
HAL Id: tel-00610499
https://theses.hal.science/tel-00610499v3

Submitted on 20 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Matrix-based implicit representations of algebraic curves
and surfaces and applications

Thang Luu Ba

To cite this version:
Thang Luu Ba. Matrix-based implicit representations of algebraic curves and surfaces and appli-
cations. Mathematics [math]. Université Nice Sophia Antipolis, 2011. English. �NNT : �. �tel-
00610499v3�

https://theses.hal.science/tel-00610499v3
https://hal.archives-ouvertes.fr


UNIVERSITÉ DE NICE-SOPHIA ANTIPOLIS - UFR Sciences
École Doctorale Sciences Fondamentales et Appliquées

THÈSE
Pour obtenir le titre de

Docteur en Sciences
de l’UNIVERSITÉ de Nice-Sophia Antipolis

Spécialité : MATHÉMATIQUES

présentée et soutenue par

Thang LUU BA

Matrix-based implicit representations of algebraic
curves and surfaces and applications

Thèse dirigée par André GALLIGO et Laurent BUSÉ
soutenue le 12 Juillet 2011

Devant le jury composé de :

M. André Galligo Professeur, Université de Nice Directeur
M. Bernard Mourrain Directeur de Recherche, INRIA Sophia Antipolis Examinateur
M. Carlos D’Andrea Professeur, Université de Barcelona President
M. Gilles Villard Directeur de Recherche, ENS de Lyon Rapporteur
M. Laurent Busé HDR, Chargé de Recherche, INRIA Sophia Antipolis Co-Directeur
M. Laureano Gonzalez-Vega Professeur, Université de Cantabria Rapporteur

Laboratoire J.-A. Dieudonné, Université de Nice
Parc Valrose, 06108 Nice Cedex 2

Project GALAAD, INRIA
2004 Route des Lucioles, 06902 Sophia Antipolis Cedex





Acknowledgments

It would not have been possible to complete this doctoral thesis without the help and
support of the kind people around me, to only some of whom it is possible to give particular
mention here.

First, I would like to thank my thesis supervisor, Professor André Galligo of UNSA, for
what he has supported me during three years of thesis, for his patience, for his good su-
pervision. I would like to thank infinitely my thesis co-supervisor, Laurent Busé, Chargé
de recherche à l’INRIA Sophia Antipolis, who has spent a lot of time discussing with me.
Moreover, he has helped me to find new directions when I got stuck. Despite my communi-
cation problem, he is always patient and keeps calm. Therefore, his attitude has helped me
to gain the self-confidence to finish my work.

I am very grateful to Bernard Mourrain, Directeur de recherche and the head of project
GALAAD, and Mohamed Elkadi, Maitre de conférence de l’UNSA for their helps and their
interesting discussion about my work of thesis. I am also grateful to Grégoire Lecerf, Chargé
de recherche à l’École Polytechnique à Palaiseau for his interesting discussion about the
software Mathemagix.

Furthermore, I would like to thank Villard Gilles, Directeur de recherche de l’ENS Lyon
and Laureano Gonzales-Vega, Professor of Cantabria University, for acceptance to be the
reviewers of my thesis. They have given me very precisely and have shown me in details how
I could improve the quality of my thesis. I would like to thank Carlos D’Andrea, Professor
of Barcelona university and thank again Bernard Mourrain for accepting as the members of
my thesis committee.

I would like to acknowledge Government Vietnam and INRIA Sophia Antipolis which
gave me the scholarship during my work at France. I also thank the Department of Math-
ematics, Hanoi National University of Education, particularly associated professors Duong
Quoc Viet, Dam Van Nhi, Bui Van Nghi, Phan Doan Thoai for their support since the start of
my work in 2002. Thanks to members of the Laboratory J.A. Dieudonnée, EDSFA of Nice
University, project GALAAD of INRIA Sophia Antipolis for providing great work environ-
ment. Thank Ms Rodrigez, CROUS de Nice, Ms Gallorini, Secretary of EDSFA, for their
help during my study at France.

I also would like to thank the Vietnamese friends : Duong - Canh, Dang, Lu, Dung, Chau,
Van, Phu-Vui, Yen, Minh, Dan, Huong, Thuan, members of class Mef1-2007 and many
others who have shared with me many interesting things during the time at France. I would
like to thank the family uncle Phuoc and the family Tinh-François who make my life more
harmoniously.

I am very grateful to Angelos (very friendly), my office-mate and my teacher of informat-
ics, Jérôme (very enthusiastic), my office-mate and my teacher of French and Hamad (very

i



strong), my office-mate, who have shared with me many interesting thing and have helped
me a lot during the time at GALAAD project. I also thank to Xu Gang, Médiereg, Elias,
Evelyne, Sophie and many other friends in GALAAD team and Laboratory J.A. Dieudonné
who have encouraged me during my thesis. I will never forget the happy time I have shared
with my friends at GALAAD team.

I owe my deepest gratitude to my parents, my parents in law, my sister in law and the
family of my brothers who always encourage me to finish my thesis.

Finally, I am extremely grateful to my wife Ðỗ Thi. Quỳnh Nga and my son Luu Ðỗ Tuấn
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Introduction

Rational algebraic curves and surfaces can be described in some different ways, the most
common being parametric and implicit representations. Parametric representations describe
the geometric object as the closed image of a rational map and implicit representations de-
scribe it as the zero set of a polynomial equation. Both representations have a wide range
of applications in Computer Aided Geometric Design (CAGD) and Geometric Modeling. A
parametric representation is much easier for drawing a surface but more difficult for check-
ing if a point lies on a surface whereas an implicit representation is more difficult for drawing
a surface but much easier for checking if a point lies on a surface. In recent years, several
authors (for example [1–10]) proposed a new representation of algebraic hypersurfaces by
means of a matrix. These representation matrices can be seen as a bridge between the para-
metric representation of this hypersurface and its implicit representation. Let us give a brief
overview.

Suppose given a hypersurfaceH of Pn defined as the closed image of a rational map

Pn−1
K

φ−→ PnK
(x1 : x2 : . . . : xn) 7→ (f1(x1, . . . , xn) : . . . : fn+1(x1, . . . , xn))

where K is an algebraic closed field and f1, . . . , fn+1 ∈ K[X1, . . . , Xn] are homogeneous
polynomials of the same degree d ≥ 1. The implicitization problem consists in the deter-
mination of an implicit equation H(T1, ..., Tn+1) of this hypersurface. Notice that H is a
homogeneous polynomial of K[T1, . . . , Tn+1] whose degree is equal to the degree of the hy-
persufaceH. From an algebraic point of view, the map φ corresponds to the ring morphism

h : K[T1, . . . , Tn+1] → K[X1, . . . , Xn]
P (T1, . . . , Tn+1) 7→ P (f1, . . . , fn+1)

whose kernel ker(h) is a principal ideal of K[T1, . . . , Tn+1] generated by an implicit equation
of H. In the recent years, several authors, see for example [2, 4, 7, 9, 10], approached the
implicitization problem by substituting to the homogeneous polynomial H(T1, ..., Tn+1), a
classical representation of the hypersurface H, a matrix with its entries in K[T1, . . . , Tn+1].
This matrix is much simpler to calculate and more compact. However, it becomes necessary
to develop new algorithms to manipulate these new representations. This is one of the main
purpose of this thesis work.

Consider a rational space curve defined as the closed image of a rational map

P1
K

φ−→ PnK
(s : t) 7→ (f1(s, t) : . . . : fn+1(s, t))

1



where K is an algebraic closed field and f1, . . . , fn+1 ∈ K[s, t] are homogeneous polynomi-
als of the same degree d ≥ 1. An implicit representation of C in PnK is the defining ideal of
C, that we will denote by IC . By definition, it is the kernel of the ring morphism

h : K[x0, . . . , xn] → K[s, t]
xi 7→ fi(s, t) i = 0, . . . , n.

In other terms, IC is the set of polynomials P ∈ K[x0, . . . , xn] satisfying the equality
P (f0, . . . , fn) = 0. It is a graded ideal of K[x0, . . . , xn] which is moreover prime (hence
radical) because K[s, t] is a domain. It is finitely generated and any collection of generators
of IC provides a representation of C since we have, in terms of algebraic varieties,

VK(IC) = {(x0 : · · · : xn) ∈ PnK : P (x0, . . . , xn) = 0 for all P ∈ IC} = C.

Such a representation can be hard to compute and is not easy to handle for applications
in CAGD; see for instance [11, 12] and the references therein for the case of space curves
(n = 3).

In this thesis, we propose a new matrix representation of rational curves in the projective
space of abitrary dimension and illustrate the advantages of this representation by addressing
some important problems of Computer Aided Geometric Design: The curve/curve intersec-
tion problem, the point-on-curve, inversion problems and the computation of singularities.

Let us sum up briefly the contents of each chapter.
In the first chapter, we will focus on the construction of matrix representations of algebraic

curves and surfaces that are given by a parameterization. This has been studied with details
in the case of hypersurfaces parameterized by a projective space (see for instance [4,5,7,10]
and reference therein) . The results that are obtained are very general and based on the use
of theoretical tools from commutative and homological algebra. However, the case of ratio-
nal curves in the projective space of arbitrary dimension is very different because a single
implicit equation is not enough to describe this curve, several equations are necessary. The
determination of these equations in good shape and in small number is a difficult problem
(see, for example, [12–14]). In this chapter, we propose new representations of rational
curves which are based on a matrix formulation and which have the advantage to be given
by a single matrix, whatever the dimension of the projective space the curve is embedded in.
This representation can be seen as an extension of the Sylvester matrix whose determinant
provides an implicit equation in the case of a plane rational curve. It uses the notion of a
µ-basis of a parameterization of a rational curve which has been introduced in [15].

In the second chapter, we will show how to use matrix-based implicit representations of
rational curves and surfaces to solve the curve/curve and curve/surface intersection prob-
lems, the point-on-curve and inversion problems, the detection of singularities. To solve the
intersection between algebraic varieties, there are several methods and approaches which
have been developed. Some of them are based on matrix representations of the objects that
allow to transform the computation of the intersection locus into generalized eigencompu-
tations (see for instance [8, 16, 17] and the references therein). As far as we know, all these
methods have only been developed for square matrix representations. One of the main con-
tribution of this chapter is to show that similar algorithms can be implemented even if the
matrix representation used are non square matrices. These non square representation ma-
trices appear under much less restrictive hypothesis, notably regarding what is called base
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points. Moreover, they are much easier to compute than square representation matrices when
they exist. To solve the curve/curve and curve/surface intersection problems, we will develop
an algorithm that consists in two main steps. The first one is the computation of a matrix
representation of the curve and surface from its parameterization. After mixing this matrix
representation of the surface with the parameterization of the curve, the second step consists
of a matrix reduction and some eigencomputations. As a particularity of our method, the
first step can be performed by symbolic, exact computations and the second step, by numer-
ical computations. The point-on-curve and inversion problems, the detection of singularities
have been considered recently in [13, 14, 18] with methods based on a set of equations that
are built from a µ-basis of the parameterization. We will show how the use of matrix-based
representations allow to remove the limitations of the above methods in terms of the degree
of the curve and the multiplicities of singular points. In this chapter, we also show how it is
possible to hande curves in a projective space of higher dimension than 3 for applications in
CAGD. Hereafter, we consider the problem of computing lines of intersection between two
ruled surfaces. It is worth mentioning that the computation of the intersection lines between
two ruled surfaces is interesting because it corresponds to the singular case in the methods
given in [19, 20] to compute the complete intersection locus between two ruled surfaces.

In the third chapter, we extend the approach developed in the second chapter for decom-
posing the intersection locus between two parameterized surfaces. Unlike the case of solving
the curve/curve and curve/surface intersection problems, solving the surface/surface intersec-
tion problem by means of matrix representation is much more complicated, mainly because
it amounts to compute the generalized eigenvalues of a bivariate pencil of matrices. In this
chapter, we propose an algorithm for computing the one dimensional and zero dimensional
eigenvalue locus of the bivariate pencil of matrices so that we can obtain the defining equa-
tions of the intersection curve of two rational surfaces and also its isolated points. The ideas
and techniques in this chapter have been developed in the second chapter and [8, 21, 22].

The last chapter is not directly related to the previous ones and targets different applica-
tions. We will focus on using some theoretical tools from commutative algebra so-called
syzygies, Hilbert function, Gröbner basis, generic initial ideal to solve a problem posed by
Von sur Gathen and all [23]: suppose given a family of generic univariate polynomials f :=
(f0, f1, ..., fs), contruct an algorithm to find polynomial perturbation u := (u0, u1, ..., us)
with “small” degree such that the GCD (greatest common divisor) of the perturbed family
f + u := (f0 + u0, f1 + u1, ..., fs + us) has “large” degree. We propose an algorithm that
solves this problem in polynomial time under a generic condition generalizing the normal
degree sequence used in [23] in the case s = 1.

At the end of this thesis work, we provide an appendix to illustrate how to compute a
matrix representation of curves and surfaces, µ-basis, generalized eigenvalues, polynomial
equation, intersection points of curve/surface and curve/curve, singular points of curve with
the computer algebra system Mathemagix [24] by the package matrixrepresentation which is
developed at INRIA in the project GALAAD. This work has been conduced during this thesis
in parallel of the theoretical developvements. All these programs are included in the current
distribution of Mathemagix, in the shape module mmx/shape/mmx /matrixrepresentation or
at http://www-sop.inria.fr/members/Luu.Ba_Thang/

3
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Chapter 1

Matrix-based implicit representations of
rational algebraic curves and surfaces

Algebraic varieties that are used in Computer Aided Geometric Design (CAGD) are often
given in parametric form. Such varieties form a particular class of algebraic varieties that are
called rational. For many applications it is helpful to turn a parametric representation into an
implicit representation, so that implicitization of algebraic varieties has been and is always
an active research topic.

In this chapter, we first begin by recalling some known methods to build a matrix that rep-
resents a rational hypersurface, particularly rational curves in the plane and rational surfaces
in the space.

In the second part of this chapter we introduce and study a new implicit representation of
rational curves in a projective space of arbitrary dimension. To motive this problem, we give
a brief overview. The case of plane curves can be considered as well understood. Indeed,
the implicitization problem can be solved by a simple resultant computation and an implicit
equation is obtained as the determinant of a square matrix. The case of rational curves in
a space of higher dimension is much more involved. One of the main reason of this fact
is that a single equation can not serve as an implicit representation, several equations are
necessary. The determination of these equations in good shape and in small number is a
difficult problem (see, for example, [12], [13] and [14]). In this thesis work, we propose
new implicit representation of rational curves which are based on a matrix formulation and
which have the advantage to be given by a single matrix, whatever the dimension of the space
the curve is embedded in. This representation can be seen as an extension of the Sylvester
matrix whose determinant provides an implicit equation in the case of a plane rational curve.
It uses the notion of a µ-basis of a parameterization of a rational curve that we will recall
in Section 1.2.1. The new matrix-based representations of rational curves which we propose
will be exposed in Section 1.2. The results in this chapter are joint work with Laurent Busé
and have been published in [25]

Hereafter, we will assume that K is an algebraically closed field for simplicity. However,
most of the results in this chapter, notably the matrix-based representations of curves and
surfaces we will introduce could be given over an infinite field.
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1.1 Matrix-based implicit representations of rational hy-
persufaces

Given a parametrized algebraic hypersurface, the aim of this part is to report on known results
about building a matrix that represents this hypersurface. The entries of this matrix are linear
in the space of implicit variables. In order to clarify our approach and put it in perspective,
we begin with the more simple case of parametrized algebraic plane curves.

1.1.1 Rational plane algebraic curves
Suppose given a parametrization

P1
K

φ−→ P2
K

(s : t) 7→ (f1 : f2 : f3)(s : t)

of a plane algebraic curve C in P2. We set d := deg(fi) ≥ 1, i = 1, 2, 3 and denote by
x, y, z the homogeneous coordinates of the projective plane P2

K. The implicit equation of C
is a homogeneous polynomial C ∈ K[x, y, z] satisfying the property C(f1, f2, f3) ≡ 0 and
with the smallest possible degree (notice that C is actually defined up to multiplication by a
nonzero element of K). It is well known that

deg(φ) deg(C) = d− deg(gcd(f1, f2, f3))

where deg(φ) is the degree of the parametrization φ. Roughly speaking, the integer deg(φ)
measures the number of times the curve C is drawn by the parametrization φ. For simplicity,
from now on we will assume that gcd(f1, f2, f3) ∈ K\{0}, that is to say that the parametriza-
tion φ is defined everywhere. Notice that the last condition is not restrictive because we can
obtain it by dividing for each fi, i = 1, 2, 3 by gcd(f1, f2, f3).

Now, we recall two types of method to compute the implicit equation of the curve C. The
first one is based on a resultant computation. Denote by Sylv(f1−T1f3, f2−T2f3) the well-
known Sylvester’s matrix of two polynomial f1−T1f3 and f2−T2f3 in variables s and t. We
can obtain the implicit equation of the curve C as the determinant of Sylv(f1−T1f3, f2−T2f3)
i.e. we have

Res(f1 − T1f3, f2 − T2f3) = det Sylv(f1 − T1f3, f2 − T2f3) = C(T1, T2, 1)deg(φ),

where Res denotes the classical resultant of two homogeneous polynomial in P1
K. Another

matrix formulation is known to compute such a resultant, the Bezout’s matrix which is of
smaller size. If P (s, t) and Q(s, t) are two homogeneous polynomials of the same degree d,
then the Bezout’s matrix Bez(P,Q) is the matrix (bi,j)0≤i≤j≤d−1 where bi,j’s are the coeffi-
cients of the decomposition

P (s, 1)Q(t, 1)− P (t, 1)Q(s, 1)
s− t

=
∑

0≤i≤j≤d−1
bi,js

itj.

Since det Bez(P,Q) = Res(P,Q), we have

det(Bez(f1 − T1f3, f2 − T2f3)) = C(T1, T2, 1)deg(φ).

6



This result shows that the matrices Sylv(f1−T1f3, f2−T2f3) and Bez(f1−T1f3, f2−T2f3)
can be seen as an implicit representations of the curve C. They are actually both special cases
of a method so-called moving line which was introduced by Sederbeg and Chen in [7]. We
can build a collection of matrices that are associated to the parametrization φ as follows. For
all non negative integer ν, consider the set Lν of polynomials of the form

a1(s, t)x+ a2(s, t)y + a3(s, t)z ∈ K[s, t][x, y, z]

such that

• ai(s, t) ∈ K[s, t] is homogeneous of degree ν for all i = 1, 2, 3 and

• ∑3
i=1 ai(s, t)fi(s, t) ≡ 0 in K[s, t].

By definition, it is clear that Lν is a K-vector space and that a basis, say L(1), . . . , L(nν), of
Lν can be computed by solving a single linear system with indeterminates the coefficients
of the polynomials ai(s, t), i = 1, 2, 3. The matrix M(φ)ν is the matrix of coefficients of
L(1), . . . , L(nν) as homogeneous polynomials of degree ν in the variables s, t. In other words,
we have the equality[

sν sν−1t · · · tν
]

M(φ)ν =
[
L(1) L(2) · · · L(nν)

]
The entries of M(φ)ν are linear forms in K[x, y, z]. As the integer ν varies, we have the
following picture for the size of the matrix M(φ)ν :

• if 0 ≤ ν ≤ d − 2 the number nν of columns is strictly less than ν + 1 which is the
number of rows,

• if ν = d− 1 then M(φ)d−1 is a square matrix of size d,

• if ν ≥ d the number nν of columns is strictly bigger than ν + 1 which is the number
of rows.

Proposition 1 ( [5]). For all ν ≥ d− 1 the two following properties hold :

• the GCD of the minors of (maximum) size ν+1 of M(φ)ν is equal to C(x, y, z)deg(φ) up
to multiplication by a nonzero element in K,

• M(φ)ν is generically full rank and its rank drops exactly on the curve C.

This result shows that all the matrices M(φ)ν such that ν ≥ d− 1, can serve as an implicit
representation of the curve C in the same way as the implicit equationC(x, y, z) is an implicit
representation of the curve C.

The matrix M(φ)d−1 is particularly interesting because it is the smallest matrix representing
the curve C and especially because it is a square matrix, which implies that

det(M(φ)d−1) = c.C(x, y, z)deg(φ)

where c ∈ K \ {0}. This matrix goes back, as far as we know, to the work [7] and has been
widely exploited since then by the community of Geometric Modeling and Computer Aided
Geometric Design.
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It is natural to wonder if such an approach can be carried out to the case of parametrized
algebraic surfaces. As we will see, most of the above results hold in this case with much more
involved details and some suitable hypothesis. However, it turns out that a matrix similar to
the matrix M(φ)d−1 rarely exists. Therefore, in order to keep a square matrix it is necessary
to introduce quadratic syzygies, or higher order syzygies; see for instance [2, 3, 26]. In the
sequel, we will stick to the case of linear syzygies because of their simplicity and generality,
even if we will not get square matrices in general.

1.1.2 Rational algebraic surfaces
Suppose given a parametrization

P2
K

φ−→ P3
K

(s : t : u) 7→ (f1 : f2 : f3 : f4)(s, t, u)

of a surface S such that gcd(f1, . . . , f4) ∈ K \ {0}. Set d := deg(fi) ≥ 1, i = 1, 2, 3, 4
and denote by S(x, y, z, w) ∈ K[x, y, z, w] the implicit equation of S which is defined up to
multiplication by a nonzero element in K. Similarly to the case of parametrized plane curves,
there also exists a degree formula that asserts that the quantity deg(S) deg(φ) is equal to d2

minus the number of common roots of f1, f2, f3, f4 in P2 counted with suitable multiplicities
(see for instance [5, Theorem 2.5] for more details). As for curve implicitization, some
types of method have been developed to solve the surface implicitization problem: Method
based on resultant computations, the method called moving surface and the method based on
approximation complex. We begin with the first which is also the oldest one. If there is no
base points ( i.e a point in P2

K is called a base point of the parametrization φ if it is a common
root of the polynomials f1, . . . , f4), it is known that

Res(f1 − T1f4, f2 − T2f4, f3 − T3f4) = S(T1, T2, T3, 1)deg(φ),

where Res denotes the classical resultant of three homogeneous polynomial in P2
K. This

resultant can be computed with the well-known Macaulay’s matrices but this involves gcd
computations since the determinant of each Macaulay’s matrix give only a multiple of this
resultant. To avoid these gcd computations, the following method has been proposed in
some sens, it contains this resultat computation. We build a collection of matrices associated
to the parametrization φ as follows. For all non negative integer ν, consider the set Lν of
polynomials of the form

a1(s, t, u)x+ a2(s, t, u)y + a3(s, t, u)z + a4(s, t, u)w

such that

• ai(s, t, u) ∈ K[s, t, u] is homogeneous of degree ν for all i = 1, . . . , 4,

• ∑4
i=1 ai(s, t, u)fi(s, t, u) ≡ 0 in K[s, t, u].

This set is a K-vector space; denote by L(1), . . . , L(nν) a basis of it that can be computed by
solving a single linear system. Then, define the matrix M(φ)ν by the equality[

sν sν−1t · · · uν
]

M(φ)ν =
[
L(1) L(2) · · · L(nν)

]
8



The method that we build M(φ)ν is called moving planes of degree ν following the surfaces
S which also has been introduced in [7]. From a computational point of view, we can see
that this matrix can be taken as a representation of the surfaces S, replacing an expanded
implicit equation (even if it is generally non-square). For instance, to test if a given point
P := (x0 : y0 : z0 : w0) ∈ P3

K is in the surface S, we just have to substitute x, y, z, w
respectively by x0, y0, z0, w0 in M(φ)ν and check its rank. P is on S if and only if the rank is
drop.

In a similar way, a moving quadratic of the degree ν following the surface is a polynomial
of the form

a1,1(s, t, u)T 2
1 + a1,2(s, t, u)T1T2 + · · ·+ a4,4(s, t, u)T 2

4 ,

where ai,j(s, t, u), 1 ≤ i ≤ j ≤ 4 are homogeneous polynomial in K[s, t, u]ν , such that it
vanishes if we replace Ti by fi. Choosing d moving planes L1, . . . , Ld and l = (d2 − d)/2
moving quadrics Q1, . . . , Ql of degree d − 1 which follow the surface S, we can con-
struct a square matrix M, corresponding to the K[T ]-module map (where K[T ] denotes
K[T1, T2, T3, T4])

(⊕di=1K[T ])⊕ (⊕lj=1K[T ]) → (K[s, t, u]d−1)⊗K K[T ]

(p1, . . . , pd, q1, . . . , qn) 7→
d∑
i=1

piLi +
l∑

j=1
qiQi

It can be shown that it is always possible to chooseL1, . . . , Ld andQ1, . . . , Ql so that det(M)
is non-zero and then equal S(x, y, z, w)deg(φ)( see [27]). This method is way improved in [2].

In the recent years, Busé, Jouanolou and Chadin in [5, 28] have developed a method
based on a method, called approximation complexes introduced by Simis and Vasconcelos
in [29,30], for solving the implicitization problem of a hypersurfacesH of Pn (hence a curve
and surface) defined as the closed image of a rational map

Pn−1
K

φ−→ PnK
(x1 : x2 : . . . : xn) 7→ (f1(x1, . . . , xn) : . . . : fn+1(x1, . . . , xn))

in the case where the base points are isolated and locally a complete intersection, without any
additional hypothesis. Comparing with the method of moving surface, the resultant-based
method, this method is more general since both preceding method somes times failed in
this situation ( for more detail see [5]). An algorithm for implicitizing rational hypersurface
following the method approximation complexes has been described and improved in [4, 5].
For more detail, we give an explicit description for the method approximation complexes in
the case n = 3. Notice that this description has given in [4, 5].

