@. << and R. <<, t 4 ? 40 * t 3 + 40t + 1

L. Busé and M. Dohm, Implicitization of bihomogeneous parametrizations of algebraic surfaces via linear syzygies, Proceedings of the 2007 international symposium on Symbolic and algebraic computation , ISSAC '07, pp.69-76, 2007.
DOI : 10.1145/1277548.1277559

L. Busé, D. Cox, and C. Andrea, IN THE PRESENCE OF BASE POINTS, Journal of Algebra and Its Applications, vol.02, issue.02, pp.189-214, 2003.
DOI : 10.1142/S0219498803000489

D. Cox, R. Goldman, and M. Zhang, On the Validity of Implicitization by Moving Quadrics for Rational Surfaces with No Base Points, Journal of Symbolic Computation, vol.29, issue.3, pp.419-440, 2000.
DOI : 10.1006/jsco.1999.0325

L. Busé and M. Chardin, Implicitizing rational hypersurfaces using approximation complexes, Journal of Symbolic Computation, vol.40, issue.4-5, pp.1150-1168, 2005.
DOI : 10.1016/j.jsc.2004.04.005

L. Busé and J. Jouanolou, On the closed image of a rational map and the implicitization problem, Journal of Algebra, vol.265, issue.1, pp.312-357, 2003.
DOI : 10.1016/S0021-8693(03)00181-9

L. Busé and M. , Elimination and nonlinear equations of Rees algebras, Journal of Algebra, vol.324, issue.6, pp.1314-1333, 2010.
DOI : 10.1016/j.jalgebra.2010.07.006

T. W. Sederberg and F. Chen, Implicitization using moving curves and surfaces, Proceedings of the 22nd annual conference on Computer graphics and interactive techniques , SIGGRAPH '95, pp.301-308, 1995.
DOI : 10.1145/218380.218460

D. Manocha and J. Canny, A new approach for surface intersection, Proceedings of the first ACM symposium on Solid modeling foundations and CAD/CAM applications, pp.209-219, 1991.

N. Botbol, M. Dohm, and A. Dickenstein, Matrix representations for toric parametrizations, Computer Aided Geometric Design, vol.26, issue.7, pp.757-771, 2009.
DOI : 10.1016/j.cagd.2009.03.005

URL : https://hal.archives-ouvertes.fr/hal-00308281

L. Busé, M. Chardin, and J. Jouanolou, Torsion of the symmetric algebra and implicitization, Proceedings of the American Mathematical Society, pp.1855-1865, 2009.
DOI : 10.1090/S0002-9939-09-09550-1

T. Garrity and J. Warren, On computing the intersection of a pair of algebraic surfaces, Computer Aided Geometric Design, vol.6, issue.2, pp.137-153, 1989.
DOI : 10.1016/0167-8396(89)90017-4

E. Fortuna, P. Gianni, and B. Trager, Generators of the ideal of an algebraic space curve, Journal of Symbolic Computation, vol.44, issue.9, pp.1234-1254, 2009.
DOI : 10.1016/j.jsc.2008.02.014

N. Song and R. Goldman, ??-bases for polynomial systems in one variable, Computer Aided Geometric Design, vol.26, issue.2, pp.217-230, 2009.
DOI : 10.1016/j.cagd.2008.04.001

X. Jia, H. Wang, and R. Goldman, Set-theoretic generators of rational space curves, Journal of Symbolic Computation, vol.45, issue.4, pp.414-433, 2010.
DOI : 10.1016/j.jsc.2009.11.001

D. A. Cox, T. W. Sederberg, and F. Chen, The moving line ideal basis of planar rational curves, Computer Aided Geometric Design, vol.15, issue.8, pp.15803-827, 1998.
DOI : 10.1016/S0167-8396(98)00014-4

D. A. Aruliah, R. M. Corless, L. Gonzalez-vega, and A. Shakoori, Geometric applications of the bezout matrix in the lagrange basis, Proceedings of the 2007 international workshop on Symbolic-numeric computation, pp.55-64, 2007.

L. Busé, H. Khalil, and B. Mourrain, Resultant-Based Methods for Plane Curves Intersection Problems, Computer algebra in scientific computing, pp.75-92, 2005.
DOI : 10.1007/11555964_7

H. Wang, X. Jia, and R. Goldman, Axial moving planes and singularities of rational space curves, Computer Aided Geometric Design, vol.26, issue.3, pp.300-316, 2009.
DOI : 10.1016/j.cagd.2008.09.002

H. Heo, M. S. Kim, and G. Elber, The intersection of two ruled surfaces, Computer-Aided Design, vol.31, issue.1, pp.33-50, 1999.
DOI : 10.1016/S0010-4485(98)00078-5

M. Fioravanti, L. Gonzalez-vega, and I. Necula, Computing the intersection of two ruled surfaces by using a new algebraic approach, Journal of Symbolic Computation, vol.41, issue.11, pp.411187-1205, 2006.
DOI : 10.1016/j.jsc.2005.02.008

