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Introdu&ion

Suppose Mr. Athos wishes to write a private message to Mrs. Bonacieux while keeping
its contents secret from his Eminence of Richelieu, to whom the courier is mogt certainly
beholden; he could put the message in a safe box whose combination is only known to himself
and to Bonacieux, and that would be very costly to break.

Rather than physical devices, cryptography rests on computational power to ensure data
security and integrity. Athosand Bonacicux are each given ablack box: Athos’ is parametrized
by a key and transforms messages into unintelligible data called ciphertexts; with the cor-
responding key, Bonacieux’s reverses this operation. Ciphertexts can then be transmitted
openly over any medium. Chapter I gives a brief overview of such techniques, with an em-
phasis on schemes allowing Athos’ key to be public: they are only a few decades old and make
extensive use of mathematical stru¢tures.

Abelian varieties are obje@s upon which such schemes can be built very efficiently and
securely; they are formally introduced in Chapter 11, which concisely presents certain of their
theoretical agpects, focusing on computations over finite fields. Subsequent chapters, where
the original contributions of this thesis are located, are concerned with algorithmic prop-
erties related to the endomorphism ring stru&ure of abelian varieties; most of the theoreti-
cal background on this topic forms what is known as complex multiplication theory, which
Chapter 111 covers.

An important application of endomorphism rings is the construction of abelian varieties
with desirable properties. For instance, many featureful cryptographic schemes have recently
been enabled by pairings; to make these schemes practical, abelian varieties endowed with
efficient pairings must be generated. Chapter 1v discusses this subjec, including the work of
B.and SATOH (2008) and related results.

The second half of this thesis addresses the problem of computing the endomorphism
ring of a prescribed abelian variety, which can be seen as the inverse problem to variety gen-
eration. Chapter v recalls prior state-of-the-art methods, all of which have an exponential
runtime in the size of the input. It also describes the general structure of isogeny graphs,
which is later extensively relied on.

Our subexponential algorithms for computing endomorphism rings of ordinary abelian
varieties are first described in Chapter V1 in an idealized setting. They exploit complex mul-
tiplication theory in its relevance to the structure of isogeny graphs. When specialized to the
case of dimension-one abelian varieties, this directly yields highly effective methods which
are essentially equivalent to that of B. and SUTHERLAND (2009). Their complexity is rigor-
ously analyzed in Chapter V11, as was done in B. (2011); this chapter ends with a discussion
of the results of B. and SUTHERLAND (2011 in this context, from a different perspective
than the original article.
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Chapter vI11 finally explains how our methods can be adapted to be effective in higher
dimension, and reports on the implementation of B., COSSET, and ROBERT (2010} enabling
the evaluation of general maps between abelian varieties (so-called isogenies), which is an

important building block of our algorithms. We conclude by applying our technique to the

computation of several illustrative and record examples.
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ABELIAN VARIETIES
IN CRYPTOGRAPHY






ONE

Panorama of (ryptography

Historically, cryptography has prevalently been employed for secrecy, although over time
it has come to provide other features, such as integrity protection and authentication. This
chapter concisely presents standard techniques achieving such classical primitives; it serves
as both a motivation and pra&ical framework for computational number theory.

I.1  Symmetric Primitives

Early cryptography necessitated a secret, called the ey, to be shared between the parties
involved. Primitives of that lineage are said to be symmerric; they are in widespread use and
development today, mostly due to their flexible and fast implementations.

CIPHERS

Denote by S = {0, 1} the set of all rings, that is, finite sequences of bits.

Definition I.1.1. Symmetric encryption schemes consist of fwo families E and D of functions,
not necessarily everywhere defined, from'S to'S such that D, o E, = Iddom(Ek) Sfor all Strings k.

Intuitively, E and D are the black boxes to provide Athos and Bonacicux: the cipher E
is parametrized by a key &, takes plaintexts m as input, and returns ciphertexts E,(m), while
the decipher D does the converse. His Eminence should be unable to gain any insight on
the message 72 from the sole knowledge of the ciphertext E, (72); in the strictest sense, this is
formalized as perfect secrecy, which requires that, for all finite sets of $trings M and M,

Proby,, [ € M| E,(m) € M’'] = Prob_[m € M].

7}’1[
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Early ciphers, going back to several centuries BC, simply swapped or shifted bytes of the
plaintext in a regular fashion derived from the key; for instance, $plitting strings as sequences
of bytes that encode letters A-Z as integers o—25, the cipher

E,: (ml) — (ml. + k£ mod 26)

is still in limited use today with £ = 13. Similar schemes not obviously as weak have also
been designed using larger keys; virtually all have since been broken by the development of
frequency analysis.

SHANNON (1949) established the existence and essential uniqueness of a cryptosystem
achieving perfe& secrecy: the one-time pad — it requires a key to be drawn independently
and uniformly at random from {0, 1}” for each -bit plaintext, and returns as ciphertext the
bit-by-bit xor of the plaintext and the key. Its practical use is only limited by the ability to
carry suitcases full of pads around, prior to doing any encryption.

To mimic its behavior while overcoming the need for lengthy keys transmission, sZream
ciphers (also known as pseudorandom number generators), on input a small key called the seed,
deterministically generate pads to be xored with the plaintext; as before, measurable statisti-
cal deviations of such pads from random strings should be avoided. Nowadays, block ciphers,
which encrypt fixed-length blocks of bits, are the most widely used, and particularly that
of DAEMEN and RIJMEN (1999) later standardized as the AES. Procedures for encrypting
sequences of blocks, known as modes of operations, prevent additional information leakage
when handling messages of arbitrary length.

CONCRETE SECURITY

The above overview calls for a more down-to-earth discussion of security aspe&s: the
result of SHANNON (1949) concerns whether the key can theoretically be recovered from a
certain amount of ciphertext, not how resource-demanding that process is.

One of the cheapest ways of effeively compromising the key is to peck at Athos’ note-
book, or simply to ask him about it over a nice glass of wine; such side-channel attacks will
not be discussed here, as we focus on cryptosystems themselves, not their implementations.

Definition L.1.2. A cipher E is computationally secure if; for most keys k, it is computationally
infeasible to derive plaintexts m from ciphertexts E,(m).

“Computationally infeasible” means that, with today’s state-of-the-art machines, this
computation would take more time than is available, say, billions of years.

Other conditions might be desirable as well; for instance, that the output of E, cannot
feasibly be told apart from that of a random fun¢tion. However, as our interest will shift to
the mathematical building blocks of cryptosystems, this distin&tion will bear little relevance.
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Most cryptosystems do not achieve perfeét secrecy, and are thus susceptible to brute-force
attacks, which decrypt given ciphertexts by tryingall possible keys in turn. For “ideal ciphers,”
this is the best attack, and for “ideal keys,” which have no $pecial property that reduces the
search range, it takes 2” /2 runs on average to find an #-bit key.

With today’s technology, the total number of elementary arithmetic operations realisti-
cally achievable can be bounded from above by 2'%%; keys bearing (at least) 128 bits of entropy
are thus recommended. Naturally, this should be tempered by several factors:

— the gravity of the encrypted information;
— the desired lifetime of the cryptosystem;
— the available processing power.

For instance, a news agency broadcasting encrypted live reports to its paying subscribers with
different keys each day might only need to withstand limited-resources attacks for 24 hours.

Summing up the above, assessing the security of a cryptosystem calls for a deep under-
Standing of the ways and costs to attack it. MOORE (1965 ) predicted an exponential growth
in available computing power which has been verified for the past four decades; as a conse-
quence, the costs should be considered for increasing key-sizes.

Rather than relying on a rigorous computing model such as the multi-tape universal ma-
chines of ['URING (1937), we will simply analyze algorithms by looking at both their actual
runtime on pracical computations, and their long-term behavior embodied in asymptotic
bit-complexity estimates. In particular, we disregard quantum-computing models.

To emphasize the need for an asymptotic analysis, denote by fE(n) the operation count
of the best method for attacking a cipher E with 7-bit keys: if ¢ grows subexponentially,
key-sizes are required to increase more than linearly in time to provide a constant level of
security, which may eventually prove to be quite cumbersome.

HasH FUNCTIONS

One-way functions formalize the behavior which is expe@ed of ciphers parametrized by
unknown keys; they have countless applications, far beyond cryptography, such as hash ta-
bles. Like ciphers, they can be defined in a complexity-theoretic way, as funcfions that can
be evaluated by polynomial-time algorithms, but for which no polynomial-time algorithm can
successfully find preimages on more than an exponentially small fraction of the image.

Since the existence of such fun&ions implies P = NP, we look for a more pradical stance.

Definition 1.1.3. A function b : S — S is one-way if it is computationally infeasible ro find
preimages of most of its image. It is also a hash fun&ion ifits image is contained in {0,1}” for
some n and it is computationally infeasible to find two Strings x # x' verifying h(x) = h(x').
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Again, additional conditions might be required for $pecific applications. The random
oracle is a convenient ideal encompassing most expetations: it is nothing but the Cartesian
power by S of the uniform distribution on 7-bit strings, or, more pragmatically, a “map”
whose images are drawn uniformly at random from {0, 1}".

Since there typically are at least a few fun&ions (such as congtant ones) that are unsuit-
able, designs using hash fun&ions 4 are often analyzed by assuming that 4 has the uniform
distribution, and proving that the desired properties hold with overwhelming probability.

Traditionally, hash fun&ions are crafted as a mix of logic gates, but some have also been
built on top of mathematical structures, which allows to analyze their behavior much more
rigorously. For instance, the constru&ion of [CHARLES, LAUTER, and GOREN (2009) in-
volves isogeny graphs of supersingular elliptic curves, a stru&ture that we will investigate later
(for completely independent reasons).

PROVABLE SECURITY

Confidently evaluating the complexity ¢; of the best attack on a cryptosystem E is a difhi-
cult task. Provable cryptography aims at designing cryptosystems on which successful attacks
can be reduced into digproofs of certain ideal properties of the underlying blocks. However,
since many traditional blocks feature components $pecifically designed to obscure their be-
havior, assessing the veracity of these ideal properties is not always possible.

Alternatively, the machinery of mathematics provides well-studied building blocks, bun-
dled with tools adapted to rigorous analyses, although this often comes at the expense of
slower implementations.

As a prominent example, let us give a result of SHOUP (1997) regarding the discrete log-
arithm problem, which is that of inverting the func&tion exp, : 7 € Z — ¢" € G,wheregisa
fixed element of a group G.

Theorem L.1.4. In prime-order groups G, no generic algorithm can solve random instances of

the discrete logarithm problem in time o(v #G).

Later, we will rigorously define generic algorithms and explain how they can invert dis-
crete logarithms in time O(¥#G); in essence, this theorem &ates that no attacker using the
group as a black box (thus unable to exploit any “$pecial” property) can do better than that.

Assuming that a cryptosystem E builds upon the discrete logarithm problem on a group
where generic attacks are the best available, we can often, after some calibration, estimate
the value of ¢, at finite parameters by its asymptotic behavior: if a key £ has about the same
size as the group G that E; uses, then it must be roughly 256-bit long in order to provide an
expected 128 bits of symmetric security.
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Researches have built cryptographic blocks upon mathematical objes of various kinds:
D1FFIE and HELLMAN (1976) used discrete logarithms, MERKLE and HELLMAN (1978)
relied on knapsacks, RIVEST, SHAMIR, and ADLEMAN (1978 suggested using integer fac-
torization, MCELIECE (1978) made the case for error-corre@ing codes, MATSUMOTO and
[MAT (1988) employed certain multivariate polynomials, ZEMOR (1994) exploited Cayley
graphs, [AJTAT (1996) proposed using lattices, etc.

This thesis is concerned with some of the underlying mathematical aspes of discrete-
logarithm-based systems. The groups G with which they are concerned will be presented in
the next chapter — for now, let us keep motivating their introducion.

1.2 Asymmetric Primitives

Although ciphers can be implemented efficiently, the need for a shared key to be secretly
transmitted prior to any two-party communication is inconvenient. Most often today, a
shared key is firt established using asymmetric techniques (which overcome this problem)
over the insecure channel, and then used to encrypt the data via a stream or block cipher.

PusLic-KEY PARADIGM

Dr1FFIE and HELLMAN (1976} introduced the key exchange below, which solves precisely
this problem: making two individuals agree, over an open channel, on a shared secret key (to
be subsequently used for encryption); it proceeds as follows:

1. Athos chooses an element g of some group G and sends it to Bonacieux.

2. Athos picks an integer 2 and sends ¢ to Bonacieux.

3. Bonacieux picks an integer & and sends gb to Athos.

4. Athos and Bonacieux compute the shared secret g as (¢* )¥ and ()" respetively.

When a passive observer breaks this scheme, they have solved the following.
Definition I.2.1. 7he Diffie—Hellman problem is thar of computing g”b from g, &, and gb .

It is obviously no harder than the discrete logarithm problem, and is believed to neither
be weaker. This key-exchange is hence considered secure in well-chosen groups of order 2256,
The problem of authentication remains, since Milady de Winter could bribe the courier
so as to intercept and forge messages: she would pick her own integer ¢ and impersonate
Bonacieux to Athos (with secret ¢*) and Athos to Bonacieux (with secret ¢°), thus spying

on (and a&ively interfering with) the whole communication.
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DefinitionI.2.2. Asymmetric encryption schemes consist of two families E and D of functions,
not necessarily everywhere defined, from'S to'S and a one-way function w such that D o Ew( H=
I, By for all strings k. It is a signing scheme provided E ;) 0 Dy = 1dg,,, 1y also holds.

The map w is the key-generation function: it takes a private key k as input and returns the
corre$ponding public key w(k), to be publicly digtributed along with E, making anybody able
to encrypt messages that only the holder of £ can decrypt. Conversely, if the key holder of a
signing scheme broadcasts D, (2) for some message 72, everyone can evaluate Eu,(,c)(Dk(m))
and be assured that the signature D, (m) originates from the holder of £.

In practice, signing schemes are designed independently from encryption schemes; how-
ever, for our brief presentation, this naive framework encompassing both will suffice.

Asymmetric schemes rarely deal with large amounts of data: for encryption, ciphers are
used and only their keys are encrypted asymmetrically; for authentication, it suffices to sign
a hash of the message. Without loss of generality, we will therefore now describe primitives
dealing with subsets of S whose coding as bits will be understood.

EARLY CONSTRUCTIONS

Definition 1.2.3. In a group G noted multiplicatively, the short produ& problem is that of

[finding a subsequence of a given sequence S € G whose product is a prescribed element z.
Produds of subsequences of S are called short produdts; in addition, when S has no repeated

elements, this problem is known as the subset sum problem iz additive groups and as the knap-

sack problem for G = Z.

Some of its instances are equivalent to discrete logarithm problems: if S” is a subsequence
0 1 |log, #G| . . . . . i
of S = (gz ,g2 e ,gz “ ) with produ& z, then z = ¢” where the i bit of 7 is one 1fgZ es

and zero otherwise. From a cryptographic standpoint, this means that the map

|log, #G]
Eg: () e {0, s TT §eG

=1

is a tentative one-way function for certain groups G and sequences S of length about log, #G.

MERKLE and HELLMAN (1978) proposed an asymmetric scheme which scrambles easy
knapsacks (the private keys) into seemingly harder ones (the public keys): let (5;) € N” be a
sequence such that 3, ;5; < 5; forj € {1,....n}, putv = 3 [s;, and define S as the projection
of (si) to Z/v; the map E can then be inverted in polynomial time by a greedy algorithm.
Now, choose an integer # coprime to v, and publish the sequence T = (z,) = (us; mod v). In

the formalism above, we have £ = (S, «,v) as the private key, w : £ +— T as the key-generation
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map, and E,;, : (7,) € {0,1}” +— 3 m, -1, as the encryption function; the greedy algorithm
!%' mod v. SHAMIR

(1982) later broke this scheme due to the simplicity of its scrambling process.

decrypts a ciphertext 7’ by finding a subsequence of S with sum #~

MERKLE (1979) constructed a much more conservative signature scheme, built entirely
from a hash fun&ion 4, and certified its security assuming that of 4. This was achieved by
developing an original idea of LAMPORT (1979): if one sele@s private strings x and y and
publishes their images 4(x) and 4(y) by a hash func&ion, he may later sign a bit of data by
releasing either x (if the bit is zero) or y (if it is one).

MOoDERN CONSTRUCTIONS

The RSA cryptosystem of RIVEST, SHAMIR, and ADLEMAN (1978 rests on the problem
of integer fa&oring, although subexponential factoring algorithms were already known at the
time. Nevertheless, it has become widely used despite the large keys and 4 fortiori computing
resources required by reasonable levels of security.

Let 2 = pg be a product of two primes, and pick an integer  coprime to (p—1)(g—1);
this ensures that the map 7 — 7" is an automorphism of (Z/7)”. Let the private key be
(p.q.7), and publish (7,7) as the public key and E(M) : m +— m’ mod 7 as the encryption
fun&ion; decrypting then consists in applying the inverse automorphism D : 72 — 2° where
5 can be computed from p and ¢ (and conversely) since s =7~ mod (p — 1)(g — 1).

The key-length of an RSA cryptosystem is the bit-size of 7. The following table shows,
at various levels of security, the key-lengths recommended by ECRYPT I (2010) for RSA,
ElGamal (see below), and equivalently secure symmetric schemes in the bes? case, that is, as-
suming well-chosen parameters. The superlinear growth of RSA keys is due to the aforemen-
tioned subexponential fattoring techniques.

SYMMETRIC RSA  ElGamal

8o 1248 160
128 3248 256
256 15424 S12

ELGAMAL (1985) designed a cryptosystem based on the Diffie-Hellman problem: let
¢ be a generator of some group G, and pick an integer x. The public key is (¢, 5) where b =
¢*, and x is the secret key. The ciphertext of a message 72 (encoded as an element of G) is
(¢,m-P) where y is a random integer; to decrypt it, simply put ¢ to the power x and divide
it out from - .

Compared to many other cryptosystems, the ElGamal scheme stands out for its elegance
and flexibility: since the group G it uses is not restricted to a certain class (such as RSA which
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uses G = (Z/n)*), it has more latitude to find one that has both an effective group law, and
in which no attack is faster than generic ones.

ADVANCED PRIMITIVES

Beyond encrypting and signing, many advanced and/or exotic cryptographic schemes
exist, most of which are enabled by the computability of certain mathematical objects.

Zero-knowledge proofs are protocols where Athos is to convince Bonacieux that he knows
some secret without revealing anything about it. For ingtance, the secret could be a (dedi-
cated) private key; to be convinced of his knowledge of the private key, Bonacieux could send
Athos arandom message encrypted with the associate public key and challenge him to reveal
the plaintext — she would learn nothing regarding the private key but that Athos knows it.
Many other constructions exist, notably that of GOLDREICH, MICALI, and WIGDERSON
(1986) which demonstrated the power of a graph-based approach.

Homomorphic encryption aims at performing operations on plaintexts seamlessly via ci-
phertexts. For instance, in the EIGamal scheme, the term-by-term produé of ciphertexts for
m and 7' is a valid ciphertext for 7’ since

(@) - (& B ) = (¢ s ).

Fully homomorphic systems feature two such algebraic operations; they are far more pow-
erful as they enable the encrypted evaluation of any circuit. GENTRY (2009) described such
a scheme using lattices but its practicality is $till a topic of active research.

The past decade also saw a plethora of novel cryptographic schemes exploiting the rich-
ness of pairings, that is, non-degenerate bilinear maps ¥ : G, x G, — H where the groups
G, are noted additively, and H is noted multiplicatively. The first was a one-round tripar-
tite Diffie-Hellman key-exchange: assume Athos, Bonacieux, and Chevreuse are to derive a
shared secret key over an insecure channel; the protocol of Joux (2000] goes as follows:

1. Athos chooses and broadcasts a pairing ¥ and a pair (x,9) € G, xG,.
2. Athos picks an integer 2 and broadcasts ax and 4y.

3. Bonacieux picks an integer # and broadcasts ox and by.

4. Chevreuse picks an integer ¢ and broadcasts cx and ¢y.

5. Everybody computes ¥ (ax, by)* = Y (bx,cp)* = ‘I’(cx,ﬂy)b.
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1.3 Generic Methods

The security of a cryptographic scheme based on a group does not depend on its isomor-
phism type alone, since an explicit isomorphism might be very costly to compute; it depends
on how the group problem is encoded by the fun&ion E. For instance, discrete logarithm
problems are much easier to solve in Z/(p — 1) than in (Z/p)™ although their underlying
groups are isomorphic.

This se¢tion considers algorithms which apply to any group G regardless of its coding;
later, we will come back to which $pecific codings make which problems easier.

GENERIC ALGORITHMS

The framework of generic algorithms abstracs group problems (such as the discrete loga-
rithm problem) from épecific codings which might render it “artificially” easier. Beware that
our definition is not stritly-$peaking the most classical one, as we assume that elements are
uniquely identified and can be drawn uniformly at random.

Definition 1.3.1. A coding of z group G is an injective mapy : G — S,
A generic group is a black-box interface to a group G which can output y(2) for a random z
and evaluate (x,y) — y(y~ () -y~ () and x — y(1 [y~ (x)), where the codingy is unknown.
A generic algorithm fakes as input a sequence of encoded group elementsy(x,) and is allowed
calls to the black box; its complexity is measured by the number of such calls.

Intuitively, a generic group is a group with shuffled elements, so that nothing is left to
exploit in their representation: generic algorithms can only compute the group law.

We will see that many hard problems can be solved by generic algorithms in time O(V#G)
but not less. However, determining the order of an element (a $pecial case of discrete loga-
rithm) and, as a consequence, computing the group structure of abelian groups were recently
proved by SUTHERLAND (2007) to require far fewer operations. Nevertheless, for the spe-
cific problems we are concerned with, namely the discrete logarithm problem and the short
produé problem, the generic algorithms described below are believed to be the best known
to date.

REDUCTION TO PRIME GROUPS

The method of POHLIG and HELLMAN (1978) was originally dire&ed at computing dis-
crete logarithms in (Z /p)™ but, more generally, it reduces many problems on abelian groups
G into smaller prime groups. It combines two ingredients, the first of which is the following
consequence of the Chinese remainder theorem.
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Theorem 1.3.2. Let G be an abelian group of ovder n = || p* for some primes p and positive
integers o, The map
€G ) el TGlp™
x€Gr—> (x )P 1;[ p”]

is an isomorphism where the p-Sylow subgroup G[p* ] denotes the subgroup of all elements whose
order is a power of p. Its inverse is effectively given by the Chinese remainder theorem.

Once the order of G is factored, this reduces any instance of a problem compatible with
the group law to several instances, one in each group G[p*] of prime-power order.

To get down to prime-order groups, the second ingredientis a lifting approach: assuming
that G has order p*, a subgroup series G =G, = G; = -+ = G, = {1} where each arrow
has index p is used to reduce problems into the quotient groups G,/G,_,. This technique
applies to many problems, such as computing square roots modulo 7 as [ONELLI (1891)
showed, but its specifics depend on the particular problem considered.

For instance, suppose that g € G has order p*, and write the discrete logarithm of a certain
h=g"asx= Z::Ol xipi forsomex; € {0,...,p—1}; the integers x; can be recursively computed
by

X = logg@a—l) <g_ 2‘;01 xjﬂb(pkh)>

which amounts to proje&ing discrete logarithms from G,/G,_; to G w1

Here, we have assumed that the group order was known; in many cryptographic settings,
this is actually the case. Although generic algorithms require exponential time to compute
the group stru&ture, we believe that it is questionable to base the security of a scheme on
hiding the structure of a group (as RSA does), and that almost exclusively groups of prime
(or near-prime) orders should be used in cryptography.

BABY-STEP GIANT-STEP

SHANKS (1971) developed the baby-step giant-step method for computing discrete log-
arithms, although it applies to a broad range of problems. Our presentation here uses the
formalism of B. and SUTHERLAND (2011), the generality of which we will later exploit.

The general idea is to design sets A and B so that collisions, that is, common elements to
A and B, yield solutions to the problem. Specifically, we construét A and B as the respetive
images of two maps ¢ and  with values in G and seck collisions of the form ¢(x) = ¥(y).

For ingtance, to compute the logarithm of / in base g, put ¢ : 7 — g’ and{y:j— log—Nf
fori,je {0,..., N} where N = [M], collisions of the form $(z) = V() yield loggb =i+Nj,

and there must exist at least one such collision due to the existence of the discrete logarithm.
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To quickly search for elements of ANB, a data stru&ture allowing fast lookups is required;
fast insertions are also a must. We therefore typically use hash tables or red black trees. The
cost of computing A N B is then (#A + #B)O(log#) for 7 = #G, where the last term denotes
the complexity of the searching and inserting.

When A and B are not as explicit as above, it might not be possible to prove the existence
of a collision. The algorithm can then be randomized to rely on the birthday paradox:

Proposition 1.3.3. Let A and B be uniformly distributed subsets of cardinality a/n and b/n
in a set G of cardinality n; then

Prob[ANB = Q] — ¢ .

n—>o0

Assuming ¢ and  are random, 4/7 images of each thus suffice to have a 1 — 1/e chance
of finding a collision. In the unlucky event there is none, we can repeat this process 7z times,
adding more images to our red-black tree; this increases the likelihood of successto 1—1/ s

From now on, we say that a probabilistic algorithm has complexity X, or that an algorithm
has probabilistic complexity X, to mean that it always returns the correét answer (this is known
asa Las Vegas algorithm) and that, with probability at leagt 1/2, its runtime is bounded by X.
By the discussion above, up to a constant, it is equivalent to the notion of average complexity.

PorLLARD’S RHO

The baby-step giant-step method requires storing O(4/%) elements; an algorithm emu-
lating its behavior with minimal $pace storage was developed by POLLARD (1975) for integer
factoring, and later applied to discrete logarithms by POLLARD (1978).

Let us first unify thingsinamap 7 : 6 — G equal to ¢ and { on their respe&tive domains,
where 6 denotes their disjoint union. The rho method involves a psexdorandom function
p: 6 — G, thatis, an effective map for which the distribution of p(w) (the composition
of i copies of p) is seemingly uniform as w € € is fixed and the integer 7 varies. It is required
to preserves collisions, that is, n(x) = n(y) = 7(p(x)) = n(p(y)).

The map p is thought of as generating A and B under 7, and the crucial tep is to find
collisions wp(i)(w) = wp(f)(w) without storing many values; when p(i)(w) * p(/)(w) collide
through , we expect that one is an image of ¢ and the other is one of , which gives a proper
collision — when their sizes are equal, this happens with probability a half.

Avoiding storage requires a cycle-detecfion method on the graph of iterates of p evaluated
at w. The simplest such method is due to FLOYD who observed that, whenever p(i)(w) and
p(f)(w) collide for some integers 7 and j satisfying 7 > 27, then p(z(i_j))(w) and p(i_j)(w) also
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collide. Thus, it suffices to compute p<2i)(w) alongside p(i)(w) for increasing s and wait for
them to collide; then, p maps are unstacked until the original collision is found. Better cycle-
dete&tion methods improve the runtime by a constant factor using more memory.

The difficulty lies in designing a funétion p suited to a given problem; more details will
be given on that later, especially for the short produét problem. To fa&or an integer 7,
POLLARD (1975) put 6 = Z/n and chose p to be a polynomial fun&ion; the map m can
then be the projection to any subgroup of Z/» which need not be known: by computing
ged <p(i> (w) — p(i)(w), n), we can detec when a collision occurs and hopefully find a fa&or
of #. This method is nowadays mostly used for small integers 7, as asymptotically faster fac-
toring algorithms have since been developed.

A current [nternational effort (2009) aims at solving a discrete logarithm problem chal-
lenge in a group of 129-bit order (this group is an elliptic curve where generic algorithms are
the best available); when completed, it will likely be the record rho algorithm run.

1.4 Cryptographic Groups

Let us now review the cryptographic security of various groups, mostly focusing on the
discrete logarithm problem.

FINDING PRIMES

We advocated for prime-order groups; now let us mention how prime numbers can be
found. The best method for this is simply to draw numbers at random until a prime is found;
for numbers of 7 bits, this requires an expeced O(#) operations by the theorem below.

Assuming the generalized Riemann hypothesis, MILLER (1975 ) first derived a fagt (poly-
nomial time) deterministic primality test, later turned into an unconditional but probabilis-
tic method by RABIN (1980). Although AGRAWAL, KaYAL, and SAXENA (2004) have since
proved that deterministic primality proving need not rely on unproven assumptions, the de-
pendency on the generalized Riemann hypothesis is interesting: this conjecture predicts the
behavior of primes in various fields. First recall the celebrated prime number theorem of
HADAMARD (1896) and DE LA VALLEE-POUSSIN (1896).

Theorem 1.4.1. The number of prime integers less than x is asymptotically equivalent to

*odr x

—_—

, logr  logx .
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Proofs of this theorem involve establishing certain properties of analytic fun&ions re-
lated to integers; more generally, if K is any number field, define, for s € C with R(s) > 1,

lg(s) = ZN(C‘)_j

aed

where J is the set of ideals of the ring of integers of K, and extend {; to C by analytic con-
tinuation. This fun&ion encodes the behavior of prime ideals of K; to obtain precise results
on their distribution, one often assumes the extended Riemann hypothesis which States that
all zeroes s of {i; in the strip 0 < Rs < 1 lic on the line R(s) = 1/2. The extended Riemann
hypothesis follows from the stronger generalized Riemann hypothesis, and we often assume
the latter when only the former is needed.

MILLER (1975) a&ually exploited the following result of ANKENY (1952}, where the
label “(GRH)” denotes that the statement holds under the generalized Riemann hypothesis.

Theorem 1.4.2 (GRH). Let p and q be integers such that q divides p — 1. The least integer x
which cannot be written as y! mod p for some y € N is asymptotically O(log’ p).

We conclude with a conjecture of BATEMAN and HORN (1965 ) generalizing the prime
number theorem; it is useful for generating elliptic curves as we will see later. Essentially,
it asserts that digtin& irreducible polynomials take prime values almost independently, and
that this “almost” is quantified by their values modulo primes p.

Conje&ure 1.4.3. Ler F be a ser of distinc? irreducible non-constant polynomials of Z[X). The
number of integers less than x at which all its polynomials simultaneously take prime values is
asymptotically equivalent ro

C J’f dt
erF degf'), (logs)™*
1 1\ #F
where C:H <1——#{zGFP:H]’(z):O}>/<I——> .
? ? feF P

INDEX CALCULUS

Since the baby-step giant-step or rho method use O(,/p) operations to find a factor p of
an integer 7, factors of 7 can always be found in O(n'/*) time. By iterating this search for
factors and testing the primality of the faors obtained, an integer 7 can be fa&ored in prob-
abilistic time O(%!/%). When the RSA cryptosystem was proposed, much fater algorithms
already existed and they were substantively improved subsequently.
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The simplest such method is due to KRAITCHIK (1926). To éplit an integer 7, it crafts a
nontrivial relation x* = y* mod 7 by combining many easier relations so as to eliminate non-
square factors; the easier relations are of the form z* mod » = [ ] p® for primes p less than
some bound L(7). To bound the probability that such a fa&orization exists, we rely on this
result of CANFIELD, ERDOS, and POMERANCE (1983 ).

Theorem 1.4.4. For any ¢ > 0, the probability for a random number of {1,...,x} to have no

~1/2c40() e v —s oo, where we used the func-

prime faclor larger than L(x)" is equivalent to L(x)
tion

L,(x) =exp ((logx)“ (loglogx) 1_“>
with the convention that omitting the parameter o. € (0,1) means o = 1/2.

Assuming Gaussian elimination takes cubic time in the number of variables, we set ¢ =

1/2 and obtain a nontrivial $plitting of 7 in time L()>/*(V),

The broad family of combining congruences algorithms encompasses methods using faczor
bases (as the primes up to L(#)); they apply to many integer-based problems such as discrete
logarithms in finite fields and integer fattoring. Under unproven assumptions, the asymptot-
ically fastest such method is the number field sieve of COPPERSMITH (1993 ), which builds up
on the work of many including CENSTRA and LENSTRA (1993 ), with heuristic complexity

s 546+ 13413
Ll‘/3 (n) where cypg =2 ST ~ 1.902

Recently, KLEINJUNG ef alii (2010) used a similar method to fa&or a 768-bit RSA mod-
ulus, thereby deprecating smaller RSA keys; the effeGiveness of this attack is blatant when
compared to elliptic curves whose discrete logarithms can only be attacked up to 130 bits.
Unconditionally proven fa&toring algorithms are slightly slower, with the state-of-the-
art method of LENSTRA and POMERANCE (1992) using an expected L(n)“”(l) operations;
it exploits a similar factor base paradigm in certain class groups. Since these objecs are built
from ideals it is not surprising that subexponential methods should apply to them as well, and
we will elaborate on that later as class groups become a building block of our own algorithms.

ABELIAN VARIETIES

Cryptosystems based on the discrete logarithm problem in finite fields have been pro-
posed as alternatives to RSA; however, up to certain modifications, modern integer fatoring
algorithms also apply to this problem, so it provides no additional security.
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Shortly after LENSTRA (1987) introduced a novel faoring algorithm based on elliptic
curves, MILLER (1986) and KOBLITZ (1987) suggested their use in cryptography; subse-
quently, KOBLITZ (1989) further proposed using the broader class of abelian varieties. This
has motivated tremendous developments in computational number theory, and has enabled
a wide $peGrum of possibilities in cryptography.

These applications are motivated by two falts: firt, that the group law of abelian vari-
eties can be computed efficiently, and second, that no algorithm better than generic ones is
currently known to attack the discrete logarithm problem on most abelian varieties of dimen-
sion one and two. Before formally defining abelian varieties, we briefly give loose statements
highlighting their applicability to cryptography.

Abelian varieties are obje&s endowed with two compatible structures:
— ageometric ftruéture: it is the zero locus of multivariate polynomials over a field 4;

- agroup struture: it admits a group law given by rational fun&ions.

When the defining polynomials have certain forms, the group law can be evaluated efficiently
using short rational fun&ions. This can be done for all varieties of dimension one and two
(the dimension is roughly the number of variables minus the number of polynomials).
Cryptography uses finite fields £ and such forms, allowing fast arithmetic; for instance,
BERNSTEIN and LANGE (2007 suggested defining G as the set of points (x,y) € & verifying

X +y2 =1 +dx2y2

for some non-square parameter 4 € £, endowed with the addition law defined by

;o xy/ + x/y _y_)// —_ xx/
() +(x,y) = )

1+ dxx/yy/, 1— dxx/yy/

Since the number of points of an abelian variety of dimension g defined over £ (that is,
the order of the underlying group) is roughly (#£) and otherwise behaves quite randomly, a
prime-order one can be sought by drawing varieties at random while their orders are compos-
ite. Alternatively, we will later discuss the theory of complex multiplication which provides
means to generate abelian varieties with a prescribed order.

SPECIAL ATTACKS

We stated that attacks on the discrete logarithm problem of most elliptic curves are not
known to be faster than generic ones. To conclude this chapter, we give an exhaustive list
of classes of abelian varieties for which this does not hold, so remaining ones can a priori
be considered secure. Details on these attacks can be found in [AvaANZ1, COHEN, DOCHE]
FREY, LANGE, NGUYEN, and VERCAUTEREN (2005 ).
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Index-calculus with subspace as fator base. Grobner basis algorithms can decompose
points of abelian varieties into sums of points in certain subspaces (such as having certain
coordinates equal to zero, or defined over some stri¢t subfield); this enables index-calculus
attacks effeGtive on varieties of dimension g > 2 or defined over non-prime base fields.

Reduction to finite fields via pairings. The Wkil pairing maps pairs of points of order £
from an abelian variety to the multiplicative group of an extension of degree ¢(£) of the base
field £. It transports the discrete logarithm problem, so the value of ¢(£) must be large enough
to prevent attacks in the extension field from being feasible.

Lift to chara&eristic zero. Certain abelian varieties with $pecial properties (such as the
infamous anomalous curves, whose cardinality is that of their base field) can be lifted to p-
adic fields, from where discrete logarithm problems can be transferred to Z /p.

Isogenies. Isogenies are morphisms between abelian varieties; they can transport the dis-
crete logarithm from a variety .¢/ to about £¢ other varieties in time £°€) for most primes £;
if any of those varieties have one of the above weaknesses, then so does ./

Since no attack faster than generic algorithms isknown to affet randomly chosen, prime-
order abelian varieties of dimension one or two defined over finite fields with p or 27 elements
where p is a prime, we conclude that these are currently the best choice for public-key cryp-
tography in a cryptosystem of ElGamal type.
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TWO

«Abelian Varieties

Having established the important role of abelian varieties in modern cryptography, we
turn to formally defining their properties from a mathematical standpoint.

We will present this theory concisely, in a conceptually elementary way which we believe
highlights its effetiveness. For details, we refer to AVANZI, COHEN, DOCHE, FREY, LANGE]
NGUYEN, and VERCAUTEREN (2005 ), SHAFAREVICH (1974 ), CORNELL and SILVERMAN
(1986), SHIMURA (1998), MILNE (1998}, and MUMFORD (1970), in increasing levels of
abgtra&ion.

1.1 General Theory

ALGEBRAIC VARIETIES

Fix a perfect field 4, referred to as the base field, and a sufficiently large integer » =
DIMN_MAX." For any ideal J of the ring £[x] = k[x,,...,x,] of polynomials in 7 variables
with coefficients in #, define the affine variety V5 as consisting, over any extension field K/4,
of the set ¥5(K) of common zeroes of J in K” called points of the variety. HILBERT (1893)
proved the famous Nullgtellensatz:

Theorem 1L.1.1. When k is algebraically closed, the largest ideal of k(x] vanishing on V5 (k) is
the radical ideal vJ formed by polynomials of which a power lies in J.

This puts in bijection radical ideals with affine varieties over algebraically closed fields;

computationally, one might therefore use generating sets of v/ J to represent 7.

"W find it amusingly convenient to fix an integer DIMN_MAX large enough so that all varieties we consider are
embedded in the projective $pace with that large a dimension.
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Such varieties are endowed with the Zariski topology whose closed sets are subvarieties.
Via the Nullstellensatz, the topological notion of irreducibility corresponds to its algebraic
counterpart. To avoid unnecessary technical contortions, we shall exclusively consider 2bso-
lutely irreducible varieties, that is, varieties irreducible over an algebraic closure.

Affine varieties lic in the affine pace A(K) = ¥, (K), also written as A”(K) when dimen-

sion 7 needs to be made explicit. In many contexts, it instead proves advantageous to:

- work with proje&ive varieties;

— use Galois a&tion to define obje&s over extension fields.

