorithm, and to

perform the DWT and IDWT we have used the R library “wavethresh” contributed by

Guy Nason. The wavelets used in this test were Daubechies wavelets with 3 vanishing

moments.

A description of the IC Fault model has been given in section 3.7.2.1. We recall here that

the three uncertain parameters are selected independently from uniform distributions with

ranges : h ∈ [0, 60] kg ∈ [100, 200] and kp ∈ [0, 50]. The analyzed output is the time series

of the oil production rate reservoir simulator given at the months 5, 6, . . . , 35, 36, which

correspond to T = 32.
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Figure 5.1: Oil production rate from month 5 to month 36

5.4.0.1 Assessment of the prediction accuracy

The simulator is run on an experimental design of size n = 400 builts using maximinLHD

procedure, figure 5.1 shows the corresponding time series curves. We have then applied

our methodology to approximate the model. After performing the VET procedure, 8 of

32 wavelet-positions were selected. To emphasize the good performance of COSSO, we

compare the obtained results with those obtained using our methodology but instead of

using COSSO we use a GP based approach. Figure 5.2 summarizes the results. We can see

here that using COSSO gives us a better predictive approximation than using GP. We can

also note that Q(t)
2 decreases when approaching the time step 30, part of the reason being

that the response becomes more complex in this period of time. However, the accuracy

remains satisfactory.

5.4.0.2 Global sensitivity analysis

In addition to the empirical prediction performance we also have studied the empirical

GSA performance. To compute the total effect and main effect indices with our COSSO

based methodology we use 50 samples of size N = 10000 and apply Sobol’s Monte-Carlo

based estimation method described in the previous section. Figure 5.3 and figure 5.4 show
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Figure 5.2: Q2 estimation at each month from month 5 to month 36.

respectively the computed total effect and main effect indices with 95% CI (confidence

intervals). We can see that the indices vary differently throughout time. Indeed, when

the indices corresponding to kg increase those associated to h and kp decrease and the

opposite is true. We may also note that until roughly time step 25, the factors h and kp

present small interaction effects and after this time step their main effects decreases to

become less important at the end of the studied period.

5.5 Conclusion

The purpose of this chapter has been to introduce an innovative methodology to approxi-

mate the computer code with time series output. This methodology is based on an expan-

sion of the time series outputs in a wavelet basis, followed by a vertical energy thresholding

procedure (VET), which is designed for analyzing multiple curve sets unlike the classical

univariate curve thresholding methods. The latter reduces the dimension of the problem

and as such decreases computation complexity. In addition, instead of the widely used GP

approach we have used a COSSO-like method, developed and discussed in Chapter 3, to

approximate the retained wavelet coefficients. We have also adapted Sobol’s Monte-Carlo

bases estimation methods to compute time-dependent sensitivity indices. The proposed

methodology has been applied to a reservoir test case with success.
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Figure 5.3: Total effect indices estimation with 95% CI at each month from month 5 to
month 36
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Figure 5.4: Main effect indices estimation with 95% CI at each month from month 5 to
month 36
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Chapter 6

Conclusion and perspectives

6.1 Conclusion

The purpose of this dissertation is to investigate innovative response surface methods to

address the problem of sensitivity analysis for complex and computationally demanding

computer codes. To this end, we have focused our research work on methods based on

analysis of variance (ANOVA) decomposition. This choice is motivated by the good results

of such methods in the framework of nonparametric regression, as well as by the fact that

variance based sensitivity analysis (global sensitivity analysis), also relies on ANOVA.

In Chapter 2, we have described Sobol’s indices, which are variance based sensitivity in-

dices. These indices quantify the relationship between the variances (uncertainties) of the

model inputs and outputs, and provide information on which input factors should be bet-

ter understood to effectively reduce the uncertainty in the outputs. We have also recalled,

the most popular Monte-Carlo simulation based methods that are available to compute

Sobol’s indices. However, such methods are limited by a high computational burden.

Hence, in order to overcome this problem, we may replace the computer code by a re-

sponse surface that is able of approximating the simulator’s output. This approximation,

which is generally fast to evaluate, serves to predict outputs from Monte-Carlo simulations

and therefore is an efficient tool for computing sensitivity indices. The response surface

is constructed by appropriate statistical regression methods, the most common of which

have been introduced in Chapter 2.

Chapter 3 was devoted to a regularized nonparametric regression method named com-

ponent selection and smoothing operator (COSSO). This is an ANOVA based method

that is performed using an iterative algorithm, combining a smoothing spline estimation

procedure and a nonnegative garrote (NNG) estimation that is somewhat a variable se-
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6.1 Conclusion

lection procedure. The most common way to solve the NNG problem is to use classical

constrained optimization techniques, which are efficient but can become computationally

demanding when dealing with high dimensional problems. We propose two remedies to

deal with this. First, we develop a new iterative algorithm, called iterative projected

shrinkage (IPS) and we also introduce its accelerated version (AIPS). These algorithms

are based on a, conceptually simple, Landweber type iterative algorithm. Second, we

also adapt in this chapter the nonnegative least angle regression (NN-LARS) algorithm

to COSSO, since in standard settings such a type of procedure (LARS) is known to be

well-suited for handling high dimensional problems. Extensive simulation results show

that our AIPS is the most efficient procedure, both in terms of computational coast and

robustness, compared to NN-LARS and other classical solvers.

