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RésuméParmi les pro
essus d'érosion, l'in
ision des rivières est 
lassiquement dé
rit 
ommeun pro
essus 
lé 
ontr�lant l'érosion des paysages. L'e�
a
ité de l'in
ision est prin-
ipalement in�uen
ée par le 
limat et par l'érodabilité. Ce dernier paramètre nedépend pas seulement de la nature du substratum ro
heux, mais aussi de sa dé-formation passée qui a�e
te ses propriétés rhéologiques équivalentes. Les prin
i-paux obje
tifs de 
ette thèse sont: (1) de mieux 
ontraindre les relations entrepropriétés équivalentes et érodabilité, et (2) de quanti�er l'in�uen
e de l'érosionet de l'érodabilité sur la formation ou la dé
aden
e, spatiale et temporelle, de latopographie.Plusieurs outils numériques sont développés. Un formalisme 1D d'évolution despaysages est proposé, prenant en 
ompte simultanément l'in
ision des rivières ave
une distribution sto
hastique des débits en eau et l'érosion des versants par glisse-ments de terrain. Un nouvel algorithme de remaillage appelé Surfa
e LagrangianRemeshing (SLR) est développé. Il permet de prendre en 
ompte l'érosion à longterme dans les 
odes numériques 2D Lagrangiens basés sur des éléments �nis trian-gulaires.Ensuite, la possibilité de mesurer in-situ l'érodabilité ave
 un marteau de S
hmidt(R) est évaluée pour: l'orogène a
tif de Taiwan, les grès diagénétique d'Annot etla zone de faille de St Clement. Les résultats suggèrent un fort 
ontr�le de Rpar les propriétés équivalentes des ro
hes testées. Un modèle linéaire, basé sur lathéorie des milieux équivalents, est appliqué à une zone de faille ave
 une résolutioninégalée (750 mesures, 25 mesures par mètre 
arré). Le modèle permet de 
orrélerave
 su

ès la densité de fra
ture et R. Ces résultats démontrent empiriquementque l'élasti
ité équivalente ainsi que l'érodabilité sont sensibles à la densité et à lanature des fra
tures.En�n j'étudie les 
onditions d'érosion et de rhéologie qui permettent de repro-duire l'évolution des 
haînes de montagnes post-orogéniques. Un modèle 
ouplantérosion en surfa
e et soulèvement isostatique régional est 
ompatible ave
 les ob-servations. Les taux de dé
roissan
e topographique et de diminution du rapport del'élévation de surfa
e sur l'épaisseur de ra
ine 
rustale sont 
ontr�lés au premier or-dre par la géométrie initiale de la 
haîne de montagne et par l'e�
a
ité de l'érosion.Ce nouveau modèle met en éviden
e le 
ontr�le du 
limat et de l'érodabilité sur ladé
roissan
e topographique et de la rhéologie lithosphérique sur la persévéran
e desra
ines 
rustales.
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Abstra
tAmong erosion pro
esses, river in
ision is 
lassi
aly des
ribed as a key pro
ess 
on-trolling erosion of lands
apes. In
ision e�
ien
y is mainly in�uen
ed by 
limateand erodibility. This latter is not only dependent on the nature of the bedro
k, butalso on its past deformation, whi
h a�e
ts its rheologi
al e�e
tive properties, su
has fra
ture density. The main obje
tives of this thesis are: (1) to better 
onstrainthe relationship between e�e
tive properties and erodibility, and (2) to quantify thein�uen
e of erodibility and erosion on both the temporal and spatial building orde
ay of the topography.Several numeri
al tools are developed. A 1D formalism of lands
ape evolution isintrodu
ed, in
luding river in
ision with sto
hasti
 distribution of water dis
hargeand hillslope landsliding. A new remeshing algorithm 
alled Surfa
e LagrangianRemeshing (SLR) is developed as a 
omplement to remeshing algorithms dealingwith internal elements. It allows one to take into a

ount long-term erosion into 2DLagrangian numeri
al 
odes based on triangular �nite elements.Then the potentiality of measuring erodibility in-situ using a S
hmidt hammer(R) is assessed for the a
tive orogen of Taiwan, the diageneti
 Annot sandstones andSt Clement fault zone. Results suggest a strong 
ontrol of R by e�e
tive properties.A linear model based on e�e
tive medium theory is applied to a fault zone with anunma
thed resolution (750 measures, 25 measures per square meter). The modelsu

