.. La-première-gorgée-de-bière, Philippe Delerme Sommaire 3.1 Des rubans en liaisons-fortes, p.38

.. États-de-bord-et-champ-magnétique, 46 3.2.1 Des rubans sous champ magnétique fort, p.47

. La-recherche-passionnément, Pierre Joliot Sommaire 4.1 Hamiltonien de volume sous champ magnétique fort, p.58

L. Valeur-de-la-science, Henri Poincaré Sommaire 6.1 Transition topologique dans une chaîne de dimères, p.111

.. Application-aux-rubans-de-graphène, 121 6.2.1 La phase de Zak et l'existence d'états de bord dans le graphène, p.121

.. Et-khmelnitsky, Les interactions électron-électron comme source de décohérence : le modèle d'Altshuler Aronov, p.142

W. La-fonction and .. , 146 7.4.2 Les harmoniques de la correction de localisation faible sur le cylindre, 147 Expression des harmoniques n = 0 et longueurs caractéristiques du problème . . . . . . . . . . . . . . 147

]. S. Bibliographie1, S. Sarma, E. H. Adam, E. Hwang, and . Rossi, Electronic transport in two dimensional graphene, arXiv :1003, pp.4731-4732, 2010.

A. H. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Reviews of Modern Physics, vol.81, issue.1, p.109, 2009.
DOI : 10.1103/RevModPhys.81.109

K. Novoselov, A. Geim, S. Morosov, D. Jiang, M. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol.72, issue.7065, p.197, 2005.
DOI : 10.1103/PhysRevLett.79.3728

Y. Zhang, Y. Tan, H. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, vol.93, issue.7065, p.201, 2005.
DOI : 10.1103/PhysRevB.69.075104

P. Wallace, The Band Theory of Graphite, Physical Review, vol.71, issue.9, p.622, 1947.
DOI : 10.1103/PhysRev.71.622

P. A. Lee, CONDENSED MATTER PHYSICS: Enhanced: Low-Energy Excitations in High-Temperature Superconductors, Science, vol.277, issue.5322, p.50, 1997.
DOI : 10.1126/science.277.5322.50

D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Physical Review B, vol.14, issue.6, p.2239, 1976.
DOI : 10.1103/PhysRevB.14.2239

D. Jaksch and P. Zoller, Creation of eective magnetic elds in optical lattices : the Hofstadter buttery for cold neutral atoms, Phys, vol.5, p.56, 2003.

J. M. Hou, W. X. Yang, and X. J. Liu, Massless Dirac fermions in a square optical lattice, Physical Review A, vol.79, issue.4, p.43621, 2009.
DOI : 10.1103/PhysRevA.79.043621

F. Gerbier and J. Dalibard, Gauge fields for ultracold atoms in optical superlattices, New Journal of Physics, vol.12, issue.3, p.33007, 2010.
DOI : 10.1088/1367-2630/12/3/033007

URL : https://hal.archives-ouvertes.fr/hal-00425517

P. Dietl, F. Piéchon, and G. Montambaux, New Magnetic Field Dependence of Landau Levels in a Graphenelike Structure, Physical Review Letters, vol.100, issue.23, p.236405, 2008.
DOI : 10.1103/PhysRevLett.100.236405

A. Geim and K. Novoselov, The rise of graphene, Nature materials, vol.6, issue.183, 2007.
DOI : 10.1142/9789814287005_0002

Y. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature, vol.92, issue.7117, p.347, 2006.
DOI : 10.1038/nature05180

B. I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, Physical Review B, vol.25, issue.4, p.2189, 1982.
DOI : 10.1103/PhysRevB.25.2185

L. Brey and H. A. Fertig, Edge states and the quantized Hall effect in graphene, Physical Review B, vol.73, issue.19, p.195408, 2006.
DOI : 10.1103/PhysRevB.73.195408

D. A. Abanin, P. A. Lee, and L. S. Levitov, Spin-Filtered Edge States and Quantum Hall Effect in Graphene, Physical Review Letters, vol.96, issue.17, p.176803, 2006.
DOI : 10.1103/PhysRevLett.96.176803

M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, Peculiar Localized State at Zigzag Graphite Edge, Journal of the Physical Society of Japan, vol.65, issue.7, p.1920, 1996.
DOI : 10.1143/JPSJ.65.1920