Using the fact that COSSO is an ANOVA based method, allows us to introduce a new

method for computing Sobol’s indices. This method seems to be more competitive than

the Monte-Carlo Sobol’s one because it requires much less response surface evaluations.

A comparison is also made with a Gaussian process method, widely used as a response

surface technique, and it appears that COSSO-AIPS forms an efficient approach for global

sensitivity analysis, especially for high dimensional problems or when a large number of

experimental design points is available.

A wavelet approach, expanding COSSO, is introduced in Chapter 4. This new regression

method, called wavelet kernel ANOVA (WK-ANOVA), does not require an equi-spaced

experimental design, which is generally the rule in the wavelet framework. In the ana-

lytical test cases with discontinuities on the derivative, our method produces very good

results compared to the COSSO and the Gaussian process approach, and this is due to

the multiresolution analysis properties that allow to study a phenomenon in multi-scale

fashion. We also show that WK-ANOVA has good denoising properties. Unfortunately,

some undesirable boundary effects are present when analyzing models that are nonperiodic

and this is due to the fact that we are using periodic wavelet transforms for the decom-

positions. As a consequence the results from a highly nonlinear reservoir test case do not

clearly show the potential of using a wavelet analysis. As in Chapter 3, the WK-ANOVA,

by its analogy with COSSO, allows us to develop a direct method for computing Sobol’s

indices.

Finally, Chapter 5 considers the problem of approximating the computer code when the

outputs are time series curves. We propose an original method for performing this task

that is based on three main steps: First, an expansion of the time series curves in a wavelet
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basis; Second, do reduce the problem’s dimension, a vertical energy thresholding procedure

(VET) on the resulting decompositions is applied. This procedure, designed for analyzing

multiple curve sets use information gives by all time series; Third, an approximation of

the selected coefficients is obtained by a COSSO like modeling. This chapter end with

an adapted to time series outputs Sobol’s Monte-Carlo method for computing sensitivity

indices. The efficiency of this methodology is shown on a reservoir test case.

Our work shows the potential of ANOVA based as well as wavelet based decomposition

methods to build response surfaces. Of course the proposed methods are not always the

most appropriate and need to be improved. Some potential improvements that may be

useful and worth developing are discussed below.

6.2 Perspectives

In WK-ANOVA, we have only used Daubechie’s periodic wavelet bases for the appropri-

ate transforms, and we have seen that when dealing with nonperiodic phenomena boudary

effects can bias the results. It is therefore interesting to take into consideration some other

wavelet bases and use boundary adapted wavelet trasforms (Cohen et al., 1993).

In this work, we have assumed that the high-order terms in the ANOVA expansion are

negligible compared to the interactions of the second order. However, such an assumption

may decrease the accuracy of the approximation in some practical cases. To bypass this

limitation, one could use an adaptive strategy for truncating the ANOVA expansions both

in COSSO or WK-ANOVA. For instance, such strategy has been discussed in framework

of polynomial chaos regression by Blatman (2009). Or else, one can incorporate structural

relationships among NNG method, as it has been proposed in Yuan et al. (2009).

Knowing that the main objective of a response surface technique is to obtain an accurate

approximation which uses as less as possible computer code evaluations, it would be also

interesting to explore experimental designs based on active learning strategies, which con-

sist in constructing new observation points located in zones with high uncertainty. Such

a strategy has been developed in Gaussian process regression (Busby et al., 2007) and it

would be interesting to extend it to our method.

In order to quantify the accuracy of response surfaces, a Q2 criterion has been employed.

This quantity has been estimated on a test sample. However, in practice such estimation
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should not require additional computer evaluations. Hence it will be relevant to investi-

gate an inexpensive and robust method to asses the Q2. It is clear that such assessment

is very important for the analyst since the relevance of the sensitivity analysis results will

directly depend on the degree of accuracy of the response surface.

At a more practical level, parallelizing the COSSO and WK-ANOVA algorithms could be

the most appropriate way to accelerate the methods. Indeed, we have chosen v-fold-cross-

validation criterion to tune the regularization parameters. This part of our algorithms is

the most computationally demanding, but fortunately it is also very easy to parallelize.
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Appendix A

Proofs

Proof of Theorem 3.3.1 The orthogonal projection PΩx of x onto Ω is characterized

by the following useful inequality: for all a ∈ Ω and all x we have

〈a− PΩx,PΩx− x〉 ≥ 0 (A.1)

From the inequality (A.1) we can say that for any Ω, x and z, we have

〈PΩz − PΩx,PΩx− x〉 ≥ 0 and 〈PΩz − PΩx, z − PΩz〉 ≥ 0 (A.2)

Adding, we obtain

〈PΩz − PΩx, z − x〉 ≥‖ PΩz − PΩx ‖2 (A.3)

From the Cauchy inequality we conclude that

‖ PΩx− PΩz ‖≤‖ x− z ‖ (A.4)

Let E be nonempty set of all θ ∈ Ω at which the functional (3.13) attains its minimum

value over Ω and θ∗ a member of E. Then θ∗ = PΩ(δSoftν (θ∗)) and

‖ θ∗ − θ[p+1] ‖=‖ PΩ(δSoftν (θ∗))− PΩ(δSoftν (θ[p])) ‖≤‖ δSoftν (θ∗)− δSoftν (θ[p]) ‖ (A.5)

The convergence of the IPS algorithm follows from the following Lemma.