Over an algebraically closed field K, define the projective Space P(K) (of dimension 2 — 1) as
the set of lines passing through the origin of A(K), and over any field K as the fixed subset

P(K) = P(K)%&/0)

under its absolute Galois group. Pragmatically, the proje@ive $pace P(K) can be seen as
formed by equivalence classes of collinear (non-zero) ve&ors, which gives the projection

xe A(K)\ {0} — {1 eK | e P(K)

Working in affine coordinates means representing projective points by distinguished elements
of A (typically, by enforcing Xy = 1; this covers almost all of P but requires inversions to
compute the digtinguished element); on the other hand, working iz projective coordinates
means representing projective points as non-unique z-tuples.

Similarly, projective varieties are proje@ions of affine varieties invariant under coordinate-
wise scalar multiplication: if J is a homageneous ideal of k[x], that is, generated by sums of
monomials of the same degree, the projective variety ¥ C IP consists of equivalence classes
(under scalar multiplication) of the affine varicty ¥; C A endowed with the (quotient)
Zariski topology.

From now on, we will exclusively consider absolutely irreducible open subsets of projec-
tive varieties, and refer to them simply as varieties (they are known to part of the literature
as quasiprojective varieties); we will always implicitly assume that they are defined over alge-
braically closed fields, but say that they are defined over smaller fields when invariant under
their absolute Galois group.

MORPHISMS

Consistent with the topology, morphisms are algebraic maps. For the affine space, they
form the ring Hom (A, A) of -tuples of z-variate polynomials. If ¥ and # are two affine
varieties, Hom(¥, #) consists of those morphisms of Hom(A, A) mapping ¥ to #'.
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Morphisms of projetive varieties can be seen cither conceptually, looking down from A,
as equivalence classes of tuples P of polynomials of £[x] of homogeneous polynomials with
the same degree for the relation P ~ P’ < {PZ.P]', - PjP;} C T, or visually, looking up from
Specific hyperplanes of A, as compatible collections of affine morphisms.

Two cases are of particular interest:
— the coordinate ring Hom( Vs, K) = K[x]/7, with addition and scalar multiplication.

— theendomorphism monoid Hom(V, V') = End(?¥), endowed with composition; later,
when we give ¥ a group law, it will become a ring.

Rational maps are defined similarly to above from tuples of rational fun&ions. Most im-
portant are rational maps from a variety ¥ to a field of definition K, which form its funcfion
freld, denoted K(7¥). For projeive varieties ¥ = ¥, it can be explicitly defined as the set
of fractions P/Q of homogeneous polynomials in K[x] of the same degree, with Q ¢ J, up
to the relation P/Q ~ P'/Q’ <= PQ' —P'QeJ.

Various properties can be read off dire@ly from fun&ion fields, such as:

Proposition 1L.1.2. The Krull dimension of an ideal is equal to the transcendence degree of the
Sfundtion field associated to its variety; it is called the dimension of the variety.

Algebraic extensions have finer indicators: a morphism ¢ € Hom(?¥/,#) induces (by
composition on the right) an embedding ¢* : K(#') — K(¥); the degree of ¢ is the dimen-
sion [K(7) : $*K(#)] which is finite when ¢(?¥') has the same dimension as #'.

ALGEBRAIC GROUPS

Combining algebraic varieties with group structures yields algebraic groups:

Definition 11.1.3. A7 algebraic group is an (absolutely irreducible) non-empty algebraic vari-
ety endowed with a group law (noted additively) for which the map (x,y) — x—y is a morphism.

By non-empty, we mean that it must admit one rational point over its base field, so that
it contains the neutral element for the group law. An important property of algebraic groups
is given by the following algebraic equivalent to the analytic notion of differentiability.

Definition 11.1.4. An irreducible algebraic variety "V is nonsingular if the quotient of {f €
k[ V] : AP) = 0} by its square has the same dimension (namely ¢ = dim V) for all P € ¥V (k).

Algebraic groups are nonsingular varieties; indeed, translation maps 1, : Q — P+ Q
induce isomorphisms of tangent paces, whose dimensions are that of the quotients above.
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One simply defines morphisms of algebraic groups as morphisms of algebraic varieties
preserving the group law, and subgroups of algebraic groups as subgroups that are closed.
From now on, we shall work with categories as a whole: when we consider algebraic groups,
morphisms and subgroups will be implicitly understood to be of algebraic groups (not just of
algebraic varieties).

The proposition below argues that this behaves as expected.

Proposition 11.1.5. Lez J€ be an (algebraic) normal subgroup of an algebraic group 4. The
quotient G | € has a unique Structure of algebraic group such that:

— the projection map G — 4G [ isa morphism;
— all morphisms from G with kernel containing € factor through G | 7.

For instance, the group GL (K) of invertible 7-by-7 matrices over K is a quasiprojective
varicty, a closed subvaricty of which is SL, (K) comprising of matrices with determinant one.
In fad, all affine algebraic groups are isomorphic to subgroups of GL, (K), and a result of
CHEVALLEY (1960 states that the remaining ones are of the type we shall next discuss.

Proposition I1.1.6. Every algebraic group G has a unique normal subgroup F€ isomorphic to
an affine variety such that 4 | F€ is projective and irreducible.

ABELIAN VARIETIES

Definition 11.1.7. Abelian varieties are irreducible projective algebraic groups.

Most of the rich structure of abelian varicties stems from the proje¢tiveness condition
(completeness, an algebraic equivalent to compaétness, could equivalently be required).

Proposition 11.1.8. Any algebraic map from an abelian variety to another is a morphism (of
algebraic groups) composed with a translation.

In other words, morphisms of algebraic varieties are essentially morphisms of abelian
varieties; this means that abelian varieties are entirely characterized by their geometry. This
is a crucial fa&t with the notable consequence that abelian varieties are commutative groups;
indeed, since the algebraic map x — —x fixes the neutral element, it is a morphism, which
implies the commutativity.

Since abelian varieties .¢/ are commutative, they admit quotients by any closed sub-
groups #¢. We will later be interested in the case of finite subgroups .7, which are evidently
closed: in that case, the dimension of the quotient .¢/ / € is the same as that of the variety
./, and as we will see later, many other invariants are preserved.
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Asa further restrition to prevent unnecessary contortions, we henceforth assume, unless
otherwise stated, that all abelian varieties we consider are absolutely simple, that is, do not
contain any proper nontrivial abelian subvariety over an algebraic closure.

1.2 Practical Settings

Let us now focus on two types of base field: finite fields, over which abelian varieties
admit efficient representations, and the complex numbers, over which their relationship to
tori yields a rich theory, part of which descends to finite fields.

FINITE FIELDS

Let ./ be an abelian variety defined over a finite field £ = TF e its zeta function

Z ()= cxpi#ﬂf (Fqn) ;
n=1

encodes its number of points, on which WEIL (1945) proved the following.

Theorem 11.2.1. The zeta function of a dimension-g abelian variety ./ is of the form

2
z,0=]]p,0"
n=0

for some polynomials P, € Z[#] whose complex zeroes have absolute value g1,

This congtrains cardinalities of abelian varieties. To better see this, consider the Frobenius
endomorphism m, which a&s over any field extension K/F p by raising coordinates of points
of ./ (K) to the 4™ power; it fixes just sz(Fq), so we have #sz(IE‘q) =deg(1 —m).

Any endomorphism ¢ of an abelian variety of dimension g has a monic chara&eristic
polynomial P € Z[#] of degree 2¢ such that degQ(¢) = Res(P, Q) for all polynomials Q €
Z[1]. For the particular Frobenius endomorphism, denoting by x_ its characteristic polyno-
mial, we obtain

#%(Fqn) = Res, (X/n(u),u” - 1)

which makes computing x_ equivalent to counting points on o/ over g digtinét field exten-
sions of the base field. Transcribing the theorem above to y_ yields the following.

Corollary 11.2.2. The complex roots of y,_all have absolute value /g, and the polynomial P, g(t)
in the zeta function is | | (1 — o) where o ranges over products of 2g distinc? such roots.
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Generalizing an algorithm of SCHOOF (1985}, PILA (1990) proved that for any fixed
dimension g all the above can be computed in polynomial time in the size of the base field.

Theorem 11.2.3. The zeta function of an abelian variety defined over ¥, can be computed in
polynomial time inlog(q) where the implied exponent depends on the dimension of the projective
Space where it is embedded, and on the degrees of its defining equations and group law equations.

This result is mostly of theoretical interest. Improvements on the algorithm of SCHOOE
(1985) by ATKIN and ELKIES have made it possible to count points on abelian varieties of
dimension g = 1 far beyond cryptographic range; for g = 2, the practicality of point counting
methods on varieties of cryptographic size was only recently demonstrated by GAUDRY and
SCHOST (2010) who used an extension of the algorithm of SCHOOF (1985).

From now on, we shall regard the dimension g as being fixed in complexity statements, so
asymptotic analyses focus on behavior with respe to the base field; this is partly motivated
by the fa& that only ¢ = 1 and g = 2 are cases of cryptographic interest.

CoMPLEX NUMBERS

We have noted that abelian varieties are nonsingular. Over C, abelian varieties are there-
fore connected compact Lie groups, which are well-understood objeéts; such a variety .o/
has the analytic stru&ture of a complex torus: since the exponential map folds its tangent
space onto .¢, there is an isomorphism of Lie groups .¢/ = C¢/A where A = ker(exp ) isa
lattice of C¥, that is, a discrete subgroup of full rank.

Similarly to the algebraic case, holomorphic maps between complex tori are just group
morphisms composed by translations. Holomorphic morphisms ¢ from a complex torus
T = C¢/A to another T = C¢ /A’ are induced by C-linear maps, denoted ¢ as well, from
C¢ o C¢ satisfying (A) C A’. Hence, as Z-module, Hom(T, T’) has rank at most 4g¢’;
this implies that End(.¢7) is a torsion-free Z-algebra of dimension at most (2¢)*.

Even if complex abelian varieties have the analytic strucure of tori, conversely, not all
complex tori correspond to abelian varieties, although those that do are precisely known:

Proposition 11.2.4. Define the Siegel upper half-space HE as the set of g-by-g symmetric matri-
ces with positive definite imaginary part. Complex tori C¢ [ A corresponding to abelian varieties
are exactly those whose lattice \ can be put under the form 78 + Q7 for some matrix Q € HS.

POLARIZATIONS

Many results on abelian varieties over finite fields exploit reduction from chara&eristic
zero fields £, that is, consider varieties arising through maps £ — £ /p for prime ideals p of £.
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Forinstance, the bound of HASSE (1934 ) which étates that one-dimensional abelian varieties

-/ defined over IF satisfy
g+1—#.9(F,)| <2,/q

can be extended, for varieties arising as redu&ions from charaderistic zero, into a precise
description of the distribution of cardinalities: the Sato—Tate conje¢ture. Note that recent
work of [TAYLOR (2008} comes close to proving it.

Conje&ure 11.2.5. Let & be a non-empty abelian variety of dimension one defined over the
rationals with End(.e/ ) = Z. The asymptotic distribution, as the prime p goes to infinity, of

<p+ 1 —#A(IFP)>
arccos | ——mm——
2yp

is uniform on (0] where #JZf(FP) denotes the number of points of the reduction of .<f at p.

When ¢ > 1, abelian varieties have infinite automorphism groups over algebraically
closed fields. For more rigidity, we bundle them with a proje@ive embedding or, rather,
the following (simpler) analytic analog.

Definition 11.2.6. Let .o/ = C8/A be a complex torus. A polarization of of is a positive
definite Hermitian form & on CS satisfying P (A, A) C Z. It is principal ifits determinant is
invertible, or equivalently if there is no x ¢ A\ satisfying P (A, x) C Z.

Principally polarized abelian varieties are pairs .o/, &2 ) whose morphisms ¢ : (.o, &) —
(', P are required to preserve polarizations in the sense that $* 22 " =\P for some pos-
itiveh € Q. \WEIL (1955 )] showed that this has the intended effe&:

Proposition 11.2.7. Polarized abelian varieties bave a finite automorphism group.

For intance, on the torus C8/(Z8 + QZ58) for Q) € HE, there is a natural polarization
P (u,v) = E(in,v) + iE(u,v) where the Riemann form E is expressed, on the block basis

(¢,)(Q2e;), by the block matrix
0 Id
—Id 0

Proposition 11.2.8. Two matrices QO and Q' of the Siegel upper half-space HE yield isomorphic
principally polarized abelian varieties if and only if they are conjugate under the ation

< é g >eSp2g(Z):Q»—>(AQ+B) (ca+D)™".
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Polarizations are needed in acual computations, as efficient arithmetic (via theta func-
tions or Jacobian varieties) relies on them. Worse, it is nontrivial to determine whether the
varieties corresponding to two theta coordinates are isomorphic, disregarding polarizations.

Before moving on, we emphasize once more that, in dimension one, all variceties admit a
unique principal polarization — so they can hopefully be forgotten altogether.

JACOBIAN VARIETIES

Theorem 11.2.9. Up to isomorphism, there is a unique abelian variety through which any mor-
phism from a given algebraic variety V' to an abelian variety factors. It is the Albanese variety
of V.

General Albanese varieties are hardly practical: they have no effective group law, and are
not naturally endowed with a principal polarization, so there is no simple manner to identify
them such as invariants (as we will see below). Cryptography is only concerned with the
following subclass, on which our exposition shall now focus.

Proposition I1.2.10. Abelian varieties of dimension one or two are Jacobian varieties of hyper-
elliptic curves.

Before defining hyperelliptic curves, let us briefly discuss Jacobian varieties: these are
just Albanese varieties of algebraic curves, that is, one-dimensional algebraic varieties. The
Jacobian variety Jac(6’) of a curve 6 has an explicit group stru&ture: denote by Div® the
submodule of degree-zero divisors of the free Z-module generated by points of €, that is,
formal sums of points whose coeflicients add up to zero; it contains Prin, the set of sums of
zeroes and poles (counted with multiplicities) of non-zero elements of the funcion field.

Proposition 11.2.11. Jac(6) has the group structure of the quotient Div° | Princ.
We can say much more for hyperelliptic curves; for this, we assume char £ # 2.

Definition 11.2.12. Curves 6 of the form y* = f(x), for some squarefree polynomial fof degree
2g+ 1 or 2g+ 2, are called hyperelliptic, and g is known as the genus of 6.

By the theorem of RIEMANN (1857) and ROCH (1865 ), g is also the dimension of Jac(6).
In the case that g = 1, they are known as elliptic curves, and verify Jac(6€) = 6.

When deg(f) is odd, there is a unique projective, non-affine point (with coordinate z =
0); this point ar infinity oo is often used as a distinguished projective point. By RIEMANN
(1857) and RocH (1865 each divisor class then has a unique reduced representative of the
form > (P, — oo) for at most g affine points P, € 6, none of which is conjugate to another
under the hyperelliptic involution (x,y) — (x,—y).
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Assume, for simplicity, that the points P, = (x;,y,) are distin&. The divisor > (P, — o)
can be represented by a pair of polynomials (#,v) satisfying

u() =] Jer=x). ole) =1,

It can be checked that the P, lie on 6 by verifying that #|v* — £ In this representation, the
group law is given by (assuming #, and #; have no common root)

(ng>v) + (1y,0) = (uoul,(uz_l mod v, )u,v, + (ul_l mod uz)ulvz> .

To reduce the output to a unique representative, CANTOR (1987 iterates the transformation

2
(,0) — () withd = ;f ’
le(f—v*)
while deg(#) < g, where lc(-) denotes the leading coefficient. This gives Jac(%6’) an efficient
group law, and an algebraic stru¢ture. Additionally, the image of the map (P,) € ¢ —s
> (P, —o0) is a subvariety of dimension g— 1 that is the zero-locus of certain theta fun&ions
which naturally endow the Jacobian variety with a principal polarization 2.

/ /
and v’ = —vmod »

TORELLI (1913 ) showed that this comprises all the information from the original curve:

Theorem 11.2.13. Up to isomorphism, the polarized abelian variety (Jac 6,2 ) determines
the curve 6.

Moduli $paces are varieties whose points represent isomorphism classes of a given type of
variety (we will soon discuss invariants); complementing the proposition above, we have:

the moduli dimension of ~ genus-g hyperelliptic curves s 2¢—1
” genus-g curves > 3(g—1),orlifg=1
abelian varicties of dimensiong ~ ”  g(g+1)/2

»

The moduli $pace dimension is the same for Jacobian varieties and their underlying curves.
For g = 3, abelian varieties are Jacobian varieties, but not all of hyperelliptic curves.

1.3 Pairings

TORSION SUBGROUPS

The center of the endomorphism ring End(.¢/) of an abelian variety .¢/ of dimension g
always contains a subring isomorphic to Z formed by scalar multiplication maps:

(n]:Pef —>nP=P+---+P
—_—

7 times
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for every integer . Over an algebraic closure, the kernel of [#] is the fiull n-torsion subgroup
. [n]; its truture is well understood:

Theorem 11.3.1. The degree of [n) is n*. It is Sepamble when n is coprime to p = chark; then
o [n)] = (Z|n). When n is a power of p, then o [n] = Z|n" where r < g is called the p-rank
of sz

The generic case is that of ordinary abelian varieties which have p-rank ¢: the moduli
dimension of non-ordinary varieties is strictly smaller. Unless explicitly stated, all abelian
varieties will now be assumed ordinary (this is crucial for the next chapter).

We will later compute £-torsion subgroups (for primes £) of abelian varieties .¢/ defined
over finite fields F ;- The embedding degree e ;(£), which is the extension degree of the small-
est field over which the points of .¢7 [£] are defined, is the primary cost facor of this process.

If y is the charaeristic polynomial of the Frobenius endomorphism  of .¢7, the mor-
phism x(r) obviously vanishes on ./ [£]; as this only depends on the class of y in (Z/€)[x]
the embedding degree ¢(2) must divide the multiplicative order of x € (Z/€)[x]/(x). Conse-
quently, it is bounded by £%.

When points can be drawn uniformly at random from .¢f (kY), a basis for .o/ [£] can be
found by taking random points, multiplying them by the cofador of £ in #.¢f (kY), and
iteratively applying [£] until a point of £-torsion is found, possibly lifting points already found
along their preimage under [£]. The lifting process can either use simple baby-step giant-step
computations in .¢/ [£], or faster discrete logarithm methods in £ via the pairing. For a
fixed g, the whole method uses polynomially many operations in £; it will be described in
detail in the second half of this thesis.

GENERAL PAIRINGS

Definition 11.3.2. A pairing is a non-degenerate bilinear map Y : G? = H, where G and H
are abelian groups.

Stri&tly $peaking, pairings can be defined on modules over any ring; but from a crypto-
graphic standpoint, nothing of value is lost by restricting to Z-modules. On the other hand,
cryptographic use requires additional properties:

EASY EVALUATION:  Given (x,) € G?, the pairing ¥ (x,) is easily evaluated.
HARD INVERSION:  Given z € H, a preimage (v,y) € Y~!(2) is hard to find.

These terms could be given a rigorous meaning by considering a sequence of pairings ¥, :
G2 — H,, and requesting that there exists an algorithm for evaluating ¥, in polynomlal
time in log(#G ) and that no algorithm finds preimages of ¥; in subcxponcntlal time on a
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positive fraction of H;; however, we prefer to use the simpler and down-to-earth notion of
computational infeasibility.

Similarly to the discrete logarithm problem, the pairing inversion problem has many
variants, such as bilinear analogs to the computational and decisional Difhe—Hellman prob-
lems, or inversion problems where one of the parameters is fixed, not all of which are strictly
equivalent to the pairing inversion problem itself. We refer to GALBRAITH, HESS, and VER]
CAUTEREN (2008) for a discussion of these problems.

Out of all known effe&ive pairings, only those that arise from abelian varieties satisfy the
conditions above. In fa&, the problem of pairing inversion, that is, of inverting the map ¥,
appears to be extremely difficult for such pairings. Their cryptographic use therefore involves
relying on a new hypothesis (alongside the hardness of the discrete logarithm problem) but
they provide elliptic and hyperelliptic cryptography with a unique stru¢ture, which has led
to the development of many novel features.

ErrFECTIVE PAIRINGS

Ingtru&ional pairing examples include scalar producs of vector ¢paces, and, if (R, +, x)
is a ring, the multiplication map from (R, +)? to (R, x). A more interesting example is

(x.'y') € ((Z/n)zg)z —> exp (2% €3 —yx/)>

where xy denotes the concatenation of the row ve&orsx,y € (Z /7)%, and x denotes the trans-
pose of x. This actually is the general form of the Weil pairing expressed on a symplectic basis
of the z-torsion subgroup of a complex torus.

None is suitable for cryptographic use, as they are typically easy to invert; currently, the
only known cryptographic pairings arise from abelian varieties:

Let .of be the Jacobian variety Jac(6’) of a curve 6 of genus g, which we further assume
to be a hyperelliptic curve defined over a finite field. Recall that the full 7-torsion subgroup
.o/ [n] is isomorphic to (Z /) when 7 is coprime to the ambient chara&eristic. For cryp-
tographic reasons we choose 7 to be prime, and define the map

v {uef[n]xefz/f\[n] — y.nCZX
el (P.Q — fp(Q/f(P)

where ., is the group of 7™ roots of unity, and /5 and fQ are funé&ions of ,Z(sz ) with disjoint
support whose sum of zeroes and poles are the principal divisors 7P and #Q, respe&ively. Its

evaluation at a divisor Q = > Q; is explicitly [ [AQ,).

Theorem 11.3.3. Y, is 2 Galois-invariant antisymmetric pairing called the Weil pairing,
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Most of the proof relies on the reciprocity of WEIL (1940).

When ./ is principally polarized, the polarization gives an isomorphism .o/ = ./, and
the pairing can therefore be defined on .o/ %] x .o/ [#].

In the case of elliptic curves, points P of the variety are of the form R — oo where Ris a
point of the curve or the point at infinity itself. MILLER (1986) noted that the funétion f;
whose sum of zeroes is the principal divisor iR — [{]R — (i — 1) oo can be computed iteratively
by sctting];rj =/ jj -u /v, where u is the line containing [/]R and [f]R (it vanishes at [{]R,
[/]R, and —[7 +;]R, and has a pole of order 3 at ) and v the vertical line passing through
[ +]R (it vanishes at [7 + j/]R and —[i +]R, and has a pole of order 2 at ).

This yields an algorithm for evaluating the Weil pairing of elliptic curves which can also
be extended to Jacobian varieties of hyperelliptic curves following Cantor’s algorithm for
evaluating the group law. Pairings of general abelian varieties were recently shown by CUBICZ
and ROBERT (2010) to be effe@ively computable as well.

CRYPTOGRAPHIC APPLICATIONS

Before novel cryptographic primitives exploited their structure, pairings were mainly
used as a cryptanalysis tool. Indeed, if P and Q are two points in a subgroup of prime or-
der £ of a variety ./, the bilinearity of pairings implies

Y(P,Q) = Y(P,P)&

which shows that log, Q is also the discrete logarithm problem of ¥ (P, Q) in base ¥ (P,P)
in an extension K/k of degree ¢(). Since discrete logarithm problems are much easier over
finite fields, (£) must be big enough to compensate for this weakness.

The last ten years have, on the other hand, seen pairings enabling innovative crypto-
graphic constru&ions, so that the extra stru&ure they give to abelian varieties is now seen
as a feature. To exploit them, the value of ¢(2) is sele&ed large enough to make attacks im-
pradticable on the discrete logarithm of the field K, but still low enough so as to permit the
efficient evaluation of the pairing.

As an example of the new features enabled by abelian varieties and their pairings, we can
for instance recall the one-round tripartite Difie—Hellman key-exchange of Joux (2000)
that we presented in the previous chapter.
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11.4 Isogenies

ABSTRACT ISOGENIES

Definition I1.4.1. Az isogeny is a surjective morphism of abelian varieties $ : .o — B with
finite kernel. It is separable if the correSponding funtion field extension k(<) & (k(B)) is.

When ¢ : .o/ — 98 isan isogeny, the abelian varieties .o/ and 98 are said to be isogenous;
this is an equivalence relation since there then exists a dual isogeny ¢ : B — of, of the same

degree 7, which is simply the multiplication-by- map of ./ fa&ored through ¢.

o
deg¢ CJZ% C

¢

Proposition 11.4.2. If J€ is the kernel of a separable isogeny & : o — DB, then ¢ is the
projection map under the isomorphism B = .o | FC; in particular, we have deg($) = #7€.
The group Structure of J€ is called the type of ¢.

From now on, the word “isogeny” should implicitly mean “separable isogeny;” this is the
case for all isogenies whose degree is coprime to the characeristic of the base field.

Since composition of isogenies corresponds to inclusion of subgroups, and the latter are
abelian, we deduce that all isogenies can be written as the composition of isogenies of prime
degree. In dimension ¢ > 1, although there is currently no known method for computing
general isogenies of type Z [ where £ is a prime, there are algorithms for evaluating isogenies

of type (Z/)* which we call £-isogenies.

Recall that we assume isogenies between principally polarized abelian varieties .¢/ to
preserve polarizations. The induced polarization on .¢/ / 7 for a finite subgroup ¢ is prin-
cipalifand only if € is a maximal isotropic subgroup for the Wil pairing; when we compute
isogenies from their kernel, we will first §tart by enumerating all such subgroups.

HoNDA-TATE THEORY

Opver finite fields, there is a bije@ion between isogeny classes of abelian varieties and their
zeta fun&ions. We have already explained the relationship between the zeta fun&ion of an
abelian variety and the characeristic polynomial of its Frobenius endomorphism, and the
following description of isogeny classes is due to [[ATE (1966).

Theorem 11.4.3. Tiwo varieties are isogenous if and only if their respective Frobenius endomor-
phisms have the same charalteristic polynomial.



38 ABELIAN VARIETIES

A monic polynomial with integer coeflicients and 2¢ complex roots, each of absolute
value /7, is called a g-Weil polynomial. Recall that this is the case of the characteristic poly-
nomial of the Frobenius endomorphism. As a reciprocal to that statement, HONDA (1968)
proved:

Theorem 11.4.4. Each q-Weil polynomial is the characferistic polynomial of the Frobenius en-
domorphism of a certain simple ordinary abelian variety of dimension g defined over F -

TATE (1968 presented these two theorems in a combined way, and this has become
known as Honda-Tate theory.

The next chapter will be concerned with an exp/icit form of this theory which aims at con-
§tructing explicit abelian varieties whose Frobenius endomorphisms have prescribed char-
a&eristic polynomials. This enforces certain properties on the abelian variety, such as the
cardinality.

ExrricIT ISOGENIES

For elliptic curves &, VELU (1971) gave explicit formulas for computing an isogeny ¢ :
& — &' defined by its kernel ker(¢) C &: if x,y are coordinates in which an affine equation
for & is y2 = f(x), then there exit coordinates X, Y in which an equation for & ” has the form
Y? = ¢(X) and the isogeny can be written as

¢:Pe&—s Xy = 24raq =g
Y¢(P) = ZJ’P+Q —JqQ

where the sums range over all points Q of ker(¢), with the convention thatx_ =y,_ = 0.

This relies heavily on properties of the Weierstrass coordinates for elliptic curves, and
a higher-dimensional analog was only found recently by LuB1cZ and ROBERT (2009), and
later made practical by [COSSET and ROBERT (2011 ); it relies on the structure of theta func-
tions, which we now briefly describe.

Geometric invariants identify isomorphism classes of abelian varieties. For instance, iso-
morphism classes of elliptic curves are identified, over an algebraic closure, by the canonical
Jj-invariant. It is effetive as j(&) is a rational funion in the coefficients of a Weierstrass
equation for &, and conversely the coeflicients of such an equation are rational fun&ions in
J(6).

In arbitrary dimension, a system of invariants for principally polarized abelian varieties
is given by theta constants, which not only identify the isomorphism class of a variety but also
part of its torsion. Theta constants are the constant terms of theta functions which yields a
convenient coordinate system for points on the variety it identifies.
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In the particular case of abelian varieties of dimension g < 4, which are all, up to iso-
morphism, Jacobian varieties of algebraic curves, invariants can be expressed, via Torelli’s
theorem, on the curves themselves, as functions of the coefficients of their equations. For
¢ = 2, a popular set of invariants are the Igusa invariants, which consists of 10 coordinates
(this bears some redundancy since the dimension of the moduli $pace is 3); they can be effi-
ciently computed from the equation of a curve, but conversely, to retrieve such an equation
from the invariants themselves, a $pecific method of MESTRE (1991 is required.

The relationship between the invariants of a curve and the theta constants of its Jacobian
variety are given by formulas of THOMAE (1870).

Let «of = C8/(Z8 + QZF) be a complex torus with Q € HE. Define the theta functions

G’)ii:ze(@g-—) Z expiw(iﬁﬂu+2§(z+b))

(uta)eZf
where 2 and b are ve&ors of Q¢ and % denotes the transpose of #. [GUSA (1960) proved:

Theorem 11.4.5. Fix an integer n > 2. The theta constants @;‘i(O)ﬁr ab € {%,,f}g
uniquely determine the isomorphism class of </ as a principally polarized abelian variety.

Details on implementing and pra&ically computing isogenies between abelian varieties
of dimension two will be found in the last chapter.

MoDULAR CORRESPONDENCE

Some applications do not require to explicitly evaluate isogenies, that is, to effeively
evaluate the map: it is sometimes sufficient to enumerate abelian varieties which are (ratio-
nally) £-isogenous to a prescribed abelian variety ./, for a given prime ¢, and there could
exist a faster way than enumerating all subgroups of type (Z /) and then evaluating the
associated isogenies.

Ideally, this information could be encoded in polynomials via invariants I(.e/) € #”: we
would have 7 polynomials @é(Xl, e XY ,Yn) fori€ {1,...,n} such that

O, (), L, ()1, (B), ., 1, (B)) = 0,
o/ ist-isogenousto B <> (Dz:(Il("d)"“’In("d)’ll(‘%)""’ln(‘%)) -
(1 () 1, ()1, (B), .. 1, (B)) =0,

For elliptic curves, this is achieved by the classical modular polynomials ©, (X,Y). ENGE
(2009) computed them via the floating point method which consists in evaluating © over
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the complex number with just enough precision so as to identify its integer coeflicients. Re-
cently, BROKER, LAUTER, and SUTHERLAND (2010) demonstrated the competitiveness of
a method based on the Chinese remainder theorem which exploits the structure of isogeny
volcanoes that we will study later.

The higher-dimensional case is not as straightforward: [GAUDRY (2000) described an
analog constru&ion for ¢ = 2, and the computation of explicit polynomials was later done
by DUPONT (2006) and improved by BROKER and LAUTER (2009 ). However, the height of
the polynomials (®}) makes their use prohibitive; currently, state-of-the-art algorithms for
explicitly evaluating isogenies remain a faster alternative.

We note that this difference between elliptic curves and higher-dimensional abelian va-
rieties is the main reason why point counting algorithms are much faster for the former than
for the latter.
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THREE

(omplex Multiplication

The theory of complex multiplication describes endomorphism rings of abelian varieties;
this thesis will investigate two of its applications, inverse of each other:

- constru&ing abelian varieties equipped with efficiently computable pairings;
- computing the endomorphism ring of prescribed abelian varieties.

There are many facets to complex multiplication theory; here, while trying to be some-
what general, we will focus on effeGtive aspes in the case of dimension ¢ = 1,2, which are of
primary interest to cryptography. For details, we refer to [COX (1989) for g = 1, to STRENG
(2010] for ¢ = 2, and otherwise to SHIMURA (1998), [CORNELL and SILVERMAN (1986),
and MILNE (2006).

1.1  Endomorphism Rings

ABELIAN VARIETIES WITH COMPLEX MULTIPLICATION

Let us first consider the endomorphism ring structure of abelian varieties; via the follow-
ing theorem of POINCARE and WEIL (1945 ), it suffices to consider simple varieties.

Theorem 111.1.1. Every abelian variety is isogenous to a product of powers of non-isogenous
simple ones.

The endomorphism ring of a perfec power ./ ” is naturally the matrix algebra of dimen-
sion 72 over the endomorphism ring of .¢/ ; therefore, the endomorphism ring of a produ&
m; . . . . . .
1./, of non-isogenous simple abelian varieties .7; is ] ] Mat,, (End .<7)).
Since isogenies need not preserve endomorphism rings, the above does not completely
rule out the case of non-simple varieties. Nevertheless, we will now assume that .¢7 is a simple
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abelian variety of dimension g. Its endomorphism ring End(.¢/) contains at least the scalar
multiplication maps, which form a subring isomorphic to Z. To better comprehend the ring
End(.¢/), firét consider the algebra QQ ® End(.¢f): if it contains a field K of degree 2¢, the
variety ./ is said to have complex multiplication by the number field K or, more precisely, by
the order KN End(.¢f). Over number fields, this is a rare situation; but over finite fields, all
ordinary abelian varieties have complex multiplication.

Recall that, over finite fields, the Frobenius endomorphism 7 of a dimension-g abelian
variety ./ admits a monic charaderistic polynomial y 5 of degree 2¢, and that this polynomial
uniquely identifies the isogeny class of .¢/. [TATE (1966) further established the following,
of which a proof can be found in WATERHOUSE and MILNE (1971).

Theorem I11.1.2. If.¢f is asimple abelian variery, the charalferistic polynomial of its Frobenius
endomorphism T is some power m* of its minimal polynomial, whence QQEnd(.ef ) is a division

algebra of dimension 2eg, and its center K is the field Q(r) = Q[x]/(m(x)) of degree 2¢/e.

The number field K is known as the complex multiplication field of of . The tructure of
such fields can easily be investigated since they are quotients of Q[x] by g-Weil polynomials
% (x): under the embedding to Q ® End(./), the field K is an extension by the polynomial
X? — (m+m)X +q of the totally real field K, = Q(w+7). Therefore, complex multiplication
fields are totally imaginary quadratic extensions of totally real number fields K, of degree g.

So far, we have not been too concerned about fields of definition; we will continue not
to be, due to the following proposition.

Proposition 111.1.3. Endomorphism rings of simple ordinary abelian varieties defined over

Jinite base fields are unaffected by base field extensions.

CoMPLEX TORI WITH COMPLEX MULTIPLICATION

Complex multiplication also concerns complex tori, and due to their simpler stru&ture it
yields a rich theory; many results concerning abelian varieties over finite fields are reductions
of results on complex tori. For now, we assume that the base field is £ = C.

Let us first fix a particular embedding 1 of the complex multiplication field K in Q ®
End(.¢/). The exponential map sends ./ to a complex torus C¢/A, and 1 to an embedding
" : K — End(C¥). Using representation theory, one can prove that, up to isomorphisms of
C¥, the map (' is of the form

K — (@
i x = (q)(x)) oed
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for a certain set O of ¢ distin& embeddings of K in C, no two of which are complex conju-
gate of each other, so that all 2¢ embeddings are in @ LI @. This set O is called the complex
multiplication type of the abelian variety ..

Isogenies transport the embedding 1 and type @ from one variety to the next; by the fol-
lowing result, found for instance as Proposition 3.12 of MILNE (2006), fixing one is equiva-
lent to fixing the other.

Proposition I1L.1.4. There is a bijection between the set of isogeny classes of simple ordinary
pairs (& ,v) and the set of isomorphism classes of primitive types (K, ©).

We will now consider abelian varieties ./ endowed with an embedding or, equivalently,
a complex multiplication type .

Conversely, a complex torus with complex multiplication by a prescribed complex mul-
tiplication field K and type @ can be constructed as follows. Let a be an integral ideal of K;
the g-tuple of embeddings @ maps it to a certain lattice of C¢ and we may consider the com-
plex torus C¢/®(a). To obtain a polarization as a Riemann form E on it, take an algebraic
integer £ that generates K/K, , whose imaginary part is totally positive, and whose square is
a totally negative element of K, then define E by

E (00, 0()) = tr (5-5-9)

which takes integral values on ®(a)* and thus induces a polarization on the complex torus
C#/®(a); it is obviously principal since & is invertible. Integral elements x of K can be seen
acting as endomorphisms of the torus by

(z,) € G — (zi¢i(x))

where an ordering on the embeddings ¢ of @ has been fixed by indexing them by i € {1,...,¢}.
Since distin& orderings yield isomorphic complex tori, ® can be simply thought of as a set.

Other transformations of the type yield isomorphic varieties as well. In the case (where
we assume to be) of simple varieties, we have:

Theorem IL.1.5. Al principally polarized complex tori with complex multiplication by a ring
of integers Oy arise, via the construction above, from a triple (®, a,£).

Two triples (O, a,) and (O, ') yield isomorphic polarized tori if and only if there exists
an automorphism o and an element y of K such that ' = ®q, o’ = ya, and ¢ = (ﬁ)_lz
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COMPLEX MULTIPLICATION ORDERS

The complex multiplication field K embedded in Q®End(./) is an important invariant;
however, it fails to capture the exa& isomorphism type of End(.¢/), which is precisely what
the order @ = KNEnd(.<f) does.

Generally-§peaking, an order O in a number field K is a lattice that is also a subring of
the ring of integers O — the latter is therefore commonly called the maximal order. In our
context, there is also a minimal order due to the following result of WATERHOUSE (1969).

Proposition IL.1.6. Lez K be the complex multiplication field of some ordinary abelian va-
riety defined over a finite field k with Frobenius endomorphism . The orders of K containing
Z[m, ) are exactly those that arise as endomorphism rings of abelian varieties defined over k
with complex multiplication by K.

The Verschiebung endomorphism T can also be written as q’rr_l, since Theorem will
show that the degree of an endomorphism is the norm of the corresponding number field
element.

Now consider an abelian variety .o/ defined over a number field £. If p is a discrete place
of k, its residue field £/ is finite, and we might obtain an abelian variety ﬂp over £/, of the
same dimension as ./, by pushing .&/ forward through the quotient map £ — #/p; when
we do, we say that ./ has good reduction at the prime p. Most things independent from p
reduce nicely:

Proposition11L.1.7. Let .of and B be two abelian varieties of the same dimension defined over
a number field with good reduction at some discrete place p. The natural map Hom(<f , B) —
Hom(.¢/, 0 B p) is injective and preserves the degree of isogenies.

Specialized to an abelian variety .¢f = 98 with complex multiplication, this states that
redu&ion leaves the complex multiplication field unchanged and can only make the endo-
morphism ring larger.