essfully 
orrelates R to fra
ture density. These results demonstrate that e�e
tiveelasti
ity as well as erodibility are sensitive to the density and type of fra
tures.Finally I fo
us on the erosional and rheologi
al 
onditions that allows reprodu
ingpost-orogeni
 evolution of mountain belts. A model 
oupling surfa
e erosion andregional isostati
 uplift is 
onsistent with observations. The topographi
 de
ay andde
rease of the ratio of surfa
e elevation over 
rustal root thi
kness is at �rst order
ontrolled by the initial geometry of the mountain belt and erosion e�
ien
y. Thisnew model highlights the 
ontrol of 
limate and erodibility on the topographi
 de
ayand of lithospheri
 rheology on the perseveran
e of 
rustal roots.
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Résumé étenduNotre 
ompréhension de la planète Terre est fortement limitée par l'é
helle tem-porelle d'observation humaine. Par exemple, 
onsidérons un do
umentaire d'1h30dé
rivant l'histoire de la Terre depuis 4.5 Ga ave
 25 images par se
onde. L'histoirehumaine, soit environ 3000 ans, ne représenterait qu'une seule image du do
umen-taire. Seriez-vous 
apable de 
omprendre une �lm ave
 une seule image? Cela illustrela di�
ulté de la tâ
he à a

omplir par les 
her
heurs en géos
ien
es. Heureuse-ment pour nous, des empreintes de l'état passé de la Terre ont été enregistrées. Enparti
ulier la surfa
e de la Terre représente la plus a