Lemma A.0.1 (Lemma 3.4 of Daubechies et al. (2004))
Sν is nonexpansive, i.e., for all x and z ∈ R,

‖ δSoftν (x)− δSoftν (z) ‖≤‖ x− z ‖ (A.6)
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Since (A.9) is convex the Karush-Kuhn-Tucker Theorem suggests that a necessary and

sufficient condition for θ∗ to be the solution of model (3.13) is that there is λ ≥ 0 such

that, for any γ = 1, ..., q, j = 0, ..., J , k = 1, ..., 2j − 1

{−dTα(Y −Dθ∗) + λ}θ∗α = 0 (A.7)

−dTα(Y −Dθ∗) + λ ≥ 0 (A.8)

θ∗α ≥ 0 (A.9)

There are two possible value for θ[p+1] in (3.22) :

θ[p+1]
α =

{
0
θ

[p]
α + dTα(Y −Dθ[p])− λ

(A.10)

It is not difficult to show that the KKT conditions are satisfied when θ
[p+1]
α = 0 and that

the condition (A.9) is always satisfied. Now we consider the second possibility. If θ∗α is a

fixed point of the map T , with Tx = PΩ(Sν(x)), that is, Tθ∗α = θ∗α. By (A.10), we have

dTα(Y −Dθ∗)− λ = 0

The conclusion follows immediately.

Proof of Theorem 4.3.2 The condition on the unknown regression function f0 are only

active for its wavelets coefficients and do not include the V0 scaling coefficients of f0. For

any f ∈ F, write f(x) = b+f1(x(1))+ ...+fd(x(d)) = b+g(x), such that
∑n

i=1 fl(x
(l)
i ) = 0,

l = 1, ..., d and where b ∈ {1} and g ∈
⊕d

l=1 Hl
Γ. Similarly, write f0(x) = b0 + g0(x), such

that g0 ∈
⊕d

l=1 Hl
Γ. By construction

∑n
i=1{g0(xi)− g(xi)} = 0, we can write A(f) as :

(b− b0)2 +
2
n

(b− b0)
n∑
i=1

εi +
1
n

)
n∑
i=1

(g0(xi) + εi − g(xi))2 + λ2
nRq(g)

therefore, the minimizing b̂ is b̂ = b0 + 1/n
∑n

i=1 εi, which shows that b̂ converges towards

b0 at rate n−1/2. On the other hand, ĝ must minimize over
⊕d

l=1 Hl
Γ the functional

1
n

n∑
i=1

{g0(xi) + εi − g(xi)}2 + λ2
nRq(g)

Let G = {g ∈ F : g(x) = f1(x(1)) + ... + fd(x(d)), with
∑n

i=1 fl(x
(l)
i ) = 0, l = 1, ..., d}. the

g0 ∈ G ĝ ∈ G. The conclusion of Theorem 2 follows from the following Lemma.
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Lemma A.0.2 (Theorem 10.2 of Van de Geer, lemma 5.1 of (Amato et al., 2006) and
lemma 3 ofLin & Zhang (2006) )
Let H∞(δ,G) be the δ−entropy of G for the supremum norm. Then

H∞(δ, {g ∈ G : Rq(g) ≤ 1} ≤ Ad(s+1)/sδ−1/s,

for all δ > 0, n ≥ 1, and some A > 0 and 0 < 1/s < 2.

Proof of Lemma Define Gl as the set of univariate function of x(l).

Gl = {fl ∈ Hl
Γ : Rq(fl) ≤ 1,

n∑
i=1

fγ(xi)(l) = 0}

It follows from Lemma 5.1 of (Amato et al., 2006) that

H∞(δ,Gl) ≤ Aδ−1/s

for all δ > 0, and n ≥ 1, some A > 0 and 0 < 1/s < 2. By definition of G we see that in

terms on the supreme norm, if each Gl, l = 1, .., d can be covered by N balls of radius δ,

then the set {g ∈ G : Rq(g) ≤ 1} can be covered byNd balls with radius dδ, and we get :

H∞(dδ, {g ∈ G : Rq(g) ≤ 1}) ≤ Adδ−1/s

Proof of Lemma 4.3.3 For any f ∈ F, write f = b+
∑q

γ=1

∑J
j=0

∑2j−1
k=0 fγ,j,k with b ∈

{1} and fγ,j,k ∈ WΓ
γ,j,k. Let the projection of fγ,j,k onto span{KΓ

γ,j,k(xi, ·), i = 1, ..., n} ⊂
WΓ
γ,j,k be denoted by αγ,j,k and the orthonormal complement by βγ,j,k. Then fγ,j,k =

αγ,j,k + βγ,j,k and (4.10) can be written as

1
n

n∑
i=1

{yi−b−
q∑

γ=1

J∑
j=0

2j−1∑
k=0

〈KΓ
γ,j,k(xi, ·), αγ,j,k〉}2+λ2

q∑
γ=1

J∑
j=0

2j−1∑
k=0

(‖ αγ,j,k ‖2 + ‖ βγ,j,k ‖2)1/2

Therefore any minimizing f must be such that βγ,j,k = 0, and the result follows immedi-

ately.