When the reduction ¢,, of an isogeny ¢ € End(./) is separable, that is, whenever its
degree is coprime to P, then the redu&ion map ker(¢) — kcr(qbp) is a bijection.

NON-ORDINARY VARIETIES

For completeness, we briefly address the case of non-ordinary abelian varieties ./ over
a finite field F_; the chara&eristic polynomial of the Frobenius endomorphism is then some
proper power 7° with ¢ > 1 of its minimal polynomial.

Contrary to the ordinary case, the endomorphism ring of non-ordinary abelian varieties
might be smaller over the base field than it is over an algebraic closure.
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Foran elliptic curve, not being ordinary coincides with being supersingular, and also with
the chara&eristic of the base field dividing the integer 7 + 7. Then, all endomorphisms are
defined over I, if and only if g is a square and m = £ /7.

Over fields with square cardinalities, there are thus two isogeny classes of supersingular
curves with all endomorphisms defined, corresponding to the two g-Weil numbers +,/4.
Over a quadratic extension, those two become isogenous, but another isogeny class appears.
Supersingular curves with not all endomorphisms defined can form up to three more isogeny
classes. This has been rigorously studied by WATERHOUSE (1969), and to conclude we sum-
marize his result concerning endomorphism rings of supersingular curves.

Proposition 111.1.8. Endomorphism rings of supersingular elliptic curves are
— ifall endomorphisms are defined: the maximal orders;
— otherwise: the p-maximal orders containing m;

in the quaternion V-algebra ramified at infinity and p (the charalteristic of the base field).

1.2  Orders and Ideals

For a moment, let us turn to topics of algebraic number theory with a computational
flavor; they will later be put to use when we need to apply complex multiplication theory.

ALGEBRAIC ORDERS

Orders of a number field K are lattices (that is, discrete subgroups of full rank) with an
induced ring stru&ure; inclusion therefore yields a partial order on orders of K, where the
italicized word is meant in the set-theoretic sense. From now on, we consider orders of a
fixed complex multiplication field K, and refer to them just as “orders”; they are contained in
the maximal order 9 = g, and we are particularly interested in those containing a certain
minimal order m of the form Z[m,7]. Since K = QQ(m), there are finitely many such orders.

This induces a finite Zaztice tructure (again, in the in the set-theoretic sense) and we will
often be $peaking about orders located above or below from others, meaning respectively that
they contain or are contained in others. This structure extends to ideals: assuming 0 C 0’
are two orders, we have natural maps

3(0") 3(0)
a

and while the latter is a right inverse to the former, the converse is not true in general.
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A more satisfying setting arises when we restri& to invertible ideals of an order O, that
is, fractional ideals a for which there exists another fractional ideal b satisfying ab = 0. All
non-zero fractional ideals of the maximal order are invertible, but as we go down the lattice
of orders, fewer and fewer are. To measure this notion of depth, we introduce the condu&or,
which measures how far 0 is from its integral closure 91.

Definition 111.2.1. The condu&tor of an order O is the ideal §; = {x € M : xM C O}.

The conductor gives a sufficient condition for invertibility: prime ideals that are coprime
to 4 are invertible in &. Conversely, up to principal ideals, all invertible ideals are equivalent
to one coprime to the conductor. As a result, invertible ideals coprime to the conductor
always have a unique decomposition into invertible prime ideals.

IDEAL CLASS GROUPS

Similarly to class groups of ring of integers, ideal class groups can be constru&ted from
general orders. This constru&ion resembles that of Jacobian varieties in terms of divisors, but
the resulting group differs in various subtle aspes.

Definition 111.2.2. The Picard group of an order O, denoted by Pic(0), is the quotient group
J(0)/ Princ(O) of invertible ideals by principal ideals; it is finite and abelian.

The Picard group of an order O with conducor § is related to that of the maximal order
M = Oy via the exact sequence

1 — 0% — M — (M) /(O §)* —> Pic(0) —> Pic(IM) — 1

which shows that Picard groups grow roughly linearly in the norm of the conducor f; more
precisely, the sequence yields the following formula (which generalizes the well-known ex-
plicit formula for imaginary quadratic orders) for the class number:

#Pic(9MN) #(M/f)*
(0. 0] #(O[f)"

#Pic(0) =
The asymptotic growth of the class number of the maximal order / = #Pic(90) obeys the
following conjecture of SIEGEL (1935 ) proved by BRAUER (1947).

Theorem NL.2.3. For any sequence of number fields K whose class number, regulator, and dis-
criminant we respectively denote by b, R, and A, we have:

logh +logR [K:Q]
—1 —0

_ as
log+/|A| log|A
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And we note that, for the fields K we are most interested in, namely quadratic and quartic
complex multiplication fields, the regulator is respe@ively R = 1 and R = O(log|A|).

Picard groups are compatible with the lattice-of-orders structure:

Proposition 111.2.4. Let O C O be two orders. The map a — a0’ for invertible ideals a of
O coprime tof 5, induces a surjective morphism of Picard groups.

Therefore, if some set ‘B of ideals of the minimal order m generates its Picard group, it
can be mapped into generating sets for each order above m. We form the free abelian group
Z®, and let A, denote the lattice of relations of O, consisting of tuples (A)gs for which the
produc [T (60)" is a principal ideal of @. This gives a description of the Picard group as

Pic(0) =Z® /A,

and when one order is contained in another, their lattices of relations are too.

CoMPUTING ORDERS

To list all possible endomorphism rings, that is, all orders containing m = Z[x, 7], one
could simply focus on the lattice structure: subgroups of the quotient group 9T/m can casily
be enumerated, and each yields a lattice that contains m; elementary techniques can then test
whether such a lattice is closed under multiplication.

This approach is inefficient as most lattices are not orders, but also inadequate since there
might be exponentially many orders above m. We can bound the conductor gap as follows:

Lemmair.2.s. Theindex [N : m] is bounded from above by Zg(g_l)qu/z, where q is the norm
of T and 2g its degree.

Proof Recall that [90T: m] is the square root of disc(m)/ disc(901). The discriminant of the

maximal order 907 can be small so we simply bound that of the minimal order m using
|disc(m)| = [disc(Z[x])|[[Z[x7] : Z[x]]* .

The numerator can be bounded by (2,/7) 2= Gince X, is ag-Weil polynomial of degree 2¢.

For the denominator, we have [Z[m 7 Z['TL']] = q@ from which the result follows. [

Instead of enumerating all orders, we will navigate the lattice of orders and locate the en-
domorphism ring using complex multiplication theory. The proposition below shows that
it suffices to go up or down by small powers of primes. Due to the lemma above, only poly-
nomially many descending steps in ¢ and log(g) are needed to reach m from 1.
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Proposition 111.2.6. Consider two orders 0" C O of relative index divisible by a prime .
There exists an order O in between whose index in O is in {2,1’,2, s QZg_l} where 2g = degK.

To prove this, let 0" be the order generated by £0 and 0 since £0 has index % in O

and both contain Z, its index in @, and therefore also that of @”, mugt divide £271

Consider now the problem of going down, that is, enumerating all orders contained in a
prescribed order @ with index 7 (to go #p the process would be entirely equivalent).

In discussions with ENGE, we devised a simple method to enumerate all orders contained
in a prescribed order @ with index 7. The integer 7 should preferably be a small prime power
to limit the size of the output; this amounts to considering the lattice of orders locally at
this prime. When we only consider endomorphism rings of principally polarized abelian
varieties, we can further restrict to those orders that are closed under complex conjugation.

Fix a Z-module basis (w,) of @ so that cach sublattice is uniquely identified by a basis
(ocj => al.jwl.) in Hermite normal form, meaning that the integral matrix (ﬂij) is upper trian-
gular, has non-zero coefficients on the diagonal, and satisfies a;<a; for i # j; see Chapter 4.7
of COHEN (1993 ) for details. Such a sublattice is an order if it contains all producs

s
p— p— 73
otjoc]/— E “z‘/’//"’z‘w/— E E ﬂz‘jdz”/mk Wy
.
5

.
k i

¥ (a)
where the ve@or 7" expresses w0, on the basis (w,); this vector and the polynomial [/Z/ only
depend on @. Therefore, 2 is an order if and only if, for all j and j/, the preimage of the vector

Iy
& by the matrix « has integral coordinates; for sublattices of index det(2) = #, this gives:

Proposition 111.2.7. Al orders contained in O with index n correspond to solutions of the poly-
o
nomial system (n .a) "YW = 0 mod nX 72 in the coefficients of the matrix a.

Unless there are 0 or Q(7) such orders, this system is nonsingular and its solutions can
be listed by a Grobner basis algorithm in time polynomial in log# albeit exponential in g.

CoMrUTING CLASS GROUPS

Fix an order & and consider computing its Picard group; this requires a generating set
of ideals for Pic(@), an efficient ideal multiplication algorithm, and a way of finding a dis-
tinguished representative of the class of a prescribed ideal, which we call reducing an ideal.
Under the generalized Riemann hypothesis (GRH), BACH (1990) solved the first problem:
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Theorem 111.2.8. Assume the GRH and let O be the ring of integers of a number field of dis-
criminant A. The class group Pic(O) is generated by prime ideals of norm at most 12log* |Al.

Note that a less explicit, but more precise result of J[A0, MILLER, and VENKATESAN
(2009), which also assumes the GRH, implies that, for any ¢ > 0, the class group of any
order O is generated by prime ideals of norm less than O(log™**|A|), where A = disc(0).

Let ‘B be the set of prime ideals with norm less than some bound B, and define

oy { 7Z% —  Pic(0)
n. — Hpe% pre
By the results above, when B is big enough, the map o, is surjective and therefore we have
Pic(0) = Z® /A,

where the lattice A is the kernel of 6. Later, we will see how to compute the Picard group,
that is, find a generating set of vectors for A ;.

When the order O lies in an imaginary quadratic field, its ideals can be represented as
binary quadratic forms via the map

5 5 —b+ Vb —dac

ax" +bxy+cy" — all + fz

where the right-hand side is a proper ideal of 0 as soon as the integers 4, b, and ¢ are coprime
and satisfy 6* — 4ac = disc(0). SCHONHAGE (1991) gave algorithms with guasi-linear run-
time (that is, linear up to logarithmic factors) in log| disc(@)| for performing on such forms
the operations which corre§pond to multiplying two ideals, and to reducing one into a canon-
ical representative of its class.

When O is an order of a general number field K, no such nice stru&ture exists and a
simpler approach must be used. Given a primitive element a, the field K can be represented
asQ[x]/(y, (x)), and its clements as rational vectors over the basis (1,x,47, .., degK=1) Tdeals
a can then be expressed as Z-modules, of which a generating set of cardinality deg(K) can be
written as a matrix over a basis of the order to which they belong. As mentioned before, this
matrix can be put in Hermite normal form to uniquely identify ideals.

Since there is no canonical set of ideal representatives for classes of the Picard group, it
is difficult to identify ideal classes precisely. COHEN, D1aZ Y D1az, and OLIVIER (1997)
demonstrated that this can nevertheless be done 70 some extent: the matrix that represents an
ideal a can be reduced via the so-called LLL algorithm of LENSTRA, LENSTRA, and LOVASZ
(1982), and the resulting matrix represents an ideal of the same class, but which is smaller.
Such small ideals can be used as non-unique representatives of their class, and this permits
one to perform most computations, notwithstanding some overhead.
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1n1.3 Plain Complex Multiplication

We have seen that endomorphism rings of ordinary abelian varieties are isomorphic to
orders in number fields, and have then considered their ideals from a computational stand-
point. Let us now explain how these ideals can be seen as acting as isogenies.

This aspe@ of complex multiplication theory will be referred to as the plain action, as
opposed to the polarized action to be discussed later. This section, does not assume that iso-
genies preserve any polarization structure of abelian varieties, and borrows many results of
WATERHOUSE (1969).

FINITE FIELD SETTING

Let O be an order isomorphic to the endomorphism ring of a simple ordinary abelian va-
riety ./ of dimension g defined overafinite field F,. We additionally consider an embedding
t: K — Q®End(.¢/) of the number field of O; its elements are then seen as endomorphisms
of .&/. An isogeny ¢ sends the variety .¢/ to the varicty 88 = ¢(.¢/), and also maps an em-
bedding \ for .¢/ to an embedding for 98 given as ¢(1) = @dp o 10 ¢ where ¢ denotes the

dual isogeny. In fa&, we have:

Proposition 111.3.1. If1 is an embedding of K into Q ® End(.e/), all other embeddings are
of the form &(v) for some endomorphism ¢ of ./ .

Let ./ be such an abelian variety endowed with an embedding 1 of €' into its endomor-

phism ring, let a be an invertible ideal of @, and consider theisogeny ¢, : .o/ — .o/ [ ker(¢,)

with kernel
ker (¢a) = ﬂkcr (l(fx)) .

oEea

For instance, if a is a principal ideal («), then the kernel of ¢, is simply that of o; therefore, ¢,
is nothing but an endomorphism whose separable part coincides with that of & (recall that
the totally inseparable part of an isogeny is not chara&erized by its kernel).

Now consider the composition of two such isogenies: let .¢/ be an abelian variety, a be
an invertible ideal of 0 = 17! (End .¢/), and denote the corresponding isogeny by ¢, : ./ —
B; then, let b be an invertible element of $(1) ™' (End 98), and denote the corresponding
isogeny by ¢, : 98 — €; in that situation, the isogeny ¢, 0 ¢, corresponds canonically to
¢qp : - — 6. In simple terms, composing isogenies corresponds to multiplying ideals.

As a consequence, there is a well-defined map

aePic(0) .o €AV, (k) — ¢, (/) € AV(k)
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where AV(£) denotes the set of isomorphism classes of abelian varieties defined over £, and
AV (k) the subset of such classes with endomorphism ring 0. Since the above is an isogeny,
the complex multiplication is unchanged and we have Q @ End(.¢/) = Q ® End(¢,(.«7));
note that, for elliptic curves, End(¢,(.¢/)) is actually always equal to End(.¢/) as Proposi-
tion will show, but in general we might only have End .¢/ C End(¢,(.¢/)).

ComprLEX ErLIiPTIC TORUS

For elliptic curves, WATERHOUSE (1969) proved that the image of the map above is
acually AV ;(£), and that the action of Pic(@) on AV (k) this defines is transitive, which
means that for any elliptic curve .¢/ with endomorphism ring &, the map a — ¢, (.</)
induces a bijection between Pic(0) and AV (k). The specific approach that he used then
enabled him to establish a similar result for (non-polarized) abelian varieties. Here, let us
describe a more standard way of seeing this on elliptic curves, using complex tori.

In the elliptic case, the use of complex tori to obtain results over finite fields greatly ex-
ploits the following lifting theorem of DEURING (1941).

Theorem 111.3.2. Lez o be an endomorphism of an elliptic curve <f defined over a finite field
F . There exists an endomorphism B of some abelian variety B defined over a certain number

Soeld which, modulo some prime P above p of good reduction, reduces precisely to o € End(.ef).

In the case where End(.¢/) = Z[a], the variety 98 of the above theorem has Z[] as en-
domorphism ringand redu&ion induces an isomorphism End(98) = End(.¢/), since we saw
carlier that endomorphism rings of abelian varieties defined over number fields are mapped
injectively into that of their good reductions at prime ideals. Endomorphism rings of ordi-
nary elliptic curves are always of the form Z[«], so in this case there always exist lifts with the
same endomorphism ring.

Conversely, for the ordinary case, we need to reduce modulo primes totally $plit in O

Proposition 111.3.3. Let &/ be an elliptic curve with endomorphism ring O defined over a
number field. Take an unramified prime P, and let p = p N 7Z. Then:
~ if p $plits completely in O, then the reduction .4, is ordinary and defined over F,,
~ ifpisinertin O, then the reduction .o, is supersingular and defined over F ;.
Now, over the complex numbers, an elliptic curve with endomorphism ring O always

corresponds to a complex torus C/b where b is a certain ideal of 0. The a&ion of invertible
ideals a of 0 on AV ;(C) can then be seen as

a:C/beAV,(C)— C/(a"'b) e AV,(C).
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This action is obviously transitive, and two ideals a and a’ act identically if and only if they
are homothetic, that is, if and only if they belong to the same class of Pic(@). Therefore, this
action factors through the Picard group into a faithful and transitive a&ion of Pic(€') on
AV 4(C); modulo prime ideals p of norm p, it reduces to the action of Pic(0) on AV 4 (F,).

Theorem I11.3.4. Let O be an imaginary quadratic order. For elliptic curves defined over a
finite field k, the above defines a faithful and transitive acfion of Pic(O) onto AV (k).

We must finally mention that this a&ion can also be seen on invariants of elliptic curves:
if 7B € AV ;(C), its invariant j( 98) lies in the ring class field of O, which is an abelian exten-
sion of K = Q(&) with Galois group Pic(0). The a&ion of Pic(0) on AV ;(C) is then that
of the Galois group via the Artin symbol.

GENERAL ABELIAN VARIETIES

The situation in higher dimension is far from being as nice as in the elliptic case. Certain
properties nevertheless hold as they should, such as the following one of GIRAUD (1968).

Theorem 111.3.5. Let & be asimple ordinary abelian variety defined over a finite field; if a is
an invertible ideal of its endomorphism ring, the degree of the isogeny ¢, is the norm of a.

The transitivity of the a&ion of the Picard group, which would generalize the result on
elliptic curves above, has only been shown to hold in the case that the endomorphism ring
of .¢/ is maximal by WATERHOUSE (1969); to prove this, he first argued that all invertible
ideals are, in his terminology, kernel ideals, which implies the following.

Theorem 111.3.6. Ler of be a simple ordinary abelian variety defined over a finite field k, and
assume that End(f) is a maximal order Oy; then, for any invertible ideal a of Oy :

— the endomorphism ring of ¢ (&) is exaltly that of o .
— the induced action of Pic(Oy) on AVg (k) is faithful and transitive.

The number of isomorphism classes of simple ordinary abelian varieties with endomor-
phism ring some maximal order O can thus be estimated using the conjecture of SIEGEL
(1935) proved by BRAUER (1947); as a dire& consequence of Lemma [IL.2.3, we have

disc(Z[n, 7 ZZg(g_Dqu
which gives, as ¢ is fixed and g4 goes to infinity, the asymptotic behavior

#AVﬁK(F = #Pic(0) qé/2+”(l
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ExrriciT ACTION

In our application, we wish to use the above theory for maximal orders as well as non-
maximal ones. Therefore, we rely on the following consequence of the results above, com-
bined with the observation that, if the norm of an invertible ideal a is coprime to ¢, since it is
also the degree of the isogeny ¢, then the index [End(¢,.¢7) : End(.e/ )] cannot be divisible

by £. Note that we proved the contrapositive statement earlier.

Proposition 111.3.7. Let .&/ be a simple ordinary abelian variety defined over a finite field k,
let  be its Frobenius endomorphism, let K = Q(n), and let O C K be its endomorphism ring.

The invertible ideals of O of norm coprime to the discriminant of Z|m, 7] act on AV (k) as
isogenies of degree their norm, and this defines a faithful action of Pic(O) on AV ; (k).

To make this proposition effective, we need to compute the isogeny ¢,,. Denote its degree
by ¢; since £ = N(a), we can start by enumerating all subgroups of cardinality £ of the full
£-torsion subgroup .¢/ [£]. Recall than even when ¢, is rational, the points of its kernel need
not be individually, but they are colle&ively invariant under the Galois a&ion. Still, we need
a practical way of telling ¢, apart from other isogenies of degree £.

The improvements of ATKIN and ELKIES to the elliptic curve point counting method
of SCHOOF (1985 exploit certain aspe&s of complex multiplication theory. In particular,
they give a means to determine which specific isogeny of degree £ corresponds to ¢ . It was
also written as Stage 3 of the algorithm by GALBRAITH, HESS, and SMART (2002).

This result actually holds for general abelian varieties, which follows elementarily from
the theory of Tate modules (from which mogt of the results that we stated above are derived);
we therefore state it in its full generality.

Proposition 111.3.8. Let .o/ be a simple ordinary abelian variety defined over a finite field, O
its endomorphism ring and w € O the element correSponding to its Frobenius endomorphism.
Ler a be an invertible prime ideal of O, written as 0 + u(r) O, where L is its norm and u
is an irveducible factor modulo L of the characteristic polynomial y_ of the primitive element .
Assume that £ is coprime to the discriminant of 2w, 7).
Then, the charalleristic polynomial of the Frobenius endomorphism acting on ker(¢,) is u.

This proposition cannot be readily applied to non-prime ideals a, but we will explain
later how this issue can be dealt with.
111.4 Polarized Complex Multiplication

In pracical computations, abelian varieties are represented as Jacobian varieties of hy-
perelliptic curves or as theta-coordinates. Since both naturally work with principal polar-



58 COMPLEX MULTIPLICATION

izations, complex multiplication theory needs to be adapted to take this extra stru&ture into
account. Most of this theory originates from SHIMURA and TANTYAMA (1961 ).

Asin the plain case, we start by considering complex multiplication fields before focusing
on the épecific endomorphism ring order and the acion of its ideals.

REFLEX FIELDS AND MAPS

Recall thatif .¢/ is an ordinary abelian variety of dimension g, its complex multiplication
field K = Q ® End(.¢/) is a totally imaginary quadratic extension of a totally real number
field K, of degree ¢, and that a complex multiplication type on K is a set of embeddings of K
in C satisfying ® LI @ = Hom(K, C) where the union is disjoint.

Here, there is actually no need to involve C, or even the algebraic numbers @, since the
image of any embedding of K is necessarily contained in its normal closure K. From now
on, we therefore consider complex multiplication types given as sets of embeddings of K to
its normal closure; this is equivalent and allows for a simpler exposition.

Definition 111.4.1. Lez O be a type of K. The reflex field K” is the fixed field of
{0'6 Gal (KC,Q) 0= (DOO'},

the automorphisms of K¢ leaving © globally invariant. It admits a unique reflex type O which
is the restriction of automorphisms of K whose inverses yield O when restricted to K, that is,

{o € Aut (K) : ¢l € @'} = {¢7" € Aur (K°) : ¢ € D}

More generally, for any field extension K’/K, the type {6 € Hom(K',K”) : ¢| € O} is
called the induced type by ® on K'. Types @ which are not induced from a strictly smaller
subfield are said to be primitive. Simple abelian varieties have primitive types, and in that

case, we canonically have K" = Kand @ = ©.

Define the zype trace trg, : x € K — Zd) ¢(x); its image actually generates the field K
and this can be used as an equivalent definition for the reflex field; more importantly, define
the type norm

Ny :xeK— | Jol) ek’
ded
(it is elementary to verify that the images of both these maps are in K”). There is also a reflex
type trace trgy and a reflex type norm Ny : K' — K.

The latter is particularly important to us, as we will make great use of it via the map it
induces on Picard groups: if a is an ideal of O, there is a unique ideal of O, which we write
Ny (@), such that

Ny ()G = | Jo(a) G

ded
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(see for instance Proposition 29 in Chapter II of SHIMURA (1998)). By the above, the map
Ny : J(0) — J(0y) induces a morphism of Picard groups, which we also write similarly:

Ny : Pic(Or) — Pic(0)

THE POLARIZED CLASS GROUP OF SHIMURA

Fix a primitive type @ of a complex multiplication field K of degree 2¢, and denote the
totally real subfield of K by K, .

Recall that a triple (@, a,£) yields the principally polarized complex torus C¢/®(a) with
the polarization E% ; Theorem explained that all tori arise in this way and gave neces-
sary and sufficient conditions for two triples to yield isomorphic polarized varieties.

Following Section 14 of SHIMURA (1998), a group €(0) can be constructed so as to
naturally a& on this set of triples representing isomorphism classes of principally polarized
abelian varieties:

1. Let P be the group of pairs (@, p) where p € K, is totally positive and a is a fractional
ideal of O satisfying aa = p@, endowed with component-wise multiplication.

2. Let I be the subgroup formed by the (10O, up) for pe K.
3. Let €(0) be the quotient group P/L
As a consequence to Theorem [I1.1.9), we therefore have:

Corollary 111.4.2. For O = Oy, the group €(O0) alls faithfully and transitively on the set of
isomorphism classes of principally polarized abelian varieties having complex multiplication by
O with type O. In particular, they have the same cardinality.

It might be easier to understand the group €(&) as part of the exat sequence
U(K) — U*(K,) — €(0) — Pic(0) — Pic*(0,)

where the implied maps are, respeively, the norm of K/K,, the embedding p — (0, p),
the proje&ion (a,p) — @, and the map a — aa NK,; also, U"(K,) denotes the totally
positive units of the totally real subfield K, and Pic* (&, ) denotes the quotient of the group
of fra&tional ideals of & N K, by those that admit a totally positive generator.

Intuitively, the class group Pic(&') a&s on the set of abelian varieties up to isomorphism,
as proven by [WATERHOUSE (1969) for 0 = 0; the subgroup Pic*(0,) encodes the dif-
ferent ways an isogeny can alter polarizations, and the group U*(K, )/ Ny /K, (U(K)) corre-
$ponds to isomorphism classes of principal polarization.
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For instance, in the case of dimension g = 2, when the totally-real subfield K, contains
aunit of norm — 1, which exactly means that its fundamental unit is not totally positive, the
quotient U*(K,)/ Ngk, (U(K)) is trivial so we have a one-to-one map:

&(0) — ker (Pic(@’) — Pic*(ﬁﬂ)

Although the computation of the polarized class group €(@) of Shimura is a much less
classical topic than that of Picard groups, it is not more difficult; for instance, we note that
similar groups have been studied from an algorithmic viewpoint by COHEN, D1aZ Y D1AZ]
and OLIVIER (1998).

POLARIZED ACTION

Thereis a particular subgroup of the polarized class group of Shimura formed by elements
arising as Galois ations. Here, we give a simplified exposition of this general theory and refer
to Se&ion 15 of SHIMURA (1998) for a more robust constru&ion.

Let .¢f be a principally polarized abelian variety defined over C with complex multipli-
cation by the maximal order 0 of a field K with type ®. In fa&, the abelian variety .&/ can
be defined over the Hilbert class field 5, which is the maximal abelian unramified exten-
sion of the reflex field, and in particular its invariants lie in that field; the a&ion that we now
describe can be seen as that of the Galois group of 5 via the Artin symbol.

Theorem I11.4.3. Invertible ideals of K" alt on polarized tori with complex multiplication by
Oy with type O via

Ny g (0

teJ(K'): C¢/d(a).E, — C¢/D (N (t) 'a)  E,,

anidealv alls trivially when its reflex type norm ideal N 4 (¢) is a principal ideal of O generated
by an invertible element y. € K* which satisfies y = Ny» /Q (v).

Recall that the set of principally polarized abelian varieties with endomorphism ring O
is acted upon faithfully and transitively by the polarized class group €(0y ) of Shimura. The
isogenies that arise via the reflex type norm (by theorem above) therefore a& as the subgroup

of €( ) formed by the clements

(No(®). Ny ()

where t ranges over ideals of 0. We emphasize that other elements of €(0}) also a& as
isogenies, but that they might not be rational.

For instance, in dimension two, if (a,£) € €( ), and £ totally splits as pﬁqﬁ in K, then
the possible values for a are pg, pq, and their respeive conjugates; in that case, £ also plits
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completely in K” and the reflex type norm maps the prime facors of £, onto those four
elements of € with norm €. In other cases, elements of €(0) of norm £* might not be in
the image of the reflex type norm.

RepucTioN TO FINITE FIELDS

We briefly review how the action that we have just defined transports to finite fields, in
the case of simple ordinary abelian varieties of dimension two. For details, we refer to the
work of GOREN (1997) and GOREN and LAUTER (2007).

W first consider a principally polarized abelian variety JZ{P defined over a finite field of
characeristic p; given any embedding 1, of O into End(,,%), implying that szp has complex
multiplication by Oy, there exists an abelian variety .¢/ defined over a number field and an
embedding: 0} — End(.¢/) which, at a certain prime, reduce to ﬂfp and L respeively.

Conversely, if .¢/ is a simple polarized abelian variety with complex multiplication by
the maximal order of some field K, its invariants lie in the Hilbert class field 5 which is
the maximal abelian unramified extension of the reflex field. For almost all primes p of its
field of definition, the abelian variety .¢/ has good reduction modulo p.

Now, let p denote the rational prime below p, that is pZ = pNZ; when p $plits completely
in the complex multiplication field K this reduction is a simple ordinary abelian variety. De-
note by ./, the reduction of .¢/ modulo p; due to the injective map End(.e/) — End(./,)),
we know that ./, also has complex multiplication by 0. In that case, all elements of norm
£ of the polarized class group of Shimura arise from the reflex type norm, and they give all
isogenies of type (Z/L).

There is another $plitting case for p which can result in the reduction .¢/, beinga simple
ordinary abelian varieties: that where p is inert in K, but ¢plits as qq in K and as ttt/ in K,
where t has norm p?. In that case, reduction modulo a prime above t or T also yield a simple
ordinary abelian variety. However, the reduction of .o/ modulo ' is a superspecial variety,
that is, far from being ordinary.

If .o/ is a simple ordinary abelian variety of dimension ¢ = 2 defined over a finite field
k of sufficiently large characeristic, we will later exploit complex multiplication theory to
predi& the stru&ture of its isogeny graph from that of its polarized class group of Shimura,
or rather do the converse: predi@ the ftructure of the group €( &) from that of the isogeny
graph. For this, we have seen that we can always use isogenies of type (Z/2)* for primes £
which éplit completely in the reflex field K.

However, we observe that elements of €(&) of the form (a,£), where £ is a prime, which
are not in the image of the reflex type norm, often also a¢t as rational isogenies of type (Z/ 2)2,
and we make use of these as well. In certain cases, this approach can be fully rigorous by



62 COMPLEX MULTIPLICATION

solely exploiting the a&tion of €(0) under the type norm, or that of certain elements (g, £)
for primes £ $plitting in K as qq. In other cases, this requires additional hypotheses, which
we will then specify.

References

1935. Carl L. SIEGEL.
“Uber die Classenzahl quadratischer Zahlkérper”
In: Acta Arithmetica 1. Pages 83—86.

1941. Max DEURING.
“Die Typen der Multiplikatorenringe elliptischer Funktionenkorper”.
In: Abhandlungen aus dem mathematischen Seminar der hamburgischen Universitit
14. Pages 197272,

1945. André WEIL.
Sur les courbes algébriques et les variétés qui sen déduisent. Volume 7.
Actualités Scientifiques et Industrielles 1041.
Publications de I'Ingtitut de Mathématique de I'Université de Strasbourg.

1947. Richard BRAUER.
“On the zeta-fun&ions of algebraic number fields”
In: American Journal of Mathematics 69.2. Pages 243—250.
DOI:10.2307/23718489.

1961. Goro SHIMURA and Yutaka TANIYAMA.
Complex multiplication of abelian varieties and its applications to number theory.
Volume 6. Publications of the Mathematical Society of Japan.
The Mathematical Society of Japan.

1966. John TATE.
“Endomorphisms of abelian varieties over finite fields”
In: Inventiones mathematicae ».2. Pages 134—144. DOI: 10.1007/BF01404549.

1968. Jean GIRAUD.
“Remarque sur une formule de Shimura-Taniyama’”.
In: Inventiones Mathematicae s.3. Pages 231—236. DOI:[10.1007/BF01425552.

1969. William C. WATERHOUSE.
“Abelian varieties over finite fields”.
In: Annales Scientifiques de [ "Ecole Normale Supérieure 2.4. Pages s21-560.


http://dx.doi.org/10.2307/2371849
http://dx.doi.org/10.1007/BF01404549
http://dx.doi.org/10.1007/BF01425552

I1I.4. POLARIZED COMPLEX MULTIPLICATION 63

1971.

1982.

1985.

1986.

1989.

1990.

1991.

1993.

1997.

William C. WATERHOUSE and James S. MILNE.

“Abelian varieties over finite fields”. In: 1969 Number Theory Institute.

Edited by Donald J. LEw1s. Volume 20.

Proceedings of Symposia in Pure Mathematics. American Mathematical Society.
Pages 53—64.

Arjen K. LENSTRA, Hendrik W. LENSTRA, and Liszlé LovAsz.
“Factoring polynomials with rational coefficients”
In: Mathematische Annalen 261.4. Pages s15—534. DOI: 10.1007/BF01457454.

René SCHOOF.

“Elliptic curves over finite fields and the computation of square roots modp”.
In: Mathematics of Computation 44.170. Pages 483—494.
DOI:10.2307/2007968.

Gary CORNELL and Joseph H. SILVERMAN (editors).
Arithmetic Geometry. Springer. ISBN: 3-540-96311-1.

David A. Cox.
Primes of the form x* + ny*. John Wiley & Sons. ISBN: 0-471-19079-9.

Eric BAcH.

“Explicit bounds for primality testing and related problems”.
In: Mathematics of Computation s5.191. Pages 355—380.
DOI:10.1090/S0025-5718-1990-1023756-8.

Arnold SCHONHAGE.

“Fast redu&ion and composition of binary quadratic forms”.

In: Symbolic and Algebraic Compuration — ISSAC *y1. Edited by Stephen M. WATT.
Association for Computing Machinery. Pages 128-133.
DOI:10.1145/120694.120711.

Henri COHEN.
A course in computational algebraic number theory. Volume 138.
Graduate Texts in Mathematics. Springer. ISBN: 3-540-55640-0.

Henri CoHEN, Francisco D1az Y D1z, and Michel OLIVIER.

“Subexponential algorithms for class group and unit computations”.

In: Journal of Symbolic Computation 2.4.3—4. Special issue on computational algebra
and number theory: proceedings of the firt MAGMA conference. Pages 433—441.
DOI:10.1006/jsco.1996.0143.


http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.2307/2007968
http://dx.doi.org/10.1090/S0025-5718-1990-1023756-8
http://dx.doi.org/10.1145/120694.120711
http://dx.doi.org/10.1006/jsco.1996.0143

64 COMPLEX MULTIPLICATION

1997. Eyal Z. GOREN.
“On certain redution problems concerning abelian surfaces”.
In: Manuscripta Mathematica 94.1. Pages 33—43. DOI: 10.1007/BF02677837.

1998. Henri COHEN, Francisco D1az Y D14z, and Michel OLIVIER.
“Computation of relative quadratic class groups”
In: Algorithmic Number Theory — ANTS-III. Edited by Joe P. BUHLER.
Volume 1423. Le&ure Notes in Computer Science. Springer. Pages 433—440.
DOI:10.1007/BFb0054882.

1998. Goro SHIMURA.
Abelian Varieties with Complex Multiplication and Modular Functions.
Princeton University Press. ISBN: 0-691-01656-9.

2002. Steven D. GALBRAITH, Florian HEss, and Nigel P. SMART.
“Extending the GHS Wil descent attack”
In: Advances in Cryptology — EUROCRYPT 'o2. Edited by Lars R. KNUDSEN.
Volume 23 32. LeGture Notes in Computer Science. Springer. Pages 29—44.
DOI:10.1007/3-540-46035-7_3.

2006. James S. MILNE.
Complex Multiplication.
URL: http://www. jmilne.org/math/CourseNotes/cm.html.

2007. Eyal Z. GOREN and Kristin E. LAUTER.
“Class invariants for quartic CM fields”.
In: Annales de I'Institut Fourier 57.2. Pages 457—480.

2009. David Jao, Stephen D. MILLER, and Ramarathnam VENKATESAN.
“Expander graphs based on GRH with an application to elliptic curve cryptography”
In: Journal of Number Theory 129.6. Pages 1491—1504.
DOI:10.1016/j.jnt.2008.11.006.

2010. Marco STRENG.
“Complex multiplication of abelian surfaces”. PhD thesis. Universiteit Leiden.
ISBN: 90-5335-291-0.
URL: http://www.math.leidenuniv.nl/~streng/thesis.pdf.


http://dx.doi.org/10.1007/BF02677837
http://dx.doi.org/10.1007/BFb0054882
http://dx.doi.org/10.1007/3-540-46035-7_3
http://www.jmilne.org/math/CourseNotes/cm.html
http://dx.doi.org/10.1016/j.jnt.2008.11.006
http://www.math.leidenuniv.nl/~streng/thesis.pdf

FOUR

Pairing-Friendly ‘Uarieties

1v.r  Cryptographic Requirements

The use of pairings enables many cryptographic protocols; as we have mentioned before,
cryptography-grade pairings, that is, pairings which can be evaluated efficiently and are hard
to invert, are only known to be defined on abelian varieties.

Here, we first review cryptographic requirements for pairing-based construtions, and
then consider how abelian varieties satisfying these conditions can be generated.

GENERAL CONSIDERATIONS

Let ./ be an abelian variety defined over a finite field I, and containing a cyclic sub-
group of order r. The embedding degree e(r), also written e when there is no ambiguity on the
subgroup, is defined as the smallest integer such that the Weil pairing

Y : A [r](F ) x o [7](Fe) — p, CFL

is non—degenerate; extending a result of BALASUBRAMANIAN and KOBLITZ (1998), RUA
BIN and SILVERBERG (2009) proved that, if 7 does not divide 4 — 1 and the degree of the
polarization of .¢/ is coprime to 7, then e divides the order of g modulo 7.

Using this pairing for cryptographic purposes imposes the following:

1. It must be computationally infeasible to solve discrete logarithm problems in .¢/[r].

2. It must be computationally infeasible to solve discrete logarithm problemsinyu C F;[.

3. It must be practical to compute over the field F P

6s
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The last condition ensures that the algorithm of MILLER (1986) evaluates the Weil pair-
ing efficiently. Note that many constructions do not dire@ly use the Weil pairing but rather
variants of it that enable evaluation $peedups by small factors; however, from a variety genera-
tion point of view, this makes little difference: solongas field operationsin IF . can efficiently
be computed, pairings with embedding degree ¢ can be evaluated with more or less effort.

Later, it will be convenient to allow 7 to be a prime times a small cofa&or; this does not
invalidate the above: the security simply rests on the largest prime factor of .

There are two big decisions to be made:

Binary or prime fields? Fields of chara&eristic two (also known as binary fields) are suited
to efficient hardware implementations; on the other hand, software implementations
work equally well with prime fields.

Supersingular or ordinary varieties? Supersingular varieties are easy to generate and read-
ily have small embedding degrees; however, they are quite special and have an easy
decisional Diffie-Hellman problem.

We choose to work with ordinary varieties defined over prime fields. Some authors argue
that prime powers with exponent greater than one have density zero amongst prime powers,
but here we justify this choice by its convenience and the fa& that it avoids Weil-descent
attacks altogether. Although attra&ive for the design of cryptographic protocol, the prop-
erties of supersingular curves can be seem unnecessarily $pecial; they are mostly interesting
over fields of small charaeristic, and it is not so challenging to generate them.