We denote byA the polynomial K[s, t, u] which is naturally graded by deg(s) = deg(t) =
deg(u) = 1. From the polynomial f1, f2, f3, f4 of the parametrization φ, we build the well-
known graded Koszul complex (see for instance [31]) of a sequence (f1, f2, f3, f4) in A
(notation [−n] stand for the degree shift n in A):

0→ A[−4d] d4−→ A[−3d] d3−→ A[−2d] d2−→ A[−d] d1−→ A (1.1.1)
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where the differentials di(i = 1, 2, 3, 4) are given by

d4 =


−f4
f3
−f2
f1

 , d3 =



f3 f4 0 0
−f2 0 f4 0
f1 0 0 f4
0 −f2 −f3 0
0 f1 0 −f2
0 0 f1 f2


,

d2 =


−f2 −f3 0 −f4 0 0
f1 0 −f2 0 −f4 0
0 f1 f2 0 0 −f4
0 0 f1 f2 f3

 , d1 = (f1, f2, f3, f4).

Tensoring the complex (1.1.1) by A[x, y, z, w] over A, we obtain the complex denote by
(K•(f1, f2, f3, f4), u•) which is of the form

0→ A[x, y, z, w][−4d] u4−→ A[x, y, z, w][−3d] u3−→ A[x, y, z, w][−2d] u2−→ A[x, y, z, w][−d]
u1−→ A[x, y, z, w]

where the matrices of the differential di and ui are the same. Set deg(x) = deg(y) =
deg(z) = deg(w) = 1, we build the bi-graded Koszul complex onA[x, y, z, w] of a sequence
(x, y, z, w) denote by (K•(x, y, z, w), v•) which is of the form

0→ A[x, y, z, w][−4] v4−→ A[x, y, z, w][−3] v3−→ A[x, y, z, w][−2] v2−→ A[x, y, z, w][−1]
v1−→ A[x, y, z, w]

and the matrices of its differentials are obtained from the matrices of the differentials (1.1.1)
by replacing f1, f2, f3, f4 by x, y, z, w respectively. From the complex Koszul
(K•(f1, f2, f3, f4), u•) and (K•(x, y, z, w), v•), we can build the complex Z• so-called ap-
proximation complex by defining Zi := ker(di) ⊗A A[x, y, z, w] for i = 0, 1, 2, 3, 4 ( where
d0 : A → 0). They are bi-graded A[x, y, z, w] - modules. For i = 1, 2, 3, we have
ui ◦ vi+1 + vi ◦ ui+1 = 0, thus we obtain the bi-graded complex

(Z•, v•) : 0→ Z3(−3) v3−→ Z2(−2) v2−→ Z1(−1) v1−→ Z0 = A[x, y, z, w].

Remark 2. An element (g1, g2, g3, g4) ∈ Z1[ν] is a moving plane of degree ν following the
surface S. So the matrix of the surjective map

Z1[ν](−1) v1−→ Aν [x, y, z, w]
(g1, g2, g3, g4) 7→ xg1 + yg2 + zg3 + wg4

is exact the matrix M(φ)ν which we describe in the method moving surfaces.

Before giving the main properties of this collection of matrices, we need the following

Definition 3. A matrix M(φ) with entries in K[x, y, z, w] is said to be a representation of a
given homogeneous polynomial P ∈ K[x, y, z, w] if

10



i) M(φ) is generically full rank,

ii) the rank of M(φ) drops exactly on the surface of equation P = 0,

Recall that a point in P2
K is called a base point of the parametrization φ if it is a common

root of the polynomials f1, . . . , f4. It is said to be locally a complete intersection if it can be
locally generated by two equations, and said to be locally an almost complete intersection if
it can be locally generated by three equations.

Proposition 4 ( [4, 10]). For all integer ν ≥ 2(d− 1) we have:

• if the base points are local complete intersections then M(φ)ν represents Sdeg(φ),

• if the base points are almost local complete intersections then M(φ)ν represents

Sdeg(φ) ×
∏

p∈V (f1,...,f4)⊂P2
K

Lp(x, y, z, w)ep−dp

where Lp(x, y, z, w) are linear forms.

Remark 5. It is possible to improve the bound 2(d−1) by taking into account the geometry of
the base points; we refer the reader to [4] for more details. For instance, if there exists at least
one common root to f1, . . . , f4 in P2 then the above proposition is true for all ν ≥ 2(d−1)−1.
Also, mentioned that the linear forms Lp(x, . . . , w) can be determined by computations of
syzygies in K[s, t, u]; see [10].

Although we are dealing with surfaces parametrized by the projective plane, it is important
to mention that the above results still hold for surfaces parametrized by the product of two
projective lines, or more generally by a toric variety. We refer the interested reader to [1,9,32]
for these extensions and also, a recent improvement of moving quadratics in [6]

1.2 Matrix-based implicit representations of rational alge-
braic curves

In the previous part, we recalled an implicit representation of rational plane curve. In this
part, we introduce and study a new implicit representation of a rational curve in a projective
space of arbitrary dimension. The results in this part have been published in [25]

1.2.1 The defining ideal of a rational curve and µ-bases
Let f0, f1, . . . , fn be n homogeneous polynomials in K[s, t] of the same degree d ≥ 1 such
that their greatest common divisor (GCD) is a non-zero constant in K. Consider the regular
map

P1
K

φ−→ PnK
(s : t) 7→ (f0(s, t) : f1(s, t) : · · · : fn(s, t)).

11



The image of φ is an algebraic curve C in PnK which is called a rational curve. The degree
of C is the number of intersection points counted properly between C and any hyperplane in
PnK not containing C. By a well known formula, it is related to the degree of the fi’s and the
degree of the map φ co-restricted to C through the equation

deg(C) deg(φ) = d.

Recall that deg(φ) is, by definition, the degree of the canonical field extension induced by φ,
namely

deg(φ) = [K(s) : K(f0(s, 1), . . . , fn(s, 1))] = [K(t) : K(f0(1, t), . . . , fn(1, t))].

Roughly speaking, deg(φ) is the number of pre-images of a generic point on C via φ.

1.2.2 The defining ideal of a rational curve
The parameterization φ is a very practical representation of C and it is widely used in CAGD.
However, for many problems it is useful to have an implicit representation of C, that is to say
a representation in terms of the coordinates of PnK; hereafter we will denote these coordinates
by (x0 : · · · : xn). One of the most commonly used implicit representation of C in PnK is
the defining ideal of C, that we will denote by IC . By definition, it is the kernel of the ring
morphism

h : K[x0, . . . , xn] → K[s, t]
xi 7→ fi(s, t) i = 0, . . . , n.

In other terms, IC is the set of polynomials P ∈ K[x0, . . . , xn] that satisfy to the equality
P (f0, . . . , fn) = 0. It is a graded ideal of K[x0, . . . , xn] which is moreover prime (hence
radical) because K[s, t] is a domain. It is finitely generated and any collection of generators
of IC provides a representation of C since we have, in terms of algebraic varieties

VK(IC) = {(x0 : · · · : xn) ∈ PnK : P (x0, . . . , xn) = 0 for all P ∈ IC} = C.

Such a representation can be hard to compute and is not easy to handle for applications in
CAGD; see for instance [11, 12] and the references therein for the case of space curves.

1.2.3 µ-basis of a rational curve
The concept of a µ-basis has been introduced in [15]. It can be seen as a bridge between the
parametric representation φ of C and its implicit representation IC . We recall here briefly its
definition and main properties that all follow from a classical structure theorem of commu-
tative algebra called the Hilbert-Burch Theorem (see for instance [33, §20.4]).

Consider the set of syzygies of f := (f0, . . . , fn), that is to say the set

Syz(f) =
{

(g0(s, t), . . . , gn(s, t)) :
n∑
i=0

gi(s, t)fi(s, t) = 0
}
⊂

n⊕
i=0

K[s, t]
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It is known to be a free and graded K[s, t]-module of rank n. Moreover, there exists non-
negative integers µ1, . . . , µn and n vectors of polynomials

(ui,0(s, t), ui,1(s, t), . . . , ui,n(s, t)) ∈ Syz(f) ⊂ K[s, t]n+1 (i = 1, . . . , n) (1.2.1)

such that

• for all i ∈ {1, . . . , n}, j ∈ {0, . . . , n}, ui,j(s, t) is a homogeneous polynomial in
K[s, t] of degree µi ≥ 0,

• the n vectors in (1.2.1) form a K[s, t]-basis of Syz(f),

• ∑n
i=1 µi = d,

• For all j ∈ {0, . . . , n}, the determinant of the matrix obtained by deleting the column
(ui,j)i=1,...,n from the matrix

M(s, t) :=


u1,0(s, t) u1,1(s, t) . . . u1,n(s, t)
u2,0(s, t) u2,1(s, t) . . . u2,n(s, t)
. . . . . . . . . . . .

un,0(s, t) un,1(s, t) . . . un,n+1(s, t)

 (1.2.2)

is equal to (−1)jc fj(s, t) ∈ K[s, t] where c ∈ K \ {0}.

A collection of vectors as in (1.2.1) that satisfy the above properties is called a µ-basis of the
parametrization φ. It is important to notice that a µ-basis is far from being unique, but the
collection of integers (µ1, µ2, . . . , µn) is unique if we order it. Therefore, in the sequel we
will always assume that a µ-basis is ordered so that 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn. We refer the
interested reader to [13] for more details on the topic of µ-basis.

1.2.4 Projection of the graph of φ
Here is an important property of a µ-basis as a tool for the representation of the curve C.
Recall that M(s, t) denotes the matrix (1.2.2) built from a µ-basis of φ.

Lemma 6. For any point (s0 : t0) ∈ P1
K, the kernel of M(s0, t0) is K-generated by the

nonzero vector
< f0(s0, t0), f1(s0, t0), . . . , fn(s0, t0) >

so that it has dimension exactly one. In particular, M(s0, t0) is full rank for any point
(s0 : t0) ∈ P1

K.

Proof. Straightforward from the properties of a µ-basis and the classical Cramer’s rules.

For all i = 1, . . . , n set

ui(s, t, x0, x1, . . . , xn) =
n∑
j=0

ui,j(s, t)xj ∈ K[s, t, x0, . . . , xn]. (1.2.3)
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An immediate consequence of Lemma 6 is that the algebraic variety W defined by the zero
locus of the µ-basis, i.e.

W := {(s : t)× (x0 : · · · : xn) : u1 = u2 = · · · = un = 0} ⊂ P1
K × PnK,

is nothing but the graph of the parameterization φ. Therefore, the canonical projection

π : P1
K × PnK → PnK : (s : t)× (x0 : · · · : xn) 7→ (x0 : · · · : xn)

sends W on C; we have π(W ) = C (for more detail, see [34, Lecture 2]). But the situation is
actually even nicer: this equality is not only true at the level of algebraic varieties, but also
at the level of ideals. To be more precise we need some additional notation.

Define the polynomial ring A := K[x0, . . . , xn], so that K[s, t, x0, . . . , xn] = A[s, t], the
ideal I := (u1, . . . , un) of A[s, t] and consider its resultant ideal (also called the projective
elimination ideal in [35, Chapter 8, §5]) A with respect to the ideal m = (s, t) of A[s, t]. By
definition, we have

A = {P ∈ A such that ∃ ν ∈ N : (s, t)νP ⊂ I} ⊂ A.

Proposition 7 ( [5, Corollary 3.8]). With the above notation, we have A = IC as ideals of A.

In the next section, we will take advantage of this proposition to produce a matrix-based
representation of C. For that purpose, we will need a property that relates resultant ideals
with certain annihilators. Define the quotient B := A[s, t]/I and recall that it inherits of a
structure of graded ring from the canonical grading of C := A[s, t] and the homogeneous
ideal I: deg(s) = deg(t) = 1 and deg(a) = 0 for all a ∈ A. Set m := (s, t) ⊂ C and for
any integer ν ∈ N consider

annA(Bν) = {P ∈ A such that P.Bν = 0} ⊂ A.

Corollary 8. For all integer ν ≥ µn + µn−1 − 1 we have annA(Bν) = A = IC .

Proof. Since A = IC , we will explain why annA(Bν) = A for all ν ≥ µn + µn−1 − 1. First,
define

H0
m(B) :=

∞⋃
k=0

(0 :B mk) = {s ∈ B : ∃k ∈ N such that mks = 0}.

It is a graded C-module and it is clear that A = H0
m(B) ∩ A = H0

m(B)0. Moreover, for any
η ∈ N such that H0

m(B)η = 0, we have A = annA(Bη); see for instance [36, Proposition
1.2].

Now, for any point (s0 : t0) ∈ P1
K the variety V (u1(s0, t0), . . . , un(s0, t0)) is of codimen-

sion n in PnK by Lemma 6. Therefore, the polynomials u1, . . . , un form a regular sequence
in A[s, t] outside V (m). It follows that we can apply the technics developed in [37, §2.10]
and deduce that H0

m(B)ν = 0 for all ν ≥ µn + µn−1 − 1 (recall that we have assumed that
0 ≤ µ1 ≤ · · · ≤ µn−1 ≤ µn).

The following aim is to produce a matrix-based representation of C which is geometri-
cally faithful to the parameterization φ. In this order, we will exhibit ideals that are good
approximations (in a sense that we will make precise hereafter) of the ideal IC . In view of
Corollary 8, certain Fitting ideals associated to a µ-basis of φ are natural candidates for that
purpose.
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1.2.5 The initial Fitting ideal of a µ-basis

Taking again the notation of the previous section, the quotient ring B is, by definition, equal
to the cokernel of the following graded map:

⊕ni=1C(−µi)
u1,...,un−−−−→ C : (g1, . . . , gn) 7→

n∑
i=1

uigi. (1.2.4)

Recall that we consider the grading of C given by deg(s) = deg(t) = 1 and deg(a) = 0
for all a ∈ A. Recall also that, given an integer ν ∈ N, the notation Cν stands for the set
(actually a A-module) of homogeneous elements of degree ν in C, so that C = ⊕i≥0Cν .
Finally, the notation C(k), k ∈ Z, denotes the graded ring such that C(k)ν = Ck+ν for all
ν ∈ Z.

By taking graded parts in (1.2.4), we deduce that for all ν ∈ N the cokernel of theA-linear
map

⊕ni=1Cν−µi
u1,...,un−−−−→ Cν : (g1, . . . , gn) 7→

n∑
i=1

uigi (1.2.5)

is exactly the A-module Bν . From here, a well known result of commutative algebra allows
to approximate the ideal annA(Bν) with the initial Fitting ideal ofBν , denoted F(Bν), which
is the ideal of A generated by the (ν + 1)-minors of a matrix of (1.2.5). Indeed, it is well
known that (see for instance [33, Proposition 20.7] or [38, Theorem 5, Chapter 3])

annA(Bν)ν+1 ⊂ F(Bν) ⊂ annA(Bν). (1.2.6)

In particular, V (F(Bν)) = V (annA(Bν)) ⊂ Pn−1
K . Therefore, we deduce the following

Theorem 9. For all integer ν ≥ µn + µn−1 − 1, we have V (F(Bν)) = C.

Proof. Straightforward from the Corollary 8 and (1.2.6).

For all integer ν ≥ µn + µn−1 − 1 denote by M(φ)ν a matrix of the A-linear map (1.2.5).
Observe that M(φ)ν depends on the choice of the µ-basis of φ and the choices of the A-
basis of Cν and Cν−µi , i = 1, . . . , n (monomial basis, Bernstein basis, etc). So we have a
collection of matrices indexed by ν with the property that for all ν ≥ µn + µn−1 − 1

(i) M(φ)ν is generically full rank, that is to say generically of rank ν + 1,

(ii) the rank of M(φ)ν drops exactly on the curve C.

Therefore, any matrix M(φ)ν , ν ≥ µn + µn−1 − 1, is an implicit representation of the curve
C. Set-theoretically, the implicit representation of C as the simultaneous vanishing locus of
several polynomial equations (e.g. generators of the defining ideal of C) is replaced by a drop
of rank of a single matrix.

Definition 10. For any ν ≥ µn + µn−1 − 1, we will call a matrix M(φ)ν a representation
matrix of the curve C, or more rigorously a representation matrix of φ.
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Before moving on, let us justify the fact that a representation matrix really depends on φ,
and not only on the curve C. Given an integer ν ≥ µn + µn−1 − 1, the ideal F(Bν) is not
equal to the defining ideal IC of the rational curve C in general (see Example 12). However,
F(Bν) is almost everywhere algebraically faithful to the parameterization φ in the following
sense.

Theorem 11. For all integer ν ≥ µn + µn−1− 1, we have the following equality of ideals in
the ring AIC which denotes the localization of A by the prime ideal IC:

F(Bν)IC = IC
deg(φ)AIC .

In other words, the ideals F(Bν) and IC
deg(φ) are equal at all points of C except a finite

number (possibly zero) of them.

Proof. Since IC = A = annA(Bν), Bν has a canonical structure of A/AA-module. More-
over, since A is a prime ideal, we get that (Bν)A is a AA/AAA-vector space. Therefore, we
only need to prove that dimAA/AAA

(Bν)A = deg φ. This result is a consequence of the equal-
ity (12) in the proof of Theorem 2.5 in [5] (see also the proof of Theorem 5.2 in loc. cit.).

Now, we have that (Bν)A ' (A/AA)deg(φ)
A . Using classical properties of Fitting ideals

(see for instance [38, §3.1]) we deduce that

F(Bν)A ' F((A/AA)degφ
A ) = AdegφAA

as claimed.

This theorem shows that the ideal F(Bν) is equal to IC
deg(φ) plus a finite number (possi-

bly zero) of embedded isolated points on C. We illustrate this property with the following
example.

Notice that in the rest of this chapter, when dealing with parameterized curves in P3
K we

will often adopt the more commonly used notation (x, y, z, w) and (p, q, r) for the homoge-
neous coordinates of P3

K and a µ-basis instead of the notation (x0, x1, x2, x3) and (u1, u2, u3).

Example 12. Let C be the rational space curve parameterized by

P1
K

φ−→ P3
K

(s : t) 7→ (s4 : s3t : s2t2 : t4).

A µ-basis of C is given by

p = −tx+ sy

q = −ty + sz,

r = −t2z + s2w.

We have µ1 = µ2 = 1, µ3 = 2 and hence µ3 + µ2 − 1 = 2. Therefore, we obtain the
following representation matrix of φ:

M(φ)2 =

 y 0 z 0 w
−x y −y z 0
0 −x 0 −y −z

 .
16



Using the computer algebra system Macaulay2 [39], we get that IC = (z2 − xw, y2 − xz)
and that

F(B2) = IC ∩ (x, y2, z3, yz2) ∩ (w, x, z3, yz2, y2z, y3).
This computation shows that φ is birational onto C by Theorem 11 and also that F(B2) has
an embedded component supported at the point (0 : 0 : 0 : 1) ∈ C. Therefore, F(Bν) 6= IC
(notice that the third component in the decomposition of F(Bν) is (x, y, z, w)-primary).

1.2.6 Computational aspects
We start by giving an algorithm to compute a representation matrix of a parameterized curve.

Algorithm 1: Matrix representation of a rational curve
Input: A parameterization φ of a rational curve which is defined by the polynomials

f0(s, t), f1(s, t), ..., fn(s, t) ∈ K[s, t].
Output: The smallest possible matrix representation of C among the ones given in

Definition 10.
1. Compute a µ-basis as (1.2.1) of f0(s, t), f1(s, t), ..., fn(s, t).
2. Build the polynomials ui(s, t), i = 1, 2, ..., n, as in (1.2.3).
3. Compute the degree µi, i = 1, . . . , n, of the µ-basis.
4. Build the matrix M(φ)δ where δ := max{µi + µj − 1 : 1 ≤ i 6= j ≤ n}.

Observe that only the first step in this algorithm requires a computation which is the
computation of a µ-basis. An efficient algorithm to compute such a µ-basis, which is mainly
based on Gaussian elimination, is given in [13].

The step 4 consists in the building of a matrix whose entries are the coefficients of the
polynomials ui(s, t), i = 1, . . . , n. It requires the choice of basis for the A-modules Ck,
k ∈ N. For the sake of simplicity we choose hereafter the usual monomial basis, but we
could choose any other basis, for instance the Bernstein basis that are widely used in CAGD
and for which there exists a dedicated algorithm to compute a µ-basis (see [40]) so that
Algorithm 1 can be run entirely in these basis.

For all integer i = 1, . . . , n and all integer ν ∈ N, consider the matrix Sylvν(ui) that
satisfies to the identity[

sν sν−1t · · · stν−1 tν
]
× Sylvν(ui) =

[
sν−µiui s

ν−µi−1tui · · · stν−µi−1ui t
ν−µiui

]
.

It is a (ν+1)× (ν−µi+1)-matrix which usually appears as a building block in well known
Sylvester matrices. It follows that the matrix

Sylvν(u1, . . . , un) =

 Sylvν(u1) Sylvν(u2) · · · Sylvν(un)


is a matrix of the map (1.2.5). It has ν+1 rows and n(ν+1)−d columns. Its entries are linear
forms in K[x0, . . . , xn]; in particular, it can be evaluated at any point (x0 : · · · : xn) ∈ PnK
and yields a matrix with coefficients in K.

From the results we proved above, for all ν ≥ µn+µn−1−1 the matrix Sylvν(u1, . . . , un)
is a matrix-based representation of the curve C. Of course, in practice the most useful matrix
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is the smallest one, that is to say Sylvµn+µn−1−1(u1, . . . , un). We will illustrate in the next
chapter how one can take advantage of such a representation to perform important operations
of CAGD, as the curve/curve intersection problem or the detection of singular locus.

1.2.7 Rational curves contained in a plane
Matrix representations of plane rational curves have been widely studied in the literature, so
for the sake of completeness we briefly mention it and show how the results presented in the
previous sections encapsulate it.

Assume that n = 2. Then C is a plane curve and IC is a principal ideal. It follows
that C is the zero locus of a single polynomial equation called an implicit equation (this
property never happens again if n > 2). A µ-basis is made of two elements u1 u2 such
that µ2 + µ1 = d and it is well known that the Sylvester matrix of u1 and u2 is a square
matrix whose determinant is an implicit equation of C raised to the power deg(φ). With
the notation of the previous sections, this Sylvester matrix is nothing but the representation
matrix M(φ)d−1. The particularity in the case n = 2 is that this matrix is square, which rarely
happens (even in the case n = 2 since M(φ)ν is non square for ν ≥ d). Also, Theorem 11
contains the fact the det(M(φ)d−1) is equal to an implicit equation of C raised to the power
deg(φ). Here again, the particularity is that F(Bd−1) = Ideg(φ) since F(Bd−1) is a principal
ideal and hence cannot have embedded components.

Another interesting situation is the case of a curve C in Pn which is contained in a plane.
By a linear change of coordinates, we can assume that the parameterization is of the form

P1
K

φ−→ PnK
(s : t) 7→ (f0(s, t) : f1(s, t) : f2(s, t) : 0 : · · · : 0)

so that C is included in the plane of equation x3 = x4 = . . . = xn = 0. Therefore a µ-basis
is given by ui = xi, i = 3, . . . , n and u1, u2 is a µ-basis of the plane curve parameterized by

P1
K

φ−→ P2
K : (s : t) 7→ (f0(s, t) : f1(s, t) : f2(s, t)).

Then it is not hard to see that the representation matrix M(φ)d−1 (notice that µ1 +µ2 = d−1)
is of the form 

x3 0 xn 0
M
(
φ
)
d−1

. . . · · · . . .

0 x3 0 xn

 .

Let us end this paragraph with a last particular case: a line in P3 (we restrict ourselves to
P3 for simplicity). Such a case occurs when µ1 = µ2 = 0. By a linear change of coordinates,
we can suppose that u1 = x, u2 = y and u3 = p(s, t)z + q(s, t)w. Notice that necessarily
µ3 = d. In other words, the curve C is parameterized by

P1
K

φ−→ P3
K

(s : t) 7→ (0 : 0 : f2 : f3)(s, t).
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We obtain the following matrix representation of φ where, notably, f2 and f3 does not appear
(because C−1 = ∅):

M(φ)d−1 =


x 0 . . . 0 y 0 . . . 0
0 x . . . 0 0 y . . . 0
...

... . . .
...

...
... . . .

...
0 0 . . . x 0 0 . . . y

 .