Proof of Lemma 4.3.4 Denote the functional in (4.12) byB(θ, f). For any γ = 1, ..., q; j =

0, ..., J ; k = 1, ..., 2j − 1, we have

λ0θ
−1
γ,j,k ‖ P

Γ
γ,j,kf ‖2WΓ

γ,j,k
+νθγ,j,k ≥ 2λ1/2

0 ν1/2 ‖ PΓ
γ,j,kf ‖WΓ

γ,j,k
= λ2 ‖ PΓ

γ,j,kf ‖WΓ
γ,j,k

.

for any θγ,j,k ≥ 0 and f ∈ F, and the equality holds if and only if θγ,j,k = λ
1/2
0 ν−1/2‖ PΓ

γ,j,kf ‖WΓ
γ,j,k

.

Therefore B(θ, f) ≥ A(f), where A(f) denote the functional of (4.10) for any θγ,j,k ≥ 0,

γ = 1, ..., q; j = 0, ..., J ; k = 1, ..., 2j − 1 and f ∈ F, with the equality holds only if

θγ,j,k = λ
1/2
0 ν−1/2‖ PΓ

γ,j,kf ‖WΓ
γ,j,k

. The conclusion then follows.
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Appendix B

Reproducing kernel Hilbert spaces

The objective of this appendix is to review the basic theory on reproducing kernel Hilbert

spaces (RKHS).

B.1 RKHS definition

Let X be a nonempty set. The RKHS is defined as a Hilbert space H of functions on

a set X with the following property: ∀x ∈ X and f ∈ H, there exist Mx not depending

on f satisfying | f(x) |≤ Mx ‖ f ‖. The Riesz representation theorem (Akhiezer &

Glazman (1963)) states that there exist a unique representer ηx in H with associated

linear functional δx : H→ R, defined by δx(f) = f(x), such that

f(x) =< ηx, f >, ∀f ∈ H

where <,> is the inner product in H. Let < ηx, ηx′ >= K(x, x′). Therefore K(x, x′) is

positive definite on X ⊗ X, i.e,
∑

i,j aiajK(xi, x′j) ≥ 0, ∀xi, x′j ∈ X with i = 1, . . . , n and

j = 1, . . . , n. K is so-called the reproducing kernel for the RKHS H.

In above, we showed that the reproducing kernel K for the RKHS H is positive definite

on X ⊗ X. The Moore-Aronszajn theorem state that for every positive definite kernel

K on X ⊗ X there exists a unique RKHS. The Hilbert space associated with K can be

constructed as containing all finite linear combinations of the form
∑
aiK(xi, ·).
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B.2 The representer theorem

B.2 The representer theorem

The representer theorem (Kimeldorf & Wahba, 1971) shows that solution of the optimza-

tion problem defined as finding f ∈ H to minimize

n∑
i=1

L(yi, f(xi)) + λ ‖ f ‖H2 (B.1)

where L is convex in f , has a representation of the form

f(x) =
n∑
i=1

ciK(xi, x) (B.2)

Then B.2 is substituted in B.1 and the c′is are found numerically. In our work we study

the penalized least squares problems. Thus, B.1 is equivalent to

n∑
i=1

(yi − f(xi))2 + λ ‖ f ‖H

For this special case L is quadratic and convex. Hence, it is only necessary to solve a

linear system. Note that we can replace ‖ f ‖2 by ‖ Pf ‖2 where P is the orthogonal

projection onto a subspace of small co-dimension, for more detail we refer to Wahba (1990)

and Berlinet & Thomas-Agnan (2003).
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Appendix C

A short review of wavelet

C.1 Introduction

Joseph Fourier introduces the idea that a signal can be represented using superposition of

sines and cosines. A disadvantage of the Fourier expansion is that it has only frequency

resolution and no time resolution, in other words it is unable of dealing properly with a

signal that is changing over time. Several methods were developed to adapt the usual

Fourier method to represent a signal in the time and frequency domain at the same time.

The idea behind these representations is to cut the signal into several parts and then ana-

lyze the parts separately, but how we should cut the signal? The Heisenberg’s uncertainty

principle states that in modeling time-frequency phenomena, it is impossible to know the

exact frequency and the exact time simultaneously. In other words, the area of rectangles

which represent the window of localization in the time-frequency space are bounded by a

universal constant. For example, the windowed Fourier transform (Fig C.1) has a single

window, which is used for all the frequencies, the resolution of the analysis is constant at

all locations in the time-frequency plane.

Wavelets have the advantage that the window trade-off automatically the time-frequency

precision, thus solving the problem of cutting the signal. Figure C.1 shows that for dif-

ferent scale a different size of windows are shifted along the signal. In the end the result

will be a collection of different resolutions of time-frequency representations. Therefore,

we can speak of a multiresolution analysis.

In what follows we will present a brief review on wavelets theory and their utilization

in nonparametric regression.
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Frequency

Time

Frequency Frequency

Time Time
(a)  Fourier (b)  Time-frequency (c)  Time-scale

Figure C.1: Time-frequency plane for Fourier, time-frequency and time-scale representa-
tion

C.2 Multiresolution analysis

The main idea behind the multiresolution analysis is to define a sequence of closed sub-

spaces Vj , j ∈ Z in L2(R), which possesses the following properties:

1. ∩j∈ZVj = 0,

2. ∪j∈ZVj = L2(R),

3. ∀f ∈ L2(R), ∀j ∈ Z, f ∈ Vj if and only if f(2x) ∈ Vj+1;

4. ∀f ∈ L2(R), ∀k ∈ Z, f ∈ V0 if and only if f(x− k) ∈ V0,

5. there exist a scaling function φ ∈ V0 whose integer-translates x 7→ φ(x− k)k∈(Z)

span the space V0.

