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IntroduĆion

Suppose Mr. Athos wishes to write a private message to Mrs. Bonacieux while keeping
its contents secret from his Eminence of Richelieu, to whom the courier is most certainly
beholden; he couldput themessage in a safe boxwhose combination is only known tohimself
and to Bonacieux, and that would be very costly to break.

Rather than physical devices, cryptography rests on computational power to ensure data
security and integrity. Athos andBonacieux are each given ablackbox: Athos’ is parametrized
by a key and transforms messages into unintelligible data called ciphertexts; with the cor-
reėonding key, Bonacieux’s reverses this operation. Ciphertexts can then be transmitted
openly over any medium. Chapter  gives a brief overview of such techniques, with an em-
phasis on schemes allowingAthos’ key to be public: they are only a few decades old andmake
extensive use of mathematical struĆures.

Abelian varieties are objeĆs upon which such schemes can be built very efficiently and
securely; they are formally introduced inChapter , which concisely presents certain of their
theoretical aėeĆs, focusing on computations over đnite đelds. Subsequent chapters, where
the original contributions of this thesis are located, are concerned with algorithmic prop-
erties related to the endomorphism ring struĆure of abelian varieties; most of the theoreti-
cal background on this topic forms what is known as complex multiplication theory, which
Chapter  covers.

An important application of endomorphism rings is the construĆion of abelian varieties
with desirable properties. For instance, many featureful cryptographic schemes have recently
been enabled by pairings; to make these schemes praĆical, abelian varieties endowed with
efficient pairings must be generated. Chapter  discusses this subjeĆ, including the work of
B. and S () and related results.

ăe second half of this thesis addresses the problem of computing the endomorphism
ring of a prescribed abelian variety, which can be seen as the inverse problem to variety gen-
eration. Chapter  recalls prior state-of-the-art methods, all of which have an exponential
runtime in the size of the input. It also describes the general struĆure of isogeny graphs,
which is later extensively relied on.

Our subexponential algorithms for computing endomorphism rings of ordinary abelian
varieties are đrst described in Chapter  in an idealized setting. ăey exploit complex mul-
tiplication theory in its relevance to the struĆure of isogeny graphs. Whenėecialized to the
case of dimension-one abelian varieties, this direĆly yields highly effeĆive methods which
are essentially equivalent to that of B. and S (). ăeir complexity is rigor-
ously analyzed in Chapter , as was done in B. (); this chapter ends with a discussion
of the results of B. and S () in this context, from a different perėeĆive
than the original article.
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Chapter  đnally explains how our methods can be adapted to be effeĆive in higher
dimension, and reports on the implementation of B., C, andR () enabling
the evaluation of general maps between abelian varieties (so-called isogenies), which is an
important building block of our algorithms. We conclude by applying our technique to the
computation of several illustrative and record examples.
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

Ŷanorama of ũryptography

Historically, cryptographyhas prevalently been employed for secrecy, althoughover time
it has come to provide other features, such as integrity proteĆion and authentication. ăis
chapter concisely presents standard techniques achieving such classical primitives; it serves
as both a motivation and praĆical framework for computational number theory.

. Symmetric Primitives

Early cryptography necessitated a secret, called the key, to be shared between the parties
involved. Primitives of that lineage are said to be symmċric; they are in wideėread use and
development today, mostly due to their Ĕexible and fast implementations.

C

Denote by S = {0,1}(N) the set of all strings, that is, đnite sequences of bits.
Deđnition ... Symmetric encryption schemes consĝt of two families E andD of funĊions,
not necessarily everywhere deĖned, Ěom S to S such ĭćDk ◦Ek = Iddom(Ek)

for ağ strings k.

Intuitively, E and D are the black boxes to provide Athos and Bonacieux: the cipher E
is parametrized by a key k, takes plaintexts m as input, and returns ciphertexts Ek(m), while
the decipher D does the converse. His Eminence should be unable to gain any insight on
the messagem from the sole knowledge of the ciphertext Ek(m); in the striĆest sense, this is
formalized as perfeĊ secrecy, which requires that, for all đnite sets of strings M andM′,

Probk,m[m �M | Ek(m) �M′] = Probm[m �M].


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Early ciphers, going back to several centuries BC, simply swapped or shiĖed bytes of the
plaintext in a regular fashion derived from the key; for instance,ėlittingstrings as sequences
of bytes that encode letters A–Z as integers –, the cipher

Ek :
�
mi
� 7¹→ �mi + kmod 26

�
is still in limited use today with k = 13. Similar schemes not obviously as weak have also
been designed using larger keys; virtually all have since been broken by the development of
frequency analysis.

S () established the existence and essential uniqueness of a cryptosystem
achieving perfeĆ secrecy: the one-time pad — it requires a key to be drawn independently
and uniformly at random from {0,1}n for each n-bit plaintext, and returns as ciphertext the
bit-by-bit xor of the plaintext and the key. Its praĆical use is only limited by the ability to
carry suitcases full of pads around, prior to doing any encryption.

To mimic its behavior while overcoming the need for lengthy keys transmission, stream
ciphers (also known as pseudorandomnumber generćors), on input a small key called the seed,
deterministically generate pads to be xored with the plaintext; as before, measurable statisti-
cal deviations of such pads from randomstrings should be avoided. Nowadays, block ciphers,
which encrypt đxed-length blocks of bits, are the most widely used, and particularly that
of D and R () later standardized as the AES. Procedures for encrypting
sequences of blocks, known as modes of operćions, prevent additional information leakage
when handling messages of arbitrary length.

C S

ăe above overview calls for a more down-to-earth discussion of security aėeĆs: the
result of S () concerns whether the key can ĭeorċicağy be recovered from a
certain amount of ciphertext, not how resource-demanding that process is.

One of the cheapest ways of effeĆively compromising the key is to peek at Athos’ note-
book, or simply to ask him about it over a nice glass of wine; such side-channel ćĬcks will
not be discussed here, as we focus on cryptosystems themselves, not their implementations.

Deđnition ... A cipher E ĝ compuĬtionağy secure if, for most keys k, it ĝ compuĬtionağy
infeĆible to derive plaintexts m Ěom ciphertexts Ek(m).

“Computationally infeasible” means that, with today’s state-of-the-art machines, this
computation would take more time than is available, say, billions of years.

Other conditions might be desirable as well; for instance, that the output of Ek cannot
feasibly be told apart from that of a random funĆion. However, as our interest will shiĖ to
themathematical building blocks of cryptosystems, this distinĆion will bear little relevance.
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Mostcryptosystems do not achieve perfeĆ secrecy, and are thus susceptible to brute-force
ćĬcks, whichdecrypt given ciphertexts by trying all possible keys in turn. For “ideal ciphers,”
this is the best attack, and for “ideal keys,” which have no ėecial property that reduces the
search range, it takes 2n/2 runs on average to đnd an n-bit key.

With today’s technology, the total number of elementary arithmetic operations realisti-
cally achievable canbebounded fromaboveby2128; keys bearing (at least)128bits of entropy
are thus recommended. Naturally, this should be tempered by several faĆors:

– the gravity of the encrypted information;

– the desired lifetime of the cryptosystem;

– the available processing power.

For instance, a news agency broadcasting encrypted live reports to its paying subscribers with
different keys each day might only need to withstand limited-resources attacks for 24 hours.

Summing up the above, assessing the security of a cryptosystem calls for a deep under-
standing of the ways and costs to attack it. M () prediĆed an exponential growth
in available computing power which has been veriđed for the past four decades; as a conse-
quence, the costs should be considered for increasing key-sizes.

Rather than relying on a rigorous computingmodel such as the multi-tape universal ma-
chines of T (), we will simply analyze algorithms by looking at both their aĆual
runtime on praĆical computations, and their long-term behavior embodied in asymptotic
bit-complexity estimates. In particular, we disregard quantum-computing models.

To emphasize the need for an asymptotic analysis, denote by cE(n) the operation count
of the best method for attacking a cipher E with n-bit keys: if cE grows subexponentially,
key-sizes are required to increase more than linearly in time to provide a constant level of
security, which may eventually prove to be quite cumbersome.

H F

One-way funĊions formalize the behavior which is expeĆed of ciphers parametrized by
unknown keys; they have countless applications, far beyond cryptography, such as hash ta-
bles. Like ciphers, they can be deđned in a complexity-theoretic way, as funĊions ĭć can
be evalućed by polynomial-time algoriĭms, but for which no polynomial-time algoriĭm can
successfuğy Ėnd preimages on more ĭan an exponentiağy smağ ĚaĊion of ĭe image.

Since the existence of such funĆions implies P ≠ NP, we look for amore praĆical stance.

Deđnition ... A funĊion h : S → S ĝ one-way if it ĝ compuĬtionağy infeĆible to Ėnd
preimages of most of its image. It ĝ also a hash funĆion if its image ĝ conĬined in {0,1}n for
some n and it ĝ compuĬtionağy infeĆible to Ėnd two strings x ≠ x′ verifying h(x) = h(x′).
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Again, additional conditions might be required for ėeciđc applications. ăe random
oracle is a convenient ideal encompassing most expeĆations: it is nothing but the Cartesian
power by S of the uniform distribution on n-bit strings, or, more pragmatically, a “map”
whose images are drawn uniformly at random from {0,1}n.

Since there typically are at least a few funĆions (such as constant ones) that are unsuit-
able, designs using hash funĆions h are oĖen analyzed by assuming that h has the uniform
distribution, and proving that the desired properties hold with overwhelming probability.

Traditionally, hash funĆions are craĖed as a mix of logic gates, but some have also been
built on top of mathematical struĆures, which allows to analyze their behavior much more
rigorously. For instance, the construĆion of C, L, and G () in-
volves isogeny graphs of supersingular elliptic curves, a struĆure that we will investigate later
(for completely independent reasons).

P S

Conđdently evaluating the complexity cE of the best attack on a cryptosystemE is a diffi-
cult task. Provable cryptography aims at designing cryptosystemsonwhich successful attacks
can be reduced into diėroofs of certain ideal properties of the underlying blocks. However,
since many traditional blocks feature components ėeciđcally designed to obscure their be-
havior, assessing the veracity of these ideal properties is not always possible.

Alternatively, themachinery ofmathematics provides well-studied building blocks, bun-
dled with tools adapted to rigorous analyses, although this oĖen comes at the expense of
slower implementations.

As a prominent example, let us give a result of S () regarding the dĝcrċe log-
ariĭm problem, which is that of inverting the funĆion expg : n � Z 7→ gn � G, where g is a
đxed element of a group G.

ăeorem ... In prime-order groups G, no generic algoriĭm can solĂe random instances of
ĭe dĝcrċe logariĭm problem in time o(

p
#G).

Later, we will rigorously deđne generic algorithms and explain how they can invert dis-
crete logarithms in time O(

p
#G); in essence, this theorem states that no attacker using the

group as a black box (thus unable to exploit any “ėecial” property) can do better than that.
Assuming that a cryptosystem E builds upon the discrete logarithm problem on a group

where generic attacks are the best available, we can oĖen, aĖer some calibration, estimate
the value of cE at đnite parameters by its asymptotic behavior: if a key k has about the same
size as the group G that Ek uses, then it must be roughly 256-bit long in order to provide an
expeĆed 128 bits of symmetric security.
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Researches have built cryptographic blocks uponmathematical objeĆs of various kinds:
D and H () used discrete logarithms, M and H ()
relied on knapsacks, R, S, and A () suggested using integer fac-
torization, ME () made the case for error-correĆing codes, M and
I () employed certain multivariate polynomials, Z () exploited Cayley
graphs, A () proposed using lattices, etc.

ăis thesis is concerned with some of the underlying mathematical aėeĆs of discrete-
logarithm-based systems. ăe groups G with which they are concerned will be presented in
the next chapter — for now, let us keep motivating their introduĆion.

. Asymmetric Primitives

Although ciphers can be implemented efficiently, the need for a shared key to be secretly
transmitted prior to any two-party communication is inconvenient. Most oĖen today, a
shared key is đrst established using asymmetric techniques (which overcome this problem)
over ĭe insecure channel, and then used to encrypt the data via a stream or block cipher.

P-K P

D andH() introduced thekey exchangebelow,which solves precisely
this problem: making two individuals agree, over an open channel, on a shared secret key (to
be subsequently used for encryption); it proceeds as follows:

. Athos chooses an element g of some group G and sends it to Bonacieux.

. Athos picks an integer a and sends ga to Bonacieux.

. Bonacieux picks an integer b and sends gb to Athos.

. Athos and Bonacieux compute the shared secrċ gab as (ga)b and (gb)a reėeĆively.

When a passive observer breaks this scheme, they have solved the following.

Deđnition ... ąeDiffie–Hellman problem ĝ ĭć of computing gab Ěom g, ga, and gb.

It is obviously no harder than the discrete logarithm problem, and is believed to neither
be weaker. ăis key-exchange is hence considered secure in well-chosen groups of order 2256.

ăe problem of authentication remains, since Milady deWinter could bribe the courier
so as to intercept and forge messages: she would pick her own integer c and impersonate
Bonacieux to Athos (with secret gac) and Athos to Bonacieux (with secret gbc), thus ėying
on (and aĆively interfering with) the whole communication.
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Deđnition ... Asymmetric encryption schemes consĝt of two familiesE andD of funĊions,
not necessarily everywhere deĖned, ĚomS toS and a one-way funĊion w suchĭćDk ◦Ew(k) =
IddomEw(k)

for ağ strings k. It ĝ a signing scheme proĂided Ew(k) ◦Dk = IddomDk
also holds.

ăemap w is the key-generćion funĊion: it takes a privće key k as input and returns the
correėonding public key w(k), to be publicly distributed along with E, making anybody able
to encrypt messages that only the holder of k can decrypt. Conversely, if the key holder of a
signing scheme broadcasts Dk(m) for some messagem, everyone can evaluate Ew(k)(Dk(m))
and be assured that the signćureDk(m) originates from the holder of k.

In praĆice, signing schemes are designed independently from encryption schemes; how-
ever, for our brief presentation, this naïve framework encompassing both will suffice.

Asymmetric schemes rarely deal with large amounts of data: for encryption, ciphers are
used and only their keys are encrypted asymmetrically; for authentication, it suffices to sign
a hash of the message. Without loss of generality, we will therefore now describe primitives
dealing with subsets of S whose coding as bits will be understood.

E C

Deđnition ... In a group G noted multiplicćively, ĭe short produĆ problem ĝ ĭć of
Ėnding a subsequence of a given sequence S �G(N) whose produĊ ĝ a prescribed element z.

ProduĊs of subsequences of S are cağed short produĆs; in addition, when S hĆno repećed
elements, ĭĝ problem ĝ knownĆĭe subset sum problem in additive groups and Ćĭe knap-
sack problem forG=Z.

Some of its instances are equivalent to discrete logarithmproblems: if S′ is a subsequence
of S = (g20 , g21 ,… , g2⌊log2 #G⌋) with produĆ z, then z = gn where the ith bit of n is one if g2i � S′
and zero otherwise. From a cryptographic standpoint, this means that the map

ES : (xi) � {0,1}⌊log2 #G⌋ 7→ ⌊log2 #G⌋∏
i=1

sxii �G
is a tentative one-way funĆion for certain groupsG and sequences S of length about log2 #G.

M and H () proposed an asymmetric scheme which scrambles easy
knapsacks (the private keys) into seemingly harder ones (the public keys): let (si) � Nn be a
sequence such that

∑
i<j si < sj for j � {1,… ,n}, put v =∑ si, and deđne S as the projeĆion

of (si) to Z/v; the map ES can then be inverted in polynomial time by a greedy algorithm.
Now, choose an integer u coprime to v, and publish the sequence T = (ti) = (usi mod v). In
the formalism above, we have k = (S,u,v) as the private key, w : k 7→ T as the key-generation
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map, and Ew(k) : (mi) � {0,1}n 7→∑mi · ti as the encryption funĆion; the greedy algorithm
decrypts a ciphertext m′ by đnding a subsequence of S with sum u−1m′ mod v. S
() later broke this scheme due to the simplicity of its scrambling process.

M () construĆed a much more conservative signature scheme, built entirely
from a hash funĆion h, and certiđed its security assuming that of h. ăis was achieved by
developing an original idea of L (): if one seleĆs private strings x and y and
publishes their images h(x) and h(y) by a hash funĆion, he may later sign a bit of data by
releasing either x (if the bit is zero) or y (if it is one).

M C

ăeRSAcryptosystemofR, S, andA () rests on the problem
of integer faĆoring, although subexponential faĆoring algorithmswere alreadyknownat the
time. Nevertheless, it has becomewidely used deėite the large keys and a fortiori computing
resources required by reasonable levels of security.

Let n = pq be a produĆ of two primes, and pick an integer r coprime to (p− 1)(q− 1);
this ensures that the map m 7→ mr is an automorphism of (Z/n)×. Let the private key be
(p,q, r), and publish (n, r) as the public key and E(n,r) : m 7→ mr mod n as the encryption
funĆion; decrypting then consists in applying the inverse automorphismD :m 7→ms where
s can be computed from p and q (and conversely) since s = r−1 mod (p− 1)(q− 1).

ăe key-length of an RSA cryptosystem is the bit-size of n. ăe following table shows,
at various levels of security, the key-lengths recommended by ECRYPT II () for RSA,
ElGamal (see below), and equivalently secure symmetric schemes in ĭe best cĆe, that is, as-
suming well-chosen parameters. ăe superlinear growth of RSA keys is due to the aforemen-
tioned subexponential faĆoring techniques.

 RSA ElGamal
  
  
  

EG () designed a cryptosystem based on the Diffie–Hellman problem: let
g be a generator of some group G, and pick an integer x. ăe public key is (g,h) where h =
gx, and x is the secret key. ăe ciphertext of a message m (encoded as an element of G) is
(gy,m ·hy) where y is a random integer; to decrypt it, simply put gy to the power x and divide
it out fromm · hy.

Compared tomany other cryptosystems, the ElGamal schemestands out for its elegance
and Ĕexibility: since the groupG it uses is not restriĆed to a certain class (such as RSAwhich
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uses G = (Z/n)×), it has more latitude to đnd one that has both an effeĆive group law, and
in which no attack is faster than generic ones.

A P

Beyond encrypting and signing, many advanced and/or exotic cryptographic schemes
exist, most of which are enabled by the computability of certain mathematical objeĆs.

Zero-knowledge proofs are protocols whereAthos is to convince Bonacieux that he knows
some secret without revealing anything about it. For instance, the secret could be a (dedi-
cated) private key; to be convinced of his knowledge of the private key, Bonacieux could send
Athos a randommessage encryptedwith the associate public key and challenge him to reveal
the plaintext — she would learn nothing regarding the private key but that Athos knows it.
Many other construĆions exist, notably that of G, M, and W
() which demonstrated the power of a graph-based approach.

Homomorphic encryption aims at performing operations on plaintexts seamlessly via ci-
phertexts. For instance, in the ElGamal scheme, the term-by-term produĆ of ciphertexts for
m andm′ is a valid ciphertext formm′ since�

gy,mhy
�
·
�
gy′ ,m′hy′

�
=
�
gy+y′ ,mm′hy+y′

�
.

Fully homomorphic systems feature two such algebraic operations; they are far more pow-
erful as they enable the encrypted evaluation of any circuit. G () described such
a scheme using lattices but its praĆicality is still a topic of aĆive research.

ăe past decade also saw a plethora of novel cryptographic schemes exploiting the rich-
ness of pairings, that is, non-degenerate bilinear maps Ψ : G1 ×G2 → H where the groups
Gi are noted additively, and H is noted multiplicatively. ăe đrst was a one-round tripar-
tite Diffie–Hellman key-exchange: assume Athos, Bonacieux, and Chevreuse are to derive a
shared secret key over an insecure channel; the protocol of J () goes as follows:

. Athos chooses and broadcasts a pairing Ψ and a pair (x, y) �G1 ×G2.

. Athos picks an integer a and broadcasts ax and ay.

. Bonacieux picks an integer b and broadcasts bx and by.

. Chevreuse picks an integer c and broadcasts cx and cy.

. Everybody computes Ψ(ax,by)c =Ψ(bx, cy)a =Ψ(cx,ay)b.
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. Generic Methods

ăe security of a cryptographic scheme based on a group does not depend on its isomor-
phism type alone, since an explicit isomorphismmight be very costly to compute; it depends
on how the group problem is encoded by the funĆion E. For instance, discrete logarithm
problems are much easier to solve in Z/(p− 1) than in (Z/p)× although their underlying
groups are isomorphic.

ăis seĆion considers algorithms which apply to any group G regardless of its coding;
later, we will come back to which ėeciđc codings make which problems easier.

G A

ăeframework of generic algorithms abstraĆs groupproblems (such as the discrete loga-
rithm problem) fromėeciđc codings whichmight render it “artiđcially” easier. Beware that
our deđnition is not striĆly-ėeaking the most classical one, as we assume that elements are
uniquely identiđed and can be drawn uniformly at random.

Deđnition ... A coding of a groupG ĝ an injeĊive map γ : G→ S.
A generic group ĝ a black-box interface to a groupGwhich can output γ(z) for a random z

and evaluće (x, y) 7→ γ(γ−1(x) ·γ−1(y)) and x 7→ γ(1/γ−1(x)), where ĭe coding γ ĝ unknown.
A generic algorithmĬkesĆ input a sequence of encoded group elements γ(xi) andĝ ağowed

cağs to ĭe black box; its complexity ĝ meĆured by ĭe number of such cağs.

Intuitively, a generic group is a group with shuffled elements, so that nothing is leĖ to
exploit in their representation: generic algorithms can only compute the group law.

Wewill see thatmanyhardproblems canbe solvedby generic algorithms in timeO(
p
#G)

but not less. However, determining the order of an element (a ėecial case of discrete loga-
rithm) and, as a consequence, computing the groupstruĆure of abelian groups were recently
proved by S () to require far fewer operations. Nevertheless, for the ėe-
ciđc problems we are concerned with, namely the discrete logarithm problem and the short
produĆ problem, the generic algorithms described below are believed to be the best known
to date.

R  P G

ăemethod of P andH () was originally direĆed at computing dis-
crete logarithms in (Z/p)× but, more generally, it reduces many problems on abelian groups
G into smaller prime groups. It combines two ingredients, the đrst of which is the following
consequence of the Chinese remainder theorem.
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ăeorem ... LċG be an abelian group of order n =
∏

pαp for some primes p and positive
integers αp. ąe map

x �G 7¹→ �xn/pαp�
p
�∏

p|n
G[p∞]

ĝanĝomorphĝmwhereĭe p-Sylow subgroupG[p∞]denotesĭe subgroup of ağ elementswhose
order ĝ a power of p. Its inĂerse ĝ effeĊively given by ĭe Chinese remainder ĭeorem.

Once the order of G is faĆored, this reduces any instance of a problem compatible with
the group law to several instances, one in each group G[p∞] of prime-power order.

To get down to prime-order groups, the second ingredient is a liĖing approach: assuming
that G has order pα, a subgroup series G = G0→ G1→ ·· · → Gα = {1} where each arrow
has index p is used to reduce problems into the quotient groups Gi/Gi−1. ăis technique
applies to many problems, such as computing square roots modulo n as T ()
showed, but its ėeciđcs depend on the particular problem considered.

For instance, suppose that g �Ghas order pα, andwrite the discrete logarithmof a certain
h = gx as x =

∑α−1
i=0 xipi for some xi � {0,… ,p−1}; the integers xi canbe recursively computed

by

xi = logg(pα−1)
�
g−
∑i−1

j=0 xjp
j
h(pα−1−i)

�
which amounts to projeĆing discrete logarithms from Gi/Gi−1 to Gα−1.

Here, we have assumed that the group order was known; inmany cryptographic settings,
this is aĆually the case. Although generic algorithms require exponential time to compute
the group struĆure, we believe that it is questionable to base the security of a scheme on
hiding the struĆure of a group (as RSA does), and that almost exclusively groups of prime
(or near-prime) orders should be used in cryptography.

B-S G-S

S () developed the baby-step giant-step mċhod for computing discrete log-
arithms, although it applies to a broad range of problems. Our presentation here uses the
formalism of B. and S (), the generality of which we will later exploit.

ăe general idea is to design sets A and B so that coğĝions, that is, common elements to
A and B, yield solutions to the problem. Speciđcally, we construĆ A and B as the reėeĆive
images of two maps φ and ψ with values in G and seek collisions of the form φ(x) = ψ(y).

For instance, to compute the logarithm of h in base g, put φ : i 7→ gi and ψ : j 7→ hg−Nj

for i, j � {0,… ,N}where N = ⌈p#G⌉; collisions of the form φ(i) = ψ(j) yield logg h = i+Nj,
and there must exist at least one such collision due to the existence of the discrete logarithm.
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Toquickly search for elements ofA∩B, a datastruĆure allowing fast lookups is required;
fast insertions are also a must. We therefore typically use hash tables or red black trees. ăe
cost of computing A∩B is then (#A+#B)O(logn) for n = #G, where the last term denotes
the complexity of the searching and inserting.

WhenA andB are not as explicit as above, itmight not be possible to prove the existence
of a collision. ăe algorithm can then be randomized to rely on the birĭday paradox:

Proposition ... LċA and B be uniformly dĝtributed subsċs of cardinality a
p
n and b

p
n

in a sċG of cardinality n; ĭen

Prob[A∩B =Ø] ¹→
n→∞

e−ab.

Assuming φ and ψ are random,
p
n images of each thus suffice to have a 1− 1/e chance

of đnding a collision. In the unlucky event there is none, we can repeat this processm times,
addingmore images to our red-black tree; this increases the likelihoodof success to 1−1/em2

.
Fromnowon, we say that a probabilĝtic algoriĭmhas complexityX, or that an algorithm

has probabilĝtic complexityX, tomean that it always returns the correĆ answer (this is known
as aLĆVegĆ algoriĭm) and that, with probability at least 1/2, its runtime is bounded byX.
By the discussion above, up to a constant, it is equivalent to the notion of average complexity.

P’ R

ăe baby-step giant-step method requires storing O(
p
n) elements; an algorithm emu-

lating its behaviorwithminimalėacestoragewas developed by P () for integer
faĆoring, and later applied to discrete logarithms by P ().

Let us đrstunify things in amapπ :C →Gequal to φ andψon their reėeĆive domains,
where C denotes their disjoint union. ăe rho method involves a pseudorandom funĊion
ρ :C →C , that is, an effeĆive map for which the distribution of ρ(i)(w) (the composition
of i copies of ρ) is seemingly uniform as w �C is đxed and the integer i varies. It is required
to preserves collisions, that is, π(x) = π(y)⇒ π(ρ(x)) = π(ρ(y)).

ăe map ρ is thought of as generating A and B under π, and the crucial step is to đnd
collisions πρ(i)(w) = πρ(j)(w) without storing many values; when ρ(i)(w) ≠ ρ(j)(w) collide
through π, we expeĆ that one is an image of φ and the other is one of ψ, which gives a proper
coğĝion—when their sizes are equal, this happens with probability a half.

Avoiding storage requires a cycle-dċeĊionmethod on the graph of iterates of ρ evaluated
at w. ăe simplest such method is due to F who observed that, whenever ρ(i)(w) and
ρ(j)(w) collide for some integers i and j satisfying i > 2j, then ρ(2(i−j))(w) and ρ(i−j)(w) also
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collide. ăus, it suffices to compute ρ(2i)(w) alongside ρ(i)(w) for increasing i’s and wait for
them to collide; then, ρmaps are unstacked until the original collision is found. Better cycle-
deteĆion methods improve the runtime by a constant faĆor using more memory.

ăe difficulty lies in designing a funĆion ρ suited to a given problem; more details will
be given on that later, eėecially for the short produĆ problem. To faĆor an integer n,
P () put C = Z/n and chose ρ to be a polynomial funĆion; the map π can
then be the projeĆion to any subgroup of Z/n which need not be known: by computing
gcd
�
ρ(i)(w)− ρ(j)(w),n

�
, we can deteĆ when a collision occurs and hopefully đnd a faĆor

of n. ăis method is nowadays mostly used for small integers n, as asymptotically faster fac-
toring algorithms have since been developed.

A current international effort () aims at solving a discrete logarithm problem chal-
lenge in a group of 129-bit order (this group is an elliptic curve where generic algorithms are
the best available); when completed, it will likely be the record rho algorithm run.

. Cryptographic Groups

Let us now review the cryptographic security of various groups, mostly focusing on the
discrete logarithm problem.

F P

We advocated for prime-order groups; now let us mention how prime numbers can be
found. ăe bestmethod for this is simply to draw numbers at randomuntil a prime is found;
for numbers of n bits, this requires an expeĆed O(n) operations by the theorem below.

Assuming the generalizedRiemannhypothesis,M () đrstderived a fast (poly-
nomial time) deterministic primality test, later turned into an unconditional but probabilis-
tic method by R (). Although A, K, and S () have since
proved that deterministic primality proving need not rely on unproven assumptions, the de-
pendency on the generalized Riemann hypothesis is interesting: this conjeĆure prediĆs the
behavior of primes in various đelds. First recall the celebrated prime number theorem of
H () and   V-P ().

ăeorem ... ąe number of prime integers less ĭan x ĝ Ćymptoticağy equivalent to∫ x

2

dt
log t

~
x

logx
.
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Proofs of this theorem involve establishing certain properties of analytic funĆions re-
lated to integers; more generally, if K is any number đeld, deđne, for s �C withℜ(s) > 1,

ζK(s) =
∑
a�IN(a)−s

where I is the set of ideals of the ring of integers of K, and extend ζK to C by analytic con-
tinuation. ăis funĆion encodes the behavior of prime ideals of K; to obtain precise results
on their distribution, one oĖen assumes the extended Riemann hypoĭesĝ which states that
all zeroes s of ζK in the strip 0 < ℜs < 1 lie on the lineℜ(s) = 1/2. ăe extended Riemann
hypothesis follows from the stronger generalized Riemann hypoĭesĝ, and we oĖen assume
the latter when only the former is needed.

M () aĆually exploited the following result of A (), where the
label “(GRH)” denotes that the statement holds under the generalized Riemann hypothesis.

ăeorem .. (GRH). Lċ p and q be integers such ĭć q divides p− 1. ąe leĆt integer x
which cannot be written Ć yq mod p for some y �N ĝ ĆymptoticağyO(log2 p).

We conclude with a conjeĆure of B and H () generalizing the prime
number theorem; it is useful for generating elliptic curves as we will see later. Essentially,
it asserts that distinĆ irreducible polynomials take prime values almost independently, and
that this “almost” is quantiđed by their values modulo primes p.

ConjeĆure ... Lċ F be a sċ of dĝtinĊ irreducible non-constant polynomials ofZ[X]. ąe
number of integers less ĭan x ć which ağ its polynomials simulĬneoĮly Ĭke prime values ĝ
Ćymptoticağy equivalent to

C∏
f�F deg f

∫ x

2

dt
(log t)#F

where C=
∏
p

�
1− 1

p
#
¨
z � Fp :∏

f�F f(z) = 0
«�,�

1− 1

p

�#F

.

I C

Since the baby-step giant-step or rho method use O(pp) operations to đnd a faĆor p of
an integer n, faĆors of n can always be found in O(n1/4) time. By iterating this search for
faĆors and testing the primality of the faĆors obtained, an integer n can be faĆored in prob-
abilistic time O(n1/4). When the RSA cryptosystem was proposed, much faster algorithms
already existed and they were substantively improved subsequently.
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ăe simplest such method is due to K (). To ėlit an integer n, it craĖs a
nontrivial relation x2 = y2 mod n by combining many easier relations so as to eliminate non-
square faĆors; the easier relations are of the form z2 mod n =

∏
pαp for primes p less than

some bound L(n). To bound the probability that such a faĆorization exists, we rely on this
result of C, E, and P ().

ăeorem ... For any c > 0, ĭe probability for a random number of {1,… ,x} to have no
prime faĊor larger ĭan L(x)c ĝ equivalent to L(x)−1/2c+o(1) Ć x→∞, where we Įedĭe func-
tion

Lα(x) = exp
��
logx

�α �log logx�1−α�
wiĭĭe conĂention ĭć omitting ĭe paramċer α � (0, 1)means α = 1/2.

Assuming Gaussian elimination takes cubic time in the number of variables, we set c =
1/2 and obtain a nontrivial ėlitting of n in time L(n)3/2+o(1).

ăe broad family of combining congruences algoriĭms encompasses methods using faĊor
bĆes (as the primes up to L(n)); they apply to many integer-based problems such as discrete
logarithms in đnite đelds and integer faĆoring. Under unproven assumptions, the asymptot-
ically fastest suchmethod is thenumber Ėeld sieve ofC (), which builds up
on the work of many including L and L (), with heuristic complexity

LcNFS

1/3
(n) where cNFS = 2

3

s
46+ 13

p
13

108
≈ 1.902

Recently, K ċ alii () used a similar method to faĆor a 768-bit RSA mod-
ulus, thereby deprecating smaller RSA keys; the effeĆiveness of this attack is blatant when
compared to elliptic curves whose discrete logarithms can only be attacked up to 130 bits.

Unconditionally proven faĆoring algorithms are slightly slower, with the state-of-the-
art method of L and P () using an expeĆed L(n)1+o(1) operations;
it exploits a similar faĆor base paradigm in certain class groups. Since these objeĆs are built
from ideals it is not surprising that subexponentialmethods should apply to themaswell, and
wewill elaborate on that later as class groups become a building block of our own algorithms.

A V

Cryptosystems based on the discrete logarithm problem in đnite đelds have been pro-
posed as alternatives toRSA; however, up to certainmodiđcations, modern integer faĆoring
algorithms also apply to this problem, so it provides no additional security.
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Shortly aĖer L () introduced a novel faĆoring algorithm based on elliptic
curves, M () and K () suggested their use in cryptography; subse-
quently, K () further proposed using the broader class of abelian varieties. ăis
has motivated tremendous developments in computational number theory, and has enabled
a wide ėeĆrum of possibilities in cryptography.

ăese applications are motivated by two faĆs: đrst, that the group law of abelian vari-
eties can be computed efficiently, and second, that no algorithm better than generic ones is
currently known to attack the discrete logarithmproblemonmostabelian varieties of dimen-
sion one and two. Before formally deđning abelian varieties, we brieĔy give loose statements
highlighting their applicability to cryptography.

Abelian variċies are objeĆs endowed with two compatible struĆures:
– a geomċric struĆure: it is the zero locus of multivariate polynomials over a đeld k;
– a group struĆure: it admits a group law given by rational funĆions.

When the deđning polynomials have certain forms, the group law can be evaluated efficiently
using short rational funĆions. ăis can be done for all varieties of dimension one and two
(the dimension is roughly the number of variables minus the number of polynomials).

Cryptography uses đnite đelds k and such forms, allowing fast arithmetic; for instance,
B and L () suggested deđningG as the set of points (x, y) � k2 verifying

x2 + y2 = 1+ dx2y2

for some non-square parameter d � k, endowed with the addition law deđned by

(x, y) + (x′, y′) =
�

xy′ + x′y
1+ dxx′yy′

,
yy′− xx′

1− dxx′yy′

�
.

Since the number of points of an abelian variety of dimension g deđned over k (that is,
the order of the underlying group) is roughly (#k)g and otherwise behaves quite randomly, a
prime-order one can be sought by drawing varieties at randomwhile their orders are compos-
ite. Alternatively, we will later discuss the theory of complex multiplication which provides
means to generate abelian varieties with a prescribed order.

S A

We stated that attacks on the discrete logarithm problem of most elliptic curves are not
known to be faster than generic ones. To conclude this chapter, we give an exhaustive list
of classes of abelian varieties for which this does not hold, so remaining ones can a priori
be considered secure. Details on these attacks can be found in A, C, D,
F, L, N, and V ().
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Index-calculus with subėace as faĆor base. Gröbner basis algorithms can decompose
points of abelian varieties into sums of points in certain subėaces (such as having certain
coordinates equal to zero, or deđned over some striĆ subđeld); this enables index-calculus
attacks effeĆive on varieties of dimension g > 2 or deđned over non-prime base đelds.

ReduĆion to đnite đelds via pairings. ăeWeil pairing maps pairs of points of order ℓ
from an abelian variety to the multiplicative group of an extension of degree e(ℓ) of the base
đeld k. It tranėorts the discrete logarithmproblem, so the value of e(ℓ)mustbe large enough
to prevent attacks in the extension đeld from being feasible.

LiĖ to charaĆeristic zero. Certain abelian varieties with ėecial properties (such as the
infamous anomaloĮ curves, whose cardinality is that of their base đeld) can be liĖed to p-
adic đelds, from where discrete logarithm problems can be transferred toZ/p.

Isogenies. Isogenies are morphisms between abelian varieties; they can tranėort the dis-
crete logarithm from a varietyA to about ℓg other varieties in time ℓO(g2) for most primes ℓ;
if any of those varieties have one of the above weaknesses, then so doesA .

Sinceno attack faster thangeneric algorithms is known to affeĆrandomly chosen, prime-
order abelian varieties of dimension one or twodeđned over đnite đeldswith p or 2p elements
where p is a prime, we conclude that these are currently the best choice for public-key cryp-
tography in a cryptosystem of ElGamal type.
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

ŧbelianżariċies

Having established the important role of abelian varieties in modern cryptography, we
turn to formally deđning their properties from a mathematical standpoint.

Wewill present this theory concisely, in a conceptually elementary way which we believe
highlights its effeĆiveness. For details, we refer toA,C,D, F, L,
N, and V (), S (), C and S
(), S (), M (), and M (), in increasing levels of
abstraĆion.

. General ăeory

A V

Fix a perfeĆ đeld k, referred to as the bĆe Ėeld, and a sufficiently large integer n =
DIMN MAX. For any ideal I of the ring k[x] = k[x1,… ,xn] of polynomials in n variables
with coefficients in k, deđne the affine variċyVI as consisting, over any extension đeld K/k,
of the set VI(K) of common zeroes of I in Kn called points of the variety. H ()
proved the famous Nullstellensatz:

ăeorem ... When k ĝ algebraicağy closed, ĭe largest ideal of k[x] vanĝhing on VI(k) ĝ
ĭe radical ideal

p
I formed by polynomials of which a power lies in I.

ăis puts in bijeĆion radical ideals with affine varieties over algebraically closed đelds;
computationally, one might therefore use generating sets of

p
I to representVI.

We đnd it amusingly convenient to đx an integer DIMN MAX large enough so that all varieties we consider are
embedded in the projeĆive ėace with that large a dimension.





  

Such varieties are endowed with the Zarĝki topology whose closed sets are subvarieties.
Via the Nullstellensatz, the topological notion of irreducibility correėonds to its algebraic
counterpart. To avoid unnecessary technical contortions, we shall exclusively consider abso-
lutely irreducible variċies, that is, varieties irreducible over an algebraic closure.

Affine varieties lie in the affine ġaceA(K) = V0(K), also written asAn(K) when dimen-
sion n needs to be made explicit. In many contexts, it instead proves advantageous to:

– work with projeĆive varieties;
– use Galois aĆion to deđne objeĆs over extension đelds.

Over an algebraically closed đeld K, deđne the projeĊive ġace P(K) (of dimension n− 1) as
the set of lines passing through the origin ofA(K), and over any đeld K as the đxed subset

P(K) = P(K)Gal(K/K)

under its absolute Galois group. Pragmatically, the projeĆive ėace P(K) can be seen as
formed by equivalence classes of collinear (non-zero) veĆors, which gives the projeĆion

x �A(K)∖ {0} 7¹→ ¦λx : λ �K×© � P(K)
Working in affine coordinćesmeans representing projeĆive points by distinguished elements
of A (typically, by enforcing x0 = 1; this covers almost all of P but requires inversions to
compute the distinguished element); on the other hand, working in projeĊive coordinćes
means representing projeĆive points as non-unique n-tuples.