V. N. Kublanovskaya and V. B. Khazanov, Spectral problems for pencils of polynomial matrices. Methods and algorithms. V, Journal of Mathematical Sciences, vol.2, issue.No. 6, pp.1048-1076, 1996.
DOI : 10.1007/BF02366127

V. N. Kublanovskaya, Methods and algorithms of solving spectral problems for polynomial and rational matrices, Journal of Mathematical Sciences, vol.19, issue.No. 5???6, pp.3085-3287, 1999.
DOI : 10.1007/BF02168360

J. Zur-gathen, M. Mignotte, and I. E. Shparlinski, Approximate Polynomial gcd: Small Degree and Small Height Perturbations, Journal of Symbolic Computation, vol.45, pp.879-886, 2010.
DOI : 10.1007/978-3-540-78773-0_24

L. Busé, T. Luu, and . Ba, Matrix-based implicit representations of rational algebraic curves and applications, Computer Aided Geometric Design, vol.27, issue.9, pp.681-699, 2010.
DOI : 10.1016/j.cagd.2010.09.006

A. Khetan and C. Andrea, Implicitization of rational surfaces using toric varieties, Journal of Algebra, vol.303, issue.2, pp.543-565, 2006.
DOI : 10.1016/j.jalgebra.2005.05.028

L. Busé and M. Chardin, Implicitizing rational hypersurfaces using approximation complexes, Journal of Symbolic Computation, vol.40, issue.4-5, pp.1150-1168, 2005.
DOI : 10.1016/j.jsc.2004.04.005

A. Simis and W. V. Vasconcelos, The Syzygies of the Conormal Module, American Journal of Mathematics, vol.103, issue.2, pp.203-224, 1981.
DOI : 10.2307/2374214

W. V. Vasconcelos, Arithmetic of Blowup Algebras, London Mathematical Society Lecture Note Series
DOI : 10.1017/CBO9780511574726

W. Bruns and J. Herzog, Cohen-Macaulay rings. Cambridge studies in advanced mathematics 39, 1993.

M. Dohm, Implicitization of rational ruled surfaces with µ-bases, Journal of Symbolic Computation, vol.5, pp.479-489, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00132800

D. Eisenbud, Commutative algebra with a view toward algebraic geometry

J. Harris, Algebraic Geometry. A first course, Graduate Texts in Mathematics, vol.133, 1992.

D. Cox, J. Little, and D. Shea, Ideals, varieties, and algorithms

L. Busé, Elimination theory in codimension one and applications. Notes of lectures given at the CIMPA-UNESCO-IRAN school in Zanjan, 2005.

J. P. Jouanolou, Ideaux r??sultants, Advances in Mathematics, vol.37, issue.3, pp.212-238, 1980.
DOI : 10.1016/0001-8708(80)90034-1

D. G. Northcott, Finite free resolutions. No. 71, cambridge Tracts in Mathematics, 1976.

D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry

L. Busé and R. Goldman, Division algorithms for Bernstein polynomials, Computer Aided Geometric Design, vol.25, issue.9, pp.850-865, 2008.
DOI : 10.1016/j.cagd.2007.10.003

E. Kunz, Introduction to plane algebraic curves. Translated from the original German by, 2005.

J. Zheng and T. W. Sederberg, A Direct Approach to Computing the??-basis of Planar Rational Curves, Journal of Symbolic Computation, vol.31, issue.5, pp.31619-629, 2001.
DOI : 10.1006/jsco.2001.0437

T. Luu-ba, L. Busé, and B. Mourrain, Curve/surface intersection problem by means of matrix representation, SNC'09: Proceedings of the International Conference on Symbolic Numeric Computation, pp.71-78, 2009.

F. R. Gantmacher, Théorie des matrices Tome 2: Questions spéciales et applications, 1966.

H. Gene, C. F. Golub, and . Van-loan, Matrix computations. Johns Hopkins Studies in the Mathematical Sciences, 1996.

F. R. Gantmacher, Théorie des matrices Tome 1: Théorie générale, 1966.

P. Van-dooren and P. Dewilde, The eigenstructure of an arbitrary polynomial matrix: computational aspects, Linear Algebra and its Applications, vol.50, pp.545-579, 1983.
DOI : 10.1016/0024-3795(83)90069-1

A. Amiraslani, R. M. Corless, and P. Lancaster, Linearization of matrix polynomials expressed in polynomial bases, IMA Journal of Numerical Analysis, vol.29, issue.1, pp.141-157, 2009.
DOI : 10.1093/imanum/drm051

P. Van-dooren, The computation of Kronecker's canonical form of a singular pencil, Linear Algebra and its Applications, vol.27, pp.103-140, 1979.
DOI : 10.1016/0024-3795(79)90035-1

. Th, P. Beelen, and . Van-dooren, An improved algorithm for the computation of Kronecker's canonical form of a singular pencil, Linear Algebra Appl, vol.105, pp.9-65, 1988.