This implies that for each resolution j, the set of functions {φj,k(x) = 2j/2φ(2jx− k); k ∈
Z} constitutes the orthonormal basis of the space Vj for L2 norm. Remark that each scaling

function is indexed by two indices j (resolution) and k (translation). A unit increase in j

compresses the function φ along the x-axis into half the width. A unit increase in k shifts

the location of φ along the x-axis.

Since φ ∈ V0 and V0 ⊂ V1, φ can be represented as a linear combination of {φ1,k}k∈(Z). In

other words, their exist coefficients ak, k ∈ (Z) such as

∀x ∈ R, φ(x) =
∑
k∈Z

ak
√

2φ(2x− k) (C.1)

As we will see later this equation (two-scale equation) is fundamental in constructing

efficient algorithm to perform multiresolution analysis.

If we define P jf as the projection of a function f into the space Vj , this is expressed

P jf = P j−1f + wj−1
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C.2 Multiresolution analysis

The function wj−1 represent the residual between the two approximations (on V j and on

V j−1), this function can be written in terms of dilated and translated wavelets:

wj−1 =
∑
k∈Z
〈f | ψj−1,k〉ψj−1,k

where {ψj,k(x) = 2j/2ψ(2jx − k); k ∈ Z} is a set of functions that are orthogonal to

each function of Vj and span the space Wj which is a detail space. Hence, an important

property of multiresolution analysis can be defined as:

Vj = Vj−1 ⊕Wj−1 (C.2)

Following the properties given before, C.2 can be extended recursively until for a given

j0 ∈ Z, the space L2(R) can be written as:

L2(R) = Vj0 ⊕
+∞⊕
j=j0

Wj (C.3)

Since ψ(x) ∈W0 and W0 ⊂ V1 a two-scale equation can be set up. Their exist coefficients

bk, k ∈ (Z) such that

∀x ∈ R, ψ(x) =
∑
k∈Z

bk
√

2φ(2x− k) (C.4)

Using the decomposiotn of the space L2(R) given in C.3 and for all j0 ∈ Z, we can now

write any L2(R) function f as

∀x ∈ R, f(x) =
∑
k∈Z

αj0,kφj0,k(x) +
∑
j≥j0

∑
k∈Z

βj,kψj,k(x)

where αj0,k =
∫
f(x)φj0,k(x)dx and βj,k =

∫
f(x)ψj,k(x)dx

C.2.1 Periodic wavelet

Because the functions that we want to estimate are defined in L2([0, 1]), we construct

an orthonormal wavelet bases that spans L2([0, 1]) instead of L2(R). In other words, we

periodize scaling and wavelet functions by the following transformation

φperj,k (x) =
∑
l∈Z

φj,k(x+ l)

ψperj,k (x) =
∑
l∈Z

ψj,k(x+ l)
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C.2 Multiresolution analysis

Furthermore, we define the spaces V per
j and W per

j as

V per
j = span{φperj,k , k ∈ Z}

W per
j = span{ψperj,k , k ∈ Z}

The resulting orthogonal basis provides an orthogonal decomposition of L2([0, 1])

L2([0, 1]) = V per
j0
⊕

+∞⊕
j=j0

W per
j

which is a multiresolution analysis on [0, 1]. A major disadvantage of periodized wavelet

is the introduction of edge effects at the end points x = 0 and x = 1. More details

about periodized wavelet can be found in Daubechies (1992), Maxim (2003) and Vidakovic

(1999).

Then any L2([0, 1]) function can be written as

∀x ∈ R, f(x) =
2j0−1∑
k=0

αj0,kφ
per
j0,k

(x) +
∑
j≥j0

2j−1∑
k=0

βj,kψ
per
j,k (x) (C.5)

where αj0,k =
∫
f(x)φperj0,k(x)dx and βj0,k =

∫
f(x)ψperj0,k

(x)dx,and the restriction on the

parameter k is due to the periodicity of the studied function. In what follows, to enhance

the interpretability we omit the index per.

C.2.2 Some wavelet basis

The different wavelet bases make different compromise between how compactly the basis

functions are localized in space and how smooth they are. In statistics, the important

properties that wavelet basis should posses is the orthonormality, the functions that we

study are scaled on interval [0, 1], so it will be important to construct compactly supported

wavelet. In this section we will discuss briefly two important families of wavelets.

C.2.2.1 Haar’s wavelet

Introduced by Alfred Haar, long before an established wavelets theory was developed, the

Haar scaling and wavelet function is defined as

φ(x) =
{

1 if 0 ≤ x < 1
0 otherwise

ψ(x) =


1 if 0 ≤ x < 1

2
−1 if 1

2 ≤ x < 1
0 otherwise

106



C.2 Multiresolution analysis

−0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Haar Scaling function

−0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Haar  wavelet function

Figure C.2: Haar’s scaling and wavelet functions

Figure C.2 illustrate the Haar scaling and wavelet functions . The Haar wavelets have

limited applications for many reasons. First it does not have a good time-frquency local-

ization. Furthermore, Harr’s functions are discontinuous, which yields them insuitable as

a basis classes of smoother functions.