Similarly, projeĊive variċies are projeĆions of affine varieties invariant under coordinate-
wise scalar multiplication: if I is a homogeneoĮ ideal of k[x], that is, generated by sums of
monomials of the same degree, the projeĆive variety VI ⊂ P consists of equivalence classes
(under scalar multiplication) of the affine variety VI ⊂ A endowed with the (quotient)
Zariski topology.

From now on, we will exclusively consider absolutely irreducible open subsets of projec-
tive varieties, and refer to them simply as variċies (they are known to part of the literature
as quĆiprojeĊive variċies); we will always implicitly assume that they are deđned over alge-
braically closed đelds, but say that they are deĖned over smaller đelds when invariant under
their absolute Galois group.

M

Consistent with the topology, morphĝms are algebraic maps. For the affine ėace, they
form the ring Hom(A,A) of n-tuples of n-variate polynomials. If V andW are two affine
varieties, Hom(V ,W ) consists of those morphisms of Hom(A,A) mappingV toW .



..   

Morphisms of projeĆive varieties can be seen either conceptually, looking down ĚomA,
as equivalence classes of tuples P of polynomials of k[x] of homogeneous polynomials with
the same degree for the relation P ~ P′⇔ {PiP′j − PjP

′
i} ⊂ I, or visually, looking up Ěom

ġeciĖc hyperplanes ofA, as compatible colleĆions of affine morphisms.
Two cases are of particular interest:

– the coordinće ring Hom(VI,K) AK[x]/I, with addition and scalar multiplication.
– the endomorphĝmmonoidHom(V ,V ) = End(V ), endowedwith composition; later,

when we giveV a group law, it will become a ring.

Rćional maps are deđned similarly to above from tuples of rational funĆions. Most im-
portant are rational maps from a varietyV to a đeld of deđnition K, which form its funĊion
Ėeld, denoted K(V ). For projeĆive varieties V = VI, it can be explicitly deđned as the set
of fraĆions P/Q of homogeneous polynomials in K[x] of the same degree, with Q � I, up
to the relation P/Q~ P′/Q′⇔ PQ′−P′Q � I.

Various properties can be read off direĆly from funĆion đelds, such as:

Proposition ... ąeKruğ dimension of an ideal ĝ equal to ĭe transcendence degree of ĭe
funĊion Ėeld Ćsocićed to its variċy; it ĝ cağed ĭe dimension of ĭe variċy.

Algebraic extensions have đner indicators: a morphism φ � Hom(V ,W ) induces (by
composition on the right) an embedding φ⋆ : K(W )→ K(V ); the degree of φ is the dimen-
sion [K(V ) : φ⋆K(W )] which is đnite when φ(V ) has the same dimension asW .

A G

Combining algebraic varieties with group struĆures yields algebraic groups:

Deđnition ... An algebraic group ĝ an (absolutely irreducible) non-empty algebraic vari-
ċy endowedwiĭa group law (noted additively) for whichĭemap (x, y) 7→ x−y ĝ amorphĝm.

By non-empty, we mean that it must admit one rational point over its base đeld, so that
it contains the neutral element for the group law. An important property of algebraic groups
is given by the following algebraic equivalent to the analytic notion of differentiability.

Deđnition ... An irreducible algebraic variċy V ĝ nonsingular if ĭe quotient of {f �
k[V ] : f(P) = 0} by its square hĆĭe same dimension (namely g = dimV ) for ağ P � V (k).

Algebraic groups are nonsingular varieties; indeed, translation maps τP : Q 7→ P + Q
induce isomorphisms of tangent ėaces, whose dimensions are that of the quotients above.



  

One simply deđnes morphĝms of algebraic groups as morphisms of algebraic varieties
preserving the group law, and subgroups of algebraic groups as subgroups that are closed.
From now on, we shall work with categories as a whole: when we consider algebraic groups,
morphisms and subgroups will be implicitly understood to be of algebraic groups (not just of
algebraic varieties).

ăe proposition below argues that this behaves as expeĆed.

Proposition ... LċH be an (algebraic) normal subgroup of an algebraic group G . ąe
quotientG/H hĆ a unique struĊure of algebraic group such ĭć:

– ĭe projeĊion mapG →G/H ĝ a morphĝm;
– ağ morphĝms ĚomG wiĭ kernel conĬiningH faĊor ĭroughG/H .

For instance, the group GLn(K) of invertible n-by-nmatrices over K is a quasiprojeĆive
variety, a closed subvariety of which is SLn(K) comprising of matrices with determinant one.
In faĆ, all affine algebraic groups are isomorphic to subgroups of GLn(K), and a result of
C () states that the remaining ones are of the type we shall next discuss.

Proposition ... Every algebraic groupG hĆ a unique normal subgroupH ĝomorphic to
an affine variċy such ĭćG/H ĝ projeĊive and irreducible.

A V

Deđnition ... Abelian varieties are irreducible projeĊive algebraic groups.

Most of the rich struĆure of abelian varieties stems from the projeĆiveness condition
(completeness, an algebraic equivalent to compaĆness, could equivalently be required).

Proposition ... Any algebraic map Ěom an abelian variċy to anoĭer ĝ a morphĝm (of
algebraic groups) composed wiĭ a translćion.

In other words, morphisms of algebraic varieties are essentially morphisms of abelian
varieties; this means that abelian varieties are entirely charaĆerized by their geometry. ăis
is a crucial faĆ with the notable consequence that abelian variċies are commuĬtive groups;
indeed, since the algebraic map x 7→ −x đxes the neutral element, it is a morphism, which
implies the commutativity.

Since abelian varieties A are commutative, they admit quotients by any closed sub-
groupsH . Wewill later be interested in the case of đnite subgroupsH , which are evidently
closed: in that case, the dimension of the quotientA /H is the same as that of the variety
A , and as we will see later, many other invariants are preserved.



..   

As a further restriĆion toprevent unnecessary contortions, wehenceforth assume, unless
otherwise stated, that all abelian varieties we consider are absolutely simple, that is, do not
contain any proper nontrivial abelian subvariety over an algebraic closure.

. PraĆical Settings

Let us now focus on two types of base đeld: đnite đelds, over which abelian varieties
admit efficient representations, and the complex numbers, over which their relationship to
tori yields a rich theory, part of which descends to đnite đelds.

F F

LetA be an abelian variety deđned over a đnite đeld k = Fq; its zċa funĊion

ZA (t) = exp
∞∑
n=1

#A �
Fqn
� tn
n

encodes its number of points, on whichW () proved the following.

ăeorem ... ąe zċa funĊion of a dimension-g abelian variċyA ĝ of ĭe form

ZA (t) =
2g∏
n=0

Pn(t)
(−1)n+1

for some polynomials Pn �Z[t] whose complex zeroes have absolute value q−n/2.
ăis constrains cardinalities of abelian varieties. Tobetter see this, consider theFrobeniĮ

endomorphĝm π, which aĆs over any đeld extension K/Fq by raising coordinates of points
ofA (K) to the qth power; it đxes justA (Fq), so we have #A (Fq) = deg(1− π).

Any endomorphism φ of an abelian variety of dimension g has a monic charaĆeristic
polynomial P � Z[t] of degree 2g such that degQ(φ) = Res(P,Q) for all polynomials Q �
Z[t]. For the particular Frobenius endomorphism, denoting by χπ its charaĆeristic polyno-
mial, we obtain

#A (Fqn) = Resu
�
χπ(u),u

n− 1
�

which makes computing χπ equivalent to counting points onA over g distinĆ đeld exten-
sions of the base đeld. Transcribing the theorem above to χπ yields the following.

Corollary ... ąe complex roots of χπ ağ have absolute value
pq, andĭe polynomialP2g(t)

in ĭe zċa funĊion ĝ
∏�

1− αt
�
where α ranges over produĊs of 2g dĝtinĊ such roots.



  

Generalizing an algorithm of S (), P () proved that for any đxed
dimension g all the above can be computed in polynomial time in the size of the base đeld.

ăeorem ... ąe zċa funĊion of an abelian variċy deĖned over Fq can be computed in
polynomial time in log(q)whereĭe implied exponent depends onĭe dimension ofĭe projeĊive
ġace where it ĝ embedded, and onĭe degrees of its deĖning equćions and group law equćions.

ăis result is mostly of theoretical interest. Improvements on the algorithm of S
() by A and E have made it possible to count points on abelian varieties of
dimension g = 1 far beyond cryptographic range; for g = 2, the praĆicality of point counting
methods on varieties of cryptographic size was only recently demonstrated by G and
S () who used an extension of the algorithm of S ().

Fromnowon, we shall regard the dimension g as being đxed in complexity statements, so
asymptotic analyses focus on behavior with reėeĆ to the base đeld; this is partly motivated
by the faĆ that only g = 1 and g = 2 are cases of cryptographic interest.

C N

Wehave noted that abelian varieties are nonsingular. OverC, abelian varieties are there-
fore conneĆed compaĆ Lie groups, which are well-understood objeĆs; such a varietyA
has the analytic struĆure of a complex torus: since the exponential map folds its tangent
ėace ontoA , there is an isomorphism of Lie groupsA ACg/Λwhere Λ = ker(expA ) is a
lćtice ofCg, that is, a discrete subgroup of full rank.

Similarly to the algebraic case, holomorphic maps between complex tori are just group
morphisms composed by translations. Holomorphic morphisms φ from a complex torus
T = Cg/Λ to another T′ = Cg′/Λ′ are induced by C-linear maps, denoted φ as well, from
Cg to Cg′ satisfying φ(Λ) ⊂ Λ′. Hence, as Z-module, Hom(T,T′) has rank at most 4gg′;
this implies that End(A ) is a torsion-freeZ-algebra of dimension at most (2g)2.

Even if complex abelian varieties have the analytic struĆure of tori, conversely, not all
complex tori correėond to abelian varieties, although those that do are precisely known:

Proposition ... DeĖneĭe Siegel upper half-ėaceHgĆĭe sċ of g-by-g symmċricmćri-
ces wiĭ positive deĖnite imaginary part. Complex toriCg/Λ correġonding to abelian variċies
are exaĊly ĭose whose lćticeΛ can be put under ĭe formZg +ΩZg for some mćrixΩ �Hg.

P

Many results on abelian varieties over đnite đelds exploit reduĊion from charaĆeristic
zero đelds k, that is, consider varieties arising through maps k→ k/p for prime ideals p of k.



..   

For instance, the boundofH ()whichstates that one-dimensional abelian varieties
A deđned over Fq satisfy ���q+1− #A (Fq)

��� B 2
pq

can be extended, for varieties arising as reduĆions from charaĆeristic zero, into a precise
description of the distribution of cardinalities: the Sato–Tate conjeĆure. Note that recent
work of T () comes close to proving it.

ConjeĆure ... LċA be a non-empty abelian variċy of dimension one deĖned over ĭe
rćionals wiĭ End(A ) AZ. ąe Ćymptotic dĝtribution, Ć ĭe prime p goes to inĖnity, of

arccos

 
p+1− #A(Fp)

2pp
!

ĝ uniform on [0;π] where #A (Fp) denotes ĭe number of points of ĭe reduĊion ofA ć p.

When g > 1, abelian varieties have inđnite automorphism groups over algebraically
closed đelds. For more rigidity, we bundle them with a projeĆive embedding or, rather,
the following (simpler) analytic analog.

Deđnition ... LċA A Cg/Λ be a complex torĮ. A polarization ofA ĝ a positive
deĖnite Hermitian formP onCg sćĝfyingP (Λ,Λ)⊂Z. It ĝ principal if its dċerminant ĝ
inĂertible, or equivalently if ĭere ĝ no x �Λ sćĝfyingP (Λ,x)⊂Z.

Principağy polarized abelian variċies are pairs (A ,P )whosemorphismsφ : (A ,P )→
(A ′,P ′) are required to preserve polarizations in the sense that φ⋆P ′ = λP for some pos-
itive λ �Q. W () showed that this has the intended effeĆ:

Proposition ... Polarized abelian variċies have a Ėnite automorphĝm group.

For instance, on the torus Cg/(Zg +ΩZg) for Ω � Hg, there is a natural polarization
P (u,v) = E(iu,v) + iE(u,v) where the Riemann form E is expressed, on the block basis
(ei)(Ωei), by the block matrix �

0 Id
− Id 0

�
Proposition ... TwomćricesΩ andΩ′ of ĭe Siegel upper half-ġaceHg yield ĝomorphic
principağy polarized abelian variċies if and only if ĭey are conjugće under ĭe aĊion�

A B
C D

� � Sp2g(Z) : Ω 7¹→ �AΩ+B
��

CΩ+D
�−1 .



  

Polarizations are needed in aĆual computations, as efficient arithmetic (via theta func-
tions or Jacobian varieties) relies on them. Worse, it is nontrivial to determine whether the
varieties correėonding to two theta coordinates are isomorphic, disregarding polarizations.

Before moving on, we emphasize once more that, in dimension one, all varieties admit a
unique principal polarization— so they can hopefully be forgotten altogether.

J V

ăeorem ... Up to ĝomorphĝm,ĭere ĝ a unique abelian variċyĭrough which anymor-
phĝm Ěom a given algebraic variċy V to an abelian variċy faĊors. It ĝ ĭe Albanese variety
ofV .

General Albanese varieties are hardly praĆical: they have no effeĆive group law, and are
not naturally endowedwith a principal polarization, so there is no simplemanner to identify
them such as invariants (as we will see below). Cryptography is only concerned with the
following subclass, on which our exposition shall now focus.

Proposition ... Abelian variċies of dimension one or two are Jacobian variċies of hyper-
eğiptic curves.

Before deđning hyperelliptic curves, let us brieĔy discuss Jacobian variċies: these are
just Albanese varieties of algebraic curves, that is, one-dimensional algebraic varieties. ăe
Jacobian variety Jac(C ) of a curve C has an explicit group struĆure: denote by Div0 the
submodule of degree-zero divisors of the free Z-module generated by points of C , that is,
formal sums of points whose coefficients add up to zero; it contains Princ, the set of sums of
zeroes and poles (counted with multiplicities) of non-zero elements of the funĆion đeld.

Proposition ... Jac(C ) hĆĭe group struĊure of ĭe quotientDiv0 /Princ.

We can say much more for hyperelliptic curves; for this, we assume chark ≠ 2.

Deđnition ... CurvesC of ĭe form y2 = f(x), for some squareĚee polynomial f of degree
2g+1 or 2g+2, are cağed hyperelliptic, and g ĝ known Ćĭe genus ofC .

By ĭe ĭeorem of R () and R (), g ĝ also ĭe dimension of Jac(C ).
In ĭe cĆe ĭć g = 1, ĭey are known Ć elliptic curves, and verify Jac(C ) AC .

When deg(f) is odd, there is a unique projeĆive, non-affine point (with coordinate z =
0); this point ć inĖnity ∞ is oĖen used as a distinguished projeĆive point. By R
() and R () each divisor class then has a unique reduced representative of the
form

∑
(Pi −∞) for at most g affine points Pi � C , none of which is conjugate to another

under the hypereğiptic inĂolution (x, y) 7→ (x,−y).



..  

Assume, for simplicity, that the points Pi = (xi, yi) are distinĆ. ăe divisor
∑

(Pi −∞)
can be represented by a pair of polynomials (u,v) satisfying

u(x) =
∏

(x− xi), v(xi) = yi.

It can be checked that the Pi lie onC by verifying that u|v2 − f. In this representation, the
group law is given by (assuming u0 and u1 have no common root)

(u0,v0) + (u1,v1) =
�
u0u1, (u

−1
2 mod v2)u2v1 + (u−11 mod u2)u1v2

�
.

To reduce the output to a unique representative, C () iterates the transformation

(u,v) 7→ (u′,v′) with u′ =
1

lc(f− v2)
f− v2

u
and v′ =−vmod u′

while deg(u) B g, where lc(·) denotes the leading coefficient. ăis gives Jac(C ) an efficient
group law, and an algebraic struĆure. Additionally, the image of the map (Pi) � C g−1 7¹→∑

(Pi−∞) is a subvariety of dimension g−1 that is the zero-locus of certain theta funĆions
which naturally endow the Jacobian variety with a principal polarizationP .

T () showed that this comprises all the information from the original curve:

ăeorem ... Up to ĝomorphĝm, ĭe polarized abelian variċy (JacC ,P ) dċermines
ĭe curveC .

Moduli ġaces are varieties whose points represent isomorphism classes of a given type of
variety (we will soon discuss invariants); complementing the proposition above, we have:

ĭe moduli dimension of genus-g hyperelliptic curves ĝ 2g− 1
” genus-g curves ” 3(g− 1), or 1 if g = 1
” abelian varieties of dimension g ” g(g+1)/2

ăe moduli ėace dimension is the same for Jacobian varieties and their underlying curves.
For g = 3, abelian varieties are Jacobian varieties, but not all of hyperelliptic curves.

. Pairings

T S

ăe center of the endomorphism ring End(A ) of an abelian varietyA of dimension g
always contains a subring isomorphic toZ formed by scalar multiplicćion maps:

[n] : P �A 7¹→ nP = P+ · · ·+P︸ ︷︷ ︸
n times



  

for every integer n. Over an algebraic closure, the kernel of [n] is the fuğ n-torsion subgroup
A [n]; its struĆure is well understood:

ăeorem ... ąe degree of [n] ĝ n2g. It ĝ separable when n ĝ coprime to p = chark; ĭen
A [n] A (Z/n)2g. When n ĝ a power of p, ĭenA [n] AZ/nr where r B g ĝ cağed ĭe p-rank
ofA .

ăe generic case is that of ordinary abelian varieties which have p-rank g: the moduli
dimension of non-ordinary varieties is striĆly smaller. Unless explicitly stated, all abelian
varieties will now be assumed ordinary (this is crucial for the next chapter).

We will later compute ℓ-torsion subgroups (for primes ℓ) of abelian varietiesA deđned
over đnite đeldsFq. ăe embedding degree eA (ℓ), which is the extension degree of the small-
est đeld over which the points ofA [ℓ] are deđned, is the primary cost faĆor of this process.

If χ is the charaĆeristic polynomial of the Frobenius endomorphism π ofA , the mor-
phism χ(π) obviously vanishes onA [ℓ]; as this only depends on the class of χ in (Z/ℓ)[x],
the embedding degree e(ℓ) must divide the multiplicative order of x � (Z/ℓ)[x]/(χ). Conse-
quently, it is bounded by ℓ2g.

When points can be drawn uniformly at random fromA (ke(ℓ)), a basis forA [ℓ] can be
found by taking random points, multiplying them by the cofaĆor of ℓ∞ in #A (ke(ℓ)), and
iteratively applying [ℓ] until a point of ℓ-torsion is found, possibly liĖing points already found
along their preimage under [ℓ]. ăe liĖing process can either use simple baby-step giant-step
computations inA [ℓ], or faster discrete logarithm methods in ke(ℓ) via the pairing. For a
đxed g, the whole method uses polynomially many operations in ℓ; it will be described in
detail in the second half of this thesis.

G P

Deđnition ... A pairing ĝ a non-degenerće bilinear mapΨ : G2→H, whereG andH
are abelian groups.

StriĆly ėeaking, pairings can be deđned on modules over any ring; but from a crypto-
graphic standpoint, nothing of value is lost by restriĆing toZ-modules. On the other hand,
cryptographic use requires additional properties:

 : Given (x, y) �G2, the pairing Ψ(x, y) is easily evaluated.
 : Given z �H, a preimage (x, y) �Ψ−1(z) is hard to đnd.

ăese terms could be given a rigorous meaning by considering a sequence of pairings Ψi :
G2

i → Hi, and requesting that there exists an algorithm for evaluating Ψi in polynomial
time in log(#Gi) and that no algorithm đnds preimages of Ψi in subexponential time on a
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positive fraĆion of Hi; however, we prefer to use the simpler and down-to-earth notion of
computational infeasibility.

Similarly to the discrete logarithm problem, the pairing inversion problem has many
variants, such as bilinear analogs to the computational and decisional Diffie–Hellman prob-
lems, or inversion problems where one of the parameters is đxed, not all of which are striĆly
equivalent to the pairing inversion problem itself. We refer toG,HŊ, andV-
 () for a discussion of these problems.

Out of all known effeĆive pairings, only those that arise from abelian varieties satisfy the
conditions above. In faĆ, the problem of pairing inĂersion, that is, of inverting the map Ψ,
appears to be extremely difficult for such pairings. ăeir cryptographic use therefore involves
relying on a new hypothesis (alongside the hardness of the discrete logarithm problem) but
they provide elliptic and hyperelliptic cryptography with a unique struĆure, which has led
to the development of many novel features.

E P

InstruĆional pairing examples include scalar produĆs of veĆor ėaces, and, if (R,+,×)
is a ring, the multiplication map from (R,+)2 to (R,×). A more interesting example is�

xy,x′y′
� � �(Z/n)2g�2 7¹→ exp

�
2iπ
n
�bxy′−byx′��

where xy denotes the concatenation of the row veĆors x, y � (Z/n)g, andbx denotes the trans-
pose of x. ăis aĆually is the general form of theWeil pairing expressed on a sympleĆic basis
of the n-torsion subgroup of a complex torus.

None is suitable for cryptographic use, as they are typically easy to invert; currently, the
only known cryptographic pairings arise from abelian varieties:

LetA be the Jacobian variety Jac(C ) of a curveC of genus g, which we further assume
to be a hyperelliptic curve deđned over a đnite đeld. Recall that the full n-torsion subgroup
A [n] is isomorphic to (Z/n)2g when n is coprime to the ambient charaĆeristic. For cryp-
tographic reasons we choose n to be prime, and deđne the map

ΨWeil :
¨ A [n] × cA [n] ¹→ μn ⊂ k

×

(P,Q) 7¹→ fP(Q)/fQ(P)

where μn is the group of nth roots of unity, and fP and fQ are funĆions of k(A ) with disjoint
support whose sum of zeroes and poles are the principal divisors nP and nQ, reėeĆively. Its
evaluation at a divisor Q =

∑
Qi is explicitly

∏
f(Qi).

ăeorem ... ΨWeil ĝ a Galoĝ-inĂariant antĝymmċric pairing cağed ĭeWeil pairing.
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Most of the proof relies on the reciprocity ofW ().

WhenA is principally polarized, the polarization gives an isomorphismA A
cA , and

the pairing can therefore be deđned onA [n] ×A [n].

In the case of elliptic curves, points P of the variety are of the form R−∞ where R is a
point of the curve or the point at inđnity itself. M () noted that the funĆion fi
whose sum of zeroes is the principal divisor iR−[i]R−(i−1)∞ can be computed iteratively
by setting fi+j = fi · fj · u/v, where u is the line containing [i]R and [j]R (it vanishes at [i]R,
[j]R, and −[i + j]R, and has a pole of order 3 at ∞) and v the vertical line passing through
[i+ j]R (it vanishes at [i+ j]R and−[i+ j]R, and has a pole of order 2 at ∞).

ăis yields an algorithm for evaluating theWeil pairing of elliptic curves which can also
be extended to Jacobian varieties of hyperelliptic curves following Cantor’s algorithm for
evaluating the group law. Pairings of general abelian varietieswere recently shownbyL
and R () to be effeĆively computable as well.

C A

Before novel cryptographic primitives exploited their struĆure, pairings were mainly
used as a cryptanalysis tool. Indeed, if P and Q are two points in a subgroup of prime or-
der ℓ of a varietyA , the bilinearity of pairings implies

Ψ(P,Q) = Ψ(P,P)logPQ

which shows that logPQ is also the discrete logarithm problem of Ψ(P,Q) in base Ψ(P,P)
in an extension K/k of degree e(ℓ). Since discrete logarithm problems are much easier over
đnite đelds, e(ℓ) must be big enough to compensate for this weakness.

ăe last ten years have, on the other hand, seen pairings enabling innovative crypto-
graphic construĆions, so that the extra struĆure they give to abelian varieties is now seen
as a feature. To exploit them, the value of e(ℓ) is seleĆed large enough to make attacks im-
praĆicable on the discrete logarithm of the đeld K, but still low enough so as to permit the
efficient evaluation of the pairing.

As an example of the new features enabled by abelian varieties and their pairings, we can
for instance recall the one-round tripartite Diffie–Hellman key-exchange of J ()
that we presented in the previous chapter.
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. Isogenies

A I

Deđnition ... An isogeny ĝ a surjeĊive morphĝm of abelian variċies φ :A →B wiĭ
Ėnite kernel. It ĝ separable if ĭe correġonding funĊion Ėeld extension k(A )/φ⋆(k(B)) ĝ.

When φ :A →B is an isogeny, the abelian varietiesA andB are said to beĝogenoĮ;
this is an equivalence relation since there then exists a dual ĝogeny φ :B →A , of the same
degree n, which is simply the multiplication-by-nmap ofA faĆored through φ.
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Proposition ... If H ĝ ĭe kernel of a separable ĝogeny φ : A → B , ĭen φ ĝ ĭe
projeĊion map under ĭe ĝomorphĝmB AA /H ; in particular, we have deg(φ) = #H .

ąe group struĊure ofH ĝ cağed ĭe type of φ.

From now on, the word “isogeny” should implicitly mean “separable isogeny;” this is the
case for all isogenies whose degree is coprime to the charaĆeristic of the base đeld.

Since composition of isogenies correėonds to inclusion of subgroups, and the latter are
abelian, we deduce that all isogenies can be written as the composition of isogenies of prime
degree. In dimension g > 1, although there is currently no known method for computing
general isogenies of typeZ/ℓ where ℓ is a prime, there are algorithms for evaluating isogenies
of type (Z/ℓ)g which we call ℓ-ĝogenies.

Recall that we assume isogenies between principally polarized abelian varietiesA to
preserve polarizations. ăe induced polarization onA /H for a đnite subgroupH is prin-
cipal if andonly ifH is amaximal isotropic subgroup for theWeil pairing; whenwe compute
isogenies from their kernel, we will đrst start by enumerating all such subgroups.

H–T T

Over đnite đelds, there is a bijeĆion between isogeny classes of abelian varieties and their
zeta funĆions. We have already explained the relationship between the zeta funĆion of an
abelian variety and the charaĆeristic polynomial of its Frobenius endomorphism, and the
following description of isogeny classes is due to T ().

ăeorem ... Two variċies are ĝogenoĮ if and only if ĭeir reġeĊive FrobeniĮ endomor-
phĝms have ĭe same charaĊerĝtic polynomial.
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A monic polynomial with integer coefficients and 2g complex roots, each of absolute
valuepq, is called a q-Weil polynomial . Recall that this is the case of the charaĆeristic poly-
nomial of the Frobenius endomorphism. As a reciprocal to that statement, H ()
proved:

ăeorem ... Each q-Weil polynomial ĝ ĭe charaĊerĝtic polynomial of ĭe FrobeniĮ en-
domorphĝm of a cerĬin simple ordinary abelian variċy of dimension g deĖned over Fq.

T () presented these two theorems in a combined way, and this has become
known as Honda–Tate theory.

ăenext chapterwill be concernedwith an explicit formof this theorywhich aims at con-
struĆing explicit abelian varieties whose Frobenius endomorphisms have prescribed char-
aĆeristic polynomials. ăis enforces certain properties on the abelian variety, such as the
cardinality.

E I

For elliptic curves E , V () gave explicit formulas for computing an isogeny φ :
E → E ′ deđned by its kernel ker(φ)⊂ E : if x, y are coordinates in which an affine equation
for E is y2 = f(x), then there exist coordinates X,Y in which an equation for E ′ has the form
Y2 = g(X) and the isogeny can be written as

φ : P � E 7¹→� Xφ(P) =
∑

xP+Q− xQ
Yφ(P) =

∑
yP+Q− yQ

�
where the sums range over all points Q of ker(φ), with the convention that x∞ = y∞ = 0.

ăis relies heavily on properties of the Weierstrass coordinates for elliptic curves, and
a higher-dimensional analog was only found recently by L and R (), and
later made praĆical by C and R (); it relies on the struĆure of theta func-
tions, which we now brieĔy describe.

Geometric invariants identify isomorphism classes of abelian varieties. For instance, iso-
morphism classes of elliptic curves are identiđed, over an algebraic closure, by the canonical
j-inĂariant. It is effeĆive as j(E ) is a rational funĆion in the coefficients of a Weierstrass
equation for E , and conversely the coefficients of such an equation are rational funĆions in
j(E ).

In arbitrary dimension, a system of invariants for principally polarized abelian varieties
is given byĭċa constants, which not only identify the isomorphism class of a variety but also
part of its torsion. ăeta constants are the constant terms of ĭċa funĊions which yields a
convenient coordinće system for points on the variety it identiđes.
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In the particular case of abelian varieties of dimension g < 4, which are all, up to iso-
morphism, Jacobian varieties of algebraic curves, invariants can be expressed, via Torelli’s
theorem, on the curves themselves, as funĆions of the coefficients of their equations. For
g = 2, a popular set of invariants are the IgĮa inĂariants, which consists of 10 coordinates
(this bears some redundancy since the dimension of the moduli ėace is 3); they can be effi-
ciently computed from the equation of a curve, but conversely, to retrieve such an equation
from the invariants themselves, a ėeciđc method of M () is required.

ăe relationship between the invariants of a curve and the theta constants of its Jacobian
variety are given by formulas of T ().

LetA ACg/(Zg +ΩZg) be a complex torus with Ω �Hg. Deđne theĭċa funĊions

ΘAa,b : z �Cg 7¹→ ∑
(u+a)�Zg

exp iπ
�
1
nbuΩu+2bu(z+ b)

�
where a and b are veĆors ofQg andbu denotes the tranėose of u. I () proved:

ăeorem ... Fix an integer n > 2. ąe theta constants ΘAa,b(0) for a,b � { 1n ,… , nn}g
uniquely dċermine ĭe ĝomorphĝm clĆs ofA Ć a principağy polarized abelian variċy.

Details on implementing and praĆically computing isogenies between abelian varieties
of dimension two will be found in the last chapter.

M C

Some applications do not require to explicitly evaluate isogenies, that is, to effeĆively
evaluate the map: it is sometimes sufficient to enumerate abelian varieties which are (ratio-
nally) ℓ-isogenous to a prescribed abelian varietyA , for a given prime ℓ, and there could
exist a faster way than enumerating all subgroups of type (Z/ℓ)g and then evaluating the
associated isogenies.

Ideally, this information could be encoded in polynomials via invariants I(A ) � kn: we
would have n polynomials Φi

ℓ(X1,… ,Xn,Y1,… ,Yn) for i � {1,… ,n} such that

A is ℓ-isogenous toB ⇐⇒


Φ1

ℓ (I1(A ),… , In(A ), I1(B),… , In(B)) = 0,
Φ2

ℓ (I1(A ),… , In(A ), I1(B),… , In(B)) = 0,
...

Φn
ℓ (I1(A ),… , In(A ), I1(B),… , In(B)) = 0,

For elliptic curves, this is achieved by the classicalmodular polynomialsΦℓ(X,Y). E
() computed them via the Ĕoating point method which consists in evaluating Φ over
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the complex number with just enough precision so as to identify its integer coefficients. Re-
cently, B, L, and S () demonstrated the competitiveness of
a method based on the Chinese remainder theorem which exploits the struĆure of isogeny
volcanoes that we will study later.

ăe higher-dimensional case is not as straightforward: G () described an
analog construĆion for g = 2, and the computation of explicit polynomials was later done
byD () and improved by B and L ().However, the height of
the polynomials (Φi

ℓ) makes their use prohibitive; currently, state-of-the-art algorithms for
explicitly evaluating isogenies remain a faster alternative.

We note that this difference between elliptic curves and higher-dimensional abelian va-
rieties is the main reason why point counting algorithms are much faster for the former than
for the latter.
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

ũomplexųultiplicćion

ăetheory of complexmultiplicationdescribes endomorphism rings of abelian varieties;
this thesis will investigate two of its applications, inverse of each other:

– construĆing abelian varieties equipped with efficiently computable pairings;

– computing the endomorphism ring of prescribed abelian varieties.

ăere are many facets to complex multiplication theory; here, while trying to be some-
what general, we will focus on effeĆive aėeĆs in the case of dimension g = 1,2, which are of
primary interest to cryptography. For details, we refer to C () for g = 1, to S
() for g = 2, and otherwise to S (), C and S (),
andM ().

. Endomorphism Rings

A V  CM

Let us đrst consider the endomorphism ring struĆure of abelian varieties; via the follow-
ing theorem of P andW (), it suffices to consider simple varieties.

ăeorem ... Every abelian variċy ĝ ĝogenoĮ to a produĊ of powers of non-ĝogenoĮ
simple ones.

ăeendomorphism ring of a perfeĆ powerA m is naturally thematrix algebra of dimen-
sionm2 over the endomorphism ring ofA ; therefore, the endomorphism ring of a produĆ∏A mi

i of non-isogenous simple abelian varietiesAi is
∏

Matmi
(EndAi).

Since isogenies need not preserve endomorphism rings, the above does not completely
rule out the case of non-simple varieties. Nevertheless, wewill now assume thatA is a simple


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abelian variety of dimension g. Its endomorphism ring End(A ) contains at least the scalar
multiplicationmaps, which form a subring isomorphic toZ. To better comprehend the ring
End(A ), đrst consider the algebraQ⊗ End(A ): if it contains a đeld K of degree 2g, the
varietyA is said to have complex multiplicćion by the number đeld K or, more precisely, by
the order K∩End(A ). Over number đelds, this is a rare situation; but over đnite đelds, all
ordinary abelian varieties have complex multiplication.

Recall that, over đnite đelds, the Frobenius endomorphism π of a dimension-g abelian
varietyA admits amonic charaĆeristic polynomial χφ of degree 2g, and that this polynomial
uniquely identiđes the isogeny class ofA . T () further established the following,
of which a proof can be found inW andM ().

ăeorem... IfA ĝa simple abelian variċy,ĭe charaĊerĝtic polynomial of its FrobeniĮ
endomorphĝmπĝ some powerme of itsminimal polynomial, whenceQ⊗End(A )ĝ a divĝion
algebra of dimension 2eg, and its centerK ĝ ĭe ĖeldQ(π) AQ[x]/(m(x)) of degree 2g/e.

ăe number đeld K is known as the complex multiplicćion Ėeld ofA . ăe struĆure of
such đelds can easily be investigated since they are quotients ofQ[x] by q-Weil polynomials
χπ(x): under the embedding toQ⊗End(A ), the đeld K is an extension by the polynomial
X2− (π+π)X+q of the totally real đeld K+ =Q(π+π). ăerefore, complex multiplication
đelds are totally imaginary quadratic extensions of totally real number đelds K+ of degree g.

So far, we have not been too concerned about đelds of deđnition; we will continue not
to be, due to the following proposition.

Proposition ... Endomorphĝm rings of simple ordinary abelian variċies deĖned over
Ėnite bĆe Ėelds are unaffeĊed by bĆe Ėeld extensions.

C T  CM

Complexmultiplication also concerns complex tori, and due to their simpler struĆure it
yields a rich theory; many results concerning abelian varieties over đnite đelds are reduĆions
of results on complex tori. For now, we assume that the base đeld is k =C.

Let us đrst đx a particular embedding ι of the complex multiplication đeld K in Q⊗
End(A ). ăe exponential map sendsA to a complex torusCg/Λ, and ι to an embedding
ι′ : K→ End(Cg). Using representation theory, one can prove that, up to isomorphisms of
Cg, the map ι′ is of the form

ιΦ :
¨

K ¹→ Cg
x 7¹→ �

φ(x)
�
φ�Φ



..   

for a certain set Φ of g distinĆ embeddings of K inC, no two of which are complex conju-
gate of each other, so that all 2g embeddings are in Φ⊔Φ. ăis set Φ is called the complex
multiplicćion type of the abelian varietyA .

Isogenies tranėort the embedding ι and type Φ from one variety to the next; by the fol-
lowing result, found for instance as Proposition . of M (), đxing one is equiva-
lent to đxing the other.

Proposition ... ąere ĝ a bĞeĊion bċween ĭe sċ of ĝogeny clĆses of simple ordinary
pairs (A , ι) and ĭe sċ of ĝomorphĝm clĆses of primitive types (K,Φ).

Wewill now consider abelian varietiesA endowedwith an embedding ι or, equivalently,
a complex multiplication type Φ.

Conversely, a complex torus with complex multiplication by a prescribed complex mul-
tiplication đeld K and type Φ can be construĆed as follows. Let a be an integral ideal of K;
the g-tuple of embeddings Φmaps it to a certain lattice ofCg and wemay consider the com-
plex torus Cg/Φ(a). To obtain a polarization as a Riemann form E on it, take an algebraic
integer ξ that generates K/K+, whose imaginary part is totally positive, and whose square is
a totally negative element of K+, then deđne E by

EξΦ
�
Φ(x),Φ(y)

�
= tr

�
ξ · x · y

�
which takes integral values on Φ(a)2 and thus induces a polarization on the complex torus
Cg/Φ(a); it is obviously principal since ξ is invertible. Integral elements x of K can be seen
aĆing as endomorphisms of the torus by

(zi) �Cg 7¹→ �ziφi(x)�
where an ordering on the embeddings φ ofΦhas been đxed by indexing themby i � {1,… , g}.
Since distinĆ orderings yield isomorphic complex tori, Φ can be simply thought of as a set.

Other transformations of the type yield isomorphic varieties as well. In the case (where
we assume to be) of simple varieties, we have:

ăeorem ... Ağ principağy polarized complex tori wiĭ complex multiplicćion by a ring
of integers OK arĝe, via ĭe construĊion aboĂe, Ěom a triple (Φ,a, ξ).

Two triples (Φ,a, ξ) and (Φ′,a′, ξ′) yield ĝomorphic polarized tori if and only if ĭere exĝts
an automorphĝm σ and an element γ ofK such ĭćΦ′ =Φσ, a′ = γa, and ξ′ = (γγ)−1ξ.
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CMO

ăecomplexmultiplicationđeldKembedded inQ⊗End(A ) is an important invariant;
however, it fails to capture the exaĆ isomorphism type of End(A ), which is precisely what
the order O = K∩End(A ) does.

Generally-ėeaking, an order O in a number đeld K is a lattice that is also a subring of
the ring of integers OK — the latter is therefore commonly called themaximal order. In our
context, there is also aminimal order due to the following result ofW ().

Proposition ... Lċ K be ĭe complex multiplicćion Ėeld of some ordinary abelian va-
riċy deĖned over a Ėnite Ėeld k wiĭ FrobeniĮ endomorphĝm π. ąe orders of K conĬining
Z[π,π] are exaĊly ĭose ĭć arĝe Ć endomorphĝm rings of abelian variċies deĖned over k
wiĭ complex multiplicćion byK.

ăeVerschiebung endomorphĝm π can also be written as qπ−1, sinceăeorem .. will
show that the degree of an endomorphism is the norm of the correėonding number đeld
element.

Now consider an abelian varietyA deđned over a number đeld k. If p is a discrete place
of k, its residue đeld k/p is đnite, andwemight obtain an abelian varietyAp over k/p, of the
same dimension asA , by pushingA forward through the quotient map k→ k/p; when
we do, we say thatA has good reduĊion at the prime p. Most things independent from p
reduce nicely:

Proposition ... LċA andB be two abelian variċies ofĭe samedimensiondeĖned over
a number Ėeld wiĭ good reduĊionć some dĝcrċe place p. ąe nćural mapHom(A ,B)→
Hom(Ap,Bp) ĝ injeĊive and preserves ĭe degree of ĝogenies.

Specialized to an abelian varietyA =B with complex multiplication, this states that
reduĆion leaves the complex multiplication đeld unchanged and can only make the endo-
morphism ring larger.

When the reduĆion φp of an isogeny φ � End(A ) is separable, that is, whenever its
degree is coprime to p, then the reduĆion map ker(φ)→ ker(φp) is a bijeĆion.

N-O V

For completeness, we brieĔy address the case of non-ordinary abelian varietiesA over
a đnite đeld Fq; the charaĆeristic polynomial of the Frobenius endomorphism is then some
proper powerme with e > 1 of its minimal polynomial.