To avoid wasting bits, we wish to balance the expe@ed hardness the discrete logarithm
problem in the abelian variety .o/ (F, ) and in the group y, C F; as they are rendered equiv-

alent by the pairing. When g is a prime power, HITT (2007) warned that p_ might reside in
a §trick subfield of F;f, leading to faster attacks on its discrete logarithm problem. However,

this problem does not arise when ¢ is prime.

ASYMPTOTICS

Suppose ./ is an ordinary abelian variety of dimension ¢ defined over a prime field F,
of which the discrete logarithm problem and pairing are considered for cryptographic use.
By the Pohlig—Hellman reducion, it is sufficient to consider its largest prime subgroup ¢’;
we denote its order by 7 and its embedding degree by ¢. In order avoid attacks on high-genus
varieties, we furthermore assume that ¢ = 1,2; this conveniently enables us to use the fast
arithmetic of Jacobian varieties of hyperelliptic curves.

To measure the cryptographic efficiency, fix g and let 4 go to infinity: the complexity of
additions in ./ (F q) is polynomial in logg; disregarding the pairing, the discrete logarithm
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problem in ./ (F q) achieves an expected security of % log, » bits. Hence, we introduce the
quantity

- log, »
which, since #JZV(FL]) ~ ¢f, also indicates the proportion of bits used to represent points
of ./ (F q) that a¢tually contribute to the security of scheme: if p = 1 then nearly all of the

variety is put to use; if p ~ 2 then only half of the bits are needed to identify points of J.
Recall the best-known bounds on the complexity of solving discrete logarithm problems:
1. Discrete logarithm problems in ,,Qf(]Fq) can be solved in O <rl/2+0(1) logq).
2. Discrete logarithm problems in ]F;e can be solved heurigtically in L] /3 (7).
To solve the first problem, in general, no better algorithm than generic ones is known, for
which a lower bound of 4/7 is proven; the other term in the complexity denotes the cost of
operationsin .¢/ (IF ). Many variants of the number field sieve can be used to solve the second
problem: the method of MATYUKHIN (2003 ) applies to prime fields, and that of JouX and
LERCIER (2006) is particularly adapted to extension fields such as here.
In the most effe@tive case that p ~ 1, balancing the two complexities above requires

1
Eglogqloglogq o (elogq) 1/3 (loge + loglogq) 2/3

which implies e ~ <2%>3 (% logq>zloglogq and shows that the embedding degree should
grow quadratically in the size of the base field; this is another reason to avoid supersingular
varieties: since their embedding degrees are uniformly bounded as ¢ is fixed (see below), they
do not scale well to higher levels of security.

PrRACTICE

To sele& the parameters 4 and e according to the level of security chosen (or equivalently
the desired date until when the cryptosystem should with&tand attacks), the cost of attacks
on the discrete logarithm problems in both finite fields and abelian varieties must be care-
fully considered. Various agencies and organizations regularly publish updated tables listing
parameter tuples for various security levels, such as ECRYPT'II (2010) whose table was fea-
tured in the first chapter. Most agree that pairing-based cryptosystems aimed at being secure
beyond 2030 should have a 256-bit » and a 3248-bit ¢°; as usual, more is better.

The pra&ical cost of an attack can be estimated by using timings of previous attacks to
calibrate the big-O (and possibly other) congtants in the asymptotic complexity; this usually
gives a fair estimation for larger instances. Here, we need to control both the hardness of
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FIGURE 1. The abscissa bounds the security level of the discrete logarithm problem in F;e

while the ordinate does the same in &/F ;- The diagonal represents the optimal case that
these are balanced. The curves plot what elliptic curves achieve for selected values of ¢/p.

the discrete logarithm problem in the curve and the embedding field. Figure [1] does such a
rough analysis for the parameters (p, ¢,¢) of pairing-friendly curves. It shows, for ingtance,
that 128 bits of security are best achieved by elliptic curves for which e/p ~ 12, with the mo&t
preferable choice of p = 1 implying that ¢ = 12 and g =~ 2%°°.

Before explaining how to generate elliptic curves and abelian varieties with the above
properties, let us first say a bit more on supersingular varieties.

SUPERSINGULAR VARIETIES

While ordinary varieties are the generic case, supersingular varieties are the other ex-
treme: recall that supersingular abelian varieties are defined as being isogenous to powers
of supersingular elliptic curves (elliptic curves with zero p-rank) or, equivalently, as having
Frobenius endomorphisms that satisfy 7 = +4"/* for some integer 7.
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Their cryptographic interest stems from the following result of GALBRAITH (2001).

Proposition 1v.1.1. The embedding degree of any subgroup of any g-dimensional supersingular
abelian variety defined over a finite field is uniformly bounded by some quantity e
We have for instance e, = 6, e, = 12, e = 30, ¢, = 60.

For certain types of base fields, the bound ¢, can be lowered: the optimal bound for ¢, is
4 in chara&eristic two, 6 in characeristic three, 3 in higher chara&eristic, and 2 over prime
fields with more than three elements.

An interesting feature of supersingular varieties is the existence of distortion maps, that is,
non-rational endomorphisms. For ordinary varieties, we have seen that all endomorphisms
defined over an algebraic closure are also defined over the base field, so their field of definition
makes no difference. However, for supersingular varieties, there exist endomorphisms which
do not commute with the Frobenius endomorphism.

Such distortion maps < are useful in cryptography because they send points of the ra-
tional 7-torsion subgroup to points of .o/ [r](F q[) which might not be rational. Then, the
application

(P.Q) € e [(F, ) — Yy ((P). Q) €,

is a “self” pairing which is a very attra&ive obje to build cryptographic primitives on, as
its domain is the Cartesian product of two copies of the same cyclic group of order 7, rather
than the Cartesian produét of two different ones.

On the other hand, this makes the decisional Diffie-Hellman problem easy, since for any
triple of integers (4, b,¢) and point P on ./, one can verify whether ¢ = 4b given P, 4P, 6P, cP
by checking whether

Vet (W(aP), bP) = ¥ ((P), P);

from a security viewpoint, this can be seen as an undesirable property. Naturally, many pro-
tocols take advantage of that situation as well.

Since embedding degrees of supersingular curves are bounded, the base field size must
grow more than linearly in the desired security level in order to avoid discrete logarithm
attacks in F;[ via the pairing; this lack of scalability is unpractical in the long term, and we

now shift our focus to the ordinary case.
1v.2  Complex Multiplication Method
The problem of contruéting ordinary abelian varieties defined over a finite field on which

pairings are efficiently computable (meaning that the embedding degree is small) is an a&ive
topic of research.
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This se&tion describes the so-called complex multiplication merhod for generating ordi-
nary abelian varieties with prescribed endomorphism rings; as a consequence, it also gener-
ates varieties whose Frobenius endomorphism have prescribed polynomials. Since the exis-
tence of a subgroup of order » with embedding degree ¢ only depends on this polynomial,
the next se@&ion will exploit this method to generate pairing-friendly varieties.

SCARCITY OF PAIRING-FRIENDLY VARIETIES

As we have argued before, abelian varieties of dimension ¢ = 1 and 2 are the most suit-
able for cryptosystems which rely on the discrete logarithm problem. When no additional
§tru&ure (such as a pairing) is required, abelian varieties need just have a near-prime group
order, and are best generated by random search, which additionally reduces their likelihood
of having undesirable $pecial properties. For elliptic curves, such computations are classical,
and for g = 2 it was recently demonstrated practical by GAUDRY and SCHOST (2010).

When, on top of a near-prime group order, one secks a small embedding degree, this
approach is not feasible anymore due to the scarcity of abelian varieties with the desired con-
dition. More precisely, BALASUBRAMANIAN and KOBLITZ (1998) proved the following.

Theorem 1v.2.1. There are at most MY/***V) isogeny classes of elliptic curves & | F, with prime
order and embedding degree less than log” p, where p is a prime in {M/2,...,M}.

Since there are roughly M3/2 isogeny classes of elliptic curves defined over ]FP withp €
{M/2,...,M}, this is a pretty slim fraction of the total. LAUTER and SHANG (2010) recently
gave a similar result for dimension-two abelian varieties:

Theorem 1v.2.2. Let H and K be positive integers, the number of pairs (p,N) where N is the
order of a dimension-two abelian variety defined over ¥, with p € {M/2,...,M}, such that

N = hr where h < H, r is prime and has embedding degree less than K is at most M3/2re(DHK?2
for M large enough.

Since there are roughly M>/2 pairs (p,N) arising as orders of two-dimensional abelian
varieties, this gives, similarly to the one-dimensional case, a probability of p_”"(l) of finding
a pairing-friendly abelian variety by random search over IF,.

The theory of complex multiplication provides a method for generating such varieties
efficiently. This involves two steps: we will first describe how varieties with prescribed en-
domorphism rings and prescribed fields of definition can be constructed using the so-called
complex multiplication method, and we will then consider chara&erizing pairing-friendly
varieties in terms of their endomorphism ring and base field.
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CLASS POLYNOMIALS

Since abelian varicties of dimension three or more are not interesting for cryptogra-
phy, we re&tri& to Jacobian varieties of hyperelliptic curves 6 since all principally polarized
abelian variety of dimension one or two are of this type. This allows to use invariants which
uniquely identify the isomorphism class of such a variety and are expressed as rational func-
tions of the coefficients of an equation for 6.

Fix a genus g and a family of invariants (I,) that uniquely identify birationally equivalent
classes of hyperelliptic curves. For instance, in dimension one, the j-invariant

283343
2245 + 3%

(where we have assumed the chara&eristic to be different from 2 and 3) alone suffices. In

(5:y2=x3+ax+b-—>j((€)=

higher dimension, as we have mentioned before, more invariants are necessary.

Let O be the order of a complex multiplication field K of degree 2g, that is, a totally
imaginary quadratic extension of a totally real number field. SPALLEK (1994) first proposed
to encode the information about all abelian varieties .¢/ of dimension ¢ defined over the
complex numbers into the following polynomial

A= [ -L@),

z
{.o/ End .o/ =0}

where .@/ ranges over isomorphism classes of abelian varieties. In dimension one, they are
usually called Hilbert class polynomials when O is the maximal order of K, as their roots, the
invariants of abelian varieties with endomorphism ring 0, generate the Hilbert class field of
O'’; for non-maximal orders and in higher dimension, these lie in the ring class field of @ and
the polynomials are simply known as class polynomials.

WENG (2001 later developed this theory and explained how these polynomials could
be used to generated abelian varieties over finite fields with prescribed endomorphism ring,
as we will soon explain. When there are two invariants or more (that is, for ¢ > 1), these
polynomials do not encode which root of ] 9 corresponds to which root of I 9 fori> 1
in other words, the invariant tuples we are 1ntere§ted in are lost amongst tuples of unrelated
invariants.

To address this issue, GAUDRY, HOUTMANN, KOHEL, RITZENTHALER, and WENG
(2006 interpolated the values I,(.¢/) at the I;(.¢/): they defined

A= > 1) [] (-12)
End .&/=0 End B=0
Bl

for i > 1. This encodes exa&tly the information wanted.
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REDUCTION TO PRIME FIELDS

Let .o/ be an ordinary abelian variety with complex multiplication by @ defined over
some number field, and let p be a prime of degree one at which the reduction szp of & is
itself an ordinary abelian variety defined over F p where p is the rational prime below p. Since
invariants are compatible with reduction, we have I,(.#/,) = L(./),,.

As the endomorphism ring of ./ is mapped injectively into that of .¢/,,, we have 0 C
(End ./, ); when 0 is the maximal order, equality must hold, and this is also the case for any
order when "dp is an elliptic curve, due to the Deuring lifting theorem.

Consequently, an abelian variety with complex multiplication by @ defined over a finite
field can be found using the following algorithm.

Algorithm 1v.2.3.
InruT: A primep, and an order O, either imaginary quadratic
or maximal in a quartic complex multiplication field.

Output:  An abelian variety JZ%/FP withEnd .o = 0.

1. Compute the class polynomials jfi_lﬁ (x).

2. Foreachroot1, of 3?10 (x) mod p:

3. Foralli> 1, let], = ﬁﬁ'ﬁ(ll)/jﬁﬁ(ll).

4 Use the method of MESTRE (1991) to compute a hyperelliptic
curve whose Jacobian variety has invariants (L).

Note that the output of this algorithm might be empty; for instance, when there are no
abelian varieties with endomorphism ring @ defined over the field with p elements. In other
cases, the number of curves returned might not be constant as @ is fixed and p varies. The
conceptually simplest case is that where p completely $plits in the ring class field of O then,
the %ﬁ $plit into linear faors modulo p.

CoMPUTATION OF CLASS POLYNOMIALS

Before making use of the method above, let us briefly describe the current methods avail-
able for computing class polynomials in dimension one and two.

Since the class polynomials j?f;ﬁ are defined over the complex numbers and have good
reduion to finite fields, there are, as with modular polynomials, two methods to compute
them: a complex analytic method and one based on the Chinese remainder theorem.

The complex analytic version evaluates the invariants I,(.e/) for complex tori verify-
ing End.&/ = O to sufficient precision to identify the coeficients of the class polynomial;
it requires tight bounds on the height of these coefficients. COUVEIGNES and HENOCQ
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(2002) also proposed a p-adic version which proceeds similarly but uses the canonical lift of
an abelian variety defined over a small extension of I, to transport the computation to Q.

The Chinese remainder theorem version reconstrué&s the polynomials ﬁfl_ﬁ € Q[x] from
their reduction to many small prime fields IF, by enumerating the abelian varieties with en-
domorphism ring O in each such field; typically, a first variety with complex multiplication
Q® 0O is found by sheer luck (this requires computing the endomorphism ring of many ran-
dom curves), and isogenies are then used to find a curve with endomorphism ring exaétly O
and to enumerate all other such varieties.

When the dimension of 0 is fixed, the complexity of all methods mainly depends on the
order of the Picard group of 0, which dictates the number of roots of the class polynomials.

For elliptic curves, all methods have a quasi-linear runtime in the size of the output; see
the careful analyses of ENGE (2009 ), BROKER (2008), and SUTHERLAND (2011 ). A practical
advantage of the Chinese remainder theorem version is that it need not keep the full poly-
nomials 7€, 9 € Q(x) in memory: only their reductions modulo many primes are required;
from thesc, jf 9 can be direétly reconstructed in the prime field where we seck an abelian
variety with cndomorphlsm ring 0. This is particularly useful as memory requirements are
the current bottleneck of the other two methods.

In dimension two, WENG (2001 ) introduced the complex analytic method, CHAO, MAT;
suo, KaAwASHIRO, and TsUJII (2000) the Chinese remainder theorem one, and [GAUDRY]
HoutMaNN, KOHEL, RITZENTHALER, and WENG (2006) a 2-adic method. All have since
been improved by many researchers. Their respeive speeds do not support a range of or-
ders O as wide as for elliptic curves, but quite a fair number of class polynomials have been
computed and made available, for instance in the ECHIDNA (2008 package.

1v.3  Elliptic Curve Generation

Let us now explain how to apply the material of the previous section to generate pairing-
friendly elliptic curves; very satisfying results can be obtained in this case. This is however
not the case for higher-dimensional varieties, as the next se&ion will discuss.

THE Cocks-PINCH METHOD

We have explained how an ordinary elliptic curve with prescribed order O can be gen-
erated over a prescribed finite field F, when € has small class number or, equivalently, small
discriminant. We now consider which parameters p and & should be chosen in order for the
resulting curve to be pairing-friendly.



74 PAIRING-FRIENDLY VARIETIES

Let & be an ordinary elliptic curve over the prime field with p elements; the chara&eristic
polynomial x_(x) of its Frobenius polynomial is of the form x> — £x + p where the integer £
satisfies |#| < 2,/p. Conversely, for cach such nonzero integer, there exists an ordinary curve
& [F, with cardinality p + 1 — # (we assume p = 2,3). If 7 is the largest prime factor of #8,
we require that its embedding degree be small, that is, » | p° — 1 for some small integer e.

Additionally, for the complex multiplication method to be pradical, there must exist
orders of small discriminants in (), that is, the squarefree part of 4p — #* must be small.

Therefore, we require that:

1. p bea prime number.

2. tbeanonzero integer less than 2,/p in absolute value.

3. rbea prime facor of p + 1 — # such that » | p° — 1 for a small e.
4. the squarefree part A of ## — 4p be small in absolute value.

Since A and ¢ need to be small, we first fix them: if an integer p can be derived as a
fun&ion of A and ¢ and it is not prime, we can always rerun the algorithm on a different
input and hope that it takes a prime value after roughly logp trials; however, fixing p and
deriving A or e would have little chances of producing small numbers.

Once A and e have been fixed, the method of [Cocks and PINCH (2001) consists in
rewriting the above set of conditions to the equivalent one:

£ —4p=1v*A
7| ®,(t—1)
r| ?A = (£ —2)*

where @, denotes the ¢ cyclotomic polynomial; the second condition asserts that e is the
smallest integer such that » | p° — 1 but this &ronger condition is not as important as the
construction that it enables: since @, is irreducible it yields a number field where to work.
This gives the following algorithm.

Algorithm 1v.3.1.
INPUT: A negative and a positive integer, A and e.
Ourput: A prime p and an order O such that there exists a pairing-
Sriendly elliptic curve with endomorphism ring O over F .

Choose a prime field ¥, containing v/ A and an &” root of unity (.
Purt=1+{ andv= (t—Z)/\/ZinFr

Lift t and v to Z and put p = i(tz —*A).

Unless p is prime, go back to Step 1.

Output p and the order O = 7 + u* ﬁQ(ﬁ) where u is any divisor of v.

R RN N
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Due to p being a sum of squares lifted from IF, the resulting elliptic has p = 2 on average.

FaAMILIES OF PAIRING-FRIENDLY CURVES

Better p values are achieved by families of curves with a constant embedding degree ¢ and
discriminant A over fields F, for increasing primes p. Families of elliptic curves are given by
tuples (A, e, p(x), #(x), 7(x), v(x)) where the lagt four parameters are polynomials in a formal
variable x; additionally to the conditions above, since p and r are expeced to take prime val-
ues, they are required to be irreducible. The density of primes they produce can be estimated
using Conjecture [.4.3)

Before explaining how to adapt the method above to this context, let us give two explicit
families; for a broader coverage, we refer to FREEMAN, SCOTT, and TESKE (2009).

MNT curves. Shortly before the constru&ive use of pairings in cryptography was uncov-
ered, M1vaJ1, NAKABAYASHI, and TAKANO (2001) warned that certain explicit families of
curves had a small embedding degree and therefore were probably unsuitable for crypto-
graphic use: they exhaustively studied the case that p = 1 and the cyclotomic polynomial @,
is quadratic, that is, e € {3, 4, 6}; they gave an explicit description of all such ordinary elliptic
curves; it was later noticed that they provide interesting pairing-friendly curves. For exam-
ple, they proved that a curve features p ~ 1 and e = 6 if and only if p(x) = 4 + 1 is prime
and #(x) = 1 + 2x for some integer x.

The Barreto—Nachrig family. |BARRETO and NAEHRIG (2006) exhibited a family of or-
dinary elliptic curves with p = 1 and e = 12; as we have seen before, this is optimal to achieve
the 128-bit security level using primes p of 256 bits. Their family has A = —3 and

plx) = 62t + 627 + 4657 + 6x+ 1 H(x) = 1+ 6x°

with 7(x) = p(x) + 1 — £(x).

The advantage of such families is that they fix the discriminant A and the asymptotic
value of p, as we indeed have the limit p — degp/ degrasx — oo. This enables the generation
of good pairing-friendly curves with p bounded below 2 over large prime fields.

Deriving curves from such an explicit family is easy: for an expected p of 7 bits, take a
random integer x having 7/ deg(p) bits, evaluate p(x) and r(x) and repeat the process until
both p(x) and r(x) are primes; this requires an expected O(7?) trials.
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THE BREZING-WENG METHOD

BREZING and WENG (2005 ) adapted the method of [Cocks and PINCH (2001 ) to gen-
erate families of polynomials as defined above. Their constru&ion follows the above except
that the arithmetic is done over polynomial rings rather than over the integers.

Algorithm 1v.3.2.
INPUT: A negative and a positive integer, A and e.
Ourput: A pairing-friendly family of curves given by p(x), t(x), and r(x).

1. Choose an irreducible polynomial r(x) with positive leading coefficient
such that the field Q(x) [ contains /A and an & root of unity (..
Purt=1+, andv=(r— 2)/1/Z, as elements of Q(x) /7.
Lift t and v to L] x) and put p = i(z‘2 —2*A).

Unless p is irreducible, go back to Step 1.
Output p(x), t(x), and r(x).

bl S S

Since the polynomial p(x) is constructed as a sum of squares of lifts from Q(x)/7, its
degree is roughly twice that of ». However, when deg(r) is small, the degree of p(x) can be
much smaller and yield p values below 2; note that deg(p) being smaller is not a problem:
curves defined over large prime fields can still be obtained by evaluating p(x) at large integers
x; in fad, this is preferable since the slower increase of polynomials gives more flexibility.

LARGER CONDUCTORS

To conclude this section, we discuss the results of B. and SATOH (2008).

In this paper, we noted that the two methods described above only fix the complex multi-
plication field or, equivalently, the isogeny class, but not a §pecific endomorphism ring order
O which the complex multiplication method takes as input. Actually, our presentation of
the Cocks—Pinch method above already showed that fa&, since it stated that the order to be
output could be of the form Z + u 0y, for any divisor # of v, where £ —4p = v*Ais the
discriminant of the minimal order Z[=].

This means that, once parameters for a pairing-friendly curve or family have been com-
puted, before applying the complex multiplication method and obtaining an a¢tual elliptic
curve, there is till some choice to be made on the specific endomorphism ring desired. In
the Brezing-Weng method, since v(x) is constructed as (£ —2)/ VA, its degree as polynomial
is likely to be roughly that of 7; this typically gives a large (and predictable in size) pool of
factors to choose from as the condu&or of the endomorphism ring.

Therefore, pairing-friendly curves with non-maximal endomorphism rings 0 can be gen-
erated as easily as maximal ones as long as O is in the range of the complex multiplication
method.
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Denote by &) and &, the elliptic curves with trace #and endomorphism rings respectively
Oy and O = Z+ u0yy; there is an isogeny of degree # going from &) to &,. Computing
this isogeny takes essentially quadratic time in the largest prime factor of #, as we will see in

subsequent chapters. Therefore, as it takes y2ro(D)

A time to generate the curve &, via class
polynomials, using different values for # does not yield fundamentally new cryptosystems; it
simply shows that a small range of conduors is readily available from pairing-friendly curve

generation methods.

IV.4 Variety Generation

As a natural generalization of the problem of pairing-friendly elliptic curves generation,
we now consider generating higher-dimensional pairing-friendly abelian varieties. We will
first give general statements before mentioning state-of-the-art results.

MOTIVATION AND SETTING

From a mathematical viewpoint, it is only natural to switch our focus to abelian varieties
when we feel the pool of interesting elliptic curves has been depleted, since abelian varieties
with an efficient arithmetic (such as Jacobian varieties of genus-2 hyperelliptic curves) have
equally effe@ive and secure pairings; they can even be evaluated faster than that of elliptic
curves as FREY and LANGE (2006 ) demonstrated.

Originally, abelian varieties were proposed for cryptographic use not only as alternatives
to elliptic curves but also as a potential improvement: since the size of the group is g times
the size of the base field, where g is the dimension, the parameters of a cryptosystem based on
dimension-two abelian varieties need only be of half the size of an equivalently secure elliptic
cryptosystem; in addition, the smaller base field can possibly be exploited to yield a fagter (or
at leagt competitive) arithmetic to that of elliptic curves.

Although abelian varieties readily provide a good framework for cryptosystems based on
the discrete logarithm problem only, other faors need to be taken into account for pairing-
based cryptography. Before explaining how the situation degrades for ordinary varieties, let
us recall that two-dimensional supersingular abelian varieties have an embedding degree of
at most 12 and p values which can be close to 1; they are currently the only kind of two-
dimensional abelian varieties suitable for cryptographic use.

All known constructions of ordinary pairing-friendly varieties of dimension two have
large p values: we will see that none has p < 2, and that p values close to 2 are only achieved
by $pecial constru&ions; generic constructions feature p > 4, at the time of this writing.

It therefore appears as if genus-two constru&ions had a lot of room for improvement.
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COMPLEX MULTIPLICATION METHOD

We have seen that the computation of class polynomials, although harder for abelian
varieties of dimension two than for elliptic curves, can be done (and has been done) for a
limited number of orders 0, all of which are ring of integers of quartic complex multiplica-
tion fields with relatively small discriminant.

Therefore, it is even more important to fix O as a first step of any constrution than it
was with elliptic curves. We distinguish two types of constructions:

1. Generic constru&ions, which take an arbitrary maximal quartic complex multiplica-
tion order as input, and output generic pairing-friendly abelian varieties.

2. Specific construcions, which focus on varieties of a particular form (usually implying
that 0 is fixed too) and exploit explicit results due to this form.

Here, by “generic” we mean that the former methods output varieties with no particular
properties other than those required; in particular, the varieties are usually absolutely simple
and ordinary. This is to be compared to the varieties obtained by the latter method which
are typically simple but not absolutely simple.

GENERIC CONSTRUCTIONS

The first constru&tion of ordinary pairing-friendly abelian varieties of dimension g > 1
with cryptographic size are due to FREEMAN (2007). It can be considered a genus-two analog
to the Cocks—Pinch method, and proceeds by solving explicit equations which arise by writ-
ing the chara&eristic polynomial of the Frobenius endomorphism in terms of parameters for
the desired complex multiplication field. The abelian varieties it generates have a typical p
value of 8.

Later, FREEMAN, STEVENHAGEN, and STRENG (2008 provided a cleaner framework
for constru&ing pairing-friendly ordinary abelian varieties of dimension two by using more
of the theory of complex multiplication.

Let 7 be the Frobenius endomorphism of a simple ordinary abelian variety ./ over a
finite field. Their idea was to write the condition that .¢/ has a subgroup of order » with

embedding degree ¢ as
7| Ng(r—1)
7 | (O] e(m_r)

Now let @ be a type on the complex multiplication field K, and denote by ®” and K”
their respective reflexes. The key observation is that, if 7 is a prime congruent to one modulo
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e that éplits completely in K, and if

1_[ (Z mod t¢> =1 and H (E mod ﬁ) ={

ded” bed”

where {, is an e

root of unity and [ J,.q 4t denotes the factorization of 7 in K, then the
type norm = Ny (§) of & is a g-Weil number (that is, a root of a 4-Weil polynomial) sat-
isfying the conditions above asserting that it represents an ordinary pairing-friendly abelian
variety.

Computationally, numbers £ can be constructed from their reductions modulo the prime
factors of 7 so as to satisfy the above requirement; after sufficiently many trials, the integer
q = Ng /Q(E) is expe@ed to be prime, and when it is additionally unramified in K and =
generates K, this yields, by Honda—Tate theory, an isogeny class of ordinary pairing-friendly
abelian varieties with complex multiplication by K.

The method above still produces varieties whose embedding degree is 8 or more, but
FREEMAN (2008) soon adapted it to generate families of pairing-friendly varieties similarly
to the Brezing—Weng method for elliptic curves. He applies it to find many families with p
less than 8, and a particular one with an asymptotic p value of 4 for e = 5.

SpreECIFIC CONSTRUCTIONS

To improve on the p values obtained by constru&ions applicable to arbitrary complex
multiplication fields, one way is to consider abelian varieties .@/ of a particular form and
exploit explicit results regarding this form as much as possible. Usually, .¢/ is taken as the
Jacobian variety Jac(€6’) of a hyperelliptic curve € of genus two with a particular shape of
Weierstrass polynomial.

For instance, consider curves 6 of the form yz = 2% + ax for some number z € F, where
p is a prime congruent to one modulo eight; in that situation, the associated Jacobian variety
Jac(6) is ordinary and simple, and KAwAZOE and TAKAHASHI (2008) exploited explicit
formulas for the characeristic polynomial of the Frobenius endomorphism in terms of 2
and p to obtain an analog of the Cocks—Pinch method for that épecific type of curves. They
obtained a p value of 3 with the embedding degree e = 24.

The varieties they constructed are not absolutely simple: over an extension containing
fourth roots of e, they split as produéts of two elliptic curves. FREEMAN and SATOH (2011)
$tudied such varieties from a much more general perspective: from an elliptic curve & which
is pairing-friendly over some extension of its base field, they explain how to derive a simple
ordinary pairing-friendly abelian variety which becomes isomorphic to a power of & over
some extension of the same base field. As an application, they constru& families of such
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abelian varieties with p = 2.22 and ¢ = 27, which are to date the best known ordinary pairing-

friendly varieties of dimension two.
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COMPUTATION OF
ENDOMORPHISM RINGS






FIVE

Exponential Methods

The last chapter was concerned with constructing abelian varieties with prescribed endo-
morphism rings and we now turn to the inverse problem: that of computing the endomor-
phism ring of a prescribed variety. Our contribution is covered by the next three chapters;
here, we review prior state-of-the-art algorithms, all of which have a worst case running time
exponential in the size of the base field.

All se&ions but the last solely consider ordinary varieties, and our complexity analyses
concern a fixed dimension g and a cardinality ¢ of the base field going to infinity.

If .¢/ is an ordinary abelian variety with complex multiplication field K, an isomorphism
Q(m) = K between the field of fractions of End(.¢/) and K will be undergtood throughout
this chapter; this identifies endomorphism rings uniquely as orders of K.

v.1  Isogeny Volcanoes

Let us first describe the structure of the conneéted component of the isogeny graph con-
taining a prescribed simple ordinary abelian variety over a finite field; we will emphasize
vertical isogenies and their role in the algorithm of KOHEL (1996) for computing endomor-
phism rings in the dimension-one case.

VERTICAL ISOGENIES

Following FOUQUET and MORAIN (2002}, we say that an isogeny is horizontal when
its domain and codomain have isomorphic endomorphism rings, and that it is vertical oth-
erwise; we firgt focus on the latter kind, in the context of computing endomorphism rings.
Later, we will use horizontal isogenies, via complex multiplication theory, as the key to our
subexponential-time algorithm for computing endomorphism rings.

87
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To put to light the relationship between endomorphism rings and vertical isogenies, we
use an observation of KOHEL:

LemmavV.1.1. Let¢: .o/ — B be an isogeny of type (LX) between ordinary abelian vari-
eties defined over a finite field. The order End(9B) is bounded below by Z + L End(.<7 ).

Indeed, since ¢ $plits multiplication by £, we have £ End(.«/) C End(98), and since the
latter is an order it must also contain Z. Note that applying this lemma to the dual isogeny

¢ gives a bound on End(98) from above. To encompass both bounds, we generalize the
inclusion index to the following distance on the lattice of orders.

Definition V.1.2. For any two orders O and O’ of the same field, define the order distance
dist(0,0")as [0 : 0N O+ [0 :0N0O").

Corollary v.1.3. Let ¢ : of — B be an isogeny of type (L[ between ordinary abelian
varieties defined over a finite field. The distance dist(End .o/, End 98) is divisible by g2,

This follows from the lemma, since Z + £0 has index £~ in O, for any order 0. By
exploiting the symmetry of the lattice of orders, the distance could even be proven to divide
2%~1, However, this simple result is sufficient for us; as a consequence, there can only be
finitely many vertical isogenies of a given type leaving from any given variety .@/ since:

— only finitely many orders of K are endomorphism rings, that is, contain Z[=,7];
— therefore there are only finitely many possible degrees for vertical isogenies;
~ since .o/ [£] = (Z/2)* there are finitely many suitable subgroups.

Recall the results of [TATE (1966) and WATERHOUSE (1969):

Theorem V.1.4. [sogeny classes of abelian varieties defined over a finite field are identified by the
charalteristic polynomial of their Frobenius endomorphism. Endomorphism rings of ordinary
varieties <f are exaltly those orders of the complex multiplication field K that contain Z[w,T).

This shows that the structure of vertical isogenies is quite rigid: the possible degrees
are fixed per isogeny class by the index of the minimal order Z[m,7] in the maximal one
of K. Worse, they can be as large as [0y : Z[n,7]] which Lemma showed can only be
bounded by qf /2401 where 4 is the cardinality of the base field and g the dimension of the
variety. This does not give much flexibility for working with vertical isogenies, and can make
it quite costly to evaluate them.

On the other hand, we will later argue that horizontal isogenies are convenient to work
with, as there are infinitely many with domain any given variety.
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FIGURE 2. Stru&ure of the graph of vertical isogenies and of the lattice of orders.

GLOBAL STRUCTURE

As a consequence to the above, the structure of the vertical-isogeny graph can be de-
scribed as resembling that of the lattice of orders which contain the minimal order Z[=, 7).

Corollary v.1.5. Let G be the graph whose vertices are classes of varieties with Frobenius en-
domorphism , up to horizontal isogenies, with edges the vertical isogenies of type (Z [ L. Sim-
ilarly, let H be the graph whose vertices are the orders containing L, m|, with edges between
two orders O G O when there is no 0" satisfying 0 C 0" C 0.

The map (o — .') € G — (End.«/ — End.o/’) € H is bijective on the vertices, and
$plits edges into sequences of at most 2g — 1 edges.

Figure p] is probably worth all the above words: it depicts the graph of vertical isogenies
(the big circles denote horizontal isogenies classes) to the left, and the corresponding lattice
of orders to the right. In fa&, this is a simple case, similar to the situation in dimension one:
each order above Z[m,7] is uniquely identified by its index in O, and vertical isogenies are
in bijection with edges of the lattice of orders, that is, they do not jump orders.

Computing the endomorphism ring of a variety is therefore equivalent to determining
its location up 0 horizontal isogenies in the isogeny graph.

To see how big this stru&ure can be, consider the typical case of ordinary varieties of
dimension ¢ = 2 defined over the prime field with p elements. From the conditions on p-Weil

3/2+0(1) 3+0(1)

polynomials, we deduce that there must be p isogeny classes. Since there are p
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3/2+o(1) isomorphism

isomorphism classes of curves, each isogeny class contains, on average, p
classes.

From now on, we will assume that the discriminant of Z[m, 7] (and therefore its index in
the maximal order) has been factored, so that we can make use of the various algorithms for

lattices of orders developed earlier.

From a cryptanalysis viewpoint, if ./ is an abelian variety of which the discrete logarithm
problem is to be used in a cryptographic scheme, and ./ "isa variety in the same isogeny
class for which this problem is known to be weak, it should be ensured that it is infeasible to
compute any isogeny .o/ — .o/’

By the theory of complex multiplication, there are many horizontal isogenies of small de-
gree going from any abelian variety .¢/ to others with the same endomorphism ring; there-
fore, horizontal isogeny classes can be “walked around” quite easily. Note, however, that
finding an explicit path from a prescribed variety to another might be a difficult task when
the horizontal isogeny class is big, since only generic methods are available.

However, when ./ and .¢/’ have different endomorphism rings, denoting by £ the largest
prime facor of dist(End .</,End .¢/ N, any isogeny chain going from .¢/ to .¢/ " must contain
an isogeny of degree £. Since current isogeny-computing algorithms require exponential time
in log(2), this bounds below the time needed to transport the discrete logarithm problem.

LocAL STRUCTURE IN DIMENSION ONE

FouQUET and MORAIN (2002 gave a metaphorical interpretation of the work of Ko’
HEL (1996) on the structure of the graph of isogenies of type Z /¢, for a fixed prime £, between
ordinary elliptic curves defined over a finite field. In dimension one, a number of properties
which we sum up in the proposition below indeed give graphs of degree-£ isogenies a distinc-
tive volcano look.

Recall that the complex multiplication fields of ordinary elliptic curves are exactly the
imaginary quadratic number fields; orders of such fields are of the form Z + f0) where fis
the index in the maximal order 0.

The following rephrases Proposition 23 of KOHEL (1996) and, for short, refers to iso-
morphism classes of elliptic curves as cu#rves and to the valuation at a fixed prime £ of the
conductor of their endomorphism ring as their depzh.

Proposition v.1.6. Consider the graph of isogenies of prime degree L between isomorphism
classes of elliptic curves defined over a finite field with complex multiplication by the imaginary
quadratic field K = Q(\/ﬁ) of discriminant D, and denote by v the valuation of | O, : Z[x]]
ar L. The following exhaustively describes all edges of this graph.
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FIGURE 3. Typical volcano stru&ture in dimension one when the discriminant is a square
modulo £ (the prime degree of isogenies); here, in the case that £ = 3.

1. From a curve at depth u > 0, there is one isogeny going up to a curve at depth u — 1.

2. From a curve at depth u < v, there are L isogenies going down to £ curves at depth u+ 1,
unless u = 0 in which case there are 8 — 1, 8, or L+ 1 when D is respectively a square, zero,
or a non-square modulo L.

3. From a curve at depth 0, there are two isogenies going to curves at depth 0 when D is a
square modulo £, and one when D is divisible by {.

Again, Figure fj is likely worth the above words: it diplays one connected component of
the graph that we discussed; note that by the proposition and results of complex multiplica-
tion theory, all conne&ted components of this graph are isomorphic.

The algorithm of KOHEL (1996) computes the endomorphism ring of an ordinary curve
& by determining the valuation of its condutor at certain primes £, for which it probes the
location of & in the graph structure that we have just described.

This relies on the vertical stru&ure of this graph being that of trees rooted on the (pos-
sibly degenerated) cycle of curves with locally maximal endomorphism rings. Note that this
§tructure is lost in higher dimension, as we will later see.
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KOHEL'S ALGORITHM

KOHEL (1996) introduced many ideas and results related to the computation of endo-
morphism rings of elliptic curves over finite fields. Let us just describe two of them which
lead to his determinitic algorithm for computing the endomorphism ring End(&) of an or-

dinary elliptic curve & over ]Fq in time 41/3“.

The first idea dire&ly exploits the structure of the volcano discussed above: the valuation
of the conducor of End(&) at some prime £ can be found by determining on which level of
the graph of degree-{ isogenies & lies. To this extent, compute three chains of degree-£ isoge-
nies starting from &; one chain necessarily descends to levels of higher depth, and eventually
hits a leaf, that is, a curve with depth v from which no isogeny leaves but the dual of that with
which we arrived. The set of leaves is called the floor of rationality; its curves only have one
rational subgroup of order £ (whence the expression), and the £ remaining subgroups define
isogenies over an extension of the base field. This gives the following algorithm.