It is a d × 2d-matrix from we see easily find that F(Bd−1) = (x, y)d. It turns out that d is
actually equal to deg(φ) from we get easily that F(Bν) = IC

deg(φ) in this case. This last
property follows from Luröth Theorem (see for instance [41]). Indeed, this theorem implies
that there exists a commutative diagram

P1
K

ϕ //

φ   @
@@

@@
@@

P1
K

ρ
~~~~

~~
~~

~

P3
K

where

P1
K

ρ−→ P3
K

(x : y) 7→ (0 : 0 : x : y)(s, t),

P1
K

ϕ−→ P1
K

(t : s) 7→ (f2 : f3)(s, t),

and deg(φ) = deg(ρ) deg(ϕ), deg ρ = 1 and degϕ = d. Therefore, deg φ = d.

1.2.8 Matrix representations without µ-bases
In Section 1.2 we defined matrix representations of a rational curve. To build such a matrix
it is necessary to first compute a µ-basis of the parameterization of the curve. There exist
efficient algorithms to compute µ-basis (see [13, 42]), but they all require the use of exact
linear algebra routines. Therefore, in order to make matrix representations accessible to
any programming environment having linear algebra routines (but not necessarily exact), we
provide a new family of matrix representations that does not require symbolic computations
to be built. As we will see, the price to pay for this property is that the matrices we obtain
are of bigger size than the ones obtained from a µ-basis.

Take again the notation of Section 1.2 and set

∆i,j =
∣∣∣∣∣ fi(s, t) fj(s, t)

xi xj

∣∣∣∣∣
for all 0 ≤ i < j ≤ n. The ∆i,j’s are the 2-minors of the matrix(

f0(s, t) f1(s, t) · · · fn−1(s, t) fn(s, t)
x0 x1 · · · xn−1 xn

)
.
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They are homogeneous polynomial in K[s, t;x0, . . . , xn]. More precisely they are linear
forms in the homogeneous variables x0, . . . , xn and homogeneous polynomials of degree d
in the homogeneous variables s, t.

As in Section 1.2, set A = K[x0, . . . , xn], C = A[s, t] and consider the grading of C such
that deg(s) = deg(t) = 1 and deg(a) = 0 for all a ∈ A. Now, consider the graded map

⊕
0≤i<j≤n

C(−d) (...,∆i,j ,...)−−−−−−→ C : (· · · : gi,j : · · · ) 7→
∑

0≤i<j≤n
gi,j∆i,j (1.2.7)

and denote by B its cokernel.

Proposition 13. For all integer ν ≥ 2d− 1, we have Bν = Bν .

Proof. Consider the Koszul complex associated to the sequence (f0, . . . , fn) over the ring
C. It is of the form

· · · →
⊕

0≤i<j≤n
C(−2d) ∂2−→

⊕
0≤i<j≤n

C(−d) ∂1−→ C.

Observe then that the kernel of ∂1 is exactly the ideal generated by a µ-basis of φ and that
the image of ∂2 is in correspondence with the syzygies of the fi’s that are of the form given
by the ∆i,j’s. Therefore, the difference between B and B is controlled by the first homology
group H1 of this Koszul complex.

Now, by a classical property of Koszul complexes,H1 is annihilated by the ideal (f0, . . . , fn).
Since φ is a regular map, we deduce that Bν = Bν for ν >> 0. Now, a classical spectral
sequence (see for instance [37]) shows that we have a graded isomorphism, for all ν ∈ Z,

(H1)ν ' H2
m(C(−3d))ν .

Therefore, we deduce that (H1)ν = 0 for all ν ≥ 3d− 1 and the result follows by noting that
H1 is embedded in the twisted graded ring C(−d).

By taking graded parts (1.2.7), for all integer ν ∈ N we obtain the A-linear map

⊕
0≤i<j≤n

Cν−d
(...,∆i,j ,...)−−−−−−→ Cν .

Denote by M(φ)ν a matrix of this map. Then, by Proposition 13, we have

Corollary 14. For all integer ν ≥ 2d− 1, the matrix M(φ)ν is a representation matrix of C.

The matrices M(φ)ν have exactly the same properties as the matrices M(φ)ν that are built
from a µ-basis. On the one hand, they do not require symbolic computations, but on the other
hand their sizes are much bigger. For instance, the matrix M(φ)2d−1 (the smallest one) is of
size (2d)×

(
n+1

2

)
d whereas the matrix M(φ)d−1 (the smallest one) is of size d× (n− 1)d.

Example 15. Let C be the classical rational twisted cubic which is parameterized by

φ : P1
K → P3

K : (s, t) 7→ (s3 : s2t : st2 : t3).
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We have {∆i,j : 0 ≤ i < j ≤ 4} = {s3y − s2tx, s3z − st2x, s3w − t3x, s2tz − st2y, s2tw −
t3y, st2w − t3z}. Choosing ν = 5 and the usual monomial basis, we obtain the following
matrix representation of C:

M(φ)5 =


y 0 0 z 0 0 w 0 0 0 0 0 0 0 0 0 0 0
−x y 0 0 z 0 0 w 0 z 0 0 w 0 0 0 0 0
0 −x y −x 0 z 0 0 w −y z 0 0 w 0 w 0 0
0 0 −x 0 −x 0 −x 0 0 0 −y z −y 0 w −z w 0
0 0 0 0 0 −x 0 −x 0 0 0 −y 0 −y 0 0 −z w
0 0 0 0 0 0 0 0 −x 0 0 0 0 0 −y 0 0 −z

 .
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Chapter 2

Intersection problems with rational
curves

In the first chapter, we introduced and studied the matrix-based implicit representations of
rational curves and rational surfaces. In this chapter, we will show how to use matrix-based
implicit representations of rational curves and surfaces to solve some important problems in
CAGD, namely the curve/curve and curve/surface intersection problems, the point-on-curve
and inversion problems, the detection of singularities.

The idea of using matrix representations in CAGD to solve the intersection problems
is quite old. The novelty of our contribution is to enable non square matrices, extension
which is motivated by recent research in this topic. We show how to manipulate these repre-
sentations by proposing a dedicated algorithm to address the curve/curve and curve/surface
intersection problem by means of numerical linear algebra techniques.

The point-on-curve and inversion problems, the detection of singularities have been con-
sidered recently in [13, 14, 18] with methods based on a set of equations that are built from
a µ-basis of the parameterization. We will show in this chapter how the use of matrix-based
representations allow to remove the limitations of the above methods in terms of the degree
of the curve and the multiplicities of singular points.

The results in this chapter have been published in two articles. The first one is a joint
work with Laurent Busé and Bernard Mourrain and have been published in [43]. The second
one is a joint work with Laurent Busé and have been published in [25]

Throughout this chapter, we assume that K is an algebraically closed field, typically the
field of complex numbers C.

2.1 Reduction of a univariate pencil of matrices

In this part, we will develop a numerical method to reduce generalized pencils of matrices.
More precisely, in the theory of Kronecker forms (see for instance [44, Chapter 12]) we will
reduce such a pencil to its regular part, avoiding this way the non square Kronecker blocks.
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2.1.1 Linearization of a polynomial matrix
We begin with some notation.

Let A and B be two matrices of size m × n. We will call a generalized eigenvalue of A
and B a value in the set

λ(A,B) := {t ∈ K : rank(A− tB) < min{m,n}}

In the case m = n, the matrices A and B have n generalized eigenvalues if and only if
rank(B) = n. If rank(B) < n, then λ(A,B) can be finite, empty or infinite. Moreover, if
B is invertible then λ(A,B) = λ(AB−1, I) = λ(AB−1), which is the ordinary spectrum of
AB−1. The previous definition of generalized eigenvalues extends naturally to a polynomial
matrix M(t), where the entries are polynomials in t of any degree.

Suppose given an m× n-matrix M(t) = (ai,j(t)) with polynomial entries ai,j(t) ∈ K[t].
It can be equivalently written as a polynomial in t with coefficients m × n-matrices with
entries in K: if d = maxi,j{deg(ai,j(t))} then

M(t) = Mdt
d +Md−1t

d−1 + . . .+M0

where Mi ∈ Km×n.

Definition 16. The generalized companion matricesA,B of the matrixM(t) are the matrices
with coefficients in K of size ((d− 1)m+ n)× dm that are given by

A =



0 I . . . . . . 0
0 0 I . . . 0
...

...
...

...
...

0 0 . . . . . . I
M t

0 M t
1 . . . . . . M t

d−1



B =



I 0 . . . . . . 0
0 I 0 . . . 0
...

...
...

...
...

0 0 . . . I 0
0 0 . . . . . . −M t

d


where I stands for the identity matrix and M t

i stands for the transpose of the matrix Mi.

We have the following interesting property that follows from a straightforward computa-
tion.

Proposition 17. With the above notation, for all t ∈ K and all vector v ∈ Km we have

M t(t)v = 0⇔ (A− tB)


v
tv
...

td−1v

 = 0.
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Because rankM(t) = rankM t(t), from now on we will assume that M(t) is an m× n-
matrix such that m ≤ n. Therefore, rankM(t) drops if and only if rankM(t) < m.

Theorem 18. With the above assumptions, the following equivalence holds:

rankM(t) < m⇔ rank(A− tB) < dm.

Proof. Because rankM(t) = rankM t(t), we have that rankM t(t) < m. Thus, there
exists a column vector v 6= 0 such that M t(t)v = 0. Then, by Proposition 17 equation
(A− tB)x = 0 has a nonzero root. That means exactly that rank(A− tB) < dm.

Now, if rank(A − tB) < dm, then equation (A − tB)x = 0 have a root x 6= 0 and by a
straightforward computation it is of the form

x =


v
tv
...

td−1v

 .

Since x 6= 0 and by Proposition 17, we have v 6= 0 and v is a root of equation M t(t)v = 0.
Thus, rankM t(t) < m and it follows that rankM(t) < m.

By Theorem 18, we transformed the computation of generalized eigenvalues of the matrix
polynomial M(t) (that is to say the roots of the gcd of the maximal minors of M(t)) into the
computation of generalized eigenvalues of a pencil of matrices A− tB. If the matrices A,B
were two square matrices, then we could easily compute their generalized eigenvalues by
the QZ-algorithm [45]. Therefore, our next task is to reduce the pencil A− tB into a square
pencil that keeps the information we are interested in.

Before moving on, we recall what is the Smith form of M(t) for future use. Assume that
rankM(t) = r, it exists two regular polynomial matrices with nonzero determinant in K,
say P (t) and Q(t), such that

D(t) = P (t)M(t)Q(t) =



ar(t) 0 . . . . . . . . . 0
0 ar−1(t) 0 . . . . . . 0
...

...
...

...
...

...
0 . . . . . . a1(t) . . . 0
0 0 . . . . . . . . . 0


where ai(t)’s are monic polynomials and ai(t) divides ai−1(t). This form is unique and is
called the Smith form of M(t) (see for instance [46, Chapter 6]). Notice that by performing
unimodular row and column transformations on the matrix A− tB, we can find that A− tB
has the Smith form (see for instance [47, 48] for more details)

U(t)(A− tB)V (t) = diag{Im, ..., Im, D(t)}

where D(t) is the Smith form of M t(t). Thus, Theorem 18 can be recovered from this
property.
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2.1.2 The Kronecker form of a non square pencil of matrices
Hereafter, we recall some known properties of the Kronecker form of pencils of matrices.

Definition 19. Let Lk(t),Ωk(t) be the two matrices of size k×(k+1) and k×k respectively,
defined by

Lk(t) =



1 t 0 . . . 0
0 1 t . . . 0
...

...
...

...
...

0 . . . 1 t 0
0 0 . . . 1 t

 ,

Ωk(t) =



1 t 0 . . . 0
0 1 t . . . 0
...

...
...

...
...

0 . . . . . . 1 t
0 0 . . . 0 1

 .

We are going to use the following theorem, which gives what is called the Kronecker
canonical form of a pencil of matrices (see for instance [44, p. 31-34]).

Theorem 20. For any couple constant matrices A, B of size p × q, there exist constant
invertible matrices P and Q such that the pencil P (A− tB)Q is of the block-diagonal form

diag{Li1 , ..., Lis , Ltj1 , ..., L
t
ju ,Ωk1 , ...,Ωkv , A

′ − tB′}

whereA′, B′ are square matrices andB′ is invertible. The dimension i1, ..., is, j1, ..., ju, k1, .., kv
and the determinant of A′ − tB′ (up to a scalar) are independent of the representation.

This theorem can be implemented as follows:

Proposition 21. For any couple of matrices C0, C1 of size p× q, there exist unitary matrices
U and V such that the pencil

U(C0 − tC1)V = C̃0 − tC̃1

is of the form

C̃(t) =

 C̃l(t) C̃1,2(t) C̃1,3(t)
0 C̃r(t) C̃2,2(t)
0 0 C̃reg(t)


where

• C̃l(t) = C̃l,0−tC̃l,1 has only blocks of the form Lk(t),Ωk(t) in its Kronecker canonical
form,

• C̃r(t) = C̃r,0 − tC̃r,1 has only blocks of the form Ltk(t),

• C̃reg(t) = C̃reg,0 − tC̃reg,1 is a square regular pencil.
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It is interesting to notice that the above decomposition can be computed within O(p2q)
arithmetic operations. We refer the reader to [49, 50] for a proof, as well as for an analysis
of the stability of this decomposition.

Following the ideas developed in [49,50] and the reduction methods exploited in [51,52],
we now describe an algorithm that allows to remove the Kronecker blocks Lk, Ltk and Ωk of
the pencil of matrices A− tB in order to extract the regular pencil A′ − tB′.

2.1.3 The Algorithm for extracting the regular part of a non square
pencil of matrices

We start with a pencilA−tB whereA,B are constant matrices of size p×q. Set ρ = rankB.
In the following algorithm, all computational steps are easily realized via the classical LU-
decomposition.
Remark that a matrix is in column echelon form if it is written under the form

∗ ∗ ∗ . . . . . . ∗
∗ ∗ ∗ . . . . . . ∗
∗ . . . . . . ∗ 0 0
∗ ∗ . . . ∗ 0 0
. . . . . . . . . . . . . . . . . .
∗ ∗ 0 0 0 0


Step 1 Transform B into its column echelon form; that amounts to determine unitary ma-
trices P0 and Q0 such that

B1 = P0BQ0 = [B1,1︸︷︷︸
ρ

| 0︸︷︷︸
q−ρ

]

where B1,1 is an echelon matrix. Then, compute

A1 = P0AQ0 = [A1,1︸︷︷︸
ρ

|A1,2︸︷︷︸
q−ρ

]

Step 2 Transform A1,2 into its row echelon form; that amounts to determine unitary matri-
ces P1 and Q1 such that

P1A1,2Q1 =
(
A′1,2
0

)
where A′1,2 has full row rank while keeping B1,1 in echelon form.

At the end of step 2, matrices A and B are represented under the form

P1A1Q
′
1 =

(
A′1,1 A′1,2
A2 0

)
P1B1Q

′
1 =

(
B′1,1 0
B2 0

)

where

• Q′1 =
(
Iρ 0
0 Q1

)
, Iρ is the identity matrix of size ρ.
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• A′1,2 has full row rank,

•
(
B′1,1
B2

)
has full column rank,

•
(
B′1,1
B2

)
and B2 are in echelon form.

After steps 1 and 2, we obtain a new pencil of matrices, namely A2 − tB2.

Step 3 Starting from j = 2, repeat the above steps 1 and 2 for the pencil Aj − tBj until the
pj × qj matrix Bj has full column rank, that is to say until rankBj = qj .

IfBj is not a square matrix, then we repeat the above procedure with the transposed pencil
Atj − tBt

j .
At last, we obtain the regular pencil A′ − tB′ where A′, B′ are two square matrices and

B′ is invertible.

2.2 Curve/surface intersection
Suppose given an algebraic surface S represented by a homogeneous and irreducible implicit
equation S(x, y, z, w) = 0 in P3

K and a rational space curve C represented by a parameteri-
zation

Ψ : P1
K → P3

K : (s : t) 7→ (x(s, t) : y(s, t) : z(s, t) : w(s, t))
where x(s, t), y(s, t), z(s, t), w(s, t) are homogeneous polynomials of the same degree and
without common factor in K[s, t].

A standard problem in non linear computational geometry is to determine the set C ∩
S ⊂ P3

K, especially when it is finite. One way to proceed, is to compute the roots of the
homogeneous polynomial

S(x(s, t), y(s, t), z(s, t), w(s, t)) (2.2.1)

because they are in correspondence with C ∩ S through the regular map Ψ. Observe that
(2.2.1) is identically zero if and only if C ∩ S is infinite, equivalently C ⊂ S (for C is
irreducible).

If S is a rational surface represented by a parameterization, then several authors (see
for instance [8] and the references therein) used some square matrix representations, most
of the time obtained from a particular resultant matrix, of S in order to compute the set
C ∩ S by means of eigencomputations. As we have already mentioned, such square matrix
representations exist only under some restrictive conditions. Hereafter, we would like to
generalize this approach for non square matrix representation that can be obtained for a
much larger class of rational surfaces and are very easy to compute.

So, assume that M(x, y, z, w) is a matrix representation of the surface S, meaning a rep-
resentation of the polynomial S(x, y, z, w). By replacing the variables x, y, z, w by the ho-
mogeneous polynomials x(s, t), y(s, t), z(s, t), w(s, t) respectively, we get the matrix

M(s, t) = M(x(s, t), y(s, t), z(s, t), w(s, t))
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and we have the following easy property:

Lemma 22. With the above notation, for all point (s0 : t0) ∈ P1
K the rank of the matrix

M(s0, t0) drops if and only if the point (x(s0, t0) : y(s0, t0) : z(s0, t0) : w(s0, t0)) belongs to
the intersection locus C ∩ S.

It follows that points in C ∩ S associated to points (s : t) such that s 6= 0, are in corre-
spondence with the set of values t ∈ K such that M(1, t) drops of rank strictly less than its
row and column dimensions i.e. the set of generalized eigenvalues of M(1, t).

We are now ready to give our algorithm for solving the curve/surface intersection prob-
lem:

Algorithm 2: Matrix intersection algorithm
Input: A matrix representation of a surface S and a parametrization of a rational space

curve C.
Output: The intersection points of S and C.
1. Compute the matrix representation M(t).
2. Compute the generalized companion matrices A and B of M(t).
3. Compute the companion regular matrices A′ and B′.
4. Compute the eigenvalues of (A′, B′).
5. For each eigenvalue t0, the point P (x(t0) : y(t0) : z(t0) : w(t0)) is one of the intersection
points.

2.2.1 The multiplicity of an intersection point

In this section, we analyze more precisely the multiplicity of an intersection point and show
its correlation with the corresponding eigenvalue multiplicity for the polynomial matrix
M(1, t). We assume hereafter, without loss of generality, that the intersection point is at
finite distance.

Let (∆i(x, y, z, w))i=1,...,N be the set of all maximal minors of a representation matrix
M(x, y, z, w) of S. By definition, for all i = 1, . . . , N there exists a polynomialHi(x, y, z, w)
such that ∆i = HiS and gcd(H1, . . . , HN) is a nonzero constant in K[x, y, z, w]. Therefore,
the zero locus of the polynomialsH1, . . . , HN , S is an algebraic variety W which is included
in S and which has projective dimension at most one.

Hereafter, we will often abbreviate x(1, t) by x(t) to not overload the text, and will do
similarly for the other polynomials y, z, w. Let P = (x(t0) : y(t0) : z(t0) : w(t0)) be a point
on the parameterized curve C. The intersection multiplicity of S and C at P can be defined
as

IP =
∑

ti such that Ψ(ti)=P
dimK

(
K[t]

S(x(t), y(t), z(t), w(t))

)
(t−ti)

assuming w.l.o.g. that Ψ is birational onto C (by Luröth Theorem [41]) and that all the pre-
images of P are at finite distance (that can be achieved by a linear change of coordinates).

29



Of course, if P ∈ C ∩ S then IP > 0 and IP = 0 otherwise. Also, if P is non singular point
on C (recall that the set of singular points on C is finite) then

IP = dimK

(
K[t]

S(x(t), y(t), z(t), w(t))

)
(t−t0)

Now, denote bymλ the multiplicity of λ as a generalized eigenvalue of the matrixM(t) =
M(x(t), . . . , w(t)). From the above considerations, it follows that the intersection multiplic-
ity of a point P = (x(t0) : y(t0) : z(t0) : w(t0)) ∈ C ∩ S such that P /∈ W is exactly the
sum of the multiplicity of the corresponding eigenvalues:

IP =
∑

ti such that Ψ(ti)=P
mti

As already noticed, if P is moreover smooth on C, then IP = mt0 . Now, if P ∈W∩C∩S,
then

IP <
∑

ti such that Ψ(ti)=P
mti

due to the existence of embedded components (determined by the polynomials Hi’s) that
come from the matrix representation of S.

Notice that if the surface S is given by a parameterization which is not birational onto its
image, then the matrix representations that we describe in the first chapter actually represent
the implicit equation of S up to a certain power, say β. In such case, one has similar results
regarding the multiplicities of intersection points:

βIP =
∑

ti such that Ψ(ti)=P
mti

If P is smooth on C, then βIP = mt0 and

βIP <
∑

ti such that Ψ(ti)=P
mti

if P ∈W ∩C ∩ S.
Now, we are going to relate this multiplicity with the multiplicity of the corresponding

eigenvalue of the pencil of matrices built in Section 2.1.3.
With the notations of Section 2.1.3, we have:

Proposition 23. We have

rank(A− tB) drops ⇔ rank(A′ − tB′) drops.

Proof. It follows from the fact that the Kronecker blocksLi1 , ..., Lis , L
t
j1 , ..., L

t
ju , Ωk1 , ...,Ωkv

have all full rank.

Assume that matrix M t(t) has the Smith form

ar(t) 0 . . . . . . . . . 0
0 ar−1(t) 0 . . . . . . 0
...

...
...

...
...

...
0 . . . . . . a1(t) . . . 0
0 0 . . . . . . . . . 0


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We set

U(t) =


as(t) 0 . . . . . . 0

0 as−1(t) 0 . . . 0
...

...
...

...
...

0 . . . . . . 0 a1(t)


Notice that U(t) is a square matrix where a1(t), . . . , as(t) are monic non constant polynomi-
als.

Proposition 24. The Smith form of the regular pencil A′ − tB′ is of the form {Ik, U(t)}.
Proof. We know that the matrix A− tB has the Kronecker form

diag{Li1 , ..., Lis , Ltj1 , ..., L
t
ju ,Ωk1 , ...,Ωkv , A

′ − tB′}

and the Smith form (see for instance [47])

diag{Im, ..., Im, D(t)}.

On the other hand, we easily see that the Kronecker blocks Lk(t), Ltk(t) and Ωk(t) have
respectively the Smith form

1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
...

0 . . . 1 0 0
0 0 . . . 1 0

 ,


1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
...

0 . . . . . . 0 1
0 0 . . . 0 0

 ,


1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

...
...

0 . . . . . . 1 0
0 0 . . . 0 1

 .

Therefore, the regular pencil A′ − tB′ has the Smith form {Ik, U(t)}.
Theorem 25. If A′ − tB′ denotes the regular part of a pencil associated to a representation
matrix of the intersection between a surface S and a rational parametric curve C then the
intersection multiplicity of S and C at a point P = (x(t0) : y(t0) : z(t0) : w(t0)) is equal to
the multiplicity of the eigenvalues (A′, B′) at t0, except in few cases where this multiplicity
is strictly bigger.

Proof. BecauseM(t) is them×n-matrix (m ≤ n) representation of the intersection between
S and C, M t(t) has the Smith form

am(t) 0 . . . . . . . . . 0
0 am−1(t) 0 . . . . . . 0
...

...
...

...
...

...
0 . . . . . . . . . . . . a1(t)
...

...
...

...
...

...
0 0 . . . . . . . . . 0


,
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Let F (t) = am(t)am−1(t)...a1(t). By Proposition 24, we have F (t) = c det(A′ − tB′),
where c is a nonzero constant.The multiplicity of the eigenvalue of (A′, B′) at t0 is equal
to the multiplicity of the root t0 of F (t) and therefore to the multiplicity of S and C at a
point P = (x(t0) : y(t0) : z(t0) : w(t0)), expect in few cases that are described in Section
2.2.1.

Remark 26. In the statement of this theorem, the few cases where the multiplicity as an inter-
section point is strictly less than the multiplicity of the corresponding generalized eigenvalue
are exactly the cases where the curve cut out the surface on W, taking again notation of
Section 2.2.1. It turns out that W is a closed variety in S and hence the measure of W in S
is null. Therefore, these cases have a null probability to happen if the surface and the curve
are supposed arbitrary.