C.2.2.2 Daubechies’ wavelet

The work of Daubechies (1988) introduced a family of wavelets that are orthogonal, com-

pactly supported and with a preassigned degree of smoothness. These wavelets are now

extensively used in practice. In figure C.3 several Daubechies scaling and wavelet func-

tions are illustrated. A Daubechies’ wavelet is indexed by its vanishing moments N , which

controls the smoothness of the scaling and the wavelets functions∫
xpψ(x)dx = 0, p = 0, 1, · · · , N − 1

and ∫
| xNψ(x) | dx <∞

In other words, polynomials of degree up to N − 1 can be written exactly in terms of the

appropriately translated scaling functions.

In this thesis we will use Daubechies family. Note that this family of wavelet is easy to

implement and there exist several packages in R and matlab witch construct efficiently

these wavelets.

To conclude this brief presentation of different wavelet bases it is important to note that

there exist several other families of wavelet with different properties. For rigorous defini-

tions and a detailed study of wavelets families the reader is referred to Daubechies (1992),

Vidakovic (1999) and Ogden (1997).
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Figure C.3: Daubechies’scaling and wavelet functions for vanishing moments N = 2, 5, 10

C.2.3 The discrete wavelet transform

Frequently in statistics we are concerned by discretely sampled data. Thus, by analogy

to the discrete Fourier transform we could replace the function f in the definition of the

scaling and wavelet coefficients by an estimate corresponding to the function values at

equally spaced points ti, i = 1, · · ·n. We define the discrete wavelet transform (DWT) of

Y = (f(t1), · · · , f(tn)) as

sj0,k ≈
1√
n

n∑
i=2

yiφj0,k(ti), k = 0, · · · , 2j0 − 1

dj,k ≈
1√
n

n∑
i=2

yiψj,k(ti), j = j0, · · · , J − 1 and k = 0, · · · , 2j − 1

The sj0,k and dj,k are related to the continuous wavelets coefficients by the relation αj0,0 ≈
1√
n
sj0,k and βj,0 ≈ 1√

n
dj,k.

The DWT can be written in matrix form as

d = WY

= (sj0,0 · · · sj0,2j0−1dj0,0 · · · dJ−1,2J−1−1)T

where d is an n× 1 vector including discrete scaling coefficients sj0,k and discrete wavelet

coefficients dj,k, W is an orthogonal n×n matrix associated with the orthonormal wavelet
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basis (the projection matrix on the space VJ) and Y the vector of the function values

at the points ti, i = 1, · · ·n. due to the orthogonality of W , the inverse discrete wavelet

transform (IDWT) is given by

Y = W Td

If for some positive integer J the number of observation n is dyadic (n = 2J) the DWT

and the IDWT can be performed through a computationally fast algorithm developed by

Mallat (1989), which requires only order n operations to transform an n-sample vector.

For detailed description of the algorithm we refer to Mallat (1989), and Vidakovic (1999).

C.3 Nonparametric regression for equispaced design

In this section we consider the problem of wavelet based univariate nonparametric regres-

sion of a function f defined on [0, 1]. The goal is to recover the function f from the noisy

observation data (ti, yi)i=1,··· ,n

yi = f(ti) + εi, i = 1, · · · , n

where ε i.i.d N(0, σ2) random variables. For simplicity and without loss of generality, we

assume that the sample plane is dyadic and its points are equally spaced, i.e. ti = 1/n. For

non-equispaced or non-dyadic designs some modifications will be needed to the standard

wavelet-based regression.

C.3.1 Linear regression

Following C.5 The linear estimator of f consists in the projection of f on the space VJ

P Jf = f̂(t) =
2j0−1∑
k=0

α̂j0,kφj0,k +
J∑

j=j0

2j−1∑
k=0

β̂j,kψj,k (C.6)

where the empirical scaling (α̂j0,k) and empirical wavelet (β̂j,k) coefficients are given by

α̂j0,k =
1
n

n∑
i=1

yiφj0,k(ti) (C.7)

β̂j,k =
1
n

n∑
i=1

yiψj,k(ti) (C.8)

The smoothness of the estimation is controlled by the parameter J . Increasing J amounts

to decreasing the amounts of smoothing. Thus an appropriate choice of J is important
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to perform a good estimation. The optimal choice of J should depend on regularity of

the unknown function f . Thereby, too small J will oversmooth the estimation which will

face difficulties in estimating functions with local singularities, although too high value of

J will damage the estimate in smooth region. A more judicious choice of the empirical

wavelet coefficients is reviewed in what follows.

C.3.2 Non-linear regression

C.3.2.1 Wavelet thresholding

Introduced by Donoho & Johnstone (1994), Donoho (1995), Donoho et al. (1995) and

Donoho & Johnstone (1998) the non-linear wavelet estimator based on wavelet threshold-

ing and shrinkage methods outperforms any linear estimator. Indeed, when the wavelet

decomposition is sparse, it is reasonable to assume that only a few β̂j,k contain information

about the function f . An appropriate choice of the significant value of β̂j,k from which

we retain the coefficients (all others are set equal to 0) is fundamental to obtain a good

approximation of f .

Thresholding methods allow the data to decide itself which wavelet coefficients are signif-

icant. The best known thresholding method are the hard thresholding which is a ”keep

or kill” rule and the soft thresholding which is a ”shrink or kill” rule. They are defined

respectively by

δHardλ (β̂j,k) =
{

0 if | β̂j,k |≤ λ
β̂j,k if | β̂j,k |> λ

(C.9)

and

δSoftλ (β̂j,k) =


0 if | β̂j,k |≤ λ
β̂j,k − λ if β̂j,k > λ

β̂j,k + λ if β̂j,k < −λ
(C.10)

It has been shown in Gao & Bruce (1997) and Marron et al. (1998) that hard threshold-

ing results in larger variance in the function estimate, and due to its discontinuity, it is

sensitive to small changes in the data, while the soft thresholding has larger bias.