essible et 
omplète sour
ed'information sur la planète, et ouvre des perspe
tives vers la 
ompréhension dela Terre, de son évolution et des mé
anismes qui la gouvernent. L'exemple le plusspe
ta
ulaire et le plus 
onvain
ant est probablement le relief des orogènes 
onti-nentales, qui apparaissent, depuis l'Espa
e, 
omme des 
i
atri
es à la surfa
e de laTerre. Ces reliefs, situés aux frontières de plaques te
toniques 
onvergentes, sont lerésultat d'intera
tions 
omplexes entre la déformation te
tonique, les pro
essus desurfa
e, 
omme l'érosion et la sédimentation, et le 
limat.Parmi les pro
essus de surfa
e, l'in
ision des rivières est 
lassiquement dé
rite
omme un pro
essus 
lé 
ontr�lant l'érosion des paysages. En e�et, Les tauxd'in
ision des rivières, dans les vallées, di
tent l'a
tivité des pro
essus de versants,en abaissant les niveaux de base lo
aux. L'e�
a
ité de l'in
ision est prin
ipale-ment in�uen
ée par le 
limat et par l'érodabilité, qui traduit le 
ontr�le exer
é parla lithologie sur les taux d'in
ision. Ce dernier paramètre ne dépend pas seule-ment de la nature du substratum ro
heux, mais aussi de sa déformation passée quia�e
te ses propriétés rhéologiques équivalentes. Les prin
ipaux obje
tifs de 
ettethèse sont: (1) de développer des outils numériques adaptés à l'étude des inter-a
tions te
tonique-érosion, (2) de mieux 
ontraindre les relations entre propriétéséquivalentes du substratum ro
heux et érodabilité, et (3) de quanti�er et modéliserl'in�uen
e de l'érosion et de l'érodabilité sur la formation ou la dé
aden
e, spatialeet temporelle, de la topographie.Développements d'Outils Numériques pour Étudier l'Érodabilité, l'Érosionet la DéformationDans une première partie je présente la physique, ainsi que les méthodesnumériques de modélisation asso
iées, de la rhéologie de la lithosphère, des trans-ferts de 
haleur, et des pro
essus de surfa
e en traitant notamment les lois d'érosion.Deux prin
ipales familles de lois d'érosion sont proposées dans la littérature: (1) leslois empiriques basées sur des prin
ipes hypothétiques des pro
essus qui gouvernentla physique de l'érosion, 
omme la 
ontrainte 
isaillante de l'eau; (2) les lois basées1
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Figure 1: Exemples d'évolution temporelle d'un modèle d'évolution des paysages(A) en 2D, et (B) en 1D. Le formalisme 1D présente l'avantage de pouvoir êtreaisément 
ouplé ave
 un 
ode de déformation 2D.sur la mé
anique des pro
essus d'érosion, 
omme l'abrasion par impa
ts de galets.Les lois d'érosion s'expriment 
lassiquement 
omme des équation di�érentielles del'élévation de la surfa
e et sont i
i modélisées à l'aide de méthodes en di�éren
es�nies. Un modèle 2D d'évolution des paysages, prenant en 
ompte aussi bien lespro
essus d'in
ision à l'aide d'un formalisme en stream-power, que les pro
essus deversants, modélisés à l'aide d'une pente 
ritique, est développé et présenté. Ce mod-èle planaire est ensuite intégré analytiquement dans une des dire
tions de l'espa
e,a�n d'exprimer l'érosion des paysages 
omme une fon
tion 1D de l'espa
e (Lavé,2005) (Fig. 1). En outre, le 
ara
tère sto
hastique de la 
harge en eau des riv-ières est i
i pris en 
ompte (e.g., Lague et al., 2005). Ce nouveau formalisme 1Dd'évolution des paysages présente l'avantage de pouvoir être aisément 
ouplé auxmodèles thermo-mé
aniques 2D dé
rivant la Terre solide (Willett , 2010).D'autre part, les di�éren
es �nies sont aussi employées pour modéliser les trans-ferts de 
haleur par adve
tion et di�usion. La rhéologie de la lithosphère est mod-élisée par la méthode des éléments �nis, qui permet de prendre en 
ompte simul-tanément l'élasti
ité, la vis
osité et la plasti
ité des ro
hes. Dans 
ette dernièreappro
he, lorsque la déformation 
umulée, ou que le gradient de déformation, devi-ennent importants, le remaillage des éléments �nis devient né
essaire pour maintenir2
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Delaunay: Delaunay:Delaunay:Figure 2: Présentation des algorithmes de remaillage lo
al développés pour les mod-èles lagrangiens aux éléments �nis: (A) Surfa
e Lagrangian Remeshing (SLR) (Steeret al.), dédié à la prise en 
ompte de la distorsion en surfa
e induite par l'érosion, et(B) Dynami
al Lagrangian Remeshing (DLR) (Braun and Sambridge, 1994), dédiéà la prise en 
ompte de la distorsion asso
iée à la déformation en profondeur. Dansle 
as du SLR, les éléments de surfa
e présentant des 
ritères de distorsion impor-tants (angle ou surfa
e faible) voient leurs noeuds n'appartenant pas à la surfa
eéliminés. Seuls l'élément distordu et ses voisins dire
ts sont ensuite remaillés parune triangulation de Delaunay.la qualité de la solution numérique. Je présente don
 un nouvel algorithme de re-maillage lo
al, intitulé Surfa
e Lagrangian Remeshing (SLR), dédié à la prise en
ompte de la distorsion des éléments en surfa
e, induite par l'érosion, dans les mod-èles 2D ou 3D (thermo-) mé
aniques (Fig. 2). Le SLR présente l'avantage d'être àla fois pré
is, en permettant par exemple de suivre ave
 pré
ision la surfa
e libre dumodèles ou en minimisant la di�usion numérique inhérente au remaillage, et e�
a
e,en induisant un gain de temps de 
al
ul 
onsidérable par rapport aux méthodes 
las-siques de remaillage global. Le SLR représente don
 un algorithme de remaillagelo
al, permettant de 
oupler e�
a
ement et pré
isément, l'érosion à long terme ave
la déformation dans les modèles lagrangiens aux éléments �nis triangulaires. Cettedernière partie fait l'objet d'un arti
le sous presse à Computers & Geos
ien
es.A
quisition de Données in-situ: Rebond au Marteau de S
hmidt, Érod-abilité et Propriétés ÉquivalentesDans une se
onde partie, j'examine la potentialité de mesurer l'érodabilitéin-situ à l'aide d'un marteau de S
hmidt, et quanti�e l'in�uen
e des fra
tures surl'érodabilité. L'érodabilité est 
lassiquement déterminé à l'aide d'un 
anal 
ir
ulairepermettant de reproduire, en laboratoire, des 
onditions réalistes de transport etd'érosion �uviale (Attal and Lavé, 2009). Les résultats de Attal and Lavé (2009)suggèrent que l'érodabilité est, au premier ordre, fon
tion de la lithologie. Les valeurs3