Contrary to the ordinary case, the endomorphism ring of non-ordinary abelian varieties
might be smaller over the base đeld than it is over an algebraic closure.
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For an elliptic curve, not being ordinary coincideswith being supersingular, and alsowith
the charaĆeristic of the base đeld dividing the integer π + π. ăen, all endomorphisms are
deđned over Fq if and only if q is a square and π = ±pq.

Over đelds with square cardinalities, there are thus two isogeny classes of supersingular
curves with all endomorphisms deđned, correėonding to the two q-Weil numbers ±pq.
Over a quadratic extension, those two become isogenous, but another isogeny class appears.
Supersingular curveswith not all endomorphisms deđned can formup to threemore isogeny
classes. ăis has been rigorously studied byW (), and to conclude we sum-
marize his result concerning endomorphism rings of supersingular curves.

Proposition ... Endomorphĝm rings of supersingular eğiptic curves are
– if ağ endomorphĝms are deĖned: ĭe maximal orders;
– oĭerwĝe: ĭe p-maximal orders conĬining π;

in ĭe qućernionQ-algebra ramiĖed ć inĖnity and p (ĭe charaĊerĝtic of ĭe bĆe Ėeld).

. Orders and Ideals

For a moment, let us turn to topics of algebraic number theory with a computational
Ĕavor; they will later be put to use when we need to apply complex multiplication theory.

A O

Orders of a number đeld K are lattices (that is, discrete subgroups of full rank) with an
induced ring struĆure; inclusion therefore yields a partial order on orders of K, where the
italicized word is meant in the set-theoretic sense. From now on, we consider orders of a
đxed complexmultiplication đeld K, and refer to them just as “orders”; they are contained in
the maximal orderM = OK, and we are particularly interested in those containing a certain
minimal orderm of the formZ[π,π]. Since K =Q(π), there are đnitely many such orders.

ăis induces a đnite lćticestruĆure (again, in the in the set-theoretic sense) and we will
oĖen beėeaking about orders located above or below fromothers, meaning reėeĆively that
they contain or are contained in others. ăis struĆure extends to ideals: assuming O ⊂ O ′
are two orders, we have natural maps

I(O ′) I(O )
a 7¹→ a∩O

bO ′ 7¹→ b

and while the latter is a right inverse to the former, the converse is not true in general.
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A more satisfying setting arises when we restriĆ to inĂertible ideals of an order O , that
is, fraĆional ideals a for which there exists another fraĆional ideal b satisfying ab = O . All
non-zero fraĆional ideals of the maximal order are invertible, but as we go down the lattice
of orders, fewer and fewer are. Tomeasure this notion of depth, we introduce the conduĆor,
which measures how far O is from its integral closureM.

Deđnition ... ąe conduĆor of an order O ĝ ĭe ideal fO = {x �M : xM⊂O }.
ăeconduĆor gives a sufficient condition for invertibility: prime ideals that are coprime

to fO are invertible inO . Conversely, up to principal ideals, all invertible ideals are equivalent
to one coprime to the conduĆor. As a result, invertible ideals coprime to the conduĆor
always have a unique decomposition into invertible prime ideals.

I C G

Similarly to class groups of ring of integers, ideal class groups can be construĆed from
general orders. ăis construĆion resembles that of Jacobian varieties in terms of divisors, but
the resulting group differs in various subtle aėeĆs.

Deđnition ... ąe Picard group of an order O , denoted by Pic(O ), ĝ ĭe quotient group
I(O )/Princ(O ) of inĂertible ideals by principal ideals; it ĝ Ėnite and abelian.

ăe Picard group of an orderO with conduĆor f is related to that of the maximal order
M = OK via the exaĆ sequence

1 ¹→O × ¹→M× ¹→ (M/f)×/(O /f)× ¹→ Pic(O ) ¹→ Pic(M) ¹→ 1

which shows that Picard groups grow roughly linearly in the norm of the conduĆor f; more
precisely, the sequence yields the following formula (which generalizes the well-known ex-
plicit formula for imaginary quadratic orders) for the clĆs number:

#Pic(O ) = #Pic(M)

[M× : O ×]

#(M/f)×

#(O /f)×
ăe asymptotic growth of the class number of the maximal order h = #Pic(M) obeys the
following conjeĆure of S () proved by B ().

ăeorem ... For any sequence of number ĖeldsK whose clĆs number, regulćor, and dĝ-
criminant we reġeĊively denote by h, R, and Δ, we have:

logh+ logR

log
p|Δ| ¹→ 1 Ć

[K :Q]
log |Δ| ¹→ 0.
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Andwenote that, for the đeldsKwe aremost interested in, namely quadratic and quartic
complex multiplication đelds, the regulator is reėeĆively R = 1 and R =O(log |Δ|).

Picard groups are compatible with the lattice-of-orders struĆure:

Proposition ... Lċ O ⊂ O ′ be two orders. ąe map a 7→ aO ′, for inĂertible ideals a of
O coprime to fO , induces a surjeĊive morphĝm of Picard groups.

ăerefore, if some setB of ideals of the minimal orderm generates its Picard group, it
can be mapped into generating sets for each order abovem. We form the free abelian group
ZB, and let ΛO denote the lćtice of relćions of O , consisting of tuples (λ)B for which the
produĆ

∏
B(bO )λ is a principal ideal of O . ăis gives a description of the Picard group as

Pic(O ) AZB/ΛO
and when one order is contained in another, their lattices of relations are too.

CO

To list all possible endomorphism rings, that is, all orders containingm = Z[π,π], one
could simply focus on the lattice struĆure: subgroups of the quotient groupM/m can easily
be enumerated, and each yields a lattice that containsm; elementary techniques can then test
whether such a lattice is closed under multiplication.

ăis approach is inefficient asmost lattices are not orders, but also inadequate since there
might be exponentially many orders abovem. We can bound the conduĆor gap as follows:

Lemma ... ąe index [M :m] ĝ bounded Ěom aboĂe by 2g(g−1)qg2/2, where q ĝĭe norm
of π and 2g its degree.

Proof. Recall that [M :m] is the square root of disc(m)/disc(M). ăe discriminant of the
maximal orderM can be small so we simply bound that of the minimal orderm using

|disc(m)| = |disc(Z[π])|À�Z[π,π] :Z[π]�2 .
ăenumerator can be bounded by

�
2pq�2g(2g−1) since χπ is a q-Weil polynomial of degree 2g.

For the denominator, we have
�Z[π,π] :Z[π]� = q

g(g−1)
2 from which the result follows.

Instead of enumerating all orders, we will navigate the lattice of orders and locate the en-
domorphism ring using complex multiplication theory. ăe proposition below shows that
it suffices to go up or down by small powers of primes. Due to the lemma above, only poly-
nomially many descending steps in g and log(q) are needed to reachm fromM.



  

Proposition ... Consider two orders O ′ ⊂ O of relćive index divĝible by a prime ℓ.
ąere exĝts an order O ′′ in bċween whose index in O ĝ in {ℓ, ℓ2,… , ℓ2g−1} where 2g = degK.

To prove this, let O ′′ be the order generated by ℓO and O ′: since ℓO has index ℓ2g in O
and both containZ, its index in O , and therefore also that of O ′′, must divide ℓ2g−1.

Consider now the problem of going down, that is, enumerating all orders contained in a
prescribed order O with index n (to go up the process would be entirely equivalent).

In discussionswith E, we devised a simplemethod to enumerate all orders contained
in a prescribed orderO with index n. ăe integer n should preferably be a small prime power
to limit the size of the output; this amounts to considering the lattice of orders locally at
this prime. When we only consider endomorphism rings of principally polarized abelian
varieties, we can further restriĆ to those orders that are closed under complex conjugation.

Fix a Z-module basis (ωi) of O so that each sublattice is uniquely identiđed by a basis
(αj =

∑
aijωi) inHermite normal form, meaning that the integral matrix (aij) is upper trian-

gular, has non-zero coefficients on the diagonal, and satisđes aij < aii for i ≠ j; seeChapter .
of C () for details. Such a sublattice is an order if it contains all produĆs

αjαj′ =
∑
i,i′

aijai′j′ωiωi′ =
∑
k

∑
i,i′

aijai′j′m
ii′
k

︸ ︷︷ ︸
bjj
′
k (a)

ωk

where the veĆormii′ expresses ωiωi′ on the basis (ωk); this veĆor and the polynomial bjj
′
k only

depend onO . ăerefore, a is an order if and only if, for all j and j′, the preimage of the veĆor
bjj′ by the matrix a has integral coordinates; for sublattices of index det(a) = n, this gives:

Proposition ... Ağ orders conĬined inO wiĭ index n correġond to solutions of ĭe poly-
nomial system (n · a)−1bjj′ = 0 mod n2gZ2g in ĭe coefficients of ĭe mćrix a.

Unless there are 0 or Ω(n) such orders, this system is nonsingular and its solutions can
be listed by a Gröbner basis algorithm in time polynomial in logn albeit exponential in g.

C C G

Fix an order O and consider computing its Picard group; this requires a generating set
of ideals for Pic(O ), an efficient ideal multiplication algorithm, and a way of đnding a dis-
tinguished representative of the class of a prescribed ideal, which we call reducing an ideal.
Under the generalized Riemann hypothesis (GRH), B () solved the đrst problem:
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ăeorem ... Assume ĭe GRH and lċ O be ĭe ring of integers of a number Ėeld of dĝ-
criminantΔ. ąe clĆs group Pic(O ) ĝ generćed by prime ideals of normćmost 12 log2 |Δ|.

Note that a less explicit, but more precise result of J, M, and V
(), which also assumes the GRH, implies that, for any ε > 0, the class group of any
order O is generated by prime ideals of norm less than O(log2+ε |Δ|), where Δ = disc(O ).

LetB be the set of prime ideals with norm less than some bound B, and deđne

σO :
� ZB ¹→ Pic(O )

n 7¹→ ∏
p�B pnp

By the results above, when B is big enough, the map σO is surjeĆive and therefore we have

Pic(O ) AZB/ΛO
where the lattice ΛO is the kernel of σO . Later, we will see how to compute the Picard group,
that is, đnd a generating set of veĆors for ΛO .

When the order O lies in an imaginary quadratic đeld, its ideals can be represented as
binary quadratic forms via the map

ax2 + bxy+ cy2 7¹→ aZ+ −b+
p
b2− 4ac
2

Z
where the right-hand side is a proper ideal ofO as soon as the integers a, b, and c are coprime
and satisfy b2−4ac = disc(O ). S () gave algorithms with quĆi-linear run-
time (that is, linear up to logarithmic faĆors) in log |disc(O )| for performing on such forms
the operationswhich correėond tomultiplying two ideals, and to reducing one into a canon-
ical representative of its class.

When O is an order of a general number đeld K, no such nice struĆure exists and a
simpler approach must be used. Given a primitive element α, the đeld K can be represented
asQ[x]/(χα(x)), and its elements as rational veĆors over the basis (1,x,x2,… ,xdegK−1). Ideals
a can then be expressed asZ-modules, of which a generating set of cardinality deg(K) can be
written as a matrix over a basis of the order to which they belong. As mentioned before, this
matrix can be put in Hermite normal form to uniquely identify ideals.

Since there is no canonical set of ideal representatives for classes of the Picard group, it
is difficult to identify ideal classes precisely. C, D  D, and O ()
demonstrated that this can nevertheless be done to some extent: thematrix that represents an
ideal a can be reduced via the so-called LLL algorithm of L, L, and L
(), and the resulting matrix represents an ideal of the same class, but which is smaller.
Such small ideals can be used as non-unique representatives of their class, and this permits
one to performmost computations, notwithstanding some overhead.
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. Plain Complex Multiplication

We have seen that endomorphism rings of ordinary abelian varieties are isomorphic to
orders in number đelds, and have then considered their ideals from a computational stand-
point. Let us now explain how these ideals can be seen as aĆing as isogenies.

ăis aėeĆ of complex multiplication theory will be referred to as the plain aĊion, as
opposed to the polarized aĊion to be discussed later. ăis seĆion, does not assume that iso-
genies preserve any polarization struĆure of abelian varieties, and borrows many results of
W ().

F F S

LetO be an order isomorphic to the endomorphism ring of a simple ordinary abelian va-
rietyA of dimension gdeđned over a đnite đeldFq. We additionally consider an embedding
ι : K→Q⊗End(A ) of the number đeld ofO ; its elements are then seen as endomorphisms
ofA . An isogeny φ sends the varietyA to the varietyB = φ(A ), and also maps an em-
bedding ι forA to an embedding forB given as φ(ι) = 1

degφφ ◦ ι ◦bφ where bφ denotes the
dual isogeny. In faĆ, we have:

Proposition ... If ι ĝ an embedding of K intoQ⊗ End(A ), ağ oĭer embeddings ι′are
of ĭe form φ(ι) for some endomorphĝm φ ofA .

LetA be such an abelian variety endowed with an embedding ι ofO into its endomor-
phism ring, letabe an invertible ideal ofO , and consider the isogeny φa :A →A /ker(φa)
with kernel

ker
�
φa
�
=
∩
α�a

ker
�
ι(α)
�
.

For instance, if a is a principal ideal (α), then the kernel of φa is simply that of α; therefore, φa
is nothing but an endomorphism whose separable part coincides with that of α (recall that
the totally inseparable part of an isogeny is not charaĆerized by its kernel).

Now consider the composition of two such isogenies: letA be an abelian variety, a be
an invertible ideal ofO = ι−1(EndA ), and denote the correėonding isogeny by φa :A →B ; then, let b be an invertible element of φ(ι)−1(EndB), and denote the correėonding
isogeny by φb :B →C ; in that situation, the isogeny φb ◦ φa correėonds canonically to
φab :A →C . In simple terms, composing isogenies correėonds to multiplying ideals.

As a consequence, there is a well-deđned map

a � Pic(O ) :A �AVO (k) 7¹→ φa(A ) �AV(k)
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where AV(k) denotes the set of isomorphism classes of abelian varieties deđned over k, and
AVO (k) the subset of such classes with endomorphism ringO . Since the above is an isogeny,
the complex multiplication is unchanged and we haveQ⊗ End(A ) =Q⊗ End(φa(A ));
note that, for elliptic curves, End(φa(A )) is aĆually always equal to End(A ) as Proposi-
tion .. will show, but in general we might only have EndA ⊂ End(φa(A )).

C E T

For elliptic curves, W () proved that the image of the map above is
aĆually AVO (k), and that the aĆion of Pic(O ) on AVO (k) this deđnes is transitive, which
means that for any elliptic curve A with endomorphism ring O , the map a 7→ φa(A )
induces a bijeĆion between Pic(O ) and AVO (k). ăe ėeciđc approach that he used then
enabled him to establish a similar result for (non-polarized) abelian varieties. Here, let us
describe a more standard way of seeing this on elliptic curves, using complex tori.

In the elliptic case, the use of complex tori to obtain results over đnite đelds greatly ex-
ploits the following liĖing theorem of D ().

ăeorem ... Lċ α be an endomorphĝm of an eğiptic curveA deĖned over a Ėnite Ėeld
Fp. ąere exĝts an endomorphĝm β of some abelian variċyB deĖned over a cerĬin number
Ėeld which, modulo some prime p aboĂe p of good reduĊion, reduces precĝely to α � End(A ).

In the case where End(A ) = Z[α], the varietyB of the above theorem hasZ[β] as en-
domorphism ring and reduĆion induces an isomorphismEnd(B) A End(A ), sincewe saw
earlier that endomorphism rings of abelian varieties deđned over number đelds are mapped
injeĆively into that of their good reduĆions at prime ideals. Endomorphism rings of ordi-
nary elliptic curves are always of the formZ[α], so in this case there always exist liĖs with the
same endomorphism ring.

Conversely, for the ordinary case, we need to reduce modulo primes totally ėlit in O :
Proposition ... LċA be an eğiptic curve wiĭ endomorphĝm ring O deĖned over a
number Ėeld. Take an unramiĖed prime p, and lċ p = p∩Z. ąen:

– if p ġlits complċely in O , ĭen ĭe reduĊionAp ĝ ordinary and deĖned over Fp.
– if p ĝ inert in O , ĭen ĭe reduĊionAp ĝ supersingular and deĖned over Fp2 .

Now, over the complex numbers, an elliptic curve with endomorphism ring O always
correėonds to a complex torusC/bwhere b is a certain ideal ofO . ăe aĆion of invertible
ideals a of O on AVO (C) can then be seen as

a :C/b �AVO (C) 7¹→C/(a−1b) �AVO (C).
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ăis aĆion is obviously transitive, and two ideals a and a′ aĆ identically if and only if they
are homothetic, that is, if and only if they belong to the same class of Pic(O ). ăerefore, this
aĆion faĆors through the Picard group into a faithful and transitive aĆion of Pic(O ) on
AVO (C); modulo prime ideals p of norm p, it reduces to the aĆion of Pic(O ) on AVO (Fp).
ăeorem ... Lċ O be an imaginary quadrćic order. For eğiptic curves deĖned over a
Ėnite Ėeld k, ĭe aboĂe deĖnes a faiĭful and transitive aĊion of Pic(O ) ontoAVO (k).

Wemustđnally mention that this aĆion can also be seen on inĂariants of elliptic curves:
ifB �AVO (C), its invariant j(B) lies in the ring clĆs Ėeld ofO , which is an abelian exten-
sion of K =Q(O ) with Galois group Pic(O ). ăe aĆion of Pic(O ) on AVO (C) is then that
of the Galois group via the Artin symbol.

G A V

ăe situation in higher dimension is far from being as nice as in the elliptic case. Certain
properties nevertheless hold as they should, such as the following one of G ().

ăeorem ... LċA be a simple ordinary abelian variċy deĖned over a Ėnite Ėeld; if a ĝ
an inĂertible ideal of its endomorphĝm ring, ĭe degree of ĭe ĝogeny φa ĝ ĭe norm of a.

ăe transitivity of the aĆion of the Picard group, which would generalize the result on
elliptic curves above, has only been shown to hold in the case that the endomorphism ring
ofA is maximal by W (); to prove this, he đrst argued that all invertible
ideals are, in his terminology, kernel ideals, which implies the following.

ăeorem ... LċA be a simple ordinary abelian variċy deĖned over a Ėnite Ėeld k, and
Ćsume ĭć End(A ) ĝ a maximal order OK; ĭen, for any inĂertible ideal a of OK:

– ĭe endomorphĝm ring of φa(A ) ĝ exaĊly ĭć ofA .
– ĭe induced aĊion of Pic(OK) onAVOK(k) ĝ faiĭful and transitive.

ăe number of isomorphism classes of simple ordinary abelian varieties with endomor-
phism ring some maximal order OK can thus be estimated using the conjeĆure of S
() proved by B (); as a direĆ consequence of Lemma .., we have

disc(Z[π,π]) < 22g(g−1)qg2

which gives, as g is đxed and q goes to inđnity, the asymptotic behavior

#AVOK(Fq) = #Pic(OK) < qg2/2+o(1).
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E A

In our application, we wish to use the above theory for maximal orders as well as non-
maximal ones. ăerefore, we rely on the following consequence of the results above, com-
bined with the observation that, if the norm of an invertible ideal a is coprime to ℓ, since it is
also the degree of the isogeny φa, then the index [End(φaA ) : End(A )] cannot be divisible
by ℓ. Note that we proved the contrapositive statement earlier.

Proposition ... LċA be a simple ordinary abelian variċy deĖned over a Ėnite Ėeld k,
lċ π be its FrobeniĮ endomorphĝm, lċK =Q(π), and lċ O ⊂K be its endomorphĝm ring.

ąe inĂertible ideals ofO of norm coprime to ĭe dĝcriminant ofZ[π,π] aĊ onAVO (k)Ć
ĝogenies of degree ĭeir norm, and ĭĝ deĖnes a faiĭful aĊion of Pic(O ) onAVO (k).

Tomake this proposition effeĆive, weneed to compute the isogenyφa. Denote its degree
by ℓ; since ℓ = N(a), we can start by enumerating all subgroups of cardinality ℓ of the full
ℓ-torsion subgroupA [ℓ]. Recall than even when φa is rational, the points of its kernel need
not be individually, but they are colleĆively invariant under the Galois aĆion. Still, we need
a praĆical way of telling φa apart from other isogenies of degree ℓ.

ăe improvements of A and E to the elliptic curve point counting method
of S () exploit certain aėeĆs of complex multiplication theory. In particular,
they give a means to determine which ėeciđc isogeny of degree ℓ correėonds to φa. It was
also written as Stage  of the algorithm by G, H, and S ().

ăis result aĆually holds for general abelian varieties, which follows elementarily from
the theory ofTatemodules (fromwhichmostof the results thatwestated above are derived);
we therefore state it in its full generality.

Proposition ... LċA be a simple ordinary abelian variċy deĖned over a Ėnite Ėeld,O
its endomorphĝm ring and π � O ĭe element correġonding to its FrobeniĮ endomorphĝm.

Lċ a be an inĂertible prime ideal of O , written Ć ℓO + u(π)O , where ℓ ĝ its norm and u
ĝ an irreducible faĊor modulo ℓ of ĭe charaĊerĝtic polynomial χπ of ĭe primitive element π.
Assume ĭć ℓ ĝ coprime to ĭe dĝcriminant ofZ[π,π].

ąen, ĭe charaĊerĝtic polynomial of ĭe FrobeniĮ endomorphĝm aĊing on ker(φa) ĝ u.

ăis proposition cannot be readily applied to non-prime ideals a, but we will explain
later how this issue can be dealt with.

. Polarized Complex Multiplication

In praĆical computations, abelian varieties are represented as Jacobian varieties of hy-
perelliptic curves or as theta-coordinates. Since both naturally work with principal polar-
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izations, complex multiplication theory needs to be adapted to take this extra struĆure into
account. Most of this theory originates from S and T ().

As in the plain case, westart by considering complexmultiplicationđelds before focusing
on the ėeciđc endomorphism ring order and the aĆion of its ideals.

R F M

Recall that ifA is an ordinary abelian variety of dimension g, its complexmultiplication
đeld K = Q⊗ End(A ) is a totally imaginary quadratic extension of a totally real number
đeld K+ of degree g, and that a complex multiplicćion type on K is a set of embeddings of K
inC satisfying Φ⊔Φ=Hom(K,C) where the union is disjoint.

Here, there is aĆually no need to involveC, or even the algebraic numbersQ, since the
image of any embedding of K is necessarily contained in its normal closure Kc. From now
on, we therefore consider complex multiplication types given as sets of embeddings of K to
its normal closure; this is equivalent and allows for a simpler exposition.

Deđnition ... LċΦ be a type ofK. ąe reĔex đeld Kr ĝ ĭe Ėxed Ėeld of�
σ �Gal�Kc,Q� : Φ = Φ ◦ σ	 ,

ĭe automorphĝms ofKc leavingΦ globağy inĂariant. It admits a unique reĔex type Φr which
ĝ ĭe restriĊion of automorphĝms ofKc whose inĂerses yieldΦ when restriĊed toK, ĭć ĝ,�

φ �Aut�Kc� : φ|Kr �Φr	 = �φ−1 �Aut�Kc� : φ|K �Φ	 .
More generally, for any đeld extension K′/K, the type {φ � Hom(K′,K′c) : φ|K � Φ} is

called the induced type by Φ on K′. Types Φ which are not induced from a striĆly smaller
subđeld are said to be primitive. Simple abelian varieties have primitive types, and in that
case, we canonically have Krr = K and Φrr =Φ.

Deđne the type trace trΦ : x � K 7→ ∑
Φ φ(x); its image aĆually generates the đeld Kr

and this can be used as an equivalent deđnition for the reĔex đeld; more importantly, deđne
the type norm

NΦ : x �K 7→∏
φ�Φ φ(x) �Kr

(it is elementary to verify that the images of both these maps are in Kr). ăere is also a reęex
type trace trΦr and a reęex type normNΦr : Kr→K.

ăe latter is particularly important to us, as we will make great use of it via the map it
induces on Picard groups: if a is an ideal ofOKr , there is a unique ideal ofOK, which we write
NΦr(a), such that

NΦr(a)OKc =
∏
φ�Φ φ(a)OKc
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(see for instance Proposition  in Chapter II of S ()). By the above, the map
NΦr : I(OKr)→ I(OK) induces a morphism of Picard groups, which we also write similarly:

NΦr : Pic(OKr)→ Pic(OK)

T P C G  S

Fix a primitive type Φ of a complex multiplication đeld K of degree 2g, and denote the
totally real subđeld of K by K+.

Recall that a triple (Φ,a, ξ) yields the principally polarized complex torusCg/Φ(a) with
the polarization Eξ

Φ; ăeorem .. explained that all tori arise in this way and gave neces-
sary and sufficient conditions for two triples to yield isomorphic polarized varieties.

Following SeĆion  of S (), a group C(O ) can be construĆed so as to
naturally aĆ on this set of triples representing isomorphism classes of principally polarized
abelian varieties:

. Let P be the group of pairs (a, ρ) where ρ � K+ is totally positive and a is a fraĆional
ideal of O satisfying aa = ρO , endowed with component-wise multiplication.

. Let I be the subgroup formed by the (μO , μμ) for μ �K×.

. Let C(O ) be the quotient group P/I.
As a consequence toăeorem .., we therefore have:

Corollary ... For O = OK, ĭe group C(O ) aĊs faiĭfuğy and transitively on ĭe sċ of
ĝomorphĝm clĆses of principağy polarized abelian variċies having complex multiplicćion by
O wiĭ typeΦ. In particular, ĭey have ĭe same cardinality.

It might be easier to understand the group C(O ) as part of the exaĆ sequence

U(K) ¹→U+(K+) ¹→ C(O ) ¹→ Pic(O ) ¹→ Pic+(O+)
where the implied maps are, reėeĆively, the norm of K/K+, the embedding ρ 7→ (O , ρ),
the projeĆion (a, ρ) 7→ a, and the map a 7→ aa ∩ K+; also, U+(K+) denotes the totally
positive units of the totally real subđeld K+, and Pic

+(O+) denotes the quotient of the group
of fraĆional ideals of O ∩K+ by those that admit a totally positive generator.

Intuitively, the class group Pic(O ) aĆs on the set of abelian varieties up to isomorphism,
as proven by W () for O = OK; the subgroup Pic+(O+) encodes the dif-
ferent ways an isogeny can alter polarizations, and the groupU+(K+)/NK/K+

(U(K)) corre-
ėonds to isomorphism classes of principal polarization.
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For instance, in the case of dimension g = 2, when the totally-real subđeld K+ contains
a unit of norm−1, which exaĆly means that its fundamental unit is not totally positive, the
quotientU+(K+)/NK/K+

(U(K)) is trivial so we have a one-to-one map:

C(O ) ¹→ ker
�
Pic(O )→ Pic+(O+)

�
Although the computation of the polarized class group C(O ) of Shimura is a much less

classical topic than that of Picard groups, it is not more difficult; for instance, we note that
similar groups have been studied from an algorithmic viewpoint by C, D  D,
and O ().

P A

ăere is a particular subgroupof thepolarized class groupof Shimura formedby elements
arising asGalois aĆions. Here, we give a simpliđed exposition of this general theory and refer
to SeĆion  of S () for a more robust construĆion.

LetA be a principally polarized abelian variety deđned overC with complex multipli-
cation by the maximal order OK of a đeld K with type Φ. In faĆ, the abelian varietyA can
be deđned over the Hilbert class đeldHKr which is the maximal abelian unramiđed exten-
sion of the reĔex đeld, and in particular its inĂariants lie in that đeld; the aĆion that we now
describe can be seen as that of the Galois group ofHKr via the Artin symbol.

ăeorem ... InĂertible ideals of Kr aĊ on polarized tori wiĭ complex multiplicćion by
OK wiĭ typeΦ via

r � I(Kr) :Cg/Φ(a),Eξ
Φ 7¹→Cg/Φ

�
NΦr(r)−1a

�
, E

NKr/Q(r)ξ
Φ ;

an ideal r aĊs triviağywhen its reęex type norm idealNΦr(r)ĝa principal ideal ofOK generćed
by an inĂertible element μ �K× which sćĝĖes μμ = NKr/Q(r).

Recall that the set of principally polarized abelian varieties with endomorphism ringOK
is aĆed upon faithfully and transitively by the polarized class group C(OK) of Shimura. ăe
isogenies that arise via the reĔex type norm (by theorem above) therefore aĆ as the subgroup
of C(OK) formed by the elements �

NΦ(r),NKr/Q(r)
�

where r ranges over ideals of OKr . We emphasize that other elements of C(OK) also aĆ as
isogenies, but that they might not be rational.

For instance, in dimension two, if (a, ℓ) � C(OK), and ℓ totally ėlits as ppqq in K, then
the possible values for a are pq, pq, and their reėeĆive conjugates; in that case, ℓ also ėlits
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completely in Kr and the reĔex type norm maps the prime faĆors of ℓOKr onto those four
elements of C with norm ℓ2. In other cases, elements of C(OK) of norm ℓ2 might not be in
the image of the reĔex type norm.

R  F F

We brieĔy review how the aĆion that we have just deđned tranėorts to đnite đelds, in
the case of simple ordinary abelian varieties of dimension two. For details, we refer to the
work of G () and G and L ().

We đrst consider a principally polarized abelian varietyAp deđned over a đnite đeld of
charaĆeristic p; given any embedding ιp ofOK into End(Ap), implying thatAp has complex
multiplication by OK, there exists an abelian varietyA deđned over a number đeld and an
embedding ι : OK→ End(A ) which, at a certain prime, reduce toAp and ιp reėeĆively.

Conversely, ifA is a simple polarized abelian variety with complex multiplication by
the maximal order of some đeld K, its invariants lie in the Hilbert class đeldHKr which is
the maximal abelian unramiđed extension of the reĔex đeld. For almost all primes p of its
đeld of deđnition, the abelian varietyA has good reduĆion modulo p.

Now, let pdenote the rational prime belowp, that is pZ = p∩Z; when pėlits completely
in the complex multiplication đeld K this reduĆion is a simple ordinary abelian variety. De-
note byAp the reduĆion ofA modulo p; due to the injeĆive map End(A )→ End(Ap),
we know thatAp also has complex multiplication by OK. In that case, all elements of norm
ℓg of the polarized class group of Shimura arise from the reĔex type norm, and they give all
isogenies of type (Z/ℓ)g.

ăere is another ėlitting case for pwhich can result in the reduĆionAp being a simple
ordinary abelian varieties: that where p is inert in K+ but ėlits as qq in K and as rrr′ in Kr,
where r′ has norm p2. In that case, reduĆionmodulo a prime above r or r also yield a simple
ordinary abelian variety. However, the reduĆion ofA modulo r′ is a superġecial variċy,
that is, far from being ordinary.

IfA is a simple ordinary abelian variety of dimension g = 2 deđned over a đnite đeld
k of sufficiently large charaĆeristic, we will later exploit complex multiplication theory to
prediĆ the struĆure of its isogeny graph from that of its polarized class group of Shimura,
or rather do the converse: prediĆ the struĆure of the group C(O ) from that of the isogeny
graph. For this, we have seen that we can always use isogenies of type (Z/ℓ)2 for primes ℓ
which ėlit completely in the reĔex đeld Kr.

However, we observe that elements ofC(O ) of the form (a, ℓ), where ℓ is a prime, which
are not in the image of the reĔex type norm, oĖen also aĆ as rational isogenies of type (Z/ℓ)2,
and we make use of these as well. In certain cases, this approach can be fully rigorous by
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solely exploiting the aĆion of C(O ) under the type norm, or that of certain elements (q, ℓ)
for primes ℓ ėlitting in K as qq. In other cases, this requires additional hypotheses, which
we will then ėecify.
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

Ŷairing-Ŭriendly żariċies

. Cryptographic Requirements

ăeuse of pairings enables many cryptographic protocols; as we havementioned before,
cryptography-grade pairings, that is, pairings which can be evaluated efficiently and are hard
to invert, are only known to be deđned on abelian varieties.

Here, we đrst review cryptographic requirements for pairing-based construĆions, and
then consider how abelian varieties satisfying these conditions can be generated.

G C

LetA be an abelian variety deđned over a đnite đeld Fq and containing a cyclic sub-
group of order r. ăe embedding degree e(r), also written ewhen there is no ambiguity on the
subgroup, is deđned as the smallest integer such that theWeil pairing

ΨWeil :A [r](Fqe) ×A [r](Fqe) ¹→ μr ⊂ F×qe
is non-degenerate; extending a result of B and K (), R-
 and S () proved that, if r does not divide q− 1 and the degree of the
polarization ofA is coprime to r, then e divides the order of qmodulo r.

Using this pairing for cryptographic purposes imposes the following:

. It must be computationally infeasible to solve discrete logarithm problems inA [r].

. Itmustbe computationally infeasible to solve discrete logarithmproblems in μr ⊂ F×qe .
. It must be praĆical to compute over the đeld Fqe .


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ăe last condition ensures that the algorithm ofM () evaluates theWeil pair-
ing efficiently. Note that many construĆions do not direĆly use theWeil pairing but rather
variants of it that enable evaluationėeedups by small faĆors; however, froma variety genera-
tion point of view, thismakes little difference: so long as đeld operations inFqe can efficiently
be computed, pairings with embedding degree e can be evaluated with more or less effort.

Later, it will be convenient to allow r to be a prime times a small cofaĆor; this does not
invalidate the above: the security simply rests on the largest prime faĆor of r.

ăere are two big decisions to be made:

Binary or prime đelds? Fields of charaĆeristic two (also known as binary đelds) are suited
to efficient hardware implementations; on the other hand, soĖware implementations
work equally well with prime đelds.

Supersingular or ordinary varieties? Supersingular varieties are easy to generate and read-
ily have small embedding degrees; however, they are quite ėecial and have an easy
decisional Diffie–Hellman problem.

We choose toworkwith ordinary varieties deđned over prime đelds. Some authors argue
that prime powers with exponent greater than one have density zero amongst prime powers,
but here we justify this choice by its convenience and the faĆ that it avoids Weil-descent
attacks altogether. Although attraĆive for the design of cryptographic protocol, the prop-
erties of supersingular curves can be seem unnecessarily ėecial; they are mostly interesting
over đelds of small charaĆeristic, and it is not so challenging to generate them.

To avoid wasting bits, we wish to balance the expeĆed hardness the discrete logarithm
problem in the abelian varietyA (Fq) and in the group μr ⊂ F×qe as they are rendered equiv-
alent by the pairing. When q is a prime power, H () warned that μr might reside in
a striĆ subđeld of F×qe , leading to faster attacks on its discrete logarithm problem. However,
this problem does not arise when q is prime.

A

SupposeA is an ordinary abelian variety of dimension g deđned over a prime đeld Fq
of which the discrete logarithm problem and pairing are considered for cryptographic use.
By the Pohlig–Hellman reduĆion, it is sufficient to consider its largest prime subgroupH ;
we denote its order by r and its embedding degree by e. In order avoid attacks on high-genus
varieties, we furthermore assume that g = 1,2; this conveniently enables us to use the fast
arithmetic of Jacobian varieties of hyperelliptic curves.

To measure the cryptographic efficiency, đx g and let q go to inđnity: the complexity of
additions inA (Fq) is polynomial in logq; disregarding the pairing, the discrete logarithm
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problem inA (Fq) achieves an expeĆed security of 1
2 log2 r bits. Hence, we introduce the

quantity

ρ =
g log2 q
log2 r

which, since #A (Fq) ~ qg, also indicates the proportion of bits used to represent points
ofA (Fq) that aĆually contribute to the security of scheme: if ρ ≈ 1 then nearly all of the
variety is put to use; if ρ ≈ 2 then only half of the bits are needed to identify points ofH .

Recall the best-knownbounds on the complexity of solving discrete logarithmproblems:

. Discrete logarithm problems inA (Fq) can be solved in O
�
r1/2+o(1) logq

�
.

. Discrete logarithm problems in F×qe can be solved heuristically in Lc1/3
�
qe
�
.

To solve the đrst problem, in general, no better algorithm than generic ones is known, for
which a lower bound of

p
r is proven; the other term in the complexity denotes the cost of

operations inA (Fq). Many variants of the number đeld sieve can be used to solve the second
problem: the method of M () applies to prime đelds, and that of J and
L () is particularly adapted to extension đelds such as here.

In the most effeĆive case that ρ ≈ 1, balancing the two complexities above requires

1

2
g logq log logq ≈ c

�
e logq

�1/3 �log e+ log logq
�2/3

which implies e ~
� g
2c

�3 � 1
3 logq

�2
log logq and shows that the embedding degree should

grow quadratically in the size of the base đeld; this is another reason to avoid supersingular
varieties: since their embedding degrees are uniformly bounded as g is đxed (see below), they
do not scale well to higher levels of security.

P

To seleĆ the parameters q and e according to the level of security chosen (or equivalently
the desired date until when the cryptosystem should withstand attacks), the cost of attacks
on the discrete logarithm problems in both đnite đelds and abelian varieties must be care-
fully considered. Various agencies and organizations regularly publish updated tables listing
parameter tuples for various security levels, such as ECRYPT II () whose table was fea-
tured in the đrst chapter. Most agree that pairing-based cryptosystems aimed at being secure
beyond  should have a 256-bit r and a 3248-bit qe; as usual, more is better.

ăe praĆical cost of an attack can be estimated by using timings of previous attacks to
calibrate the big-O (and possibly other) constants in the asymptotic complexity; this usually
gives a fair estimation for larger instances. Here, we need to control both the hardness of
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F . ăe abscissa bounds the security level of the discrete logarithm problem in F×qe
while the ordinate does the same in E/Fq. ăe diagonal represents the optimal case that
these are balanced. ăe curves plot what elliptic curves achieve for seleĆed values of e/ρ.

the discrete logarithm problem in the curve and the embedding đeld. Figure  does such a
rough analysis for the parameters (ρ, e,q) of pairing-friendly curves. It shows, for instance,
that 128 bits of security are best achieved by elliptic curves for which e/ρ ≈ 12, with themost
preferable choice of ρ ≈ 1 implying that e = 12 and q ≈ 2256.

Before explaining how to generate elliptic curves and abelian varieties with the above
properties, let us đrst say a bit more on supersingular varieties.

S V

While ordinary varieties are the generic case, supersingular varieties are the other ex-
treme: recall that supersingular abelian variċies are deđned as being isogenous to powers
of supersingular elliptic curves (elliptic curves with zero p-rank) or, equivalently, as having
Frobenius endomorphisms that satisfy πn = ±qn/2 for some integer n.
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ăeir cryptographic interest stems from the following result of G ().

Proposition ... ąe embedding degree of any subgroup of any g-dimensional supersingular
abelian variċy deĖned over a Ėnite Ėeld ĝ uniformly bounded by some quantity eg.

We have for instance e1 = 6, e2 = 12, e3 = 30, e4 = 60.

For certain types of base đelds, the bound eg can be lowered: the optimal bound for e1 is
4 in charaĆeristic two, 6 in charaĆeristic three, 3 in higher charaĆeristic, and 2 over prime
đelds with more than three elements.

An interesting feature of supersingular varieties is the existence of dĝtortionmaps, that is,
non-rational endomorphisms. For ordinary varieties, we have seen that all endomorphisms
deđnedover an algebraic closure are also deđnedover the base đeld, so their đeld of deđnition
makes no difference. However, for supersingular varieties, there exist endomorphismswhich
do not commute with the Frobenius endomorphism.

Such dĝtortion maps ψ are useful in cryptography because they send points of the ra-
tional r-torsion subgroup to points ofA [r](Fqe) which might not be rational. ăen, the
application

(P,Q) �A [r](Fq)2 7¹→ΨWeil(ψ(P),Q) � μr
is a “self ” pairing which is a very attraĆive objeĆ to build cryptographic primitives on, as
its domain is the Cartesian produĆ of two copies of the same cyclic group of order r, rather
than the Cartesian produĆ of two different ones.

On the other hand, thismakes the decisionalDiffie–Hellman problem easy, since for any
triple of integers (a,b, c) and point P onA , one can verify whether c = ab given P,aP,bP, cP
by checking whether

ΨWeil(ψ(aP),bP) = ΨWeil(ψ(P), cP);

from a security viewpoint, this can be seen as an undesirable property. Naturally, many pro-
tocols take advantage of that situation as well.