B. Mourrain, Computing isolated polynomial roots by matrix methods, J. of Symbolic Computation, Special Issue on Symbolic-Numeric Algebra for Polynomials, vol.26, issue.6, pp.715-738, 1998.

B. Mourrain, Bezoutian and quotient ring structure, Journal of Symbolic Computation, vol.39, issue.3-4, pp.397-415, 2005.
DOI : 10.1016/j.jsc.2004.11.010

URL : http://doi.org/10.1016/j.jsc.2004.11.010

F. Chen, W. Wang, and Y. Liu, Computing singular points of plane rational curves, Journal of Symbolic Computation, vol.43, issue.2, pp.92-117, 2008.
DOI : 10.1016/j.jsc.2007.10.003

L. Busé and C. , Singular factors of rational plane curves, Journal of Algebra, vol.357, 2009.
DOI : 10.1016/j.jalgebra.2012.01.030

R. Rubio, J. M. Serradilla, and M. P. Vélez, Detecting real singularities of a space curve from a real rational parametrization, Journal of Symbolic Computation, vol.44, issue.5, pp.490-498, 2009.
DOI : 10.1016/j.jsc.2007.09.002

G. W. Stewart, On the Sensitivity of the Eigenvalue Problem $Ax = \lambda Bx$, SIAM Journal on Numerical Analysis, vol.9, issue.4, pp.669-689, 1972.
DOI : 10.1137/0709056

A. Mantzaflaris and B. Mourrain, A Subdivision Approach to Planar Semi-algebraic Sets, Proceedings of the 6th international Conference GMP, pp.104-123, 2010.
DOI : 10.1007/978-3-642-13411-1_8

URL : https://hal.archives-ouvertes.fr/inria-00463491

M. Elkadi, A. Galligo, T. Luu, and . Ba, Approximate GCD of several univariate polynomials with small degree perturbations, honour of Joachim von zur Gathen, 2011.
DOI : 10.1016/j.jsc.2011.09.005

N. Howgrave-graham, Approximate Integer Common Divisors, Cryptography and lattices, pp.51-66, 2001.
DOI : 10.1007/3-540-44670-2_6

M. Van-dijk, C. Gentry, S. Halavi, and V. Vaikuntanathan, Fully Homomorphic Encryption over the Integers, Advances in cryptology ? EUROCRYPT 2010, pp.24-43, 2010.
DOI : 10.1007/978-3-642-13190-5_2

D. A. Bini and P. Boito, Structured matrix-based methods for polynomial ???-gcd, Proceedings of the 2007 international symposium on Symbolic and algebraic computation , ISSAC '07, pp.9-16, 2007.
DOI : 10.1145/1277548.1277551

I. Z. Emiris, A. Galligo, and H. Lombardi, Certified approximate univariate GCDs, Journal of Pure and Applied Algebra, vol.117, issue.118, pp.229-251, 1997.
DOI : 10.1016/S0022-4049(97)00013-3

E. Kaltofen, Z. Yang, and L. Zhi, Approximate greatest common divisors of several polynomials with linearly constrained coefficients and singular polynomials, Proceedings of the 2006 international symposium on Symbolic and algebraic computation , ISSAC '06, pp.169-176, 2006.
DOI : 10.1145/1145768.1145799

N. K. Karmarkar and Y. N. Lakshman, On Approximate GCDs of Univariate Polynomials, Journal of Symbolic Computation, vol.26, issue.6, pp.653-666, 1998.
DOI : 10.1006/jsco.1998.0232

V. Y. Pan, Computation of Approximate Polynomial GCDs and an Extension, Information and Computation, vol.167, issue.2, pp.71-85, 2001.
DOI : 10.1006/inco.2001.3032

D. Rupprecht, An algorithm for computing certified approximate GCD of n univariate polynomials, Journal of Pure and Applied Algebra, vol.139, issue.1-3, pp.255-284, 1999.
DOI : 10.1016/S0022-4049(99)00014-6

T. Sasaki and M. Noda, Approximate square-free decomposition and root-finding of ill-conditioned algebraic equations, J. Inform. Process, vol.12, issue.2, pp.159-168, 1989.

A. Galligo, À propos du théorème de-préparation de Weierstrass In Fonctions de plusieurs variables complexes (Sém. François Norguet, octobre 1970?décembre 1973; à la mémoire d'André Martineau). Pages 543?579, Lecture Notes in Math, vol.409, 1974.

D. Bayer, The division algorithm and the Hilbert scheme, 1982.

D. Mumford, Algebraic Geometry I: Complex Projective Varieties, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1981.
DOI : 10.1007/978-3-642-61833-8

J. Zur-gathen and J. Gerhard, Modern computer algebra. second edition, 2003.