RÉSUMÉ ÉTENDU

10 20 30 40 50 60 70 80

R
10

-2
10

-1
10

0
10

1
10

2

Schist

Sandstone

Marble

Limestone

Gneiss

Granite

Volcanics

Quartzite

K(%mass.km )
-1

A B

Figure 3: Variation (A) du rebond au marteau de S
hmidt R, et (B) de l'érodabilité
K en fon
tion de la lithologie. L'érodabilité est extraite des travaux de Attal andLavé (2009), alors que le rebond au marteau de S
hmidt est 
ompilé à partir dela littérature (e.g., Aydin and Basu, 2005). Qualitativement, érodabilité et rebondsont anti-
orrélés.d'érodabilité (K) ainsi obtenues sont ensuite 
omparées ave
 des valeurs de rebond(R) au marteau de S
hmidt (Fig. 3), 
ompilées depuis la littérature (e.g., Aydin andBasu, 2005). R et K sont qualitativement anti-
orrélées, ave
 les fortes valeurs derebond asso
iées à de faibles valeurs d'érodabilité. Un modèle novateur, basé sur ladérivation mé
anistique des pro
essus d'in
ision (Sklar and Dietri
h, 2001, 2004) et
ombiné à des relations empiriques (Aydin and Basu, 2005) reliant 
ontrainte à larupture et R, est développé. Ce modèle permet de relier quantitativement les jeuxde données d'érodabilité K et de rebond au marteau de S
hmidt R, sous la formed'une loi exponentielle ou en puissan
e. Ces relations fournissent un 
adre théoriqueet empirique à l'étude de l'érodabilité, mesurée à l'aide d'un marteau de S
hmidt.Le marteau de S
hmidt est ensuite utilisé pour 
ontraindre in-situ l'érodabilitédans di�érents 
ontextes naturels. Tout d'abord j'applique 
ette méthode pourréaliser un transe
t d'érodabilité à travers la 
haîne de montagne de Taïwan. Les ré-sultats révèlent un faible 
ontr�le de R et de K par la lithologie, et suggèrent un fort
ontr�le par le degré de fra
turation. Je présente aussi les résultats d'une étude deterrain dédiée à la 
ompréhension de l'in�uen
e de la diagénèse des Grès d'Annot sur
R et K. A partir d'un jeu de données pétrogénétiques et pétrophysiques (Labaumeet al., 2008a), j'évalue le 
ontr�le du grade diagénétique sur R, en m'a�ran
hissantde possibles variations induites par la lithologie. Les résultats suggèrent un 
ontr�lede R et K par la diagénèse, notamment à travers la 
ohésion des ro
hes étudiées.Ce 
ontr�le est qualitativement 
ontre-balan
é par le degré de fra
turation, lui aussifon
tion 
roissante de la diagénèse. De 
es deux études préliminaires, il ressort
lairement que les fra
tures représentent un 
ontr�le tout aussi prépondérant que lalithologie sur l'érodabilité, mesurée à l'aide d'un marteau de S
hmidt.Je présente ensuite les résultats d'une expérien
e dédiée à l'étude de la relationentre densité de fra
tures et rebond au marteau de S
hmidt R. La zone de faille de4
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Figure 4: (A) L'a�eurement de St Clément 
omporte prin
ipalement des 
al
airesentre
oupés de parties marneuses ou 
ata
lasitiques, respe
tivement lo
alisés dansles zones de failles se
ondaires du SE ou du NE de l'a�eurement. (B) Quatrestypes de fra
tures sont 
onsidérées: les failles (lignes rouges), les fra
tures ouvertes(lignes vertes), les fra
tures s
ellées (lignes bleues) et les stylolites (lignes jaunes).(C) Distribution spatiales des valeurs de rebond R au marteau de S
hmidt.
5