Since embedding degrees of supersingular curves are bounded, the base đeld size must
grow more than linearly in the desired security level in order to avoid discrete logarithm
attacks in F×qe via the pairing; this lack of scalability is unpraĆical in the long term, and we
now shiĖ our focus to the ordinary case.

. Complex Multiplication Method

ăeproblemof construĆingordinary abelian varieties deđnedover ađniteđeldonwhich
pairings are efficiently computable (meaning that the embedding degree is small) is an aĆive
topic of research.
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ăis seĆion describes the so-called complex multiplicćion mċhod for generating ordi-
nary abelian varieties with prescribed endomorphism rings; as a consequence, it also gener-
ates varieties whose Frobenius endomorphism have prescribed polynomials. Since the exis-
tence of a subgroup of order r with embedding degree e only depends on this polynomial,
the next seĆion will exploit this method to generate pairing-friendly varieties.

S  P-F V

As we have argued before, abelian varieties of dimension g = 1 and 2 are the most suit-
able for cryptosystems which rely on the discrete logarithm problem. When no additional
struĆure (such as a pairing) is required, abelian varieties need just have a near-prime group
order, and are best generated by random search, which additionally reduces their likelihood
of having undesirable ėecial properties. For elliptic curves, such computations are classical,
and for g = 2 it was recently demonstrated praĆical by G and S ().

When, on top of a near-prime group order, one seeks a small embedding degree, this
approach is not feasible anymore due to the scarcity of abelian varieties with the desired con-
dition. More precisely, B and K () proved the following.

ăeorem ... ąere are ćmostM1/2+o(1) ĝogeny clĆses of eğiptic curves E/Fp wiĭ prime
order and embedding degree less ĭan log2 p, where p ĝ a prime in {M/2,… ,M}.

Since there are roughly M3/2 isogeny classes of elliptic curves deđned over Fp with p �
{M/2,… ,M}, this is a pretty slim fraĆion of the total. L and S () recently
gave a similar result for dimension-two abelian varieties:

ăeorem ... LċH and K be positive integers, ĭe number of pairs (p,N) whereN ĝ ĭe
order of a dimension-two abelian variċy deĖned over Fp wiĭ p � {M/2,… ,M}, such ĭć
N= hr where h BH, r ĝ prime and hĆ embedding degree less ĭanK ĝćmostM3/2+o(1)HK2

forM large enough.

Since there are roughly M5/2 pairs (p,N) arising as orders of two-dimensional abelian
varieties, this gives, similarly to the one-dimensional case, a probability of p−1+o(1) of đnding
a pairing-friendly abelian variety by random search over Fp.

ăe theory of complex multiplication provides a method for generating such varieties
efficiently. ăis involves two steps: we will đrst describe how varieties with prescribed en-
domorphism rings and prescribed đelds of deđnition can be construĆed using the so-called
complex multiplication method, and we will then consider charaĆerizing pairing-friendly
varieties in terms of their endomorphism ring and base đeld.
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C 

Since abelian varieties of dimension three or more are not interesting for cryptogra-
phy, we restriĆ to Jacobian varieties of hyperelliptic curvesC since all principally polarized
abelian variety of dimension one or two are of this type. ăis allows to use invariants which
uniquely identify the isomorphism class of such a variety and are expressed as rational func-
tions of the coefficients of an equation forC .

Fix a genus g and a family of invariants (Ii) that uniquely identify birationally equivalent
classes of hyperelliptic curves. For instance, in dimension one, the j-inĂariant

C : y2 = x3 + ax+ b 7¹→ j(C ) =
2833a3

22a3 +33b2

(where we have assumed the charaĆeristic to be different from 2 and 3) alone suffices. In
higher dimension, as we have mentioned before, more invariants are necessary.

Let O be the order of a complex multiplication đeld K of degree 2g, that is, a totally
imaginary quadratic extension of a totally real number đeld. S () đrst proposed
to encode the information about all abelian varietiesA of dimension g deđned over the
complex numbers into the following polynomial

H O
i (x) =

∏
{A :EndAAO }

�
x− Ii(A )

�
,

whereA ranges over isomorphism classes of abelian varieties. In dimension one, they are
usually calledHilbert clĆs polynomialswhen O is the maximal order of K, as their roots, the
invariants of abelian varieties with endomorphism ringO , generate the Hilbert class đeld of
O ; for non-maximal orders and in higher dimension, these lie in the ring class đeld ofO and
the polynomials are simply known as clĆs polynomials.

W () later developed this theory and explained how these polynomials could
be used to generated abelian varieties over đnite đelds with prescribed endomorphism ring,
as we will soon explain. When there are two invariants or more (that is, for g > 1), these
polynomials do not encode which root ofH O

1 correėonds to which root ofH O
i for i > 1;

in other words, the invariant tuples we are interested in are lost amongst tuples of unrelated
invariants.

To address this issue, G, H, K, R, and W
() interpolated the values Ii(A ) at the I1(A ): they deđned

H ′O
i (x) =

∑
EndAAO

Ii(A )
∏

EndBAOB̸AA

�
x− I1(B)

�
for i > 1. ăis encodes exaĆly the information wanted.
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R  P 

LetA be an ordinary abelian variety with complex multiplication by O deđned over
some number đeld, and let p be a prime of degree one at which the reduĆionAp ofA is
itself an ordinary abelian variety deđned overFp where p is the rational prime below p. Since
invariants are compatible with reduĆion, we have Ii(Ap) = Ii(A )p.

As the endomorphism ring ofA is mapped injeĆively into that ofAp, we have O ⊂
(EndAp); whenO is themaximal order, equality must hold, and this is also the case for any
order whenAp is an elliptic curve, due to the Deuring liĖing theorem.

Consequently, an abelian variety with complex multiplication byO deđned over a đnite
đeld can be found using the following algorithm.

Algorithm ...
I: A prime p, and an order O , eiĭer imaginary quadrćic

or maximal in a quartic complex multiplicćion Ėeld.
O: An abelian variċyA /Fp wiĭ EndA A O .

. Compute ĭe clĆs polynomialsH ′O
i (x).

. For each root I1 ofH O
1 (x) mod p:

. For ağ i > 1, lċ Ii =H ′O
i (I1)/H O

1 (I1).
. Use ĭe mċhod of M () to compute a hypereğiptic

curve whose Jacobian variċy hĆ inĂariants (Ii).

Note that the output of this algorithm might be empty; for instance, when there are no
abelian varieties with endomorphism ringO deđned over the đeld with p elements. In other
cases, the number of curves returned might not be constant as O is đxed and p varies. ăe
conceptually simplest case is that where p completely ėlits in the ring class đeld of O : then,
theH O

i ėlit into linear faĆors modulo p.

C  C P

Beforemaking use of themethod above, let us brieĔy describe the currentmethods avail-
able for computing class polynomials in dimension one and two.

Since the class polynomialsH O
i are deđned over the complex numbers and have good

reduĆion to đnite đelds, there are, as with modular polynomials, two methods to compute
them: a complex analytic method and one based on the Chinese remainder theorem.

ăe complex analytic version evaluates the invariants Ii(A ) for complex tori verify-
ing EndA A O to sufficient precision to identify the coefficients of the class polynomial;
it requires tight bounds on the height of these coefficients. C and H
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() also proposed a p-adic version which proceeds similarly but uses the canonical liĖ of
an abelian variety deđned over a small extension of Fp to tranėort the computation toQp.

ăeChinese remainder theoremversion reconstruĆs the polynomialsH O
i �Q[x] from

their reduĆion to many small prime đelds Fp by enumerating the abelian varieties with en-
domorphism ring O in each such đeld; typically, a đrst variety with complex multiplication
Q⊗O is found by sheer luck (this requires computing the endomorphism ring of many ran-
dom curves), and isogenies are then used to đnd a curve with endomorphism ring exaĆlyO
and to enumerate all other such varieties.

When the dimension ofO is đxed, the complexity of all methodsmainly depends on the
order of the Picard group ofO , which diĆates the number of roots of the class polynomials.

For elliptic curves, all methods have a quasi-linear runtime in the size of the output; see
the careful analyses of E (), B (), and S ().ApraĆical
advantage of the Chinese remainder theorem version is that it need not keep the full poly-
nomialsH O

i �Q(x) in memory: only their reduĆions modulo many primes are required;
from these,H O

i can be direĆly reconstruĆed in the prime đeld where we seek an abelian
variety with endomorphism ring O . ăis is particularly useful as memory requirements are
the current bottleneck of the other two methods.

Indimension two,W() introduced the complex analyticmethod,C,M-
, K, and T () the Chinese remainder theorem one, and G,
H, K, R, andW () a 2-adic method. All have since
been improved by many researchers. ăeir reėeĆive ėeeds do not support a range of or-
ders O as wide as for elliptic curves, but quite a fair number of class polynomials have been
computed and made available, for instance in the E () package.

. Elliptic Curve Generation

Let us now explain how to apply thematerial of the previous seĆion to generate pairing-
friendly elliptic curves; very satisfying results can be obtained in this case. ăis is however
not the case for higher-dimensional varieties, as the next seĆion will discuss.

T C–PM

We have explained how an ordinary elliptic curve with prescribed order O can be gen-
erated over a prescribed đnite đeldFp whenO has small class number or, equivalently, small
discriminant. We now consider which parameters p andO should be chosen in order for the
resulting curve to be pairing-friendly.
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LetE be an ordinary elliptic curve over the prime đeldwith p elements; the charaĆeristic
polynomial χπ(x) of its Frobenius polynomial is of the form x2 − tx+ p where the integer t
satisđes |t| < 2pp. Conversely, for each such nonzero integer, there exists an ordinary curve
E/Fp with cardinality p+ 1− t (we assume p ≠ 2,3). If r is the largest prime faĆor of #E ,
we require that its embedding degree be small, that is, r | pe− 1 for some small integer e.

Additionally, for the complex multiplication method to be praĆical, there must exist
orders of small discriminants inQ(π), that is, the squarefree part of 4p− t2 must be small.

ăerefore, we require that:
. p be a prime number.
. t be a nonzero integer less than 2pp in absolute value.
. r be a prime faĆor of p+1− t such that r | pe− 1 for a small e.
. the squarefree part Δ of t2− 4p be small in absolute value.
Since Δ and e need to be small, we đrst đx them: if an integer p can be derived as a

funĆion of Δ and e and it is not prime, we can always rerun the algorithm on a different
input and hope that it takes a prime value aĖer roughly logp trials; however, đxing p and
deriving Δ or e would have little chances of producing small numbers.

Once Δ and e have been đxed, the method of C and P () consists in
rewriting the above set of conditions to the equivalent one: t2− 4p = v2Δ

r |Φe(t− 1)
r | v2Δ− (t− 2)2

where Φe denotes the eth cyclotomic polynomial; the second condition asserts that e is the
smallest integer such that r | pe − 1 but this stronger condition is not as important as the
construĆion that it enables: since Φe is irreducible it yields a number đeld where to work.
ăis gives the following algorithm.

Algorithm ...
I: A negćive and a positive integer,Δ and e.

O: A prime p and an order O such ĭćĭere exĝts a pairing-
Ěiendly eğiptic curve wiĭ endomorphĝm ring O over Fp.

. Choose a prime Ėeld Fr conĬining
p
Δ and an eĭ root of unity ζe.

. Put t = 1+ ζe and v = (t− 2)/
p
Δ in Fr

. LiĜ t and v toZ and put p = 1
4 (t

2− v2Δ).
. Unless p ĝ prime, go back to Step .
. Output p and ĭe order O =Z+ u2OQ(pΔ) where u ĝ any divĝor of v.
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Due to p being a sum of squares liĖed fromFr the resulting elliptic has ρ ≈ 2 on average.

F  P-F C

Better ρ values are achieved by families of curveswith a constant embedding degree e and
discriminant Δ over đelds Fp for increasing primes p. Families of elliptic curves are given by
tuples (Δ, e,p(x), t(x), r(x),v(x)) where the last four parameters are polynomials in a formal
variable x; additionally to the conditions above, since p and r are expeĆed to take prime val-
ues, they are required to be irreducible. ăe density of primes they produce can be estimated
using ConjeĆure ...

Before explaining how to adapt themethod above to this context, let us give two explicit
families; for a broader coverage, we refer to F, S, and T ().

MNT curves. Shortly before the construĆive use of pairings in cryptography was uncov-
ered, M, N, and T () warned that certain explicit families of
curves had a small embedding degree and therefore were probably unsuitable for crypto-
graphic use: they exhaustively studied the case that ρ ≈ 1 and the cyclotomic polynomial Φe
is quadratic, that is, e � {3,4, 6}; they gave an explicit description of all such ordinary elliptic
curves; it was later noticed that they provide interesting pairing-friendly curves. For exam-
ple, they proved that a curve features ρ ≈ 1 and e = 6 if and only if p(x) = 4x2 + 1 is prime
and t(x) = 1± 2x for some integer x.

ăe Barreto–Naehrig family. B and N () exhibited a family of or-
dinary elliptic curves with ρ ≈ 1 and e = 12; as we have seen before, this is optimal to achieve
the 128-bit security level using primes p of  bits. ăeir family has Δ =−3 and

p(x) = 62x4 +62x3 +4 · 6x2 +6x+1 t(x) = 1+ 6x2

with r(x) = p(x) + 1− t(x).

ăe advantage of such families is that they đx the discriminant Δ and the asymptotic
value of ρ, as we indeed have the limit ρ→ degp/deg r as x→∞. ăis enables the generation
of good pairing-friendly curves with ρ bounded below 2 over large prime đelds.

Deriving curves from such an explicit family is easy: for an expeĆed p of n bits, take a
random integer x having n/deg(p) bits, evaluate p(x) and r(x) and repeat the process until
both p(x) and r(x) are primes; this requires an expeĆed O(n2) trials.
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T B–WM

B andW () adapted the method of C and P () to gen-
erate families of polynomials as deđned above. ăeir construĆion follows the above except
that the arithmetic is done over polynomial rings rather than over the integers.

Algorithm ...
I: A negćive and a positive integer,Δ and e.

O: A pairing-Ěiendly family of curves given by p(x), t(x), and r(x).
. Choose an irreducible polynomial r(x) wiĭ positive leading coefficient

such ĭćĭe ĖeldQ(x)/r conĬinspΔ and an eĭ root of unity ζe.
. Put t = 1+ ζe and v = (t− 2)/

p
Δ, Ć elements ofQ(x)/r.

. LiĜ t and v toZ[x] and put p = 1
4 (t

2− v2Δ).
. Unless p ĝ irreducible, go back to Step .
. Output p(x), t(x), and r(x).

Since the polynomial p(x) is construĆed as a sum of squares of liĖs from Q(x)/r, its
degree is roughly twice that of r. However, when deg(r) is small, the degree of p(x) can be
much smaller and yield ρ values below 2; note that deg(p) being smaller is not a problem:
curves deđned over large prime đelds can still be obtained by evaluating p(x) at large integers
x; in faĆ, this is preferable since the slower increase of polynomials gives more Ĕexibility.

L C

To conclude this seĆion, we discuss the results of B. and S ().
In this paper, we noted that the twomethods described above only đx the complexmulti-

plication đeld or, equivalently, the isogeny class, but not a ėeciđc endomorphism ring order
O which the complex multiplication method takes as input. AĆually, our presentation of
the Cocks–Pinchmethod above already showed that faĆ, since it stated that the order to be
output could be of the form Z + uOQ(π) for any divisor u of v, where t2 − 4p = v2Δ is the
discriminant of the minimal orderZ[π].

ăis means that, once parameters for a pairing-friendly curve or family have been com-
puted, before applying the complex multiplication method and obtaining an aĆual elliptic
curve, there is still some choice to be made on the ėeciđc endomorphism ring desired. In
the Brezing–Wengmethod, since v(x) is construĆed as (t−2)/pΔ, its degree as polynomial
is likely to be roughly that of r; this typically gives a large (and prediĆable in size) pool of
faĆors to choose from as the conduĆor of the endomorphism ring.

ăerefore, pairing-friendly curveswithnon-maximal endomorphismringsO canbe gen-
erated as easily as maximal ones as long as O is in the range of the complex multiplication
method.
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Denote byE1 andEu the elliptic curveswith trace t and endomorphism rings reėeĆively
OQ(π) and O =Z+ uOQ(π); there is an isogeny of degree u going from E1 to Eu. Computing
this isogeny takes essentially quadratic time in the largest prime faĆor of u, as we will see in
subsequent chapters. ăerefore, as it takes u2+o(1)Δ time to generate the curve Eu via class
polynomials, using different values for u does not yield fundamentally new cryptosystems; it
simply shows that a small range of conduĆors is readily available from pairing-friendly curve
generation methods.

. Variety Generation

As a natural generalization of the problem of pairing-friendly elliptic curves generation,
we now consider generating higher-dimensional pairing-friendly abelian varieties. We will
đrst give general statements before mentioning state-of-the-art results.

M  S

From amathematical viewpoint, it is only natural to switch our focus to abelian varieties
when we feel the pool of interesting elliptic curves has been depleted, since abelian varieties
with an efficient arithmetic (such as Jacobian varieties of genus-2 hyperelliptic curves) have
equally effeĆive and secure pairings; they can even be evaluated faster than that of elliptic
curves as F and L () demonstrated.

Originally, abelian varieties were proposed for cryptographic use not only as alternatives
to elliptic curves but also as a potential improvement: since the size of the group is g times
the size of the base đeld, where g is the dimension, the parameters of a cryptosystembased on
dimension-two abelian varieties need only be of half the size of an equivalently secure elliptic
cryptosystem; in addition, the smaller base đeld can possibly be exploited to yield a faster (or
at least competitive) arithmetic to that of elliptic curves.

Although abelian varieties readily provide a good framework for cryptosystems based on
the discrete logarithm problem only, other faĆors need to be taken into account for pairing-
based cryptography. Before explaining how the situation degrades for ordinary varieties, let
us recall that two-dimensional supersingular abelian varieties have an embedding degree of
at most 12 and ρ values which can be close to 1; they are currently the only kind of two-
dimensional abelian varieties suitable for cryptographic use.

All known construĆions of ordinary pairing-friendly varieties of dimension two have
large ρ values: we will see that none has ρ B 2, and that ρ values close to 2 are only achieved
by ėecial construĆions; generic construĆions feature ρ C 4, at the time of this writing.

It therefore appears as if genus-two construĆions had a lot of room for improvement.
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CMM

We have seen that the computation of class polynomials, although harder for abelian
varieties of dimension two than for elliptic curves, can be done (and has been done) for a
limited number of orders O , all of which are ring of integers of quartic complex multiplica-
tion đelds with relatively small discriminant.

ăerefore, it is even more important to đx O as a đrst step of any construĆion than it
was with elliptic curves. We distinguish two types of construĆions:

. Generic construĆions, which take an arbitrary maximal quartic complex multiplica-
tion order as input, and output generic pairing-friendly abelian varieties.

. Speciđc construĆions, which focus on varieties of a particular form (usually implying
that O is đxed too) and exploit explicit results due to this form.

Here, by “generic” we mean that the former methods output varieties with no particular
properties other than those required; in particular, the varieties are usually absolutely simple
and ordinary. ăis is to be compared to the varieties obtained by the latter method which
are typically simple but not absolutely simple.

G C

ăe đrst construĆion of ordinary pairing-friendly abelian varieties of dimension g > 1
with cryptographic size are due to F (). It can be considered a genus-two analog
to the Cocks–Pinchmethod, and proceeds by solving explicit equations which arise by writ-
ing the charaĆeristic polynomial of the Frobenius endomorphism in terms of parameters for
the desired complex multiplication đeld. ăe abelian varieties it generates have a typical ρ
value of 8.

Later, F, S, and S () provided a cleaner framework
for construĆing pairing-friendly ordinary abelian varieties of dimension two by using more
of the theory of complex multiplication.

Let π be the Frobenius endomorphism of a simple ordinary abelian varietyA over a
đnite đeld. ăeir idea was to write the condition thatA has a subgroup of order r with
embedding degree e as ¨

r |NQ(π)/Q(π− 1)

r |Φe(ππ)
.

Now let Φ be a type on the complex multiplication đeld K, and denote by Φr and Kr

their reėeĆive reĔexes. ăe key observation is that, if r is a prime congruent to one modulo
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e that ėlits completely in K, and if∏
φ�Φr

�
ξ mod rφ

�
= 1 and

∏
φ�Φr

�
ξ mod rφ

�
= ζe

where ζe is an eth root of unity and
∏

φ�Φr rφrφ denotes the faĆorization of r in Kr, then the
type norm π = NΦr(ξ) of ξ is a q-Weil number (that is, a root of a q-Weil polynomial) sat-
isfying the conditions above asserting that it represents an ordinary pairing-friendly abelian
variety.

Computationally, numbers ξ can be construĆed from their reduĆionsmodulo the prime
faĆors of r so as to satisfy the above requirement; aĖer sufficiently many trials, the integer
q = NKr/Q(ξ) is expeĆed to be prime, and when it is additionally unramiđed in K and π
generates K, this yields, by Honda–Tate theory, an isogeny class of ordinary pairing-friendly
abelian varieties with complex multiplication by K.

ăe method above still produces varieties whose embedding degree is 8 or more, but
F () soon adapted it to generate families of pairing-friendly varieties similarly
to the Brezing–Weng method for elliptic curves. He applies it to đnd many families with ρ
less than 8, and a particular one with an asymptotic ρ value of 4 for e = 5.

S C

To improve on the ρ values obtained by construĆions applicable to arbitrary complex
multiplication đelds, one way is to consider abelian varietiesA of a particular form and
exploit explicit results regarding this form as much as possible. Usually,A is taken as the
Jacobian variety Jac(C ) of a hyperelliptic curveC of genus two with a particular shape of
Weierstrass polynomial.

For instance, consider curvesC of the form y2 = x5 + ax for some number a � Fp where
p is a prime congruent to onemodulo eight; in that situation, the associated Jacobian variety
Jac(C ) is ordinary and simple, and K and T () exploited explicit
formulas for the charaĆeristic polynomial of the Frobenius endomorphism in terms of a
and p to obtain an analog of the Cocks–Pinch method for that ėeciđc type of curves. ăey
obtained a ρ value of 3 with the embedding degree e = 24.

ăe varieties they construĆed are not absolutely simple: over an extension containing
fourth roots of e, they ėlit as produĆs of two elliptic curves. F and S ()
studied such varieties from amuchmore general perėeĆive: from an elliptic curveE which
is pairing-friendly over some extension of its base đeld, they explain how to derive a simple
ordinary pairing-friendly abelian variety which becomes isomorphic to a power of E over
some extension of the same base đeld. As an application, they construĆ families of such
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abelian varietieswith ρ ≈ 2.22 and e = 27, which are to date the bestknownordinary pairing-
friendly varieties of dimension two.

References

. ViĆor S. M.
Short programs for funĊions on curves.Unpublished.
URL: http://crypto.stanford.edu/miller/.

. Jean-François M.
“ConstruĆion de courbes de genre 2 à partir de leurs modules”.
In: EffeĊive mċhods in algebraic geomċry—MEGA ’.
Edited by TeoM and Carlo T. Volume . Progress in Mathematics.
Birkhäuser. Pages –.

. Anne-Monika S.
“Kurven vomGeschlecht  und ihre Anwendung in Public-Key-Kryptosystemen”.
PhD thesis. Universität Duisburg-Essen.
URL: http://www.iem.uni-due.de/zahlentheorie/AES-KG2.pdf.

. Ramachandran B and Neal K.
“ăe improbability that an elliptic curve has subexponential discrete log problem
under the Menezes–Okamoto–Vanstone algorithm”.
In: Journal of Cryptology .. Pages –. DOI: 10.1007/s001459900040.

. Jinhui C, KazutoM, Hiroto K, and Shigeo T.
“ConstruĆion of hyperelliptic curves with CM and its application to cryptosystems”.
In: Advances in Cryptology— ASIACRYPT ’. Edited by Tatsuaki O.
Volume . LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/3-540-44448-3_20.

. Clifford C and Richard G. E. P.
Identity-bĆed cryptosystems bĆed on ĭeWeil pairing.Unpublished manuscript.

. Steven D. G.
“Supersingular curves in cryptography”.
In: Advances in Cryptology— ASIACRYPT ’. Edited by Colin B.
Volume . LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/3-540-45682-1_29.

http://crypto.stanford.edu/miller/
http://www.iem.uni-due.de/zahlentheorie/AES-KG2.pdf
http://dx.doi.org/10.1007/s001459900040
http://dx.doi.org/10.1007/3-540-44448-3_20
http://dx.doi.org/10.1007/3-540-45682-1_29


..   

. AtsukoM, Masaki N, and Shunzou T.
“New explicit conditions of elliptic curve traces for FR-reduĆions”.
In: IEICE TransaĊions on FundamenĬls of EleĊronics E-A.. Pages –.

. AnnegretW.
“Konstruktion kryptographisch geeigneter Kurven mit komplexer Multiplikation”.
PhD thesis. Universität Duisburg-Essen. URL: http:
//www.iem.uni-due.de/zahlentheorie/preprints/wengthesis.pdf.

. Jean-Marc C andăierry H.
“AĆion of modular correėondences around CM-points”.
In: Algoriĭmic Numberąeory— ANTS-V.
Edited by Claus F and David R. K. Volume .
LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/3-540-45455-1_19.

. Dmitry V. M.
“On the asymptotic complexity of computing discrete logarithms in the đeld GF(p)”.
In:DĝkrċnayaMćemćika .. Pages –.

. Friederike B and AnnegretW.
“Elliptic curves suitable for pairing based cryptography”.
In:Design, Codes and Cryptograpy .. Pages –.
DOI: 10.1007/s10623-004-3808-4.

. Paulo S. L. M. B andMichael N.
“Pairing-friendly elliptic curves of prime order”.
In: SeleĊed AreĆ in Cryptography— SAC ’.
Edited by Bart P and Stafford T. Volume .
LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/11693383_22.

. Gerhard F and Tanja L.
“Fast bilinear maps from the Tate-Lichtenbaum pairing on hyperelliptic curves”.
In: Algoriĭmic Numberąeory— ANTS-VII.
Edited by Florian HŊ, Sebastian P, andMichael P. Volume .
LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/11792086_33.

. Pierrick G,ăomas H, David R. K,
Christophe R, and AnnegretW.
“ăe -adic CMmethod for genus  curves with application to cryptography”.
In: Advances in Cryptology— ASIACRYPT ’.

http://www.iem.uni-due.de/zahlentheorie/preprints/wengthesis.pdf
http://www.iem.uni-due.de/zahlentheorie/preprints/wengthesis.pdf
http://dx.doi.org/10.1007/3-540-45455-1_19
http://dx.doi.org/10.1007/s10623-004-3808-4
http://dx.doi.org/10.1007/11693383_22
http://dx.doi.org/10.1007/11792086_33


 - 

Edited by Xuejia L and Kefei C. Volume .
LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/11935230_8.

. Antoine J and Reynald L.
“ăe funĆion đeld sieve in the medium prime case”.
In: Advances in Cryptology— EUROCRYPT ’. Edited by Serge V.
Volume . LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/11761679_16.

. David M. F.
“ConstruĆing pairing-friendly genus  curves with ordinary Jacobians”.
In: Pairing-BĆed Cryptography— PAIRING ’. Edited by Tsuyoshi T,
Tatsuaki O, Eiji O, and Takeshi O. Volume .
LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/978-3-540-73489-5_9.

. Laura H.
“On the minimal embedding đeld”. In: Pairing-BĆed Cryptography— PAIRING ’.
Edited by Tsuyoshi T, Tatsuaki O, Eiji O, and
Takeshi O. Volume . LeĆure Notes in Computer Science. Springer.
Pages –. DOI: 10.1007/978-3-540-73489-5_16.

. Gaetan B and Takakazu S.
“More discriminants with the Brezing-Weng method”.
In: Progress in Cryptology— INDOCRYPT ’.
Edited by Dipanwita R. C, Vincent R, and Abhijit D.
Volume . LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/978-3-540-89754-5_30.

. Reinier B.
“A p-adic algorithm to compute the Hilbert class polynomial”.
In:Mćhemćics of CompuĬtion .. Pages –.
DOI: 10.1090/S0025-5718-08-02091-7.

. David M. F.
“A generalized Brezing-Weng method for construĆing pairing-friendly ordinary
abelian varieties”. In: Pairing-BĆed Cryptography— PAIRING ’.
Edited by Steven D. G and Kenny G. P. Volume .
LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/978-3-540-85538-5_11.

http://dx.doi.org/10.1007/11935230_8
http://dx.doi.org/10.1007/11761679_16
http://dx.doi.org/10.1007/978-3-540-73489-5_9
http://dx.doi.org/10.1007/978-3-540-73489-5_16
http://dx.doi.org/10.1007/978-3-540-89754-5_30
http://dx.doi.org/10.1090/S0025-5718-08-02091-7
http://dx.doi.org/10.1007/978-3-540-85538-5_11


..   

. David M. F, Peter S, andMarco S.
“Abelian varieties with prescribed embedding degree”.
In: Algoriĭmic Numberąeory— ANTS-VIII.
Edited by Alfred J. van der P and Andreas S. Volume .
LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/978-3-540-79456-1_3.

. Mitsuru K and Tetsuya T.
“Pairing-friendly hyperelliptic curves with ordinary Jacobians of type y2 = x5 + ax”.
In: Pairing-BĆed Cryptography— PAIRING ’.
Edited by Steven D. G and Kenny G. P. Volume .
LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/978-3-540-85538-5_12.

. David R. K.
ECHIDNA: DćabĆes for eğiptic curves and higher dimensional analogues.
URL: http://echidna.maths.usyd.edu.au/.

. Andreas E.
“ăe complexity of class polynomial computation via Ĕoating point approximations”.
In:Mćhemćics of CompuĬtion .. Pages –.
DOI: 10.1090/S0025-5718-08-02200-X.

. David F, Michael S, and Edlyn T.
“A taxonomy of pairing-friendly elliptic curves”.
In: Journal of Cryptology .. Pages –.
DOI: 10.1007/s00145-009-9048-z.

. Karl R and Alice S.
“Using abelian varieties to improve pairing-based cryptography”.
In: Journal of Cryptology .. Pages –.
DOI: 10.1007/s00145-008-9022-1.

. European Network of Excellence in Cryptology II.
Yearly report on algoriĭms and keysizes. Edited by Nigel P. S.
URL: http://www.ecrypt.eu.org/documents/D.SPA.13.pdf.

. Pierrick G and Éric S.
GenĮ  point counting over prime Ėelds.HAL-INRIA: 00542650.

. Kristin L and Ning S.
Generćing pairing-Ěiendly paramċers for ĭe CM construĊion of genĮ  curves over
prime Ėelds. IACR ePrint: 2010/529.

http://dx.doi.org/10.1007/978-3-540-79456-1_3
http://dx.doi.org/10.1007/978-3-540-85538-5_12
http://echidna.maths.usyd.edu.au/
http://dx.doi.org/10.1090/S0025-5718-08-02200-X
http://dx.doi.org/10.1007/s00145-009-9048-z
http://dx.doi.org/10.1007/s00145-008-9022-1
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
http://hal.inria.fr/inria-00542650
http://eprint.iacr.org/2010/529


 - 

. David M. F and Takakazu S.
“ConstruĆing pairing-friendly hyperelliptic curves usingWeil restriĆion”.
In: Journal of Numberąeory .. Pages –.
DOI: 10.1016/j.jnt.2010.06.003.

. Andrew V. S.
“Computing Hilbert class polynomials with the Chinese remainder theorem”.
In:Mćhemćics of CompuĬtion . Pages –.
DOI: 10.1090/S0025-5718-2010-02373-7.

http://dx.doi.org/10.1016/j.jnt.2010.06.003
http://dx.doi.org/10.1090/S0025-5718-2010-02373-7


C 
E R







ūxponentialųċhods

ăe last chapter was concernedwith construĆing abelian varieties with prescribed endo-
morphism rings and we now turn to the inverse problem: that of computing the endomor-
phism ring of a prescribed variety. Our contribution is covered by the next three chapters;
here, we review prior state-of-the-art algorithms, all of which have a worst case running time
exponential in the size of the base đeld.

All seĆions but the last solely consider ordinary varieties, and our complexity analyses
concern a đxed dimension g and a cardinality q of the base đeld going to inđnity.

IfA is an ordinary abelian variety with complexmultiplication đeldK, an isomorphism
Q(π) A K between the đeld of fraĆions of End(A ) and K will be understood throughout
this chapter; this identiđes endomorphism rings uniquely as orders of K.

. Isogeny Volcanoes

Let us đrst describe the struĆure of the conneĆed component of the isogeny graph con-
taining a prescribed simple ordinary abelian variety over a đnite đeld; we will emphasize
vertical isogenies and their role in the algorithm of K () for computing endomor-
phism rings in the dimension-one case.

V I

Following FĿ and M (), we say that an isogeny is horizonĬl when
its domain and codomain have isomorphic endomorphism rings, and that it is vertical oth-
erwise; we đrst focus on the latter kind, in the context of computing endomorphism rings.
Later, we will use horizontal isogenies, via complex multiplication theory, as the key to our
subexponential-time algorithm for computing endomorphism rings.


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To put to light the relationship between endomorphism rings and vertical isogenies, we
use an observation of K:

Lemma ... Lċ φ :A →B be an ĝogeny of type (Z/ℓ)g bċween ordinary abelian vari-
ċies deĖned over a Ėnite Ėeld. ąe order End(B) ĝ bounded below byZ+ ℓEnd(A ).

Indeed, since φ ėlits multiplication by ℓ, we have ℓEnd(A )⊂ End(B), and since the
latter is an order it must also contain Z. Note that applying this lemma to the dual isogenybφ gives a bound on End(B) from above. To encompass both bounds, we generalize the
inclusion index to the following distance on the lattice of orders.

Deđnition ... For any two orders O and O ′ of ĭe same Ėeld, deĖne ĭe order distance
dist(O ,O ′)Ć [O : O ∩O ′] + [O ′ : O ∩O ′].
Corollary ... Lċ φ : A → B be an ĝogeny of type (Z/ℓ)g bċween ordinary abelian
variċies deĖned over a Ėnite Ėeld. ąe dĝĬnce dist(EndA , EndB) ĝ divĝible by ℓ4g−2.

ăis follows from the lemma, since Z + ℓO has index ℓ2g−1 in O , for any order O . By
exploiting the symmetry of the lattice of orders, the distance could even be proven to divide
ℓ2g−1. However, this simple result is sufficient for us; as a consequence, there can only be
đnitely many vertical isogenies of a given type leaving from any given varietyA since:

– only đnitely many orders of K are endomorphism rings, that is, containZ[π,π];
– therefore there are only đnitely many possible degrees for vertical isogenies;

– sinceA [ℓ] = (Z/ℓ)2g there are đnitely many suitable subgroups.

Recall the results of T () andW ():

ăeorem... Isogeny clĆses of abelian variċies deĖned over a Ėnite Ėeld are identiĖed byĭe
charaĊerĝtic polynomial of ĭeir FrobeniĮ endomorphĝm. Endomorphĝm rings of ordinary
variċiesA are exaĊly ĭose orders of ĭe complex multiplicćion ĖeldKĭć conĬinZ[π,π].

ăis shows that the struĆure of vertical isogenies is quite rigid: the possible degrees
are đxed per isogeny class by the index of the minimal order Z[π,π] in the maximal one
of K. Worse, they can be as large as [OK :Z[π,π]] which Lemma .. showed can only be
bounded by qg2/2+o(1) where q is the cardinality of the base đeld and g the dimension of the
variety. ăis does not give much Ĕexibility for working with vertical isogenies, and canmake
it quite costly to evaluate them.

On the other hand, we will later argue that horizontal isogenies are convenient to work
with, as there are inđnitely many with domain any given variety.
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F . StruĆure of the graph of vertical isogenies and of the lattice of orders.

G S

As a consequence to the above, the struĆure of the vertical-isogeny graph can be de-
scribed as resembling that of the lattice of orders which contain the minimal orderZ[π,π].
Corollary ... Lċ G be ĭe graph whose vertices are clĆses of variċies wiĭ FrobeniĮ en-
domorphĝm π, up to horizonĬl ĝogenies, wiĭ edges ĭe vertical ĝogenies of type (Z/ℓ)g. Sim-
ilarly, lċ H be ĭe graph whose vertices are ĭe orders conĬining Z[π,π], wiĭ edges bċween
two orders O ⊊ O ′ when ĭere ĝ no O ′′ sćĝfying O ⊂O ′′ ⊂O ′.

ąe map (A →A ′) � G 7→ (EndA → EndA ′) � H ĝ bĞeĊive on ĭe vertices, and
ġlits edges into sequences of ć most 2g− 1 edges.

Figure  is probably worth all the above words: it depiĆs the graph of vertical isogenies
(the big circles denote horizontal isogenies classes) to the leĖ, and the correėonding lattice
of orders to the right. In faĆ, this is a simple case, similar to the situation in dimension one:
each order above Z[π,π] is uniquely identiđed by its index in OK, and vertical isogenies are
in bijeĆion with edges of the lattice of orders, that is, they do not jump orders.

Computing the endomorphism ring of a variety is therefore equivalent to determining
its location up to horizonĬl ĝogenies in the isogeny graph.

To see how big this struĆure can be, consider the typical case of ordinary varieties of
dimension g = 2 deđned over the prime đeldwith p elements. From the conditions on p-Weil
polynomials, we deduce that there must be p3/2+o(1) isogeny classes. Since there are p3+o(1)
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isomorphism classes of curves, each isogeny class contains, on average, p3/2+o(1) isomorphism
classes.

From now on, we will assume that the discriminant ofZ[π,π] (and therefore its index in
the maximal order) has been faĆored, so that we can make use of the various algorithms for
lattices of orders developed earlier.

Froma cryptanalysis viewpoint, ifA is an abelian variety ofwhich thediscrete logarithm
problem is to be used in a cryptographic scheme, andA ′ is a variety in the same isogeny
class for which this problem is known to be weak, it should be ensured that it is infeasible to
compute any isogenyA →A ′.

By the theory of complexmultiplication, there aremany horizontal isogenies of small de-
gree going from any abelian varietyA to others with the same endomorphism ring; there-
fore, horizontal isogeny classes can be “walked around” quite easily. Note, however, that
đnding an explicit path from a prescribed variety to another might be a difficult task when
the horizontal isogeny class is big, since only generic methods are available.

However, whenA andA ′ havedifferent endomorphismrings, denotingby ℓ the largest
prime faĆor of dist(EndA , EndA ′), any isogeny chain going fromA toA ′mĮt contain
an isogeny of degree ℓ. Since current isogeny-computing algorithms require exponential time
in log(ℓ), this bounds below the time needed to tranėort the discrete logarithm problem.

L S  DO

FĿ and M () gave a metaphorical interpretation of the work of K-
 () on thestruĆureof the graphof isogenies of typeZ/ℓ, for ađxedprime ℓ, between
ordinary elliptic curves deđned over a đnite đeld. In dimension one, a number of properties
whichwe sumup in the proposition below indeed give graphs of degree-ℓ isogenies a distinc-
tive Ăolcano look.

Recall that the complex multiplication đelds of ordinary elliptic curves are exaĆly the
imaginary quadratic number đelds; orders of such đelds are of the form Z + fOK where f is
the index in the maximal order OK.

ăe following rephrases Proposition  of K () and, for short, refers to iso-
morphism classes of elliptic curves as curves and to the valuation at a đxed prime ℓ of the
conduĆor of their endomorphism ring as their depĭ.

Proposition ... Consider ĭe graph of ĝogenies of prime degree ℓ bċween ĝomorphĝm
clĆses of eğiptic curves deĖned over a Ėnite Ėeld wiĭ complex multiplicćion by ĭe imaginary
quadrćic Ėeld K = Q(pD) of dĝcriminantD, and denote by v ĭe valućion of [OK : Z[π]]
ć ℓ. ąe foğowing exhaĮtively describes ağ edges of ĭĝ graph.
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F . Typical volcano struĆure in dimension one when the discriminant is a square
modulo ℓ (the prime degree of isogenies); here, in the case that ℓ = 3.