Many others thresholding methods has been developed to compromise the trade-off be-

tween variance and bias. For example, Antoniadis & Fan (2001) suggested the SCAD

thresholding defined by

δSCADλ (β̂j,k) =


sign(β̂j,k) max(0, | β̂j,k | −λ) if | β̂j,k |≤ 2λ
(a−1)β̂j,k−aλsign(β̂j,k)

a−2 if 2λ <| β̂j,k |≤ aλ
β̂j,k if | β̂j,k |> aλ

(C.11)
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This thresholding metohds is a ”shrink or kill” rule. Note that it requires two threshold

values (λ and a). Based on a Bayesian argument Antoniadis & Fan (2001) have recom-

mended to use the value of a = 3.7.

These three thresholding functions are displayed in figure C.4.

−5

0

5

−5 0 5

Hard thresholding Soft thresholding SCAD thresholding

Figure C.4: Hard, Soft and SCAD thresholding for λ = 1

The effectiveness of the thresholding procedure depends on an appropriate choice of

the threshold parameter λ. For too large λ the estimate might omit important parts of

the function, whereas for too small λ the estimate retains noise. There are a variety of

methods to choose λ, the most common in practice is the universal threshold proposed by

Donoho (1995):

λuniv = σ
√

2log(n)

where besides the parameter λ we will have to estimate the noise standard deviation σ.

Donoho & Johnstone (1998) proposed an estimate of σ that is based only on the empirical

wavelet coefficients at the finest scale associated to the space WJ . The median of absolute

deviation (MAD) estimate, which is very common in practice, is defined as

σ̂ =
median(| β̃J −median(β̃J) |)

0.6745

where β̃J is the vector of the empirical wavelet coefficients associated to the space WJ .

C.3.2.2 Penalized least-squares wavelet estimators

The thresholding methods can be seen as a regularization process under specific penalty

functions. Antoniadis & Fan (2001) proposed the penalty associated to the usual thresh-

olding and showed that the traditional regularization problem can be formulated in the
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multiresolution analysis context by minimizing the penalized least-squares functional l(θ),

defined as

l(θ) = ‖WY− θ‖2n + 2λ
n∑
i=1

Pen|θi| (C.12)

where θ = (βj0,0 · · ·βJ,2J−1)T is the vector of the wavelet coefficients of the unknown

regression function f and Pen the penalty function. The L1-penalty Pen(|θ|) = λ|θ| cor-

responding to the soft thresholding rule and the penalty Pen(|θ|) = λ2−(|θ|−λ)21|θ|<λ(|θ|)
corresponding to the hard thresholding rule.

As discussed before, it is clear that the performance of the wavelet estimator depends on

the penalty and the regularization parameter λ. For more details we refer the reader to

Antoniadis & Fan (2001), Fan & Li (2001) and Antoniadis (2007).

C.4 Note about wavelet regression for multivariate prob-
lems

In the previous section we dealt only with the univariate wavelet statistical methods, but

we can also use wavelet in multivariate setting. Various constructions of a d-dimensional

wavelet basis exist, the most common is the tensor product construction and the corre-

sponding property of multiresolution C.2 is defined as

Vj = V 1
j ⊗ V 2

j · · · ⊗ V d
j (C.13)

Here, we consider two-dimensional regression problems. The multiresolution property C.13

is equivalent to

Vj = V 1
j ⊗ V 2

j = V 1
j−1 ⊗ V 2

j−1 ⊕ (V 1
j−1 ⊗W 2

j−1)⊕ (W 1
j−1 ⊗ V 2

j−1)⊕ (W 1
j−1 ⊗W 2

j−1)

In the two-dimensional case, the function f(x(1)x(2)) is sampled on a grid where the

number of sample points xi is supposed to be equal to 2n (n = 2J) and equispaced. Thus,

it is clear that the number of the wavelet coefficients which should be estimated growth

exponentially with the dimension d. For these reason the wavelet techniques have been

efficiently applied in the multidimensional case only in image processing (d = 2 case).

For more details about multivariate wavelet the reader is refered to Daubechies (1992),

Ogden (1997),Vidakovic (1999) and Resnikoff & Wells (1998).
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Birkhäuser.

Pepelyshev, A. (2010). The Role of the Nugget Term in the Gaussian Process Method ,

149–156. Contributions to Statistics, Physica-Verlag HD.

Piana, M. & Bertero, M. (1997). Projected landweber method and preconditioning.

Inverse Problems, 13, 441–463.

Resnikoff, H.L. & Wells, R.O. (1998). Wavelet analysis : the scalable structure of

information. springer.

Sacks, J., Welch, W.J., Mitchell, T.J. & Wynn, H.P. (1989). Design and analysis

of computer experiments. Statistical science, 4, 409–435.

Saltelli, A. & Sobol’, I. (1995). About the use of rank transformation in sensitivity

of model output. Reliability Engineering and System Safety , 50, 225–239.

Saltelli, A. & Sobol’, I. (1999). A quantitative, model independent method for global

sensitivity analysis of model output. Reliability Engineering and System Safety , 41(1),

39–56.