We have implemented our curve/surface intersection algorithm, as well as the matrix
representations given in the first chapter, in the software MAPLE or the software MATH-
EMAGIX. Hereafter, we provide some examples to illustrate it.

Example 27. Let S be the rational surface which is parametrized by

φ : P2 → P3 : (s : t : u) 7→ (f1 : f2 : f3 : f4)

where
f1 = s3 + t2u, f2 = s2t+ t2u, f3 = s3 + t3, f4 = s2u+ t2u.

We want to compute the intersection of S and the rational curve C, often called the twisted
cubic, given by the parameterization

x(t) = 1, y(t) = t, z(t) = t2, w(t) = t3.

First, on computes a matrix representation of S:

0 0 0 w − y 0 0 z − x
w 0 0 x w − y 0 0

x− y − z 0 0 −z 0 w − y 0
0 w 0 0 x 0 −y
0 x− y − z w 0 −z x y + z − x
0 0 x− y − z 0 0 −z 0


A point P at finite distance belongs to the intersection locus of S and C if and only if

P = (1 : t : t2 : t3) and t is one of the generalized eigenvalues of the following matrix M(t)
given by

0 0 0 t3 − t 0 0 t2 − 1
t3 0 0 1 t3 − t 0 0

1− t− t2 0 0 −t2 0 t3 − t 0
0 t3 0 0 1 0 −t
0 1− t− t2 −t3 0 −t2 1 t2 + t− 1
0 0 1− t− t2 0 0 −t2 0


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We have M(t) = M3t
3 +M2t

2 +M1t+M0 where M0,M1,M2,M3 are respectively

0 0 0 0 0 0 −1
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 1 −1
0 0 1 0 0 0 0


,



0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
−1 0 0 0 0 −1 0
0 0 0 0 0 0 −1
0 −1 0 0 0 0 1
0 0 −1 0 0 0 0


,



0 0 0 0 0 0 1
0 0 0 0 0 0 0
−1 0 0 −1 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 −1 0 1
0 0 −1 0 0 −1 0


,



0 0 0 1 0 0 0
1 0 0 0 1 0 0
0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0


.

and the generalized companion matrices of M(t) are

A =

 0 I 0
0 0 I
M t

0 M t
1 M t

2

 , B =

 I 0 0
0 I 0
0 0 −M t

3


Now, applying the algorithm given in Section 2.1.3, we find that the regular part of the pencil
A− tB is the pencil A′ − tB′ where A′ is given by

0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 0 0 0 0 −1 1
0 0 0 0 0 0 0 1 0 0 0 −1 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 −1
0 2 0 0 2 0 2 0 −1 −1 −2 −2 1
0 −1 0 0 −1 0 −1 0 2 0 1 1 0
0 1 0 0 1 0 1 0 −1 −1 −1 −1 0
0 1 0 −1 1 0 1 0 0 0 −1 −1 1
0 0 0 0 0 −1 0 0 1 0 0 0 0
0 1 0 0 1 0 0 0 −1 0 −1 −1 0
0 1 −1 0 1 0 1 0 −1 −1 −1 −1 0
0 −1 0 0 −2 0 −1 0 0 0 1 2 −1


,
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and B′ is the identity matrix. Then, we compute the following eigenvalues: t1 = 1 with
multiplicity 3, t2 = −1 with multiplicity 3 and the roots of the equation Z7 + 3Z6 − Z5 −
Z3 + Z2 − 2Z + 1 = 0.

Example 28. Let S be the sphere that we suppose given as the image of the parametrization

φ : P2 → P3 : (s : t : u) 7→ (f1 : f2 : f3 : f4)

where
f1 = s2 + t2 + u2, f2 = 2su, f3 = 2st, f4 = s2 − t2 − u2

Let C be the twisted cubic which is parametrized by

x(t) = 1, y(t) = t, z(t) = t2, w(t) = t3.

The computation of a matrix representation of the sphere S gives −y 0 z x+ w
0 −y −x+ w −z
z x+ w y 0

 .
Now, a point P belongs to the intersection of S and C if and only if P = (1 : t : t2 : t3)

and t is one of the generalized eigenvalues of the matrix

M(t) =

 −t 0 t2 1 + t3

0 −t −1 + t3 −t2
t2 1 + t3 t 0

 .
As before, we easily compute the eigenvalues and find:

t1 = 0.7373527056, t2 = −0.7373527056,

t3 = 0.5405361044 + 1.031515287i, t4 = −0.5405361044− 1.031515287i,

t5 = 0.5405361044− 1.031515287i, t6 = −0.5405361044 + 1.031515287i.

All these eigenvalues have multiplicity 1. They all correspond to one intersection point
between S and C which has multiplicity 1. By Bezout Theorem, we find here all the inter-
section points between these two algebraic varieties (all of them are at finite distance).

Example 29. As the previous example, let S be the sphere given be the same parametrization
and matrix representation. Here, we want to intersect S with a simple curve C: the line
parametrized by

x(t) = 1, y(t) = 0, z(t) = 0, w(t) = t.

In this case we have

M(t) =

 0 0 0 t+ 1
0 0 −1 + t 0
0 1 + t 0 0

 .
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Figure 2.1: Intersection of the sphere and the twisted cubic, the axis Oz

We proceed as in the previous example and now find two eigenvalues: t1 = −1 with mul-
tiplicity 2 and t2 = +1 with multiplicity 1. They correspond to the intersection points
P1(1 : 0 : 0 : −1) and P2(1 : 0 : 0 : 1) respectively.

It is interesting to notice that in this case the multiplicity of the eigenvalue t1, which is 2,
is not equal to the multiplicity of the intersection point P1, which is 1. This is due to the fact
that the matrix representation of S introduces an embedded point, namely P1 itself, on the
sphere. Indeed, the four maximal minors of the matrix representation of S are given by

−y(−y2 + x2 − w2 − z2), z(−y2 + x2 − w2 − z2),

(x+ w)(−y2 + x2 − w2 − z2), 0.
Therefore, the zero locus defined by the equations x + w, y, z,−y2 + x2 − w2 − z2, which
is nothing but the point P1, is an embedded component on the sphere.

2.3 Curve/curve intersection
Suppose given two rational curves, say C1 parameterized by

P1 φ1−→ Pn : (s : t) 7→ (f0 : · · · : fn)(s, t) (2.3.1)

and C2 parameterized by the regular map

P1 φ2−→ Pn : (s : t) 7→ (g0 : · · · : gn)(s, t). (2.3.2)

Let M(φ)ν(φ1) be a representation matrix of C1 for a suitable integer ν, as described in Section
1.2. The substitution in M(φ)ν(φ1) of the variables x, y, z, w by the homogeneous parameter-
ization of C2 yields the matrix

M(φ)ν(φ1)(s, t) := M(φ)ν(φ1)(g0(s, t), . . . , gn(s, t))

As a consequence of the properties of a representation matrix, we have the following easy
property.
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Lemma 30. Let (s0 : t0) ∈ P1, then rank M(φ)ν(φ1)(s0, t0) < ν + 1 if and only if the point
φ2(s0, t0) belongs to the intersection locus C1 ∩ C2.

The set C1∩C2 is in correspondence with the points of P1 where the rank of M(φ)ν(φ1)(s, t)
drops. By setting t = 1, the determination of the values of s such that the rank of M(φ)ν(φ1)(s, 1)
can be treated at the level of matrices (that is to say without any symbolic computation and
in particular without any determinant computations) by using linearization technics and gen-
eralized eigenvalues computations which have been extended for non-square matrices in 2.2.
We are now ready to state our algorithm for solving the curve/curve intersection problem and
give an illustrative example.

Algorithm 3: Intersection of two parameterized curves
Input: Two parameterized curves C1 and C2 given by (2.3.1) and (2.3.2).
Output: The intersection points of C1 and C2.
1. Compute the matrix representation M(φ)ν(φ1) of C1 for a suitable ν.
2. Compute the generalized companion matrices A and B of M(φ)ν(φ1).
3. Compute the companion regular matrices A′ and B′.
4. Compute the eigenvalues of (A′, B′).
5. For each eigenvalue t0, φ2(t0 : 1) is an intersection point.

Remark 31. This algorithm returns all the points in C1∩C2 except possibly the point φ(1 : 0).
This latter point can be treated independently.

Example 32. Let C1 be the rational space curve given by the parameterization

f0(s, t) = 3s4t2 − 9s3t3 − 3s2t4 + 12st5 + 6t6,
f1(s, t) = −3s6 + 18s5t− 27s4t2 − 12s3t3 + 33s2t4 + 6st5 − 6t6,
f2(s, t) = s6 − 6s5t+ 13s4t2 − 16s3t3 + 9s2t4 + 14st5 − 6t6,
f3(s, t) = −2s4t2 + 8s3t3 − 14s2t4 + 20st5 − 6t6.

We want to compute the intersection of C1 with the twisted cubic C2 which is parameterized
by

g0(s, t) = s3, g1(s, t) = s2t, g2(s, t) = st2, g3(s, t) = t3.

First, we compute a representation matrix of C1:

M(φ)3 =


x+ y 0 3y − 3z 0 2z − 2w 0
−3x x+ y −y − 3z 3y − 3z −2w 2z − 2w
x −3x y + 3z −y − 3z w −2w
0 x 0 y + 3z 0 w

 .
A point P at finite distance belongs to the intersection locus of C1 and C2 if and only if
P = (1 : t : t2 : t3) and t is one of the generalized eigenvalues of the matrix

M(t) := M(φ)3(1, t) =


1 + t 0 3t− 3t2 0 2t2 − 2t3 0
−3 1 + t −t− 3t2 3t− 3t2 −2t3 2t2 − 2t3
1 −3 t+ 3t2 −t− 3t2 t3 −2t3
0 1 0 t+ 3t2 0 t3

 ,
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We have M(t) = M3t
3 + M2t

2 + M1t + M0 and the generalized companion matrices of
M(t) are

A =

 0 I 0
0 0 I
M t

0 M t
1 M t

2

 , B =

 I 0 0
0 I 0
0 0 −M t

3


Applying Algorithm 3, we find that the regular part of the pencilA−tB is the pencilA′−tB′
where A′, B′ are given by

A′ =
(

0 0
0 0

)
, B′ =

(
1 0
0 1

)
.

Therefore, the computation yields a single eigenvalues t = 0, and thus C1 intersect C2 at the
only point P = (1 : 0 : 0 : 0).

We can also determine the parameter(s) corresponding to P through the parameterization
φ1 of C1. For that purpose, we first evaluate the rank of the matrix M(φ)3(P ). It is equal to 2.
Therefore, P is a singular point of multiplicity 2. It follows that it is not possible to apply the
inversion method given in Section 2.3.2, but rather the method for computing the singular
points of C1 given in Section 2.4. We get that P is obtained through the two parameters
(1 : 1

2(3 +
√

5)) and (1 : 1
2(3−

√
5)) via φ1.

Example 33. We have implemented Algorithm 3 in the software Maple. The correspond-
ing files are available at http://www-sop.inria.fr/members/Luu.Ba_Thang/.
Consider the two curves parameterized, in affine coordinate, by

f0(t) = −33 + 115
2 t− 49

2 t2 + t4,

f1(t) = −36 + 61 t− 25 t2 + t4,

f2(t) = −8 + 27
2 t− 13/2 t2 + t3,

f3(t) = 1.

and

g0(t) = −3 + 17/2 t− 11/2 t2 + t3,

g1(t) = −6 + 12 t− 6 t2 + t3,

g2(t) = −38 + 125
2 t− 51

2 t2 + t4,

g3(t) = 1.

Running our algorithm, we find 4 values of the parameter t that corresponds to an in-
tersection point, namely t = −5, 1, 2, 3. These four intersection points, of coordinates
(1, 1, 0), (0, 2, 1), (0, 3, 1) and (−308,−341,−363) can be visualized in the following pic-
tures.
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2.3.1 Line intersection of two ruled surfaces
The aim of this section is to show that curves in a projective space of higher dimension than
3 can be useful for applications in CAGD. Hereafter, we consider the problem of computing
line intersections between two ruled surfaces. As we will see, this can be done by computing
the intersection of two rational curves in a P5, a problem that can be solved by using the
technics we have presented in the previous section.

It is worth mentioning that the computation of the intersection lines between two ruled
surfaces is interesting because it corresponds to the singular case in the methods given in [19]
and [20] to compute the complete intersection locus between two ruled surfaces.

Rational ruled surfaces A rational ruled surface S is meant to be a surface given by a
rational map

ΦS : P1
K × P1

K → P3
K (2.3.3)

(s : s̄)× (t : t̄) 7→ (f0(s, s̄, t, t̄) : · · · : f3(s, s̄, t, t̄))

where fi ∈ K[s, s̄; t, t̄] are bi-homogeneous polynomials of degree (n, 1), by which we
mean that they are homogeneous polynomials of degree n + 1 and that degs,s̄(fi) = n and
degt,t̄(fi) = 1 for all i = 0, 1, 2, 3. We assume that gcd(f0, f1, f2, f3) = 1 so that we can
rewrite

fi = t̄s̄n1−n0fi0 + tfi1

where fi0, fi1 ∈ K[s, s̄], n0 = max degs(fi0), n1 = max degs(fi1) and where we assume
that n1 ≥ n0 (otherwise we can re-parameterize ΦS by exchanging t and t̄). Therefore,
n1 = n. We also assume that (f00, ..., f30) and (f01, ..., f31) are K[s, s̄]-linearly independent
to exclude the degenerate case where ΦS does not parameterize a surface.

For almost all parameter (s : s̄) ∈ P1
K, the image of map

LS
(s:s̄) : P1

K → P3
K

(t : t̄) 7→ (f0(s, s̄, t, t̄) : · · · : f3(s, s̄, t, t̄))

is the line passing through the two distinct points (f00(s : s̄), ..., f30(s : s̄)) and (f01(s :
s̄), ..., f31(s : s̄)) in P3

K. The ruled surface S can be considered as the closure of the union of
these lines.
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Plücker coordinates Let L be a line in the projective space P3. Given two distinct points
A,B on L with homogeneous coordinates (a0 : a1 : a2 : a3), (b0 : b1 : b2 : b3) respectively,
we define the Plücker coordinates of L as the point (p01 : p02 : p03 : p23 : p31 : p12) ∈ P5

where

pij := det
(
ai bi
aj bj

)
= aibj − ajbi.

It is not hard to see that the Plücker coordinates of L are well defined (it does not depend
on the choice of the points A,B ∈ L) and satisfy to the quadratic relation p01p23 + p02p31 +
p03p12 = 0, that is to say belongs to the Klein quadric

S = {(x0 : x1 : x2 : x3 : x4 : x5) ∈ P5 : x0x3 + x1x4 + x2x5 = 0}.

Conversely, to any point in S one can associate a line in P3 and hence we see that Plücker
coordinates give a bijective correspondence between lines in P3 and points in S ⊂ P5. For
more detail, see [34, Lecture 6].

Plücker curves Now, returning to the ruled surface (2.3.3), we define the Plücker curve as
the image of the rational map

ΨS : P1 → P5

(s : s̄) 7→ (p01 : p02 : p03 : p23 : p31 : p12)

where pij = fi0fj1 − fi1fj0 are the Plücker coordinates of the line in P3 defined by the two
points (f00(s : s̄), ..., f30(s : s̄)) and (f01(s : s̄), ..., f31(s : s̄)). Since there is a one to one
correspondence between the points ΨS(s : s̄) on the Plücker curve and the associated line
L(s:s̄) on the ruled surface S, we obtain the following algorithm to compute intersection lines
between two ruled surfaces.

Algorithm 4: Intersection lines between two ruled surfaces
Input: Two rational ruled surfaces S1 and S2.
Output: The intersection lines of S1 and S2.
1. Compute the Plücker curves C1 and C2 associated to the ruled surfaces S1 and S2
respectively.
2. Compute the intersection points of C1 and C2 using Algorithm 3.
3. Each intersection point is obtained as a value (s : s̄) ∈ P1 that corresponds to the
intersection line LS1

(s:s̄).

2.3.2 Point-on-curve and inversion problems
In this section we will show how to utilize matrix representations of rational curves to solve
two basic problems for rational space curves: point-on-curve problem, that is to say deter-
mining if a point lies on a curve, and inversion problem, that is to say finding the parameter
of a point on a curve given by its homogeneous coordinates.

These problems have been treated previously in the literature by means of a GCD com-
putation of the µ-basis in [13], and also by describing the curve C as the intersection of three
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surfaces in [14], although this latter method is limited to some particular types of curves.
Using the results we got in the previous sections, we propose the following new approach to
the point-on-curve problem.

Suppose given a parameterization φ of a rational curve C and a point P in P3. Denote by
M(φ)ν a matrix representation of φ for some integer ν ≥ δ := µn+µn−1−1. Since its entries
are linear forms in the variables x0, . . . , xn, one can evaluate M(φ)ν at P and get a matrix
with coefficients in the ground field K. Then, we have that

rank (M(φ)ν(P )) < ν + 1 if and only if P ∈ C.

This property answers the point-on curve problem.

Example 34. Suppose that the parameterization φ is given by

f0(s, t) = 3s4t2 − 9s3t3 − 3s2t4 + 12st5 + 6t6,
f1(s, t) = −3s6 + 18s5t− 27s4t2 − 12s3t3 + 33s2t4 + 6st5 − 6t6,
f2(s, t) = s6 − 6s5t+ 13s4t2 − 16s3t3 + 9s2t4 + 14st5 − 6t6,
f3(s, t) = −2s4t2 + 8s3t3 − 14s2t4 + 20st5 − 6t6.

A µ-basis for C is

p = (s2 − 3st+ t2)x+ t2y

q = (s2 − st+ 3t2)y + (3s2 − 3st− 3t2)z,
r = 2t2z + (s2 − 2st− 2t2)w.

From deg(p) = deg(q) = deg(r) = 2, we have µn + µn−1 − 1 = 3 and hence a matrix
representation of C is given by

M(φ)3 =


x+ y 0 3y − 3z 0 2z − 2w 0
−3x x+ y −y − 3z 3y − 3z −2w 2z − 2w
x −3x y + 3z −y − 3z w −2w
0 x 0 y + 3z 0 w

 .
Let P = (1 : 1 : 1 : 1) ∈ P3. Evaluating M(φ)3 at P we find that

M(φ)3 =


2 0 0 0 0 0
−3 2 −4 0 −2 0
1 −3 4 −4 1 −2
0 1 0 4 0 1


is of rank 4 so that P does not lie on C.

This example is taken from [14, Example 3.7]. There, the authors’ approach is to represent
the curve C as the intersection of three surfaces, namely

Res(p, q) = det


x+ y 0 3y − 3z 0
−3x x+ y −y − 3z 3y − 3z
x −3x y + 3z −y − 3z
0 x 0 y + 3z

 = 0,
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Res(p, r) = det


x+ y 0 2z − 2w 0
−3x x+ y −2w 2z − 2w
x −3x w −2w
0 x 0 w

 = 0,

Res(r, q) = det


3y − 3z 0 2z − 2w 0
−y − 3z 3y − 3z −2w 2z − 2w
y + 3z −y − 3z w −2w

0 y + 3z 0 w

 = 0.

It turns out that P belongs to the intersection of these three surfaces, but not to the curve C.
It is interesting to notice how the rank condition on the matrix M(φ)3, which is a kind of join
of the three above matrix, correct this default.

Another classical problem is the inversion problem. In [13] this problem is treated through
a GCD computation of a µ-basis. Using a matrix representation of the curve, we propose an-
other approach which is based on the computation of the kernel of a matrix with coefficients
in the ground field K.

Suppose given a point in homogeneous coordinates P and let M(φ)ν be a representation
matrix of φ for a given integer ν ≥ µn + µn−1 − 1. If rank M(φ)ν(P ) = rank M(φ)ν − 1 = ν
then P has a unique pre-image (s0 : t0) by φ and moreover, this pre-image can be recovered
from the computation of a generator, say WP = (w0, . . . , wν) ∈ Kν+1, of the kernel of the
transpose of M(φ)ν(P ). Indeed, if b0(s, t), . . . , bν(s, t) is the basis of Cν that has been chosen
to build M(φ)ν , then there exists λ ∈ K \ {0} such that

WP = λ (b0(s0, t0), . . . , bν(s0, t0)) .

For instance, suppose that bi(s, t) = sitν−i, i = 0, . . . , ν (the usual monomial basis), then
(s0 : t0) = (w1 : w0) if w0 6= 0, otherwise (s0 : t0) = (1 : 0).

We point out that the points P ∈ C such that rank M(φ)ν(P ) = rank M(φ)ν − 1 = ν
are precisely the regular points on C, that is to say that all the points that do not verify
this property are singular points on C. We will come back again on this property and on
the treatment of the singular points on C in the next section. We close this section with an
illustrative example.

Example 35. Take again Example 34. Evaluating the matrix M(φ)3 at the point P = (9 : 9 :
9 : 6) ∈ P3 we obtain the matrix

M(φ)3(P ) =


18 0 0 0 6 0
−27 18 −36 0 −12 6
9 −27 36 −36 6 −12
0 9 0 36 0 6

 .

which has rank 3. Therefore, P is a smooth point on the curve C. Moreover, the computation
of the kernel of the transpose of M(φ)3(P ) returns the vector (1, 1, 1, 1) . Thus, we deduce
that P = φ(1 : 1).
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2.4 Computing the singular points of a rational curve

This section is devoted to the computation of the singular points of a rational curve. Here-
after, we will restrict ourselves to the case of rational space curves for simplicity, and also
to emphasize our new methods in a case which is of particular interest in CAGD. However,
all our results can be easily extended to a rational curve in a projective space of arbitrary
dimension.

In [18], the authors derive correspondences between the singularities of rational space
curves and a µ-basis. They also show how to employ µ-bases to compute all the singularities
of rational space curves of low degree. We propose another approach to compute the singu-
larities of rational space curves which is based on the matrix representations introduced in
Section 1.2 of the first chapter . It can be seen as an extension of what is called singular fac-
tors for the case of rational plane curves in [53]; see also [54]. Remark that the computation
of the singular points have been detected in [55] via the generalized resultant method.

2.4.1 Rank of a representation matrix at a singular point

Let C be a rational space curve of degree d ≥ 1 parameterized by the regular map

P1
K

φ−→ P3
K

(s : t) 7→ (f0 : f1 : f2 : f3)(s, t).

where f0, f1, f2, f3 are four homogeneous polynomials in K[s, t] of the same degree d such
that their GCD is a nonzero element in K.

Let P be a point on C. There exists at least one point (s1 : t1) ∈ P1 such that P =
φ(s1 : t1). Now, let H be a plane in P3 passing through P , not containing C and denote by
H(x, y, z, w) an equation (a linear form in K[x, y, z, w]) ofH. We have the following degree
d homogeneous polynomial in K[s, t]

H(f0(s, t), f1(s, t), f2(s, t), f3(s, t)) =
d∏
i=1

(tis− sit) (2.4.1)

where the points (si : ti) ∈ P1, i = 1, . . . , d are not necessarily distinct. We define the
intersection multiplicity of C with H at the point P , denoted iP (C,H), as the number of
points (si : ti)i=1,...,d such that φ(si : ti) = P .

Definition 36. The multiplicity mP (C) of the point P on C is defined as the minimum of the
intersection multiplicity iP (C,H) where H runs over all the hyperplanes not containing C
and passing through the point P ∈ C, minimum which is reached with a sufficiently generic
suchH.

Definition 37. An inversion formula of the point P on C is a homogeneous polynomial
hP (s, t) ∈ K[s, t] of degree mp(C) such that hP divides (2.4.1) for any hyperplane H going
through P . It is uniquely defined up to multiplication by a nonzero element in K.
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Given a µ-basis of the parameterization φ, say

p(s, t;x, y, z, w) = p0(s, t)x+ p1(s, t)y + p2(s, t)z + p3(s, t)w,
q(s, t;x, y, z, w) = q0(s, t)x+ q1(s, t)y + q2(s, t)z + q3(s, t)w,
r(s, t;x, y, z, w) = r0(s, t)x+ r1(s, t)y + r2(s, t)z + r3(s, t)w,

where p, q, r are of degree m ≥ n ≥ l respectively, on can extract an inversion formula of a
given point in P3 with the following result that appears in [18] (we provide here a short proof
for the sake of completeness).

Lemma 38. Let P be a point on C. Then the GCD of the three homogeneous polynomials
p(s, t;P ), q(s, t;P ), r(s, t;P ) in K[s, t] is an inversion formula of P .

Proof. By a linear change of coordinates in P3, one can assume without loss of generality
that P = (0 : 0 : 0 : 1), because µ-bases have the expected property under linear change
of coordinates. It follows that p(s, t;P ) = p3(s, t), q(s, t;P ) = q3(s, t) and r(s, t;P ) =
r3(s, t). Set K(s, t) := gcd(p3, q3, r3).

From the definition of inversion formula we immediately deduce that hP (s, t) :=
gcd(f0, f1, f2). So we have to prove that K and hP are equal up to multiplication by a
nonzero element in K.

From the properties of the µ-basis there exists c ∈ K \ {0} such that

cf0 =

∣∣∣∣∣∣∣
p1 p2 p3
q1 q2 q3
r1 r2 r3

∣∣∣∣∣∣∣ , cf1 = −

∣∣∣∣∣∣∣
p0 p2 p3
q0 q2 q3
r0 r2 r3

∣∣∣∣∣∣∣ , cf2 =

∣∣∣∣∣∣∣
p0 p1 p3
q0 q1 q3
r0 r1 r3

∣∣∣∣∣∣∣ .
Therefore, it is clear that K divides hP .

Now, since

p0(s, t)f0(s, t) + p1(s, t)f1(s, t) + p2(s, t)f2(s, t) = −p3(s, t)f3(s, t)

we deduce that hP divides p3f3. But f0, f1, f2 all vanish at the roots of hP so hP and f3
cannot share a common root because φ is regular. It follows that hP divides p3. With the
same argument, we get that hP divides q3 and r3 as well. Therefore, hP divides K.

Taking again the notation of Section 1.2, for all integer ν ≥ m + n − 1 we have a
representation matrix M(φ)ν of the curve C which is built from the µ-basis p, q, r. Its entries
are linear forms in K[x, y, z, w] so that it makes sense to evaluate M(φ)ν at a point in P3 to
get a matrix M(φ)ν(P ) with entries in K.