K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Physical Review B, vol.54, issue.24, p.17954, 1996.
DOI : 10.1103/PhysRevB.54.17954

S. Ryu and Y. Hatsugai, Topological Origin of Zero-Energy Edge States in Particle-Hole Symmetric Systems, Physical Review Letters, vol.89, issue.7, p.77002, 2002.
DOI : 10.1103/PhysRevLett.89.077002

P. Delplace and G. Montambaux, Semi-Dirac point in the Hofstadter spectrum, Physical Review B, vol.82, issue.3, p.35438, 2010.
DOI : 10.1103/PhysRevB.82.035438

P. Delplace and G. Montambaux, WKB analysis of edge states in graphene in a strong magnetic field, Physical Review B, vol.82, issue.20, p.205412, 2010.
DOI : 10.1103/PhysRevB.82.205412

S. Chakravarty and A. Schmid, Weak localization: The quasiclassical theory of electrons in a random potential, Physics Reports, vol.140, issue.4, p.193, 1986.
DOI : 10.1016/0370-1573(86)90027-X

E. Akkermans and G. Montambaux, Physique mésoscopique des électrons et des photons, EDP Sciences -CNRS Éditions, 2004.

T. Ludwig and A. D. Mirlin, Interaction-induced dephasing of Aharonov-Bohm oscillations, Physical Review B, vol.69, issue.19, p.193306, 2004.
DOI : 10.1103/PhysRevB.69.193306

C. Texier and G. Montambaux, Dephasing due to electron-electron interaction in a diffusive ring, Physical Review B, vol.72, issue.11, p.115327, 2005.
DOI : 10.1103/PhysRevB.72.115327

URL : https://hal.archives-ouvertes.fr/hal-00009553

M. Ferrier, A. C. Rowe, S. Guéron, H. Bouchiat, C. Texier et al., Square Network, Geometrical dependance of decoherence by electronic interaction in a GaAs/GaAlAs, p.146802, 2008.
DOI : 10.1103/PhysRevLett.100.146802

URL : https://hal.archives-ouvertes.fr/hal-00285950

B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, Eects of electronelectron collisions with small energy transfers on quantum localisation, J

C. Texier, P. Delplace, and G. Montambaux, Quantum oscillations and decoherence due to electron-electron interaction in metallic networks and hollow cylinders, Physical Review B, vol.80, issue.20, p.205413, 2009.
DOI : 10.1103/PhysRevB.80.205413

URL : https://hal.archives-ouvertes.fr/hal-00431862

W. Andreoni, The physics of fullerene-based and fullerene-related materials, 2000.
DOI : 10.1007/978-94-011-4038-6

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes
DOI : 10.1142/p080

J. C. Charlier, X. Blase, and S. Roche, Electronic and transport properties of nanotubes, Reviews of Modern Physics, vol.79, issue.2, p.677, 2007.
DOI : 10.1103/RevModPhys.79.677

K. Novoselov, D. Jiang, T. Booth, V. Khotkevich, S. Morozov et al., Two-dimensional atomic crystals, Proceedings of the National Academy of Sciences, vol.102, issue.30, p.10451, 2005.
DOI : 10.1073/pnas.0502848102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180777

C. Berger, Z. Song, T. Li, A. Ogbazghi, R. Feng et al., Ultrathin Epitaxial Graphite:?? 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics, The Journal of Physical Chemistry B, vol.108, issue.52
DOI : 10.1021/jp040650f

J. W. Mcclure, Diamagnetism of Graphite, Physical Review, vol.104, issue.3, p.666, 1956.
DOI : 10.1103/PhysRev.104.666

M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, and W. A. De-heer, Landau Level Spectroscopy of Ultrathin Graphite Layers, Physical Review Letters, vol.97, issue.26, p.266405, 2006.
DOI : 10.1103/PhysRevLett.97.266405

Z. Jiang, E. A. Henriken, L. C. Tung, Y. Wang, M. E. Schwartz et al., Infrared Spectroscopy of Landau Levels of Graphene, Physical Review Letters, vol.98, issue.19, p.197403, 2007.
DOI : 10.1103/PhysRevLett.98.197403