Algorithm v.1.7.
INPUT:  An ordinary elliptic curve & [F .
Ourprur:  The condullor of its endomorphism ring.

1. Count the points of & and deduce its complex multiplication field K.
2. For each prime L dividing [ O : Z[x]):

3 Compute three curves L-isogenous to 8.

4. Keep walking a non-backward chain of C-isogenies from each.
5 Denote by ”e the length of the chain that ends first.

6.  Return Oy : Zl=]]/TT4".

By non-backward, we mean that we avoid duals of isogenies already computed. The firt
$tep uses polynomially many operations in log(g). Each isogeny can then be computed in
time £2+() using the independent improvement of DEWAGHE (1995) and KOHEL (1996),
Sedion 2.4, on the formulas of VELU (1971); this process will be detailed in the next chapter.
Since £ can be as large as /7, the overall complexity is only bounded by g+,

The second idea then comes to the rescue by trading off vertical isogenies for horizontal
ones; the concise presentation below is largely inspired by a talk of KOHEL (2010).

Recall from complex multiplication theory that there are exa&ly # Pic(0) curves with
endomorphism ring 0, and that they form a connected component of the horizontal isogeny
graph. Therefore, when € is large, the value of %, can be tested by comparing the class number
of the order O with valuation #, to the number of curves in the horizontal isogeny compo-
nent. Formally, this gives the algorithm below.
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Algorithm v.1.8.
INPUT:  An ordinary elliptic curve & [T, -
Ourprut:  The condullor of its endomorphism ring.
Count the points of & and deduce its complex multiplication field K.
For each prime-power factor £ < ql/é of [Oy : Z[x]):
Apply the former algorithm.
For each prime-power factor € > ql/ ¢ of (O : Z[x)]:

Count the number of curves having horizontal isogenies to &.

S R »od N

Determine the order whose class group matches.

The horizontal isogenies of Step 5 can be constructed as chains of isogenies of degree up
to 1210g2 A, where A = disc(K), by Theorem [ir.2.8. In addition, not the whole horizontal
isogeny class need be enumerated: it is sufficient to compute enough of it so as to rule out
other orders with smaller class number.

KoHEL (1996) concludes that:

Theorem v.1.9 (GRH). For any real number ¢ > 0, endomorphism rings of ordinary elliptic
curves can be computed in deterministic time g'/>**.

v.2  Higher Dimension

Before presenting methods for computing endomorphism rings in arbitrary dimension,
let us describe more of the structure of isogeny graphs. We start by formalizing the localiza-
tion of the lattice of orders at a prime; this isolates a subgraph of the corresponding isogeny
graph stru¢ture. Then, we move on to describing those specific aspecs of the isogeny graph

which differ from dimension one to dimension two and more.

LocAL ORDER STRUCTURE

Fix a number field K and consider the lattice L of orders @ that contain a prescribed
minimal order m, which will be Z[x, 7] in our applications. The index of any such order in
the maximal order M = O, then obviously divides w = [90T : m].

Now if £ is a prime fa&or of w, we can Jocalize the lattice of orders via the map

L — L,={0eL:[IM:0]|t}
0 — 0,=0+m,
where m, is the smallest order of the codomain, that is, the smallest order with index in

M a power of £. This projects O onto the maximal order 91 locally at all primes but £, thus
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isolating the local information at £. This information can be recombined by the isomorphism

L = He L,
0 — O0+m,
ﬂz ﬁ& «— (ﬁe)

which can be evaluated in time polynomial in log|A|, where A = disc(m), using the classical

algorithms from Chapter 11,

For us, K is the complex multiplication field of an ordinary abelian variety .¢/ over a
finite field, and m = Z[rn,7]. We will often say that we consider the endomorphism ring of
& locally at £ to mean that we consider the localization End(.</) ¢ by the above, knowing
End(.¢/), for each prime facor £ of w is sufficient to identify End(.¢f) exactly.

Since isogenies of degree £” can only move endomorphism rings by distances that are
powers of £, the endomorphism rings of abelian varieties in a conne&ed degree-£ vertical
isogeny class are injectively projected to L,. Therefore, for the purpose of identifying the
endomorphism ring using vertical isogenies, those of degree £ can be considered one prime
£ at a time.

In dimension one, K is an imaginary quadratic field in which orders are uniquely identi-
fied by their index in J. The local lattice L; is then the chain

Oy DL+ DL+ 0D DL+ (.

Consequently, it is really worthwhile for many algorithms dealing with imaginary quadratic
orders to work locally, so as to benefit from this simple structure: this usually yields concep-
tually simpler algorithms. However, from dimension two on, the local lattice is not a tree
but a general lattice itself, so it makes no conceptual difference whether one works locally or
not, although it is advantageous for performance reasons.

LocAL ISOGENY STRUCTURE

Let us now briefly present the major differences between the degree-£ isogeny graph
tructure for elliptic curves and for higher-dimensional abelian varieties. Part of the lagt
chapter will be devoted to giving details and results of computations on these aspects.

Let O be the endomorphism ring of an ordinary elliptic curve defined over a finite field.
The distin&ive look of its isogeny volcanoes stems from two properties:

— Rational primes £ $plit in at most two ideals of 0.

— Ideals of prime norm dividing the index [0y : O] are not invertible in 0.
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FIGURE 4. Graph of isogenies of type (Z/3)* containing the Jacobian variety of the curve
yz = 8x° +3x5 + 7x* + 5x° + 12x% + Sx + 5 over the field with 23 elements. Red circle varieties
have maximal endomorphism ring, and blue triangle ones have index 9 in the maximal order.

By the theory of complex multiplication, the first property implies that elliptic curves
with locally maximal endomorphism ring lie on (possibly degenerated) circles: the crater of
the volcano. When the prime £ is inert, these circles degenerate into single vertices; when
it $plits as pp, then each circle has length the order of p in Pic(€). The second property
implies that there are no horizontal isogenies of prime degree between elliptic curves with
locally non-maximal endomorphism rings, that is, other than at the crater of the volcano.

Both properties are lost in higher dimension; indeed, if @' is an order in a complex mul-
tiplication field of degree 2¢ for ¢ > 1, then:

— Rational primes £ can $plit in up to 2¢ideals of 0.
— Ideals of prime norm not coprime to the index [ : '] may be invertible in 0.

This implies that horizontal degree-£ isogenies between varieties with locally maximal
endomorphism rings now have a slightly more involved stru&ure than a cycle, and that they
might also exit other than at the top of the volcano. Both features are displayed on Figure |§.

We shall say more on this topic in the last chapter. In the meantime, the reader should
not be misled into thinking that all higher dimensional local isogeny graphs portray the same
§tructure as this pecific one; however, this gives an idea why generalizing the algorithm of
KoHEL (1996) for computing endomorphism rings cannot be done straightforwardly.
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PAIRINGS VIA TORSION STRUCTURE

Although endomorphism rings of higher-dimensional abelian varieties cannot be deter-
mined by their vertical isogeny graph structure alone, other structures can be involved in a
hope to adapt the method of KOHEL (1996) to this generalized setting.

[oNICA and JOoUX (2010) recently gave a method for finding subgroups of order £ in
ordinary elliptic curves over finite fields that are kernels of ascending or horizontal isogenies,
meaning that they lead to curves with larger (or equal) endomorphism rings. Essentially,
they exploit the relationship between the rational £-torsion subgroup structure of an elliptic
curve and the valuation at £ of its endomorphism ring. To obtain the subgroup tructure, they
rely on pairing computations and on the algorithm of [COUVEIGNES (2009) for computing
the torsion, which will be discussed in the next se&tion.

This permits one to navigate in the volcano not just blindly relying on the tree struc¢ture
of vertical isogenies, but with “some sense of orientation.” Since we believe their method
should be, to some extent, applicable to higher dimension varieties, we briefly present it.

A theorem of LENSTRA (1996) states the following.

Theorem V.2.1. Let  be the Frobenius endomorphism of an ordinary elliptic curve & defined
over Fq and put O = End(&). The O-modules g(Fqn) and O [(7" — 1) are isomorphic.

Since 0 is a quadratic order, the group structure of the elliptic curve &(F, ) is therefore
of the form Z /N, x Z /N, where N, | N;. In particular, its £*-torsion subgroup struture
is of the form Z /€% x Z /8" and [oNICA and JoUX (2010) derive explicit formulas for the
integers o,y and ;; which show that they only depend on the valuation at £ of the condu&or
of End(&).

To give an example of the pecific way in which «, and & are affeéted by vertical isogenies,
let us reproduce Proposition 4 of [ONICA and JOUX (2010},

Proposition V.2.2. Let & be an elliptic curve of rational 87 -torsion subgroup 7 [0 x 7,/
with o > ay. If P is a point of order 8, then the isogeny with kernel generated by 2201P i
descending.

The computational ingredients are simple: we will present a torsion-finding method in
the next chapter, as it is needed in our own algorithms, and pairing evaluations are used to
test relations between the order of £ -torsion points. Therefore, we believe this method has
agood potential of being generalized to higher dimension, at least partially.

Since it is based on vertical isogenies, this approach is probably not best suited to com-
puting endomorphism rings, as we argue below. Nevertheless, it has other interesting appli-
cations which can be found in the original article.
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LIMITATIONS OF VERTICAL ISOGENIES

Isogeny computation is currently a topic in acive development for abelian varicties of
dimension ¢ > 1. The tate-of-the-art algorithm of [COSSET and ROBERT (2011 can only
compute isogenies of type (Z/£)* and requires the prime £ to be reasonably small: although
the asymptotic complexity is polynomial in £ and exponential in g, the constant fa&tors and
exponents are such that only a much more restricted range of isogenies can be computed than
in dimension one.

We have argued before that vertical isogenies have constrained degrees; if certain iso-
genies are not within reach of known isogeny-computing methods, then their local vertical
isogeny volcano is simply not computable. After our review of previous methods, the next
chapter will present an algorithm which addresses this issue by relying on horizontal isoge-
nies, whose degrees can be chosen with much more flexibility.

Another obstru&ion arises from the type of the isogenies that can be evaluated: consider
a chain of orders

Oc=0,D--D0,=7Z[n7)]

where each order is contained in the following one with prime order £; this is a simple case,
as we have mentioned that there are others for g > 1, but it suffices to make our point.

WATERHOUSE (1969) proved the existence of abelian varieties .o/, with endomorphism
ring 0, and [TATE (1966) proved that there exist isogenies between all of the .¢7;; the degrees
of these isogenies are necessarily powers of £.

However, the kernels of these isogenies need not be of type (Z/£)¢ or a combination of
such subgroups. In other words, in dimension g, we might “skip” up to ¢ — 1 orders when
computing vertical isogenies. In the case that g = 2, for instance, starting from an abelian
variety with endomorphism ring &, and following isogenies of type (Z/£)* we might only
reach abelian varieties with endomorphism ring &, for 7 even, and fail to reach those with
odd. The last chapter will give several examples illustrating this.

v.3 General Methods

Two methods were previously known for computing endomorphism rings of general
abelian varicties .¢/ defined over finite fields. Both test whether elements a of the complex
multiplication field K = Q(m) correspond to endomorphisms of .¢7; doing so for generating
sets of orders permits one to eventually recover the full endomorphism ring.

To find whether o € End(.¢/), the method of EISENTRAGER and LAUTER (2009) tests
if some easy-to-evaluate multiple 7 kills the full  torsion subgroup of .</.
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Recently, WAGNER (2009) designed a new method which can loosely be understood as a
Chinese remainder theorem variant of the latter: to determine whether « € End(.</), it tries
to interpolate the potential corresponding endomorphism over small torsion subgroups.

EVALUATING ENDOMORPHISMS

Let .o/ be a simple ordinary principally polarized abelian variety defined over the field
with g elements. Since the endomorphism ring of .¢7 always contains the order Z[=, 7], let
us explain how the a&tion on .&/ of an endomorphism « of this subring can be evaluated.

Evaluating the Frobenius endomorphism  is straightforward: it suffices to put the coor-
dinates of a point to the qth power, which, using a double-and-add approach, only requires a
number of base field multiplications that is polynomial in log(g). On the other hand, evalu-
ating the Verschiebung endomorphism 7 = g4 /7 is more involved but can be avoided, unless
p divides the conductor of Z[, ] where p is the prime of which ¢ is a power.

Since K = Q(), any clement a € K can be written as a rational polynomial in the Frobe-
nius endomorphism 7: if 2¢ is the degree of the field, there exist an integer 7 and integers o,

forie€{0,...,2¢ — 1} such that
1 )
o= - o,
2"

Computing o therefore amounts to evaluating the Frobenius endomorphism, scalar multi-
plications, endomorphism compositions, and one division. Note that division by 7 is easily
computed on torsion subgroups of .¢f of order coprime to 7: simply multiply by the inverse
of » modulo the order. Subgroups of order not coprime to 7 will soon be addressed.

In the following, « will always be an algebraic integer of K, and we assume this from now
on. Put w' = [0y : Z[x]]; as a group, %Z[w] then contains 0. Therefore, o can be written
in the form above for some integer 7 dividing /. And this is in fact always the case when the
above expression is reduced, meaning that ged(a,, 7) = 1.

Recall from Lemma that &' Jw = [Z[n,7] : Z[n]] = qg@_l)/z where w = [0 :
Z[m,7]] as before. As a consequence, the prime factors of the denominator 7 are those of w
(that is, the degrees of vertical isogenies) plus, possibly, g.

THE EISENTRAGER-LAUTER METHOD

We now present the method of EISENTRAGER and LAUTER (2009); it was first targeted
at testing whether endomorphism rings of abelian varieties over finite fields are maximal, but
it applies to other orders as well. It relies on Corollary 9 which reads as follows.
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Proposition v.3.1. Let .o/ be an abelian variety defined over an algebraically closed field. If o
is an endomorphism of < andn is coprime to the ambient charalteristic, then <f [n] C ker(at) if
and only ifo.[n € End(f ), that is, if there exists an endomorphism B such that o. = nof = fon.

In other words, the endomorphism corresponding to the algebraic integer e kills the full
n-torsion subgroup if and only if & /7 belongs to the endomorphism ring.

As we have mentioned before, when ./ is ordinary, assuming the base field to be alge-
braically closed does not affe& the endomorphism ring; it only demands that we compute
the full z-torsion of .¢7, possibly over an extension of the aGual (finite) base field.

Consequently, an order O of the complex multiplication field K of .¢/ can be tested to
be contained in End(.¢/) by computing a generating set for &, writing its elements « in the
form % >, and testing whether >, o’ kills the full 7-torsion of ./ for all such a. A
module basis for @ has cardinality 2¢, but since Z is contained in both & and Z[n], only
2¢— 1 tests are really required; furthermore, as only an algebra basis is required, much fewer
elements acually need to be tested.

The proposition requires denominators 7 to be coprime to the order g of the base field.
When the index [0 : Z[m,7]] is coprime to g, this can always be made the case: since the
index of Z[ 7, ,qo] in Z[=, 7, «] divides g and both orders contain Z [, 7], this index must be
one, which means that go and « belong exaétly to the same orders above Z[m,7]; therefore,
the factor of 7 divisible by a power of g can simply be dropped.

This method is suited to local computations: similarly to what we did above, if £ is a
prime, one can show that End(.¢/), = 0, can be determined only using elements whose
denominators are powers of £. We will later rely on this local version to determine the endo-
morphism ring locally at small primes £ where our own algorithm fails to compute it.

When gis fixed and we work over base fields of increasing prime cardinality g, it becomes
increasingly rare for g to divide the index Z [, 7], although this can be seen to happen. In
those cases where we want to determine the endomorphism ring locally at a large prime, the
present method is probably not the best suited in the first place.

Two buildingblocks remain to be explained: computing the full £-torsion, and efficiently
finding the endomorphism ring by testing whether @ C End(.¢/) for chosen orders O'; al-
gorithms for both will be described and analyzed in the next chapter. When g is fixed and 4

goes to infinity, we deduce that the worst-case overall complexity of this method is
€2g+o(1) 10g2+o(1) q where P = qu/ZJro(l).

Note that in the case that we only wish to test whether End(./) is maximal, FREEMAN
and LAUTER (2007 subsequently improved this method using $pecific probabilistic tests.



100 EXPONENTIAL METHODS

CORRESPONDENCES AND ENDOMORPHISMS

Let us now briefly introduce elements of the theory of correspondences as background
material for the work of[WAGNER (2009 ), which will be discussed below.

First define afuncion field K over k (which we write K/£) asa finitely generated extension
of transcendence degree one. In Chapter 11, we saw that funion fields arise from algebraic
varieties, but here we will work with them abstra@ly. For details on the following, we refer
to Chapter 1v of the colle&tion of le&ures by DEURING (1973).

Definition v.3.2. Let K/k be a_function field, and X' [k an extension field. There exists a
Jfunction freld L] such that L contains K, INK = k, and L is the composite extension of K and a
subfield of I that is k-isomorphic to K.

The function field L[ is called the constant field extension of K/k by K /.

DEURING (1937) introduced correspondences as ideals of maximal orders of fun&tion
fields L/Z, up to both principal ideals and constant ideals, that is, ideals with nontrivial inter-
section with /. When L is the congtant field extension of a funétion field £(6’) /£ by another
k(6) [k where 6 and %6’ are two algebraic curves defined over a finite field £, he showed
that correspondence classes represent isogenies from the Jacobian variety of 6 to that of 6.

In the particular case that 6 = 6, this gives a bijection

C:End(Jac 6) — {correspondence classes} = J(G] )/ ~

which is compatible with the ring tructure in the sense that for all endomorphisms ¢ and 8
we have C(a + ) = C(«) - C(B), and similarly there exists a computational way of deriving
the composition C(a o ) from C(«) and C(P).

For instance, corres‘pondences representing the Frobenius endomorphism 7, the Ver-
schiebung endomorphism 7, and the identity I are easily obtained; multiplication-by-7 is
then represented by C(I)”, and so on.

Finally, and this is maybe the most crucial point for what follows, the action of a corre-
$pondence on a point, that is, that of the endomorphism it represents can be evaluated simply
in terms of elementary fun&ion field operations.

WAGNER'S ALGORITHM

To determine whether some prescribed algebraic number of Q@ ® End(Jac 6') represents
an endomorphism, start as before by writing it as an element o € Z[r] divided by some inte-
ger 7; the correspondence class C(«) is easily computed from C(w), so it remains to determine

whether it can be divided by 7.
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The main idea of[WAGNER (2009 is to interpolate the hypothetical correspondence class
C(a/7) over a set of small-torsion points: let P, be a point of Jac(6’) of order m;; if it exists,
C(a/n) should a& as

P, — (»~' mod m,;)C(a)(P,);

and we can write equations asserting that a formal correspondence class D a&s this way.
WAGNER (2009) gives an upper bound on the number of points P, required to completely
chara&erize the a&ion of &/, that is, ensuring that if the system admits a solution D, then
we must have D = C(a/7), and as a consequence o/ € End(Jac 6).

He exhibits correspondence class representatives which are compatible with the above
operations and therefore allow efficient correpondence class computations. These repre-
sentatives are written in Hermite normal form and are almogt entirely determined by their
norms due to the restritive conditions required for being a representative.

Therefore, WAGNER (2009) focuses on interpolating the norm, which is of the form

l—lf ,
NL/k((g)(C(rx/n)) =+ Z;x’
=0 &

for some degree / < g, where the indeterminates /; and g; are polynomials of bounded degree
with cocfficients in £(6); see “Abschitzung der Grade der Polynome in x,” in Se&ion 4.5
on page 99.

The whole procedure is summarized in “Algorithmus 5: Approximation” of the same
section on page 103. That algorithm takes as input a Z-basis  of an order O of which C(f)
is known, an element & of some order @, and an integer #; if /7 is an endomorphism, it
returns a correspondence representing it, or returns false otherwise.

As we will describe in the next chapter, being able to test whether prescribed orders &
are contained in the endomorphism ring suffices to determine it in a polynomial number of
$teps in the size of the base field.

A short analysis of the method can be found in Se&ion 4.9; in brief, the degree of the
norm of &/ is polynomial in 7 and it thus requires interpolating a number of points which
is polynomial in 7. In the worst case, the overall algorithm therefore uses exponential time
in the size of the base field.

Nevertheless, it has the interesting feature that, as 7 grows, testing whether o./7 is an en-
domorphism becomes easier; indeed, the size of the hypothetical corre$pondence represent-
ing it then gets smaller, so a shorter system of equations can be used. Note that all methods
we have previously seen showed the reverse phenomenon.
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v.4 Supersingular Methods

For the sake of completeness, let us address the case of supersingular elliptic curves in this
section (and this se&ion only). Known methods for computing endomorphism rings of such
curves all have an exponential asymptotic running time in the size of the base field; however,
contrary to the ordinary case, we are quite pessimistic about the possibilities of improvement.

In addition to the methods presented here, we note that KOHEL (1996) has an algorithm
that gives some information on the endomorphism ring of supersingular curves which suf-
fices to determine it only in $pecific cases; however, we are unaware of further developments
of this technique.

ISOGENOUS SUPERSINGULAR CURVES

We first present background results on supersingular elliptic curves, their isogeny classes,
and their endomorphism rings. Most results originate from DEURING (1941).

Recall that an elliptic curve & defined over a finite field of chara&eristic p is supersingular
when it has no p-torsion. As a meager compensation for the troubles ahead, we have:

Proposition v.4.1. Up 0 isomorphism, every supersingular elliptic curve defined over a finite

field of characteristic p is defined over sz.

As a consequence, it is simple to enumerate all such isomorphism classes. Endomor-
phism rings of supersingular curves can similarly be enumerated simply.

Proposition V.4.2. Endomorphism rings of supersingular curves correSpond bijectively to max-
imal orders of Q, .., the quaternion algebra ramified only at p and oo. Tiwo such curves defined
over sz bave the same endomorphism ring if and only if they are conjugate under Gal(]sz / ]Fp).

This is why we are sceptical as to the possibilities of substantial improvements on the
computation of endomorphism rings in this case: since all orders are maximal, and there are
exponentially many of them, there seems to be no way around considering each, one ata time.
Although we have not yet presented our method which exploits the stru&ture of the lattice of
orders in the ordinary case, the localization that we have described earlier (and which suffices
in dimension one) should convince the reader of the benefit of having such a struture.

As for ordinary curves, there is a theory of complex multiplication; however, care must
be taken due to its non-commutativity.

Proposition V.4.3. Fix a supersingular curve &. For any left ideal a of End(&) coprime to p,
the degree of the isogeny ¢, with kernel ker(¢,) = Mo ker(a) is the norm of a; all isogenies

between supersingular curves arise in this way.



V.4. SUPERSINGULAR METHODS 103

If & = ¢,(&), then End(&”) is the right order of a, that is, {x € vam cax C al If
additionally 8" = ¢, (), the curves &' and " are isomorphic if and only if a and b are in the

same left ideal class.

Much more can be said on the structure of this isogeny graph: for instance, when p =
1 mod 12, it is a Ramanujan graph, a particular case of expander graph with desirable prop-
erties, such as mixing properties for random walks, which makes it notably a suitable building
block for a hash fun&ion, as was proposed by CHARLES, LAUTER, and GOREN (2009}

QUATERNION ALGEBRAS

To give the above an effetive flavor, let us briefly recall various results related to the
§tructure of quaternion algebras.

The stru&ture of the quaternion algebra Qp,w is readily given by a result of PIZER (1980)
which $tates that

Q)0 = QUi k) /(i = a,f* = buij +jisij — k),

(-1,-1) ifp=2,
) (=1,-p) ifp=3mod4,
for (a,b) = (=2,—p) ifp=5modS8,
(—p, —q) ifp=1modS8,

where ¢ can be any prime congruent to three modulo four, modulo which p is not a square.

To enumerate maximal orders of this algebra, we can exploit the proposition above which
states that the isogeny graph is connected. Therefore, if € is any maximal order of @, , and
a ranges through representatives of each left ideal class of @, then the right order of a ranges
through all maximal orders of the quaternion algebra Q‘D’w.

THE MCMURDY-LAUTER METHOD

To find out which épecific maximal order of Q, . is isomorphic to End(&), MCMURDY
and LAUTER (2004) proposed to

— count the number of endomorphisms of & of degree ¢;
— compare it to the number of elements of O of norm ¢.

By the proposition we saw earlier, isogenies correspond to ideals, and endomorphisms
correspond to principal ideals. Therefore, when O is the particular order isomorphic to
End(&), the two numbers must be equal.
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Repeating the above for various primes £ different from the chara&eristic rules out orders
O from the candidate list, so that eventually the endomorphism ring alone remains. This
formally proceeds as the following procedure.

Algorithm v.4.4.
InruT: A supersingular elliptic curve & [F =
Output:  An order isomorphic to its endomorphism ring.

Let L be the list of maximal orders of Q, .
Until L is a singleton.:
Pick a prime £, and count the degree-8 endomorphisms of &.
Rule out orders of L with a different count of elements of norm {.
Return the only element in L.

R ™ N

For Step 4 MCMURDY and LAUTER (2004) derive an explicit method in Se&ion 3.2; it
boils down to finding integer solutions of a quadratic equation.

This procedure behaves quite well in pradice: its bottleneck is the enumeration of iso-
genies of degree £ from & to &; MCMURDY and LAUTER (2004) give explicit formulas for
£ =2 and £ = 3, and the isogeny-computing machinery for elliptic curves is nowadays at a
stage of development where such operations can be performed quickly for a large range of £.

However, we stress that its termination is not guaranteed, as two distin&t maximal orders
of Q, ., might have the same number of ideals of norm £ for infinitely many primes £.

CERVINO’S ALGORITHM

Although testing the norm of ideals alone is not sufficient to guarantee the termination
of the endomorphism-ring identifying process, CERVINO (2004) observed in his Proposi-
tion 4.5 that considering both the norm and the trace yields a sufficient amount of informa-
tion after finitely many tests. More precisely, he proved the following.

Proposition V.4.5. No two maximal orders of the quaternion algebra Q, ., have the same set
{(tr(oc),N(a)) :0€ O,N(a) < b}
where b is a certain bound which is O(p).

The norm and trace of such numbers map to the norm and trace of the chara&eristic
polynomial of the corresponding endomorphism: we have

0% — tr(94)0g + N(9,) =0
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since the degree (or norm) of an isogeny is always known (as we constru¢t them from their
kernels), the trace of ¢ can be found by testing the possible values in turn over a sufficiently
large extension of the base field.

This gives the following algorithm.

Algorithm v.4.6.
INPUT: A supersingular elliptic curve & [F e
OutpUT:  An order isomorphic to its endomorphism ring.

1. Let L be the list of maximal orders of Qp,w.

2. Forsuccessive primes 8, Starting from & = 2:

3. Compute the multiset I = {tr(¢)},
where & ranges over degree- endomorphisms of &.

4. Rule out from L those orders O for which 1= {tr(B)}
where B ranges over the elements of norm Lin O.

5. Return the only element in L.

By the proposition above, this algorithm terminates after O(p) operations. Nevertheless,
since computing the trace of the endomorphisms is extremely costly, the former procedure is
more suited to a large range of practical problems, although it is not guaranteed to terminate.
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SIX

Subexponential Method

We have so far discussed endomorphism-ring computation methods with an exponential
worst-case runtime, and will now present one of subexponential complexity.

This method was first introduced in B. and SUTHERLAND (2009) under a form quite
$pecific to elliptic curves, and relying on several unproven assumptions. All assumptions but
the GRH were later removed in B. (2011) by modifying parts of the algorithm. Here, we
present a variant of this algorithm which applies to general abelian varieties.

W stress that this chapter considers abelian varieties without taking polarizations into
account, which is not an effective approach in dimension g > 1, but allows for a conceptually
simpler presentation. For g = 1, where polarizations are unnceded, it is highly effe&tive, and
the next chapter will be devoted to rigorously proving its probabilistic runtime under the
generalized Riemann hypothesis, and its unconditional correétness.

Modifications that make our method practical for ¢ = 2 will be presented in the last
chapter; they are expectedly slower and rely on more unproven hypotheses.

vL.1  Algorithm Overview

Let .¢/ be a simple ordinary abelian variety defined over a finite field; denote by K its
complex multiplication field and fix an isomorphism 1 : K — Q ® End(.¢/), which will be
implicitly understood from now on.

To locate End(.¢/) amonggt candidate orders of K, the main idea to our subexponential
method is to compute certain properties describing the Picard groups of candidate orders,
and to test them via complex multiplication in the horizontal isogeny graph. Since there
exist subexponential algorithms for computing Picard groups we are done... Almost so.

We now give the main ingredients enabling this approach. Computational details are
given in subsequent se@ions, while proofs and rigorous analysis are in the next chapter.

109
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LAaTTICE OF ORDERS

Let us first briefly recall results that express where the endomorphism ring is to be sought.

Let ./ be a simple ordinary abelian variety of dimension g defined over a finite field
with ¢ elements. The Frobenius endomorphism 7 acts on geometric points of .¢/ by raising
their coordinates to the qth power; its characeristic polynomial X/ﬂ(x) is a g-Weil polynomial,
which means that it is monic, has integer coefficients, and has 2¢ complex roots, each of
absolute value ,/.

Computingthis polynomial is equivalent to counting the number of points on the variety
over . forne{l,2,...,g}, as we have

#ﬂf(Fqn) = Res, (X/n(u),u” - 1) .

SCHOOF (1985 proved that that this can be done in deterministic polynomial time in log(g)
for elliptic curves; his algorithm was later generalized to abelian varieties by PILA (1990).

Many endomorphisms stem from the Frobenius endomorphism, since QQ ® End(.¢/) =
Q(m). Since the complex multiplication field K = Q(w) is isomorphic to Q[x]/(x,_(x)), by
computing the Weil polynomial of .¢/ we have already determined the endomorphism ring
up to fracfions. Fixing1: K — Q ® End(.¢/) means fixing this isomorphism; here, we simply
put x = w and make this implicit from now on.

This isomorphism maps End(.¢/) to an order in K so we have

Z|w, 7w C End(./) C Oy;

the index [0 : Z[r,7]] is the square part of the quotient disc(Z[r,7])/ disc(0), and it
measures how broad the search-range is. As a simple upper bound, we use A = disc(Z[w,7])
which Lemma proved can be as big as qu /2+0(1) in the worst case.

The orders of K containing Z[m, 7] form the lattice of orders. Since it might contain
exponentially many orders, we need to devise a better way of finding End(.¢/) than testing
each order in turn. Computing End(./) locally at many primes £ helps, but is not sufficient
since (apart from the case that g = 1) the local lattices themselves might not have any nicer
structure than the general one.

Ingtead of localizing, we use a lattice-ascending algorithm designed to only test polyno-
mially many orders. For those orders 0, it tests whether O C End(.¢/) using tools derived
from complex multiplication theory.

PRINCIPAL IDEALS AND CERTIFICATES

We exclusively consider ideals of norm coprime to A, so that they are unramified and
invertible in Z[=, ). Recall that such ideals of @ a& on the set AV ; (k) of abelian varieties
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defined over the finite field £ with endomorphism ring O by a : .o/ — ¢_(.e/) where ¢,
denotes the isogeny with kernel ﬂuea ker(a). We assume that this induces a faithful and
transitive action of Pic(€) on AV ;(k); by complex multiplication theory, this is always the
case when O is an imaginary quadratic order, or a ring of integers.

Intuitively, the stru&ure of the Picard group of End(.¢f) therefore dictates that of the
horizontal isogeny graph component containing .¢f. Our approach is essentially to look at
the latter and deduce information on the former, which might eventually lead to the identi-
fication of End(.¢f). We formalize the notion of s#ucfure by the following concept.

Definition VI.1.1. Az ideal 0 of 7|, ) is said to be principal in O if the ideal a0 is principal;
it is said to be principal in the isogeny graph when the isogeny ¢, is an endomorphism of .o/ .

In fact, we meant ¢, 4 s rather than ¢, since we want it to act on .o/ even though a is
an ideal of Z[m,7]. Obviously, since we are looking for End(.e/) we cannot really compute
aEnd(.¢/), but we will see later that ¢ . d(.o) Can be computed regardless.

Therefore, an ideal is principal in End(.¢/) if and only if it is principal in the isogeny
graph, which gives a way to tell the endomorphism ringapart from other orders of the lattice.
To avoid testing all orders, we rely on this simple result.

Lemma V1.1.2. Ifan ideal is principal in some order, it is principal in all orders containing it.

Indeed, if 0 C 0" are two orders containing Z[r, 7], the map a € J(0) — a0’ € J(0")
induces, as we have mentioned before, a surjective morphism of Picard groups. Intuitively,
this means that more and more ideals become principal as we ascend the lattice of orders, or
equivalently that Picard groups get smaller. This is why we chose Z[, 7] to be the ring of our
ideals: via the morphism a — a0 we can map ideals of Z[m,7] to any order of the lattice.

Computationally, the lemma above implies that by verifying whether principal ideals of
O are also principal in the isogeny graph, we can convince ourselves that @ is contained in
End(.e/). However, this approach does not prove anything (in fa&, it fails in certain rare
cases that we will cover later); to rigorously assert the location of the endomorphism ring,
we use the following concept.

Definition V1.1.3. A certificate for the order O consists of:
— afamily of orders O, and ideals a, principal in O, but not in O,
~ afamily of orders O and ideals a; principal in O but not in 0,

such that O is the only order above |, satisfying O, ¢ O and 0} 2 O for all indices.
1t is said to be verified on the abelian variety .o if the ideals a; are principal in its isogeny
graph whereas the a; are not.
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If a certificate for the order O is verified on the abelian variety ./, by the contrapositive
of the lemma above, then we have End(.¢/) = 0. In fa&, the family (0, a,) is effe&ively
constructed when one executes the lattice-ascending walk that we are about to describe; the
family & is then typically chosen to consist of all orders immediately below @, that is, just
one level below @ in the lattice of orders.

The next se&tion will address the search for ideals and, as a consequence, show that it
takes L(qgZ )1/ #r+o(V) time to generate a certificate that can subsequently be verified within
L(q'gZ )37+ gperations, as ¢ goes to infinity and y is any positive constant real number. This
eliminates the need to carefully ensure the corre¢tness of our algorithm: we can simply run
an algorithm that is only proven to return a corre¢t result with probability & > 0 and, when
it does return a result, verify it using our certificate method; if it proves to be incorre&, we
start over. The expe&ed overhead on the complexity is 1 /e.

COMPUTING FROM BELOW

To search for the endomorphism ring End(.¢/) in the lattice of orders, we zes? whether
orders O lie below it by selecting principal ideals of them and checking whether they are
principal in the isogeny graph.

It remains to design a general strategy to sele@ the orders to be tested.

We shall say that an order O lies directly above another 0" if we have @ D 0 but there
exists no order 0" different from O and O’ satisfying 0 D O "5 0'; we also define the
corresponding notion of “dire@ly below” where inclusions are reversed. Asan example, when
an order contains another with prime index, then it must lie dire¢tly above it.

To ascend the lattice of orders, we proceed one step at a time: each step consits in enu-
merating all orders lying directly above a prescribed order 0’. We have seen that the index of
0’ in any order directly above it is a divisor of €%~ where £ is a prime fa&or of [ Oy : Z[m,T]].
By facoring A we therefore obtain the possible values of €, and we can then use the algorithm
described earlier that ligts those orders containing 0’ with a prescribed index.

Our $trategy tolocate the endomorphism ring in this lattice by testing orders and ascend-
ingin corresponding directions works as follows: given some order 0 contained in End(./)
(we start with 0’ = Z[n,7)), find some order O dire&ly above 0’ which lies below End(.</);
then replace 0’ by O and iterate the process. The ascension ends when no @ is found to be
contained in End(.¢/); then, we must have End(.e/) = 0’. See Figure [ where we start from
the bottom and ascend towards orders @ for which the statement @ C End(.</) holds.

Formally, we obtain the following algorithm.
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FIGURE 5. Locating End(.¢/) by ascending a test-sequence of orders.

Algorithm VI.1.4.
INPUT: A simple ordinary abelian variety <f over a finite field F v
OutpUT:  An order isomorphic to its endomorphism ring.

Compute the Frobenius polynomial y, (x) of .o/ .
Eactor the discriminant A and construct the order 0' = Z[n, 7).
For orders O directly above O':
IfO CEnd(.) set O' «— O and go to Step 3.
Return 0’

SR Rh N

To test whether an order lies above O we compute sufficiently many principal ideals of it
and test whether they are principal in the isogeny graph. Before detailing this process, let us
present an alternative approach to locating the endomorphism ring in the lattice of orders.

The next se&ions will show that it requires L(|A|)l/ #r+o(1) time to find random principal
ideals @ whose associated isogenies can be computed within L(|A|)*"*() operations; to

balance these costs, we set y = 1/ 4/12¢ and since |A| < qgl“'(l) we find an overall runtime of
L(g)ev/ /2o,

Note that for g = 1 we can do better by using a faster isogeny computing method whose
exponent is just 2y instead of 3¢y for the arbitrary-dimension method.
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COMPUTING FROM ABOVE

Rather than start at the bottom of the lattice and ascend towards the endomorphism
ring, we can generate certificates for each order tarting from the top and attempt to verify
them; to ensure this only uses subexponentially many operations, we #7472 the lattice of orders
as we go. The runtime is then bounded in the size of the output, rather than the input. The
method of WAGNER (2009) had a similar feature; however, our bound is subexponential.

In most cases, there are only polynomially many orders in log|A|, but to give a subexpo-
nential bound on the complexity of our algorithm when there are exponentially many, we
eliminate small branches of orders as we go; these branches correspond to small prime power
factors ¢ of the index [0y : Z[n,7]]; by “climinating them,” we mean computing the endo-
morphism locally at £ using the method of EISENTRAGER and LAUTER (2009). Formally,
we proceed as follows.

Notation. Let b_(f(x)) denote any function satisfying Ax) < b, (f(x)) < flx)"**!) that can
be evaluated in essentially linear time in f{x).

Algorithm vIL.1.5.
INPUT: A simple ordinary abelian variety & over a finite field F -
Outrut:  An order isomorphic to its endomorphism ring.
1. Compute the Frobenius polynomial y, (x), and factor (O : Z[m,]] as ] [

Set S «— @ andr 2.
For all primes € with P& < b_ (cxp v log(r)> :

Ift ¢S, compute End(.e/ ), and add L 10 S.
For all orders O with N8 €S, O, = End(.«f ), and | disc(0)| < »:

1est whether End(.e/) = O if yes, then return O.
Set r «— p1+1/b,0ogd) and go back to Step 2.