Theorem 39. Given a point P in P3, for all integer ν ≥ m+ n− 1 we have

rank M(φ)ν(P ) = ν + 1−mP (C),

or equivalently corank M(φ)ν(P ) = mP (C).
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Proof. From Lemma 38, we have that hP (s, t) = gcd(p(s, t;P ), q(s, t;P ), r(s, t;P )) is a
homogeneous polynomial in R := K[s, t] of degree mP (C). From Section 1.2, we recall that
M(φ)ν(P ) is a matrix of the map

R(−m)ν ⊕R(−n)ν ⊕R(−l)ν
(p(s,t;P ),q(s,t;P ),r(s,t;P ))−−−−−−−−−−−−−−→ Rν

so that corank M(φ)ν = dimK(R/I)ν for all integer ν, where I stands for the ideal of K[s, t]
generated by the polynomials p(s, t;P ), q(s, t;P ) and r(s, t;P ).

Now, the homogeneous polynomials p(s, t;P )/hP , q(s, t;P )/hP , r(s, t;P )/hP are rela-
tively prime other K[s, t] so it follows that the saturation of the homogeneous ideal J =
(p(s, t;P )/hP , q(s, t;P )/hP , r(s, t;P )/hP ) ⊂ K[s, t] with respect to the ideal m = (s, t)
is equal to m. Therefore, we get the following result that we already used: Jν = mν for
all ν ≥ m + n − 2mP (C) − 1. But then, multiplying this equality by the homogeneous
polynomial hP we obtain

Iν+mP (C) = hP (p(s, t;P )/hP , q(s, t;P )/hP , r(s, t;P )/hP )ν = (s, t)ν = (hP )ν+mP (C)

for all ν ≥ m+ n− 1− 2mP (C). We conclude that

corank M(φ)ν(P ) = dimK(R/(hP ))ν = ν + 1− (ν −mP (C) + 1) = mP (C)

for all ν ≥ m+n−1−mP (C), which finishes the proof sincemP (C) ≥ 0 for any P ∈ P3.

This result provides a stratification of the points in P3 with respect to the curve C. Indeed,
we have that

• if P is such that rank M(φ)ν(P ) = ν + 1 then P 6∈ C,

• if P is such that rank M(φ)ν(P ) = ν then P is a regular point (i.e. of multiplicity 1) on
C,

• if P is such that rank M(φ)ν(P ) = ν − 1 then P is singular point of multiplicity 2 on
C,

• and so on.

Moreover, an immediate consequence of this theorem and Lemma 38 is that if P is a singular
point on C then necessarily

2 ≤ mP (C) ≤ n or mP (C) = m. (2.4.2)

We refer the reader to [18] for more results of this kind about the possible singularities on C
with respect to the µ-basis of its parameterization.
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2.4.2 Singular factors
Theorem 39 suggests to introduce the singular factors of a representation, similarly to what
has been done in [53], then in [54], for the case of plane curves. Although we are not able
to get results similar to those proved in [54] for plane curves, because the geometry of space
curves is much less constrained than the one of plane curves, we will nevertheless see that
these singular factors allow to compute all the singularities of a rational space curve.

As above, suppose given an integer ν ≥ m+n−1 and a representation matrix M(φ)ν of the
curve C which is built from the µ-basis p, q, r of degree m ≥ n ≥ l respectively. We denote
by M(φ)ν(s, t) the matrix M(φ)ν where we substitute x, y, z, w by f0(s, t), f1(s, t), f2(s, t),
f3(s, t) respectively. It is then clear that rank M(φ)ν(s, t) < ν + 1 for any point (s : t) ∈ P1.

Definition 40. A collection of homogeneous polynomials d1(s, t), . . . , dν+1(s, t) in K[s, t]
such that for all integer i = 1, . . . , ν + 1 the product

dν+1(s, t)ν+1−i+1dν(s, t)ν+1−i · · · di+1(s, t)2di(s, t)

is equal to the GCD of all the (ν + 2 − i)-minors of M(φ)ν(s, t) is called a collection of
singular factors of the parameterization φ.

Notice that these singular factors are defined up to multiplication by a nonzero element
in K. Moreover, their existence is guaranteed because the ground variety is P1

K, or in other
words by homogenizing with some care the invariant factors of the matrix M(φ)ν(s, 1), K[s]
being a principal ideal domain.

Theorem 41. We have dν+1(s, t) = dν(s, t) = · · · = dm+1(s, t) = 1 and d1(s, t) = 0.
Moreover, for any singular point P ∈ C, the inversion formula hP (s, t) divides dmP (C)(s, t)
and is coprime with dk(s, t) for all k > mP (C).

Proof. The entries of the matrix M(φ)ν are linear forms in K[x, y, z, w]. Therefore, its de-
terminantal ideals, denoted Ik(−) and which correspond to the ideals generated by all the
k-minors of M(φ)ν , k = 1, . . . , ν + 1, are homogeneous ideals in K[x, y, z, w].

Then, by using Lemma 38 we deduce that

V (Ik(M(φ)ν)) = ∅ ⊂ P3

for all k = 1, . . . , ν + 1−m, as there cannot be any common factor of degree more than m
of the three element of the µ-basis after specialization at a given point. It follows then that

V (Ik(M(φ)ν(s, t))) = ∅ ⊂ P1

for all k = 1, . . . , ν + 1−m, and this implies dk(s, t) = 1 for all k > m.
Now, assume for simplicity that P = (0 : 0 : 0 : 1) . As we did above, we have

P /∈ V (Ik(M(φ)ν)) for all k = 1, . . . , ν + 1 − mP (C) which implies that hP (s, t) and
dk(s, t) are relatively prime polynomials for all k > mP (C). On the other hand, P ∈
V (Iν+1−mP (C)+1(M(φ)ν)), that is Iν+1−mP (C)+1(M(φ)ν) ⊂ (x0, x1, x2), and hence

Iν+1−mP (C)+1(M(φ)ν(s, t)) ⊂ (f0(s, t), f1(s, t), f2(s, t)) ⊂ (hP (s, t)) ⊂ K[s, t].
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It follows that hP (s, t) divides

dν+1(s, t)ν+1−mP (C)+1 · · · dmP (C)+1(s, t)2dmP (C)(s, t)

and therefore that hP (s, t) divides dmP (C)(s, t).

Here are two consequences of this theorem that allows to characterize the multiplicity of
a singular point and to compute the singular points.

Corollary 42. Let P = φ(s0 : t0) be a point on C, then dmP (C)(s0 : t0) = 0 and dk(s0 :
t0) 6= 0 for all k > mP (C). In particular, the multiplicity of P is the highest integer k such
that dk(s0 : t0) = 0.

Corollary 43. For any integer k such that 2 ≤ k ≤ m, the product∏
P∈C : mP (C)=k

hp(s, t)

that runs over all the singular points on C of multiplicity k, divides the singular factor
dk(s, t).

2.4.3 Computational aspects
The computation of the singular factors can be done through Smith form computations. In-
deed, the matrix M(φ)ν(s, 1) is a matrix with entries in the principal ideal domain K[s].
Therefore it is equivalent to the diagonal matrix



dν+1(s, 1)
dν+1dν(s, 1)

dν+1dνdν−1(s, 1)
. . .

dν+1 · · · d3(s, 1)
dν+1 · · · d3d2(s, 1)

0


.

So, the computation of this Smith form (or equivalently its invariant factors) yields the de-
homogenized singular factors where t is set to 1. It follows that if the point P = φ(1 : 0)
is not a singular point, then the singularities of the curve C can be recovered after a single
Smith form computation. If not, it is necessary to either perform the same computation for
the matrix M(φ)ν(1, t) to get the dehomogenized singular factors where now u is set to 1, or
either obtain directly the information on the possible singular point φ(1 : 0) by performing
the GCD computation from Lemma 38.

We conclude this section with two illustrative examples.

Example 44 ( [18, Example 7.6]). Let C be the rational space curve parameterized by

φ : P1
K → P3

K : (s : t) 7→ (s5 : s3t2 : s2t3 : t5).
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A µ-basis for C is given by

p = ty − sz
q = t2x− s2y,

r = t2z − s2w.

From deg(q) = deg(r) = 2, we can choose ν = 3, then a matrix representation of C is
given by

M(φ)3 =


y 0 0 x 0 z 0
−z y 0 0 x 0 z
x −z y −y 0 −w 0
0 0 −z 0 −y 0 −w

 .
Substituting x = s5, y = s3t2, z = s2t3, w = t5, we obtain

M(φ)3(s, t) =


s3t2 0 0 s5 0 s2t3 0
−s2t3 s3t2 0 0 s5 0 s2t3

0 −s2t3 s3t2 −s3t2 0 −t5 0
0 0 −s2t3 0 −s3t2 0 −t5

 .
Now, the Smith form of M(s, 1) and M(1, t) are respectively

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 s2 0 0 0 0
0 0 0 0 0 0 0

 and


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 t2 0 0 0 0
0 0 0 0 0 0 0

 .
Therefore, the singular factors of C are d4(s, t) = 1, d3(s, t) = 1, d2(s, t) = s2t2. Thus, C
has only two singular points of multiplicity 2, the points A = (0 : 0 : 0 : 1) and B = (1 : 0 :
0 : 0) that correspond to the parameters (0 : 1) and (1 : 0) respectively.

Example 45. Let C be the classical rational twisted cubic which is parameterized by

φ : P1
K → P3

K : (s : t) 7→ (s3 : s2t : st2 : t3).

A µ-basis for C is given by

p = −tx+ sy

q = −ty + sz,

r = −tz + sw.

Since deg(q) = deg(r) = 1, we can choose ν = 1 and then a matrix representation of C is

M(φ)1 =
(
−x −y −z
y z w

)
.

Substituting x = s3, y = s2t, z = st2, w = t3, we obtain

M(φ)1(s, t) =
(
−s3 −s2t −st2
s2t st2 t3

)
.
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The Smith forms of M(s, 1) and M(1, t) are respectively:(
1 0 0
0 0 0

)
and

(
1 0 0
0 0 0

)
.

It follows that the singular factors of C are d3(s, t) = 1, d2(s, t) = 1: we recover the well
known fact that C has no singular point.
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Chapter 3

The rational surface/surface intersection
problems

In the first and second chapters, we introduced and studied the matrix-based implicit rep-
resentation of rational surfaces and showed how to use them to compute curve/curve and
curve/surface intersection loci. In this chapter, we extend the approach developed in the
second chapter for decomposing the parameterized surface/surface intersection locus. Un-
like the case of solving the curve/curve and curve/surface intersection problems, addressing
the surface/surface intersection problem by means of matrix representation is much more
complicated because it requires to compute generalized eigenvalues of bivariate pencils of
matrices.

Following the approach that we used in the second chapter, to solve the surface/surface
intersection problem we will develop an algorithm that consists in two main steps. The first
one is the computation of a matrix representation of one of the surface from its parameteriza-
tion. After mixing this matrix representation with the parameterization of the other surface,
the second step consists in a reduction of a bivariate pencil of matrices and the computation
of its continuous and discrete spectrums, via the ∆W − 1 decomposition algorithm that has
been introduced by Kublanovskaya in [22].

Throughout this chapter, we assume that C is the field of complex numbers.

3.1 Reduction of a bivariate pencil of matrices

3.1.1 Linearization of a two parameter polynomial matrices
Let M(s, t) be a matrix of size m× n depending on the two variables s and t. The spectrum
of M(s, t) is defined to be the set

{(s0, t0) ∈ C× C : rank(M(s0, t0))} < ρ

where ρ := rankM(s, t). Denote by M j1,...,jρ
i1,...,iρ the matrix obtained from M(s, t) by taken ρ

rows i1, ..., iρ and ρ columns j1, ..., jρ, 1 ≤ i1 < ... < iρ ≤ m, 1 ≤ j1 < ... < jρ ≤ n. The
coordinates of its spectrum are the common roots of all the algebraic equations

detM j1,...,jρ
i1,...,iρ = 0 (3.1.1)
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The one-dimensional and zero-dimensional roots of the system (3.1.1) determine respec-
tively the one-dimensional and zero-dimensional eigenvalues of the matrix M(s, t). We
recall that the one dimensional eigenvalues (also called eigencurves) form the continuous
part of the spectrum which is defined by the equation φ(s, t) = 0 and the zero-dimensional
eigenvalues form the discrete part of the spectrum.

Suppose given an m×n-matrix M(s, t) = (ai,j(s, t)) with polynomial entries ai,j(s, t) ∈
C[s, t]. It can be equivalently written as a polynomial in s whose coefficients are m × n-
matrices with entries in C[t]: if d = maxi,j{degs(ai,j(s, t))} then

M(s, t) = Md(t)sd +Md−1(t)sd−1 + . . .+M0(s)

where Mi(t) ∈ C[t]m×n.

Definition 46. The generalized companion matrices A(t), B(t) of the matrix M(s, t) are the
matrices with coefficients in C[t] of size ((d− 1)m+ n)× dm that are given by

A(t) =



0 I . . . . . . 0
0 0 I . . . 0
...

...
...

...
...

0 0 . . . . . . I
M t

0(t) M t
1(t) . . . . . . M t

d−1(t)



B =



I 0 . . . . . . 0
0 I 0 . . . 0
...

...
...

...
...

0 0 . . . I 0
0 0 . . . . . . −M t

d(t)


where I stands for the identity matrix andM t

i (t) stands for the transpose of the matrixMi(t).

We have the following interesting property that follows from a straightforward computa-
tion.

Proposition 47. With the above notation, for all s ∈ C and all vector v ∈ C[t]m we have

M t(s, t)v = 0⇔ (A(t)− sB(t))


v
sv
...

sd−1v

 = 0.

In particular, these companion matrices allows to linearize the polynomial matrix M(s, t)
in the sense that there exists two unimodular matrices E(s, t) et F (s, t) with coefficients in
C[s, t] and of size dm and (d− 1)m+ n respectively, such that

E(s, t) (A(t)− sB(t))F (s, t) =
(

tM(s, t) 0
0 Id(m−1)

)
. (3.1.2)

So, we obtain
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Theorem 48. The spectrum of the matrix M(s, t) and the spectrum of the pencil matrix
A(t)− sB(t) coincide.

By Theorem 48, we transform the computation of the spectrum of the polynomial matrix
M(s, t) into the computation of the spectrum of a bivariate pencil of matrices A(t)− sB(t).
If the matrices A(t), B(t) are two square matrices, we could compute the spectrum of the
polynomial matrix M(s, t) as the roots of the algebraic equation detM(s, t) = 0. There-
fore, our next task is to reduce the pencil A(t) − sB(t) into a regular pencil that keeps the
information we are interested in.

3.1.2 The ∆W − 1 Decomposition
In this part, we present an algorithm, called the ∆W − 1 decomposition, that has been
introduced by Kublanovskaya in [22]. Its purpose is to transform an univariate polynomial
matrix M(t) into the form [∆(t), 0] where ∆(t) is a polynomial matrix of full column rank
and 0 is a zero block-matrix. Notice that the presentation of the decomposition algorithm is
very hard to follow in [22]. Hereafter, we try to present it more clearly with some illustrative
examples.

Suppose given a polynomial matrix M(t) of size m× n and write it under the form

M(t) =[Ms,1, 0, 0, . . . , 0]ts + [Ms−1,1,Ms−1,2, 0, . . . , 0]ts−1 + . . .

+[Ms−p+2,1, . . . ,Ms−p+2,p−1, 0]ts−p+2 + [Ms−p+1,1, . . . ,Ms−p+1,p−1,Ms−p+1,p]ts−p+1

+[Ms−p,1, . . . ,Ms−p,p−1,Ms−p,p]ts−p + . . .+ [M01,M02, . . . ,M0p]

where 1 ≤ p ≤ s+ 1 and for each i, i = 1, 2, . . . , p, the block matrices Mj,i, j = 0, 1, . . . , s
have the same size m× ti ,

p∑
i=1

ti = n and 0 stands for the zero block-matrix.

Lemma 49. If the matrix M = [Ms,1,Ms−1,2, . . . ,Ms−p+1,p] is of full column rank, the
matrix M(t) is of full column rank.

Proof. Suppose that the matrix M(t) is not of full column rank, there exists a polynomial
vector F (t) ∈ C[t]n×1, F (t) 6= 0 such that M(t)F (t) = 0. Let k := maxj{degt fi(t)}, j =
1, 2, . . . , n, we have

F (t) = Fkt
k + Fk−1t

k−1 + . . .+ F0

where Fi = (Fi1, Fi2, . . . , Fin)t ∈ Cn×1, i = 0, 1, . . . , k and Fk 6= 0. From

M(t)F (t) = 0 = [Ms,1, 0, 0, . . . , 0]Fkts+k + ([Ms−1,1,Ms−1,2, 0, . . . , 0]Fk + [Ms1, 0, 0, . . . , 0]Fk−1)ts+k−1

+ ([Ms1, 0, 0, . . . , 0]Fk−2 + [Ms−1,1,Ms−1,2, 0, . . . , 0]Fk−1 + [Ms−2,1,Ms−2,2,Ms−2,3, . . . , 0]Fk)ts+k−2

+ . . .+ [M01,M02, . . . ,M0p]F0

for every t ∈ C, we deduce that the coefficients with respect to the variable t of the
matrix M(t)F (t) are null matrices. By the independence of the columns of the matrix
M = [Ms,1,Ms−1,2, . . . ,Ms−p+1,p] and looking at the coefficient of ts+k, ts+k−1, . . . we ob-
tain that necessarily

Fk,1 = Fk,2 = . . . = Fk,t1 = 0,
Fk,t1+1 = Fk,t1+2 = . . . = Fk,t1+t2 = Fk−1,1 = Fk−1,2 = . . . = Fk−1,t1 = 0
................................................

51



Finally, we arrive at the conclusion that Fk has to be the null vector which gives a contradic-
tion.

Corollary 50. Let
M(t) = tsMs + ts−1Ms−1 + . . .+M0

be an univariate polynomial matrix of size m× n. If Ms is of full column rank then M(t) is
of full column rank.

Proof. Apply Lemma 49 where the decomposition of M(t) is taken with p = 1.

Suppose given an univariate polynomial m × n matrix of rank ρ and degree s ≥ 1 with
m× n constant matrices M0,M1, . . . ,Ms

M(t) = tsMs + ts−1Ms−1 + . . .+M0.

The decomposition of M(t) under the form

M(t)W (t) = [∆(t), 0] (3.1.3)

is called the ∆W−1 decomposition, whereW (t) is an n×n unimodular polynomial matrix,
∆(t) is an m × ρ polynomial matrix of full column rank whose degree does not exceed s,
0 is an m × (n − ρ) zero matrix. The ∆W − 1 decomposition algorithm computes the
sequence of polynomial matrices M0(t) = M(t),M1(t), . . . ,Ml(t) where Ml(t) = [∆(t), 0]
and Mk(t) = Mk−1(t)Wk(t), Wk(t) is an unimodular matrix, k = 1, 2, . . . , l.

Now, we are ready to describe the ∆W − 1 decomposition algorithm:

Step 1 Construct an auxiliary matrix N1 as follows.

(i) if all the columns of Ms are nonzero then N1 := Ms. Otherwise, Ms contains some
zero columns. By column permutations, we can transform Ms into M∗

s := [M̄s,1, 0]
where M̄s1 is the nonzero columns of Ms of size m × t1, so the coefficient matrices
Mq are permuted with the form M∗

q := [Mq,1,Mq,2], q = s− 1, . . . , 0 where Mq1,Mq2
are respectively the m× t1 and m× (n− t1).

(ii) If all the columns of Ms−1,2 are nonzero, then

N1 := [M̄s,1,Ms−1,2].

Otherwise, the columns of the coefficient matrices Mq,2, q = s − 1, .., 0 can be per-
muted to get M∗

s−1,2 := [M̄s−1,2, 0] where M̄s−1,2 is the nonzero columns of Ms−1,2
of size m × t2 and M∗

q,2 := [Mq,2,Mq,3], q = s − 2, . . . , 0. The blocks Mq,2,Mq,3 are
respectively of size m× t2 and m× (n− t1 − t2).

(iii) if all the columns of Ms−2,3 are nonzero, then

N1 := [M̄s,1, M̄s−1,2,Ms−2,3]
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Otherwise, the above process will be repeated and it terminates after p ≤ s + 1 steps
where an m× n matrix N1 of the form

N1 := [M̄s,1, M̄s−1,2, M̄s−2,3, . . . , M̄s−p+2,p−1,Ms−p+1,p]

consisting in m× t1,m× t2, . . . ,m× tp−1 and m× (n− δp−1) block-matrices respec-

tively with δk :=
k∑
i=1

ti.

(iv) If p < s+ 1, then all the columns of N1 are nonzero. If p = s+ 1, the last columns of
N1 may be zero columns. In this case, the size of the matrix polynomial transformed
of M(t) can be reduced by deleting zero columns and thus, we obtain the polynomial
matrix M ′(t) of smaller size. Denoting the size of this newly constructed polynomial
matrix by m× n1, (n1 ≤ n0 := n), we have

N1 := [M̄s,1︸ ︷︷ ︸
t1

, M̄s−1,2︸ ︷︷ ︸
t2

, . . . , M̄s−p+2,p−1︸ ︷︷ ︸
tp−1

, M̄s−p+1,p︸ ︷︷ ︸
tp

]

where
p∑
i=1

ti = n1 and all the columns of N1 are nonzero columns.

Step 2 If N1 is of full column rank, then ∆(t) = M ′(t) because M ′(t) is of full column
rank (Lemma 49). The algorithm stops here. Otherwise, find an n1 × (n1 − r1) matrix T1
whose columns form a basis of the right null space of the matrix N1 (r1 := rankN1).

Step 3 The matrix T1 is transformed into a lower triangular form L1 of size n1 × h1, h1 ≥
n1 − r1 without permuting the rows such that the columns of L1 contain a basis of the null
space of the matrixN1 and possibly, a number of columns of the identity matrix. The process
obtaining the matrixL1 from T1 can be described in the following way. In the case the leading
minor of size n1−r1 of the matrix T1 is not equal to zero, we obtain L1 of size n1×(n1−r1)
by transformations of elementary orthogonal matrices (plane rotation or reflection matrices)
or gaussian elimination. In the case the leading minor of size n1− r1 of matrix T1 is equal to
zero, in the process that transforms T1 into L1, there exits a transposed matrix that contains
an i-th row which is a zero row. We add to the matrix L1 the corresponding column ei =
(0, 0, . . . , 0, 1︸︷︷︸

i

, 0, . . . , 0). The reduction to L1 will be continued for the transformed matrix

of smaller size by deleting its zero row.

L1 =



. . . 0 . . . 0
∗ . . . 0 0
. . . . . .

. . . 0
. . . . . . . . .

. . .
. . . . . . . . . . . .
∗ ∗ ∗ ∗


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For the following steps, we can assume for simplicity that L1 is of size n1×(n1−r1). Notice
that if h1 > n1− r1, we only replace everywhere the number n1− r1 with h1 and an identity
matrix Ir1 with In1−h1 .

The matrix L1 is written in block-matrix as follows:

(i) If δk−1 ≤ n1 − r1, δk > n1 − r1 for k ≤ p− 1 then L1 has the form

L1 =

t1{
t2{
...
tk{

...
tp{



L11 0 . . . . . . 0
L21 L22 0 . . . 0

...
... . . . ... 0

Lk1 Lk2 . . . . . . Lkk
...

...
...

...
...

Lp1︸︷︷︸
t1

Lp2︸︷︷︸
t2

. . . . . . Lpk︸︷︷︸
t′
k


(3.1.4)

where Lii, i = 1, 2, . . . , k − 1 are nonsingular lower triangular matrices of size ti × ti,
Lpk is a lower triangular matrix of size tk × (n1 − r1 − δk−1) and of full column rank.

(ii) If δk−1 ≤ n1 − r1, δk > n1 − r1 only for k = p− 1 then L1 has the form

L1 =

t1{
t2{
...

tp−1{
tp{



L11 0 . . . . . . 0
L21 L22 0 . . . 0

...
... . . . ... 0

Lp−1,1 Lp−2,2 . . . Lp−1,p−1 0
Lp1︸︷︷︸
t1

Lp2︸︷︷︸
t2

. . . Lp,p−1︸ ︷︷ ︸
tp−1

Lpp︸︷︷︸
t′p


(3.1.5)

where Lii, i = 1, 2, . . . , p− 1 are nonsingular lower triangular matrices of size ti × ti,
Lpp is a lower triangular matrix of size tp × (n1 − r1 − δp−1) and of full column rank.

Step 4 Construct a left triangular unimodular n1 × n1 matrix W (1)(t) as a following way

(i) If L1 has the form (3.1.4) then

W (1)(t) =



L11 0 . . . . . . 0
tL21 L22 0 . . . 0

...
... . . . ... 0

tk−1Lk1 tk−2Lk2 . . . Lkk 0
...

...
...

...
...

tp−1Lp1 tp−2Lp2 . . . tp−kLpk Ir1


where Ir1 is an identity matrix of size r1 × r1.
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(ii) If L1 has the form (3.1.5) then

W (1)(t) =



L11 0 . . . . . . . . . 0
tL21 L22 0 . . . . . . 0

...
... . . . ...

... 0
...

...
...

...
...

...
tp−2Lp−1,1 tp−3Lp−1,2 . . . Lp−1,p−1 0 0
tp−1Lp1 tp−2Lp2 . . . tLp,p−1 Lpp Ir1


where Ir1 is an identity matrix of size r1 × r1.

Then, we construct an unimodular polynomial matrix

W1(t) =

W (1)(t) if n = n1

diagonal{W (1)(t), In−n1} if n > n1
.

Step 5 Obtain the matrix

M1(t) = M0(t)Ω1W1(t) = M1
0 + tM1

1 + . . .+ ts1M1
s1

where s1 ≤ s and Ω1 is the permutation matrix of the first step.
Start with j = 1 and repeat the above steps (1)-(5) of the algorithm for the matrix Mj(t)

until we obtain a matrixMl+1 of full column rank. In this case, we have the required ∆W−1
decomposition

Ml(t) = M(t)W (t) = [∆(t), 0]

where W (t) =
l∏

i=1
ΩiWi(t) is an n× n unimodular polynomial matrix and ∆(t) is a polyno-

mial matrix of full column rank.
Now, we turn to the proof of the ∆W − 1 decomposition algorithm.

• First, we see that the choice of the unimodular matrices Wi(t) does not increase the
degree of the matrixM(t) under transformation. Thus, the degree of ∆(t) is not bigger
than the degree of M(t).

• Second, in each step k of the algorithm, it eliminates (nk − rk) > 0 vector coefficients
at the greatest degree in t of the polynomial columns of the matrix Mk−1(t), k =
1, 2, . . . , l + 1 under transformation. Therefore, after a finite number of steps, the re-
sulting matrix will have zero columns and its size can be reduced by deleting these
zero columns, so that nk < nk−1. The matrices Mk(t) and Mk−1(t) have at least rk
identical columns whose vector coefficients at the greatest degree are linearly indepen-
dent. Thus, rk+1 ≥ rk. Therefore, the number (nk − rk) decreases in a finite number
of steps of the algorithm and at the step l, nl+1 − rl+1 = 0. The algorithm stops here.

• Finally, we prove that the matrix ∆(t) is of full column rank. The matrix ∆(t) is
written under the form

∆(t) =[∆̄s,1, 0, 0, . . . , 0]ts + [∆s−1,1, ∆̄s−1,2, 0, . . . , 0]ts−1 + . . .