T. Matsui, H. Kambara, Y. Niimi, K. Tagami, M. Tsukada et al., STS Observations of Landau Levels at Graphite Surfaces, STS observation of Landau levels at graphite surfaces, p.226403, 2005.
DOI : 10.1103/PhysRevLett.94.226403

URL : http://arxiv.org/abs/cond-mat/0405011

Y. Aharonov and D. Bohm, Significance of Electromagnetic Potentials in the Quantum Theory, Physical Review, vol.115, issue.3, p.485, 1959.
DOI : 10.1103/PhysRev.115.485

M. V. Berry, Geometric phases in physics. The quantum phase, ve year after Advanced series in mathematical physics, World Scientic, vol.5, 1989.

G. Montambaux, F. Piéchon, J. Fuchs, and M. Goerbig, A universal Hamiltonian for motion and merging of Dirac points in a two-dimensional crystal, The European Physical Journal B, vol.80, issue.4, p.509, 2009.
DOI : 10.1140/epjb/e2009-00383-0

S. Katayama, A. Kobayashi, and Y. Suzumura, Salt, Journal of the Physical Society of Japan, vol.75, issue.5
DOI : 10.1143/JPSJ.75.054705

A. Kobayashi, S. Katayama, Y. Suzumura, and H. Fukuyama, Massless Fermions in Organic Conductor, Journal of the Physical Society of Japan, vol.76, issue.3, p.34711, 2007.
DOI : 10.1143/JPSJ.76.034711

A. C. Durst and S. Sachdev, -wave superconductor with coexisting charge order, Physical Review B, vol.80, issue.5, p.54518, 2009.
DOI : 10.1103/PhysRevB.80.054518

URL : https://hal.archives-ouvertes.fr/halshs-00787399

G. P. Mikitik and Y. V. Sharla, Manifestation of Berry's Phase in Metal Physics, Physical Review Letters, vol.82, issue.10, p.2147, 1999.
DOI : 10.1103/PhysRevLett.82.2147

M. Y. Han, B. Oezyilmaz, Y. Zhang, and P. Kim, Energy Band-Gap Engineering of Graphene Nanoribbons, Physical Review Letters, vol.98, issue.20, p.206805, 2007.
DOI : 10.1103/PhysRevLett.98.206805

]. A. Cresti, N. Nemec, B. Biel, F. Triozon, G. Cuniberti et al., Charge transport in disordered graphene-based low dimensional materials, Nano Research, vol.67, issue.5, p.361, 2008.
DOI : 10.1007/s12274-008-8043-2

F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao et al., Phase-Coherent Transport in Graphene Quantum Billiards, Science, vol.317, issue.5844, p.1530, 2007.
DOI : 10.1126/science.1144359

L. Dicarlo, J. R. Williams, Y. Zhang, D. T. Mcclure, and C. M. Marcus, Shot Noise in Graphene, Physical Review Letters, vol.100, issue.15, p.156801, 2008.
DOI : 10.1103/PhysRevLett.100.156801

J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and C. W. Beenakker, Sub-Poissonian Shot Noise in Graphene, Physical Review Letters, vol.96, issue.24, p.246802, 2006.
DOI : 10.1103/PhysRevLett.96.246802

D. A. Areshkin, G. Gunlycke, and C. T. White, Ballistic Transport in Graphene Nanostrips in the Presence of Disorder:?? Importance of Edge Effects, Nano Letters, vol.7, issue.1, p.204, 2007.
DOI : 10.1021/nl062132h

A. Cresti and S. Roche, Range and correlation effects in edge disordered graphene nanoribbons, New Journal of Physics, vol.11, issue.9, p.95004, 2009.
DOI : 10.1088/1367-2630/11/9/095004

D. A. Abanin, P. A. Lee, and L. S. Levitov, Charge and spin transport at the quantum Hall edge of graphene, Solid State Comm, p.77, 2007.

M. Buttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Physical Review B, vol.38, issue.14, p.9375, 1988.
DOI : 10.1103/PhysRevB.38.9375

L. Brey and H. A. Fertig, Electronic states of graphene nanoribbons studied with the Dirac equation, Physical Review B, vol.73, issue.23, p.235411, 2006.
DOI : 10.1103/PhysRevB.73.235411

Y. Kobayashi, K. I. Fului, T. Enoki, K. Kusakabe, and Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Physical Review B, vol.71, issue.19, p.193406, 2005.
DOI : 10.1103/PhysRevB.71.193406

Y. Niimi, T. Matsui, H. Kambara, K. Tagami, M. Tsukada et al., Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges, Physical Review B, vol.73, issue.8, p.85421, 2006.
DOI : 10.1103/PhysRevB.73.085421

P. Koskinen, S. Malola, and H. Hakkinen, Self-Passivating Edge Reconstructions of Graphene, Physical Review Letters, vol.101, issue.11, p.73401, 2008.
DOI : 10.1103/PhysRevLett.101.115502

P. Koskinen, S. Malola, and H. Hakkinen, Evidence for graphene edges beyond zigzag and armchair, Physical Review B, vol.80, issue.7, p.73401, 2009.
DOI : 10.1103/PhysRevB.80.073401

D. Kosynkin, A. Higginbotham, A. Sinitskii, J. Lomeda1, A. Dimiev et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature, vol.306, issue.7240, 2009.
DOI : 10.1038/nature07872

J. Cai, P. Rueux, R. Jaafar, M. Bieri, T. Braun et al., Atomically precise bottom-up fabrication of graphene nanoribbons, Nature, vol.4, issue.7305, p.470, 2010.
DOI : 10.1038/nature09211

U. Kuhl, S. Barkhofen, T. Tudorovskiy, H. Stockmann, T. Hossain et al., Dirac point and edge states in a microwave realization of tight-binding graphene-like structures, Physical Review B, vol.82, issue.9, p.94308, 2010.
DOI : 10.1103/PhysRevB.82.094308

URL : https://hal.archives-ouvertes.fr/hal-00489474

W. Yao, S. Yang, and Q. Niu, Edge States in Graphene: From Gapped Flat-Band to Gapless Chiral Modes, Physical Review Letters, vol.102, issue.9, p.96801, 2009.
DOI : 10.1103/PhysRevLett.102.096801

B. Xu, J. Yin, H. Weng, Y. Xia, X. Wan et al., Robust Dirac point in honeycomb-structure nanoribbons with zigzag edges, Physical Review B, vol.81, issue.20, p.250419, 2010.
DOI : 10.1103/PhysRevB.81.205419

W. Li and R. Tao, Edge states in monolayer and bilayer graphene, 2010.

K. Sasaki, S. Murakami, and R. Saito, Stabilization mechanism of edge states in graphene, Applied Physics Letters, vol.88, issue.11, p.133110, 2006.
DOI : 10.1063/1.2181274

A. R. Akhmerov and C. W. Beenakker, Boundary conditions for Dirac fermions on a terminated honeycomb lattice, Physical Review B, vol.77, issue.8, p.85423, 2008.
DOI : 10.1103/PhysRevB.77.085423

S. Ihnatsenka, I. V. Zozoulenko, and G. Kirczenow, Band-gap engineering and ballistic transport in edge-corrugated graphene nanoribbons, Physical Review B, vol.80, issue.15, p.155415, 2009.
DOI : 10.1103/PhysRevB.80.155415

J. Wurm, M. Wimmer, I. Adagideli, K. Richter, and H. U. Baranger, Interfaces within graphene nanoribbons, New Journal of Physics, vol.11, issue.9, p.95022, 2009.
DOI : 10.1088/1367-2630/11/9/095022

Z. Liu, K. Suenaga, P. J. Harris, and S. Iijima, Open and Closed Edges of Graphene Layers, Physical Review Letters, vol.102, issue.1, p.15501, 2009.
DOI : 10.1103/PhysRevLett.102.015501

S. Lakshmi, S. Roche, and G. Cunibert, Spin-valve effect in zigzag graphene nanoribbons by defect engineering, Physical Review B, vol.80, issue.19, p.193404, 2009.
DOI : 10.1103/PhysRevB.80.193404

A. A. Shylau, I. V. Zozoulenko, and T. H. Xu, Generic suppression of conductance quantization of interacting electrons in graphene nanoribbons in a perpendicular magnetic field, Physical Review B, vol.82, issue.12, p.121410, 2010.
DOI : 10.1103/PhysRevB.82.121410

K. Von-klitzing, G. Dorda, and M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Physical Review Letters, vol.45, issue.6, p.494, 1980.
DOI : 10.1103/PhysRevLett.45.494

K. Von-klitzing77, ]. K. Hashimoto, C. Sohrmann, J. Wiebe, T. Inaoka et al., The quantized Hall eect Quantum Hall transition in real space : from localized to extended states, Rev. Mod. Phys. Phys. Rev. Lett, vol.58, issue.101, p.256802, 1985.