]

N S R w

Step 4 applies the method of Eisentriger and Lauter locally at £; its complexity is there-
fore £2¢°**() omitting polynomial factors in log(g). The inequality of Step 3 thus ensures
that no more than L°((7) operations are $pent there.

The cost of generating a certificate for @ is bounded by L(disc(ﬁ))l/47+o(l) when the
verification time is bounded by L(disc(€))*"**(); to balance these, Step 6 usesy = 1/ 4/12¢

which gives it a complexity bound ofL(disc(ﬁ))‘/;g/ZH(l). Step s ensures that:
— only orders that match the local information obtained in Step 3 are tested;

— testing them all uses at most LOW () computing time.
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Step 7 increments 7 little by little so that, on the one hand, it never goes much beyond the
discriminant of End(.¢/), and, on the other hand, it takes only O(glogg)* iterations for 7 to
reach |disc(Z[=,7])| = O(qu (1)) and thus for our algorithm to have considered all orders.

To bound the number of orders to be tested in Step 6, assume that there are at most
7' orders contained in @ with index 7; this is a classical fa& for ¢ = 1 (since orders are
identified by their index in 0 ) and it has been proven by NAKAGAWA (1996) for g = 2. We
thus find that for 7 = #* the number of orders satisfying the condition of Step s is bounded,
up to exponent 1 + o(1), by the number of divisors of

[ﬁK:Z[w,Fr]]/ [T
%‘m@«:xp‘/@

that are less than 7, where the denominator removes prime powers from S; a crude calculation
shows that this number is bounded polynomially in log(g).

Ignoring the cost of fatoring the discriminant A, and omitting polynomial factors in
log(g), we obtain an overall complexity of

L (disc(End 7)) ¥/

vi.2 Finding Principal Ideals

To test whether some prescribed order @ lies below the endomorphism ring of a sim-
ple ordinary abelian variety .¢/, we first compute principal ideals a that discriminate the
§tru&ture of Pic(&) from that of other orders containing Z [, ]. Then, we evaluate the cor-
responding isogenies; for this reason, we compute the faGorization a = ] 1p% and then
evaluate ¢, as the composition of z, times the isogeny ¢,,, for all p.

We therefore consider smooth ideals with small exponents, which we call short ideals.

GENERIC METHODS

Let B be a generating set of ideals for the Picard group of an order 0 in a number field
K; for ingtance, under the generalized Riemann hypothesis, we can take for ‘B the set of
prime ideals of norm less than 12 1og2 | disc O|. By computing relations of B, we mean finding
produés of ideals of B that are principal.

For convenience of the exposition and of the implementation, let B acually generate the
Picard group of the minimal order m; this way, the set {60 : b € B} generates the Picard
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group of any order O containingm, and its relations are ve&ors under the produét map

0‘-{ 7% — J(m)
’ X  — r[pegB P

If we let o5 (x) denote the ideal class of Pic(0) containing the ideal o(x) 0, then the set of re-
lation ve&tors x € Z for O is exa&ly the lattice A, = ker(a ;). Note that since B generates
the Picard group, the map 0 is surjective and we have

PicO ~Z% /A,

which means that computing relations is essentially equivalent to computing the group struc-
ture of Pic(0). The principal ideals of O we search for will be obtained in the form o, (z),
where z € A is a relation vector to be found.

To find kernel vectors of o, we first need to identify a finite subset of 7B which is
big enough to contain a generating set for A,. Let # denote the class number of O since
Pic(0) is generated by B and its elements have order 7 at most, the box {0,.c,m — 1}%
maps surjetively onto the Picard group via o;. As a consequence, there exists a generating
set for A, contained in the box B = {0,...,#}®. We spare the proof to the reader, since a
much better bound will be derived (and proved) shortly.

Note that the class number 7 satisfies » = |disc ﬁ|1/2+0(1
can be used to derive effe@ive, tighter bounds on 7.

); however, analytic methods

To find relations of the group G = Pic(@) on B, one can use the baby-step giant-step
method. It consists in splitting the basis 9B into a disjoint union B, LI ‘B of two sets of
approximately equal size, so that this plitting carries over to box B and decomposes it as a
direc produ@ B, x B, where B; is the set of vectors of B with support in B

Algorithm vr.2.1.
INPUT: A box B where to look for relations under 45 : B — G.
Ourput: A relation, that is, a vecfor ofker(c ).

1. Split B as the direct product B, x B,.

2. Forvellors x € By: Slore x in a table indexed by o 4(x).
3. Forvectorsy€B,:

4 If(05(0)) ™" = 0 yx, return the relation x +y.

The table constructed in Step 2 is typically implemented as a hash table, so that the cost
of the lookup in Step 4 is negligible. A Gray code can be used to enumerate elements of
B, and B, so that cach evaluation of o; just requires O(1) operations. This algorithm then
requires an expected O(4/72) number of group operations and storage space.
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Note that a $pace-efficient generic method for finding relations in arbitrary finite groups
will be presented in the next chapter; it can be used in Picard groups in particular. For the
moment, let us discuss a simple application of such generic algorithms to the computation
of endomorphism rings.

RELATIONS OF THE ENDOMORPHISM RING

Let us briefly present an alternative to our approach to computing the endomorphism
ring End(.¢/) of a simple ordinary abelian variety ./ defined over a finite field: we first gave
amethod for computing End(.¢/) from below by finding principal ideals of candidate orders
and testing them in the isogeny graph; then we gave a method which works from above by
attempting to prove that 0 = End(.¢/) for orders O of increasing discriminant.

A more direct way of computing End(.@/) from above is simply to reverse our first method
which proceeds from below: rather that finding relations of orders and evaluating them in the
isogeny graph, we can find relations in the isogeny graph and evaluate them in Picard groups.

This gives the method below.

Algorithm vI1.2.2.
Input: A simple ordinary abelian variety < over a finite field IF .
OutPUT:  An order isomorphic to its endomorphism ring.

1. Compute the Frobenius polynomial ,_(x) of ./ .

2. Faltor the discriminant A and construct the order 0’ = Oy
3. Fororders O directly below O':

4. IfEnd(.e/) C O set O' < O and go to Step 3.

5. Return O’

To test whether End(.¢/) lies below some order @, we find isogeny chains from .&/ to
itself: in the baby-step giant-step algorithm above, it suffices to replace o; by the map

xeN‘B._)¢plo...o¢plo¢pzo...o¢p o(ﬂ)

2

X, times X

times
P1 2

p

(better yet, use the Pollard approach of the next chapter); once a principal ideal of the isogeny
graph is found, it suffices to check whether it is principal in the order 0 as well.

This approach has the advantage that, quite often, only one relation of the isogeny graph
suffices to rule out all orders but one, so the endomorphism ring is computed in just one shot.

As before, this is a probabilistic process: the ideal we find in End(.¢/ ) might aGually also
be principal in some $tri¢tly smaller order; in order to increase the probability of success, we
can use several relations, but to unconditionally prove the output (henceforth transforming
our method into an algorithm of Las-Vegas type), we have to rely on certificates.
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SUBEXPONENTIAL ALGORITHMS

SEYSEN (1987) first gave an algorithm for finding relations of A; when O is an imagi-
nary quadratic orders; building upon it, HAFNER and MCCURLEY (1989 proved that the
full Picard group $tructure, that is, a generating set for A, can be determined in proven
subexponential time under the generalized Riemann hypothesis. This was later extended by
BUCHMANN (1989] to arbitrary number fields, under additional heurigtic assumptions.

Allfind relations usinga classical smoothness-based technique which exploits the integer-
like structure of ideals in number fields.

Algorithm vr.2.3.
INPUT: A box B where to look for relations under a5 : B — Pic(0).
Ourprut: A relation, that is, a vecfor ofker(c ).

Tike a random element x € B and compute a = o ;5(x).
Reduce a to an equivalent but smaller ideal b.

If possible, find a preimage y € 0'; (b) and return x — y.
Return to Step 1.

R ™d N

To find preimages easily, SEYSEN (1987) takes as basis *B the set of prime ideals of norm
less than some bound, so that the existence of a preimage in B can be asserted by a smooth-
ness test on the norm of the ideal, and the facorization of that norm yields the preimage.
Several ingredients are needed to bound its complexity, the most important one being that
arandom integer in {1,...,7} has a probability L () ~1/2e+oD) of being L(7)‘-smooth, for any
constant ¢ > 0; in the case that @ is an imaginary quadratic orders, SEYSEN (1987) proved
that norms of reduced ideals are distributed as random integers; in fac, this behavior is ob-
served, although not proven, for orders of general number fields as well.

The next chapter will present all these arguments rigorously.

SMALLER BOXES

Since our relations (and the ideals derived from them) are expe&ed to discriminate the
endomorphism ring from other orders of the lattice, we must ensure that when we generate
arelation in A, for some order O, it does not belong to A/ for some other order o'. Of
course, we have seen that @ C 0’ implies that A, C A, and our lattice-ascending algo-
rithm actually takes advantage of that, so we should rather require the above for orders 0"
not above 0, thatis, 0 ¢ 0’

Note that there exist orders 0 # 0’ with Ay = Ay, but not too many: for ¢ = 1, there
are just three such cases, and we can easily fall back on a $pecific method to deal with them.
Rigorous details will be given in the next chapter.
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In general, to ensure that the relations z we generate belong to A, but not another A/,
we require that they are 7andom relations in the sense that, for any order 0" above 0, we have

#Pic O’
#PicO

Prob [zeA@/|z€Aﬁ] = +0(1);

in other words, the relation is quasi-uniformly digtributed in the quotient A 5/ /A,.

To obtain random relations of @, HAFNER and MCCURLEY (1989) used ve&ors z with
coordinates up to n*, where 7 is the class number. In the Picard group, a double-and-add
method can be used to compute each term p*» in time linear in log(n), so that o; can be
evaluated in subexponential time.

However, for the purpose of checking whether the ideal o(x—y) is principal in the isogeny
graph, the associated isogeny needs to be evaluated. For this, there is no double-and-add
technique, and the isogeny ¢p has to be evaluated z,. times, which makes the bound #* on
the coordinates quite painful. Note that since y is the exponent ve&tor in the fattorization of
the norm of a reduced ideal, it is at most linear in log#, so what is really needed here to keep
the isogeny-computing cost low is just to find a smaller box B for which the quasi-uniform
distribution of classes still holds.

A conje&ural small box was first used by B. and SUTHERLAND (2009J; later, [CHILDS]
Ja0,and SOUKHAREV (2010) noted that a result of JAO, MILLER, and VENKATESAN (2009 )
enables to prove, under the generalized Riemann hypothesis, that such a box indeed yields
random relations. We conclude with an explicit version of the general algorithm.

Algorithm vI1.2.4.
INPUT:  An order O of discriminant D.
Ourtput: A random relation z € A 4.

Form the set B of primes p of O with norm less than N = L(D)".

2. Draw uniformly at random a veclor x € Z® with coordinates
|xp| < bD(log4+€ D) #N(p) < bp(log*** D), else x, = 0.

3. Compute a reduced ideal a in the class o ;5 (x).

4. Ifafactors over B as | [ then return the veltor x — y.

5. Otherwise, go back to Step 2.

Here, ¢ stands for any fixed positive real number. Step 3 may use the LLL algorithm as we
mentioned earlier; for any “good” redu&ion method, the probability that Step 4 is successful
is L(D)_l/ 4r+o(1); the overall complexity is then L(D) Vo) ¢ generate a relation of length
L(D)"; the longer the relation, the costlier the evaluation of the associated isogeny.
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vL.3 Computing the A&ion of Ideals

We now consider effe&tive means of testing whether an ideal a a&s trivially on the isogeny
graph of an abelian variety .. Here, we focus on the case of elliptic curves, but certain bricks
will be reused in the lagt chapter for abelian varieties of dimension two.

MoDULAR EQUATIONS

Once a principal ideal a of @ in the form [ [ p* is found, we wish to determine
whether the associated isogeny acts trivially on .¢/; in fa&, this does not require explicitly
evaluating the isogeny ¢ @ but only determining whether it maps .¢/ on ./

Elliptic curves isogenous to a given one with a prescribed way can be listed efficiently via
modular polynomials; this uses j-invariants to identify isomorphism classes of curves, and
modular polynomials @, (X,Y) which we now recall.

Proposition VL.3.1. For any m € N, there exists some polynomial ®,(X,Y) € Q[X,Y] of
degree m+ 1 such that, over fields of charalteristic coprime to m, the j-invariants of elliptic curves
m-isogenous to a prescribed j, are exactly the roots of @,,(X, ;).

COHEN (1984) proved the bit-size of @, to be O(m***W). It can be computed in quasi-
linear time by the floating-point method of ENGE (2009}, or by the alternative method of
BROKER, LAUTER, and SUTHERLAND (2010) based on the Chinese remainder theorem,
which offers additional advantages such as reduced memory requirements.

To test whether ¢, acks trivially on .o/, we can evaluate Oy, (X, Y) at (j(.e/ ), /(./)). If
the result is non-zero, then ¢, cannot send &/ to .¢/; if the result is zero, then there exists
one isogeny of degree N(a) from .¢/ to .7, but it need not be ¢, in general.

For practical purposes, rather than seeing ¢, as an isogeny of degree N(a), we see it as
a chain formed of z,, isogenies of norm N(p) for each p € B. Consequently, it suffices to
compute the modular polynomials @y, and to combine them as isogeny steps. We now
detail this procedure, in a manner which also addresses the issue of the previous paragraph.

CARDINALITIES

When we evaluate Oy, (X,Y) at X = j(.e/), the roots in Y are the j-invariants of the
codomain of degree-N(p) isogenies with domain /. Amongst these roots lies by () but
we have no information as to which it is.

To address this, we can explore 2/ isogenies of degree N(p). When a has many fa&ors,
this can be costly as we might have to consider several roots of @y, at each step of the
isogeny chain, therefore eventually exploring an exponential number of varieties in logN(a).
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Endomorphism rings of elliptic curves are imaginary quadratic orders, and there are
therefore at most two ideals of a given prime norm: p and p. In the isogeny chain

¢ ¢ ¢
Ay = | =D
Zp

corresponding to the factor p*» of @, the conjugate prime p a&s on .¢7, as the dual isogeny of
¢p : &, — ;. Thus, fori > 0, we can determine which of the two roots of(DN(p) (](szl), Y)
is not going backward in the chain, and the two roots need to be considered only for i = 0.

This helps when a does not have many prime fa&ors but has one with high exponent:
rather than just testing if H% p®r is principal, we count how many produés H% ﬁz v are,
where p € {p,p}; this is equivalent to counting the number of endomorphisms of ./ that
are chains consisting in 2, non-backwards isogenies of degree N(p), for each p.

When there are just two ideals p and p of norm N(p), this gives:

Definition V1.3.2. Let [ [ o p°v be the factorization of an ideal a € Z[z, 7).
Its cardinality in O is the number of vetors (p) € ) | P {p.p} for which [ [ P is trivial.
Its cardinality in the isogeny graph of .o/ is the number of chains formed by z,, isogenies of
norm N(p), for each p € B, which map o onto itself.

These two quantities are the same for @ = End(.¢/), and, for elliptic curves, we evaluate
the latter via using the method below starting from the j-invariant j, = j(.&/).

Algorithm v1.3.3.
INPUT: A j-invariant j, and an ideal | [ o p*>.
Outpur:  The cardinality of this ideal in the isogeny graph z)fjo.
Let]' be the list (j,).
For eachp € °B:
Set ]« andlet] be an empty list.
Foreachjin]:
Let {j,,j_} be the roots of D) (X,/), and setf, « jandj —j.
Repeat z, — 1 times:
Set (f,,j,) = (. the root of @y, (X, ) different from f').
Set (j'_,j_) < (j_,the root of @y (X,j_) different from ).
Appendj, andj_to]'.
Return the multiplicity of j, inJ'.

W N S R ™d N

~
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Since we compute two branches for each prime factor of a, the overhead this cardinality
algorithm adds on the principal approach is 2 where w is the number of prime faors. When
w is small, this is greatly compensated by the speed of using modular polynomials.
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COMPLEX MULTIPLICATION ACTION

We briefly review results on evaluating the explicit isogeny ¢,, associated to an ideal p.

Recall Proposition which &tates that invertible prime ideals p of & written as
L0 + u(m) O a& on the kernel of the associated isogeny o with characeristic polynomial
u. Therefore, to tell the isogeny ¢p apart from other isogenies of degree N(p), one need just
compute the a&tion of the Frobenius endomorphism on its kernel.

To evaluate isogenies from their kernels, we use the formulas of VELU (1971) for elliptic
curves, and their generalization to abelian varieties by LuBICZ and ROBERT (2009 ) together
with the improvements of COSSET and ROBERT (2011). These methods take as input a sub-
group ¢ of an abelian varicty ./ and output the isogeny ./ — .o/ /. Since they work
with principally polarized abelian varieties, they additionally require that 52 be a maximal
isotropic subgroup with respe& to the Weil pairing, and that it be isomorphic to (Z/L).

We thus seek ideals a = [ g% where the kernel of each ¢, is maximal isotropic and of
type (Z/2)¥; to this extent, in dimension g > 1, we restrict to ideals a arising via the reflex
type norm, on which the lagt chapter will say more. When we have a prime decomposition
q = ] [ p for a épecific term g, the Frobenius endomorphism must a& on ker(¢ q) with char-
a&eristic polynomial [ | hy () where the #y (x) are such that p = N(p) 0 + hyy (m)o.

Finally, we observe that, if ./ is an ordinary abelian variety of dimension ¢ defined over
a finite field, all points of rational subgroups of type (Z/£)f are defined over an extension of
degree at most £ — 1.

The chara&eristic polynomial of the acion, on such a subgroup 5, of the Frobenius
endomorphism divides x_(x) mod €, and the multiplicative order 7 of x modulo this factor is
precisely the extension degree over which all points of € are defined. Therefore, to evaluate
the degree of an extension over which all points of rational subgroups of type (Z/2)¢ are
defined, it suffices to compute the least common multiple of the multiplicative order of x

modulo the degree-g fators of y_(x) mod L.

DIRECT METHOD

Let q be an ideal such that ker(q)q) is a maximal isotropic subgroup of order £ in .¢/. In
order to compute this isogeny, we combine several classical tools into the algorithm below. It
requires a basis for the £-torsion of .¢/ defined over a certain extension, which we will soon
explain how to compute; the kernel is then identified by the polynomial # = Hup with
u,, defined as above, and we use the explicit isogeny algorithm to compute ¢, from it. We
make this algorithm output the isogenous curve ¢ a (@), so it can readily be plugged in to

our endomorphism ring computing method.
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Algorithm VIL.3.4.
INPUT:  An abelian variety <f [F ; with Frobenius polynomial y_
and a suitable ideal q of norm .
Ouvrrut:  The isogenous variety ¢q (. ).

Find a basis (P,) of the .o/ [£] over the extension of degree #8 — 1 0ﬂFq.

Write the matrix M of the Frobenius endomorphism on the basis (P,).
Enumerate those subspaces of dimension g stable under M € Mat, g(Z JRZ).

Determine which correSponds to q using the Frobenius action.

Compute the isogeny of which this eigenspace is the kernel.

bl S T

For a maximal isotropic subgroup of ./ of order £ defined over the extension of de-
gree £ — 1 of the base ficld, the method of LUBICZ and ROBERT (2009 requires ggtell)
operations as g is fixed and £ goes to infinity.

Step 2 decomposes (P;) as Zje{l,u.,Zg} M,P; for which a baby-step giant-§tep approach
uses O(£8) operations over the extension field. Step 3 is classical and takes quasi-linear time
in g” log(£) where w < 2.376 is the best known exponent for matrix multiplication.

Finally, Step 1 uses Theorem 1 of [COUVEIGNES (2009, where the extension is chosen so
as to contain all points of rational subgroups of type (Z/2)¢. The simple algorithm we give
below actually computes all such points, from which a basis can easily be extraced; it works
by sele&ing random £ -torsion points and lifting them along each others. Here, we let £(P)
denote the valuation at a fixed prime £ of the order of a point P.

Algorithm v1.3.5.
INPUT: A abelian variety < |F ; with Frobenius polynomialy,_and a prime L.
Ourput:  The L-torsion subgroup of </ over F ...

Write #.of (qug_l ) as ml* where L4 m.
Create an empty associative array B.
While B has fewer than U€ keys:
Let P =mQO where O is a random point of .o/ (qug,l ).
For j from k(P) — 1 down to 1, if UP is a key of B:
Ifj > k(B[¥UP]) then go to Step .
Set P« P — QHBIYP)—~1R[p/P],
IfP = 0 then go back to Step 4.
For all keys Q of B and x € {1,...,8}, sez B[@k(me)_l(xP + Q)] «—«P+Q.
Return the keys of B.

a

RIS I N O SR
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Random points of .¢/ can be drawn efficiently when .4/ is given as the Jacobian variety
of a curve in Weierstrass form. Using the last two algorithms, we compute, in Mumford



124 SUBEXPONENTIAL METHOD

coordinates, the kernel of the isogeny that we wish to evaluate; we then convert it to theta
representation where the algorithm of COSSET and ROBERT (2011 is applied, and finally
use the method of MESTRE (1991 to convert the codomain variety back as the Jacobian of
a curve in Weierstrass form, so that the whole process can be iterated.

Since the cardinality of .¢/ (qug,l) is ¢ **() multiplying random points of it by 72 uses
O(gt8logq) operations in ./ (qug,l). Similarly, all orders are bounded by £ = O(gt¢logg).

Finally, the probability of going back to Step 4 is O(1/£) as proven by COUVEIGNES (2009).
Using fast field arithmetic, and representing points of ./ in Mumford coordinates, op-

140

erations in ./ (qug_l) have a bit complexity of (8logq) M, if an efficient data structure

such as a red-black tree is used to store the keys of B, we have:

Proposition v1.3.6. Let .o/ [T ; be an abelian variety of known Frobenius polynomial, and q
a suitable ideal of Z[w, 7). Algorithm returns the abelian variety ¢q g,y o) (-2 ) in time
bounded by (8 logq)“”(l), as g is fixed and £ goes o infinity.

Note that, in Algorithm V1.3.], rather than storing the whole £-torsion subgroup in an
associative array, a pairing could be used to transport discrete logarithm problems to a finite
field where they can be more efficiently solved. This technique gives a valuable speedup for
large values of €, although the overall complexity remains polynomial in £ due to the exten-
sion field arithmetic.

vL.4 Practical Computations

We now present the algorithms used and results obtained by practical runs on elliptic
curves. Applying the same techniques to general abelian varieties will be the topic of the lagt
chapter. Timings reported here were measured on a single core of a recent desktop computer,
such as an AMD Opteron clocked at 2 GHz.

BALANCING THE COSTS

Let & be an ordinary elliptic curve defined over a finite field F - The first step of our
algorithm is to compute the characeristic polynomial y_of the Frobenius endomorphism of
&. Itis equivalent to counting the number of points of & which is of the formy_(1) = p+1—¢#
for a certain integer # € {—2,/4,...,2,/q}. Over a base field of cryptographic size, say, with
¢ a prime of 256 bits, this takes under ten seconds on just one core of a standard deskrop
computer using the Schoof-Elkies—Atkin algorithm. Note that further developments by
SUTHERLAND (2011) now make this possible for primes p over 5000 decimal digits.

Next, we need to find principal ideals of orders &, and start by deciding which prime
factors we want them to have. For maximal orders O of imaginary quadratic fields, BACH
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FIGURE 6. Dots plot the minimal £ such that every class of Pic(€) contains the product
of a subset of S;. Gray dots cover all imaginary quadratic orders @ of discriminant at least
108, and black dots are for 10% random @ drawn according to a logarithmic distribution|

The lines represent £ = dlog, (# Pic O) ford = 1,2.

(1990) proved under the generalized Riemann hypothesis that the primes up to 6log”|A|
generate the Picard group, where A is the discriminant of 0. Heuristically, we find that much
less are necessary, which lead to the following conjecture.

Conje&ure VI.4.1. Foranyd > 1, if O is an imaginary quadyatic order of sufficiently large
discriminant, then any class of Pic(O) contains the product of a subset of S, where S, contains
the first k = dlog, (# Pic O) non-principal prime ideals.

This is actually stronger than asking for S, to generate the Picard group: it requires that
S, generates it with bounded exponents in {0, 1}. However, it is a natural conjecture to make
since it asserts that the set S, behaves as a random subset of Pic(0) would in the sense of
Proposition 1.1 of [MPAGL1AZZO and NAOR (1996). Our empirical verifications have not
found a single order for which the conjecture does not hold with d = 2; for values of 4 closer
to 1, we found this to be true for many orders above a certain lower bound, as can be seen on
Figure [§.

The above is most useful when generating relations using generic methods: it states that
only slightly more primes than a cardinality argument would require actually suffice. This
yields short associated isogenies (which are a must in dimension two).



126 SUBEXPONENTIAL METHOD

However, as we strive to balance the cost of finding a principal ideal in @ with that of
evaluating the associated isogeny, generic methods do not scale well: for discriminants of
more than 128 bits, a generic method would require above 32 operations in Pic(@); from
there on it is therefore advisable to switch to the subexponential method of SEYSEN (1987).
Note that by the conjecture we can use a box with supportin S,.

Since our principal ideals rarely have more than 10 prime factors, it is really worth using
the cardinality approach: modular polynomials permit one to compute isogenous curves
quickly, and they can be precomputed and reduced modulo p for all the primes £ we consider,
whereas computing the torsion would have to be done from scratch at each step.

HARDCODING CERTIFICATES IN DIMENSION ONE

So far, our endomorphism ring computing method tested whether 0 C End(.&¢) for
various orders O since this process has a small probability of failure, we then certified the
candidate order so as to unconditionally verify our result.

In B and SUTHERLAND (2009, we used a quite different approach which simultane-
ously finds O and verifies it. It exploits the particular stru&ure of the lattice of orders for
elliptic curves; we start by recalling this structure.

Let w denote the index of Z[x] in ﬁQ(ﬂ) where 7 denotes the Frobenius endomorphism
of an ordinary elliptic curve defined over a finite field. Orders @ of K = Q(r) have the form
Z + Oy where fis the integer that generates their conductor over Oy; therefore, inclusion of
orders corresponds to divisibility of conducors, so that orders containing Z[x] are in bijec-
tion with divisors fof w.

Let ' be a prime power dividing w, and consider the problem of deciding whether p’
divides the condu&or # of End(&). Here, a certificate for p needs only consist of one ideal a
which is principal in the order of condu&or /" ~"*! but not in that of conduor p': if a
is principal in the isogeny graph of &, then we necessarily have p’|u. Indeed, in that situation,

End(&) does not contain the order with conductor w/ pv‘ﬂl’ w=*1 \which means its condu&or
u divides w without dividing w/p

In number fields of degree greater than two, it does not seem to be possible to certify

val w=*+1 in other words, ' divides .

orders in a nice way as above, using just one ideal; that is why we needed to develop a more
general method for arbitrary abelian varieties.

GENERIC EXAMPLE

Let & be the elliptic curve with Weierstrass equation

Y? = X3 — 3X +2728849899765998058103612158899570741955717345
over I, with g = 2872801286401014961877470682093858455400487431
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This curve is ordinary and it has g + 1 — # points, for a trace # of 1868. The discriminant of 7
is 4q — £ and its faors as —7w?* where

w=2-127-.524287-304250263527209.

We first compute the endomorphism locally at 2 using the method of EISENTRAGER
and LAUTER (2009), which is nearly instantaneous; it finds that the order with conduor 2
does not contain End(&).

For the prime 127, we use the local method of KOHEL (1996): since @, (i(&), ) proves
to have multiple roots, 127 does not divide the condu&or of End(&). This also takes negli-
gible time.

Since End(&) was found to be maximal locally at 2 and 127, we can now simply set
w — w/254 and work with this new w. For the bigger primes, we turn to finding principal
ideals with a generic method and verifying them in the isogeny graph. We choose to work
with the degrees 11,23,29, 37, and 43, meaning that we look for a principal ideal as a product
of prime ideals of norm these numbers. Note that it is interesting to use only a few primes
here since then few modular polynomials have to be computed, and can be reused many
times.

Using hardcoded certificates, it is easier to deal with bigger primes, so let use start with
the biggest one p. Using the baby-step giant-$tep method, we find in just a second that the
relation 23*.297 . 3717 . 43% has cardinality 4 in the order with condu&or w/p, and zero
in that with condu¢tor p. Computing the associated tree of isogenies took 9 seconds; as it
turns out, the cardinality of the relation in the isogeny graph is 4 as well, therefore p does not

divide the condu&or of End(&).

We finish with p = 524287: again, we look for a relation with the baby-step giant-step
method; it takes roughly 20 minutes to uncover the relation 1 147.23707 29540, 37103 43197
which has cardinality 2 in the order with conducor w/p, and zero in that with conductor
p- The associated tree of isogenies took 6 minutes to compute, and since the relation has
cardinality zero in the isogeny graph, we conclude that End(&) has conducor p.

In less than half an hour, we therefore established that End(&) =7Z + 524287 Oy
1/4+0(1) byt if we had computed
End(&) from above by searching for relations in its isogeny graph, the bound would have

The runtime of this generic method is bounded by ¢

been (discEnd(& N4 However, since our curve was generated with the complex mul-
tiplication method (to give it an interesting endomorphism ring), it would not have been
fair: we would have found End(&’) much too quickly!
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SUBEXPONENTIAL EXAMPLE

Let & be the elliptic curve with Weierstrass equation

Y? = X3 — 3X + 660897170071025494489036936911\
196131075522079970680898049528

over F, with ¢ = 160693804425899027555081234320\
6050075546550943415909014478299

where the backslash symbol denotes that a number has been wrapped over to the next line.
Again, the curve is ordinary and it has trace # = 212 (which it takes just a few seconds to
compute). Factoring the discriminant 4g — £ of Z[n], we find that

w=2-127-524287-7195777666870732918103.
—

3l 23

As before, the primes 2 and 127 can be dealt with by climbing the local volcano. None
of them divides the conductor # of End(&); this only takes a few seconds.

To determine whether p; divides «, we use the algorithm of SEYSEN (1987) with the
smoothness bound 600 to find a relation with non-zero cardinality in the order of condu&or
w/p,. It takes about four minutes to find the relation

21798 233 .291.372.53%9. 1371 . 1491 . 2331 . 2632 . 547"

whose cardinality in the order with conductor p, is zero. Computing the relevant modular
polynomials via the method of BROKER, LAUTER, and SUTHERLAND (2010} requires under
four minutes and the associated tree of isogenies is found to have cardinality zero within just
a minute; as a consequence, we deduce that p; is a factor of #. Note that, here, we made
use of the prime 2 although it divides the index w; this process is described in Section 4.2 of
SUTHERLAND (2011).

For the prime p,, this is, as expected, much faster: the relation 223.115.431.71% is found
to have positive cardinality in the order with conductor w/p, but not that with conduétor
P, Itis found that p, does not divide # and the whole process takes just a few seconds.

In about 5 minutes, we have thus proved that End(&) has conduéor 524287, but note
that this computation was much more difficult than the previous one due to the larger size
of p, here: it could not have been achieved with generic methods.

References

1971. Jacques VELU.
“Isogénies entre courbes elliptiques”
In: Comptes Rendus de [Académie des Sciences de Paris. A 273. Pages 238—241.



VI.4. PRACTICAL COMPUTATIONS 129

1984. Paula COHEN.
“On the coefhicients of the transformation polynomials for the elliptic modular
fun&ion”. In: Mathematical Proceedings of the Cambridge Philosophical Society 9.
Pages 389—402. DOI: 10.1017/50305004100061697.

1985. René SCHOOF.
“Elliptic curves over finite fields and the computation of square roots modp”.
In: Mathematics of Computation 44.170. Pages 483—494.
DOI:10.2307/2007968.

1987. Martin SEYSEN.
“A probabiligtic fatorization algorithm with quadratic forms of negative
discriminant”. In: Mathematics of Computation 48.178. Pages 757—780.
DOI:10.1090/50025-5718-1987-0878705-X.

1989. Johannes BUCHMANN.
“A subexponential algorithm for the determination of class groups and regulators of
algebraic number fields”. In: Séminaire de Théorie des Nombres, Paris.
Edited by Catherine GOLDSTEIN. Volume 91. Progress in Mathematics. Birkhiuser.
Pages 27—41.

1989. James L. HAFNER and Kevin S. MCCURLEY.
“A rigorous subexponential algorithm for computation of class groups”
In: Journal of the American Mathematical Society ».4. Pages 837-850.
DOI:10.2307/1990896.

1990. Eric BACH.
“Explicit bounds for primality testing and related problems”.
In: Mathematics of Computation ss5.191. Pages 355—380.
DOI:10.1090/S0025-5718-1990-1023756-8.

1990. Jonathan PrLA.
“Frobenius maps of abelian varieties and finding roots of unity in finite fields”.
In: Mathematics of Computation s5.192. Pages 745-763.
DOI:10.2307/2008445.

1991. Jean-Frangois MESTRE.
“Constrution de courbes de genre 2 4 partir de leurs modules”
In: Effective methods in algebraic geometry — MEGA *yo.
Edited by Teo MoRA and Carlo TRAVERSO. Volume 94. Progress in Mathematics.
Birkhiuser. Pages 31333 4.


http://dx.doi.org/10.1017/S0305004100061697
http://dx.doi.org/10.2307/2007968
http://dx.doi.org/10.1090/S0025-5718-1987-0878705-X
http://dx.doi.org/10.2307/1990896
http://dx.doi.org/10.1090/S0025-5718-1990-1023756-8
http://dx.doi.org/10.2307/2008445

130

SUBEXPONENTIAL METHOD

1996.

1996.

Russel IMPAGLIAZZO and Moni NAOR.

“Efficient cryptographic schemes provably as secure as subset sum”.
In: Journal of Cryptology 9.4. Pages 236—241. DOI: 10.1109/SFCS.1989.63484.

David R. KOHEL.

“Endomorphism rings of elliptic curves over finite fields”

PhD thesis. University of California at Berkeley.

URL: http://echidna.maths.usyd.edu.au/kohel/pub/thesis.pdf.

1996. Jin NAKAGAWA.

2009.

“Orders of a quartic field”.
In: Memoirs of the American Mathematical Society 122.583.

Gaetan BissoN and Andrew V. SUTHERLAND.

“Computing the endomorphism ring of an ordinary elliptic curve over a finite field”.
In: Journal of Number Theory 131.5. Edited by Neal KoBLITZ and Victor S. MILLER.
Special Issue on Elliptic Curve Cryptography. Pages 815-831.

DOI:10.1016/j . jnt.2009.11.003.

2009. Jean-Marc COUVEIGNES.

2009.

2009.

2009.

2009.

“Linearizing torsion classes in the Picard group of algebraic curves over finite fields”.
In: Journal of Algebra 321.8. Pages 2085—2118.
DOL: 10.1016/7 . jalgebra.2008.09.032.

Kirsten EISENTRAGER and Krigtin E. LAUTER.

“A CRT algorithm for construting genus 2 curves over finite fields”.

In: Arithmetic, Geometry and Coding Theory — AGCT ’ro.

Edited by Frangois RODIER and Serge VLADUT. Volume 21. Séminaires et Congreés.
Société Mathématique de France. Pages 161-176.

Andreas ENGE.

“Computing modular polynomials in quasi-linear time”.
In: Mathematics of Computation 78.267. Pages 1809—1824.
DOI: 10.1090/S0025-5718-09-02199-1.

David Jao, Stephen D. MILLER, and Ramarathnam VENKATESAN.

“Expander graphs based on GRH with an application to elliptic curve cryptography”
In: Journal of Number Theory 129.6. Pages 1491—1504.

DOI:10.1016/3 . jnt.2008.11.006.

David LuBicz and Damien ROBERT.
Computing isogenies between abelian varieties. arXiv.org: 1001.2016.


http://dx.doi.org/10.1109/SFCS.1989.63484
http://echidna.maths.usyd.edu.au/kohel/pub/thesis.pdf
http://dx.doi.org/10.1016/j.jnt.2009.11.003
http://dx.doi.org/10.1016/j.jalgebra.2008.09.032
http://dx.doi.org/10.1090/S0025-5718-09-02199-1
http://dx.doi.org/10.1016/j.jnt.2008.11.006
http://arxiv.org/abs/1001.2016

VI.4. PRACTICAL COMPUTATIONS 131

2009. Markus WAGNER.
“Uber Korrespondenzen zwischen algebraischen Funktionenkdrper”
PhD thesis. Technische Universitit Berlin.
URL: http://www.math.tu-berlin.de/~wagner/Diss.pdf.

2010. Reinier BROKER, Kristin LAUTER, and Andrew V. SUTHERLAND.
Modular polynomials via isogeny volcanoes.
To appear in Mathematics of Computation. arXiv.org: 1001.0402.

2010. Andrew M. CHILDS, David Ja0, and Vladimir SOUKHAREV.
Constructing elliptic curve isogenies in quantum subexponential time.
arXiv.org: 1012.40189.

2011. Gaetan B1SsON.
Computing endomorphism rings of elliptic curves under the GRH.
arXiv.org: 1101.4323.

2011. Romain COSSET and Damien ROBERT.
Computing (8,8)-isogenies in polynomial time on_Jacobians of genus 2 curves.
IACR ¢Print: 2011/143.

2011. Andrew V. SUTHERLAND.
“Computing Hilbert class polynomials with the Chinese remainder theorem”.
In: Mathematics of Computation 80o. Pages so1—538.
DOI: 10.1090/S0025-5718-2010-02373-7.

2011. Andrew V. SUTHERLAND.
Genus 1 point counting in quadratic Space and essentially quartic time. In preparation.


http://www.math.tu-berlin.de/~wagner/Diss.pdf
http://arxiv.org/abs/1001.0402
http://arxiv.org/abs/1012.4019
http://arxiv.org/abs/1101.4323
http://eprint.iacr.org/2011/143
http://dx.doi.org/10.1090/S0025-5718-2010-02373-7




SEVEN

(omplexity Analysis

This chapter is devoted to a rigorous analysis of the method that we have just presented;
the main result is a proof, under the generalized Riemann hypothesis, that our algorithm
indeed computes endomorphism rings of ordinary elliptic curves in subexponential time.

Most of material used has already appeared in B. (2011) for elliptic curves; here, when
this can be done, we state our results for general varieties. Polarization issues are deferred to
the next chapter, which will therefore also cover practical computational aspe@s in dimen-
sion g > 1.