+[∆s−p+2,1, . . . , ∆̄s−p+2,p−1, 0]ts−p+2 + [∆s−p+1,1, . . . ,∆s−p+1,p−1, ∆̄s−p+1,p]ts−p+1

+[∆s−p,1, . . . ,∆s−p,p−1,∆s−p,p]ts−p + . . .+ [∆01,∆02, . . . ,∆0p].
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By construction, the matrix Nl+1 = [∆̄s,1, ∆̄s−1,2, . . . , ∆̄s−p+1,p] is of full column
rank. By Lemma 49, the ∆(t) is of full column rank.

Remark 51. In the second chapter, we used the LU-decomposition to transform easily an
arbitrary constant matrix A to a matrix under the form [A1|0] where A1 is of full column
rank. However, this algorithm can not be applied to a polynomial matrix M(t) because the
operations of the transformation of M(t) have been done over the polynomial ring C[t], not
the field C. Thus, the ∆W −1 decomposition algorithm is required although it is much more
complicated.
Now, we give some examples to illustrate the above algorithm.

Example 52. Let M(t) be an univariate polynomial matrix

M(t) :=


2t2 + 3t+ 1 t+ 1 2t2 + 2t

1 5t2 −5t2 + 1
2t+ 1 3 2t− 2
t t 0

 = M2t
2 +M1t

1 +M0

where

M2 =


2 0 2
0 5 −5
0 0 0
0 0 0

 ,M1 =


3 1 2
0 0 0
2 0 2
1 1 0

 ,M0 =


1 1 0
1 0 1
1 3 −2
0 0 0

 .
From all columns of the matrix M2 are nonzero columns, we choose N1 := M2 and then

the null space of N1 is L1 := [1,−1,−1]t. So we construct the matrix

W (1)(t) =

 1 0 0
−1 1 0
−1 0 1

 .
We have

M1(t) = M(t)W (1)(t) =


0 t+ 1 2t2 + 2t
0 5t2 −5t2 + 1
0 3 2t− 2
0 t 0

 .

From the coefficient matrix of greatest degree of the matrix ∆(t) :=


t+ 1 2t2 + 2t
5t2 −5t2 + 1
3 2t− 2
t 0



is


0 2
5 −5
0 0
0 0

 of full column rank. By Corollary 50, the matrix ∆(t) is of full column rank.

Example 53. Let M(t) be an univariate polynomial matrix

M(t) :=

 −t 0 t2 1 + t3

0 −t −1 + t3 −t2
t2 1 + t3 t 0

 = M3t
3 +M2t

2 +M1t+M0
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where

M3 =

(
0 0 0 1
0 0 1 0
0 1 0 0

)
,M2 =

(
0 0 1 0
0 0 0 −1
1 0 0 0

)
,M1 =

(
−1 0 0 0
0 −1 0 0
0 0 1 0

)
,M0 =

(
0 0 0 1
0 0 −1 0
0 1 0 0

)
.

From the fisrt column of the matrix M3 is zero column, we permute the first column and
the fourth column of M3 and obtain

M∗
3 =

 1 0 0 0
0 0 1 0
0 1 0 0

 ,
so the coefficient matrix M2,M1,M0 are permuted under the form

M∗
2 =

 0 0 1 0
−1 0 0 0
0 0 0 1

 ,M∗
1 =

 0 0 0 −1
0 −1 0 0
0 0 1 0

 ,M∗
0 =

 1 0 0 0
0 0 −1 0
0 1 0 0

 .

Thus N1 :=

 1 0 0 0
0 0 1 0
0 1 0 1

. From the null space of N1 is [0, 1, 0,−1]t, we obtain the

matrix

W (1)(t) :=


1 0 0 0
0 1 0 0
0 0 1 0
0 −t 0 1

 .
Denote by P (m,n, k) the square matrix of size k × k obtained by permuting the column

number m with the column number n. We have

M1(t) := M(t)P (1, 4, 4)W (1)(t) =

 1 + t3 t2 t2 −t
−t2 −t −1 + t3 0
0 1 t t2

 .
Repeat the above procedure to the polynomial matrix M1(t) , we obtain the matrix N2 := 1 0 1 0

0 1 0 0
0 0 0 1

 and the null space of N2 is [1, 0,−1, 0]t. Thus,

W (2)(t) :=


1 0 0 0
0 1 0 0
−t 0 1 0
0 0 0 1


and we obtain the matrix

M2(t) := M1(t)P (2, 3, 4)W (2)(t) =

 t2 1 t2 −t
−1 + t3 0 −t 0

t −t 1 t2

 .
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Repeat the above procedure to the matrix M2(t), we obtain the matrix

W (3)(t) :=


1 0 0 0
0 1 0 0
0 0 1 0
0 t 0 1


and therefore

M3(t) := M2(t)P (1, 2, 4)P (2, 4, 4)W (3)(t) :=

 t2 0 t2 1
−1 + t3 0 −t 0

t 0 1 −t

 .
The matrix

∆(t) :=

(
t2 t2 1

−1 + t3 −t 0
t 1 −t

)
=

(
0 0 0
1 0 0
0 0 0

)
t3 +

(
1 1 0
0 0 0
0 0 0

)
t2 +

(
0 0 0
0 −1 0
1 0 −1

)
t+

(
0 0 1
−1 0 0
0 1 0

)

is of full column rank because the matrix

 0 1 0
1 0 0
0 0 −1

 is of full column rank (By Corol-

lary 50).

3.1.3 The algorithm for extracting the regular part of a non square bi-
variate pencil of matrices

Now, we can give an algorithm to separate the continuous and discrete spectrum of a bivariate
pencil of matrices.

Theorem 54. An m × n pencil M(s, t) = A(t) − sB(t) is equivalent to a pencil of the
following form  M1,1(s, t) 0 0

M2,1(s, t) M2,2(s, t) 0
M3,1(s, t) M3,2(s, t) M3,3(s, t)

 (3.1.6)

where

• the pencil M2,2(s, t) is regular pencil which has only continuous spectrum coinciding
with the continuous spectrum of M(s, t),

• the pencil M1,1(s, t) of full row rank determines one-dimensional eigenvalues of the
form (0, t),

• the pencil M3,3(s, t) of full column rank determines one-dimensional eigenvalues of
the form (∞, t),

• the union of the discrete spectrum of the pencilM1,1(s, t) andM3,3(s, t) coincides with
the discrete spectrum of M(s, t).

We describe an algorithm for constructing a pencil of the form (3.1.6). Set ρ = rankA(t),
A1,1(t) = A(t), B1,1(t) = B(t).
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Step 1

i) Transform A1,1(t) into the form [∆0(t), 0] by the ∆W − 1 decomposition that means

A1,1(t)Q0(t) = [∆0(t), 0]

where Q0(t) is an unimodular matrix. Then, compute

B1,1(t)Q0(t) = [B1(t)︸ ︷︷ ︸
ρ

|B2(t)︸ ︷︷ ︸
n−ρ

]

.

ii) Determine an unimodular matrix P0(t) such that

P0(t)B2(t) =
(
B̄1,1(t)

0

)

where B̄1,1(t) has full row rank. At the end of ii), matrices A(t) and B(t) are repre-
sented under the form

P0(t)A1,1(t)Q0(t) =
(
A2,1(t) 0
A2,2(t) 0

)
, P0(t)B1,1(t)Q0(t) =

(
B2,1(t) B̄1,1(t)
B2,2(t) 0

)

where
- B̄1,1(t) has full row rank.

-
(
A2,1(t)
A2,2(t)

)
has full column rank.

We have

P0(t)(A1,1(t)− sB1,1(t))Q0(t) =
(
A2,1(t)− sB2,1(t) −sB̄1,1(t)
A2,2(t)− sB2,2(t) 0

)

iii) By the permutation of block rows, we obtain the matrix

PP0(t)(A1,1(t)− sB1,1(t))Q0(t) =
(
A2,2(t)− sB2,2(t) 0
A2,1(t)− sB2,1(t) −sB̄1,1(t)

)

where P is a matrix of this permutation.

Step 2 If the matrix A2,2(t) is not of full column rank, we repeat the Step 1 for the pencil
A2,2(t)− sB2,2(t) until the step k where the matrix Ak+1,k+1(t) is of full column rank. Thus,
we have the pencil

P (t)M(s, t)Q(t) =
(
Ak+1,k+1(t)− sBk+1,k+1(t) 0
Ak+1,k(t)− sBk+1,k(t) M3,3(s, t)

)

where P (t), Q(t) are unimodular matrices.
If the pencil of the m1 × n1 matrix Ak+1,k+1(t) − sBk+1,k+1(t) is not regular pencil so

it is not square matrix and not of full row rank, then we repeat the above procedure to the
transposed pencilAtk+1,k+1(t)−sBt

k+1,k+1(t). For instance, the steps consist in the following
operations: Set Ã1,1(t) = Ak+1,k+1(t), B̃1,1(t) = Bk+1,k+1(t)
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i) Transform the transpose matrix B̃t
1,1(t) into the form [∆̃0(t), 0] that means

B̃t
1,1(t)Q̃0(t) = [∆̃0(t)︸ ︷︷ ︸

ρ̃

| 0︸︷︷︸
m1−ρ̃

]

where Q̃0(t) is an unimodular matrix and ρ̃ = rank B̃t
1,1(t). Then, compute

Q̃t
0(t)(Ã1,1(t)− sB̃1,1(t)) =

(
Ã2(t)− sB̃2(t)

Ã1(t)

)

where B̃2(t) = ∆̃t
0(t).

ii) Determine unimodular matrix P̃0(t) such that

Ã1(t)P̃0(t) =
(
Ā1,1(t) 0

)
where Ā1,1(t) is an ρ̃ × q̃ matrix of full columns rank. At the end of ii), the pencil
Ã1,1(t)− sB̃1,1(t) is represented under the form

Qt
0(t)(Ã1,1(t)− sB̃1,1(t))P̃0(t) =

(
Ã2,1(t)− sB̃2,1(t) Ã2,2(t)− sB̃2,2(t)

Ā1,1(t) 0

)

iii) By the permutation of block columns, we obtain the matrix

Qt
0(t)(Ã1,1(t)− sB̃1,1(t))P̃0(t)C =

(
Ã2,2(t)− sB̃2,2(t) Ã2,1(t)− sB̃2,1(t)

0 Ā1,1(t)

)

where C is a matrix of this permutation.

If the matrix B̃2,2(t) is not of full row rank, we repeat the above procedure to the
pencil Ã2,2(t) − sB̃2,2(t) until the step l where the matrix B̃l+1,l+1(t) is of full row
rank. Hence, we obtain the regular pencil Ãl+1,l+1(t)− sB̃l+1,l+1(t).
At the end, we obtain the following pencil equivalent to M(s, t)

P (t)M(s, t)Q(t) =

 M1,1(s, t) 0 0
M2,1(s, t) M2,2(s, t) 0
M3,1(s, t) M3,2(s, t) M3,3(s, t)


where P (t), Q(t) are unimodular matrices.

The pencil M2,2(t) = Ãl+1,l+1(t)− sB̃l+1,l+1(t) is the regular pencil. The pencil

M1,1(t) =


Āl,l(t) Ãl,l−1(t)− sB̃l,l−1(t) . . . Ãl,1(t)− sB̃l,1(t)

0 Āl−1,l−1(t) . . . Ãl−1,1(t)− sB̃l−1,1(t)
0 0 . . . ...
0 . . . 0 Ā1,1(t)


60



is of full column rank and its spectrum does not contain a continuous part of M(s, t)
except for the one-dimensional eigenvalue of the form (∞, t). The pencil

M3,3(s, t) =


−sB̄k,k(t) 0 0 . . . 0

Ak−1,k(t)− sBk−1,k(t) −sB̄k−1,k−1(t) 0 . . . 0
...

...
. . . . . .

...
A1,k(t)− sB1,k(t) A1,k−1(t)− sB1,k−1(t) A1,k−2(t)− sB1,k−2(t) . . . −sB̄1,1(t)


is of full row rank and its spectrum does not contain a continuous part of M(s, t)

except for the one-dimensional eigenvalue of the form (0, t).

Now, we give a brief sketch of proof of Theorem 54 via the algorithm 3.1.3; for more details,
see [21, 22, 56].

At the Step 1-i) of the algorithm, we can separate Q0(t) = [Q0,1(t), Q0,2(t)] where

A(t)Q0,1(t) = ∆0(t) and A(t)Q0,2(t) = 0.

Therefore, the columns of Q0,2(t) form a basis of right polynomial solutions of A(t) and
the finite spectrum of ∆0(t) coincides with the finite spectrum of A(t). At the Step 1-ii), the

unimodular matrix P0(t) is written under the form P0(t) =
(
P0,1(t)
P0,2(t)

)
where

P0,1(t)B2(t) = B̄1,1(t) and P0,2(t)B2(t) = 0.

The rows of P0,2(t) form a basis of left polynomial solutions of B2(t) and the finite spectrum
of B̄1,1(t) coincides with the finite spectrum of B2(t). From

P0(t)(A(t)− sB(t))Q0(t) =
(
A2,1(t)− sB2,1(t) −sB̄1,1(t)
A2,2(t)− sB2,2(t) 0

)
,

we deduce that the two subspaces Q0,1(t) and P t
0,2(t) form a pair of reducing subspaces (for

instance, see [21,56]) for the pencilM(s, t) = A(t)−sB(t). By [21, Theorem 3.2], the union
of the corresponding spectral characteristics of the blocks −sB̄1,1(t) and A2,2(t) − sB2,2(t)
gives the whole spectrum and the right and left minimal indices with respect to s of the
original pencil M(s, t).

Now, we give an example to illustrate the algorithm 3.1.3

Example 55. Suppose given a bivariate pencil of matrices M(s, t) = A(s)− tB(s) where

A(s) =

 −s3 −s2 s2 0
s 0 1 0

−s2 − s+ 1 −s− 1 s 1

 , B(s) =

 −s
2 − s −s− 1 s+ 1 0

s+ 1 1 1 0
1 + 2s 2 −1 1

 .
Applying the ∆W − 1 decomposition to the matrices A(s) and B(s), we can compute uni-
modular polynomial matrices P0(s), Q0(s)

P0(s) :=

 0 −1 1
0 2s 1− 2s
1 0 0

 , Q0(s) :=


0 0 0 −1
0 0 1 2s
1 0 1 s
0 1 0 s+ 1


61



such that

A1(s) := P0(s)A(s)Q0(s) =

 −1 + s 1 −2 0
3s− 2s2 1− 2s −1 + 4s 0

s2 0 0 0



B1(s) := P0(s)B(s)Q0(s) =

 −2 1 −1 1
−1 + 4s 1− 2s 1 + 2s 0
s+ 1 0 0 0

 .
Therefore, we obtain the matricesA2(s) :=

(
3s− 2s2 1− 2s −1 + 4s

s2 0 0

)
andB2(s) :=(

−1 + 4s 1− 2s 1 + 2s
s+ 1 0 0

)
. Applying the ∆W −1 decomposition to the matrices A2(s)

and B2(s), we compute the unimodular polynomial matrices P1(s) and Q1(s)

P1(s) :=
(

1 0
0 1

)
, Q1(s) :=

 1 0 0
0 1 2− 8s
0 1/2 2− 4s


such that

A3(s) := P1(s)A2(s)Q1(s) =
(

3s− 2s2 1
2 0

s2 0 0

)

B3(s) := P1(s)A2(s)Q1(s) =
(
−1 + 4s 3

2 − s 4− 12s+ 8s2

s+ 1 0 0

)
.

At last, we can transform the pencil of matrices M(s, t) into the matrix form −1 + s 1 −2 0
3s− 2s2 1

2 0 0
s2 0 0 0

− t
 −2 1 −1 1
−1 + 4s 3

2 − s 4− 12s+ 8s2 0
s+ 1 0 0 0


where M1(s, t) := [s2] − t[s + 1] is a regular pencil part of the pencil matrix M(s, t) and

M2(s, t) :=
(

1 −2 0
1
2 0 0

)
− t

(
1 −1 1

3
2 − s 4− 12s+ 8s2 0

)
of full row rank determines

the discrete spectrum of M(s, t). Hence, the one-dimensional eigenvalue of M(s, t) is s2 −
t(s+ 1) and the zero-dimensional eigenvalue of M(s, t) is the pair (1, 1).

3.1.4 An algorithm for constructing the discrete spectrum
Consider M(s, t) = A(t) − sB(t) an m × n (m > n) pencil of full rank n that is free of
continuous spectrum. Now, we present an algorithm for obtaining the discrete spectrum of
M(s, t).

Step 1 We construct a polynomial matrix Λ(t) := [A(t),−B(t)] and compute a generalized
eigenvalue t∗ of Λ(t).
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Step 2 For each generalized eigenvalue t∗, we compute two matrices Q−, Q+ which are
constant matrices of the first n and the last n rows of the matrix Q∗ whose columns form a
basis of the right null space of the constant matrix Λ(t∗).

Step 3 We compute a generalized eigenvalue s∗ of the pencil matrix M1(s) := Q−− sQ+.
Then (s∗, t∗) is a zero-dimensional eigenvalue of the pencil M(s, t).

Now, we give a brief proof of the algorithm 3.1.4 (for more details, see [21, 22]). First,

we construct a pencil matrix M1(s, t) = A1(t) − sB1(t) such that
(
B1(t)
A1(t)

)
forms a basis

of the right null space of Λ(t). Indeed,

M1(s, t) =

W−(t)− sW+(t) if t 6= t∗

Q− − sQ+ if t = t∗

where t∗ is a fixed generalized eigenvalue of the polynomial matrix Λ(t). The matrices
W−(t) and W+(t) are polynomial matrices composed of the first n and the last n rows of
the matrix W0(t) whose columns form a minimal basis for the right null space of Λ(t). The
matrices Q− and Q+ are constant matrices composed of the first n and the last n rows of
the matrix Q∗ whose columns form a minimal basis for the right null space of the constant
matrix Λ(t∗). Thus, we have

• Each zero-dimensional eigenvalue (s∗, t∗) of the pencilM1(s, t) is also a zero-dimensional
eigenvalue (s∗, t∗) of the pencil M(s, t) and the corresponding eigenvectors x∗ and y∗
of the pencils M(s, t) and M1(s, t) respectively satisfy the following relations:

x∗ = Q+y∗, y∗ = Qt
∗

(
x∗
sx∗

)
.

• A pair (s∗, t∗) is a zero-dimensional eigenvalue of the pencil M(s, t) if t∗ is a gen-
eralized eigenvalue of the polynomial matrix Λ(t) and s∗ is a generalized eigenvalue
of the pencil M1(s, t∗). This property is deduced from the fact that if y∗ is an eigen-
vector corresponding to the generalized eigenvalue s∗ of the pencil M(s∗, t∗) then
M(s∗, t∗)y∗ ≡ (Q− − s∗Q+)y∗ = 0 so that y∗ is also an eigenvector corresponding to
the generalized eigenvalue s∗ of the pencil M1(s, t∗).

Remark 56.

i) The polynomial matrix W0(t) can be computed by finding the ∆W − 1 decomposition
of the matrix Λ(t), Λ(t)W (t) = [∆(t), 0] where ∆(t) is of full column rank and W (t) =
[W1(t),W2(t) is an unimodular matrix. The matrices W1(t) and W2(t) are of size 2n × ρ
and 2n× (2n−ρ), respectively (ρ := rank Λ(t)). The matrix W2(t) form a basis of the right
null space of Λ(t). Then, we can find W0(t) from W2(t).

ii) The generalized eigenvalue t∗ of the matrix Λ(t) can be computed by the algorithm 2.1.3.
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3.2 Decomposition of the rational surface/surface intersec-
tion locus

Suppose given an algebraic surface S1 represented by implicit equation S1(x, y, z, w) = 0
and an algebraic surface S2 represented by a parameterization

Ψ : P2
C → P3

C : (s : t : u) 7→ (x(s, t, u) : y(s, t, u) : z(s, t, u) : w(s, t, u))

where x(s, t, u), y(s, t, u), z(s, t, u), w(s, t, u) are homogeneous polynomials of the same de-
gree and without common factor in C[s, t, u].

A standard problem in non linear computational geometry is to determine the set S1∩S2 ⊂
P3

C which is a curve in P3
C under the assumption that S2 is not contained in S1. One way to

proceed is to compute the roots of the homogeneous polynomial

S1(x(s, t, u), y(s, t, u), z(s, t, u), w(s, t, u)) (3.2.1)

because they are in correspondence with S1 ∩ S2 through the regular map Ψ. Observe that
3.2.1 is identically zero if and only if dim(S1 ∩ S2) = 2, equivalently S1 ⊂ S2 (for S1 is
irreducible).

If S1 is a rational surface represented by a parameterization, then several authors (see
for instance [8] and the references therein) used some square matrix representations, most
of the time obtained from a particular resultant matrix, of S1 in order to compute the set
S1 ∩ S2 by means of determinant of matrix. As we have already mentioned, such square
matrix representations exist only under some restrictive conditions. Hereafter, we would like
to generalize this approach for non square matrix representation that can be obtained for a
much larger class of rational surfaces.

So, assume that M(x, y, z, w) is a matrix representation of the surface S1, meaning a
representation of the polynomial S1(x, y, z, w). By replacing the variables x, y, z, w by the
homogeneous polynomials x(s, t, u), y(s, t, u), z(s, t, u), w(s, t, u) respectively, we get the
matrix

M(s, t, u) = M(x(s, t, u), y(s, t, u), z(s, t, u), w(s, t, u))
and we have the following easy property:

Lemma 57. With the above notation, for all point (s0 : t0 : u0) ∈ P2
C the rank of the

matrix M(s0, t0, u0) drops if and only if the point (x(s0, t0, u0) : y(s0, t0, u0) : z(s0, t0, u0) :
w(s0, t0, u0)) belongs to the intersection locus S1 ∩S2 or (s0 : t0 : u0) is a based point of Ψ.

It follows that points in S1 ∩ S2 associated to points (s : t : u) such that u 6= 0, are in
correspondence with the set of values (s, t) ∈ C2 such that M(s, t) drops of rank strictly less
than its row and column dimensions that means they are in correspondence with the spectrum
of M(s, t) which have been defined in Section 3.1. Notice that the case u = 0 could also be
treated as a curve/surface intersection problem as Chapter 2. Now, we are ready to give an
algorithm to solve the surface/surface intersection problems

Example 58. Let S1 be a sphere given as the image of the parameterization

φ : P2 → P3 : (s : t : u) 7→ (f1 : f2 : f3 : f4)
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Algorithm 5: Matrix intersection algorithm
Input: A matrix representation of a surface S1 and a parameterization of a rational

surface S2.
Output: Decomposition of the intersection points of S1 and S2.
1. Compute the matrix intersection representation M(s,t).
2. Compute the generalized companion matrices A(s) and B(s) of M(s,t).
3. Compute the pencil regular matrices M1(s, t) = A1(s)− tB1(s).
4. Compute the determinant of M1(s, t) and obtain the curve corresponding to the curve
intersection locus S1 ∩ S2.

where
f1 = s2 + t2 + u2, f2 = 2su, f3 = 2st, f4 = s2 − t2 − u2

Let S2 be the Steiner surface which is parametrized by

g1 = s2 + t2 + u2, g2 = tu, g3 = su, g4 = st.

The computation of a matrix representation of the sphere S gives −y 0 z x+ w
0 −y −x+ w −z
z x+ w y 0

 .
Now, a point P belongs to the intersection of S1 and S2 if and only if P = (s2 + t2 + u2 :

tu : su : st) and (s : t : u) is one of the generalized eigenvalues of the polynomial matrix

M(s, t, u) =

 −tu 0 su s2 + t2 + u2 + st
0 −tu −s2 − t2 − u2 + st −su
su s2 + t2 + u2 + st tu 0

 .
In the case u = 0, we obtain the generalized eigenvalues of the matrix M(s, t, 0) by the ours
algorithm in [43]. Now, we assume that u 6= 0, so the points (s : t : u) are correspondence
to the set of the generalized eigenvalues (s, t) ∈ C2 of the bivariate matrix M(s, t)

M(s, t) =

 −t 0 s s2 + t2 + 1 + st
0 −t −s2 − t2 − 1 + st −s
s s2 + t2 + 1 + st t 0

 .
We haveM(s, t) = M2t

2+M1t+M0 whereM0,M1,M2 are respectively and the generalized
companion matrices of M(s, t) are

A(s) =
(

0 I
M t

0 M t
1

)
=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 s −1 0 0
0 0 s2 + 1 0 −1 s
s −s2 − 1 0 0 s 1

s2 + 1 −s 0 s 0 0

 65



B(s) =
(
I 0
0 −M t

3

)
=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 −1 0 0


From the fact that the polynomial matrix A(s) is of full column rank, we can apply the
algorithm given in Section 3.1.3 for the pencil At(s)− tBt(s) and obtain the pencil A1(s)−
tB1(s) where

A1(s) =


1 −s3 0 0 0 0 0
0 0 0 1 0 0 0
−s2 1 0 0 0 0 0

−s(s2 + 1) + s2 0 1 0 0 0 0
s+ s2 0 −1 1 0 0 0

1− s2 + s3 1 s 0 0 0 0

 , B1(s) =


0 0 1 −s 0 s 1
0 0 0 0 0 −1 0
s2 0 −1 1 0 0 0
s3 1 −s s 0 0 0
1 0 0 0 0 0 0
−s2 s −1 0 0 0 0

 .

The regular pencil part of At(s)− tBt(s) is

M1(s, t) =


−s2 1 0 0

−s(s2 + 1) + s2 0 1 0
s+ s2 0 −1 1

1− s2 + s3 1 s 0

− t


s2 0 −1 1
s3 1 −s s
1 0 0 0
−s2 s −1 0


Hence, det(M1(s, t)) = −(s2t2 + s2 + s4 + t4 + t2 + 1) is the equation of the curve corre-
sponding with S1 ∩ S2 through the regular map Ψ. The pencil

M2(s, t) =
(

0 0 0
0 0 0

)
− t

(
0 s 1
0 −1 0

)

has no the discrete spectrum and determines one-dimensional eigenvalues of the form (0, s).
We recover the expected fact that the intersection S1 ∩ S2 has no the isolated point.

Example 59. Let S1 be a sphere given as the image of the parameterization

φ : P2 → P3 : (s : t : u) 7→ (f1 : f2 : f3 : f4)

where
f1 = s2 + t2 + u2, f2 = 2su, f3 = 2st, f4 = s2 − t2 − u2

Let S2 be the surface which is parametrized by

g1 = s3 + t3, g2 = stu, g3 = su2 + tu2, g4 = u3.

The matrix representation of the sphere S gives −y 0 z x+ w
0 −y −x+ w −z
z x+ w y 0

 .
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Now, a point P belongs to the intersection of S1 and S2 if and only if P = (s3 + t3 : stu :
su2 + tu2 : u3) and (s : t : u) is one of the generalized eigenvalues of the polynomial matrix

M(s, t, u) =

 −stu 0 su2 + tu2 s3 + t3 + u3

0 −stu −s3 − t3 + u3 −su2 − tu2

su2 + tu2 s3 + t3 + u3 st 0

 .
The points (s : t : u), u 6= 0, are correspondence to the set of the generalized eigenvalues
(s, t) ∈ C2 of the bivariate matrix M(s, t)

M(s, t) =

 −st 0 s+ t s3 + t3 + 1
0 −st −s3 − t3 + 1 −s− t

s+ t s3 + t3 + 1 st 0

 .
We have M(s, t) = M3t

3 + M2t
2 + M1t + M0 where M0,M1,M2 are respectively and

the generalized companion matrices of M(s, t) are

A(s) =

 0 I 0
0 0 I
M t

0 M t
1 M t

2

 =



0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 s −s 0 1 0 0 0
0 0 s3 + 1 0 −s 0 0 0 0
s −s3 + 1 0 1 0 s 0 0 0

s3 + 1 −s 0 0 −1 0 0 0 0



B(s) =

 I 0 0
0 I 0
0 0 −M t

3

 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 −1 0 0


Appling the algorithm given in Section 3.1.3 for the pencil At(s) − tBt(s) and obtain the
regular pencil part M1(s, t) = A1(s)− tB1(s) where

A1(s) =



1 0 s 0 1 0
−s3 + 1 0 1 0 0 0
−s3 + 1 0 0 −s 0 0

2s 0 0 1 s 0
0 0 0 0 0 1
0 1 0 −1 0 0


, B1(s) =



0 0 1 0 0 0
0 1 0 −1 0 0
s3 1 0 0 0 0
−s2 0 s 0 1 0
1 0 0 0 0 0
0 0 0 0 0 1


.
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Figure 3.1: The cuvre C in the parameter space corresponding to S1 ∩ S2

(a) (b) (c)

Figure 3.2: Intersection of the sphere S1 and the surface S2

Hence, det(M1(s, t)) = −s6− 2s3t3 + t2s2 + s2 + 2st− t6 + t2 + 1 is the equation of the
curve C (see Figure 3.1) in the parametric space corresponding to S1 ∩ S2 (see Figure 3.2)
through the regular map Ψ. Remark that there are many methods to draw the intersection
curve S1∩S2 from the curve C in the parametric space through the regular map Ψ (see Figure
3.3), for example see [57].
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Ψ

Figure 3.3: The intersection curve S1 ∩ S2 through the regular map Ψ
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Chapter 4

Approximate GCD of several univariate
polynomials, small degree perturbations

We consider the following computational problem: given a family of generic univariate poly-
nomials f := (f0, ..., fs), construct an algorithm to find polynomial perturbations u :=
(u0, ..., us) with “small” degrees such that the greater common divisor of the family of poly-
nomials f + u has a “large” degree.

In this chapter, we propose an algorithm which solves this problem in polynomial time
under a generic condition generalizing the normal degree sequence for the case s = 1.

The results in this chapter are joint work with Mohamed Elkadi and André Galligo, have
been accepted for publication in [58]

Although this chapter can be seen disconnected from the rest of this thesis work, it has
actually been motivated by some deep relations with tools from commutative algebra such as