A. Tzalenchuk, S. Lara-avila, A. Kalaboukhov, S. Paolillo, M. Syvajarvi et al., Towards a quantum resistance standard based on epitaxial graphene, Nature Nanotechnology, vol.36, issue.3, p.186, 2010.
DOI : 10.1038/nmat2382

L. D. Landau and E. M. Lifshitz, Quantum mecanics, 1958.

Y. Avishai and G. Montambaux, Semiclassical analysis of edge state energies in the integer quantum Hall effect, The European Physical Journal B, vol.66, issue.1, p.41, 2008.
DOI : 10.1140/epjb/e2008-00404-6

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. Nij, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Physical Review Letters, vol.49, issue.6, p.405, 1982.
DOI : 10.1103/PhysRevLett.49.405

Y. Hatsugai, Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function, Physical Review B, vol.48, issue.16, p.11851, 1993.
DOI : 10.1103/PhysRevB.48.11851

M. Z. Hasan and C. L. Kane, : Topological insulators, Reviews of Modern Physics, vol.82, issue.4, p.3045, 2010.
DOI : 10.1103/RevModPhys.82.3045

B. A. Bernevig, T. A. Hughes, and S. Zhang, Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells, Science, vol.314, issue.5806, p.1757, 2006.
DOI : 10.1126/science.1133734

URL : http://arxiv.org/abs/cond-mat/0611399

M. Konig, H. Buhmann, L. W. Molenkamp, T. Hughes, C. Liu et al., The quantum spin Hall eect : theory and experiment, J

J. Zak, Berry???s phase for energy bands in solids, Physical Review Letters, vol.62, issue.23, p.2747, 1988.
DOI : 10.1103/PhysRevLett.62.2747

N. Hao, P. Zhang, Z. Wang, W. Zhang, and Y. Wang, Topological edge states and quantum Hall effect in the Haldane model, Topological edge states and quantum Hall eect in the Haldane model, p.75438, 2008.
DOI : 10.1103/PhysRevB.78.075438

Z. Wang, N. Hao, and P. Zhang, Topological winding properties of spin edge states in the Kane-Mele graphene model, Physical Review B, vol.80, issue.11, p.115420, 2009.
DOI : 10.1103/PhysRevB.80.115420

X. Qi, Y. Wu, and S. Zhang, General theorem relating the bulk topological number to edge states in two-dimensional insulators, Physical Review B, vol.74, issue.4, p.45125, 2006.
DOI : 10.1103/PhysRevB.74.045125

Q. Niu, D. J. Thouless, and Y. S. Wu, Quantized Hall conductance as a topological invariant, Physical Review B, vol.31, issue.6, p.3372, 1984.
DOI : 10.1103/PhysRevB.31.3372

Y. Sharvin and Y. V. Sharvin, Magnetic-ux quantization in a cylindrical lm of a normal metal, JETP Lett, vol.34, p.272, 1981.

B. L. Al-'tshuler, A. G. Aronov, and B. Z. Spivak, The Aharonov-Bohm eect in disordered conductors, JETP Lett, vol.33, p.94, 1981.

D. Pines and P. Nozières, The Theory of Quantum Liquids, American Journal of Physics, vol.36, issue.3, 1989.
DOI : 10.1119/1.1974502

G. Montambaux and E. Akkermans, Nonexponential Quasiparticle Decay and Phase Relaxation in Low-Dimensional Conductors, Physical Review Letters, vol.95, issue.1, p.16403, 2005.
DOI : 10.1103/PhysRevLett.95.016403

K. Sasaki, S. Murakami, and R. Saito, Gauge Field for Edge State in Graphene, Journal of the Physical Society of Japan, vol.75, issue.7, p.74713, 2006.
DOI : 10.1143/JPSJ.75.074713