RÉSUMÉ ÉTENDUSt Clément, qui présente une lithologie à dominan
e 
al
aire, permet partialementde s'a�ran
hir d'éventuelles variations induites par la lithologie. Une image hauterésolution (25 mesures par m2) de R à l'é
helle de l'a�eurement est réalisée ainsiqu'un relevé des fra
tures, in
luant les failles se
ondaires, les fra
tures ouvertes ous
ellées, et les stylolites (Fig. 4). Un modèle linéaire, issu de la théorie des mi-lieux élastiques équivalents (Hudson, 1980, 1981), est proposé. Ce modèle, reliant
R à la densité de fra
ture pour 
haque type de fra
ture, est utilisé dans une séried'inversion et d'optimisation. Les images modélisées par inversion à partir des im-ages de densités de fra
tures, sont signi�
ativement 
orrélées à l'image de données
R. Cela démontre d'une part que la partie la plus signi�
ative des variations de
R à l'é
helle de l'a�eurement peuvent être asso
iées à des variations de densité defra
ture. D'autre part, l'inversion du modèle permet aussi de quanti�er la pondéra-tion exer
ée par la densité de fra
ture pour 
haque type de fra
ture sur l'élasti
itééquivalente et R. Les résultats suggèrent que les failles et les fra
tures ouvertes ontun e�et négatif sur R, alors que les fra
tures s
ellées on un e�et neutre voire posi-tif. Ces résultats illustrent le 
ontr�le ex
er
é par les fra
tures sur l'érodabilité desro
hes, 
omme 
ela a été suggéré par Molnar et al. (2007). De plus, en 
omparaisonave
 les experien
es 
lassiques d'abrasion (Sklar and Dietri
h, 2001; Attal and Lavé,2009), R 
apture les propriétés équivalentes des ro
hes à une é
helle 
orrespondantaux pro
essus d'érosion, entre 1 et 30 cm environ. Cette dernière étude, qui a étésoumise à Journal of Stru
tural Geology, ouvre en outre de nouvelles perspe
tivessur le r�le des 
y
les diagénétiques dans la rhéologie des zones de failles.Modélisation Numérique: Érosion, Rheologie et Évolution Post-OrogéniqueDans 
ette dernière partie j'étudie, à l'aide de la modélisation numérique, la re-lation entre érodabilité et morphologie des paysages en temps et en espa
e. D'abord,j'explore la relation entre érodabilité et longueur d'onde des paysages, en utilisantle modèle planaire d'évolution des paysages développé dans la première partie dumanus
rit. Ce modèle permet de 
onsidérer à la fois l'érosion �uviale par stream-power et l'érosion asso
iée aux glissements de terrains, i
i modélisée via un angle
ritique de stabilité des versants. Ce modèle simpliste permet de produire des to-pographies synthétiques au stade d'équilibre dynamique entre les taux d'érosion àla surfa
e et le taux de soulèvement imposé. Ces topographies synthétiques présen-tent une périodi
ité 
ontrainte par l'agen
ement du réseau �uvial. la périodi
ité destopographies synthétiques obtenues est une fon
tion puissan
e à exposant positif durapport du taux de soulevement divisé par l'érodabilité. Ce résultat est 
ohérent ave
la théorie du stream-power. Je démontre aussi que les indi
es 
lassiquement utiliséspour déterminer la longueur d'onde du paysage, tels que la densité de drainage baséesur un seuil arbitraire de l'aire drainée, ne sont pas adéquats pour évaluer le lienentre longueur d'onde du paysage et l'érodabilité ou le taux de soulèvement.La dernière étude a pour obje
tif de 
ontraindre les 
onditions d'érosion en sur-fa
e et les mé
anismes de déformation lithosphérique qui permettent de repoduire ladiminution du rapport de l'élévation sur l'épaisseur de la ra
ine 
rustale R, lors de laphase post-orogénique (Fis
her , 2002). Les 
haînes de montagnes post-orogéniquessont 
ara
térisées par des élévationx plus faibles que les 
haînes orogéniques (Fig.6
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Figure 5: (A) Élévation (H) et demi-largeur (W/2) des orogènes a
tives et ina
tives,mis à part 
elles présentant une topographie de type plateau. (B) Evolution 
om-parée du rapport de l'élévation de la topographie divisée par l'épaisseur de la ra
ine
rustale (R), pour les orogènes a
tives et ina
tives d'après Fis
her (2002), et pourles meilleurs modèles, i.e. les modèles présentant les meilleurs a

ords ave
 les don-nées. Un mis�t Φ faible signi�ant un bon a

ord. (C) Evolution de la dé
roissan
ede l'élévation (H) de la topographie au 
entre de la 
haîne pour les dix meilleursmodèles vis à vis de l'inversion, et distribution de l'élévation des orogènes en fon
-tion du temps. Le nom des 
haînes de montagne est donné dans le texte en bas depage 2. 7