Hilbert function, Gröbner basis, generic initial ideal, minimal syzygies, µ-basis, etc that we
encountered in our study of matrix representations of algebraic curves and hypersurfaces.

4.1 Introduction

4.1.1 A polynomial analog

The problem we address is an analog of an arithmetic question. Analogies between the ring
of integers and the ring of univariate polynomials over a field proved to be often interesting.

Motivated by a cryptanalysis and using properties of continued fractions, Howgrave-
Graham provided a solution to the following problem [59]: given two integers a0 and a1, find
in polynomial time all perturbations of a fixed number of bits of a0 and a1 that can achieve a
large GCD. The similar question for a family a = (a0, ..., as) of integer with s > 1 is much
harder. Moreover, its hardness is crucial for the design of a new generation of encryption
schemes, see e.g. [60] developed at MIT and IBM Research. So this question deserves much
attention.

Inspired by the cited work of Howgrave-Graham, von zur Gathen et al. [23] introduced
original notions of “exact” approximate GCD of univariate polynomials, building also on
earlier works of numeric-symbolic computations, see e.g. [61–67] and the references therein.
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More precisely, let K be a field and (f0, f1) be a pair of univariate polynomials in K[x] of
degree at most n with a normal degree sequence in the Euclidean algorithm (this condition
is generically satisfied when K is infinite). Let d and e be nonnegative integers such that
e < min(2d−n, n− d). It is show in [23] that allowing perturbations of (f0, f1) by addition
of a pair (u0, u1) of polynomials of degrees at most e then the problem of looking for a
deg gcd(f0+u0, f1+u1) ≥ d has at most one solution, and if one exists, it can be computed in
polynomial time. The case of more than two polynomials is left in [23] as an open question.
This is precisely the problem we address in the present paper.

We divide the task in two steps: under a first condition G1, generically satisfied if K is
infinite, we can reduce the problem to the case when the input polynomials have consecutive
degrees, and this introduces a first limitation on the degrees of the perturbation. Then we
propose a second condition G2, generically satisfied if the characteristic of K is zero, which
extends the normal degree sequence condition of the case s = 1.

4.1.2 GCD and syzygies
We assume G1 and after the preprocessing, denote by n the maximum degree of the input
polynomials. To benefit from concepts and results from Commutative Algebra, we homoge-
nize the inputs in degree n (introducing a new variable y), we call them F = (F0, ..., Fs) and
we consider the spanned homogeneous ideal I in S := K[x, y]. The ring S is equipped with
the lexicographical ordering on monomials and we study the corresponding Groebner basis
of I .

A first natural requirement on F (generically satisfied if K has characteristic zero) is that
the attached initial ideal in(I) is a gin (generic initial ideal), i.e. the stair formed by the
leading exponents has steps of height 1. See section 3 and [33]. In the 2 variables setting,
the combinatorial information stored by the gin is simple and is equivalent to the Hilbert
function of S/I .

This point of view shows that in the case of s + 1 > 2 input polynomials, the degree
d of the GCD is not the only natural integer invariant. The homogeneous ideal I admits a
minimal resolution of length 2 and the degrees of the sminimal syzygies between F0, . . . , Fs
also appear as important numbers; we denote their ordered sequence by m := (m1, ...,ms).

Let us mention that in Computer Aided Geometric Design, the syzygies (with s = 2) are
used to compute the implicit equation of the projective plane curve given by the parametriza-
tion (F0, F1, F2) of degree n; it is proved that the generic value for m1 is bn−d2 c and that
m1 + m2 = n − d, where d is the degree of gcd(F0, F1, F2). See e.g. [15, 42] and the
references therein.

We extend these properties as follows. Given 3 integers n, d < n and s, we denote by
µ and t the quotient and the remainder of the division of n − d by s: µ = bn−d

s
c. Then the

generic set of values for (m1, ...,ms) is m1 = µ, ...,ms−t = µ,ms−t+1 = µ + 1, ...,ms =
µ+ 1, so m1 + · · ·+ms = n− d. The condition G2 requires that the sequence m takes this
generic value, see subsection 4.3.3.

We ask for perturbations (u0, ..., us) ∈ K[x]s+1 of degrees at most e (negative degrees
means the zero polynomial) so that the perturbed polynomials f0 + u0, . . . , fs + us have a
GCD of a fixed degree d. In the homogenized setting they will be represented by homoge-
neous polynomials U0, ..., Us of total degree nwhich are multiples of yn−e. Then we consider
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the set

U = {(u0, . . . , us) ∈ K[x]s+1 : deg ui ≤ e, deg gcd(f0 + u0, . . . , fs + us) = d}. (4.1.1)

The usual Euclidean division naturally extends to homogenized polynomials and gives
rise to the pseudo-division with respect to the lexicographical ordering: quotients and re-
mainders are just multiplied by suitable powers of the homogenization variable y.

In section 4, for our setting, we generalize the EEA (Extended Euclidean Algorithm) to
compute, via remainders of pseudo-divisions, a reduced Groebner basis of I .

4.1.3 A recognition strategy
It is recalled in [23] that the first quotients in the EEA depend only on the top coefficients of
the input polynomials; this allows a strategy of recognition where the first quotients should
be identical for the inputs and their small perturbations. We make the same remark for the
Hilbert function of the homogeneous ideal I , or equivalently for the generic initial ideal
gin(I).

In [23], the authors noticed that the GCD of two polynomials has a large degree if and
only if the last remainder (in the normal degree sequence) vanishes, and then they forced this
vanishing for the perturbed data. In our setting, the situation is more complicated since we
need to control not only one but several minimal syzygies which correspond to the vanishing
of several remainders. Roughly speaking, after forcing the vanishing of the first syzygy by
a first perturbation, we are led to compute the GCD of the last nonzero remainders. The
cascade of perturbations is very intricate in the more general case. To bypass this difficulty,
we introduce a generic condition G2: it allows to force simultaneously the vanishing of s
consecutive remainders, and get necessary conditions on the perturbations. Then we are
ready for generalizing the approach presented in [23].

The paper is organized as follows. In section 2, we present the preprocessing step. In
section 3, we present the needed facts on Hilbert functions, minimal free resolutions, generic
initial ideal and generic stairs. In section 4, we give our generalization of the EEA. In section
5, we describe our recognition algorithm. In section 6, we illustrate our approach on two
simple examples.

4.2 Preprocessing
Let s be a positive integer, K be a field of characteristic zero. The following lemma is
straightforward.

Lemma 60. Given a sequence n of positive integers n0 ≥ · · · ≥ ns, there exists a unique
maximal decreasing sequence n of integers q(n) = (q0, . . . , qs) such that q0 = n0 and
qi ≤ ni for 1 ≤ i ≤ s, and a unique maximal integer p = θ(n) such that p− i ≤ qi ≤ ni for
0 ≤ i ≤ s.

We have p− s = qs.
We also denote by π(n) the integer maxi(qi−1 − qi, i = 1 . . . s).
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Example 61. If s = 6, n0 = 10, n1 = n2 = n3 = 8, n4 = 7, n5 = n6 = 2, then
q0 = 10, q1 = 8, q2 = 7, q3 = 6, q4 = 5, q5 = 2, q6 = 1, p = 7, and π(n) = 3.

Lemma 62. Given a generic family of s+1 polynomials f = (f0, . . . , fs) in K[x] of degrees
n0 ≥ · · · ≥ ns. There exists a family of s + 1 polynomials φ = (φ0, . . . , φs) in K[x] of
degrees p, . . . , p− s respectively, with p = θ(n), such that

φ0
...
φs

 = U


f0
...
fs

 ,
where U is an invertible matrix in K[x] whose entries are polynomials of degrees bounded
by π(n).

Proof. We first compute a family of s+1 polynomials g = (g0, ..., gs) of decreasing degrees
q0 > · · · > qs such that g0 = f0 and

g0
...
gs

 = A


f0
...
fs

 ,
where A is an invertible matrix in K. To do so, we update a family g of s + 1 polynomials
of degrees k0 ≥ · · · ≥ ks, starting from g := f and performing the following iterations: for
0 ≤ i ≤ s, if ki+1 = ki then gi+1 := lt(gi+1)gi− lt(gi)gi+1. After each step we order and re-
index g by degrees. The genericity of the input polynomials implies that ki+1 = deg(gi+1) =
ki − 1.

Now, we consider the vector space E spanned by g0 and the set

A :=
s⋃
i=1
{xjgi, 0 ≤ j < qi−1 − qi}.

ThenE contains s+1 polynomials φ0, . . . , φs of degrees p, . . . , p−s respectively. Moreover,
there exists an invertible matrix V in K[x] whose entries are polynomials of degrees bounded
by π(n), such that 

φ0
...
φs

 = V


g0
...
gs

 .
Indeed, for each i, we consider all the integers k such that p − i < k < qi and we perform
successively the Euclidean division of gi by a suitable element of A of degree k. The last
remainder will be in E, and will have degree p− i by genericity.

Remark 63. After a perturbation of f = (f0, . . . , fs) by u = (u0, ..., us) such that deg(ui) <
p− s− π(n), i = 0 . . . s, the matrix U plays the same role as in Lemma 62.

All such perturbations of f can be detected and, as U is invertible, computed from the
perturbations of φ respecting this degree restriction.
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Definition 64. We say that f = (f0, . . . , fs) satisfies the condition G1 if the previous generic
conditions are satisfied.

This implies that the degree of the GCD of the family f (and of the investigated perturbed
family) is at most π(n)− s. In other words, our analysis requires that starting with the input
polynomials f = (f0, . . . , fs) and performing successive Euclidean divisions, we obtain a
sequence of s + 1 polynomials φ = (φ0, ..., φs) with consecutive nonnegative degrees and
the unimodular transition matrix U . Moreover, we require two kinds of degree restriction
on the perturbations u of f : a weak one which imposes that the degrees of the family of
polynomials v = Uu are bounded by deg(φs) − 1, and a strong one that imposes that they
also satisfy the degree restriction given by the condition G2 in subsection 4.3.3.

4.3 Tools from Commutative Algebra
In this section we present some tools from Commutative Algebra that will be used, such as
the Hilbert function, Groebner basis, generic initial ideal, and minimal syzygies.

For polynomial inputs f0, . . . , fs of degrees n0 = n, . . . , ns = n − s respectively, we
denote by Fi the homogenization of fi to degree n, I the homogeneous ideal generated by
F0, ..., Fs in the Noetherian ring S = K[x, y] (y is the homogenization variable). We consider
the reduced Groebner basis of I with respect to lexicographic ordering with x > y, in(I) is
the corresponding initial monomial ideal.

The generic stairs will be used to define the condition G2 which extends the normal degree
sequence condition in the EEA exploited in [23]. In the next section, a dehomogenization
gives rise to a generalized Extended Euclidean algorithm (in the univariate setting).

4.3.1 Resolution and Hilbert Function
Let us denote by G the polynomial gcd(F0, ..., Fs), then g = G(x, 1). The (first) syzygy
module of F0, ..., Fs is defined as

Syz(F0, ..., Fs) := {(G0, ..., Gs) ∈ Ss+1 :
s∑
i=0

GiFi = 0}.

For any graded S-module M , if r is an integer, we denote by M [−r] the shifted graded
module ⊕i∈ZMi−r. We have the following well-known result.

Lemma 65. [15] There exists an isomorphism of graded S-module

Syz(F0, ..., Fs) ∼= S[−m1]⊕ · · · ⊕ S[−ms],

where (m1, ...,ms) ∈ Ns,mi ≤ mi+1, m1 + · · ·+ms = n− d, d = deg g.

Moreover, the s+1 polynomials (F0, ..., Fs) can be recovered from G and Syz(F0, ..., Fs)
using Hilbert-Burch Theorem (see [33, §20.4]). More precisely, let Q1, . . . , Qs be a basis of
the free module Syz(F0, ..., Fs), then the maximal minors M0, . . . ,Ms of the matrix defined
by Q1, . . . , Qs satisfy Fi = GMi, i = 0 . . . s.
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Definition 66. The Hilbert function of S/I is

HS/I : N → N
u 7→ HS/I(u) := dimK(S/I)u.

The jump function h of the Hilbert function is

hS/I(u) := dimK(S/I)u − dimK(S/I)u−1.

Standard computations give the following results.

Lemma 67. We have

1. dimK S[−k]u =
{

0, if u < k
u− k + 1, if u ≥ k.

2. HS/I(u) = dimK Su − (s+ 1) dimK S[−n]u +∑s
i=1 dimK S[−n−mi]u.

3. The jump function h determines the s numbers m1, . . . ,ms. More precisely, if we de-
note by M1 ≤ . . . ≤ Mp the different values of mi and νi the occurrence number of
Mi in the list (m1, . . . ,ms), then

h(u) =


1 if u < n,

−s+ ν1 + · · ·+ νi if n+Mi ≤ u < n+Mi+1,
0 if u ≥ n+Mp,

with M0 = ν0 = 0.

4.3.2 Generic initial ideal, Groebner basis and generic stairs
Generic initial ideals and generic stairs (with its simple combinatorial description) were in-
troduced and studied in Galligo’s thesis [68] and then in Bayer’s PhD thesis [69]. Let us
present them in our setting where I is a bivariate homogeneous ideal in the polynomial ring
S = K[x, y]. Let < be the lexicographical monomial ordering with y < x. The main result
asserts that for generic triangular change of coordinates (x = X, Y = y + λx), the images
of the ideal I have always the same initial ideal, in(I) = {in(f), f ∈ I}. This monomial
ideal is called the generic initial ideal of I and it is denoted gin(I) [33]. Its diagram in N2 is
called the generic stair.

We recall that S/I and S/in(I) have the same Hilbert function [35].

Lemma 68. 1. The stairs of a gin are closed on the left and each step has height 1 as in
Figure 1.

2. The Hilbert function value HS/I(u) is equal to the number of integer points (a, b) of
the line a+ b = u under the stairs.
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Figure 4.1: Shape of Example 2

3. In the bivariate setting, the information described by the generic stair of I and the
Hilbert function HS/I (or hS/I) are equivalent.

In the case of more than 2 variables, two ideals with distinct gins could have the same
Hilbert function.

Proposition 69. Assume that the characteristic of K is zero. Then for generic values in K of
the coefficients of F0, ..., Fs, the ideal I = (F0, ..., Fs) satisfies in(I) = gin(I).

Proof. Galligo’s and Bayer’s result can be interpreted as follows: for a fixed degree n, we
denote by A the space of coefficients of F0, . . . , Fs, which is isomorphic to some KN . The
previous change of coordinates induces a polynomial map from A×K to A.

The property can be expressed by a set of nonvanishing rational conditions involving a
finite number of coefficients. As K has characteristic zero, extending the scalars we can
assume that K = C, then density w.r.t. the usual topology is equivalent to density w.r.t.
Zariski topology [70]. Now for every family f , the family fλ obtained via a triangular
change of coordinates tends to f when λ tends to 0, and fλ satisfies the required condition
for almost all λ.

4.3.3 Condition G2

Now we are able to translate our requirements into properties of generic the stair of I .

Proposition 70. If I is generated by the homogeneous polynomials F0, . . . , Fs of degree n
admitting s relations of degree m1, . . . ,ms such that m1 = · · · = mt and mt+1 = · · · =
ms = m1 + 1, then gin(I) satisfies: the s highest stairs have length 1, the following lengths
are (2, 1, . . . , 1) ∈ Ns, until they reach the homogeneous degree n+m1−1, then the lengths
are equal to 2 and a series of 1 as shown in Figure 4.1. In other words the jump of the Hilbert
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function of S/I is:

1 , u < n ,

−s , n ≤ u < n+m1 ,

−s+ t , u = n+m1 ,

0 , u > n+m1.

For s = 1 we recover the normal degree sequence condition exploited in [23].

Definition 71. We will say that f = (f0, ..., fs) satisfies the condition G2 if the initial ideal
of I has the previously described shape, or equivalently that the jump of the Hilbert function
of S/I is as above.

Proposition 72. If the characteristic of K is zero, then the condition G2 is generically satis-
fied.

Proof. Proposition 70 shows that generically the condition G2 is equivalent to the fact that,
at the specified degrees, the Hilbert function of the ideal decreases by the maximal possible
value s + 1 . This property can be expressed in term of maximal rank of some minors
of the matrix spanned by the multiples of f . So it is an open condition. It is generically
satisfied because relying on Hilbert-Burch theorem, one can construct, for each n − d and
each s < n− d, an example where it happens.

4.4 A generalization of the EEA
Here we present a generalization of the Extended Euclidean Algorithm (EEA) to the case of
s + 1 polynomials F0, . . . , Fs, obtained after the preprocessing and satisfying the condition
G2.

We construct the Groebner basis of the ideal I = (F0, . . . , Fs) w.r.t. the lex order. Since
there are only 2 variables, the completion process need not consider all the critical pairs but
only the ones made by consecutive elements of the family. This boils down to performing
n− d pseudo-divisions as follows and we also obtain s generators of the syzygies. Assume
that the initial family has been completed to {F0, . . . , Fl, . . . , Fl+s} with l ≥ 0, let k =
degy(Fl+1) − degy(Fl) and k = 1 or k = 2. Then perform the iterated division of ykFl by
(Fl+1, . . . , Fl+s):

ykFl = Q1
lFl+1 + · · ·+Qs

lFl+s +R. (4.4.1)

If the remainder R is zero, then the previous equality defines a syzygy; while, if R is not
zero, we define Fl+s+1 to be the remainder R. The recurrence hypothesis and the condition
G2 imply that degx(Qi

l) is either 0 or 1 and then degy(Fl+s+1)− degy(Fl+s) is either 1 or 2.
We can write the equality (4.4.1) in matrix form introducing a unimodular matrixMl such

that: 
Fl+1

...
Fl+s+1

 =


1

. . .
1

yk −Q1
l . . . −Qs

l




Fl
...

Fl+s

 .
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Dehomogenizing this construction of a Groebner basis gives rise to the following general-
ization of the EEA in normal degree sequence. We set qil(x) = Qi

l(x, 1), fl(x) = Fl(x, 1)
and Nl the matrix corresponding to Ml.

We assume that the preprocessing has already been performed.

Algorithm 6: GEEA (Generalized Extended Euclidean Algorithm)
Input: Polynomials f0, . . . , fs of degrees n0 = n, . . . , n− s, satisfying the condition

G2.
Output: Output: A warning saying that the condition is not satisfied, or a sequence of

remainders and relations expressing these reminders as combinations of the
inputs.

1. Initialization: N = Is+1, a = 0, J = 0.

2. For l from 0 to n− s while a = 0 perform a multiple division

fl = q1
l fl+1 + · · ·+ qsl fl+s + r.

• If r = 0, then a := 1, J := l + s and update N multiplying by the unimodular
matrix Nl.

• If deg(r) 6= deg(fl+s)− 1, then send a warning and stop.

• If deg(r) = deg(fl+s)− 1, then fl+s+1 := r and update N multiplying by Nl.

3. If a = 1, for l from J − s+ 1 to J − 1, perform a multiple division
fl = q1

l fl+1 + · · ·+ qJl fJ + r.

• If r = 0, then update N multiplying by the unimodular matrix Nl.

• If r 6= 0, then send a warning and stop.

We have N


f0
...
fs

 =


fJ−s+1

...
fJ
0

.

4. Invert the unimodular matrix N to get the GCD as a combination of (f0, ..., fs) and
also s generators of the syzygies.

4.5 Algorithm
For a pair (n, d) of positive integers, the restriction on the degrees e of the perturbations
appearing in (1) is described by the following formula:

e < min
(
d− bn− d

s
c, n− d

)
. (4.5.1)
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Now, we describe our algorithm to find «small» degree perturbations for the polynomials
f0, . . . , fs to achieve a «large» degree GCD under the condition G2.

Algorithm 7: Construction of the set U defined in (4.1.1)
Input: Univariate coprime polynomials f0, . . . , fs of degrees n . . . , n− s, satisfying

the condition G2. Integers d, e with d > 0 and e as in (4.5.1).
Output: The set U .

1. Let F0, . . . , Fs be the homogenized polynomials to degree n of f0, . . . , fs
respectively.

2. Apply the GEEA algorithm to F0, . . . , Fs.

3. Check the expected pattern of degrees. If not, return U = ∅ or a warning.

4. We have for 1 ≤ v ≤ s

Fn−d+v = w0
vF0 + · · ·+ wsvFs

where the wjv are some of the entries of the matrix P , the inverse of Mn−d+s. Denote
the corresponding s× s-minors by D0, . . . , Ds, then form

H0 := F0 quoD0 , . . . , Hs := Fs quoDs.

If H0, . . . , Hs are not associates, return U = ∅.
Else, compute U0 := −F0 remD0 , . . . , Us := −Fs remDs.

5. Dehomogenize Ui and check if deg ui ≤ e for i = 0 . . . s, then return
U = {(u0, . . . , us)}, else return U = ∅.

Remark 73. Since Fi = HiDi − Ui, i = 0 . . . s, the matrix P gives s syzygies between
F0 + u0, . . . , Fs + us, then we deduce from Cramer’s rule that the polynomials H0, . . . , Hs

are associates.

Notation: As usual in complexity analysis, Õ means that we neglect log factors, see [71].
For polynomials of degrees at most n, multiplication and Euclidean division require Õ(n)
field operations.

We recall that multiplication or inversion of invertible matrices of order s require O(sω)
field operations, ω < 3.

Theorem 74. If f0, . . . , fs satisfy the specification of GEEA, then the set U defined by
(4.1.1) contains at most one element. When U is not empty, Algorithm 7 computes it with at
most Õ(s3n2) field operations.

Proof. We first have to check that any (u0, ..., us) returned by the previous algorithm is
actually in U . If we denote by di (resp. hi) the polynomial obtained dehomogenizing Di
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(resp. Hi), we have

gcd(f0 + u0, . . . , fs + us) = gcd(d0h0, . . . , dshs)
= h gcd(d0, . . . , ds) = h,

gcd(d0, ..., ds) = 1 since the matrix for passing from f0, ..., fs to fn−d, ..., fn−d+s is unimod-
ular and the computation of its determinant along the first line provides a Bezout relation
between its minors d0, ..., ds. Then deg h = deg f0−deg d0 = d and indeed (u0, ..., us) ∈ U .

To show the correctness of the algorithm we show that U has at most one element, and if
U 6= ∅, then Algorithm 7 returns this element.

Assume that U 6= ∅. Let (u0, ..., us) in U and h = gcd(f0+u0, ..., fs+us), with deg h = d.
For simplicity we assumed in the beginning that d < n − s (Indeed, the special cases

d = n, . . . , d = n− s can be treated directly along the same ideas).
Thus, from the condition on the degrees of ui there exist uniquely determined d0, ..., ds in

K[x] such that fi = dih − ui for i = 0 . . . s. Let f̃i = fi + ui for i = 0 . . . s and execute
the GEEA algorithm with the homogenized polynomials F̃0, ..., F̃s of f̃0, ..., f̃s respectively.
Because of the restriction on the degrees of the perturbation, the GEEA produces the same