. From a curve ć depĭ u > 0, ĭere ĝ one ĝogeny going up to a curve ć depĭ u− 1.

. From a curve ć depĭ u < v, ĭere are ℓ ĝogenies going down to ℓ curves ć depĭ u+1,
unless u = 0 in which cĆeĭere are ℓ−1, ℓ, or ℓ+1whenD ĝ reġeĊively a square, zero,
or a non-square modulo ℓ.

. From a curve ć depĭ 0, ĭere are two ĝogenies going to curves ć depĭ 0 whenD ĝ a
square modulo ℓ, and one whenD ĝ divĝible by ℓ.

Again, Figure  is likely worth the above words: it diėlays one conneĆed component of
the graph that we discussed; note that by the proposition and results of complex multiplica-
tion theory, all conneĆed components of this graph are isomorphic.

ăe algorithm of K () computes the endomorphism ring of an ordinary curve
E by determining the valuation of its conduĆor at certain primes ℓ, for which it probes the
location of E in the graph struĆure that we have just described.

ăis relies on the vertical struĆure of this graph being that of trees rooted on the (pos-
sibly degenerated) cycle of curves with locally maximal endomorphism rings. Note that this
struĆure is lost in higher dimension, as we will later see.
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K’ A

K () introduced many ideas and results related to the computation of endo-
morphism rings of elliptic curves over đnite đelds. Let us just describe two of them which
lead to his deterministic algorithm for computing the endomorphism ring End(E ) of an or-
dinary elliptic curve E over Fq in time q1/3+ε.

ăe đrst idea direĆly exploits the struĆure of the volcano discussed above: the valuation
of the conduĆor of End(E ) at some prime ℓ can be found by determining on which level of
the graph of degree-ℓ isogeniesE lies. To this extent, compute three chains of degree-ℓ isoge-
nies starting fromE ; one chain necessarily descends to levels of higher depth, and eventually
hits a leaf, that is, a curve with depth v fromwhich no isogeny leaves but the dual of that with
which we arrived. ăe set of leaves is called the ęoor of rćionality; its curves only have one
rational subgroup of order ℓ (whence the expression), and the ℓ remaining subgroups deđne
isogenies over an extension of the base đeld. ăis gives the following algorithm.

Algorithm ...
I: An ordinary eğiptic curve E/Fq.

O: ąe conduĊor of its endomorphĝm ring.
. Count ĭe points of E and deduce its complex multiplicćion ĖeldK.
. For each prime ℓ dividing [OK :Z[π]]:
. Compute ĭree curves ℓ-ĝogenoĮ to E .
. Keep walking a non-backward chain of ℓ-ĝogenies Ěom each.
. Denote by uℓ ĭe lengĭ of ĭe chain ĭć ends Ėrst.
. Rċurn [OK :Z[π]]/∏ℓuℓ .

By non-backward, we mean that we avoid duals of isogenies already computed. ăe đrst
step uses polynomially many operations in log(q). Each isogeny can then be computed in
time ℓ2+o(1) using the independent improvement of D () and K (),
SeĆion ., on the formulas of V (); this process will be detailed in the next chapter.
Since ℓ can be as large aspq, the overall complexity is only bounded by q1+o(1).

ăe second idea then comes to the rescue by trading off vertical isogenies for horizontal
ones; the concise presentation below is largely inėired by a talk of K ().

Recall from complex multiplication theory that there are exaĆly #Pic(O ) curves with
endomorphism ringO , and that they form a conneĆed component of the horizontal isogeny
graph. ăerefore, when ℓ is large, the value of uℓ can be tested by comparing the class number
of the order O with valuation uℓ to the number of curves in the horizontal isogeny compo-
nent. Formally, this gives the algorithm below.
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Algorithm ...
I: An ordinary eğiptic curve E/Fq.

O: ąe conduĊor of its endomorphĝm ring.
. Count ĭe points of E and deduce its complex multiplicćion ĖeldK.
. For each prime-power faĊor ℓv B q1/6 of [OK :Z[π]]:
. Apply ĭe former algoriĭm.
. For each prime-power faĊor ℓv > q1/6 of [OK :Z[π]]:
. Count ĭe number of curves having horizonĬl ĝogenies to E .
. Dċermine ĭe order whose clĆs group mćches.

ăe horizontal isogenies of Step  can be construĆed as chains of isogenies of degree up
to 12 log2Δ, where Δ = disc(K), by ăeorem ... In addition, not the whole horizontal
isogeny class need be enumerated: it is sufficient to compute enough of it so as to rule out
other orders with smaller class number.

K () concludes that:

ăeorem .. (GRH). For any real number ε > 0, endomorphĝm rings of ordinary eğiptic
curves can be computed in dċerminĝtic time q1/3+ε.

. Higher Dimension

Before presenting methods for computing endomorphism rings in arbitrary dimension,
let us describe more of the struĆure of isogeny graphs. We start by formalizing the localiza-
tion of the lattice of orders at a prime; this isolates a subgraph of the correėonding isogeny
graph struĆure. ăen, we move on to describing those ėeciđc aėeĆs of the isogeny graph
which differ from dimension one to dimension two and more.

L O S

Fix a number đeld K and consider the lattice L of orders O that contain a prescribed
minimal order m, which will be Z[π,π] in our applications. ăe index of any such order in
themaximal orderM = OK then obviously divides w = [M :m].

Now if ℓ is a prime faĆor of w, we can localize the lattice of orders via the map

L ¹→ Lℓ = {O � L : [M : O ] | ℓ∞}
O 7¹→ Oℓ = O +mℓ

where mℓ is the smallest order of the codomain, that is, the smallest order with index in
M a power of ℓ. ăis projeĆs O onto the maximal orderM locally at all primes but ℓ, thus
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isolating the local information at ℓ. ăis information can be recombined by the isomorphism

L A

∏
ℓ Lℓ

O 7¹→ O +mℓ∩
ℓOℓ 7¹→ (Oℓ)

which can be evaluated in time polynomial in log |Δ|, where Δ = disc(m), using the classical
algorithms from Chapter .

For us, K is the complex multiplication đeld of an ordinary abelian varietyA over a
đnite đeld, andm = Z[π,π]. We will oĖen say that we consider the endomorphism ring of
A locağy ć ℓ to mean that we consider the localization End(A )ℓ; by the above, knowing
End(A )ℓ for each prime faĆor ℓ of w is sufficient to identify End(A ) exaĆly.

Since isogenies of degree ℓn can only move endomorphism rings by distances that are
powers of ℓ, the endomorphism rings of abelian varieties in a conneĆed degree-ℓ vertical
isogeny class are injeĆively projeĆed to Lℓ. ăerefore, for the purpose of identifying the
endomorphism ring using vertical isogenies, those of degree ℓ can be considered one prime
ℓ at a time.

In dimension one, K is an imaginary quadratic đeld in which orders are uniquely identi-
đed by their index in OK. ăe local lattice Lℓ is then the chain

OK ⊃Z+ ℓOK ⊃Z+ ℓ2OK ⊃ · · · ⊃Z+ ℓvalℓ wOK.
Consequently, it is really worthwhile for many algorithms dealing with imaginary quadratic
orders to work locally, so as to beneđt from this simple struĆure: this usually yields concep-
tually simpler algorithms. However, from dimension two on, the local lattice is not a tree
but a general lattice itself, so it makes no conceptual difference whether one works locally or
not, although it is advantageous for performance reasons.

L I S

Let us now brieĔy present the major differences between the degree-ℓ isogeny graph
struĆure for elliptic curves and for higher-dimensional abelian varieties. Part of the last
chapter will be devoted to giving details and results of computations on these aėeĆs.

LetO be the endomorphism ring of an ordinary elliptic curve deđned over a đnite đeld.
ăe distinĆive look of its isogeny volcanoes stems from two properties:

– Rational primes ℓ ėlit in at most two ideals of O .
– Ideals of prime norm dividing the index [OK : O ] are not invertible in O .
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F . Graph of isogenies of type (Z/3)2 containing the Jacobian variety of the curve
y2 = 8x6+3x5+7x4+5x3+12x2+5x+5 over the đeld with 23 elements. Red circle varieties
havemaximal endomorphism ring, and blue triangle ones have index 9 in themaximal order.

By the theory of complex multiplication, the đrst property implies that elliptic curves
with locally maximal endomorphism ring lie on (possibly degenerated) circles: the crćer of
the volcano. When the prime ℓ is inert, these circles degenerate into single vertices; when
it ėlits as pp, then each circle has length the order of p in Pic(O ). ăe second property
implies that there are no horizontal isogenies of prime degree between elliptic curves with
locally non-maximal endomorphism rings, that is, other than at the crater of the volcano.

Both properties are lost in higher dimension; indeed, if O is an order in a complex mul-
tiplication đeld of degree 2g for g > 1, then:

– Rational primes ℓ can ėlit in up to 2g ideals of O .
– Ideals of prime norm not coprime to the index [OK : O ] may be invertible in O .
ăis implies that horizontal degree-ℓ isogenies between varieties with locally maximal

endomorphism rings now have a slightly more involved struĆure than a cycle, and that they
might also exit other than at the top of the volcano. Both features are diėlayed on Figure .

We shall say more on this topic in the last chapter. In the meantime, the reader should
not bemisled into thinking that all higher dimensional local isogeny graphs portray the same
struĆure as this ėeciđc one; however, this gives an idea why generalizing the algorithm of
K () for computing endomorphism rings cannot be done straightforwardly.
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P  T S

Although endomorphism rings of higher-dimensional abelian varieties cannot be deter-
mined by their vertical isogeny graph struĆure alone, other struĆures can be involved in a
hope to adapt the method of K () to this generalized setting.

I and J () recently gave a method for đnding subgroups of order ℓ in
ordinary elliptic curves over đnite đelds that are kernels of ascending or horizontal isogenies,
meaning that they lead to curves with larger (or equal) endomorphism rings. Essentially,
they exploit the relationshipbetween the rational ℓ∞-torsion subgroupstruĆureof an elliptic
curve and the valuation at ℓ of its endomorphismring. Toobtain the subgroupstruĆure, they
rely on pairing computations and on the algorithm of C () for computing
the torsion, which will be discussed in the next seĆion.

ăis permits one to navigate in the volcano not just blindly relying on the tree struĆure
of vertical isogenies, but with “some sense of orientation.” Since we believe their method
should be, to some extent, applicable to higher dimension varieties, we brieĔy present it.

A theorem of L () states the following.

ăeorem ... Lċ π be ĭe FrobeniĮ endomorphĝm of an ordinary eğiptic curve E deĖned
over Fq and put O = End(E ). ąe O -modules E (Fqn) and O /(πn− 1) are ĝomorphic.

Since O is a quadratic order, the group struĆure of the elliptic curve E (Fq) is therefore
of the form Z/N0 ×Z/N1 where N0 | N1. In particular, its ℓ

∞-torsion subgroup struĆure
is of the form Z/ℓα0 ×Z/ℓα1 and I and J () derive explicit formulas for the
integers α0 and α1 which show that they only depend on the valuation at ℓ of the conduĆor
of End(E ).

To give an example of theėeciđcway inwhichα0 andα1 are affeĆedby vertical isogenies,
let us reproduce Proposition  of I and J ().

Proposition ... Lċ E be an eğiptic curve of rćional ℓ∞-torsion subgroup Z/ℓα0 ×Z/ℓα1
wiĭ α1 > α0. If P ĝ a point of order ℓα0 , ĭen ĭe ĝogeny wiĭ kernel generćed by ℓα0−1P ĝ
descending.

ăe computational ingredients are simple: we will present a torsion-đnding method in
the next chapter, as it is needed in our own algorithms, and pairing evaluations are used to
test relations between the order of ℓ∞-torsion points. ăerefore, we believe this method has
a good potential of being generalized to higher dimension, at least partially.

Since it is based on vertical isogenies, this approach is probably not best suited to com-
puting endomorphism rings, as we argue below. Nevertheless, it has other interesting appli-
cations which can be found in the original article.
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L  V I

Isogeny computation is currently a topic in aĆive development for abelian varieties of
dimension g > 1. ăe state-of-the-art algorithm of C and R () can only
compute isogenies of type (Z/ℓ)g and requires the prime ℓ to be reasonably small: although
the asymptotic complexity is polynomial in ℓ and exponential in g, the constant faĆors and
exponents are such that only amuchmore restriĆed range of isogenies can be computed than
in dimension one.

We have argued before that vertical isogenies have constrained degrees; if certain iso-
genies are not within reach of known isogeny-computing methods, then their local vertical
isogeny volcano is simply not computable. AĖer our review of previous methods, the next
chapter will present an algorithm which addresses this issue by relying on horizontal isoge-
nies, whose degrees can be chosen with much more Ĕexibility.

Another obstruĆion arises from the type of the isogenies that can be evaluated: consider
a chain of orders

OK = O1 ⊃ · · · ⊃ Ov =Z[π,π]
where each order is contained in the following one with prime order ℓ; this is a simple case,
as we have mentioned that there are others for g > 1, but it suffices to make our point.

W () proved the existence of abelian varietiesAi with endomorphism
ringOi and T () proved that there exist isogenies between all of theAi; the degrees
of these isogenies are necessarily powers of ℓ.

However, the kernels of these isogenies need not be of type (Z/ℓ)g or a combination of
such subgroups. In other words, in dimension g, we might “skip” up to g− 1 orders when
computing vertical isogenies. In the case that g = 2, for instance, starting from an abelian
variety with endomorphism ring O0 and following isogenies of type (Z/ℓ)2 we might only
reach abelian varieties with endomorphism ring Oi for i even, and fail to reach those with i
odd. ăe last chapter will give several examples illustrating this.

. General Methods

Two methods were previously known for computing endomorphism rings of general
abelian varietiesA deđned over đnite đelds. Both test whether elements α of the complex
multiplication đeld K =Q(π) correėond to endomorphisms ofA ; doing so for generating
sets of orders permits one to eventually recover the full endomorphism ring.

To đnd whether α � End(A ), the method of E and L () tests
if some easy-to-evaluate multiple nα kills the full n torsion subgroup ofA .
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Recently,W () designed a newmethodwhich can loosely be understood as a
Chinese remainder theorem variant of the latter: to determine whether α � End(A ), it tries
to interpolate the potential correėonding endomorphism over small torsion subgroups.

E E

LetA be a simple ordinary principally polarized abelian variety deđned over the đeld
with q elements. Since the endomorphism ring ofA always contains the order Z[π,π], let
us explain how the aĆion onA of an endomorphism α of this subring can be evaluated.

Evaluating the Frobenius endomorphism π is straightforward: it suffices to put the coor-
dinates of a point to the qth power, which, using a double-and-add approach, only requires a
number of base đeld multiplications that is polynomial in log(q). On the other hand, evalu-
ating the Verschiebung endomorphism π = q/π is more involved but can be avoided, unless
p divides the conduĆor ofZ[π,π] where p is the prime of which q is a power.

Since K =Q(π), any element α �K can be written as a rational polynomial in the Frobe-
nius endomorphism π: if 2g is the degree of the đeld, there exist an integer n and integers αi
for i � {0,… ,2g− 1} such that

α =
1

n

∑
i
αiπ

i.

Computing α therefore amounts to evaluating the Frobenius endomorphism, scalar multi-
plications, endomorphism compositions, and one division. Note that division by n is easily
computed on torsion subgroups ofA of order coprime to n: simply multiply by the inverse
of nmodulo the order. Subgroups of order not coprime to n will soon be addressed.

In the following, α will always be an algebraic integer of K, and we assume this from now
on. Put w′ = [OK : Z[π]]; as a group, 1

w′Z[π] then contains OK. ăerefore, α can be written
in the form above for some integer n dividingw′. And this is in faĆ always the case when the
above expression is reduced, meaning that gcd(αi,n) = 1.

Recall from Lemma .. that w′/w = [Z[π,π] : Z[π]] = qg(g−1)/2 where w = [OK :
Z[π,π]] as before. As a consequence, the prime faĆors of the denominator n are those of w
(that is, the degrees of vertical isogenies) plus, possibly, q.

T E–LM

Wenow present themethod of E and L (); it was đrst targeted
at testingwhether endomorphism rings of abelian varieties over đnite đelds aremaximal, but
it applies to other orders as well. It relies on Corollary  which reads as follows.
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Proposition ... LċA be an abelian variċy deĖned over an algebraicağy closed Ėeld. If α
ĝan endomorphĝmofA andnĝ coprime toĭe ambient charaĊerĝtic,ĭenA [n]⊂ ker(α) if
and only if α/n � End(A ), ĭćĝ, ifĭere exĝts an endomorphĝm β suchĭć α = n◦β = β◦n.

In other words, the endomorphism correėonding to the algebraic integer α kills the full
n-torsion subgroup if and only if α/n belongs to the endomorphism ring.

As we have mentioned before, whenA is ordinary, assuming the base đeld to be alge-
braically closed does not affeĆ the endomorphism ring; it only demands that we compute
the full n-torsion ofA , possibly over an extension of the aĆual (đnite) base đeld.

Consequently, an order O of the complex multiplication đeld K ofA can be tested to
be contained in End(A ) by computing a generating set for O , writing its elements α in the
form 1

n
∑

i αiπ
i, and testing whether

∑
i αiπ

i kills the full n-torsion ofA for all such α. A
module basis for O has cardinality 2g, but since Z is contained in both O and Z[π], only
2g−1 tests are really required; furthermore, as only an algebra basis is required, much fewer
elements aĆually need to be tested.

ăe proposition requires denominators n to be coprime to the order q of the base đeld.
When the index [OK : Z[π,π]] is coprime to q, this can always be made the case: since the
index ofZ[π,π,qα] inZ[π,π, α] divides q and both orders containZ[π,π], this indexmustbe
one, which means that qα and α belong exaĆly to the same orders above Z[π,π]; therefore,
the faĆor of n divisible by a power of q can simply be dropped.

ăis method is suited to local computations: similarly to what we did above, if ℓ is a
prime, one can show that End(A )ℓ = Oℓ can be determined only using elements whose
denominators are powers of ℓ. We will later rely on this local version to determine the endo-
morphism ring locally at small primes ℓ where our own algorithm fails to compute it.

When g is đxed andwework over base đelds of increasing prime cardinality q, it becomes
increasingly rare for q to divide the index Z[π,π], although this can be seen to happen. In
those cases where we want to determine the endomorphism ring locally at a large prime, the
present method is probably not the best suited in the đrst place.

Twobuilding blocks remain tobe explained: computing the full ℓ-torsion, and efficiently
đnding the endomorphism ring by testing whether O ⊆ End(A ) for chosen orders O ; al-
gorithms for both will be described and analyzed in the next chapter. When g is đxed and q
goes to inđnity, we deduce that the worst-case overall complexity of this method is

ℓ2g+o(1) log2+o(1) q where ℓ = qg2/2+o(1).

Note that in the case that we only wish to test whether End(A ) is maximal, F
and L () subsequently improved this method using ėeciđc probabilistic tests.
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C  E

Let us now brieĔy introduce elements of the theory of correėondences as background
material for the work ofW (), which will be discussed below.

Firstdeđne a funĊionĖeldKover k (whichwewriteK/k) as a đnitely generated extension
of transcendence degree one. In Chapter , we saw that funĆion đelds arise from algebraic
varieties, but here we will work with them abstraĆly. For details on the following, we refer
to Chapter  of the colleĆion of leĆures by D ().

Deđnition ... Lċ K/k be a funĊion Ėeld, and K′/k an extension Ėeld. ąere exĝts a
funĊion Ėeld L/l such ĭć L conĬinsK, l∩K = k, and L ĝĭe composite extension ofK and a
subĖeld of l ĭć ĝ k-ĝomorphic toK′.

ąe funĊion Ėeld L/l ĝ cağed ĭe constant đeld extension ofK/k byK′/k.

D () introduced correġondences as ideals of maximal orders of funĆion
đelds L/l, up to both principal ideals and constant ideals, that is, ideals with nontrivial inter-
seĆion with l. When L is the constant đeld extension of a funĆion đeld k(C )/k by another
k(C ′)/k whereC andC ′ are two algebraic curves deđned over a đnite đeld k, he showed
that correėondence classes represent isogenies from the Jacobian variety ofC to that ofC ′.

In the particular case thatC =C ′, this gives a bijeĆion
C : End(JacC )

~¹→{correėondence classes} = I(OL)/ ~
which is compatible with the ring struĆure in the sense that for all endomorphisms α and β
we have C(α + β) = C(α) · C(β), and similarly there exists a computational way of deriving
the composition C(α ◦ β) from C(α) and C(β).

For instance, correėondences representing the Frobenius endomorphism π, the Ver-
schiebung endomorphism π, and the identity I are easily obtained; multiplication-by-n is
then represented by C(I)n, and so on.

Finally, and this is maybe the most crucial point for what follows, the aĆion of a corre-
ėondence on a point, that is, that of the endomorphism it represents can be evaluated simply
in terms of elementary funĆion đeld operations.

W’ A

To determine whether some prescribed algebraic number ofQ⊗End(JacC ) represents
an endomorphism, start as before by writing it as an element α �Z[π] divided by some inte-
gern; the correėondence classC(α) is easily computed fromC(π), so it remains to determine
whether it can be divided by n.
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ăemain idea ofW () is to interpolate the hypothetical correėondence class
C(α/n) over a set of small-torsion points: let Pi be a point of Jac(C ) of ordermi; if it exists,
C(α/n) should aĆ as

Pi 7¹→ (n−1 modmi)C(α)(Pi);

and we can write equations asserting that a formal correėondence class D aĆs this way.
W () gives an upper bound on the number of points Pi required to completely
charaĆerize the aĆion of α/n, that is, ensuring that if the system admits a solution D, then
we must have D = C(α/n), and as a consequence α/n � End(JacC ).

He exhibits correėondence class representatives which are compatible with the above
operations and therefore allow efficient correėondence class computations. ăese repre-
sentatives are written in Hermite normal form and are almost entirely determined by their
norms due to the restriĆive conditions required for being a representative.

ăerefore, W () focuses on interpolćing ĭe norm, which is of the form

NL/k(C )(C(α/n)) = xl +
l−1∑
i=0

fi
gi
xi

for some degree l B g, where the indeterminates fi and gi are polynomials of bounded degree
with coefficients in k(C ); see “Abschätzung der Grade der Polynome in x2” in SeĆion .
on page .

ăe whole procedure is summarized in “Algorithmus : Approximation” of the same
seĆion on page . ăat algorithm takes as input aZ-basis β of an order O of which C(β)
is known, an element α of some order O , and an integer n; if α/n is an endomorphism, it
returns a correėondence representing it, or returns false otherwise.

As we will describe in the next chapter, being able to test whether prescribed orders O
are contained in the endomorphism ring suffices to determine it in a polynomial number of
steps in the size of the base đeld.

A short analysis of the method can be found in SeĆion .; in brief, the degree of the
norm of α/n is polynomial in n and it thus requires interpolating a number of points which
is polynomial in n. In the worst case, the overall algorithm therefore uses exponential time
in the size of the base đeld.

Nevertheless, it has the interesting feature that, as n grows, testing whether α/n is an en-
domorphism becomes easier; indeed, the size of the hypothetical correėondence represent-
ing it then gets smaller, so a shorter system of equations can be used. Note that all methods
we have previously seen showed the reverse phenomenon.
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. Supersingular Methods

For the sake of completeness, let us address the case of supersingular elliptic curves in this
seĆion (and this seĆion only). Knownmethods for computing endomorphism rings of such
curves all have an exponential asymptotic running time in the size of the base đeld; however,
contrary to the ordinary case, we are quite pessimistic about the possibilities of improvement.

In addition to themethods presented here, we note thatK () has an algorithm
that gives some information on the endomorphism ring of supersingular curves which suf-
đces to determine it only in ėeciđc cases; however, we are unaware of further developments
of this technique.

I S C

Weđrst present background results on supersingular elliptic curves, their isogeny classes,
and their endomorphism rings. Most results originate fromD ().

Recall that an elliptic curveE deđned over a đnite đeld of charaĆeristic p is supersingular
when it has no p-torsion. As a meager compensation for the troubles ahead, we have:

Proposition ... Up to ĝomorphĝm, every supersingular eğiptic curve deĖned over a Ėnite
Ėeld of charaĊerĝtic p ĝ deĖned over Fp2 .

As a consequence, it is simple to enumerate all such isomorphism classes. Endomor-
phism rings of supersingular curves can similarly be enumerated simply.

Proposition ... Endomorphĝm rings of supersingular curves correġond bĞeĊively tomax-
imal orders ofQp,∞, ĭe qućernion algebra ramiĖed only ć p and∞. Two such curves deĖned
overFp2 haveĭe same endomorphĝm ring if and only if ĭey are conjugće underGal(Fp2/Fp).

ăis is why we are sceptical as to the possibilities of substantial improvements on the
computation of endomorphism rings in this case: since all orders are maximal, and there are
exponentiallymany of them, there seems to be noway around considering each, one at a time.
Althoughwe have not yet presented ourmethodwhich exploits the struĆure of the lattice of
orders in the ordinary case, the localization that we have described earlier (andwhich suffices
in dimension one) should convince the reader of the beneđt of having such a struĆure.

As for ordinary curves, there is a theory of complex multiplication; however, care must
be taken due to its non-commutativity.

Proposition ... Fix a supersingular curve E . For any leĜ ideal a of End(E ) coprime to p,
ĭe degree of ĭe ĝogeny φa wiĭ kernel ker(φa) = ∩α�a ker(α) ĝ ĭe norm of a; ağ ĝogenies
bċween supersingular curves arĝe in ĭĝ way.
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If E ′ = φa(E ), ĭen End(E ′) ĝ ĭe right order of a, ĭć ĝ, {x � Qp,∞ : ax ⊂ a}. If
additionağy E ′′ = φb(E ), ĭe curves E ′ and E ′′ are ĝomorphic if and only if a and b are in ĭe
same leĜ ideal clĆs.

Much more can be said on the struĆure of this isogeny graph: for instance, when p =
1 mod 12, it is a Ramanujan graph, a particular case of expander graph with desirable prop-
erties, such asmixing properties for randomwalks, whichmakes it notably a suitable building
block for a hash funĆion, as was proposed by C, L, and G ().

õ A

To give the above an effeĆive Ĕavor, let us brieĔy recall various results related to the
struĆure of quaternion algebras.

ăe struĆure of the quaternion algebraQp,∞ is readily given by a result of P ()
which states that

Qp,∞ AQ[i, j,k]/(i2− a, j2− b, ij+ ji, ij− k),

for (a,b) =


(−1,−1) if p = 2,
(−1,−p) if p = 3 mod 4,
(−2,−p) if p = 5 mod 8,
(−p,−q) if p = 1 mod 8,

where q can be any prime congruent to three modulo four, modulo which p is not a square.

To enumeratemaximal orders of this algebra, we can exploit the proposition abovewhich
states that the isogeny graph is conneĆed. ăerefore, if O is any maximal order ofQp,∞ and
a ranges through representatives of each leĖ ideal class ofO , then the right order of a ranges
through all maximal orders of the quaternion algebraQp,∞.

TMM–LM

To đnd out whichėeciđc maximal order ofQp,∞ is isomorphic to End(E ), MM
and L () proposed to

– count the number of endomorphisms of E of degree ℓ;

– compare it to the number of elements of O of norm ℓ.

By the proposition we saw earlier, isogenies correėond to ideals, and endomorphisms
correėond to principal ideals. ăerefore, when O is the particular order isomorphic to
End(E ), the two numbers must be equal.
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Repeating the above for various primes ℓ different from the charaĆeristic rules out orders
O from the candidate list, so that eventually the endomorphism ring alone remains. ăis
formally proceeds as the following procedure.

Algorithm ...
I: A supersingular eğiptic curve E/Fp2 .

O: An order ĝomorphic to its endomorphĝm ring.
. Lċ L be ĭe lĝt of maximal orders ofQp,∞.
. Until L ĝ a singlċon:
. Pick a prime ℓ, and count ĭe degree-ℓ endomorphĝms of E .
. Rule out orders of L wiĭ a different count of elements of norm ℓ.
. Rċurn ĭe only element in L.

For Step MM and L () derive an explicit method in SeĆion .; it
boils down to đnding integer solutions of a quadratic equation.

ăis procedure behaves quite well in praĆice: its bottleneck is the enumeration of iso-
genies of degree ℓ from E to E ; MM and L () give explicit formulas for
ℓ = 2 and ℓ = 3, and the isogeny-computing machinery for elliptic curves is nowadays at a
stage of development where such operations can be performed quickly for a large range of ℓ.

However, westress that its termination is not guaranteed, as two distinĆmaximal orders
ofQp,∞ might have the same number of ideals of norm ℓ for inđnitely many primes ℓ.

C’ A

Although testing the norm of ideals alone is not sufficient to guarantee the termination
of the endomorphism-ring identifying process, C () observed in his Proposi-
tion . that considering both the norm and the trace yields a sufficient amount of informa-
tion aĖer đnitely many tests. More precisely, he proved the following.

Proposition ... No two maximal orders of ĭe qućernion algebraQp,∞ have ĭe same sċ��
tr(α),N(α)

�
: α � O ,N(α) B b

	
where b ĝ a cerĬin bound which ĝO(p).

ăe norm and trace of such numbers map to the norm and trace of the charaĆeristic
polynomial of the correėonding endomorphism: we have

φ(2)
a
− tr(φa)φa +N(φa) = 0
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since the degree (or norm) of an isogeny is always known (as we construĆ them from their
kernels), the trace of φ can be found by testing the possible values in turn over a sufficiently
large extension of the base đeld.

ăis gives the following algorithm.

Algorithm ...
I: A supersingular eğiptic curve E/Fp2 .

O: An order ĝomorphic to its endomorphĝm ring.
. Lċ L be ĭe lĝt of maximal orders ofQp,∞.
. For successive primes ℓ, starting Ěom ℓ = 2:
. Compute ĭe multĝċ I = {tr(φ)},

where φ ranges over degree-ℓ endomorphĝms of E .
. Rule out Ěom Lĭose orders O for which I ≠ {tr(β)}

where β ranges over ĭe elements of norm ℓ in O .
. Rċurn ĭe only element in L.

By the proposition above, this algorithm terminates aĖerO(p) operations. Nevertheless,
since computing the trace of the endomorphisms is extremely costly, the former procedure is
more suited to a large range of praĆical problems, although it is not guaranteed to terminate.

References

. Max D.
“Arithmetischeăeorie der Korreėondenzen algebraischer Funktionenkörper”.
In: Journal für die reine und angewandte Mćhemćik .. Pages –.
DOI: 10.1515/crll.1937.177.161.

. Max D.
“Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”.
In: Abhandlungen aĮ demmćhemćĝchen Seminar der hamburgĝchen Universität
. Pages –.

. John T.
“Endomorphisms of abelian varieties over đnite đelds”.
In: InĂentiones mćhemćicae .. Pages –. DOI: 10.1007/BF01404549.

. William C.W.
“Abelian varieties over đnite đelds”.
In: Annales ScientiĖques de l’École Normale Supérieure .. Pages –.

http://dx.doi.org/10.1515/crll.1937.177.161
http://dx.doi.org/10.1007/BF01404549


  

. Jacques V.
“Isogénies entre courbes elliptiques”.
In: Comptes RendĮ de l’Académie des Sciences de Parĝ.A . Pages –.

. Max D.
LeĊures on ĭeąeory of Algebraic FunĊions of One Variable. Volume .
LeĆure Notes in Mathematics. Springer. ISBN: ---.

. Arnold P.
“An algorithm for computing modular forms on Γ0(N)”.
In: Journal of Algebra .. Pages –.
DOI: 10.1016/0021-8693(80)90151-9.

. Laurent D.
Un coroğaire aux formules de Vélu. Preprint.

. David R. K.
“Endomorphism rings of elliptic curves over đnite đelds”.
PhD thesis. University of California at Berkeley.
URL: http://echidna.maths.usyd.edu.au/kohel/pub/thesis.pdf.

. HendrikW. L.
“Complex multiplication struĆure of elliptic curves”.
In: Journal of Numberąeory .. Pages –.
DOI: 10.1006/jnth.1996.0015.

. Mireille FĿ and François M.
“Isogeny volcanoes and the SEA algorithm”.
In: Algoriĭmic Numberąeory— ANTS-V.
Edited by Claus F and David R. K. Volume .
LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/3-540-45455-1_23.

. JuanM. C.
Onĭe correġondence bċween supersingular eğiptic curves and maximal qućernionic
orders. arXiv.org: math/0404538.

. KenMM and Kristin E. L.
“Explicit generators for endomorphism rings of supersingular elliptic curves”.
In:Numberąeory Conference in Honor of Harold SĬrk.University of Minnesota.

. David M. F and Kristin E. L.
“Computing endomorphism rings of Jacobians of genus  curves over đnite đelds”.
In: Algebraic Geomċry and its Applicćions— SAGA ’.

http://dx.doi.org/10.1016/0021-8693(80)90151-9
http://echidna.maths.usyd.edu.au/kohel/pub/thesis.pdf
http://dx.doi.org/10.1006/jnth.1996.0015
http://dx.doi.org/10.1007/3-540-45455-1_23
http://arxiv.org/abs/math/0404538


..   

Edited by Jean C, James H, and Robert R. Volume .
Numberăeory and Its Applications. World Scientiđc. Pages –.
DOI: 10.1142/9789812793430_0002.

. Denis X. C, Kristin E. L, and Eyal Z. G.
“Cryptographic hash funĆions from expander graphs”.
In: Journal of Cryptology .. Pages –.
DOI: 10.1007/s00145-007-9002-x.

. Jean-Marc C.
“Linearizing torsion classes in the Picard group of algebraic curves over đnite đelds”.
In: Journal of Algebra .. Pages –.
DOI: 10.1016/j.jalgebra.2008.09.032.

. Kirsten E and Kristin E. L.
“A CRT algorithm for construĆing genus  curves over đnite đelds”.
In: Ariĭmċic, Geomċry and Codingąeory— AGCT ’.
Edited by François R and Serge V. Volume . Séminaires et Congrès.
Société Mathématique de France. Pages –.

. MarkusW.
“Über Korreėondenzen zwischen algebraischen Funktionenkörper”.
PhD thesis. Technische Universität Berlin.
URL: http://www.math.tu-berlin.de/~wagner/Diss.pdf.

. Sorina I and Antoine J.
“Pairing the volcano”. In: Algoriĭmic Numberąeory— ANTS-IX.
Edited by Guillaume H, François M, and Emmanuel T.
Volume . LeĆure Notes in Computer Science. Springer. Pages –.
DOI: 10.1007/978-3-642-14518-6_18.

. David R. K.
“Endomorphisms, isogeny graphs, and moduli”.
In:Workshop on Eğiptic Curves and CompuĬtion— ECC ’.URL:
http://research.microsoft.com/apps/video/dl.aspx?id=140496.

. Romain C and Damien R.
Computing (ℓ, ℓ)-ĝogenies in polynomial time on Jacobians of genĮ  curves.
IACR ePrint: 2011/143.

http://dx.doi.org/10.1142/9789812793430_0002
http://dx.doi.org/10.1007/s00145-007-9002-x
http://dx.doi.org/10.1016/j.jalgebra.2008.09.032
http://www.math.tu-berlin.de/~wagner/Diss.pdf
http://dx.doi.org/10.1007/978-3-642-14518-6_18
http://research.microsoft.com/apps/video/dl.aspx?id=140496
http://eprint.iacr.org/2011/143






Źubexponentialųċhod

Wehave so far discussed endomorphism-ring computationmethodswith an exponential
worst-case runtime, and will now present one of subexponential complexity.

ăis method was đrst introduced in B. and S () under a form quite
ėeciđc to elliptic curves, and relying on several unproven assumptions. All assumptions but
the GRH were later removed in B. () by modifying parts of the algorithm. Here, we
present a variant of this algorithm which applies to general abelian varieties.

We stress that this chapter considers abelian varieties without taking polarizations into
account, which is not an effeĆive approach in dimension g > 1, but allows for a conceptually
simpler presentation. For g = 1, where polarizations are unneeded, it is highly effeĆive, and
the next chapter will be devoted to rigorously proving its probabilistic runtime under the
generalized Riemann hypothesis, and its unconditional correĆness.

Modiđcations that make our method praĆical for g = 2 will be presented in the last
chapter; they are expeĆedly slower and rely on more unproven hypotheses.

. Algorithm Overview

LetA be a simple ordinary abelian variety deđned over a đnite đeld; denote by K its
complex multiplication đeld and đx an isomorphism ι : K→ Q⊗ End(A ), which will be
implicitly understood from now on.

To locate End(A ) amongst candidate orders of K, the main idea to our subexponential
method is to compute certain properties describing the Picard groups of candidate orders,
and to test them via complex multiplication in the horizontal isogeny graph. Since there
exist subexponential algorithms for computing Picard groups we are done... Almost so.

We now give the main ingredients enabling this approach. Computational details are
given in subsequent seĆions, while proofs and rigorous analysis are in the next chapter.





  

L  O

Let us đrstbrieĔy recall results that expresswhere the endomorphism ring is to be sought.

LetA be a simple ordinary abelian variety of dimension g deđned over a đnite đeld
with q elements. ăe Frobenius endomorphism π aĆs on geometric points ofA by raising
their coordinates to the qth power; its charaĆeristic polynomial χπ(x) is a q-Weil polynomial,
which means that it is monic, has integer coefficients, and has 2g complex roots, each of
absolute valuepq.

Computing this polynomial is equivalent to counting thenumberof points on the variety
over Fqn for n � {1,2,… , g}, as we have

#A (Fqn) = Resu
�
χπ(u),u

n− 1
�
.

S () proved that that this can be done in deterministic polynomial time in log(q)
for elliptic curves; his algorithm was later generalized to abelian varieties by P ().

Many endomorphisms stem from the Frobenius endomorphism, sinceQ⊗End(A ) A
Q(π). Since the complex multiplication đeld K = Q(π) is isomorphic toQ[x]/(χπ(x)), by
computing theWeil polynomial ofA we have already determined the endomorphism ring
up to ĚaĊions. Fixing ι : K→Q⊗End(A ) means đxing this isomorphism; here, we simply
put x = π and make this implicit from now on.

ăis isomorphism maps End(A ) to an order in K so we have

Z[π,π]⊂ End(A )⊂OK;
the index [OK : Z[π,π]] is the square part of the quotient disc(Z[π,π])/disc(OK), and it
measures how broad the search-range is. As a simple upper bound, we use Δ = disc(Z[π,π])
which Lemma .. proved can be as big as qg2/2+o(1) in the worst case.

ăe orders of K containing Z[π,π] form the lćtice of orders. Since it might contain
exponentially many orders, we need to devise a better way of đnding End(A ) than testing
each order in turn. Computing End(A ) locally at many primes ℓ helps, but is not sufficient
since (apart from the case that g = 1) the local lattices themselves might not have any nicer
struĆure than the general one.

Instead of localizing, we use a lattice-ascending algorithm designed to only test polyno-
mially many orders. For those orders O , it tests whether O ⊂ End(A ) using tools derived
from complex multiplication theory.

P I  C

We exclusively consider ideals of norm coprime to Δ, so that they are unramiđed and
invertible in Z[π,π]. Recall that such ideals of O aĆ on the set AVO (k) of abelian varieties
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deđned over the đnite đeld k with endomorphism ring O by a : A 7→ φa(A ) where φa
denotes the isogeny with kernel

∩
α�a ker(α). We assume that this induces a faithful and

transitive aĆion of Pic(O ) on AVO (k); by complex multiplication theory, this is always the
case when O is an imaginary quadratic order, or a ring of integers.