Saltelli, A., Chan, K. & Scott, M. (2000). Sensitivity analysis. Wiley.

Santner, T.J., Williams, B.J. & Notz, W.I. (2003). The design and analysis of

computer experiments. Springer.

Sobol, I. (1993). Sensitivity estimates for nonlinear mathematical models. Mathematical

Modelling and Computational Experiments, 1, 407–414.

Storlie, C.B. & Helton, J.C. (2008a). Multiple predictor smoothing methods for

sensitivity analysis: Description of techniques. Reliability engineering and system safety ,

93, 28–54.

Storlie, C.B. & Helton, J.C. (2008b). Multiple predictor smoothing methods for

sensitivity analysis: examples results. Reliability Engineering and System Safety , 93,

57–77.

117



REFERENCES

Storlie, C.B., Swiler, L.P., Helton, J.C. & Sallaberry, C.J. (2009). Implemen-

tation and evaluation of nonparametric regression procedures for sensitivity analysis of

computationally demanding models. Reliability Engineering and System Safety , 94, n

11, 1735–1763.

Storlie, C.B., Bondell, H.D., Reich, B.J. & Zhang, H. (2011). Surface estimation,

variable selection, and the nonparametric oracle property. Statistica Sinica, 21, 679–705.

Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reli-

ability Engineering and System Safety , 93, 964–979.

Tavassoli, Z., Carter, J.N. & King, P.R. (2004). Errors in history matching. SPE

Journal , 352–361.

Tibshirani, R.J. (1996). Regression shrinkage and selection via the lasso. Journal of

Royal Statistical Society , Series B 58, 267–288.

Vidakovic, B. (1999). Statistical modeling by wavelets. Wiley-Interscience.

Wahba, G. (1990). Spline models for observational data. SIAM.

Welch, W.J., Sacks, J., Wynn, H.P., Mitchell, T.J. & Morris, M.D. (1992).

Screening, prediction , and computer experiments. Technometrics, 34, 15–25.

Yuan, M. & Lin, Y. (2007). On the nonnegative garrote estimator. Journal of Royal

Statistical Society , Series B 69, 143–161.

Yuan, M., Joseph, V.R. & ZOU, H. (2009). Structured variable selection and estima-

tionr. The Annals of Applied Statistics, 3, 1738–1757.

Zhang, Z., Li, R. & Sudjianto, A. (2007). Modeling computer experiments with mul-

tiple responses. SAE , paper number 2007-01-1655.

Zou, H., Hastie, T. & Tibshirani, R. (2007). On the ”degree of freedom” of the lasso.

Annals of Statistics, 35, 2173–2192.

118





Résumé: L’objectif de cette thèse est l’investigation de nouvelles méthodes de surface de
réponse afin de réaliser l’analyse de sensibilité de modèles numériques complexes et coûteux
en temps de calcul. Pour ce faire, nous nous sommes intéressés aux méthodes basées sur la
décomposition ANOVA. Nous avons proposé l’utilisation d’une méthode basée sur les splines de
lissage de type ANOVA, alliant procédures d’estimation et de sélection de variables. L’étape de
sélection de variable peut devenir très coûteuse en temps de calcul, particulièrement dans le cas
d’un grand nombre de paramètre d’entrée. Pour cela nous avons développé un algorithme de
seuillage itératif dont l’originalité réside dans sa simplicité d’implémentation et son efficacité. Nous
avons ensuite proposé une méthode directe pour estimer les indices de sensibilité. En s’inspirant
de cette méthode de surface de réponse, nous avons développé par la suite une méthode adaptée
à l’approximation de modèles très irréguliers et discontinus, qui utilise une base d’ondelettes. Ce
type de méthode a pour propriété une approche multi-résolution permettant ainsi une meilleure ap-
proximation des fonctions à forte irrégularité ou ayant des discontinuités. Enfin, nous nous sommes
penchés sur le cas où les sorties du simulateur sont des séries temporelles. Pour ce faire, nous avons
développé une méthodologie alliant la méthode de surface de réponse à base de spline de lissage
avec une décomposition en ondelettes. Afin d’apprécier l’efficacité des méthodes proposées, des
résultats sur des fonctions analytiques ainsi que sur des cas d’ingénierie de réservoir sont présentées.

Abstract: The purpose of this thesis is to investigate innovative response surface methods to
address the problem of sensitivity analysis of complex and computationally demanding computer
codes. To this end, we have focused our research work on methods based on ANOVA decomposition.
We proposed to use a smoothing spline nonparametric regression method, which is an ANOVA
based method that is performed using an iterative algorithm, combining an estimation procedure
and a variable selection procedure. The latter can become computationally demanding when
dealing with high dimensional problems. To deal with this, we developed a new iterative shrinkage
algorithm, which is conceptually simple and efficient. Using the fact that this method is an
ANOVA based method, it allows us to introduce a new method for computing sensitivity indices.
Inspiring by this response surface method, we developed a new method to approximate the model
for which the response involves more complex outputs. This method is based on a multiresolution
analysis with wavelet decompositions, which is well known to produce very good approximations on
highly nonlinear or discontinuous models. Finally we considered the problem of approximating the
computer code when the outputs are times series. We proposed an original method for performing
this task, combining the smoothing spline response surface method and wavelet decomposition. To
assess the efficiency of the developed methods, numerical experiments on analytical functions and
reservoir engineering test cases are presented.