stairs up to degree n + m1, hence the sequence m = (m1, . . . ,ms) of the degrees of the
minimal syzygies of the generated ideal takes the generic value, and we obtain a unimodular
matrix N such that

N


F̃0

F̃1
...
F̃s

 =


yβH

0
...
0

 .

This implies the uniqueness property of D0, ..., Ds (up to a constant).

The cost for computing the n − d generalized polynomial divisions and multiplying the
inverses of the unimodular matrices in the GEEA scheme is bounded by Õ(s3n2). All other
operations are not more expensive.

4.6 Examples
In the first example, we illustrate the different steps of our algorithm. In the second example,
we see how we can loose uniqueness when we relax the bound on the degree of the pertur-
bation: the GEEA scheme allows to compute an approximate GCD of degree 2, but fails
to detect other approximate GCDs of degree 2. This shows that our recognition approach
requires strong bounds on the degree of the perturbation.

Example 75.

f0 = x14 − 3x13 + x11 + 2x9 − 3x8 − 9x7 + x6 + 3x5 + 4x3 + x2 − 2x− 2,
f1 = x12 + x9 + 2x8 + 10x7 + 3x6 + 2x4 + 7x3 + 22x2 + 23x,
f2 = x11 + x10 − x8 + 2x7 + 5x6 + 5x5 + 3x4 + x2 + 11x+ 9,
f3 = x10 − x9 + x8 + x7 − 2x6 + 2x5 + x4 + 4x2 − x− 5.
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These polynomials are coprime, and we aim to find a perturbation (u0, u1, u2, u3) of
(f0, f1, f2, f3) such that deg(gcd(f0 + u0, f1 + u1, f2 + u2, f3 + u3)) = 6.

We first perform the preprocessing to get a sequence with consecutive degrees. It amounts
to replace f0 by f0 := f0 − x2f1, that is

f0 = −3x13 − 2x10 − 8x9 − 6x8 − 9x7 − x6 − 4x5 − 22x4 − 19x3 + x2 − 2x− 2.

The unimodular transition matrix V is the identity plus a matrix having only one nonzero
entry, namely −x2 on the first line.

Therefore, the condition G1 will be satisfied if the degrees of u0, u1, u2, u3 are bounded by
7, but the degree of u1 should be bounded by 5. Here, the simplicity of V allows us to make
a distinction between the degrees of the different ui. Then we solve the problem replac-
ing the input sequence of polynomials by (f0, f1, f2, f3) and we aim to find a perturbation
(v0, v1, v2, v3) such that deg(gcd(f0+v0, f1+v1, f2+v2, f3+v3)) = 6, with v0 = −x2u1+u0,
v1 = u1, v2 = u2, v3 = u3. Then the new data are s = 3, n = 13, d = 6, and e < 4.

Following Theorem 74 to achieve uniqueness, we impose that the degrees of all vi are
bounded by 3. However due to the special form of V this imposes further that deg(v1) ≤
3− 2 = 1.

Presenting only the dehomogenized expressions, we successively compute the polynomi-
als fj for j = 4, . . . , 10. We get

f4 = −x9 + 23x8 − x7 + x6 − 2x4 + 47x3 + 66x2 − x+ 3,

f5 = 67x8 + 3x7 + 8x6 − 2x4 + 147x3 + 206x2 + 23x+ 23,

f6 = 10
67x

7 + 384
67 x

6 − 29
67x

4 + 88
67x

3 + 106
67 x

2 + 702
67 x+ 1037

67 ,

f7 = 7988
5 x6 − 523

5 x
4 + 1826

5 x3 + 1757
5 x2 + 14004

5 x+ 21554
5 ,

f8 = − 2
67x

5 + 15719
535196x

4 − 11709
267598x

3 − 3543
535196x

2 + 1434
133799x−

2841
133799 ,

f9 = −222290791
159760 x4 − 12672447

15976 x3 + 158546991
159760 x2 + 5305998

9985 x+ 659883
7988 ,

f10 = 38869875
13251185362x

3 − 12268325
13251185362x

2 − 9935725
13251185362x+ 12166625

13251185362 .

Figure 4.1 shows the stairs of this example.
We look for perturbations such that the perturbed f8, f9, f10 vanish. So we express them

as combinations of f0, f1, f2, f3 and we get a matrix with 3 rows and 4 columns. Its 3 × 3-
minors D0, D1, D2, D3 are polynomials of degrees 7,6,5,4 respectively.

Then (up to a sign) the polynomials Hi = fi quoDi, i = 0 . . . 3, are equal to H =
−7988

5 x6 − 15976
5 x− 23964

5 , the GCD candidate.
The remainders rem(f0, D0) = 4x3 +x2 +1, rem(f1, D1) = −x, rem(f2, D2) = 2x3−x

and rem(f3, D3) = x3 − x2 + 1 provide the perturbation. Theorem 74 asserts that the only
solution is U = {(−4x3−x2−1, x,−2x3 +x,−x3 +x2−1)}, which has degree (3, 1, 3, 3).
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Remark 76. In this example if we relax the degree bound on the perturbation to (3, 3, 3, 3)
we loose uniqueness. We also observe this behavior on the following example. To be more
illustrative we present the homogenized version.

Example 77.

f0 = (x2 − 2x+ 3)(x4 + x3 + x2 + 2x+ 3)− 7 = x6 − x5 + 2x4 + 4x3 + 4x2 + 2

f1 = (x2 − 2x+ 3)(x3 + 2x2 + x− 1) + 4 = x5 + 3x2 + 5x+ 1
f2 = (x2 − 2x+ 3)(x2 + 2x+ 2) = x4 + x2 + 2x+ 6.

These polynomials are coprime. Here n = 6, d = 2, then Theorem 74 applies and guar-
anties uniqueness if e < 0. With this requirement, the result of Algorithm 7 is U = ∅.

However, as we constructed our example by a perturbation, we do know that with e =
0 there is a solution and we want to see if our algorithm detects it although the required
condition on the degree is not satisfied. It will not!

Let us see what happens if we just run the process. We look for a perturbation (u0, u1, u2)
of (f0, f1, f2) such that deg(gcd(f0 + u0, f1 + u1, f2 + u2)) = 2.

The corresponding homogenized polynomials to degree 6 are

F0 = x6 − yx5 + 2y2x4 + 4y3x3 + 4y4x2 + 2y6

F1 = yx5 + 3y4x2 + 5y5x+ y6

F2 = y2x4 + y4x2 + 2y5x+ 6y6.

Applying the GEEA, we obtain

F3 = y4x3 − 9y7 = yF0 + (y − x)F1 − 2yF2

F4 = y5x2 − y6x− 8y7 = yF1 − xF2 + F3

F5 = 12y7x+ 14y8 = y2F2 − xF3 − yF4

F6 = −23
2 y

8 = yF3 − (y + x)F4 −
3
4F5.

Figure 4.2 is a picture of the stairs for this example.

Figure 4.2: Shape of Example 3

83



We deduce that

F5 = −(y2 + yx)F0 + (−2y2 + x2)F1 + (3y2 + 3yx)F2

F6 = (34y
2 − 1

4yx)F0 + (12y
2 − 2yx+ 1

4x
2)F1 + (−9

4y
2 + 3

4yx+ x2)F2.

To obtain an approximate GCD of degree 2, we impose that the perturbations F̃5 and F̃6
of F5 and F6 vanish.

We deduce that

D0 = x4 + x2y2 + 3y3x+ 3y4 , D1 = −yx3 − y2x2 , D2 = y2x2 + y3x+ y4 ,

and
H0 = x2 − yx+ y2 , H1 = −x2 + yx− y2 , H2 = x2 − yx+ y2.

Since these last polynomials are associated, we set H = x2 − yx+ y2. We obtain

U0 = −(F0 remD0) = −y3(2x3 + 3yx2 − y3)
U1 = −(F1 remD1) = −y4(2x2 + 5yx+ y2)
U2 = −(F2 remD2) = −y5(2x+ 5y).

and we can verify that

F̃0 = F0 + U0 = H(x4 + x2y2 + 3y3x+ 3y4)
F̃1 = F1 + U1 = H(yx3 + y2x2)
F̃2 = F2 + U2 = H(y2x2 + y3x+ y4),

that is H = gcd(F̃0, F̃1, F̃2).
We conclude that the perturbation

(u0, u1, u2) = (−2x3 − 3x2 + 1,−2x2 − 5x− 1,−2x− 5)

of (f0, f1, f2) gives the approximate GCD: x2 − x+ 1, which is of degree 2.
However with v0 = 7, v1 = −4, v2 = 0, we also get the approximate GCD of degree 2,

gcd(f0 + v0, f1 + v1, f2 + v2) = x2 − 2x+ 3 which is not detected by our algorithm.
Observe that the considered perturbation changes the leading term of F̃4 while the im-

posed restrictions in our algorithm forbid this change.

4.7 Conclusion
In this chapter, we presented an algorithm to find small perturbations for several polyno-
mials with a «normal degree sequence» to obtain large degree GCDs. The approach seems
promising. Here are several questions and directions of research raised by our investigations.

• What is the integer analog of our process, can it be used to organize an attack on some
instances of the encryption schemes cited in the introduction?
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• Generalize [72] and describe the stratification (i.e the incidence relations between the
strata) of the classifying space of s+1 polynomials defined by the sequences of degrees
of the minimal syzygies.

• Describe what happens when these sequences are not generic.

• See if the degree restrictions can be weakened.
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Appendix A

Implementation and example

In this appendix we show how to compute a matrix representation, µ-basis of a set of poly-
nomial, generalized eigenvalues of a univariate polynomial matrix, intersection points of
curve/curve and curve/surface, singular points of a parameterized plane curve by using the
computer algebra system Mathemagix which are developing at INRIA Sophia Antipolis in
the project GALAAD [24] and also by using the Maple. All these programs are included in
the current distribution of Mathemagix, in the shape module mmx/shape/mmx /matrixrepre-
sentation or at http://www-sop.inria.fr/members/Luu.Ba_Thang/. This work has been done
during this thesis in parallel of the theoretical developvements. Almost algorithms are refer-
ences in [4, 13, 25, 43, 53].

A.1 µ-basis of a set polynomials
In this section, we introduce a function to compute µ-basis of a set of polynomials f :=
(f0, f1, . . . , fn) with gcd(f0, f1, . . . , fn) = 1 which is defined in the first chapter.

• mubase f.

• mubase_homogeneous(f, var)

Example 78. Compute µ-basis of the set polynomials f := [x4 − 49
2 x

2 + 115
2 x − 33, x4 −

25x2 + 61x− 36, x3 − 13
2 x

2 + 27
2 x− 8, 1].

• include "mubase.mmx";

• R:=QQ[’x];

• f:=[R << “x4 − 49
2 x

2 + 115
2 x − 33“, R << “x4 − 25x2 + 61x − 36“, R << “x3 −

13
2 x

2 + 27
2 x− 8“, R << “1“];

• mubase f

[[−1, 1, 0, 12x
2 − 7

2x+ 3], [−15
17 , 1, −2

17 x−
13
17 ,
−15
17 x+ 13

17],

[136
481x−

3158
13949 ,

−136
481 x+ 3842

13949 ,
−684
13949x−

6418
13949 ,

1274
1073x−

17246
13949]]
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Example 79. Compute µ-basis of the set polynomial f := [x3 + xY 2 + y3, x3 − x2y, x3 +
x2y + xy2].

• include "mubase.mmx";

• R:=QQ[’x,’y];

• f:=[R << “x3 + xY 2 + y3“, R << “x3 − x2y“, R << “x3 + x2y + xy2“];

• var:=[R«“x“,R«“y“];

• mubase_homogeneous(f,var)

[[2x2 + xy,−x2 + y2,−x2 − xy − y2], [32x,
−3
2 x,

−3
2 y]]

A.2 Matrix representation of parameterized curve
Let f0, f1, . . . , fn be n homogeneous polynomials in K[s, t] of the same degree d ≥ 1 such
that their greatest common divisor (GCD) is a non-zero constant in K. Consider the regular
map

P1
K

φ−→ PnK
(s : t) 7→ (f0 : f1 : · · · : fn)(s, t).

The image of φ is an algebraic curve C in PnK which is called a rational curve. Now, we give
some functions to compute a matrix representation of C in P2

K and P3
K.

• matrix_rep_curve_plane_homogeneous(curplane,varcur,varimplcurve).

• matrix_rep_curve_plane(curplane,varimplcurve).

• matrix_rep_curve_space_homogeneous(curplane,varcur,varimplcurve).

• matrix_rep_curve_space(curplane,varcur,varimplcurve)

Example 80. (C) : f0 = s3 + t3, f1 = s2t, f2 = s3 +s2t+ t3. Then the matrix representation
of C is

• include"curvesurface.mmx";

• R:=QQ[′s,′ t,′ x,′ y,′ z];

• curplane:=[R << “s3 + t3“, R << “s2t“, R << “s3 + s2t+ t3“];

• varcur:=[R << “s“, R << “t“];

• varimplcurve:=[R << “x“, R << “y“, R << “z“];
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• matrix_rep_curve_plane_homogeneous(curplane,varcur,varimplcurve) x− z y 0
x x− z y
−y 0 x− z


Example 81. (C) : f0 = 3s2t, , f1 = −3s3 + 3st2, f2 = st2 + t3, f3 = t3. Then the matrix
representation of C is

• include"curvesurface.mmx";

• R:=QQ[′s,′ t,′ x,′ y,′ z,′w];

• curplane:=[R << “3s2t“, R << “− 3s3 + 3st2“, R << “st2 + t3“, R << “t3“];

• varcur:=[R << “s“, R << “t“];

• varimplcurve:=[R << “x“, R << “y“, R << “z“, R << “w“];

• matrix_rep_curve_space_homogeneous(curplane,varcur,varimplcurve)(
−y −x− y −z + w

−x+ 3w −x+ 3z w

)

A.3 Matrix representation of parameterized surface
Let f0, f1, f2, f3 be homogeneous polynomials in K[s, t, u] of the same degree d ≥ 1 such
that their greatest common divisor (GCD) is a non-zero constant in K. Consider a surface S
given by parametrization

P2
K

φ−→ P3
K

(s : t : u) 7→ (f0(s, t, u) : f1(s, t, u) : f2(s, t, u) : f3(s, t, u)).

Now, we give a function to compute a matrix representation of S in P3
K.

• matrix_rep_surface(surface,varsur,varimplsur).

Example 82. Stein’s Roman Surface (S) : f0 = s2 + t2 + u2, f1 = st, f2 = su, f3 = tu.
Then the matrix representation of S is

• include"curvesurface.mmx";

• R:=QQ[′s,′ t,′ u,′ x,′ y,′ z,′w];

• Stein:=[R << “s2 + t2 + u2“, R << “st“, R << “su“, R << “tu“];

• varsur:=[R << “s“, R << “t“, R << “u“];

• varimplsur:=[R << “x“, R << “y“, R << “z“, R << “w“];
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• matrix_rep_curve_surface(surface,varsur,varimplsur)

y y z w 0 0 y 0 0
−x −x 0 0 w z −x 0 0
y y 0 0 0 0 y z w
0 0 −x −y 0 −y w 0 y
0 z y 0 −y 0 0 −y −x
y 0 z 0 0 0 0 0 w



A.4 Polynomial matrix and generalized eigenvalues
Suppose given a polynomial matrixM(t) = (aij(t)) of sizem×n. if d := maxi,j{deg(ai,j(t)}
then

M(t) = Mdt
d +Md−1t

d−1 + . . .+M0

where Mi ∈ Km×n.
We construct some functions to compute Md,Md−1, . . . ,M0, generalized companion ma-

trices, regular matrix and generalized eigenvalues of M(t) which are defined in the second
chapter.

• list_coefficients_matrix M(t).

• firstcompanionmatrix M(t).

• secondcompanionmatrix M(t).

• pencilregular(A,B) where A:=firstcompanionmatrix M(t), B:=secondcompanionmatrix
M(t).

• generalized_eigenvalues M(t).

Example 83. M :=

 3x2 −3x3 + 3x
x+ 1 1

2x2 + x x2 + x


• include“pencilregular.mmx“;

• degree M
3

• list_coefficients_matrix M

M3 =

 0 −3
0 0
0 0

 ,M2 =

 3 0
0 0
2 1

 ,M1 =

 0 3
1 0
1 1

 ,M0 =

 0 0
1 1
0 0


• A:=firstcompanionmatrix M;

• B:=secondcompanionmatrix M;
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• pencilregular(A,B)
[[0], [−3]]

• generalized_eigenvalues M
[0]

A.5 Parameterized curve/curve intersection
Consider two curves C1, C2 given by parametrization

(C1) : P1
K

φ1−→ PnK
(s : t) 7→ (f0(s, t) : f1(s, t) : · · · : fn(s, t)).

(C2) : P1
K

φ2−→ PnK
(s : t) 7→ (g0(s, t) : g1(s, t) : · · · : gn(s, t)).

Hereafter, we give some functions to compute the intersection locus C1 ∩ C2 in the space P2
K

and P3
K.

• intersection_curve_plane_homogeneous(curve1,varcur1,curve2,varcur2).

• intersection_curve_space_homogeneous(curve1,varcur1,curve2,varcur2).

In the case, the parametrization of C1 and C2 are given the univariate polynomial, we give the
other functions to compute the intersection locus C1 ∩ C2.

• intersection_curve_plane(curve1,curve2).

• intersection_curve_space(curve1,curve2).

Example 84. (C1) : f0 = x4 − 49
2 x

2 + 115
2 x − 33, f1 = x4 − 25x2 + 61x − 36, f2 =

x3 − 13
2 x

2 + 27
2 x− 8, f3 = 1.

(C2) : g0 = x3−11
2 x

2+17
2 x−3, g1 = x3−6x2+12x−6, g2 = x4−51

2 x
2+125

2 x−38, g3 = 1.
Then C1 ∩ C2 are

• include “curvesurface.mmx“;

• R:=QQ[’x];

• curve1:=[R << “x4 − 49
2 x

2 + 115
2 x − 33“, R << “x4 − 25x2 + 61x − 36“, R <<

“x3 − 13
2 x

2 + 27
2 x− 8“, R << “1“];
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• curve2:=[R << “x3 − 11
2 x

2 + 17
2 x − 3“, R << “x3 − 6x2 + 12x − 6“, R <<

“x4 − 51
2 x

2 + 125
2 x− 38“, R << “1“];

• intersection_curve_space(curve1,curve2)

[[1, 1, 0, 1], [0, 2, 1, 1], [0, 3, 1, 1], [−308,−341,−363, 1]

Example 85. (C1) : f0 = x3−3x2y+2xy2+y3, f1 = x2y+2xy2+2y3, f2 = xy2+3y3, f3 =
y4.
(C2) : g0 = x4 − xy3 + y4, g1 = xy3 + y4, g2 = xy3 + 2y4, g3 = y4. Then C1 ∩ C2 are

• include “curvesurface.mmx“;

• R:=QQ[’x,’y];

• curve1:=[R << “x3 − 3x2y + 2xy2 + y3“, R << “x2y + 2xy2 + 2y3“, R << “xy2 +
3y3“, R << “y4“];

• curve2:= [R << “x4−xy3 +y4“, R << “xy3 +y4“, R << “xy3 +2y4“, R << “y4“];

• varcur:=R << “x“, R << “y“];

• intersection_curve_space_homogeneous(curve1,varcur,curve2,varcur)

[[1, 2, 3, 1], [1, 1, 2, 1]].

A.6 Parameterized curve/surface intersection
Consider a curve C given by parametrization

(C) : P1
K

φ−→ P3
K

(s : t) 7→ (f0(s, t) : f1(s, t) : f2(s, t) : f3(s, t)).

and a surface S by parametrization

(S) : P2
K

ψ−→ P3
K

(s : t : u) 7→ (g0(s, t, u) : g1(s, t, u) : g2(s, t, u) : g3(s, t, u)).

We give a function to determinate the intersection locus C ∩ S.

• intersection_curve_surface_homogeneous(surface,varsur,curve,varcur).

Example 86. A sphere (S) : f0 = x2 + y2 + z2, f1 = 2xz, f2 = 2xy, f3 = x2 − y2 − z2.
A thwisted cubic: (C) : g0 = s3, g1 = s2t, g2 = st2, g3 = t3. Then S ∩ C are

• include “curvesurface.mmx“;
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• R:=QQ[’s,’t,’x,’y,’z];

• surface:=[R << “x2 + y2 + z2“, R << “2xz“, R << “2xy“, R << “x2 − y2 − z2“];

• curve:=;[R << “s3“, R << “s2t“, R << “st2“, R << “t3“];

• varsur:=[R << “x“, R << “y“, R << “z“;

• varcur:=[R << “s“, R << “t“, ];

• intersection_curve_surface_homogeneous(surface,varsur,curve,varcur)

[[1,−0.73, 0.54,−0.4], [1, 0.73, 0.54, 0.4],

[1, 0.54−1.03i,−0.77−1.11i,−1.56+0.19i], [1, 0.54+1.03i,−0.77+1.11i,−1.56−0.19i],
[1,−0.54−1.03i,−0.77+1.11i, 1.56+0.19i], [1,−0.54+1.03i,−0.77−1.11i, 1.56−0.19i]]

A.7 Singular points of parameterized plane curve
Consider a plane curve C given by parametrization

(C) : P1
K

φ−→ P2
K

(s : t) 7→ (f0(s, t) : f1(s, t) : f2(s, t)).

We given a function to compute the singular points of C with its multiplicity.

• singular_point_plane(curve,varcur,int) where «int» is multiplicity of a points on C.

Example 87. (C) : f0 = t5−2∗t3+2, f1 = t4+3, f2 = 1. Then P (2, 7, 1) is of multiplicity
2 and Q(2, 3, 1) is of multiplicity 3.

• include “singular_point.mmx“;

• R:=QQ[’t,’x,’y,’z];

• curve:= [R << “t5 − 2 ∗ t3 + 2“, R << “t4 + 3“, R << “1“;

• varcur:= [R << “t“, R << “x“, R << “y“, R << “z“];

• singular_point_plane(curve,varcur,2)

[2, 7, 1], [2 + 8i,−1, 1], [2− 8i,−1, 1]

• singular_point_plane(curve,varcur,3)

[[2, 3, 1]]

• singular_point_plane(curve,varcur,4)
[]
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Example 88. (Chen, F and all) (C) : f0 = t4 − 40 ∗ t3 + 40t+ 1, f1 = t4 + 480t2 + 1, f2 =
t4 + 40t3 + 480t2 + 40t+ 1.

• include “singular_point.mmx“;

• R:=QQ[’t,’x,’y,’z];

• curve:= [R << “t4− 40 ∗ t3 + 40t+ 1“, R << “‘t4 + 480t2 + 1‘, R << “t4 + 40t3 +
480t2 + 40t+ 1“;

• varcur:= [R << “t“, R << “x“, R << “y“, R << “z“];

• singular_point_plane(curve,varcur,2)

[[2.4488708221968 ∗ 107, 5.0600587305910 ∗ 107, 7.3417921728759 ∗ 107],

[7714.2545820696, 15939.828632115, 8752.0780563547],

[7.9346835678021, 16.395297170358, 23.788432278383],

[0.51773816346332, 1.0697932657153, 0.58739114339276], [1, 1, 1]]

• singular_point_plane(curve,varcur,3)
[]

• singular_point_plane(curve,varcur,4)
[]

A.8 Solve the equation of univariate polynomials
Let f(x) be an univariate polynomial of the rational coefficients. We give a function to find
all roots of f(x).

• solve f(x)

Example 89. Solve the equation x4 + 2x+ 1 = 0.

• include “solvepolynomial.mmx“;

• f:=QQ[′x] << “x4 + 2x+ 1“;

• solve f;

[0.77184450634604+1.1151425080399∗i, 0.77184450634604−1.1151425080399∗i,

−1.0000000000000,−0.54368901269208]

.
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Conclusion

In this thesis, we have obtained some new results following:

• Introduce a new implicit representation of rational curves of arbitrary dimensions and
propose a implicit representation of rational hypersurfaces.

• Illustrate the advantages of this matrix representation by addressing several important
problems of Computer Aided Geometric Design (CAGD): The intersection problem
curve/curve, curve/surface and surface/surface, the point-on-curve and inversion prob-
lems, the computation of singularities of rational curves.

• Develop a symbolic/numeric algorithm to manipulate these new representations for ex-
ample: the algorithm for extracting the regular part of a non square pencil of univariate
polynomial matrices and bivariate polynomial matrices.

• Describes an algorithm which, given a family of generic univariate polynomials f :=
(f0, ..., fs), find polynomial perturbations u := (u0, ..., us) with prescribed degree-
bounds such that gcd(f1 + u1, ..., fs + us) has at least a given degree, provided that
such a perturbation exists in polynomial time under a generic condition generalizing
the normal degree sequence

• Develop the package matrixrepresentation of the computer algebra system Mathemagix
and Maple to these matrices representations.
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Répresentation Matricielle Implicite de Courbes et Surfaces
algébriques et Applications

Résumé. Dans cette thèse, nous introduisons et étudions une nouvelle représentation
implicite des hypersurfaces rationelles et des courbes rationnelles plongées dans un espace
projectif de dimension arbitraire. Nous illustrons les avantages de cette représentation ma-
tricielle en abordant plusieurs problèmes importants intervenant en conception géométrique
assistée par ordinateur: les problèmes d’intersection entre deux courbes, entre une courbe
et une surface ou bien encore entre deux surfaces, le problème d’appartenance d’un point
à une courbe ou une surface, le problème du calcul de la pré-image d’un point donné par
une paramétrisation et enfin le problème du calcul des singularités d’une courbe rationnelle.
L’approche développée dans ce travail de thèse est basée sur la combinaison de méthodes
symboliques et numériques. En effet, un première étape symbolique consiste à transformer
le problème considérer en un pinceau de matrices. La deuxième étape consiste alors à cal-
culer les valeurs propres généralisées de ce pinceau à l’aide de méthodes numériques. Pour
cela, un algorithme d’extraction de la partie régulière d’un pinceau univarié, respectivement
bivarié, de matrices non carrées est présenté. Une implémentation de ces travaux dans les
systèmes de calcul formel Mathemagix et Maple est présentée en appendice. Le dernier
chapitre est conscré à un algorithme qui, étant donné un ensemble de polynômes univariés
f1, ..., fs construit un ensemble de polynômes u1, ..., us dont les degrés sont prescrits, tels
que le degré du pgcd(f1 + u1, ..., fs + us) est supérieur ou égal à un entier donné sous des
hypothèses de généricité.

Mots-clés: µ-base, l’élimination, représentations matricielles, problèmes d’intersection,
singularités, implicitation, pinceau de matrices, formes de Kronecker, idéal initial générique,
PGCD de polynômes, suite normale des degrés, bases de Gröbner.

Matrix-based implicit representations of algebraic curves and
surfaces and applications

Abstract. In this thesis, we introduce and study a new implicit representation of rational
curves of arbitrary dimensions and propose an implicit representation of rational hypersur-
faces. Then, we illustrate the advantages of this matrix representation by addressing sev-
eral important problems of Computer Aided Geometric Design (CAGD): The curve/curve,
curve/surface and surface/surface intersection problems, the point-on-curve and inversion
problems, the computation of singularities of rational curves. We also develop some sym-
bolic/numeric algorithms to manipulate these new representations for example: the algorithm
for extracting the regular part of a non square pencil of univariate polynomial matrices and
bivariate polynomial matrices. In the appendix of this thesis work we present an implemen-
tation of these methods in the computer algebra systems Mathemagix and Maple. In the
last chapter, we describe an algorithm which, given a set of univariate polynomials f1, ..., fs
returns a set of polynomials u1, ..., us with prescribed degree-bounds such that the degree
of gcd(f1 + u1, ..., fs + us) is bounded below by a given degree assuming some genericity
hypothesis.

Keywords: µ-basis, elimination, matrix representations, intersection problems, singulari-
ties, implicitation, pencils matrices, Kronecker form, generic initial ideal, GCD of univariate
polynomials, normal degree sequence, Gröbner basis.