Intuitively, the struĆure of the Picard group of End(A ) therefore diĆates that of the
horizontal isogeny graph component containingA . Our approach is essentially to look at
the latter and deduce information on the former, which might eventually lead to the identi-
đcation of End(A ). We formalize the notion of struĊure by the following concept.

Deđnition... An ideal a ofZ[π,π]ĝ said to be principal inO if ĭe ideal aO ĝ principal;
it ĝ said to be principal in the isogeny graph when ĭe ĝogeny φa ĝ an endomorphĝm ofA .

In faĆ, wemeant φaEnd(A ) rather than φa since we want it to aĆ onA even though a is
an ideal of Z[π,π]. Obviously, since we are looking for End(A ) we cannot really compute
aEnd(A ), but we will see later that φaEnd(A ) can be computed regardless.

ăerefore, an ideal is principal in End(A ) if and only if it is principal in the isogeny
graph, which gives a way to tell the endomorphism ring apart fromother orders of the lattice.
To avoid testing all orders, we rely on this simple result.

Lemma ... If an ideal ĝ principal in some order, it ĝ principal in ağ orders conĬining it.

Indeed, ifO ⊂O ′ are two orders containingZ[π,π], themap a � I(O ) 7→ aO ′ � I(O ′)
induces, as we have mentioned before, a surjeĆive morphism of Picard groups. Intuitively,
this means that more and more ideals become principal as we ascend the lattice of orders, or
equivalently that Picard groups get smaller. ăis is why we choseZ[π,π] to be the ring of our
ideals: via the morphism a 7→ aO we can map ideals ofZ[π,π] to any order of the lattice.

Computationally, the lemma above implies that by verifying whether principal ideals of
O are also principal in the isogeny graph, we can convince ourselves that O is contained in
End(A ). However, this approach does not prove anything (in faĆ, it fails in certain rare
cases that we will cover later); to rigorously assert the location of the endomorphism ring,
we use the following concept.

Deđnition ... A certiđcate for ĭe order O consĝts of:

– a family of orders Oi and ideals ai principal in Oi but not in O ,
– a family of orders Oj and ideals aj principal in O but not in Oj,

such ĭć O ĝ ĭe only order aboĂeZ[π,π] sćĝfying Oi ̸⊂ O and Oj ̸⊃ O for ağ indices.
It ĝ said to be veriđed on ĭe abelian variċyA if ĭe ideals aj are principal in its ĝogeny

graph whereĆĭe ai are not.
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If a certiđcate for the orderO is veriđed on the abelian varietyA , by the contrapositive
of the lemma above, then we have End(A ) = O . In faĆ, the family (Oi,ai) is effeĆively
construĆed when one executes the lattice-ascending walk that we are about to describe; the
family Oj is then typically chosen to consist of all orders immediately below O , that is, just
one level below O in the lattice of orders.

ăe next seĆion will address the search for ideals and, as a consequence, show that it
takes L(qg2)1/4γ+o(1) time to generate a certiđcate that can subsequently be veriđed within
L(qg2)3gγ+o(1) operations, as q goes to inđnity and γ is any positive constant real number. ăis
eliminates the need to carefully ensure the correĆness of our algorithm: we can simply run
an algorithm that is only proven to return a correĆ result with probability ε > 0 and, when
it does return a result, verify it using our certiđcate method; if it proves to be incorreĆ, we
start over. ăe expeĆed overhead on the complexity is 1/ε.

C  B

To search for the endomorphism ring End(A ) in the lattice of orders, we test whether
orders O lie below it by seleĆing principal ideals of them and checking whether they are
principal in the isogeny graph.

It remains to design a general strategy to seleĆ the orders to be tested.

We shall say that an order O lies direĆly above another O ′ if we have O ⊃O ′ but there
exists no order O ′′ different from O and O ′ satisfying O ⊃ O ′′ ⊃ O ′; we also deđne the
correėondingnotionof “direĆly below”where inclusions are reversed. As an example, when
an order contains another with prime index, then it must lie direĆly above it.

To ascend the lattice of orders, we proceed one step at a time: each step consists in enu-
merating all orders lying direĆly above a prescribed orderO ′. We have seen that the index of
O ′ in any order direĆly above it is a divisor of ℓ2g−1where ℓ is a prime faĆor of [OK :Z[π,π]].
By faĆoringΔwe therefore obtain the possible values of ℓ, andwe can then use the algorithm
described earlier that lists those orders containing O ′ with a prescribed index.

Ourstrategy to locate the endomorphism ring in this lattice by testing orders and ascend-
ing in correėonding direĆionsworks as follows: given someorderO ′ contained inEnd(A )
(westartwithO ′ =Z[π,π]), đnd someorderO direĆly aboveO ′which lies belowEnd(A );
then replace O ′ by O and iterate the process. ăe ascension ends when no O is found to be
contained in End(A ); then, wemust have End(A ) A O ′. See Figure  where we start from
the bottom and ascend towards orders O for which the statement O ⊂ End(A ) holds.

Formally, we obtain the following algorithm.
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Z[π,π]

OQ(π)

EndA

true

true

true

false

F . Locating End(A ) by ascending a test-sequence of orders.

Algorithm ...
I: A simple ordinary abelian variċyA over a Ėnite Ėeld Fq.

O: An order ĝomorphic to its endomorphĝm ring.
. Compute ĭe FrobeniĮ polynomial χπ(x) ofA .
. FaĊor ĭe dĝcriminant Δ and construĊ ĭe order O ′ =Z[π,π].
. For orders O direĊly aboĂe O ′:
. If O ⊂ End(A ) sċ O ′←O and go to Step .
. Rċurn O ′.

To testwhether an order lies aboveO we compute sufficiently many principal ideals of it
and test whether they are principal in the isogeny graph. Before detailing this process, let us
present an alternative approach to locating the endomorphism ring in the lattice of orders.

ăe next seĆions will show that it requires L(|Δ|)1/4γ+o(1) time to đnd random principal
ideals O whose associated isogenies can be computed within L(|Δ|)3gγ+o(1) operations; to
balance these costs, we set γ = 1/

p
12g and since |Δ| < qg2+o(1) we đnd an overall runtime of

L(q)g
p

3g/2+o(1).

Note that for g = 1 we can do better by using a faster isogeny computing method whose
exponent is just 2γ instead of 3gγ for the arbitrary-dimension method.
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C A

Rather than start at the bottom of the lattice and ascend towards the endomorphism
ring, we can generate certiđcates for each order starting from the top and attempt to verify
them; to ensure this only uses subexponentiallymany operations, we trim the lattice of orders
as we go. ăe runtime is then bounded in the size of the output, rather than the input. ăe
method ofW () had a similar feature; however, our bound is subexponential.

In most cases, there are only polynomially many orders in log |Δ|, but to give a subexpo-
nential bound on the complexity of our algorithm when there are exponentially many, we
eliminće small branches of orders as we go; these branches correėond to small prime power
faĆors ℓ of the index [OK : Z[π,π]]; by “eliminating them,” we mean computing the endo-
morphism locally at ℓ using the method of E and L (). Formally,
we proceed as follows.

Notation. Let bx(f(x)) denote any funĆion satisfying f(x) < bx(f(x)) < f(x)1+o(1) that can
be evaluated in essentially linear time in f(x).

Algorithm ...
I: A simple ordinary abelian variċyA over a Ėnite Ėeld Fq.

O: An order ĝomorphic to its endomorphĝm ring.
. Compute ĭe FrobeniĮ polynomial χπ(x), and faĊor [OK :Z[π,π]]Ć∏ℓvℓ .
. Sċ S←Ø and r← 2.
. For ağ primes ℓ wiĭ ℓ2gvℓ < br

�
exp
p
log(r)

�
:

. If ℓ � S, compute End(A )ℓ and add ℓ to S.
. For ağ orders O wiĭ ∀ℓ � S,Oℓ = End(A )ℓ and |disc(O )| < r:
. Test whċher End(A ) = O ; if yes, ĭen rċurn O .
. Sċ r← r1+1/bq(logq) and go back to Step .

Step  applies the method of Eisenträger and Lauter locally at ℓ; its complexity is there-
fore ℓ2gvℓ+o(1), omitting polynomial faĆors in log(q). ăe inequality of Step  thus ensures
that no more than Lo(1)(r) operations are ėent there.

ăe cost of generating a certiđcate for O is bounded by L(disc(O ))1/4γ+o(1) when the
veriđcation time is bounded by L(disc(O ))3gγ+o(1); to balance these, Step  uses γ = 1/

p
12g

which gives it a complexity bound of L(disc(O ))
p

3g/2+o(1). Step  ensures that:

– only orders that match the local information obtained in Step  are tested;

– testing them all uses at most LO(1)(r) computing time.
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Step  increments r little by little so that, on the one hand, it never goesmuch beyond the
discriminant of End(A ), and, on the other hand, it takes only O(g logq)2 iterations for r to
reach |disc(Z[π,π])| =O(qg2+o(1)) and thus for our algorithm to have considered all orders.

To bound the number of orders to be tested in Step , assume that there are at most
n1+o(1) orders contained in O with index n; this is a classical faĆ for g = 1 (since orders are
identiđed by their index inOK) and it has been proven by N () for g = 2. We
thus đnd that for r = n2 the number of orders satisfying the condition of Step  is bounded,
up to exponent 1+ o(1), by the number of divisors of

�OK :Z[π,π]�, ∏
ℓgvℓ<exp

p
log r

ℓvℓ

that are less thann, where the denominator removes primepowers fromS; a crude calculation
shows that this number is bounded polynomially in log(q).

Ignoring the cost of faĆoring the discriminant Δ, and omitting polynomial faĆors in
log(q), we obtain an overall complexity of

L
�
disc(EndA )

�p3g/2+o(1) .

. Finding Principal Ideals

To test whether some prescribed order O lies below the endomorphism ring of a sim-
ple ordinary abelian varietyA , we đrst compute principal ideals a that discriminate the
struĆure of Pic(O ) from that of other orders containingZ[π,π]. ăen, we evaluate the cor-
reėonding isogenies; for this reason, we compute the faĆorization a =

∏
pzp and then

evaluate φa as the composition of zp times the isogeny φp, for all p.
We therefore consider smooth ideals with small exponents, which we call short ideals.

GM

LetB be a generating set of ideals for the Picard group of an order O in a number đeld
K; for instance, under the generalized Riemann hypothesis, we can take for B the set of
prime ideals of norm less than 12 log2 |discO |. By computing relćions ofB, wemean đnding
produĆs of ideals ofB that are principal.

For convenience of the exposition and of the implementation, letB aĆually generate the
Picard group of the minimal orderm; this way, the set {bO : b � B} generates the Picard
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group of any order O containingm, and its relations are veĆors under the produĆmap

σ :
� ZB ¹→ I(m)

x 7¹→ ∏
p�B pxp

.

If we let σO (x) denote the ideal class of Pic(O ) containing the ideal σ(x)O , then the set of re-
lation veĆors x �ZB forO is exaĆly the lattice ΛO = ker(σO ). Note that sinceB generates
the Picard group, the map σO is surjeĆive and we have

PicO AZB/ΛO
whichmeans that computing relations is essentially equivalent to computing the groupstruc-
ture of Pic(O ). ăe principal ideals of O we search for will be obtained in the form σO (z),
where z �ΛO is a relation veĆor to be found.

To đnd kernel veĆors of σO , we đrst need to identify a đnite subset of ZB which is
big enough to contain a generating set for ΛO . Let n denote the class number of O ; since
Pic(O ) is generated by B and its elements have order n at most, the box {0,… ,n − 1}B
maps surjeĆively onto the Picard group via σO . As a consequence, there exists a generating
set for ΛO contained in the box B = {0,… ,n}B. We ėare the proof to the reader, since a
much better bound will be derived (and proved) shortly.

Note that the class number n satisđes n = |discO |1/2+o(1); however, analytic methods
can be used to derive effeĆive, tighter bounds on n.

To đnd relations of the group G = Pic(O ) on B, one can use the baby-step giant-step
method. It consists in ėlitting the basis B into a disjoint union B0 ⊔B1 of two sets of
approximately equal size, so that this ėlitting carries over to box B and decomposes it as a
direĆ produĆ B0 ×B1, where Bi is the set of veĆors of B with support inBi.

Algorithm ...
I: A box B where to look for relćions under σO : B→G.

O: A relćion, ĭć ĝ, a veĊor of ker(σO ).
. Split BĆĭe direĊ produĊ B0 ×B1.
. For veĊors x � B0: store x in a Ĭble indexed by σO (x).
. For veĊors y � B1:
. If (σO (y))−1 = σO x, rċurn ĭe relćion x+ y.

ăe table construĆed in Step  is typically implemented as a hash table, so that the cost
of the lookup in Step  is negligible. A Gray code can be used to enumerate elements of
B0 and B1 so that each evaluation of σO just requires O(1) operations. ăis algorithm then
requires an expeĆed O(

p
n) number of group operations and storage ėace.
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Note that aėace-efficient generic method for đnding relations in arbitrary đnite groups
will be presented in the next chapter; it can be used in Picard groups in particular. For the
moment, let us discuss a simple application of such generic algorithms to the computation
of endomorphism rings.

R   E R

Let us brieĔy present an alternative to our approach to computing the endomorphism
ring End(A ) of a simple ordinary abelian varietyA deđned over a đnite đeld: we đrst gave
a method for computing End(A ) Ěom below by đnding principal ideals of candidate orders
and testing them in the isogeny graph; then we gave a method which works Ěom aboĂe by
attempting to prove that O = End(A ) for orders O of increasing discriminant.

Amore direĆway of computingEnd(A )ĚomaboĂe is simply to reverseour đrstmethod
which proceedsĚombelow: rather that đnding relations of orders and evaluating them in the
isogeny graph, we can đnd relations in the isogeny graph and evaluate them in Picard groups.
ăis gives the method below.

Algorithm ...
I: A simple ordinary abelian variċyA over a Ėnite Ėeld Fq.

O: An order ĝomorphic to its endomorphĝm ring.
. Compute ĭe FrobeniĮ polynomial χπ(x) ofA .
. FaĊor ĭe dĝcriminant Δ and construĊ ĭe order O ′ = OK.
. For orders O direĊly below O ′:
. If End(A )⊂O sċ O ′←O and go to Step .
. Rċurn O ′.

To test whether End(A ) lies below some order O , we đnd isogeny chains fromA to
itself: in the baby-step giant-step algorithm above, it suffices to replace σO by the map

x �NB 7¹→ φp1
◦ · · · ◦ φp1︸ ︷︷ ︸
xp1

times

◦φp2
◦ · · · ◦ φp2︸ ︷︷ ︸
xp2

times

◦ · · · (A )

(better yet, use thePollard approach of the next chapter); once a principal ideal of the isogeny
graph is found, it suffices to check whether it is principal in the order O as well.

ăis approach has the advantage that, quite oĖen, only one relation of the isogeny graph
suffices to rule out all orders but one, so the endomorphism ring is computed in justone shot.

As before, this is a probabilistic process: the ideal we đnd in End(A )might aĆually also
be principal in some striĆly smaller order; in order to increase the probability of success, we
can use several relations, but to unconditionally prove the output (henceforth transforming
our method into an algorithm of Las-Vegas type), we have to rely on certiđcates.
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S A

S () đrst gave an algorithm for đnding relations of ΛO when O is an imagi-
nary quadratic orders; building upon it, H and MC () proved that the
full Picard group struĆure, that is, a generating set for ΛO , can be determined in proven
subexponential time under the generalized Riemann hypothesis. ăis was later extended by
B () to arbitrary number đelds, under additional heuristic assumptions.

All đnd relationsusing a classical smoothness-based techniquewhich exploits the integer-
like struĆure of ideals in number đelds.

Algorithm ...
I: A box B where to look for relćions under σO : B→ Pic(O ).

O: A relćion, ĭć ĝ, a veĊor of ker(σO ).
. Take a random element x � B and compute a = σO (x).
. Reduce a to an equivalent but smağer ideal b.
. If possible, Ėnd a preimage y � σ−1O (b) and rċurn x− y.
. Rċurn to Step .

To đnd preimages easily, S () takes as basisB the set of prime ideals of norm
less than some bound, so that the existence of a preimage in B can be asserted by a smooth-
ness test on the norm of the ideal, and the faĆorization of that norm yields the preimage.
Several ingredients are needed to bound its complexity, the most important one being that
a random integer in {1,… ,n} has a probability L(n)−1/2c+o(1) of being L(n)c-smooth, for any
constant c > 0; in the case that O is an imaginary quadratic orders, S () proved
that norms of reduced ideals are distributed as random integers; in faĆ, this behavior is ob-
served, although not proven, for orders of general number đelds as well.

ăe next chapter will present all these arguments rigorously.

S B

Since our relations (and the ideals derived from them) are expeĆed to discriminate the
endomorphism ring from other orders of the lattice, we must ensure that when we generate
a relation in ΛO for some order O , it does not belong to ΛO ′ for some other order O ′. Of
course, we have seen that O ⊂ O ′ implies that ΛO ⊂ ΛO ′ , and our lattice-ascending algo-
rithm aĆually takes advantage of that, so we should rather require the above for orders O ′
not above O , that is, O ̸⊂ O ′.

Note that there exist orders O ≠ O ′ with ΛO = ΛO ′ , but not too many: for g = 1, there
are just three such cases, and we can easily fall back on a ėeciđc method to deal with them.
Rigorous details will be given in the next chapter.
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In general, to ensure that the relations z we generate belong to ΛO but not another ΛO ′ ,
we require that they are random relćions in the sense that, for any orderO ′ aboveO , we have

Prob
�
z �ΛO ′ |z �ΛO � = #PicO ′

#PicO + o(1);

in other words, the relation is quasi-uniformly distributed in the quotient ΛO ′/ΛO .
To obtain random relations ofO , H andMC () used veĆors zwith

coordinates up to n4, where n is the class number. In the Picard group, a double-and-add
method can be used to compute each term pzp in time linear in log(n), so that σO can be
evaluated in subexponential time.

However, for thepurpose of checkingwhether the ideal σ(x−y) is principal in the isogeny
graph, the associated isogeny needs to be evaluated. For this, there is no double-and-add
technique, and the isogeny φp has to be evaluated zp times, which makes the bound n4 on
the coordinates quite painful. Note that since y is the exponent veĆor in the faĆorization of
the norm of a reduced ideal, it is at most linear in logn, so what is really needed here to keep
the isogeny-computing cost low is just to đnd a smaller box B for which the quasi-uniform
distribution of classes still holds.

A conjeĆural small box was đrst used by B. and S (); later, C,
J, and S () noted that a result of J,M, andV ()
enables to prove, under the generalized Riemann hypothesis, that such a box indeed yields
random relations. We conclude with an explicit version of the general algorithm.

Algorithm ...
I: An order O of dĝcriminantD.

O: A random relćion z �ΛO .
. Formĭe sċB of primes p of O wiĭ norm less ĭanN= L(D)γ.
. Draw uniformly ć random a veĊor x �ZB wiĭ coordinćes
|xp| < bD(log4+ε |D|) ifN(p) < bD(log2+ε |D|), else xp = 0.

. Compute a reduced ideal a in ĭe clĆs σO (x).
. If a faĊors overBĆ

∏
pyp ĭen rċurn ĭe veĊor x− y.

. Oĭerwĝe, go back to Step .

Here, ε stands for any đxed positive real number. Step may use the LLL algorithm aswe
mentioned earlier; for any “good” reduĆionmethod, the probability that Step  is successful
is L(D)−1/4γ+o(1); the overall complexity is then L(D)1/4γ+o(1) to generate a relation of length
L(D)γ; the longer the relation, the costlier the evaluation of the associated isogeny.
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. Computing the AĆion of Ideals

Wenowconsider effeĆivemeans of testingwhether an ideala aĆs trivially on the isogeny
graph of an abelian varietyA . Here, we focus on the case of elliptic curves, but certain bricks
will be reused in the last chapter for abelian varieties of dimension two.

M EĿ

Once a principal ideal a of O in the form
∏

B pzp is found, we wish to determine
whether the associated isogeny aĆs trivially onA ; in faĆ, this does not require explicitly
evaluating the isogeny φa, but only determining whether it mapsA onA .

Elliptic curves isogenous to a given one with a prescribed way can be listed efficiently via
modular polynomials; this uses j-invariants to identify isomorphism classes of curves, and
modular polynomials Φm(X,Y) which we now recall.

Proposition ... For any m � N, ĭere exĝts some polynomial Φm(X,Y) � Q[X,Y] of
degree m+1 suchĭć, over Ėelds of charaĊerĝtic coprime tom, ĭe j-inĂariants of eğiptic curves
m-ĝogenoĮ to a prescribed j0 are exaĊly ĭe roots ofΦm(X, j0).

C () proved the bit-size of Φm to beO(m3+o(1)). It can be computed in quasi-
linear time by the Ĕoating-point method of E (), or by the alternative method of
B, L, and S () based on the Chinese remainder theorem,
which offers additional advantages such as reduced memory requirements.

To test whether φa aĆs trivially onA , we can evaluate ΦN(a)(X,Y) at (j(A ), j(A )). If
the result is non-zero, then φa cannot sendA toA ; if the result is zero, then there exists
one isogeny of degree N(a) fromA toA , but it need not be φa in general.

For praĆical purposes, rather than seeing φa as an isogeny of degree N(a), we see it as
a chain formed of zp isogenies of norm N(p) for each p � B. Consequently, it suffices to
compute the modular polynomials ΦN(p) and to combine them as isogeny steps. We now
detail this procedure, in a manner which also addresses the issue of the previous paragraph.

C

When we evaluate ΦN(p)(X,Y) at X = j(A ), the roots in Y are the j-invariants of the
codomain of degree-N(p) isogenies with domainA . Amongst these roots lies φp(A ) but
we have no information as to which it is.

To address this, we can explore ağ isogenies of degree N(p). When a has many faĆors,
this can be costly as we might have to consider several roots of ΦN(p) at each step of the
isogeny chain, therefore eventually exploring an exponential number of varieties in logN(a).
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Endomorphism rings of elliptic curves are imaginary quadratic orders, and there are
therefore at most two ideals of a given prime norm: p and p. In the isogeny chain

A0

φp¹→A1

φp¹→ ·· · φp¹→Azp

correėonding to the faĆor pzp of a, the conjugate prime p aĆs onAi as the dual isogeny of
φp :Ai−1→Ai. ăus, for i > 0,we candeterminewhichof the two roots ofΦN(p)(j(Ai),Y)
is not going backward in the chain, and the two roots need to be considered only for i = 0.

ăis helps when a does not have many prime faĆors but has one with high exponent:
rather than just testing if

∏
B pzp is principal, we count how many produĆs

∏
B
bpzp are,

where bp � {p,p}; this is equivalent to counting the number of endomorphisms ofA that
are chains consisting in zp non-backwards isogenies of degree N(p), for each p.

When there are just two ideals p and p of normN(p), this gives:

Deđnition ... Lċ
∏

B pzp be ĭe faĊorizćion of an ideal a �Z[π,π].
Its cardinality inO ĝĭenumber of veĊors (bp) �∏p�B{p,p} forwhich∏B

bpzp ĝ trivial.
Its cardinality in the isogeny graph ofA ĝ ĭe number of chains formed by zp ĝogenies of

normN(p), for each p �B, which mapA onto itself.

ăese two quantities are the same forO = End(A ), and, for elliptic curves, we evaluate
the latter via using the method below starting from the j-invariant j0 = j(A ).

Algorithm ...
I: A j-inĂariant j0 and an ideal

∏
B pzp .

O: ąe cardinality of ĭĝ ideal in ĭe ĝogeny graph of j0.
. Lċ J′ be ĭe lĝt (j0).
. For each p �B:
. Sċ J← J′ and lċ J′ be an empty lĝt.
. For each j in J:
. Lċ {j+, j−} be ĭe roots ofΦN(p)(X, j), and sċ j′+← j and j′−← j.
. Repeć zp− 1 times:
. Sċ (j′+, j+)← (j+,ĭe root ofΦN(p)(X, j+) different Ěom j′+).
. Sċ (j′−, j−)← (j−,ĭe root ofΦN(p)(X, j−) different Ěom j′−).
. Append j+ and j− to J′.
. Rċurn ĭe multiplicity of j0 in J′.

Since we compute two branches for each prime faĆor of a, the overhead this cardinality
algorithmadds on the principal approach is 2wwherew is thenumberof prime faĆors. When
w is small, this is greatly compensated by the ėeed of using modular polynomials.
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CM A

We brieĔy review results on evaluating the explicit isogeny φp associated to an ideal p.
Recall Proposition .. which states that invertible prime ideals p of O written as

ℓO + u(π)O aĆ on the kernel of the associated isogeny φp with charaĆeristic polynomial
u. ăerefore, to tell the isogeny φp apart from other isogenies of degree N(p), one need just
compute the aĆion of the Frobenius endomorphism on its kernel.

To evaluate isogenies from their kernels, we use the formulas of V () for elliptic
curves, and their generalization to abelian varieties by L andR () together
with the improvements of C and R ().ăesemethods take as input a sub-
groupH of an abelian varietyA and output the isogenyA →A /H . Since they work
with principally polarized abelian varieties, they additionally require thatH be a maximal
isotropic subgroup with reėeĆ to theWeil pairing, and that it be isomorphic to (Z/ℓ)g.

We thus seek ideals a =
∏

qzq where the kernel of each φq is maximal isotropic and of
type (Z/ℓ)g; to this extent, in dimension g > 1, we restriĆ to ideals a arising via the reĔex
type norm, on which the last chapter will say more. When we have a prime decomposition
q =
∏

p for a ėeciđc term q, the Frobenius endomorphismmust aĆ on ker(φq) with char-
aĆeristic polynomial

∏
up(x) where the up(x) are such that p =N(p)O + up(π)O .

Finally, we observe that, ifA is an ordinary abelian variety of dimension g deđned over
a đnite đeld, all points of rational subgroups of type (Z/ℓ)g are deđned over an extension of
degree at most ℓg− 1.

ăe charaĆeristic polynomial of the aĆion, on such a subgroupH , of the Frobenius
endomorphism divides χπ(x) mod ℓ, and themultiplicative order n of xmodulo this faĆor is
precisely the extension degree over which all points ofH are deđned. ăerefore, to evaluate
the degree of an extension over which all points of rational subgroups of type (Z/ℓ)g are
deđned, it suffices to compute the least common multiple of the multiplicative order of x
modulo the degree-g faĆors of χπ(x) mod ℓ.

DM

Let q be an ideal such that ker(φq) is a maximal isotropic subgroup of order ℓg inA . In
order to compute this isogeny, we combine several classical tools into the algorithm below. It
requires a basis for the ℓ-torsion ofA deđned over a certain extension, which we will soon
explain how to compute; the kernel is then identiđed by the polynomial u =

∏
up with

up deđned as above, and we use the explicit isogeny algorithm to compute φq from it. We
make this algorithm output the isogenous curve φq(A ), so it can readily be plugged in to
our endomorphism ring computing method.
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Algorithm ...
I: An abelian variċyA /Fq wiĭ FrobeniĮ polynomial χπ

and a suiĬble ideal q of norm ℓg.
O: ąe ĝogenoĮ variċy φq(A ).

. Find a bĆĝ (Pi) of ĭeA [ℓ] over ĭe extension of degree ℓg− 1 of Fq.
. Write ĭe mćrixM of ĭe FrobeniĮ endomorphĝm on ĭe bĆĝ (Pi).
. Enumerće ĭose subġaces of dimension g stable underM �Mat2g(Z/ℓZ).
. Dċermine which correġonds to qĮing ĭe FrobeniĮ aĊion.
. Compute ĭe ĝogeny of which ĭĝ eigenġace ĝ ĭe kernel.

For a maximal isotropic subgroup ofA of order ℓg deđned over the extension of de-
gree ℓg − 1 of the base đeld, the method of L and R () requires ℓ3g+o(1)

operations as g is đxed and ℓ goes to inđnity.
Step  decomposes π(Pi) as

∑
j�{1,…,2g}MijPj for which a baby-step giant-step approach

uses O(ℓg) operations over the extension đeld. Step  is classical and takes quasi-linear time
in gω log(ℓ) where ω < 2.376 is the best known exponent for matrix multiplication.

Finally, Step  usesăeorem  ofC (), where the extension is chosen so
as to contain all points of rational subgroups of type (Z/ℓ)g. ăe simple algorithm we give
below aĆually computes all such points, from which a basis can easily be extraĆed; it works
by seleĆing random ℓ∞-torsion points and liĖing them along each others. Here, we let k(P)
denote the valuation at a đxed prime ℓ of the order of a point P.

Algorithm ...
I: An abelian variċyA /Fq wiĭ FrobeniĮ polynomial χπ and a prime ℓ.

O: ąe ℓ-torsion subgroup ofA over Fqℓg−1 .
. Write #A (Fqℓg−1)Ćmℓk where ℓ ∤m.
. Creće an empty Ćsocićive array B.
. While B hĆ fewer ĭan ℓ2g keys:
. Lċ P =mO whereO ĝ a random point ofA (Fqℓg−1).
. For j Ěom k(P)− 1 down to 1, if ℓjP ĝ a key of B:
. If j > k(B[ℓjP])ĭen go to Step .
. Sċ P← P− ℓk(B[ℓ

jP])−j−1B[ℓjP].
. If P = 0ĭen go back to Step .
. For ağ keysQ of B and x � {1,… , ℓ}, sċ B[ℓk(xP+Q)−1(xP+Q)]← xP+Q.
. Rċurn ĭe keys of B.

Random points ofA can be drawn efficiently whenA is given as the Jacobian variety
of a curve in Weierstrass form. Using the last two algorithms, we compute, in Mumford
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coordinates, the kernel of the isogeny that we wish to evaluate; we then convert it to theta
representation where the algorithm of C and R () is applied, and đnally
use the method of M () to convert the codomain variety back as the Jacobian of
a curve inWeierstrass form, so that the whole process can be iterated.

Since the cardinality ofA (Fqℓg−1) is qgℓ
g+o(1) multiplying random points of it bym uses

O(gℓg logq) operations inA (Fqℓg−1). Similarly, all orders are bounded by k = O(gℓg logq).
Finally, the probability of going back to Step  is O(1/ℓ) as proven byC ().

Using fast đeld arithmetic, and representing points ofA in Mumford coordinates, op-
erations inA (Fqℓg−1) have a bit complexity of (ℓg logq)1+o(1); if an efficient data struĆure
such as a red-black tree is used to store the keys of B, we have:

Proposition ... LċA /Fq be an abelian variċy of known FrobeniĮ polynomial, and q
a suiĬble ideal of Z[π,π]. Algoriĭm .. rċurns ĭe abelian variċy φqEnd(A )(A ) in time
bounded by (ℓg logq)2+o(1), Ć g ĝ Ėxed and ℓ goes to inĖnity.

Note that, in Algorithm .., rather than storing the whole ℓ-torsion subgroup in an
associative array, a pairing could be used to tranėort discrete logarithm problems to a đnite
đeld where they can be more efficiently solved. ăis technique gives a valuable ėeedup for
large values of ℓ, although the overall complexity remains polynomial in ℓ due to the exten-
sion đeld arithmetic.

. PraĆical Computations

We now present the algorithms used and results obtained by praĆical runs on elliptic
curves. Applying the same techniques to general abelian varieties will be the topic of the last
chapter. Timings reported hereweremeasured on a single core of a recent desktop computer,
such as an AMDOpteron clocked at 2 GHz.

B  C

Let E be an ordinary elliptic curve deđned over a đnite đeld Fq. ăe đrst step of our
algorithm is to compute the charaĆeristic polynomial χπ of the Frobenius endomorphism of
E . It is equivalent to counting the number of points ofE which is of the formχπ(1) = p+1−t
for a certain integer t � {−2pq,… ,2pq}. Over a base đeld of cryptographic size, say, with
q a prime of 256 bits, this takes under ten seconds on just one core of a standard desktop
computer using the Schoof–Elkies–Atkin algorithm. Note that further developments by
S () nowmake this possible for primes p over 5000 decimal digits.

Next, we need to đnd principal ideals of orders O , and start by deciding which prime
faĆors we want them to have. For maximal orders O of imaginary quadratic đelds, B
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F . Dots plot the minimal k such that every class of Pic(O ) contains the produĆ
of a subset of Sk. Gray dots cover all imaginary quadratic orders O of discriminant at least
−108, and black dots are for 104 random O drawn according to a logarithmic distribution.
ăe lines represent k = d log2(#PicO ) for d = 1,2.

() proved under the generalized Riemann hypothesis that the primes up to 6 log2 |Δ|
generate the Picard group, whereΔ is the discriminant ofO . Heuristically, we đnd thatmuch
less are necessary, which lead to the following conjeĆure.

ConjeĆure ... For any d > 1, if O ĝ an imaginary quadrćic order of sufficiently large
dĝcriminant, ĭen any clĆs of Pic(O ) conĬins ĭe produĊ of a subsċ of Sk, where Sk conĬins
ĭe Ėrst k = d log2(#PicO ) non-principal prime ideals.

ăis is aĆually stronger than asking for Sk to generate the Picard group: it requires that
Sk generates it wiĭ bounded exponents in {0,1}. However, it is a natural conjeĆure to make
since it asserts that the set Sk behaves as a random subset of Pic(O ) would in the sense of
Proposition . of I and N (). Our empirical veriđcations have not
found a single order for which the conjeĆure does not hold with d = 2; for values of d closer
to 1, we found this to be true for many orders above a certain lower bound, as can be seen on
Figure .

ăe above is most useful when generating relations using generic methods: it states that
only slightly more primes than a cardinality argument would require aĆually suffice. ăis
yields short associated isogenies (which are a must in dimension two).
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However, as we strive to balance the cost of đnding a principal ideal in O with that of
evaluating the associated isogeny, generic methods do not scale well: for discriminants of
more than 128 bits, a generic method would require above 32 operations in Pic(O ); from
there on it is therefore advisable to switch to the subexponential method of S ().
Note that by the conjeĆure we can use a box with support in Sk.

Since our principal ideals rarely have more than 10 prime faĆors, it is really worth using
the cardinality approach: modular polynomials permit one to compute isogenous curves
quickly, and they can be precomputed and reducedmodulo p for all the primes ℓwe consider,
whereas computing the torsion would have to be done from scratch at each step.

H C  DO

So far, our endomorphism ring computing method tested whether O ⊂ End(A ) for
various orders O ; since this process has a small probability of failure, we then certiđed the
candidate order so as to unconditionally verify our result.

In B. and S (), we used a quite different approach which simultane-
ously đnds O and veriđes it. It exploits the particular struĆure of the lattice of orders for
elliptic curves; we start by recalling this struĆure.

Let w denote the index ofZ[π] in OQ(π) where π denotes the Frobenius endomorphism
of an ordinary elliptic curve deđned over a đnite đeld. OrdersO of K =Q(π) have the form
Z+ fOK where f is the integer that generates their conduĆor overOK; therefore, inclusion of
orders correėonds to divisibility of conduĆors, so that orders containingZ[π] are in bijec-
tion with divisors f of w.

Let pi be a prime power dividing w, and consider the problem of deciding whether pi
divides the conduĆor u of End(E ). Here, a certiđcate for pi needs only consist of one ideal a
which is principal in the order of conduĆorw/pvalp w−i+1 but not in that of conduĆor pi: if a
is principal in the isogeny graph ofE , thenwe necessarily have pi|u. Indeed, in that situation,
End(E ) does not contain the order with conduĆorw/pvalp w−i+1, whichmeans its conduĆor
u divides w without dividing w/pvalp w−i+1, in other words, pi divides u.

In number đelds of degree greater than two, it does not seem to be possible to certify
orders in a nice way as above, using just one ideal; that is why we needed to develop a more
general method for arbitrary abelian varieties.

G E

Let E be the elliptic curve withWeierstrass equation

Y2 = X3− 3X+2728849899765998058103612158899570741955717345
over Fq with q = 2872801286401014961877470682093858455400487431



..   

ăis curve is ordinary and it has q+1− t points, for a trace t of 1868. ăe discriminant of π
is 4q− t2 and its faĆors as−7w2 where

w = 2 · 127 · 524287 · 304250263527209.

We đrst compute the endomorphism locally at 2 using the method of E
and L (), which is nearly instantaneous; it đnds that the order with conduĆor 2
does not contain End(E ).

For the prime 127, we use the local method of K (): since Φ127(j(E ), ·) proves
to have multiple roots, 127 does not divide the conduĆor of End(E ). ăis also takes negli-
gible time.

Since End(E ) was found to be maximal locally at 2 and 127, we can now simply set
w→ w/254 and work with this new w. For the bigger primes, we turn to đnding principal
ideals with a generic method and verifying them in the isogeny graph. We choose to work
with the degrees 11, 23, 29, 37, and43,meaning thatwe look for a principal ideal as a produĆ
of prime ideals of norm these numbers. Note that it is interesting to use only a few primes
here since then few modular polynomials have to be computed, and can be reused many
times.

Using hardcoded certiđcates, it is easier to deal with bigger primes, so let use start with
the biggest one p. Using the baby-step giant-step method, we đnd in just a second that the
relation 234 · 297 · 37,17 · 434 has cardinality 4 in the order with conduĆor w/p, and zero
in that with conduĆor p. Computing the associated tree of isogenies took 9 seconds; as it
turns out, the cardinality of the relation in the isogeny graph is 4 as well, therefore p does not
divide the conduĆor of End(E ).

We đnish with p = 524287: again, we look for a relation with the baby-step giant-step
method; it takes roughly 20minutes to uncover the relation 1147 · 23707 · 29540 · 37103 · 43197

which has cardinality 2 in the order with conduĆor w/p, and zero in that with conduĆor
p. ăe associated tree of isogenies took 6 minutes to compute, and since the relation has
cardinality zero in the isogeny graph, we conclude that End(E ) has conduĆor p.

In less than half an hour, we therefore established that End(E ) =Z+524287OK.
ăe runtime of this generic method is bounded by q1/4+o(1) but if we had computed

End(E ) Ěom aboĂe by searching for relations in its isogeny graph, the bound would have
been (discEnd(E ))1/4+o(1). However, since our curve was generated with the complex mul-
tiplication method (to give it an interesting endomorphism ring), it would not have been
fair: we would have found End(E ) much too quickly!



  

S E

Let E be the elliptic curve withWeierstrass equation

Y2 = X3− 3X+660897170071025494489036936911\
196131075522079970680898049528

over Fq with q = 160693804425899027555081234320\
6050075546550943415909014478299

where the backslash symbol denotes that a number has been wrapped over to the next line.
Again, the curve is ordinary and it has trace t = 212 (which it takes just a few seconds to
compute). FaĆoring the discriminant 4q− t2 ofZ[π], we đnd that

w = 2 · 127 · 524287︸ ︷︷ ︸
p1

· 7195777666870732918103︸ ︷︷ ︸
p2

.

As before, the primes 2 and 127 can be dealt with by climbing the local volcano. None
of them divides the conduĆor u of End(E ); this only takes a few seconds.

To determine whether p1 divides u, we use the algorithm of S () with the
smoothness bound 600 to đnd a relationwith non-zero cardinality in the order of conduĆor
w/p1. It takes about four minutes to đnd the relation

21798 · 233 · 291 · 372 · 5329 · 1371 · 1491 · 2331 · 2632 · 5471

whose cardinality in the order with conduĆor p1 is zero. Computing the relevant modular
polynomials via themethod ofB, L, and S () requires under
four minutes and the associated tree of isogenies is found to have cardinality zero within just
a minute; as a consequence, we deduce that p1 is a faĆor of u. Note that, here, we made
use of the prime 2 although it divides the index w; this process is described in SeĆion . of
S ().

For the prime p2, this is, as expeĆed, much faster: the relation 223 ·115 ·431 ·712 is found
to have positive cardinality in the order with conduĆor w/p2 but not that with conduĆor
p2. It is found that p2 does not divide u and the whole process takes just a few seconds.