As usual, let .o/ be a simple ordinary abelian variety defined over a finite field F, -

vil.1  Orders from Picard Groups

W first prove that if we can identify the structure of the Picard group of the endomor-
phism ring of .¢/, then we can determine End(.¢/ ) unambiguously.

PRELIMINARIES

Recall that the first step is to compute the characteristic polynomial x_ of the Frobenius
endomorphism 7 of .&/. For this, we use the method of PILA (1990) and more precisely
the improved algorithm of ADLEMAN and HUANG (2001 ) which, when ./ is the Jacobian
variety of a genus-g hyperelliptic curve, has a complexity of

(logg) O« &9,
Even if it were not for cryptographic reasons, we would avoid non-Jacobian varieties since
our algorithms requires to efficiently draw points at random, which we cannot do when .¢/
is expressed in a more general form (such as theta constants).

133
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The number of points of .¢/ defined over the extension of degree ¢ is then
#ﬂ(]qu) = Res, (;(,n(u),ug — 1)

which means that our algorithm for computing the £-torsion does not have to count the
number of points over a new extension every time a new prime £ is considered.

To navigate the lattice of orders of the complex multiplication field K = Q[X]/(x (X)),
that is, compute 9 = O, m = Z[r, 7] and the factorization of [IN : m], we need to fa&tor
the discriminant A of y_ which satisfies

|A| < (2‘/;1)2@@—1)‘

For this, the unconditional method of LENSTRA and POMERANCE (1992 ) uses L(|A|)
operations; assuming unproved hypotheses, we might also use the number field sieve of CoP]
PERSMITH (1993 ) with conjectured runtime

1,
LA where ey = 3 V92 +264/13 ~ 1.902.

For elliptic curves, we were able to prove the corre@ness and complexity of the rest of

1+0(1)

our method only assuming the generalized Riemann hypothesis. In that case, the complexity
is
L(q)l/ﬁ-#o(l))

so the cost of fattoring via the unconditionally proven method dominates; we found it curi-
ous that no known factoring algorithm achieves a better exponent assuming solely the gen-
eralized Riemann hypothesis: there seems to be a gap in the hypothesis required as, in terms
of asymptotically fastest methods, we go straight from an unconditionally proven method
to one which relies on many non-standard heurigtics.

In dimension two, we will see that additional unproven hypotheses, other than the gen-
eralized Riemann hypothesis, are necessary.

ORDERS AND IDEALS

Let us briefly address the complexity of the algorithms used for navigating the lattice and
computing with ideals of arbitrary orders in it.

The algorithms used greatly differ from dimension one to dimension two: in dimension
one, the lattice is simply the set of divisors of [T : m] while in higher dimension its truc-
ture has no such ¢pecial form; again in dimension one, ideals can be dealt with extremely effi-
ciently as binary quadratic forms while in higher dimension only general methods involving
Hermite normal form and LLL redu&ion can be used.
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In fa&, we find that, in the realm of elliptic curves, many problems can be solved in es-
sentially linear time, that is, with a complexity asymptotically equivalent to the size of the
output, up to an exponent of 1 + o(1); but those problems become suddenly much harder
with higher-dimensional abelian varieties and no such satisfying algorithm is known. This
is for ingtance the case for the generation of Hilbert class polynomials. Our own endomor-
phism ring computing algorithm will not be an exception to this rule, as many simple and
casy to analyze aspes of it are lost when going from dimensiong=1tog=2.

Regardless of the dimension, since we use the building blocks for orders and ideals on
inputs of size for which their complexity is polynomial in log(g), we need not worry too
much about them: as our overall expeted complexity is superpolynomial, the cost of all these
subroutines disappears within the (1) term of the exponent. This might seem a little too
rough, so we refer to [COHEN (1993 ) for more careful ftatements regarding the complexity
of these standards calculations.

ORDERS WITH SAME PICARD GROUP

Our relation method uses the Picard group structure to characterize an order. This sec-
tion and the next are devoted to proving the correéness of this approach: here, we will see
that there are not many orders with the same Picard group structure, and there, we will de-
scribe a workaround technique for distinguishing these rare orders from each other.

We first consider the one-dimensional case, as the ideal struure of non-maximal orders
is much better understood in this case. If @ is an order of an imaginary quadratic field K, we
let B be a generating set of ideals for Pic(@), and denote by A, the relations of Pic(0) for
this basis 2B; in other words, we assume that Pic(0) ~ Z%/Aﬁ.

Proposition ViL.1.1. Let O and O’ be two orders in an imaginary quadratic field K. The
lattice A g contains A\ if and only if the order O ! contains O or if one of the following holds:

1. K=Q(v —4) and O’ has conductor 2;

2. K=Q(v/=3) and O’ has conductor 2 or 3;
3. The prime 2 $plits in K and O’ has index 2 in some order above O of odd conductor.

Proof. Denote by S (resp. S,/) the set of primes £ that split into principal ideals in O (resp.
0"). Using relations formed of a single prime ideal, we see that A; € A implies S, C S,
Now S, (rep. Sy) is also the set of primes that split completely in the ring class field L,
of O (resp. L,). By Chebotarev’s density theorem S5, C S5/ thus implies L;» € L,; which
means that the class field theory conduéor f(L /K) of L, divides f(L, /K).
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This condu&or §(L, /K) is related to that f,; of @ in the following manner (see Exer-
cises 9.20-9.23 of [Cox (1989)).

Oy, whenK=Q(v/—4)andf, =2,
Oy, whenK= Q(+/=3)and fo =2or3,
., when 2 $plits in K and f,, = 2 with ’ odd,

fg»  otherwise.

f(Lo/K) =

Naturally, the same stands for 0”. In the latter case, the fac that f(L,, /K) divides f(L,//K)
implies that f, divides f,, in other words @ C O”; the three other cases correspond, in
order, to the exceptions listed in the proposition. O

Intuitively, this means that identifying orders by their Picard groups has a single blind
$pot locally at 2 and 3 where the two largest orders cannot be distinguished.

For orders in higher-degree number fields, we were unable to prove a similar result, but
have observed that pairs of orders with identical Picard group structure follow a similar pat-
tern to what the proposition above describes for imaginary quadratic orders; therefore, we
will assume:

Assumption VIL.1.2. Fix g € N; there exists an integer B such that, if any two orders O and O’
of a complex multiplication field K of degree 2¢ have identical Picard group Structure, then one
is contained in the other with index a divisor of B, and both orders are maximal ar all primes

but the factors of B.

For instance, in the case of quartic complex multiplication fields, our computations sup-
port
B=2%.3%.53.72.11.13.17-19.23-31-41.83.127-131- 151

This bound B could be reduced by excluding finitely many number fields.

Even if this assumption turns out to be wrong, our algorithms will till be fun&ional as
they do not need to know in advance which orders have the same Picard group structure: it
can always be tested, as we ascend the lattice of orders and generate certificates, if an order
has the same Picard group structure as some order directly above or below it. This is naturally
quite expensive, but retains the unconditional correéness of our output.

LocaL WORKAROUND

Aswehave seen, two distin& orders of a complex multiplication field K can have identical
Picard group struture, in a limited number of cases. Those orders cannot be distinguished
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using the complex multiplication acion, so we need another method to tell them apart from
each other.

To tackle these cases, we apply our lattice-ascending and order-testing procedures nor-
mally and fall back on a second method when the endomorphism ring is found to be one of
these. This amounts to ascending the lattice of orders quotiented by classes of orders with
identical Picard group $tructure; when the class of End(.¢/) is identified, we determine pre-
cisely which order End(./) is using the following algorithm.

Algorithm vII.1.3.
INPUT: A simple ordinary abelian variety of over the finite field with q elements,
and an order O with the same Picard group structure as End(.of ).
OutpruT:  An order isomorphic to End(.f).

Compute the Frobenius polynomial y, (x), and factor (O : Z[m,T]] as ] [ 2.
For all prime factors L with 8¢ < L(|A|):

Determine End(.e/) locally ar L.
For other prime factors L:

Compute various L-isogenies and see if they change the

bl U S S

Picard group Structure of the endomorphism ring.
6. Deduce End(.«).

The condition in Step 2 ensures that the complexity of determining the endomorphism
ring locally at £ via the method of EISENTRAGER and LAUTER (2009) in Step 3 is bounded
subexponentially. Basically, since orders with identical Picard group structure only differ by
smooth indices (as we saw in the previous secion), only small primes £ will be of interest here
(for others, 0 is the only possibility for End(.¢7),); for these small primes, the condition
means that the depth v, of the local lattice is not too large.

When v, is large, this method is too costly. On the other hand, since only the first few top
orders have identical Picard group structure, we can compute random chains of £-isogenies
and count the minimal number of isogenies it takes to reach a variety whose endomorphism
ring has a different Picard group structure (which we determine using our subexponential
method). Since we can compute exa&ly which orders have identical Picard group structure,
this gives us some information as to which order our endomorphism ring is.

This is obviously a rather poor approach. Best would be to use a higher-dimensional
analog to the method of [ONICA and JoUX (2010) and generalize the algorithm of KOHEL
(1996) to compute the endomorphism ring locally at £ in time 29U rather than €000,

As the complexity of our fall back method depends not only on the prime £ at which we
want to locally compute End(.¢/), but on the entire factor £” of the index [0y : Z[=,7]],
and we found no satisfying way of patching it, we simply rule out deep lattices.
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Assumption VIL1.4. Let O C O’ be two orders containing [, 7| with identical Picard
group Structures. If U is a prime factor of the index [0 : O, we assume that the valuation vy of
(O : ZIm, 7)) ar is such that € < L(g).

In dimension one, the method of KOHEL (1996) computes End(.¢/), locally at £ by
climbing the £-isogeny volcano in time I/ERZH(I), so the assumption above is not required
in that case.

viL.2 Picard Groups from Relations

RELATION SETTING

We recall the standard “generator and relations” setting based on prime ideals to study
the stru&ure of Picard groups of orders in number fields.

Throughout this seion, O will be an order in an algebraic number field, and B a gener-
ating set of ideals for its Picard group; for computational reasons we assume that B consists
of prime ideals. We denote by A, the lattice of relations amongst elements of ‘B seen as
ve&ors of ZB, so that we have

Pic(0) = Z® | A,,.

Our first task will be to bound the norm of primes contained in ®B; this is the purpose
of the following section which describes various Chebotarev theorems that have been used
over the years — this application being just one specific use of them.

Next, we will consider bounding the diameter of the lattice A, which plays a crucial role
in the generation of relations that characterizes 0. More explicitly, HAFNER and MCcCUR]
LEY (1989) proved that any bound on the diameter of the lattice A; yields a box B whose
pushforward distribution by ¢, is quasi-uniform; in other words, producs of random ele-
ments of this box give quasi-random elements of the Picard group of 0.

This property is crucial to ensure that the relations we obtain permit us to distinguish a
lattice from stri¢tly smaller ones.

Originally, a bound elementarily derived from the theorem of SIEGEL (1935) was used
by HAFNER and MCCURLEY (1989); later, BUCHMANN (1989) adapted their algorithm to
general number fields, therefore relying on the theorem of BRAUER (1947). We will here
give, as a consequence of the generalized Riemann hypothesis, a better bound which we will
derive from a more general result of Jao, MILLER, and VENKATESAN (2009).

CHEBOTAREV THEOREMS

Let us first recall the classical density theorem of [SCHEBOTAREFF (1926).
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Theorem viL.2.1. Let L/K be a finite normal extension of number fields, and denote by n(p)

the Frobenius element in Gal(L/K) which corresponds to a given prime p of K. Such Frobenius

elements are asymptotically uniformly distributed in the sense that, for any conjugacy class € of
the Galois group,

#6

s55ee # Gal(L/K) Li)

#{p:m(p) € C,N(p) < x}

where Li(x) = f; l(lfé is asymprotically equal to the number of prime ideals of norm less than x.

This theorem has countless applications; for ingtance, if L is the $plitting field of a poly-
nomial /'€ K[x], it gives the density of primes p of K modulo which fhas prescribed splitting
patterns.

In our setting, we are mostly interested in the case where K = @Q and L is the ring class
field 7€, of an order O in some complex multiplication number field. Via the Artin map, the
Chebotarev density theorem descends to ideals of the order O and asserts that the density
of prime ideals which belong to a prescribed ideal class of Pic(@) is 1/# Pic(@); this implies
in particular that each ideal class can be represented by a prime ideal, from which we can
conclude that itis indeed possible to have a generating set *B for Pic(0') made of prime ideals.

More generally, so-called effective Chebotarev theorems give upper bounds on elements
generating number theoretic groups. Historically, interest first lied in bounding the least
quadratic non-residue modulo 7: GAuUss first established the bound 24/% + 1 (for n > 2)
clementarily and, to date, the best known unconditional bound of BURGESS (1957 is still
exponential — the proof mixes arguments of VINOGRADOV (1919) with the Hasse—Weil
bound on the number of points of hyperelliptic curves.

Assuming the Riemann hypothesis for the zeta fun&ion of certain fields L, more precise
results can be derived. Mogt often, authors simply assume the extended Riemann hypothesis
(ERH), or even the generalized Riemann hypothesis (GRH) for convenience. Under this
assumption, ANKENY (1952 proved that the bound above can be made O(log” 7).

Lacarias and ODLYZKO (1977) later generalized this to general number fields: they
proved that if L is a finite nontrivial extension of an algebraic number field K, the least prime
ideal of K that does not ¢plit completely in L is bounded by O(log (disc(K)* N(f(L/K)))).

BacH (1990) gave explicit constants O for these results: he showed that in the result of
ANKENY (1952 ) we have O < 2, and that O < 3 for the generalized result. He derived the
following:

Theorem VIL.2.2. Assuming the Riemann hypothesis for the zeta function of the number field
K, its Galois group Gal(K/ Q) is generated by the Frobenius elements of its prime ideals of norm
less than 121og* | disc(K).
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DiSTRIBUTION OF SHORT PRODUCTS

As we have already pointed out, knowing that the set B of prime ideals of norm less
than 12log” |A| generates the Picard groups of orders O containing Z [, ] is not sufficient.
Indeed, evaluating isogenies associated to ideals a which involve large exponents is costly, so
it is not sufficient to write a as a produc of primes of ‘B: we also want this produ& to be
short. In other words, we ask that a = Hpe% p”v for a small exponent vector 7.

Obviously, its norm ||z||; = > |np| is less than the class number. In their Lemma 1,

HAFNER and MCCURLEY (1989) proved that any bound on the diameter of the lattice A,
yields a box B suitable to search for relations, and as a bound they used the latter elementary
result on the norm of 7. BUCHMANN (1989) did the same in his Lemma 3.4 for arbitrary
orders.

However, assuming the generalized Riemann hypothesis, a much better bound can be
derived from Corollary 1.3 of JA0, MILLER, and VENKATESAN (2009), which implies:

Theorem Vi1.2.3 (GRH). Forallge N ande > 0, there exists ¢ > 1 such that, if O is an order
of dimension 2g and discriminant A, then for random velors x drawn from the box

B={ ez PNmed ol SO | (oslal
® loglog|A|

the probability that o ;(x) falls in any fixed ideal class of Pic(O) is at least 1/ 2# Pic(0).

In terms of distribution, this states that the pushforward distribution by o; of the uni-
form digtribution Uy on the set X of vectors of norm clog|A|/loglog|A| is within varia-
tion distance 1/2 from the uniform digtribution on the Picard group. Essentially, this says
that producs of randomly selected primes of quadratic norm behave as uniformly-drawn
elements of the Picard group.

DIAMETER OF RELATION LATTICES

The above theorem implies that each element of Pic(&) has a preimage of small norm,
from which we can easily derive a bound on the diameter of A ;. Recall that the diamerer of
a lattice is the smallest value diam(F) where F ranges over its fundamental domains.

Corollary vir.2.4 (GRH). Fix any positive number e. If O is an order of discriminant A
and B denotes its set of primes of norm less than longrE |A|, the diameter of the lattice Ay is
o(log4+E |A]).
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Proof. To prove this, we constru& a generating set for A, formed by O(log**® |A|) rela-
tions of norm o(log® |A|). BRAUER (1947) showed that Pic(©) is an abelian group of order
A2+ 56 there exist O(log|A|) ideal classes e, such that Z® /A, = T] (,); we fix these
and proceed to write a generating set for A, consisting of:

. . d(a;
— relations expressing that o] SUSS T

— relations expressing the primes p € 985 in terms of the a,.

First define a map cr; by fixing a preimage of norm at most clog|A|/ loglog|A| for each ideal
class; it exists by Theorem IL.2.3. Now use a double-and-add approach to ensure that norms
ord(®) = 1 by the relations

i

(i) o (af’) — 20, (afj_l> forje{l,...,|log, ord(,)] };
(ii) Zj bjag,l (otl,zj> where bj denotes the /™ least significant bit of ord(a,).

remain small: for each 7, express that o

Now write ecach p € 9B on the «; by decomposing its class as a produ& [ ]« where 7, €
{0,...,ord(,)}; noting 8,, the vector with coordinate one at p and zero elsewhere, this gives
the relations:

(iii) 8, — > Zj cl.joz,1 (ocl,zj> where ¢ is the /* least significant bit of ,.

Preimages by o,; have length o(log|A|) and there are at most | log, ord(e;)| = O(log|A|)
terms, therefore each such relation has length o(log|A|). O

viL.3 Relations from Smooth Ideals

Let us now give the mathematical background required to prove the complexity of the
subexponential method for finding smooth relations in Picard groups.

INTEGER SMOOTHNESS

We start by reviewing fundamental properties of smooth numbers; these are the base on
which mogt subexponential algorithms are build upon (for instance, we have already men-
tioned fa&oring algorithms). First recall their definition.

Definition VIL.3.1. An integer x is said to be y-smooth if it has no prime factor larger than y.
The number of y-smooth integers less than x is denoted Y (x,y).

Bounding the value of the ¥ fun&ion for particular ranges of x and y is an important
problem. For instance, for any fixed # > 1, we have

Y (x,xl/”> ~ xp(n)

X—>00
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where the congtant p(#) is the Dickman fun&ion. This funéion was extensively studied by
DE BRUIJN who gave many ways to evaluate it. To use such smoothness results in index-
calculus methods, we need more than a polynomial relation of the form y = x!/#: we would
like to consider the case where # — o0 as x — 0. The épecific result we rely on is due to
CANFIELD, ERDOS, and POMERANCE (1983).

Theorem VIL.3.2. Foru > 3 we have
Y <x,x1/”> > xexp (—u <logu +loglogu — 1+ 0(1)))

Corollary viL.3.3. The probability for a random number of {1,...,x} to be L(x)"-smooth is

—1/2y+0(1)

equivalent to L(x) a8 X — oo,

Proof. Apply the theorem above to . = %’/ lo:li;x and combine it with the upper bound in

Theorem 2 of BRUIIN (1966). O

See GRANVILLE (2008 for a survey of this topic.

IDEAL SMOOTHNESS

Our algorithms do not exa&ly work with integers: they work with ideals. Via the norm,
the structure of the ring of ideals resembles that of integers; for our particular goal, it suffices
to say that ideals are smooth if and only if their norms are. However, not all results are easy
to generalize from integers to ideals.

In fa&, our first algorithm for computing endomorphism rings of elliptic curves, from B]
and SUTHERLAND (2009}, relied on the assumption that certain ideals we generated had a
uniformly distributed norm, so that we could dire@ly apply the result of the previous se&ion.
We now explain how this assumption can, in some setting, be rigorously proven.

Let us first recall the relevant part of our algorithm: for an order @ of discriminant A,
we first select a ve&or x uniformly at random from the box B = {0, ..., log*™ |A[}T where B
is the set of prime ideals of norm less than longrE |Al; we then look for a small representative
x of the class o5 (x) € Pic(0) and attempt to factor it over the base consisting of all the prime
ideals of norm less than L(|A|)".

To rigorously bound the number of times random vectors x € B have to be sele¢ted before
one with smooth reducion is found, we need to show that the norm of ¥ behaves like a
random integer in a certain interval.

For imaginary quadratic orders, SEYSEN (1987) used the standard reducion of binary
quadratic forms; to obtain a result on the smoothness probability of %, he proceeds in two
steps: Proposition 4.3 and 4.4:
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Proposition VI1.3.4. Ideal classes o, (x) of randomly selected vecors x € B are quasi-uniformly
distributed in the Picard group of 0.

By quasi-uniformly distributed, we mean that the probability for o, (x) to belong to a
prescribed subset S of Pic(0) is

#S

I+ 225y

in other words, the pushforward digtribution o, Uy is within variation digtance o(1) of the
uniform distribution on Pic(0).

Note that SEYSEN (1987) started from a much bigger box B than ours; it was, back then,
the best possible under the generalized Riemann hypothesis; however, here, we make use of
Corollary 1.3 of Jao, MILLER, and VENKATESAN (2009) and of the smaller box B it proves
to suffice.

When we know that o, (x) is quasi-random, it remains to see whether the element ¥ of

each oy, (x) has a smoothness probability comparable to integers of {1, ..., 4/ |A|/3}

Proposition VIL.3.5. The number of reduced ideals whose norm is L(|A|)Y-smooth is at least
n/L(|A|)1/27+”(1) where n = #Pic(O) is the total number of reduced ideals.

The proof of SEYSEN (1987) involves calculations which are épecific to the arithmetic of
binary quadratic forms. This makes it challenging to generalize this proposition in higher-
dimensional orders, and another issue is that there is no canonical notion of redu&ion there.
The method of BUCHMANN (1989) for arbitrary orders relies on the following assumption,
and we do as well.

Assumption VI1.3.6. The norms of reduced ideals used by the smooth relation finding algorithm
are as likely to be smooth as random integers 0f{ L..,4/ |A|}

RANDOMNESS OF RELATIONS

To obtain a generating set for the lattice A, by finding relations of it, we must ensure
that those relations do not lie in some particular subset. For instance, if the order @ contains
0', then we have A, C A, and we must prove that our relations have no predisposition of
a¢tually lying in A ;7. Whence the following definition.

Definition V11.3.7. Let P be a probabilistic procedure which, on input an order O containing
L[, ) for some Weil number w, returns a relation x € A 5, which we see as a random variable.

We say that P generates quasi-uniformly distributed relations of O if. for any order O’
containing ZL|w,T|, the projection of x in the quotient group Ay [Apng is within variation
distance o(1) from the uniform distribution, as the discriminant of © goes to infinity.
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Proving that the method of SEYSEN (1987) does indeed generate quasi-uniformly dis-
tributed relations was done by HAFNER and MCCURLEY (1989 in their Lemma 2.

Proposition VI1.3.8. If O’ isan order contained in O, relations found by the method of SEYSEN
(1987) are quasi-uniformly distributed in A, | A 5 when B = {0, ,#%dlﬁ}%, where d is a
bound on the diameter of \ ;.

The proof is pretty simple and involves looking at the geometry of the lattices in a fairly
elementary way. We reproduce it below, in the more general context of an unspecified bound

dondiamA,.

Proof Letxbearandom variable with uniform digtribution on B, = {0, ... P letx e op(x)
denote its reducion, and note & the set of ideals with £ -smooth norms. We want to prove
that

Prob [x—o7'®) ewte #] = [Ag: A ] (1+0(1))

for any fixed class w € A, /A 4. We can rewrite the left-hand side as

#{xEBl:/JZEy,x—G_l(Ec\)Ew}
#{xEBt:&\Ey}

and by summing over all possible reduced ideals y we further obtain

Zyey#{xeBt:xeG_l(y)+w}
Zyey#{xeBt:xeo_l(y)+Aﬁ}'

Now, to evaluate each term of these sums, let us count the number of points of B, =
0,2+ 1)(B which lie in the translation z + A of some lattice A. To this extent, let & be a

fundamental domain for A: each point of z + A corresponds to a cell in the tiling of R by
Z;if diam F < dwe therefore have

B, ;,C(z+A)NB,+Z CB,,,
which gives, in terms of volumes,
(t—d)"® <detA-#((z+A)NB,) < (1+d)"

so as soon as #Bd = o(¢), the sandwich theorem proves that

t#%

#((z+A)NB,) = (1+0(1));

et A
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by substituting this in the probability sought expressed as a quotient of sums, we obtain

l‘# B

dCt Aﬁ/

#B

#S (1+o(1))/#5” (I+0(1));

etA,

Choosing # = #Bd'** satisfies the requirement #Bd = 0(#) and gives the result. O

Recall that if 0 is an order of discriminant A and B consists of all prime ideals of norm
g2+E |A|, then the diameter of A is 0(log4Jrs
quadratic, the above proposition shows that the algorithm of SEYSEN (1987 ) generates quasi-
uniformly distributed relations of A ; when drawing its random vectors uniformly from the
box B = {0,...,log"* |A|}®.

When O is an order in a complex multiplication of degree four or more, as we have men-

less than lo |A|) Therefore, when O is imaginary

tioned before, we do not know of similar results and believe that they might be quite difficult
to establish. However, we can §till amend the algorithm of BUCHMANN (1989 to make use
of this type of bound. This gives a conjetural running time, but the result can in any case be
unconditionally proven by certificates, so we have a Las-Vegas algorithm.

GENERATING ENOUGH RELATIONS

To prepare for the jump to the next chapter, let us put together the results that we have
established so far. Here, we let 7 be the Frobenius endomorphism of an abelian variety of

dimension g defined over a finite field F » and recall from Lemma that disc(Z[=,7]) =
quJ’”(l) so that via the theorem of BRAUER (1947) the class number is q§2/2+”(1).

Proposition VIL.3.9. Lez O be an order of discriminant A in a number field of degree 2g;
random relations of O involving polynomially many ideals in log|A| of norm up to L(|A|)Y can
be found in probabilistic time L(|A])Y + L(JA[)/ 41+,

This assumes the generalized Riemann hypothesis for ¢ = 1, and Assumption for
g>1

Unlike HAFNER and MCCURLEY (1989}, we do not seck to compute the full group
stru&ture of Pic(0) — this would be costly since a subexponential number of relations is
required to eliminate all factors of the fator base. Here, we just aim at digtinguishing orders
containing Z[w, 7] from one another.

If 0 is an order such that A/ is strictly contained in A, a quasi-uniformly digtributed
relation has probability at most 1/2 + o(1) of also holding in &". Therefore, since we have a
polynomial number of orders in log|A| to discriminate from, it is sufficient to only generate
polynomially many orders in loglog|A| to ensure that the relations characterize the lattice

A, with probability 1 — o(1).
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Combining the above with our earlier notes on the complexity of isogeny computation,
we have proved the following.

Theorem ViL3.10. Let .o/ be a simple ordinary abelian variety of dimension g defined over
the finite field with q elements. Under the generalized Riemann hypothesis, we can compute
End(.&/):

- ifg=Lin L(q)”"(l) + L(q)l/ﬁ”(l) operations;

- ifg=2,in L(q)g‘/gg/ 2+o(1) operations, under Assumptions yil.1.3, YI1I.1.4, P11.3.4, and
a)

For g = 2, details will be given in the next chapter.

vil.4 Relations from Thin Air

As a supplement to this chapter, we shall now see how to generate relations in a generic
manner, that is, not using any extrinsic information about the underlying group. For Picard
groups, such methods are much slower than smoothness-based ones but yield much shorter
relations; this will be an important ingredient for making pradical use of our method in
dimension two.

GENERIC SHORT PRODUCTS

Let S be a sequence of elements in a finite group G of order 7, written multiplicatively,
and consider the problem of writing a prescribed element z € G as the produc of a subse-
quence of S; we call such a subsequence a short product representation of z on S.

If G were a commutative group, we could have noted it additively, let S be a multiset
of elements of it, and look for a sub-multiset which adds up to z; in the case that S has no
repeated elements, this is known as the subsez sum problem. However, since for our approach
it makes absolutely no difference whether G is commutative, we have chosen to use the more
general formalism of non-necessarily-commutative groups.

Consider the produ@ map 7 : J3(S) — G where P(S) denotes the set of all subsequences
of S. For all elements of G to admit short product representations, the map 7 needs to be
surjective which, by a counting argument, implies £ > log, # where £ is the length of S.

In the case that G is commutative, ERDOS and RENYI (1965 ) showed that this bound is
not far from being sufficient: they prove that a random sequence S of length

k =log, n+log,logn +w,
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satisfies 1(J3(S)) = G with probability approaching 1 as 7z — oo, provided that «, — oo,

For finding short produc representations via generic means, just knowing the existence
of a preimage by = for all z € G is not enough: we need to know the distribution of such
preimages. [MPAGLIAZZO and NAOR (1996) proved the following result on the inverse dis-
tribution.

Theorem VIL4.1. Fix some real number d. For groups G of order n large enough, we have

Probs [ W*U‘B(S) _UG

> n_[il <n ¢

where c = (d— 1) /2 and the sequence S is drawn uniformly at random from the set of sequences
of G with length k = (d + o(1)) log, 2.

Recall that Uy denotes the uniform distribution on the (finite) set X, and that the push-
forward distribution f, o of a distribution o on X by a funtion f: X — Y is defined as

f*O'(y)zo({xGX:f(x)Ey}),

for any subset y of Y. Finally, the variation distance ||c — 0'/” between two distributions on Y
is the maximum value of |o(y) — ¢/(y)| as y ranges over all subsets of Y.

In other words, the theorem means that, for a random sequence S of density d > 1, the
distribution of subsequence products almost surely converges to the uniform distribution on
G as 7 goes to infinity.

In some particular cases, finding short produé representations is a well-known problem.
For instance, when G is the Picard group of some order and S contains all prime powers p*
with p < L(|A]) and & < log, |A], then this is exactly the problem of finding relations which
we have studied extensively. Now this problem does not have a “constant” density, as the
quantity &/ log, 7 goes to infinity pretty quickly with 7.

For instances of constant density in the group G = Z/#Z, the best algorithm has a time
and space complexity of O(°3'1%); it consists in lifting the indtance to £ subset sum prob-
lems in Z, also known as knapsack problems, which can be solved efficiently by a method
of HOWGRAVE-GRAHAM and JOUX (2010). Again, this algorithm is tailored for a $pecific
group representation.

Algorithms that only perform multiplications and inversions (which return uniquely
identified group clements), draw clements at random from G, and test their equality, are
called generic algorithms. In essence, they are not tied to any specific group and apply to any
effeétive group. SHOUP (1997) proved that solving discrete logarithm problems generically
has a lower bound of Q(ﬁ) where p is the largest prime facor of #; since this is a $pecial
case of short produé representation, this means that generic short product representation
algorithms cannot have a faster-than-square-root complexity in the worst case.
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BABY-STEP GIANT-STEP

Let us first review classical approaches to the problem of finding a short product repre-
sentation of an element z € G on a sequence S.

Abrute-force algorithm would exhaugtively enumerate the set*J3(S) and for each element
y of it test whether n(y) = z.

The standard baby-step giant-step approach ¢plits the search space as a dire& product
PB(S) = P(A) x P(B) simply by writing S as the concatenation of two smaller sequences
A and B; then, it aims at finding a pair of elements (x,y) € P(A) x P(B) which collide in
the sense that n(x) = zn(y)_l. This can be implemented efficiently by first precomputing
and $toring a table of all 7(x) for x € P(A), and then checking whether each zn(y)™" for
y € P(B) is in this table; the lookup can be done in time O(log#) using an efficient data
$tructure.

For convenience, we define an application y which maps any sequence y = (y,,...,7,,)
to u(y) = ()/;1, ,yl_l), so that 7(y) and m(u(y)) are inverses in G. The baby-&tep giant-step

algorithm then amounts to the following procedure.

Algorithm vII.4.2.
INPUT: A finite sequence S and a target z € G.
Ourpur:  Ifit exists, a subsequence of S whose produd? is z.
Split S as a concatenation AB of sequences of roughly equal sizes.
For each x € B(A), Sfore x in a table indexed by 7(x).
For each y € P(B):
Ifn(zu(y)) = n(x) for some x, then return xy.
Return that z has no preimage by w in J3(S).

R RN N

As each element of 3(A) can be represented by £/2 bits (which is a constant factor away
from the size of a group element, when the density 4 is fixed), the total memory consumed
by this algorithm is O(2*/?). By enumerating elements of B(A) and 3(B) in a suitable order
(for instance, using a Gray code), only one group operation is required per &tep, so that the
total runtime is O(2/2).

SCHROEPPEL and SHAMIR (1981) gave a more épecialized generic method for solving
knapsack problems, which improves the space complexity of the baby-step giant-step algo-
rithm to O(24/4).

PoLLARD RHO

In order to apply the Pollard p approach to the problem of finding short produc repre-

sentations, we simply need a notion of collision on a certain domain 6 and an iteration map
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¢ : 6 — %6 which preserves collisions in the sense that if x and y collide, then ¢(x) and ¢(y)
also collide.

Here, we use the same domain that was used by the baby-step giant-step algorithm: split
S as a concatenation AB of two sequences of roughly equal size, and let the domain be the
disjoint union 6 = .o/ Ll 9B where ./ = P(A) and B = zu(*P(B)). Now collisions are
defined with respe& to the produ& map 7: 6 — G; when an element x € o7 collides with
an element y € 93, that is, m(x) = n(y), then we have a short produ& representation of z as
xy’ where y = zu(y').

Now since the iteration map ¢ must respet collisions, it must factor through the produ&t
map 7 so we can write ¢ = 1o« for some 1 : G — 6. Since we have no requirement on ¥,
we simply take it to be a hash fun&ion from G to €, that is, an effe&ive map which behaves
as if it were drawn uniformly at random from 6.

In practice, to compute v(g) we can take the unique bit-étring representation of g, hash it
usinga trong cryptographic hash fun&ion, and use the resulting bit-string g ¢, ¢, ... to dictate
an element of 6; for instance, the first bit g, can be used to decide whether ¢(g) lies in J(A)
or zu(P(B)), the second bit g, to decide whether the first element of A (resp. B) belongs to
$(g), etc. (Note that ) cannot be surjetive since G is smaller than 6.)

This gives the following algorithm.

Algorithm vII.4.3.
INPUT: A finite sequence S and a target z € G.
OutpuT: A subsequence of S whose produc? is z.

Split S as a concatenation AB of sequences of roughly equal sizes.
Pick a random element w € 6 and a hash funffionn: G — 6.
Find the leasti > 0 and j > 0 such that ¢(i+f)(w) = ¢(7)(w).

1Ifj = 0 then return to Step 1.

Let s = 6"~V (w) and ler t = V=V (w).

Ifn(s) = n(z) then return ro Step 1.

Ifse of andt=zu(y) € B for somey, output sy and terminate.
Ifte of ands =zp(y) € B for some y, output ty and terminate.

SOV S/ N wd N

Basically, we $tart from a random point w and compute iterates 3% (w) until we find two
which are equal: once we have the first such collision, that is, d(s) = ¢(#) with s # £ we first
make sure it is not due to the hash fun&ion, so that the collision must arise in the produ&
map. Then, if it is a collision between an element of .¢/ and one of 98, which happens with
expected probability 1/2, we have a short produ& representation.

Step 2 can be implemented by Floyd’s algorithm, by the method of digtinguished points,
or any other collision-detection technique (which reduces by a constant fa&or the number
of expected evaluations of the map ¢ before finding a collision).
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This gives an algorithm with constant storage space and a time complexity of O(k /7).
We refer the reader to B.and SUTHERLAND (201 1) for a rigorous proof (and also for details
regarding this whole se&ion) and now turn to applications.

APPLICATIONS

This method actually has a broad range of applications; in particular, it can be used to
find isogenies between two ordinary elliptic curves defined over a finite field having the same
endomorphism ring in square-root time and without storage requirements. This application
can be found in B. and SUTHERLAND (2011). Here, we will present a different one, maybe
not as important, but which applies directly to the topic of computing endomorphism rings.

As usual, we fix an ambient finite base field F, and let .¢/ denote an simple ordinary
abelian variety. Consider the set G of isomorphism classes of abelian varieties whose endo-
morphism ring is the same as that of .¢7; as we have seen before, it is a principal homogeneous
$pace for the Picard group Pic(End .«/) whose cardinality we denote 7 (in the worst case, it
is exponential in log(g) and the dimension g of ..

Our method for computing End(.¢/) has so far been to compute relations in the Picard
group of the possible orders (those that contain Z[n,7]) and checking whether they hold
in the isogeny graph. Here, we take the inverse approach: we will look for relations in the
isogeny graph, and then rule out from the list of possibilities those orders in which the rela-
tions do not hold.

Of course, since the only algorithms we have at our disposal for finding relations in the
isogeny graph are generic, this is much slower than looking for relations in Picard groups.
However, this gives a runtime which mostly depends on the output: the closer to Oy the
endomorphism ring of .¢7, the faster it is found.

To look for relations in the isogeny graph of .7, a baby-step giant-step approach is simple
to use: let S be a set of prime ideals of 0 which are coprime to the conduor of Z[x, 7],
$plit it as a concatenation AB, let ./ = B(A) and B =P (B), and define 6 = .of LI B. We

view an element x = (P, P, ... ,pm) of 6 as the isogeny

pp,ep, (F) =0y 00y 00000y, ()

and we define the map 7: 6 — G as sending x to the variety which is the codomain of this
isogeny.

Now it is straightforward to adapt the Pollard p method to this context as we have done
before: it suffices to take a hash fun&ion v : G — 6 and to iterate the map ¢ = yomw enough
times to find a collision. Recall from Chapter 111 that, in the worst case, we might have

#G = #Pic (End ./ ) = q<1/2+o<1>>g2
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so that if we take a sequence S of length at least

(d+ 0(1))gZ log, g

for some d > 1, we can effe@ively find a relation of the isogeny graph in probabilistic time
g dro(1))g using virtually no memory, assuming the quasi-uniform distribution of products
of Sin the Picard group; this assumption can be replaced by the generalized Riemann hypoth-
esis by substitutinglog, () by log***(g) above, viaa result of JA0, MILLER, and VENKATESAN
(2009) — note however that this has little effe& on the runtime: although the produés to
be computed have more terms, the collision probability is unchanged.

By finding relations in the isogeny graph of .¢/,, we can test whether a given order & con-
tains End(.¢/) in time disc(End .o/ )!/4*() up to polynomial factors in log(g) and g. There-
fore, locating the endomorphism ring takes just as much time using the “reversed” lattice-
ascending procedure of the previous chapter for computing End(.¢/) from above.