In about 5 minutes, we have thus proved that End(E ) has conduĆor 524287, but note
that this computation was much more difficult than the previous one due to the larger size
of p2 here: it could not have been achieved with generic methods.
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

ũomplexityŧnalysĝ

ăis chapter is devoted to a rigorous analysis of the method that we have just presented;
the main result is a proof, under the generalized Riemann hypothesis, that our algorithm
indeed computes endomorphism rings of ordinary elliptic curves in subexponential time.

Most of material used has already appeared in B. () for elliptic curves; here, when
this can be done, we state our results for general varieties. Polarization issues are deferred to
the next chapter, which will therefore also cover praĆical computational aėeĆs in dimen-
sion g > 1.

As usual, letA be a simple ordinary abelian variety deđned over a đnite đeld Fq.

. Orders from Picard Groups

We đrst prove that if we can identify the struĆure of the Picard group of the endomor-
phism ring ofA , then we can determine End(A ) unambiguously.

P

Recall that the đrst step is to compute the charaĆeristic polynomial χπ of the Frobenius
endomorphism π ofA . For this, we use the method of P () and more precisely
the improved algorithm of A and H () which, whenA is the Jacobian
variety of a genus-g hyperelliptic curve, has a complexity of

(logq)O(g2 log g).

Even if it were not for cryptographic reasons, we would avoid non-Jacobian varieties since
our algorithms requires to efficiently draw points at random, which we cannot do whenA
is expressed in a more general form (such as theta constants).





  

ăe number of points ofA deđned over the extension of degree e is then

#A (Fqe) = Resu
�
χπ(u),u

e− 1
�

which means that our algorithm for computing the ℓ-torsion does not have to count the
number of points over a new extension every time a new prime ℓ is considered.

To navigate the lattice of orders of the complex multiplication đeld K =Q[X]/(χπ(X)),
that is, computeM = OK,m = Z[π,π] and the faĆorization of [M :m], we need to faĆor
the discriminant Δ of χπ which satisđes

|Δ| B (2
pq)2g(2g−1).

For this, the unconditional method of L and P () uses L(|Δ|)1+o(1)
operations; assuming unproved hypotheses, wemight also use the number đeld sieve ofC-
 () with conjeĆured runtime

LcNFS

1/3
(|Δ|) where cNFS =

1

3
3
Æ
92+ 26

p
13 ≈ 1.902.

For elliptic curves, we were able to prove the correĆness and complexity of the rest of
ourmethod only assuming the generalized Riemann hypothesis. In that case, the complexity
is

L(q)1/
p
2+o(1),

so the cost of faĆoring via the unconditionally proven method dominates; we found it curi-
ous that no known faĆoring algorithm achieves a better exponent assuming solely the gen-
eralized Riemann hypothesis: there seems to be a gap in the hypothesis required as, in terms
of asymptotically fastest methods, we go straight from an unconditionally proven method
to one which relies on many non-standard heuristics.

In dimension two, we will see that additional unproven hypotheses, other than the gen-
eralized Riemann hypothesis, are necessary.

O  I

Let us brieĔy address the complexity of the algorithms used for navigating the lattice and
computing with ideals of arbitrary orders in it.

ăe algorithms used greatly differ from dimension one to dimension two: in dimension
one, the lattice is simply the set of divisors of [M : m] while in higher dimension its struc-
ture has no suchėecial form; again in dimension one, ideals can be dealt with extremely effi-
ciently as binary quadratic forms while in higher dimension only general methods involving
Hermite normal form and LLL reduĆion can be used.



..     

In faĆ, we đnd that, in the realm of elliptic curves, many problems can be solved in es-
sentiağy linear time, that is, with a complexity asymptotically equivalent to the size of the
output, up to an exponent of 1 + o(1); but those problems become suddenly much harder
with higher-dimensional abelian varieties and no such satisfying algorithm is known. ăis
is for instance the case for the generation of Hilbert class polynomials. Our own endomor-
phism ring computing algorithm will not be an exception to this rule, as many simple and
easy to analyze aėeĆs of it are lost when going from dimension g = 1 to g = 2.

Regardless of the dimension, since we use the building blocks for orders and ideals on
inputs of size for which their complexity is polynomial in log(q), we need not worry too
muchabout them: as our overall expeĆed complexity is superpolynomial, the costof all these
subroutines disappears within the o(1) term of the exponent. ăis might seem a little too
rough, so we refer to C () for more careful statements regarding the complexity
of these standards calculations.

O   P G

Our relation method uses the Picard group struĆure to charaĆerize an order. ăis sec-
tion and the next are devoted to proving the correĆness of this approach: here, we will see
that there are not many orders with the same Picard group struĆure, and there, we will de-
scribe a workaround technique for distinguishing these rare orders from each other.

We đrst consider the one-dimensional case, as the ideal struĆure of non-maximal orders
is much better understood in this case. IfO is an order of an imaginary quadratic đeld K, we
letB be a generating set of ideals for Pic(O ), and denote by ΛO the relations of Pic(O ) for
this basisB; in other words, we assume that Pic(O ) AZB/ΛO .
Proposition ... Lċ O and O ′ be two orders in an imaginary quadrćic Ėeld K. ąe
lćticeΛO ′ conĬinsΛO if and only if ĭe order O ′ conĬins O or if one of ĭe foğowing holds:

. K =Q(p−4) and O ′ hĆ conduĊor 2;
. K =Q(p−3) and O ′ hĆ conduĊor 2 or 3;
. ąe prime 2ġlits inK and O ′ hĆ index 2 in some order aboĂe O of odd conduĊor.

Proof. Denote by SO (reė. SO ′) the set of primes ℓ thatėlit into principal ideals inO (reė.
O ′). Using relations formed of a single prime ideal, we see that ΛO ⊆ΛO ′ implies SO ⊆ SO ′ .
Now SO (reė. SO ′) is also the set of primes that ėlit completely in the ring class đeld LO
of O (reė. LO ′). By Chebotarev’s density theorem SO ⊆ SO ′ thus implies LO ′ ⊆ LO which
means that the class đeld theory conduĆor f(LO ′/K) of LO ′ divides f(LO /K).



  

ăis conduĆor f(LO /K) is related to that fO of O in the following manner (see Exer-
cises .–. of C ()).

f(LO /K) =


OK, when K =Q(p−4) and fO = 2,
OK, when K =Q(p−3) and fO = 2 or 3,
f′, when 2 ėlits in K and fO = 2f′ with f′ odd,
fO , otherwise.

Naturally, the same stands for O ′. In the latter case, the faĆ that f(LO /K) divides f(LO ′/K)
implies that fO ′ divides fO , in other words O ⊆ O ′; the three other cases correėond, in
order, to the exceptions listed in the proposition.

Intuitively, this means that identifying orders by their Picard groups has a single blind
ėot locally at 2 and 3 where the two largest orders cannot be distinguished.

For orders in higher-degree number đelds, we were unable to prove a similar result, but
have observed that pairs of orders with identical Picard group struĆure follow a similar pat-
tern to what the proposition above describes for imaginary quadratic orders; therefore, we
will assume:

Assumption ... Fix g �N; ĭere exĝts an integerB suchĭć, if any two ordersO andO ′
of a complex multiplicćion Ėeld K of degree 2g have identical Picard group struĊure, ĭen one
ĝ conĬined in ĭe oĭer wiĭ index a divĝor of B, and boĭ orders are maximal ć ağ primes
but ĭe faĊors of B.

For instance, in the case of quartic complex multiplication đelds, our computations sup-
port

B = 26 · 34 · 53 · 72 · 112 · 13 · 17 · 19 · 23 · 31 · 41 · 83 · 127 · 131 · 151

ăis bound B could be reduced by excluding đnitely many number đelds.
Even if this assumption turns out to be wrong, our algorithms will still be funĆional as

they do not need to know in advance which orders have the same Picard group struĆure: it
can always be tested, as we ascend the lattice of orders and generate certiđcates, if an order
has the same Picard groupstruĆure as some order direĆly above or below it. ăis is naturally
quite expensive, but retains the unconditional correĆness of our output.

LW

Aswehave seen, twodistinĆorders of a complexmultiplicationđeldKcanhave identical
Picard group struĆure, in a limited number of cases. ăose orders cannot be distinguished
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using the complexmultiplication aĆion, so we need anothermethod to tell them apart from
each other.

To tackle these cases, we apply our lattice-ascending and order-testing procedures nor-
mally and fall back on a second method when the endomorphism ring is found to be one of
these. ăis amounts to ascending the lattice of orders quotiented by classes of orders with
identical Picard group struĆure; when the class of End(A ) is identiđed, we determine pre-
cisely which order End(A ) is using the following algorithm.

Algorithm ...
I: A simple ordinary abelian variċyA over ĭe Ėnite Ėeld wiĭ q elements,

and an order O wiĭĭe same Picard group struĊure Ć End(A ).
O: An order ĝomorphic to End(A ).

. Compute ĭe FrobeniĮ polynomial χπ(x), and faĊor [OK :Z[π,π]]Ć∏ℓvℓ .
. For ağ prime faĊors ℓ wiĭ ℓ2gvℓ < L(|Δ|):
. Dċermine End(A ) locağy ć ℓ.
. For oĭer prime faĊors ℓ:
. Compute varioĮ ℓ-ĝogenies and see if ĭey change ĭe

Picard group struĊure of ĭe endomorphĝm ring.
. Deduce End(A ).

ăe condition in Step  ensures that the complexity of determining the endomorphism
ring locally at ℓ via the method of E and L () in Step  is bounded
subexponentially. Basically, since orders with identical Picard group struĆure only differ by
smooth indices (as we saw in the previous seĆion), only small primes ℓwill be of interest here
(for others, Oℓ is the only possibility for End(A )ℓ); for these small primes, the condition
means that the depth vℓ of the local lattice is not too large.

When vℓ is large, thismethod is too costly. On the other hand, since only the đrst few top
orders have identical Picard group struĆure, we can compute random chains of ℓ-isogenies
and count the minimal number of isogenies it takes to reach a variety whose endomorphism
ring has a different Picard group struĆure (which we determine using our subexponential
method). Since we can compute exaĆly which orders have identical Picard group struĆure,
this gives us some information as to which order our endomorphism ring is.

ăis is obviously a rather poor approach. Best would be to use a higher-dimensional
analog to the method of I and J () and generalize the algorithm of K
() to compute the endomorphism ring locally at ℓ in time ℓO(1) rather than ℓO(vℓ).

As the complexity of our fall back method depends not only on the prime ℓ at which we
want to locally compute End(A ), but on the entire faĆor ℓvℓ of the index [OK : Z[π,π]],
and we found no satisfying way of patching it, we simply rule out deep lattices.



  

Assumption ... Lċ O ⊂ O ′ be two orders conĬining Z[π,π] wiĭ identical Picard
group struĊures. If ℓ ĝ a prime faĊor of ĭe index [O ′ : O ], we Ćsume ĭćĭe valućion vℓ of
[OK :Z[π,π]]ć ℓ ĝ such ĭć ℓ2gvℓ < L(q).

In dimension one, the method of K () computes End(A )ℓ locally at ℓ by
climbing the ℓ-isogeny volcano in time vℓℓ2+o(1), so the assumption above is not required
in that case.

. Picard Groups from Relations

R S

We recall the standard “generator and relations” setting based on prime ideals to study
the struĆure of Picard groups of orders in number đelds.

ăroughout this seĆion,O will be an order in an algebraic number đeld, andB a gener-
ating set of ideals for its Picard group; for computational reasons we assume thatB consists
of prime ideals. We denote by ΛO the lattice of relations amongst elements of B seen as
veĆors ofZB, so that we have

Pic(O ) AZB/ΛO .
Our đrst task will be to bound the norm of primes contained inB; this is the purpose

of the following seĆion which describes various Chebotarev theorems that have been used
over the years — this application being just one ėeciđc use of them.

Next, we will consider bounding the diameter of the lattice ΛO which plays a crucial role
in the generation of relations that charaĆerizes O . More explicitly, H and MC-
 () proved that any bound on the diameter of the lattice ΛO yields a box B whose
pushforward distribution by σO is quasi-uniform; in other words, produĆs of random ele-
ments of this box give quasi-random elements of the Picard group of O .

ăis property is crucial to ensure that the relations we obtain permit us to distinguish a
lattice from striĆly smaller ones.

Originally, a bound elementarily derived from the theorem of S () was used
by H andMC (); later, B () adapted their algorithm to
general number đelds, therefore relying on the theorem of B (). We will here
give, as a consequence of the generalized Riemann hypothesis, a better bound which we will
derive from a more general result of J, M, and V ().

C T

Let us đrst recall the classical density ĭeorem of T ().
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ăeorem ... Lċ L/K be a Ėnite normal extension of number Ėelds, and denote by π(p)
ĭe FrobeniĮ element inGal(L/K) which correġonds to a given prime p ofK. Such FrobeniĮ
elements are Ćymptoticağy uniformly dĝtributed in ĭe sense ĭć, for any conjugacy clĆsC of
ĭe Galoĝ group,

#{p : π(p) �C ,N(p) < x} ~
x→∞

#C
#Gal(L/K)

Li(x)

where Li(x) =
∫ x
2

dt
log t ĝ Ćymptoticağy equal to ĭe number of prime ideals of norm less ĭan x.

ăis theorem has countless applications; for instance, if L is the ėlitting đeld of a poly-
nomial f �K[x], it gives the density of primes p of Kmodulo which f has prescribedėlitting
patterns.

In our setting, we are mostly interested in the case where K = Q and L is the ring class
đeldHO of an orderO in some complexmultiplication number đeld. Via theArtinmap, the
Chebotarev density theorem descends to ideals of the order O and asserts that the density
of prime ideals which belong to a prescribed ideal class of Pic(O ) is 1/#Pic(O ); this implies
in particular that each ideal class can be represented by a prime ideal, from which we can
conclude that it is indeed possible to have a generating setB for Pic(O )made of prime ideals.

More generally, so-called effeĊive CheboĬrev ĭeorems give upper bounds on elements
generating number theoretic groups. Historically, interest đrst lied in bounding the least
quadratic non-residue modulo n: G đrst established the bound 2

p
n + 1 (for n > 2)

elementarily and, to date, the best known unconditional bound of B () is still
exponential — the proof mixes arguments of V () with the Hasse–Weil
bound on the number of points of hyperelliptic curves.

Assuming the Riemann hypothesis for the zeta funĆion of certain đelds L, more precise
results can be derived. Most oĖen, authors simply assume the extended Riemann hypothesis
(ERH), or even the generalized Riemann hypothesis (GRH) for convenience. Under this
assumption, A () proved that the bound above can be made O(log2 n).

L and O () later generalized this to general number đelds: they
proved that if L is a đnite nontrivial extension of an algebraic number đeld K, the least prime
ideal of K that does not ėlit completely in L is bounded by O(log2(disc(K)2N(f(L/K)))).

B () gave explicit constants O for these results: he showed that in the result of
A () we have O B 2, and that O B 3 for the generalized result. He derived the
following:

ăeorem ... Assuming ĭe Riemann hypoĭesĝ for ĭe zċa funĊion of ĭe number Ėeld
K, its Galoĝ groupGal(K/Q) ĝ generćed by ĭe FrobeniĮ elements of its prime ideals of norm
less ĭan 12 log2 |disc(K)|.
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D  S P

As we have already pointed out, knowing that the set B of prime ideals of norm less
than 12 log2 |Δ| generates the Picard groups of orders O containingZ[π,π] is not sufficient.
Indeed, evaluating isogenies associated to ideals awhich involve large exponents is costly, so
it is not sufficient to write a as a produĆ of primes ofB: we also want this produĆ to be
short. In other words, we ask that a =

∏
p�B pnp for a small exponent veĆor n.

Obviously, its norm ∥n∥1 =
∑���np��� is less than the class number. In their Lemma ,

H andMC () proved that any bound on the diameter of the lattice ΛO
yields a box B suitable to search for relations, and as a bound they used the latter elementary
result on the norm of n. B () did the same in his Lemma . for arbitrary
orders.

However, assuming the generalized Riemann hypothesis, a much better bound can be
derived from Corollary . of J, M, and V (), which implies:

ăeorem .. (GRH). For ağ g �N and ε > 0, ĭere exĝts c > 1 such ĭć, ifO ĝ an order
of dimension 2g and dĝcriminantΔ, ĭen for random veĊors x drawn Ěomĭe box

B =

(
x �Z{p:N(p)<log2+ε |Δ|} :

∑
B

|xp| = c
log |Δ|

log log |Δ|
)

ĭe probability ĭć σO (x) fağs in any Ėxed ideal clĆs of Pic(O ) ĝć leĆt 1/2#Pic(O ).
In terms of distribution, this states that the pushforward distribution by σO of the uni-

form distribution UX on the set X of veĆors of norm c log |Δ|/ log log |Δ| is within varia-
tion distance 1/2 from the uniform distribution on the Picard group. Essentially, this says
that produĆs of randomly seleĆed primes of quadratic norm behave as uniformly-drawn
elements of the Picard group.

D  R L

ăe above theorem implies that each element of Pic(O ) has a preimage of small norm,
from which we can easily derive a bound on the diameter of ΛO . Recall that the diamċer of
a lattice is the smallest value diam(F) where F ranges over its fundamental domains.

Corollary .. (GRH). Fix any positive number ε. If O ĝ an order of dĝcriminant Δ
and B denotes its sċ of primes of norm less ĭan log2+ε |Δ|, ĭe diamċer of ĭe lćtice ΛO ĝ
o(log4+ε |Δ|).
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Proof. To prove this, we construĆ a generating set for ΛO formed by O(log2+ε |Δ|) rela-
tions of norm o(log2 |Δ|). B () showed that Pic(O ) is an abelian group of order
Δ1/2+o(1) so there exist O(log |Δ|) ideal classes αi such that ZB/ΛO A

∏ 〈αi〉; we đx these
and proceed to write a generating set for ΛO consisting of:

– relations expressing that αord(αi)i = 1;

– relations expressing the primes p �B in terms of the αi.

First deđne amap σ−1O by đxing a preimage of norm atmost c log |Δ|/ log log |Δ| for each ideal
class; it exists byăeorem... Now use a double-and-add approach to ensure that norms
remain small: for each i, express that αord(αi)i = 1 by the relations

(i) σ−1O
�
α2

j

i

�− 2σ−1O
�
α2

j−1
i

�
for j � {1,… ,⌊log2 ord(αi)⌋};

(ii)
∑

j bjσ−1O
�
α2

j

i

�
where bj denotes the jth least signiđcant bit of ord(αi).

Now write each p � B on the αi by decomposing its class as a produĆ
∏

αnii where ni �{0,… ,ord(αi)}; noting δp the veĆor with coordinate one at p and zero elsewhere, this gives
the relations:

(iii) δp−∑i
∑

j cijσ
−1
O
�
α2

j

i

�
where cij is the jth least signiđcant bit of ni.

Preimages by σO have length o(log |Δ|) and there are at most
∑⌊log2 ord(αi)⌋ = O(log |Δ|)

terms, therefore each such relation has length o(log |Δ|)2.

. Relations from Smooth Ideals

Let us now give the mathematical background required to prove the complexity of the
subexponential method for đnding smooth relations in Picard groups.

I S

Westart by reviewing fundamental properties of smooth numbers; these are the base on
which most subexponential algorithms are build upon (for instance, we have already men-
tioned faĆoring algorithms). First recall their deđnition.

Deđnition ... An integer x ĝ said to be y-smooĭ if it hĆ no prime faĊor larger ĭan y.
ąe number of y-smooĭ integers less ĭan x ĝ denotedΨ(x, y).

Bounding the value of the Ψ funĆion for particular ranges of x and y is an important
problem. For instance, for any đxed u C 1, we have

Ψ
�
x,x1/u

�
~

x→∞
xρ(u)



  

where the constant ρ(u) is the Dickman funĆion. ăis funĆion was extensively studied by
 B who gave many ways to evaluate it. To use such smoothness results in index-
calculus methods, we need more than a polynomial relation of the form y = x1/u: we would
like to consider the case where u → ∞ as x → ∞. ăe ėeciđc result we rely on is due to
C, E, and P ().

ăeorem ... For u C 3 we have

Ψ
�
x,x1/u

�
C x exp

�−u�logu+ log logu− 1+ o(1)
��

Corollary ... ąe probability for a random number of {1,… ,x} to be L(x)γ-smooĭ ĝ
equivalent to L(x)−1/2γ+o(1) Ć x→∞.

Proof. Apply the theorem above to u = 1
γ

q
logx

log logx and combine it with the upper bound in
ăeorem  of B ().

See G () for a survey of this topic.

I S

Our algorithms do not exaĆly work with integers: they work with ideals. Via the norm,
the struĆure of the ring of ideals resembles that of integers; for our particular goal, it suffices
to say that ideals are smooth if and only if their norms are. However, not all results are easy
to generalize from integers to ideals.

In faĆ, our đrst algorithm for computing endomorphism rings of elliptic curves, fromB.
and S (), relied on the assumption that certain ideals we generated had a
uniformly distributed norm, so thatwe could direĆly apply the result of the previous seĆion.
We now explain how this assumption can, in some setting, be rigorously proven.

Let us đrst recall the relevant part of our algorithm: for an order O of discriminant Δ,
we đrst seleĆ a veĆor x uniformly at random from the box B = {0,… , log4+ε |Δ|}B whereB
is the set of prime ideals of norm less than log2+ε |Δ|; we then look for a small representativebx of the class σO (x) � Pic(O ) and attempt to faĆor it over the base consisting of all the prime
ideals of norm less than L(|Δ|)γ.

To rigorously bound the number of times randomveĆors x � Bhave to be seleĆed before
one with smooth reduĆion is found, we need to show that the norm of bx behaves like a
random integer in a certain interval.

For imaginary quadratic orders, S () used the standard reduĆion of binary
quadratic forms; to obtain a result on the smoothness probability of bx, he proceeds in two
steps: Proposition . and .:
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Proposition ... Ideal clĆses σO (x) of randomly seleĊed veĊors x � B are quĆi-uniformly
dĝtributed in ĭe Picard group of O .

By quĆi-uniformly dĝtributed, we mean that the probability for σO (x) to belong to a
prescribed subset S of Pic(O ) is

(1 + o(1))
#S

#Pic(O )
in other words, the pushforward distribution σO ⋆UB is within variation distance o(1) of the
uniform distribution on Pic(O ).

Note that S () started from amuch bigger box B than ours; it was, back then,
the best possible under the generalized Riemann hypothesis; however, here, we make use of
Corollary . of J, M, and V () and of the smaller box B it proves
to suffice.

When we know that σO (x) is quasi-random, it remains to see whether the elementbx of
each σO (x) has a smoothness probability comparable to integers of {1,… ,

p|Δ|/3}.
Proposition ... ąe number of reduced ideals whose norm ĝ L(|Δ|)γ-smooĭ ĝ ć leĆt
n/L(|Δ|)1/2γ+o(1) where n = #Pic(O ) ĝ ĭe toĬl number of reduced ideals.

ăe proof of S () involves calculations which are ėeciđc to the arithmetic of
binary quadratic forms. ăis makes it challenging to generalize this proposition in higher-
dimensional orders, and another issue is that there is no canonical notion of reduĆion there.
ăe method of B () for arbitrary orders relies on the following assumption,
and we do as well.

Assumption... ąenorms of reduced idealsĮedbyĭe smooĭrelćionĖnding algoriĭm
are Ć likely to be smooĭĆ random integers of {1,… ,

p|Δ|}.
R  R

To obtain a generating set for the lattice ΛO by đnding relations of it, we must ensure
that those relations do not lie in some particular subset. For instance, if the orderO contains
O ′, then we have ΛO ′ ⊂ΛO , and wemust prove that our relations have no prediėosition of
aĆually lying in ΛO ′ . Whence the following deđnition.

Deđnition ... Lċ P be a probabilĝtic procedure which, on input an order O conĬining
Z[π,π] for someWeil number π, rċurns a relćion x �ΛO , which we see Ć a random variable.

We say ĭć P generćes quasi-uniformly distributed relations of O if, for any order O ′
conĬining Z[π,π], ĭe projeĊion of x in ĭe quotient group ΛO /ΛO∩O ′ ĝ wiĭin varićion
dĝĬnce o(1) Ěomĭe uniform dĝtribution, Ć ĭe dĝcriminant of π goes to inĖnity.
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Proving that the method of S () does indeed generate quasi-uniformly dis-
tributed relations was done by H andMC () in their Lemma .

Proposition... IfO ′ ĝan order conĬined inO , relćions foundbyĭemċhod of S
() are quĆi-uniformly dĝtributed in ΛO /ΛO ′ when B = {0,… ,#Bd1+ε}B, where d ĝ a
bound on ĭe diamċer ofΛO .

ăe proof is pretty simple and involves looking at the geometry of the lattices in a fairly
elementary way. We reproduce it below, in themore general context of an unėeciđed bound
d on diamΛO .

Proof. Let xbe a randomvariablewith uniformdistribution onBt = {0,… , t}B, letbx � σO (x)
denote its reduĆion, and noteS the set of ideals withL -smooth norms. Wewant to prove
that

Prob
�
x− σ−1(bx) � ω��bx �S � = �ΛO : ΛO ′

�−1 (1 + o(1))

for any đxed class ω �ΛO /ΛO ′ . We can rewrite the leĖ-hand side as

#
�
x � Bt :bx �S ,x− σ−1(bx) � ω	

#{x � Bt :bx �S }
and by summing over all possible reduced ideals y we further obtain∑

y�S #
�
x � Bt : x � σ−1(y) + ω

	∑
y�S #

�
x � Bt : x � σ−1(y) +ΛO

	 .
Now, to evaluate each term of these sums, let us count the number of points of Bt =

[0, t + 1)B which lie in the translation z + Λ of some lattice Λ. To this extent, letF be a
fundamental domain for Λ: each point of z+Λ correėonds to a cell in the tiling ofRB by
F ; if diamF B d we therefore have

Bt−d ⊂ (z+Λ)∩Bt +F ⊂ Bt+d

which gives, in terms of volumes,

(t− d)#B B detΛ · #
�
(z+Λ)∩Bt

�
B (t+ d)#B

so as soon as #Bd = o(t), the sandwich theorem proves that

#
�
(z+Λ)∩Bt

�
=

t#B

detΛ
(1+ o(1));
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by substituting this in the probability sought expressed as a quotient of sums, we obtain

#S t#B

detΛO ′
(1 + o(1))

,
#S t#B

detΛO
(1 + o(1)) ;

Choosing t = #Bd1+ε satisđes the requirement #Bd = o(t) and gives the result.

Recall that if O is an order of discriminant Δ andB consists of all prime ideals of norm
less than log2+ε |Δ|, then the diameter of ΛO is o(log4+ε |Δ|). ăerefore, whenO is imaginary
quadratic, the above proposition shows that the algorithmof S () generates quasi-
uniformly distributed relations of ΛO when drawing its random veĆors uniformly from the
box B = {0,… , log2+ε |Δ|}B.

WhenO is an order in a complexmultiplication of degree four ormore, as we havemen-
tioned before, we do not knowof similar results and believe that theymight be quite difficult
to establish. However, we can still amend the algorithm of B () to make use
of this type of bound. ăis gives a conjeĆural running time, but the result can in any case be
unconditionally proven by certiđcates, so we have a Las-Vegas algorithm.

G E R

To prepare for the jump to the next chapter, let us put together the results that we have
established so far. Here, we let π be the Frobenius endomorphism of an abelian variety of
dimension g deđned over a đnite đeldFq, and recall fromLemma .. that disc(Z[π,π]) =
qg2+o(1) so that via the theorem of B () the class number is qg2/2+o(1).

Proposition ... Lċ O be an order of dĝcriminant Δ in a number Ėeld of degree 2g;
random relćions ofO inĂolĂing polynomiağy many ideals in log |Δ| of norm up to L(|Δ|)γ can
be found in probabilĝtic time L(|Δ|)γ +L(|Δ|)1/4γ+o(1).

ąĝ Ćsumes ĭe generalized Riemann hypoĭesĝ for g = 1, and Assumption .. for
g > 1.

Unlike H and MC (), we do not seek to compute the full group
struĆure of Pic(O ) — this would be costly since a subexponential number of relations is
required to eliminate all faĆors of the faĆor base. Here, we just aim at distinguishing orders
containingZ[π,π] from one another.

IfO ′ is an order such that ΛO ′ is striĆly contained in ΛO , a quasi-uniformly distributed
relation has probability at most 1/2+ o(1) of also holding in O ′. ăerefore, since we have a
polynomial number of orders in log |Δ| to discriminate from, it is sufficient to only generate
polynomially many orders in log log |Δ| to ensure that the relations charaĆerize the lattice
ΛO with probability 1− o(1).
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Combining the above with our earlier notes on the complexity of isogeny computation,
we have proved the following.

ăeorem ... LċA be a simple ordinary abelian variċy of dimension g deĖned over
ĭe Ėnite Ėeld wiĭ q elements. Under ĭe generalized Riemann hypoĭesĝ, we can compute
End(A ):

– if g = 1, in L(q)1+o(1) +L(q)1/
p
2+o(1) operćions;

– if g = 2, in L(q)g
p

3g/2+o(1) operćions, under Assumptions .., .., .., and
...

For g = 2, details will be given in the next chapter.

. Relations from ăin Air

As a supplement to this chapter, we shall now see how to generate relations in a generic
manner, that is, not using any extrinsic information about the underlying group. For Picard
groups, such methods are much slower than smoothness-based ones but yield much shorter
relations; this will be an important ingredient for making praĆical use of our method in
dimension two.

G S P

Let S be a sequence of elements in a đnite group G of order n, written multiplicatively,
and consider the problem of writing a prescribed element z � G as the produĆ of a subse-
quence of S; we call such a subsequence a short produĊ represenĬtion of z on S.

If G were a commutative group, we could have noted it additively, let S be a multiset
of elements of it, and look for a sub-multiset which adds up to z; in the case that S has no
repeated elements, this is known as the subsċ sum problem. However, since for our approach
it makes absolutely no difference whether G is commutative, we have chosen to use themore
general formalism of non-necessarily-commutative groups.

Consider the produĆmapπ :P(S)→GwhereP(S) denotes the set of all subsequences
of S. For all elements of G to admit short produĆ representations, the map π needs to be
surjeĆive which, by a counting argument, implies k C log2 n where k is the length of S.

In the case that G is commutative, E and R () showed that this bound is
not far from being sufficient: they prove that a random sequence S of length

k = log2 n+ log2 logn+ωn
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satisđes π(P(S)) = G with probability approaching 1 as n→∞, provided that ωn→∞.
For đnding short produĆ representations via generic means, just knowing the existence

of a preimage by π for all z � G is not enough: we need to know the distribution of such
preimages. I and N () proved the following result on the inverse dis-
tribution.

ăeorem ... Fix some real number d. For groupsG of order n large enough, we have

ProbS
h


π⋆UP(S)−UG




 C n−c
i
B n−c

where c = (d−1)/2 and ĭe sequence S ĝ drawn uniformly ć random Ěomĭe sċ of sequences
ofG wiĭ lengĭ k = (d+ o(1)) log2 n.

Recall thatUX denotes the uniform distribution on the (đnite) set X, and that the pĮh-
forward dĝtribution f⋆σ of a distribution σ on X by a funĆion f : X→ Y is deđned as

f⋆σ(y) = σ
�{x �X : f(x) � y}� ,

for any subset y of Y. Finally, the varićion dĝĬnce ∥σ−σ′∥ between two distributions on Y
is the maximum value of |σ(y)− σ′(y)| as y ranges over all subsets of Y.

In other words, the theorem means that, for a random sequence S of density d > 1, the
distribution of subsequence produĆs almost surely converges to the uniform distribution on
G as n goes to inđnity.

In some particular cases, đnding short produĆ representations is a well-known problem.
For instance, when G is the Picard group of some order and S contains all prime powers pα
with p < L(|Δ|) and α < logp |Δ|, then this is exaĆly the problem of đnding relations which
we have studied extensively. Now this problem does not have a “constant” density, as the
quantity k/ log2 n goes to inđnity pretty quickly with n.

For instances of constant density in the group G =Z/nZ, the best algorithm has a time
and ėace complexity of O(n0.3113); it consists in liĖing the instance to k subset sum prob-
lems in Z, also known as knapsack problems, which can be solved efficiently by a method
of H-G and J (). Again, this algorithm is tailored for a ėeciđc
group representation.

Algorithms that only perform multiplications and inversions (which return uniquely
identiđed group elements), draw elements at random from G, and test their equality, are
called generic algoriĭms. In essence, they are not tied to any ėeciđc group and apply to any
effeĆive group. S () proved that solving discrete logarithm problems generically
has a lower bound of Ω(pp) where p is the largest prime faĆor of n; since this is a ėecial
case of short produĆ representation, this means that generic short produĆ representation
algorithms cannot have a faster-than-square-root complexity in the worst case.
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B-S G-S

Let us đrst review classical approaches to the problem of đnding a short produĆ repre-
sentation of an element z �G on a sequence S.

Abrute-force algorithmwould exhaustively enumerate the setP(S) and for each element
y of it test whether π(y) = z.

ăe standard baby-step giant-step approach ėlits the search ėace as a direĆ produĆ
P(S) = P(A) ×P(B) simply by writing S as the concatenation of two smaller sequences
A and B; then, it aims at đnding a pair of elements (x, y) � P(A) ×P(B) which coğide in
the sense that π(x) = zπ(y)−1. ăis can be implemented efficiently by đrst precomputing
and storing a table of all π(x) for x � P(A), and then checking whether each zπ(y)−1 for
y � P(B) is in this table; the lookup can be done in time O(logn) using an efficient data
struĆure.

For convenience, we deđne an application μ which maps any sequence y = (y1,… , ym)
to μ(y) = (y−1m ,… , y−11 ), so that π(y) and π(μ(y)) are inverses in G. ăe baby-step giant-step
algorithm then amounts to the following procedure.

Algorithm ...
I: A Ėnite sequence S and a Ĭrgċ z �G.

O: If it exĝts, a subsequence of S whose produĊ ĝ z.
. Split SĆ a concćenćionAB of sequences of roughly equal sizes.
. For each x �P(A), store x in a Ĭble indexed by π(x).
. For each y �P(B):
. If π(zμ(y)) = π(x) for some x, ĭen rċurn xy.
. Rċurn ĭć z hĆ no preimage by π inP(S).

As each element ofP(A) can be represented by k/2 bits (which is a constant faĆor away
from the size of a group element, when the density d is đxed), the total memory consumed
by this algorithm isO(2k/2). By enumerating elements ofP(A) andP(B) in a suitable order
(for instance, using a Gray code), only one group operation is required per step, so that the
total runtime is O(2k/2).

S and S () gave a more ėecialized generic method for solving
knapsack problems, which improves the ėace complexity of the baby-step giant-step algo-
rithm to O(2k/4).

P R

In order to apply the Pollard ρ approach to the problem of đnding short produĆ repre-
sentations, we simply need a notion of collision on a certain domainC and an iterationmap
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φ :C →C which preserves collisions in the sense that if x and y collide, then φ(x) and φ(y)
also collide.

Here, we use the same domain that was used by the baby-step giant-step algorithm: ėlit
S as a concatenation AB of two sequences of roughly equal size, and let the domain be the
disjoint union C = A ⊔B whereA = P(A) andB = zμ(P(B)). Now collisions are
deđned with reėeĆ to the produĆ map π :C →G; when an element x �A collides with
an element y �B , that is, π(x) = π(y), then we have a short produĆ representation of z as
xy′ where y = zμ(y′).

Now since the iterationmapφmust reėeĆcollisions, itmust faĆor through the produĆ
map π so we can write φ = η ◦ π for some η : G→C . Since we have no requirement on η,
we simply take it to be a hash funĆion fromG toC , that is, an effeĆive map which behaves
as if it were drawn uniformly at random fromC G.

In praĆice, to compute η(g) we can take the unique bit-string representation of g, hash it
using astrong cryptographic hash funĆion, anduse the resulting bit-string g0g1g2…todiĆate
an element ofC ; for instance, the đrst bit g0 can be used to decide whether φ(g) lies inP(A)
or zμ(P(B)), the second bit g1 to decide whether the đrst element of A (reė. B) belongs to
φ(g), etc. (Note that η cannot be surjeĆive since G is smaller thanC .)

ăis gives the following algorithm.

Algorithm ...
I: A Ėnite sequence S and a Ĭrgċ z �G.

O: A subsequence of S whose produĊ ĝ z.
. Split SĆ a concćenćionAB of sequences of roughly equal sizes.
. Pick a random element w �C and a hĆh funĊion η : G→C .
. Find ĭe leĆt i > 0 and j C 0 such ĭć φ(i+j)(w) = φ(j)(w).
. If j = 0ĭen rċurn to Step .
. Lċ s = φ(i+j−1)(w) and lċ t = φ(j−1)(w).
. If π(s) ≠ π(t)ĭen rċurn to Step .
. If s �A and t = zμ(y) �B for some y, output sy and terminće.
. If t �A and s = zμ(y) �B for some y, output ty and terminće.

Basically, we start from a random pointw and compute iterates φ(i)(w) until we đnd two
which are equal: once we have the đrst such collision, that is, φ(s) = φ(t) with s ≠ t, we đrst
make sure it is not due to the hash funĆion, so that the collision must arise in the produĆ
map. ăen, if it is a collision between an element ofA and one ofB , which happens with
expeĆed probability 1/2, we have a short produĆ representation.

Step  can be implemented by Floyd’s algorithm, by the method of distinguished points,
or any other collision-deteĆion technique (which reduces by a constant faĆor the number
of expeĆed evaluations of the map φ before đnding a collision).
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ăis gives an algorithm with constant storage ėace and a time complexity of O(k
p
n).

We refer the reader to B. and S () for a rigorous proof (and also for details
regarding this whole seĆion) and now turn to applications.

A

ăis method aĆually has a broad range of applications; in particular, it can be used to
đnd isogenies between two ordinary elliptic curves deđned over a đnite đeld having the same
endomorphism ring in square-root time and without storage requirements. ăis application
can be found in B. and S (). Here, we will present a different one, maybe
not as important, but which applies direĆly to the topic of computing endomorphism rings.

As usual, we đx an ambient đnite base đeld Fq and letA denote an simple ordinary
abelian variety. Consider the set G of isomorphism classes of abelian varieties whose endo-
morphism ring is the same as that ofA ; as we have seen before, it is a principal homogeneous
ėace for the Picard group Pic(EndA ) whose cardinality we denote n (in the worst case, it
is exponential in log(q) and the dimension g ofA ).

Our method for computing End(A ) has so far been to compute relations in the Picard
group of the possible orders (those that contain Z[π,π]) and checking whether they hold
in the isogeny graph. Here, we take the inverse approach: we will look for relations in the
isogeny graph, and then rule out from the list of possibilities those orders in which the rela-
tions do not hold.

Of course, since the only algorithms we have at our diėosal for đnding relations in the
isogeny graph are generic, this is much slower than looking for relations in Picard groups.
However, this gives a runtime which mostly depends on the output: the closer to OK the
endomorphism ring ofA , the faster it is found.

To look for relations in the isogeny graph ofA , a baby-step giant-step approach is simple
to use: let S be a set of prime ideals of OK which are coprime to the conduĆor of Z[π,π],
ėlit it as a concatenation AB, letA =P(A) andB =P(B), and deđneC =A ⊔B . We
view an element x = (p1,p2,… ,pm) ofC as the isogeny

φp1p2…pm
(A ) = φp1

◦ φp2
◦ · · · ◦ φpm

(A )

and we deđne the map π :C →G as sending x to the variety which is the codomain of this
isogeny.

Now it is straightforward to adapt the Pollard ρ method to this context as we have done
before: it suffices to take a hash funĆion η : G→C and to iterate the map φ = η◦π enough
times to đnd a collision. Recall from Chapter  that, in the worst case, we might have

#G = #Pic
�
EndA � = q(1/2+o(1))g2



..     

so that if we take a sequence S of length at least

(d+ o(1))g2 log2 q

for some d > 1, we can effeĆively đnd a relation of the isogeny graph in probabilistic time
q(1/4+o(1))g2 using virtually no memory, assuming the quasi-uniform distribution of produĆs
of S in thePicard group; this assumption canbe replacedby the generalizedRiemannhypoth-
esis by substituting log2(q) by log

2+ε(q) above, via a result of J,M, andV
() — note however that this has little effeĆ on the runtime: although the produĆs to
be computed have more terms, the collision probability is unchanged.

By đnding relations in the isogeny graph ofA , we can testwhether a given orderO con-
tains End(A ) in time disc(EndA )1/4+o(1) up to polynomial faĆors in log(q) and g. ăere-
fore, locating the endomorphism ring takes just as much time using the “reversed” lattice-
ascending procedure of the previous chapter for computing End(A ) from above.

Note that certiđcates that are generated with such generic methods have a length poly-
nomial in the size of the base đeld logq, which is much smaller than what subexponential
methods can generate. More precisely, this length can essentially be quadratic if we require
that the runtime of the generation algorithm be bounded under the generalized Riemann
hypothesis (viaăeorem ..), or linear if the heuristic ConjeĆure .. is used instead.

Verifying the certiđcate then just requires polynomial time in its size: it suffices to verify
the number of points on the variety and compute the isogenies associated to the ideals in the
relation.

Here again, we have made use of isogenies between isomorphism classes of abelian vari-
eties, not involving any polarizations, which is not an effeĆive notion in dimension g > 1.
We thus devote the next chapter to describing the changes required for making effeĆive use
of our endomorphism computing method on abelian varieties of dimension g > 1.
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

Ŷolarizedųċhod

TomakepraĆical use of our subexponentialmethod for computing endomorphism rings
of ordinary abelian varieties in dimension higher than one, polarizations must be taken into
account. ăis requires certain modiđcations to be made on our framework, algorithms, and
implementation, which we now describe. We also need to rely on more unproven assump-
tions.

We focus on the case of Jacobian varieties of genus-two hyperelliptic curves, since the
availability of certain computational tools (such as themethodofM ()) is limited
in higher dimensions. Notwithstanding those issues, we believe most of the differences that
higher-dimensional varieties have in comparison to elliptic curves are addressed here.

ăe modiđed algorithm will be presented before the computation of isogenies; we then
give aĆual computation results and đnally discuss vertical isogenies.

. Algorithm

CM F

Westart by recalling some of the theory on which our approach relies.
LetA be a simple ordinary principally polarized abelian variety of dimension g deđned

over a đnite đeld. Weassume that an embedding of its complexmultiplicationđeldK =Q(π)
into End(A )⊗Q has been đxed, which is equivalent to đxing a type Φ on K.

As we saw in Chapter , ideals of the reĔex đeld Kr aĆ on isomorphism classes of prin-
cipally polarized abelian varietiesA via the reĔex type norm (see Figure ):

r � I(Kr) :Cg/Φ(a),Eξ
Φ 7¹→Cg/Φ
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F . Complex multiplication đeld extensions and their reĔex counterparts.

ăe main difference to the preceding chapter is that, when the dimension g is two or
more, this aĆion only gives certain elements of the polarized class group C(OK); in other
words, it describes certain, but not all, isogenies. ăerefore, a rigorous analysis of our algo-
rithm in this setting would be much more involved than in the utopian case where polariza-
tions were disregarded: one would need to assert the existence of short relations arising via
the reĔex type norm, which we see no simple way of doing. ăerefore we assume:

Assumption ... Under ĭe map (a, ℓ) 7→ (aO , ℓ), composed to ĭe right wiĭ ĭe reęex
type norm, ideals of ĭe ring of integers of ĭe reęex Ėeld aĊ faiĭfuğy on ĭe sċ AVO (k) of
principağy polarized abelian variċies wiĭ endomorphĝm O over ĭe bĆe Ėeld k.

ăis comes on top of the generalized Riemann hypothesis, and Assumptions ..,
.., and .., which state reėeĆively:

– OrdersO ⊂O ′ for which the above aĆion is identical have bounded index [O ′ : O ].
– ăemethodofE andL () computesEnd(A )ℓ in ℓ

O(1) time.

– ăe norms of reduced ideals are as smooth as random integers.

ăe đrst assumption is a helpful heuristic, the third comes from B (), and
the second deliberately rules out cases where the local lattice of orders is deep. ăey were all
largely veriđed in the range of praĆical problems that we considered, except in certain rare
cases.



..  

We also require the ability to draw points at random fromA and other varieties of its
isogeny class; for g = 2, this is always the case using Weierstrass forms, to which any variety
can be put using the method of M ().ăerefore we additionally impose g = 2.

Under all these assumptions, the expeĆed runtime is, as we mentioned before:

L(q)g
p

3g/2+o(1)

O

LetA be the input polarized abelian variety, given as the Jacobian variety of a hyperellip-
tic curveC deđned over the đnite đeld with q elements. First, we compute the charaĆeristic
polynomial χπ of its Frobenius endomorphism π, which the algorithm of P () does
in polynomial time. In praĆice, we relied on the point-counting routines of the M
() computational algebra system, which use the techniques of G and H
(); larger base đelds could be reached using the state-of-the-art implementation and op-
timizations of G and S ().

In the lattice of orders, we đnd End(A ) from below using the following algorithm from
Chapter —we also proposed away of đnding End(A ) from abovewhich is suited to vari-
eties construĆed via the complex multiplication method (rather than at random, as below);
however, at the time of thiswriting, only abelian varietieswithmaximal endomorphism rings
can be generated in this way, except in the one-dimensional case.

Algorithm ...
I: A simple ordinary principağy polarized abelian variċyA over a Ėnite Ėeld Fq.

O: An order ĝomorphic to its endomorphĝm ring.
. Compute ĭe FrobeniĮ polynomial χπ(x) ofA .
. FaĊor ĭe dĝcriminant Δ and construĊ ĭe order O ′ =Z[π,π].
. For orders O direĊly aboĂe O ′:
. If O ⊂ End(A ) sċ O ′←O and go to Step .
. Rċurn O ′.

To determine whether a ėeciđc order O is contained in the endomorphism ring ofA ,
we seleĆed several relations of it (typically logarithmically many in the number of orders of
containingZ[π,π], although doubly logarithmically many should theoretically be enough),
and checked whether these relations hold in the isogeny graph. ăe latter step requires us to
evaluate isogenies and is the bottleneck of the whole algorithm.
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F . Galois groups of the complex multiplication đelds tower.

D  S P

To study the ėlitting pattern of rational primes ℓ in complex multiplications đeld K, let
us đrst present the setting towhichăeorem.. can be applied. We aremostly interested
in the ėlitting of primes in the reĔex đeld Kr of the đeld by which our variety has complex
multiplication, but it makes no difference for this analysis.

Denote by K any complex multiplication đeld of degree 2g, and write Kc for its normal
closure. Similarly, denote by Kc

+ the normal closure of its totally real subđeld K+. ăis gives
a tower of đelds as diėlayed on Figure .

In the typical case of non-Galois number đelds, D () established the iso-
morphismsGal(Kc

+/Q) ASg andGal(K
c/Kc

+) A (Z/2)ν for some integer ν in {1,… , g}, and
described the aĆion of the former on the latter so that we have an explicit description of the
Galois struĆure of Kc/Q as

Gal(Kc/Q) A (Z/2)ν⋊Sg.

Note that, when a principally polarized abelian varietyA is absolutely simple (as we assume
here), its complex multiplication đeld K is primitive and we have ν = g. In dimension g = 2,
the Galois group of Kc/Q is then isomorphic to the dihedral group D4 = Z/4⋊Z/2, and
we obtain the densities of Figure  as a consequence.
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  (1,1, 1, 1) (1, 1, 2) (1, 3) (2, 2) (4)
   1/8 1/4 0 3/8 1/4

F . Density of rational primes pėlitting in a đxed non-normal quartic complexmul-
tiplication đeld as

∏
pi with pattern (N(pi)).

F R

Finding relations is a quite standard step. We have already mentioned that the com-
putability of the algebraic struĆures we deal with has been well studied. Here, in faĆ, we do
not even need to compute the polarized class group of Shimura: since we are restriĆed to us-
ing isogenies which arise under the reĔex type norm, we are in faĆ seeking for relations of the
class group ofO r. To obtain a subexponential asymptotic runtime, we use the generalization
of the algorithm of H andMC () by B ().

Remark. As a praĆical optimization, since evaluating isogenies is so costly, more timemay
be dedicated to đnding a shorter relation. For the range of input sizes we considered, it was
well worth using the exponential algorithm below which is essentially a baby-step giant-step
approach borrowing ideas of C, D  D, and O () for the effeĆive
ideal arithmetic; it đnds the shortest possible relation, therefore improving greatly theėeed
of the isogeny step, and reducing the overall runtime.

Notation. Recall that bx(f(x)) may denote any funĆion satisfying the inequalities f(x) <
bx(f(x)) < f(x)1+o(1) and computable in essentially linear time in f(x).

Algorithm ...
I: An order O of dĝcriminantΔ in a number ĖeldK.

O: Relćions of O .
. LċB consĝt of ağ prime ideals wiĭ norm up to bΔ(12 log2 |Δ|).
. Creće a hĆh ĬbleH.
. Compute ĭe produĊ a of a random subsċ ofB.
. Lċ b be an LLL reduĊion of a.
. IfH hĆ an entry for b, outputH(b)− a.
. Oĭerwĝe, sċH(b)← a and go back to Step .

Step  means that b is the ideal generated over O by an LLL basis of the ideal a, where
the LLL reduĆion can be computed along any direĆion as described by C, D 
D, and O (). ăe ideals b aĆ as class representatives and we do not require
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that they are unique: it is enough that they are small so that, by the pigeonhole principle,
classes are identiđed aĖer a few more trials than what would be required otherwise.

ăe use of such an exponential algorithm also has an additional beneđt: it allows us to
choosewhich primeswewant to include in our relations, which subexponential smoothness-
based methods do not permit.

For instance, we can choose to only use primes which ėlit as pp, hence allowing for a
cardinality-based approach and ėaring the need to compute the charaĆeristic polynomial
of the Frobenius polynomial aĆing on the kernel of the isogeny. ăis is not a tremendous
improvement since our current isogeny-evaluating technique aĆually requires computing the
kernel, but it would be helpful if a modular-polynomial-based method was used.

More importantly, we can restriĆ to primes which are congruent to one modulo four;
this avoids the need for an additional quadratic extension to compute torsion points, and
lowers the complexity of level-change formulas from ℓ2g+o(1) to ℓg+o(1).

. Computing Isogenies

To determine the endomorphism ring of a principally polarized abelian variety by ex-
ploiting the complex multiplication aĆion, we need to evaluate the isogeny φa correėond-
ing to a prescribed ideal a. In dimension one, this uses the formulas of V () and
Stage  of the algorithm by G, H, and S ().

ăe work of R () was interpreted by B and M () to com-
pute isogenies of type (Z/2)2 between Jacobian varieties of genus-two hyperelliptic curves.
Later, C, K, and L () obtained relations describing pairs of abelian
surfaces related by an isogeny of type (Z/3)2; this was implemented and publicly released in
the E () package.

ăis seĆion gives a brief overview of the evaluation of general isogenies between abelian
varieties as implemented in the library of B., C, and R (); for most of the
mathematical aėeĆs, we refer to L and R () and C and R
(). We evaluate φa in four steps: we đrst đnd its kernel, convert it into theta coordi-
nates, then perform the aĆual isogeny computation, and đnally express the result as absolute
invariants.

F K

Kernels of isogenies of type (Z/ℓ)g that reėeĆ the polarization are maximal isotropic
rational subgroups ofA isomorphic to (Z/ℓ)g and deđned over an algebraic closure of the
base đeld Fq.
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Since each has order ℓg, is rational over the base đeld, and contains the neutral element,
they are all deđned over an extension of degree e′(ℓ) at most ℓg − 1. We will thus simply
enumerate all such subgroups of the ℓ-torsion group ofA (Fqe′(ℓ)) and then đnd which one
correėonds to the ideal a as mentioned above.

To đnd these, đrst compute a basis of the ℓ-Sylow subgroup ofA over the extension
đeld, which we denote by

A
�
Fqe′(ℓ)

�
[ℓ∞];

for this, we use the method of C () which we have discussed before: it
amounts to taking random points ofA (this is easy, for instance, when it has a Weierstrass
form), multiplying them by the cofaĆor of ℓ∞ in #A (Fqe′(ℓ)), and “liĖing” these points along
each other until a basis of the ℓ-torsion group is obtained.

We then derive a sympleĆic basis ofA (Fqe′(ℓ))[ℓ] for theWeil pairing. For simplicity, đx

an ℓth root of unity and consider the problem additively under the correėonding logarithm
log : μℓ(C)→ Z/ℓ. On the basis we are looking for, (the logarithm of ) the Weil pairing is
given by the matrix �

0 Ig−Ig 0

�
.

To obtain such a basis (e1,… , eg, f1,… , fg) satisfying
logΨWeil(ei, fj) = δij
logΨWeil(ei, ej) = 0
logΨWeil(fi, fj) = 0

we use an elementary, orthogonalization-like algorithm, similar to the classical algorithm for
computing Smith normal forms.

ăis basis allows us to enumerate all sympleĆic subgroups easily and, amongst these, we
seleĆ those that are rational, that is, stable under the Frobenius endomorphism, and đnd
which is aĆed upon with charaĆeristic polynomial u (given by the ideal a).

Note that when ℓ is congruent to onemodulo four, đnding randompoints ofA is faster
by a faĆor of two since computing the square root of the Weierstrass polynomial evaluated
at x in order to get the y-coordinate simply amounts to a modular exponentiation.



  

M  T C

Recall that ifA ACg/(Zg+ΩZg) is a complex torus with period matrix Ω inHg, then
the set of theta funĆions

ΘAa,b : z �Cg 7¹→ ∑
(u+a)�Zg

exp
�
iπ
�
1
nbuΩu+2bu�z+ b

���
,

where a = 0 and b is a veĆor of 1
n (Z/n)g, forms the ĭċa coordinće system of level n. It

is a coordinate system for abelian varieties (and also incorporates information about the n-
torsion), but can represent points of such varieties too. It has an algebraic counterpart which
is applicable to varieties deđned over đnite đelds.

ăe points P of the kernel of the isogeny we wish to evaluate, as output by themethod of
C (), are expressed inMumford coordinate on aWeierstrass model for the
hyperelliptic curveC : y2 = f(x) of whichA is the Jacobian variety. As a đrst step towards
mapping these points to theta coordinates, we extend the base đeld so as tomake fėlit com-
pletely; then, by a homographic transformation (also known as Möbius transformation) of
the x coordinate, we derive its Rosenhain normal form

y2 = x(x− 1)
2g−1∏
i=1

(x− ai)

which might require working in an extension of the base đeld.
ăe formulas of T (), then give theta coordinates of level two or four corre-

ėonding to the varietyA = Jac(C ). In order to map points fromMumford representation
to theta coordinates, we need equations derived by W ().

Note that theta coordinates of level two aĆually represent the Kummer surface of an
abelian variety, that is, identify a varietyA = Jac(C : y2 = f(x)) with its twist Jac( eC : ωy2 =
f(x)) where ω is a non-quadratic residue in the base đeld. ăis is not too much of an issue for
us since the isogeny class ofA is identiđed by the charaĆeristic polynomial of its Frobenius
endomorphism, so there is no ambiguity on which of an abelian varietyB or its twist an
isogeny φa with domainA maps to.

However, for a cleaner approach, we prefer to use level four theta coordinates which
identify the varietyA uniquely; this comes at the expense of ėeed, but the slow down is
minor, eėecially as đnding the ℓ-torsion remains the overall bottleneck.

I  L C

L and R () described isogenies as projeĆions from higher-level theta
coordinate systems to lower-level ones; they also described the associated machinery (addi-
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F . Evaluating isogenies of type (Z/ℓ2)g via two theta level changes.

tion laws, etc.) required to make effeĆive use of this result. Before discussing how it applies
to our setting, let us brieĔy recall their result.

ăeorem ... LċH be a subgroup ĝomorphic to (Z/ℓ)g of an abelian variċyA of
dimension g, and lċ n be any integer coprime to ℓ. ąe ĭċa funĊions of level n onA /H are
a subsċ of ĭe ĭċa funĊions of level ℓn onA .

ăis introduces an change of level; to address this, L and R () noted
that subsets of the Fourier transform of theta funĆions of level ℓn onA correėond to theta
funĆions of level n for abelian varieties obtained by dual isogenies of degree ℓ; this allows
them to compute isogenies of type (Z/ℓ2)g between abelian varieties expressed by level-n
theta funĆions; see Figure .

Our framework for computing endomorphism rings can be adapted to this setting: rela-
tions can be constrained to only involve squares of ideals, so that the associated isogenies are
all of type (Z/ℓ2)g. However, this implies loosing all the information regarding the 2-torsion
of the reĔex class groupC(O r). C and L () showed that class groups typ-
ically have a large 2-torsion subgroup, so it is not likely that all pairs of class groups that are
identical up to 2-torsion can be distinguished efficiently using the local method of E-
 and L ().

C and R () then derived from earlier work of K () and
K () formulas which allow tomap points from level-ℓn theta coordinates to level-
n theta coordinates, avoiding the need to evaluate an additional isogeny. ăey apply these
formulas to evaluating isogenies of type (Z/ℓ)g between abelian varieties expressed in theta
coordinates of level n.
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M   I

In order to determine whether a relation holds in the isogeny graph of an abelian variety
(to eventually determine its endomorphism ring), we need to compose many isogenies of
type (Z/ℓ)g for various primes ℓ. We have explained how to compute an isogenyA →
A ′ of prescribed kernel whereA is given in Weierstrass form and A ′ is given as theta
coordinates of level n. To iterate this construĆion, it remains to explain how we can obtain
aWeierstrass equation forA ′.

In faĆ, this can be done elementarily by inverting the formulas of T ().
However, the theta coordinates ofA that we used in the isogeny computation are deđned
over a large extension of the base đeld which contains the roots of the Weierstrass polyno-
mial of the curve, certainn-torsionpoints (recall thatn = 2or4) and certain ℓ-torsionpoints;
the theta coordinates ofA ′, and therefore also its Weierstrass equation that we derive, are
consequently deđned over that large extension.

When we know thatA ′ is aĆually deđned over the base đeld (for instance, because the
chosen isogeny is rational), we recover a rationalWeierstrass equation by đrst computing the
absolute invariants ofA ′ and then using the algorithm of M () to reconstruĆ a
curveC ′ whose Jacobian variety Jac(C ′) isA ′.

As an optimization to the algorithm for đnding the ℓ-torsion of the new curveA ′ and
then compute the next isogeny step, R noticed that part of the ℓ-torsion ofA can
be reused: indeed, we haveA [ℓ] A (Z/ℓ)2g and the isogenyA →A ′ only kills half of it;
therefore, we can map the remaining points all the way fromA toA ′ and start the search
for a basis ofA ′(Fq′(ℓ))[ℓ] knowing already half the solution. ăis can ėeed up the search
for rational torsion subgroups of type (Z/ℓ)g by a faĆor of two.

Abelian varieties of dimension striĆly greater than two are not necessarily Jacobian va-
rieties of hyperelliptic curves, and from dimension four on they might not even be Jacobian
varieties at all. ăerefore, two of our building blocks fail:

– the seleĆion of random points (to đnd a basis forA [ℓ]);

– the method of M () (to reduce the đeld of deđnition ofA ′).

ăe former can easily be addressed by assuming that our abelian varieties come equippedwith
an efficient algorithm for obtaining random points. ăe latter is a more delicate issue: the
isogeny computation requires working in an extension đeld, and for g > 2 we do not know
how to go back to the base đeld aĖerwards.
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F . Average time for đnding the ℓ-torsion of an abelian variety of dimension two
over the đeld with 251 elements, for ℓ � {2,3, 5, 7, 11,13,17,19} and all possible e′(ℓ).
. PraĆical Computations

All computations were realized using the library of B., C, and R ().

F T

ăe bottleneck of our algorithm is typically to đnd a basis for the ℓ-torsion subgroup of
A over an extension where all points of rational subgroups of type (Z/ℓ)g are deđned. ăe
cost is twofold:

– computing over an extension of degree e′(ℓ) of the base đeld;

– multiplying points by the cofaĆor of ℓ∞ in #A (Fqe′(ℓ)) ~ qge′(ℓ).

In the worst case, e′(ℓ) can be as large as ℓg − 1, so that the overall complexity is ℓ2g+o(1)

disregarding logarithmic faĆors in q, which quickly becomes prohibitive. As argued before,
exponential methods for đnding relations offer the advantage that ėeciđc primes ℓ can be
chosen for which e′(ℓ) is small.

Figure  shows the time it takes, on average for 10 randomly chosen abelian surfaces
deđned over the đeld F251, to compute the ℓ-torsion over an extension of degree e′.
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F . Number of iterations the latter algorithm requires before đnding a relation in a
quartic complex multiplication đeld with certain class number (also known as Picard num-
ber). ăe lines plot y = x and y =

p
x.

As can be expeĆed, this runtime is slightly more than linear in the extension degree, and
does not highly depend on ℓ. However, we observe that for a prescribed ℓ the torsion of
varieties with a certain e′(ℓ) is sometimes faster than those of varieties with a smaller e′(ℓ);
this is likely due to the internal representation of the extensions as tower đelds in M
(), and also possibly to ėecial features of the varieties.

F R

We implemented inM () the simple baby-step giant-stepmethod that we de-
scribed above and found that it behaveswell: inmost cases, the number of iterations required
to đnd a collision is not so far from the

p
h (where h denotes the class number) that would

be expeĆed if each ideal class contained a unique reduced ideal.
Figure  shows the number of iterations our algorithm goes through before the đrst

relation is found; we use the order O = Z[π,π] for a thousand Jacobian varieties of random
hyperelliptic curves of genus two. ăe class number diėlayed is aĆually the approximationp|Δ|/R given by the Brauer–Siegel theorem.

We observe that the iteration count lies somewhere in between
p
h and h. Although in
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some cases this number went slightly above the class number, the runtime was always accept-
able: it was never more than two seconds when the class number was less than a thousand,
and always less than a hundred seconds in our range of parameters.

B-C S

Let us đrst present an example where our algorithm performsmuch better than all other
alternatives. ăe conduĊor gap is the largest prime faĆor of the index [OK : Z[π,π]]; here,
we consider a case of large conduĆor gap, which makes the method of E and
L () impraĆical. Unfortunately, we were unable to compare our method with
that ofW (), as we did not have an implementation of the latter at our diėosal.

To đnd an abelian variety with a large conduĆor gap, we generated genus-two hyperel-
liptic curves at random until one whose Jacobian variety has the desired property was found;
we obtained the hyperelliptic curve with equation

y2 = 80742x5 +56078x4 +76952x3 +134685x2 +60828x+119537

deđned over the đeld with 161983 elements; letA denote its Jacobian variety. ăe charac-
teristic polynomial of its Frobenius endomorphism is

z4− 144z3 +10368z2− 144 · 161983z+1619832

and it deđnes a quartic complex multiplication đeld K =Q(π) in which the ring of integers
contains the minimal orderZ[π,π] with prime index ℓ = 156799.

Since the full ℓ-torsion ofA lies in an extension of degree e(ℓ) = 78399, it is challenging
to try to compute End(A ) using the method of E and L ().

However, the Picard group ofM = OK has order 460; this is not surprising as a large part
of Δ = disc(π) contributes to the conduĆor gap so little is leĖ to build up disc(K). It is thus
easy to đnd relations in the associated polarized class group C(OK). For instance, one easily
veriđes that the element (a, 3) has order 115, where a can be any ideal of norm 9 (there are
just two such elements, inverses of each others).

ăe aĆion of (a, 3)115 onA is computed easily, as the 3-torsion ofA lives over an
extension of degree 8. Using just one core of an Intel Xeon E processor clocked at 2.83
GHz, our humble Magma implementation computes it in just over four minutes. Since it
đnds that φ(a,3)115A ≠A , we deduce that End(A ) = Z[π,π]. Note that, since the aĆion
of OK on AVOK(k) is always faithful, and there are only two orders in the lattice, this result
holds unconditionally regardless of the assumptions.
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1337 1379
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13 1379 1337 13

7913 37

37 79 1379 13 13

37 79

13793737 13 13

37 131379

F . Lattice of orders with OK on top and Z[π,π] at the bottom; lines indicate that
the order below is contained in the order above with index the label right off the line.

W-C S

Now let us consider an abelian variety that is expeĆedly suited to the method of E-
 and L (), namely, one for which the conduĆor gap [OK : Z[π,π]] is
short. We take the Jacobian varietyA of the hyperelliptic curve

y2 = 2987x5 +1680x4 +3443x3 +1918x2 +2983x+489

deđned over the đeld with 3499 elements. ăe charaĆeristic polynomial of π is

z4 +48z3 +1152z2 +48 · 3499z+34992

and we đnd that there are 24 orders containing (or equal to) Z[π,π]; their indices in the
maximal order divide 132 · 37 · 79 as diėlayed on Figure .

We use αℓ = (aℓ, ℓ) � C for ℓ � {3,5, 7} where aℓ is an arbitrary ideal of norm ℓ2; the
full ℓ-torsion is deđned over an extension of degree 8, 24, and 24, reėeĆively, so it takes on
average 1, 3.5, and 5.5 seconds to evaluate one ℓ-isogeny.

We used the relation α53α
7
7 = 1 for the yellow square order, α105 = 1 for the blue triangle

order, and α23α
16
5 α−27 = 1 for both the red circle and green diamond order. Checking these

relations in the isogeny graph took only slightly more than twominutes, and since none was
found to hold, our algorithm returned that End(A ) =Z[π,π].

Even in this case, which would a priori favor themethod of E and L
() (the full 37 and 79-torsion are deđned over extensions of degree 1332 and 948, re-
ėeĆively), our algorithm performs well while still leaving some room for improvement.
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. Isogeny Volcanoes

Let us now đx a prime ℓ and study the struĆure of the conneĆed component of the
graph of isogenies of type (Z/ℓ)g containing a prescribed principally polarized simple ordi-
nary abelian varietyA deđned over some đnite đeld.

G S

K () and later FĿ andM () depiĆed the struĆure of such
graphs in dimension one as volcanoes, containing a crćer formed by varieties whose endo-
morphism ring is locally maximal. Horizontal isogenies arrange these varieties in a (possibly
degenerated) circle, and from each vertex on it hang complete ℓ-ary trees; their number and
depth are entirely determined by ℓ and the isogeny class.

In dimension twoormore,mostėeciđc details are lost, but the generalstruĆure remains
the same; most important for our algorithms is that craters are still Cayley graphs.

Let G = 〈V,E〉 be such an isogeny graph: vertices V correėond to abelian varieties and
edges E (a symmetric subset of V2) to isogenies of type (Z/ℓ)g between them. We start by
partitioningG into layersGO for each orderO aboveZ[π,π]: each layer contains the vertices
whose associated varieties have an endomorphism ring isomorphic to O .

Note that, in a conneĆed component, certain layers can be empty as not all isogenous
varieties might be reachable by sequences of isogenies of type (Z/ℓ)g. We say that a layer GO
is maximal when there is no non-empty GO ′ with O ⊊ O ′; typically, this means that when
GOK is non-empty, it is the unique maximal layer.

Our observations of isogeny volcanoes will be ėlit in three parts:

– the core: the union of maximal layers and their horizontal isogenies;

– the branches: the vertical isogenies;

– the coĂering: the horizontal isogenies in non-maximal layers.

OĖen, the graph has the familiar piĆure of a core, out of which branches hang, and there
is no covering. However, we will see that unusual phenomenons can occur, such as part of
the branches substituting to the core struĆure.

At any rate, we must warn the reader that our description of branches (which are the
key to understanding the relationship of ℓ-isogeny volcanoes and the struĆure of endomor-
phism rings locally at ℓ)will be short andqualitative, as this thesis focuses onusing horizontal
isogenies and does not pretend to add any insight on the struĆure of vertical isogenies.
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C

Assume the core consists of a single layer GO (we will consider the case where there are
two or more below).

At least in the case thatO is amaximal order, the theory of complexmultiplicationproves
that the set of horizontal isogenies of type (Z/ℓ)g in GO correėonds to a certain subgroup
of C(O ) formed of ideals of norm ℓg. ăerefore, the core is a Cayley graph. We shall denote
by C(X|Y) the Cayley graph of X in the free abelian group generated by X with relations Y.

When g = 2, the order O is quartic, and the possible unramiđed ėlitting patterns of a
prime ℓ in O are (1,1, 1, 1), (1, 1, 2), (1, 3), (2, 2), and (4). ăe third case never happens in
complex multiplication đelds (it is incompatible with complex conjugation) and the latter is
that of inert primes which aĆ trivially on the isogeny graph, so we disregard both.

In the second case where ℓ ėlits as ppq with N(q) = ℓ2 there are, in general, no ideals
a of norm ℓ2 such that aa is principal, which means there are no correėonding elements in
the polarized class groupC(O ) and no isogenies of type (Z/ℓ)g.

In the fourth casewhere ℓėlits aspp, bothp andp liĖ toC(O ) as α = (p, ℓ) andβ = (p, ℓ).
ăe core of the isogeny graphGO is then theCayley graphC(α,β|αβ,αordα), where the orders
implied are those of the correėonding ideals as elements of the Picard group. ăis gives a
cycle struĆure as Figure  diėlays.

In the đrst case where ℓ ėlits as ppqq, there are four ideals of norm ℓ2 whose prod-
uĆ with their conjugate is principal, namely pq, pq, pq, and pq; if we denote the corre-
ėonding elements of C(O ) by α, β, γ, and δ, we obtain that the core GO is the Cayley graph
C(α,β, γ, δ|αβ, γδ, αordα, γordγ); this is a quadrangulationof a torus, as canbe seenonFigure .

Although we were unable to compute aĆual isogeny graphs for g > 2, primes ℓ which
completely ėlit as

∏
p�P pp (with #P = g) would then yield the 2g elements of C(O )

αF =

∏
p�F p

∏
p�F p, ℓ

g


for each subset F ofP; the core would then be the Cayley graph

C

 �
αF
�
F⊂P

�����
 ∏

F�GαF

!
,
�
αordαF
F

�
F⊂P

!
where the middle sequence ranges over all sets G of subsets ofP which satisfy #{F � G :
p � F} = #{F �G : p � F} for all p �P. Topologically, this is the 1-skeleton of a simplicial
complex homeomorphic to the g-torus (the produĆ of g copies of the 1-ėhere).
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F . Graph of isogenies of type (Z/3)2 containing the Jacobian variety of the curve
y2 = 3x5 +15x4 +11x3 +3x2 +11x+12 over the đeld with 19 elements.

F . Graph of isogenies of type (Z/7)2 containing the Jacobian variety of the curve
y2 = 106x6 +83x5 +18x4 +52x3 +49x2 +11x+41 over the đeld with 109 elements.
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Note that all the above holds over an algebraic closure, as not all isogenies correėonding
to ideals of norm ℓg of C(O ) need to be rational.

B

Let us now consider two-dimensional ℓ-isogeny graphs in the case that ℓOK is not co-
prime with the conduĆor of Z[π,π]. Although our algorithms for computing endomor-
phism rings prefer to avoid such situations, they are an interesting application of our isogeny-
computing library.

Each đgure contains two parts: the isogeny graph to the leĖ, and the lattice of orders to
the right. Vertices of the isogeny graph are colored the same way as the endomorphism rings
of the correėonding abelian varieties are in the lattice of orders.

Recall that in dimension one, a certain number of complete n-ary trees of uniform depth
hang from each vertex of the core. ăis might also happen in higher dimension, but other
scenarios are possible. For instance, B,G, andL () observed
in their Example . that trees hanging from the core might have different depths. Figure 
shows the same phenomenon in a more generic-looking graph. ăis unbalance shows that
not all isogenies of type (Z/ℓ)g need be uniformly rational.

Figure  also features isogeny of type (Z/ℓ)2 between abelian varieties whose endomor-
phism rings have index ℓ2 in each other, more ėeciđcally between the green diamond and
cyan oĆagon dots. ăis can lead to disturbing graphs such as that of Figure  where the en-
domorphism rings of varieties (Z/ℓ)2-isogenous to varieties withmaximal ones are the order
of index 32, some order of index 3, but not the maximal order itself. Going from one variety
with maximal endomorphism ring to another is however possible by đrst going through a
non-maximal one and then going up again.

In such cases, the partitioning of the features of isogeny graphs into a core, branches, and
coverings is somewhat Ĕawed. Although with our deđnition, the core of Figure  consists
of both curves with red circle (maximal) and yellow square (index 3) endomorphism rings.

ăis illustrates another obstruĆion to climbing higher-dimensional volcanoes: some-
times, steps can only be climbed in pairs, which prevents one to fully enumerate an isogeny
class just by following isogenies of type (Z/ℓ)g. Naturally, we see (hypothetical) isogenies of
type (Z/ℓ) as the answer to this problem.

C

Wecall covering the outer layers of the isogeny graph; those are horizontal isogenies aris-
ing as complex multiplication “residues.” Although there are no ideals of norm ℓg in imagi-
nary quadratic orders whose conduĆors are divisible by ℓ, this sometimes happen in higher
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3

3 3 3

F . Graph of isogenies of type (Z/3)2 containing the Jacobian variety of the curve
y2 = 44x6 +36x5 +48x4 +29x3 +3x2 +44x+34 over the đeld with 61 elements.

3 3

3 3

F . Graph of isogenies of type (Z/3)2 containing the Jacobian variety of the curve
y2 = 13x6 +5x5 +37x4 +31x3 + x2 +5x+3 over the đeld with 43 elements.
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dimension; by complex multiplication, such ideals give rise to horizontal isogenies amongst
varieties with non-maximal endomorphism rings.

ăis was đrst noted by B, G, and L () in their Exam-
ple . as an obstruĆion to a straightforward generalization of the endomorphism-ring-
computing algorithmofK (). Indeed, the presence of cycles other than at the core,
such as seen in Figures  and , makes it difficult to obtain useful information about en-
domorphism rings by exploring the isogeny graph blindly.

In arbitrary dimension g, when a prime ℓ is completelyėlit in themaximal order, we have
argued before that the core of the isogeny graph is the 1-skeleton of a g-torus. In ordersO of
conduĆor not coprime to ℓ, since not all prime ideals of norm ℓ can be invertible (otherwise
ℓ itself would be), there are at most g− 1 of them. ăe construĆion of the covering as a
Cayley graph is then identical to the maximal case except for two differences:

– P now consists of g− 1 ideals at the most;

– its aĆion on GO need not be transitive.

Since we deđned our isogeny graphs as being conneĆed components, the subgraph of hori-
zontal isogenies in the core was always conneĆed (in this case where we assume that ℓ com-
pletely ėlits and that all elements of C(O ) of norm ℓg arise as rational isogenies); however,
there is no reason for this to happen in the cover where we have a smallerP, which is the
reason for the second difference.

ăe graph of horizontal isogenies ofGO therefore has the topological struĆure of several
copies of the 1-skeleton of a simplicial complex homeomorphic to the uO -torus, for some
integer uO < g. Obviously, the integer uO is non-decreasing with reėeĆ to the orderO (for
the inclusion order).

In the case g = 2, when the subgroup generated by the invertible ideals of norm ℓ2 in
C(O ) is small, we obtain an isogeny graph such as that of Figure . On the other hand,
when it is large, its shape is similar to Figure .

To compute endomorphism rings, such ideals can be allowed in our relations as long as
they are invertible in Z[π,π]. Although this has no effeĆ on the asymptotic complexity of
our method, it provides a valuable praĆical optimization: since computing isogenies is the
bottleneck, not using any ideal of norm ℓg just because some are not invertible would be a
loss, eėecially if the full ℓ-torsion conveniently lies in a small extension of the base đeld.
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3 3

3 3

F . Graph of isogenies of type (Z/3)2 containing the Jacobian variety of the curve
y2 = 8x6 +3x5 +7x4 +5x3 +12x2 +5x+5 over the đeld with 23 elements.

3 3

3 3

F . Graph of isogenies of type (Z/3)2 containing the Jacobian variety of the curve
y2 = 10x6 +18x5 +24x4 +3x3 +33x2 +26x+25 over the đeld with 41 elements.
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Summary

E R  C

Modern communications heavily rely on cryptography to ensure data integrity and pri-
vacy. Over the past two decades, very efficient, secure, and featureful cryptographic schemes
have been built on top of abelian varieties deđned over đnite đelds. ăis thesis contributes
to several computational aėeĆs of ordinary abelian varieties related to their endomorphism
ring struĆure.

ăis struĆure plays a crucial role in the construĆion of abelian varieties with desirable
properties. For instance, pairings have recently enabledmany advanced cryptographic prim-
itives; generating abelian varieties endowed with efficient pairings requires seleĆing suitable
endomorphism rings, and we show that more such rings can be used than expeĆed.

We also address the inverse problem, that of computing the endomorphism ring of a
prescribed abelian variety, which has several applications of its own. Prior state-of-the-art
methods could only solve this problem in exponential time, andwe design several algorithms
of subexponential complexity for solving it in the ordinary case.

For elliptic curves, our algorithms are very effeĆive andwedemonstrate their praĆicality
by solving large problems thatwere previously intraĆable. Additionally, we rigorously bound
the complexity of ourmain algorithm assuming solely the extended Riemann hypothesis. As
an alternative to one of our subroutines, we also consider a generalization of the subset sum
problem in đnite groups, and show how it can be solved using little memory.

Finally, we generalize our method to higher-dimensional abelian varieties, for which we
rely on further heuristic assumptions. PraĆically ėeaking, we develop a library enabling the
computation of isogenies between abelian varieties; using this important building block in
our main algorithm, we apply our generalized method to compute several illustrative and
record examples.



Research ProėeĆs

In this thesis, we effeĆively exploited complex multiplication theory to compute the
endomorphism ring struĆure of a prescribed ordinary abelian variety deđned over a đnite
đeld. For elliptic curves, we were additionally able to rigorously analyze our algorithms, and
we believe their asymptotic complexity leaves little room for improvement.

Oh the other hand, although we described a praĆical method for varieties of dimension
g = 2, several topics remain to be explored for g C 2:

– Wedealtwith orders having identical Picard groups locally, using themethodof Eisen-
träger and Lauter. As its complexity is exponential in the valuation of the conduĆor
gap, this is however impraĆical in certain cases. It would be interesting to address this
by developing a generalization of Kohel’s techniques to dimension two and more.

– Having adeeper insight on thestruĆureof isogeny graphswould certainly help solving
the above, and we note that recent work on elliptic curves by Joux and Ionica offers
promising perėeĆives of developments on this matter in higher dimension.

– Besides the extended Riemann hypothesis, heuristics we relied on should be further
analyzed, such as the assumption that norms of LLL-reduced ideals are as smooth as
random integers, or that complex multiplication applies to non-maximal orders.

– ăe convenient struĆure of Jacobian varieties was used to draw points at random, and
to uniquely identify isomorphism classes. Using ourmethod beyond dimension three
would require to solely work in theta-coordinates, using theHeisenberg group for the
latter, and đnding an efficient way of doing the former.

Closely conneĆed topics include the computation of class polynomials and of modular
polynomials; it is only natural that they should beneđt from further exploiting complexmul-
tiplication theory as well. For elliptic curves, this was done successfully for both problems
by Sutherland, and by Bröker, Lauter, and Sutherland, reėeĆively.

However, similar work remains to be done in higher dimension: although substantive
improvements have been made on it over the past few years, the computation of class poly-
nomials remains a topic of aĆive study, albeit particularly unexplored in the case of non-
maximal orders. On the other hand, modular polynomials have not attraĆedmany research,
due to their prohibitive height; itwouldbe challenging to improve on this and computemore
such polynomials, as an alternative to explicit isogeny computation.

Finally,more of the codewritten during this thesis should be optimized, fully automated,
and cleaned up for inclusion in open soĖware packages, as experimentation using efficient
computer routines becomes increasingly important to research aĆivities in many đelds.
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