Note that certificates that are generated with such generic methods have a length poly-
nomial in the size of the base field logg, which is much smaller than what subexponential
methods can generate. More precisely, this length can essentially be quadratic if we require
that the runtime of the generation algorithm be bounded under the generalized Riemann
hypothesis (via Theorem [F11.2.3)), or linear if the heurigtic Conjecture is used instead.

Verifying the certificate then just requires polynomial time in its size: it suffices to verify
the number of points on the variety and compute the isogenies associated to the ideals in the
relation.

Here again, we have made use of isogenies between isomorphism classes of abelian vari-
eties, not involving any polarizations, which is not an effe&ive notion in dimension g > 1.
We thus devote the next chapter to describing the changes required for making effective use
of our endomorphism computing method on abelian varieties of dimension g > 1.
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EIGHT

Polarized  Method

To make practical use of our subexponential method for computingendomorphism rings
of ordinary abelian varieties in dimension higher than one, polarizations must be taken into
account. This requires certain modifications to be made on our framework, algorithms, and
implementation, which we now describe. We also need to rely on more unproven assump-
tions.

We focus on the case of Jacobian varieties of genus-two hyperelliptic curves, since the
availability of certain computational tools (such as the method of MESTRE (1991)) is limited
in higher dimensions. Notwithstanding those issues, we believe most of the differences that
higher-dimensional varieties have in comparison to elliptic curves are addressed here.

The modified algorithm will be presented before the computation of isogenies; we then
give actual computation results and finally discuss vertical isogenies.

viiLr  Algorithm

COMPLEX MULTIPLICATION FRAMEWORK

We start by recalling some of the theory on which our approach relies.

Let .¢/ be a simple ordinary principally polarized abelian variety of dimension ¢ defined
over a finite field. We assume that an embedding of its complex multiplication field K = (O()
into End(.¢/) ® Q has been fixed, which is equivalent to fixing a type ® on K.

As we saw in Chapter 111, ideals of the reflex field K" a¢t on isomorphism classes of prin-
cipally polarized abelian varieties .¢/ via the reflex type norm (see Figure [):

N /(0

teJ(K): (Cg/CD(a),EED — Cf/® (Ngy (v)"'a) . E,

Is7
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K¢
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/ No
K< _ _ _-=K
K, K’

FIGURE 7. Complex multiplication field extensions and their reflex counterparts.

The main difference to the preceding chapter is that, when the dimension g is two or
more, this action only gives certain elements of the polarized class group &( ﬁK); in other
words, it describes certain, but not all, isogenies. Therefore, a rigorous analysis of our algo-
rithm in this setting would be much more involved than in the utopian case where polariza-
tions were disregarded: one would need to assert the existence of short relations arising via
the reflex type norm, which we see no simple way of doing. Therefore we assume:

Assumption VIIL1.1. Under the map (a,£) — (a0 ,L), composed to the right with the reflex
type norm, ideals of the ring of integers of the reflex field alt faithfully on the set AV (k) of
principally polarized abelian varieties with endomorphism O over the base field k.

This comes on top of the generalized Riemann hypothesis, and Assumptions [VIL1.2,

VIL1.4, and ¥11.3.4, which state respectively:
— Orders 0 C 0’ for which the above action is identical have bounded index [0 : ).
— Themethod of EISENTRAGER and LAUTER (2009 | computes End(.¢/ ), in 290 time.

— The norms of reduced ideals are as smooth as random integers.

The first assumption is a helpful heuristic, the third comes from BUCHMANN (1989), and
the second deliberately rules out cases where the local lattice of orders is deep. They were all
largely verified in the range of pracical problems that we considered, except in certain rare
cases.
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W also require the ability to draw points at random from .¢/ and other varieties of its
isogeny class; for ¢ = 2, this is always the case using Weierstrass forms, to which any variety
can be put using the method of MESTRE (1991 ). Therefore we additionally impose g = 2.

Under all these assumptions, the expe@ed runtime is, as we mentioned before:

L(g)¢/3¢/2+(V)

OVERVIEW

Let ./ be the input polarized abelian variety, given as the Jacobian variety of a hyperellip-
tic curve %6 defined over the finite field with ¢ elements. First, we compute the characteristic
polynomial y_ of its Frobenius endomorphism 7, which the algorithm of P1LA (1990) does
in polynomial time. In pradice, we relied on the point-counting routines of the MAGMA
(1997) computational algebra system, which use the techniques of GAUDRY and HARLEY
(2000); larger base fields could be reached using the state-of-the-art implementation and op-
timizations of GAUDRY and SCHOST (2010).

In the lattice of orders, we find End(.¢/) from below using the following algorithm from
Chapter vI — we also proposed a way of finding End(.¢/) from above which is suited to vari-
eties constructed via the complex multiplication method (rather than at random, as below);
however, at the time of this writing, only abelian varieties with maximal endomorphism rings
can be generated in this way, except in the one-dimensional case.

Algorithm VIIL1.2.
INPUT: A simple ordinary principally polarized abelian variety <f over a finite field F, -
OutPUT:  An order isomorphic to its endomorphism ring
Compute the Frobenius polynomial y, (x) of <.
Eactor the discriminant A and construct the order 0 = Z[n, ).
For orders O directly above O':
IfO CEnd(.of) set O' «— O and go to Step 3.
Return O'.

SR ™ d N

To determine whether a $pecific order @ is contained in the endomorphism ring of .7,
we sele@ed several relations of it (typically logarithmically many in the number of orders of
containing Z[x, 7], although doubly logarithmically many should theoretically be enough),
and checked whether these relations hold in the isogeny graph. The latter step requires us to
evaluate isogenies and is the bottleneck of the whole algorithm.
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FIGURE 8. Galois groups of the complex multiplication fields tower.

DENSITY OF SPLITTING PATTERNS

To $tudy the $plitting pattern of rational primes £ in complex multiplications field K, let
us first present the setting to which Theorem can be applied. We are mostly interested
in the éplitting of primes in the reflex field K” of the field by which our variety has complex
multiplication, but it makes no difference for this analysis.

Denote by K any complex multiplication field of degree 2¢, and write K* for its normal
closure. Similarly, denote by Ki the normal closure of its totally real subfield K, . This gives
a tower of fields as displayed on Figure |§.

In the typical case of non-Galois number fields, DODSON (1984) established the iso-
morphisms Gal(KfF /Q) = Gg and Gal(K”/Ki) = (Z/2)" for some integervin {1,...,¢}, and
described the action of the former on the latter so that we have an explicit description of the
Galois structure of K°/Q as

Gal(K*/Q) = (Z/2)' % &,

Note that, when a principally polarized abelian variety .¢7 is absolutely simple (as we assume
here), its complex multiplication field K is primitive and we have v = g. In dimension g = 2,
the Galois group of K*/Q is then isomorphic to the dihedral group D, = Z/4 X Z /2, and

we obtain the densities of Figure [f as a consequence.
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SPLITTING PATTERN  (1,1,1,1) (1,1,2) (1,3) (2,2) (4)
DENSITY OF PRIMES 1/8 1/4 0 3/8 1/4

FIGURE 9. Density of rational primes p splitting in a fixed non-normal quartic complex mul-

tiplication field as | [ p, with pattern (N(p,)).

FINDING RELATIONS

Finding relations is a quite standard step. We have already mentioned that the com-
putability of the algebraic stru&ures we deal with has been well studied. Here, in fa&, we do
not even need to compute the polarized class group of Shimura: since we are restricted to us-
ing isogenies which arise under the reflex type norm, we are in fact seeking for relations of the
class group of 0". To obtain a subexponential asymptotic runtime, we use the generalization
of the algorithm of HAFNER and MCCURLEY (1989) by BUCHMANN (1989).

Remark. Asa practical optimization, since evaluating isogenies is so costly, more time may
be dedicated to finding a shorter relation. For the range of input sizes we considered, it was
well worth using the exponential algorithm below which is essentially a baby-step giant-step
approach borrowing ideas of COHEN, D1Az Y D14z, and OLIVIER (1997) for the effective
ideal arithmetic; it finds the shortest possible relation, therefore improving greatly the $peed
of the isogeny step, and reducing the overall runtime.

Notation. Recall that & _(f{x)) may denote any funion satisfying the inequalities f{x) <
b (flx)) < f(x)”"(1> and computable in essentially linear time in f{x).

Algorithm VIIL1.3.
INPUT:  An order O of discriminant A in a number field K.
Ourtput:  Relations of O.

Let B consist of all prime ideals with norm up to b, (12log” |A|).
Create a hash table H.

Compute the product o of a random subset of *B.

Let b be an LLL reduction of a.

IfH has an entry for b, outpur H(b) — a.

Otherwise, set H(b) «— a and go back to Step 3.

S I

Step 4 means that b is the ideal generated over O by an LLL basis of the ideal a, where
the LLL redu&ion can be computed along any direction as described by COHEN, D1aZ ¥
D1az, and OLIVIER (1997). The ideals b act as class representatives and we do not require
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that they are unique: it is enough that they are small so that, by the pigeonhole principle,
classes are identified after a few more trials than what would be required otherwise.

The use of such an exponential algorithm also has an additional benefit: it allows us to
choose which primes we want to include in our relations, which subexponential smoothness-
based methods do not permit.

For instance, we can choose to only use primes which ¢plit as pﬁ, hence allowing for a
cardinality-based approach and ¢paring the need to compute the chara&eristic polynomial
of the Frobenius polynomial acting on the kernel of the isogeny. This is not a tremendous
improvement since our current isogeny-evaluating technique actually requires computing the
kernel, but it would be helpful if a modular-polynomial-based method was used.

More importantly, we can restri¢t to primes which are congruent to one modulo four;
this avoids the need for an additional quadratic extension to compute torsion points, and
lowers the complexity of level-change formulas from €21 ¢ g¢+(1),

viiL.z  Computing Isogenies

To determine the endomorphism ring of a principally polarized abelian variety by ex-
ploiting the complex multiplication action, we need to evaluate the isogeny ¢, correspond-
ing to a prescribed ideal a. In dimension one, this uses the formulas of VELU (1971) and
Stage 3 of the algorithm by GALBRAITH, HESS, and SMART (2002).

The work of RICHELOT (1836) was interpreted by BoST and MESTRE (1988 to com-
pute isogenies of type (Z/2)* between Jacobian varieties of genus-two hyperelliptic curves.
Later, [CARLS, KOHEL, and LUBICZ (2008 obtained relations describing pairs of abelian
surfaces related by an isogeny of type (Z/3)?; this was implemented and publicly released in
the ECHIDNA (2007) package.

This section gives a brief overview of the evaluation of general isogenies between abelian
varieties as implemented in the library of B., COSSET, and ROBERT (2010); for most of the
mathematical aspe&s, we refer to LUBICZ and ROBERT (2009) and [COSSET and ROBERT]
(2011). We evaluate ¢ in four steps: we first find its kernel, convert it into theta coordi-
nates, then perform the actual isogeny computation, and finally express the result as absolute
invariants.

FINDING KERNELS

Kernels of isogenies of type (Z /) that respect the polarization are maximal isotropic

rational subgroups of .¢/ isomorphic to (Z/2)* and defined over an algebraic closure of the
base field F .
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Since each has order £4, is rational over the base field, and contains the neutral element,
they are all defined over an extension of degree ¢/(£) at most € — 1. We will thus simply
enumerate all such subgroups of the £-torsion group of .of (qu)) and then find which one
corresponds to the ideal a as mentioned above.

To find these, first compute a basis of the £-Sylow subgroup of .&/ over the extension
field, which we denote by

o (50

for this, we use the method of [COUVEIGNES (2009) which we have discussed before: it
amounts to taking random points of .¢f (this is casy, for instance, when it has a Weierstrass
form), multiplying them by the cofactor of £ in #.&/ (Fq/(z) ), and “lifting” these points along

each other until a basis of the £-torsion group is obtained.

We then derive a sympleic basis of .o/ (Fq/(@) )[£] for the Weil pairing. For simplicity, fix

an £ root of unity and consider the problem additively under the corresponding logarithm
log : 1,(C) — Z/X. On the basis we are looking for, (the logarithm of) the Weil pairing is

given by the matrix
< 0 I > '
—Ig 0
To obtain such a basis (el . ,eg,fl, ,]2) satisfying

Iog\ywcil(ez"]j) = Bz'j
Iog\{/\)(/eil(ei’ej) =0
=0

lOg \Y\Wcil (fl"-/j‘)

we use an elementary, orthogonalization-like algorithm, similar to the classical algorithm for
computing Smith normal forms.

This basis allows us to enumerate all sympleic subgroups easily and, amongst these, we
sele& those that are rational, that is, stable under the Frobenius endomorphism, and find
which is acted upon with chara&erigtic polynomial # (given by the ideal a).

Note that when £ is congruent to one modulo four, finding random points of .¢7 is faster
by a facor of two since computing the square root of the Weierstrass polynomial evaluated
at x in order to get the y-coordinate simply amounts to a modular exponentiation.
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MAPPING TO THETA COORDINATES

Recall that if .of = C£/(Z5 + Q7Z5) is a complex torus with period matrix € in H¥, then
the set of theta funéions

@:Z c2eC8—s Z exp <iﬁ<%ﬁQu+Zﬁ(z+b)>> s
(u+a)eZf

where 2 = 0 and 4 is a ve&or of %(Z/ n), forms the theta coordinate system of level n. It
is a coordinate system for abelian varieties (and also incorporates information about the 7-
torsion), but can represent points of such varieties too. It has an algebraic counterpart which
is applicable to varieties defined over finite fields.

The points P of the kernel of the isogeny we wish to evaluate, as output by the method of
COUVEIGNES (2009}, are expressed in Mumford coordinate on a Weierstrass model for the
hyperelliptic curve 6 : y* = f{x) of which ./ is the Jacobian variety. As a first step towards
mapping these points to theta coordinates, we extend the base field so as to make f$plit com-
pletely; then, by a homographic transformation (also known as Mébius transformation) of
the x coordinate, we derive its Rosenhain normal form

2¢—1
2
y =x(x—1) H(x— a;)
i=1

which might require working in an extension of the base field.

The formulas of THOMAE (1870}, then give theta coordinates of level two or four corre-
$ponding to the varicty ./ = Jac(6). In order to map points from Mumford representation
to theta coordinates, we need equations derived by VAN WAMELEN (1998).

Note that theta coordinates of level two actually represent the Kummer surface of an
abelian variety, that is, identify a variety ./ = Jac(6 : y* = f{x)) with its twis‘t]ac(‘g: wy* =
) where w is a non-quadratic residue in the base field. This is not too much of an issue for
us since the isogeny class of .¢f is identified by the chara&eristic polynomial of its Frobenius
endomorphism, so there is no ambiguity on which of an abelian variety 98 or its twist an
isogeny ¢, with domain .&/ maps to.

However, for a cleaner approach, we prefer to use level four theta coordinates which
identify the variety .&/ uniquely; this comes at the expense of speed, but the slow down is
minor, especially as finding the £-torsion remains the overall bottleneck.

ISOGENIES vIA LEVEL CHANGING

LuBicz and ROBERT (2009) described isogenies as projections from higher-level theta
coordinate systems to lower-level ones; they also described the associated machinery (addi-
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FIGURE 10. Evaluating isogenies of type (Z/2*)¢ via two theta level changes.

tion laws, etc.) required to make effective use of this result. Before discussing how it applies
to our setting, let us briefly recall their result.

Theorem VIIL2.1. Let F€ be a subgroup isomorphic to (Z[R) of an abelian variety .<f of
dimension g, and let n be any integer coprime to L. The theta functions of level n on of | A are
a subset of the theta functions of level 4n on <.

This introduces an change of level; to address this, LuBICZ and ROBERT (2009 ) noted
that subsets of the Fourier transform of theta funions of level £z on ./ correspond to theta
fun&ions of level 7 for abelian varicties obtained by dual isogenies of degree £; this allows
them to compute isogenies of type (Z/€*)¢ between abelian varieties expressed by level-»
theta fun@ions; see Figure [[d.

Our framework for computing endomorphism rings can be adapted to this setting: rela-
tions can be constrained to only involve squares of ideals, so that the associated isogenies are
all of type (Z/2*)¢. However, this implies loosing all the information regarding the 2-torsion
of the reflex class group €(0”). [COHEN and LENSTRA (1984) showed that class groups typ-
ically have a large 2-torsion subgroup, so it is not likely that all pairs of class groups that are
identical up to 2-torsion can be distinguished efficiently using the local method of EISEN]
TRAGER and LAUTER (2009).

CosseT and ROBERT (2011 ) then derived from earlier work of Korzumi (1976) and
KEMPF (1989) formulas which allow to map points from level-£ theta coordinates to level-
n theta coordinates, avoiding the need to evaluate an additional isogeny. They apply these
formulas to evaluating isogenies of type (Z/£)* between abelian varieties expressed in theta
coordinates of level 7.
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MAPPING BACK TO INVARIANTS

In order to determine whether a relation holds in the isogeny graph of an abelian variety
(to eventually determine its endomorphism ring), we need to compose many isogenies of
type (Z/L) for various primes £. We have explained how to compute an isogeny ./ —
/" of prescribed kernel where ./ is given in Weierstrass form and .o/’ is given as theta
coordinates of level 7. To iterate this constru&ion, it remains to explain how we can obtain
a Weierstrass equation for .o/,

In fa&, this can be done elementarily by inverting the formulas of THOMAE (1870).
However, the theta coordinates of ./ that we used in the isogeny computation are defined
over a large extension of the base field which contains the roots of the Weierstrass polyno-
mial of the curve, certain z-torsion points (recall that z = 2 or4) and certain £-torsion points;
the theta coordinates of .¢f’, and therefore also its Weierstrass equation that we derive, are
consequently defined over that large extension.

When we know that ./ is acually defined over the base field (for instance, because the
chosen isogeny is rational), we recover a rational Weierstrass equation by first computing the
absolute invariants of .¢/” and then using the algorithm of MESTRE (1991) to reconstruct a
curve 6’ whose Jacobian variety Jac(6”) is .</".

As an optimization to the algorithm for finding the £-torsion of the new curve .¢/’ and
then compute the next isogeny step, ROBERT noticed that part of the £-torsion of ./ can
be reused: indeed, we have .o/ [£] = (Z/£)* and the isogeny .o/ — .¢/” only kills half of it;
therefore, we can map the remaining points all the way from .o/ to .o/ " and étart the search

for a basis of ﬂ/(Fql(@))[ﬁ] knowing already half the solution. This can speed up the search
for rational torsion subgroups of type (Z/£) by a factor of two.

Abelian varieties of dimension strictly greater than two are not necessarily Jacobian va-
rieties of hyperelliptic curves, and from dimension four on they might not even be Jacobian
varieties at all. Therefore, two of our building blocks fail:

— the sele@ion of random points (to find a basis for .e/ [£]);
— the method of MESTRE (1991) (to reduce the field of definition of .¢/”).

The former can easily be addressed by assuming that our abelian varieties come equipped with
an efficient algorithm for obtaining random points. The latter is a more delicate issue: the
isogeny computation requires working in an extension field, and for g > 2 we do not know

how to go back to the base field afterwards.
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FIGURE 11. Average time for finding the £-torsion of an abelian variety of dimension two

over the field with 251 elements, for £ € {2,3,5,7,11,13,17,19} and all possible ).

viiL3 Pracical Computations

All computations were realized using the library of B., COSSET, and ROBERT (2010).

FINDING TORSION

The bottleneck of our algorithm is typically to find a basis for the £-torsion subgroup of
.o/ over an extension where all points of rational subgroups of type (Z/£)* are defined. The
cost is twofold:

- computing over an extension of degree ¢/ (£) of the base field;

- multiplying points by the cofactor of £~ in #.&/ (F q/@)) ~ g,

In the worst case, ¢/(£) can be as large as £ — 1, so that the overall complexity is Q2ero(l)
disregarding logarithmic factors in ¢, which quickly becomes prohibitive. As argued before,
exponential methods for finding relations offer the advantage that $pecific primes £ can be
chosen for which ¢/ (£) is small.

Figure [t 1] shows the time it takes, on average for 10 randomly chosen abelian surfaces
defined over the field F,s;, to compute the £-torsion over an extension of degree .
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FIGURE 12. Number of iterations the latter algorithm requires before finding a relation in a
quartic complex multiplication field with certain class number (also known as Picard num-

ber). The lines plot y = x and y = 4/x.

As can be expected, this runtime is slightly more than linear in the extension degree, and
does not highly depend on £. However, we observe that for a prescribed € the torsion of
varieties with a certain ¢'(£) is sometimes faster than those of varieties with a smaller ¢/(£);
this is likely due to the internal representation of the extensions as tower fields in MAGMA
(1997), and also possibly to pecial features of the varieties.

FINDING RELATIONS

We implemented in MAGMA (1997) the simple baby-step giant-step method that we de-
scribed above and found that it behaves well: in most cases, the number of iterations required
to find a collision is not so far from the v// (where 4 denotes the class number) that would
be expeced if each ideal class contained a unique reduced ideal.

Figure [12] shows the number of iterations our algorithm goes through before the first
relation is found; we use the order O = Z[n, 7| for a thousand Jacobian varieties of random
hyperelliptic curves of genus two. The class number displayed is aually the approximation
\/m /R given by the Brauer—Siegel theorem.

We observe that the iteration count lies somewhere in between /% and 5. Although in
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some cases this number went slightly above the class number, the runtime was always accept-
able: it was never more than two seconds when the class number was less than a thousand,
and always less than a hundred seconds in our range of parameters.

BEST-CASE SCENARIO

Let us first present an example where our algorithm performs much better than all other
alternatives. The conducfor gap is the largest prime factor of the index [0y : Z[m,7]]; here,
we consider a case of large conducor gap, which makes the method of EISENTRAGER and
LAUTER (2009) impractical. Unfortunately, we were unable to compare our method with
that of WAGNER (2009}, as we did not have an implementation of the latter at our disposal.

To find an abelian variety with a large conductor gap, we generated genus-two hyperel-
liptic curves at random until one whose Jacobian variety has the desired property was found;
we obtained the hyperelliptic curve with equation

9% = 80742%° + 56078x" +76952x> + 134685x” + 60828x + 119537

defined over the field with 161983 elements; let .o/ denote its Jacobian variety. The charac-
teristic polynomial of its Frobenius endomorphism is

2t — 14427 + 103682 — 144 - 161983z + 1619832

and it defines a quartic complex multiplication field K = QQ(r) in which the ring of integers
contains the minimal order Z [, 7] with prime index £ = 156799.

Since the full £-torsion of ./ lies in an extension of degree e(£) = 78399, it is challenging
to try to compute End(.¢/) using the method of EISENTRAGER and LAUTER (2009).

However, the Picard group of 9 = g has order 460; this is not surprising as a large part
of A = disc(r) contributes to the condu&or gap so little is left to build up disc(K). It is thus
easy to find relations in the associated polarized class group €( ). For instance, one easily
verifies that the element (a, 3) has order 115, where a can be any ideal of norm 9 (there are
just two such elements, inverses of each others).

The a&ion of (Cl,3)“S on .o/ is computed casily, as the 3-torsion of .&/ lives over an
extension of degree 8. Using just one core of an Intel Xeon Es 440 processor clocked at 2.83
GHz, our humble Magma implementation computes it in just over four minutes. Since it
finds that <[>( a3)hs . # o, we deduce that End(./) = Z[n,7]. Note that, since the a&ion
of Oy on AVﬁK (k) is always faithful, and there are only two orders in the lattice, this result
holds unconditionally regardless of the assumptions.
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FIGURE 13. Lattice of orders with 0 on top and Z[r,7] at the bottom; lines indicate that
the order below is contained in the order above with index the label right off the line.

WOoORST-CASE SCENARIO

Now let us consider an abelian variety that is expectedly suited to the method of EISEN?
TRAGER and LAUTER (2009), namely, one for which the conductor gap [0 : Z[=,7]] is
short. We take the Jacobian variety .&/ of the hyperelliptic curve

9 =2987x + 1680x* + 34432 + 1918+ + 2983 + 489
defined over the field with 3499 elements. The chara&eristic polynomial of 7 is
2 +482° + 115227 + 48 - 3499z + 3499°

and we find that there are 2* orders containing (or equal to) Z[m,7]; their indices in the
maximal order divide 13%-37 .79 as displayed on Figure 13-

We use oy = (a,,8) € € for £ € {3,5,7} where a, is an arbitrary ideal of norm ¢%; the
full £-torsion is defined over an extension of degree 8, 24, and 24, respedtively, so it takes on
average 1, 3.5, and S.5 seconds to evaluate one JZ—isogf:ny.

We used the relation u;a; = 1 for the yellow square order, a;o = 1 for the blue triangle

order, and o?a!%a=% = 1 for both the red circle and green diamond order. Checking these
relations in the isogeny graph took only slightly more than two minutes, and since none was
found to hold, our algorithm returned that End(.¢/) = Z[m, 7).

Even in this case, which would  priori favor the method of EISENTRAGER and LAUTER
(2009] (the full 37 and 79-torsion are defined over extensions of degree 1332 and 948, re-

$pectively), our algorithm performs well while ill leaving some room for improvement.
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viil.4 Isogeny Volcanoes

Let us now fix a prime £ and study the struture of the conneéted component of the
graph of isogenies of type (Z /) containing a prescribed principally polarized simple ordi-
nary abelian variety .¢/ defined over some finite field.

GENERAL STRUCTURE

KoHEL (1996) and later FOUQUET and MORAIN (2002 depicted the stru¢ture of such
graphs in dimension one as volcanoes, containing a crazer formed by varieties whose endo-
morphism ring is locally maximal. Horizontal isogenies arrange these varieties in a (possibly
degenerated) circle, and from each vertex on it hang complete £-ary trees; their number and
depth are entirely determined by £ and the isogeny class.

In dimension two or more, most pecific details are lost, but the general structure remains
the same; most important for our algorithms is that craters are still Cayley graphs.

LetG = (V,E) be such an isogeny graph: vertices V correspond to abelian varieties and
edges E (a symmetric subset of V?) to isogenies of type (Z/2)¢ between them. We start by
partitioning G into /ayers G, for each order O above Z[m,T]: each layer contains the vertices
whose associated varieties have an endomorphism ring isomorphic to 0.

Note that, in a conne&ed component, certain layers can be empty as not all isogenous
varieties might be reachable by sequences of isogenies of type (Z/£)¢. We say that a layer G,
is maximal when there is no non-empty G, with @ C 0”; typically, this means that when
Gy, is non-empty, it is the unique maximal layer.

Our observations of isogeny volcanoes will be $plit in three parts:

— the core: the union of maximal layers and their horizontal isogenies;
— the branches: the vertical isogenies;

— the covering: the horizontal isogenies in non-maximal layers.

Often, the graph has the familiar pi&ure of a core, out of which branches hang, and there
is no covering. However, we will see that unusual phenomenons can occur, such as part of
the branches substituting to the core structure.

At any rate, we must warn the reader that our description of branches (which are the
key to undertanding the relationship of £-isogeny volcanoes and the stru&ure of endomor-
phism rings locally at £) will be short and qualitative, as this thesis focuses on using horizontal
isogenies and does not pretend to add any insight on the structure of vertical isogenies.
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CORES

Assume the core consists of a single layer G; (we will consider the case where there are
two or more below).

Atleagtin the case that 0 is a maximal order, the theory of complex multiplication proves
that the set of horizontal isogenies of type (Z /)¢ in G, corresponds to a certain subgroup
of €(0) formed of ideals of norm £4. Therefore, the core is a Cayley graph. We shall denote
by C(X]|Y) the Cayley graph of X in the free abelian group generated by X with relations Y.

When g = 2, the order @ is quartic, and the possible unramified splitting patterns of a
prime £ in O are (1,1,1,1), (1,1,2), (1,3), (2,2), and (4). The third case never happens in
complex multiplication fields (it is incompatible with complex conjugation) and the latter is
that of inert primes which ac trivially on the isogeny graph, so we disregard both.

In the second case where £ splits as ppq with N(q) = €* there are, in general, no ideals
a of norm €2 such that ada is principal, which means there are no corresponding elements in
the polarized class group C(&) and no isogenies of type (Z /).

In the fourth case where £ splits as pp, both p and p lift to €(0) as e = (p, ) and p = (p, 2).
The core of the isogeny graph G, is then the Cayley graph C(a, B8, #°™4*), where the orders
implied are those of the corre$ponding ideals as elements of the Picard group. This gives a
cycle structure as Figure [4 displays.

In the first case where £ $plits as ppq{q, there are four ideals of norm £* whose prod-
ué with their conjugate is principal, namely pq, pq, pq, and pg; if we denote the corre-
$ponding elements of €(0) by , B, v, and 8, we obtain that the core G; is the Cayley graph
C(e,B,7, 8], y3, 024, y°rd7); this is a quadrangulation of a torus, as can be seen on Figure 3.

Although we were unable to compute actual isogeny graphs for g > 2, primes £ which
completely $plitas [ | pep pp (with # = ¢) would then yield the 2¢ elements of €(0)

w=|TTrI TP ¥

pes  pES

for each subset § of *3; the core would then be the Cayley graph

where the middle sequence ranges over all sets & of subsets of I3 which satisfy #{§ € & :
peft=#{Fec®:p¢F}forall p € P. Topologically, this is the 1-skeleton of a simplicial
complex homeomorphic to the g-torus (the produ of ¢ copies of the 1-§phere).
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FIGURE 14. Graph of isogenies of type (Z/3)* containing the Jacobian variety of the curve
97 =32 + 15x% + 1123 + 3x% + 11x + 12 over the field with 19 elements.

FIGURE 15. Graph of isogenies of type (Z/7)* containing the Jacobian variety of the curve
77 = 106x° + 83x° + 18x™ + 524 + 49x% + 11x + 41 over the field with 109 elements.
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Note that all the above holds over an algebraic closure, as not all isogenies corresponding
to ideals of norm & of €(&') need to be rational.

BRANCHES

Let us now consider two-dimensional £-isogeny graphs in the case that £0y is not co-
prime with the conductor of Z[x, 7). Although our algorithms for computing endomor-
phism rings prefer to avoid such situations, they are an interesting application of our isogeny-
computing library.

Each figure contains two parts: the isogeny graph to the left, and the lattice of orders to
the right. Vertices of the isogeny graph are colored the same way as the endomorphism rings
of the corresponding abelian varieties are in the lattice of orders.

Recall that in dimension one, a certain number of complete 7-ary trees of uniform depth
hang from each vertex of the core. This might also happen in higher dimension, but other
scenarios are possible. For instance, BROKER, GRUENEWALD, and LAUTER (2009 ) observed
in their Example 8.3 that trees hanging from the core might have different depths. Figure
shows the same phenomenon in a more generic-looking graph. This unbalance shows that
not all isogenies of type (Z/£)¢ need be uniformly rational.

Figure [fg also features isogeny of type (Z/£)* between abelian varieties whose endomor-
phism rings have index £2 in each other, more $pecifically between the green diamond and
cyan o&agon dots. This can lead to disturbing graphs such as that of Figure [[7 where the en-
domorphism rings of varieties (Z/2)*-isogenous to varieties with maximal ones are the order
of index 3%, some order of index 3, but not the maximal order itself. Going from one variety
with maximal endomorphism ring to another is however possible by first going through a
non-maximal one and then going up again.

In such cases, the partitioning of the features of isogeny graphs into a core, branches, and
coverings is somewhat flawed. Although with our definition, the core of Figure [[7 consists
of both curves with red circle (maximal) and yellow square (index 3) endomorphism rings.

This illustrates another obstru&ion to climbing higher-dimensional volcanoes: some-
times, steps can only be climbed in pairs, which prevents one to fully enumerate an isogeny
class just by following isogenies of type (Z/£)%. Naturally, we see (hypothetical) isogenies of
type (Z /%) as the answer to this problem.

COVERINGS

We call covering the outer layers of the isogeny graph; those are horizontal isogenies aris-
ing as complex multiplication “residues.” Although there are no ideals of norm £ in imagi-
nary quadratic orders whose conductors are divisible by £, this sometimes happen in higher
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FIGURE 16. Graph of isogenies of type (Z/3)* containing the Jacobian variety of the curve
97 = 44x° + 365> + 48 + 294 + 347 + 44x + 34 over the field with 61 elements.

FIGURE 17. Graph of isogenies of type (Z/3)* containing the Jacobian variety of the curve
97 = 13x° + 525 + 37x% + 317 + &% + Sx + 3 over the field with 43 elements.
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dimension; by complex multiplication, such ideals give rise to horizontal isogenies amongst
varieties with non-maximal endomorphism rings.

This was first noted by BROKER, GRUENEWALD, and LAUTER (2009) in their Exam-
ple 8.2 as an obstruction to a étraightforward generalization of the endomorphism-ring-
computing algorithm of KOHEL (1996). Indeed, the presence of cycles other than at the core,
such as seen in Figures [[§ and [[d, makes it difficult to obtain useful information about en-

domorphism rings by exploring the isogeny graph blindly.

In arbitrary dimension g, when a prime £ is completely split in the maximal order, we have
argued before that the core of the isogeny graph is the 1-skeleton of a g-torus. In orders @ of
conduéor not coprime to £, since not all prime ideals of norm € can be invertible (otherwise
£ itself would be), there are at most ¢ — 1 of them. The construction of the covering as a
Cayley graph is then identical to the maximal case except for two differences:

— P now consists of ¢ — 1 ideals at the most;
- itsaction on G need not be transitive.

Since we defined our isogeny graphs as being conne@ed components, the subgraph of hori-
zontal isogenies in the core was always connected (in this case where we assume that £ com-
pletely $plits and that all elements of €(0) of norm £ arise as rational isogenies); however,
there is no reason for this to happen in the cover where we have a smaller 3, which is the
reason for the second difference.

The graph of horizontal isogenies of G4 therefore has the topological stru&ture of several
copies of the 1-skeleton of a simplicial complex homeomorphic to the #;-torus, for some
integer #,, < g. Obviously, the integer #,; is non-decreasing with respect to the order & (for
the inclusion order).

In the case ¢ = 2, when the subgroup generated by the invertible ideals of norm 22 in
€(0) is small, we obtain an isogeny graph such as that of Figure [[§. On the other hand,
when it is large, its shape is similar to Figure [td.

To compute endomorphism rings, such ideals can be allowed in our relations as long as
they are invertible in Z[,7]. Although this has no effect on the asymptotic complexity of
our method, it provides a valuable pra&ical optimization: since computing isogenies is the
bottleneck, not using any ideal of norm £ just because some are not invertible would be a
loss, especially if the full £-torsion conveniently lies in a small extension of the base field.
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FIGURE 18. Graph of isogenies of type (Z/3)* containing the Jacobian variety of the curve
9 = 8x% +3x° + 7x% + 547 + 12x% + 5x + S over the field with 23 elements.

FIGURE 19. Graph of isogenies of type (Z/ 3)? containing the Jacobian variety of the curve
y= 104° + 18x° + 24x* + 3% + 33x% + 26x + 25 over the field with 41 clements.
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Summary

ENDOMORPHISM RINGS IN CRYPTOGRAPHY

Modern communications heavily rely on cryptography to ensure data integrity and pri-
vacy. Over the past two decades, very efficient, secure, and featureful cryptographic schemes
have been built on top of abelian varieties defined over finite fields. This thesis contributes
to several computational aspe&s of ordinary abelian varieties related to their endomorphism
ring structure.

This structure plays a crucial role in the congtru&ion of abelian varieties with desirable
properties. For instance, pairings have recently enabled many advanced cryptographic prim-
itives; generating abelian varieties endowed with efficient pairings requires sele&ting suitable
endomorphism rings, and we show that more such rings can be used than expected.

We also address the inverse problem, that of computing the endomorphism ring of a
prescribed abelian variety, which has several applications of its own. Prior tate-of-the-art
methods could only solve this problem in exponential time, and we design several algorithms
of subexponential complexity for solving it in the ordinary case.

For elliptic curves, our algorithms are very effective and we demonstrate their practicality
by solvinglarge problems that were previously intractable. Additionally, we rigorously bound
the complexity of our main algorithm assuming solely the extended Riemann hypothesis. As
an alternative to one of our subroutines, we also consider a generalization of the subset sum
problem in finite groups, and show how it can be solved using little memory.

Finally, we generalize our method to higher-dimensional abelian varieties, for which we
rely on further heurigtic assumptions. Practically §peaking, we develop alibrary enabling the
computation of isogenies between abelian varieties; using this important building block in
our main algorithm, we apply our generalized method to compute several illustrative and
record examples.



Research Prospects

In this thesis, we effecively exploited complex multiplication theory to compute the
endomorphism ring struture of a prescribed ordinary abelian variety defined over a finite
field. For elliptic curves, we were additionally able to rigorously analyze our algorithms, and
we believe their asymptotic complexity leaves little room for improvement.

Oh the other hand, although we described a pracical method for varieties of dimension
¢ =2, several topics remain to be explored for g > 2:

— We dealt with orders havingidentical Picard groupslocally, using the method of Eisen-
triger and Lauter. As its complexity is exponential in the valuation of the condu&or
gap, this is however impraical in certain cases. It would be interesting to address this
by developing a generalization of Kohel’s techniques to dimension two and more.

- Havingadeeper insight on the structure of isogeny graphs would certainly help solving
the above, and we note that recent work on elliptic curves by Joux and Ionica offers
promising perspectives of developments on this matter in higher dimension.

- Besides the extended Riemann hypothesis, heuristics we relied on should be further
analyzed, such as the assumption that norms of LLL-reduced ideals are as smooth as
random integers, or that complex multiplication applies to non-maximal orders.

— The convenient stru¢ture of Jacobian varieties was used to draw points at random, and
to uniquely identify isomorphism classes. Using our method beyond dimension three
would require to solely work in theta-coordinates, using the Heisenberg group for the
latter, and finding an efficient way of doing the former.

Closely conneéed topics include the computation of class polynomials and of modular
polynomials; it is only natural that they should benefit from further exploiting complex mul-
tiplication theory as well. For elliptic curves, this was done successfully for both problems
by Sutherland, and by Broker, Lauter, and Sutherland, respectively.

However, similar work remains to be done in higher dimension: although substantive
improvements have been made on it over the past few years, the computation of class poly-
nomials remains a topic of active study, albeit particularly unexplored in the case of non-
maximal orders. On the other hand, modular polynomials have not attra&ted many research,
due to their prohibitive height; it would be challenging to improve on this and compute more
such polynomials, as an alternative to explicit isogeny computation.

Finally, more of the code written during this thesis should be optimized, fully automated,
and cleaned up for inclusion in open software packages, as experimentation using efficient
computer routines becomes increasingly important to research adivities in many fields.
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