RÉSUMÉ ÉTENDU5 A). Cependant la persistan
e des reliefs post-orogéniques, pendant plusieurs 
en-taines de millions d'années, met en défaut les 
on
epts 
lassiques d'érosion et dedéformation lithosphérique (Baldwin et al., 2003). Un modèle aux éléments �nis,ADELI (Hassani et al., 1997), 
ouplant pro
essus de surfa
e, déformation mé
aniqueet évolution thermique, est utilisé pour étudier l'évolution à long terme des 
haînesde montagne post-orogéniques. En utilisant une gamme de valeurs réalistes pour lagéométrie initiale des 
haînes de montagnes, ainsi que pour le 
oe�
ient d'e�
a
itéde l'érosion et pour les 
onditions thermiques, nous montrons qu'une dé
roissan
etopographique 
ontr�lée par l'érosion et partiellement 
ompensée par isostasie ré-gionale est 
ompatible ave
 la diminution temporelle de R observée (Fig. 5 B).Un é
hantillonnage de l'espa
e des modèles ave
 un algorithme uniforme Monte-Carlo asso
ié à un 
ritère de moindre valeur absolue, permet de 
ontraindre les
ombinaisons de paramètres 
ompatibles ave
 une diminution temporelle de R. Lepremière fa
teur qui 
ontr�le la qualité des modèles vis à vis des données est le
oe�
ient d'e�
a
ité de l'érosion, ave
 les meilleurs modèles asso
iés à des valeursmodérées à élevées. Le deuxième fa
teur est la géométrie initiale de la 
haîne demontagne, ave
 les montagnes les plus élevées ou les plus étroites né
essitant les
oe�
ients d'e�
a
ité de l'érosion les plus faibles. Toutefois une diminution tem-porelle de R est atteinte indépendamment de la géométrie initiale. La vis
ositééquivalente de la 
roûte ne ressort pas 
omme un fa
teur déterminant de la qualitédes modèles. Les meilleurs a

ords entre modèles et données, sont obtenus pour des
haînes où la dé
roissan
e de la topographie est 
ontr�lée par l'érosion, et non paspar un éventuel e�ondrement gravitaire. Ce dernier mé
anisme n'étant pas asso-
ié à une diminution temporelle de R. En�n, les meilleurs modèles présentent unedé
roissan
e topographique qui est à posteriori en a

ord ave
 la distribution del'élévation des 
haînes de montagnes post-orogénique en fon
tion de leur âge (Fig.5 C). Cette étude, qui a été soumise à Journal of Geophysi
al Resear
h, illustre ler�le de l'érodabilité, à travers l'e�
a
ité de l'érosion, dans la persévéran
e des reliefsterrestres.Études en Cours et Perspe
tivesMétamorphisme et Évolution Post-Orogénique: D'autres modèles géo-dynamiques d'évolution à long terme des 
haînes de montagne post-orogéniques ontété proposés dans la litérature (Fis
her , 2002; Baldwin et al., 2003; Pelletier , 2004).Fis
her (2002) notamment, suggère que la densi�
ation de la ra
ine 
rustale, parréa
tions métamorphiques, est un fa
teur déterminant de l'évolution post-orogénique.En e�et, une densi�
ation de la ra
ine 
rustale se traduit géodynamiquement parune diminution de sa �ottabilité. Cet e�et pourrait être responsable de la dé
rois-san
e temporelle du rapport de l'élévation de surfa
e sur l'épaisseur de la ra
ine2Suite de la légende de la �gure 5: HI, Himalaya; WC, Cordillère Ouest Andine; EC, Cordil-lère Est Andine; LS, Longmen Shan; TS, Tien Shan; KS, Kunlun Shan; WA, Alpes O

identalesd'Europe; EA, Alpes Orientales d'Europe; ZA, Alpes du Sud de la Nouvelle-Zélande; TR, Mon-tagne de Taiwan; CR, Carpates; PR, Pyrenées Centrales; BR, Chaîne de Brooks; CN; CordillèreCantabrique; LL, La
hlan Orogène; DS: Dabie Shan; VK, Monts de Verkhoïansk; SA, Appala
hesdu Sud; CA, Appala
hes Centrales; NA: Appala
hes du Nord; NU, Oural du Nord; CU, Oural Cen-tral; SU, Oural du Sud. O, moyenne pour les orogènes a
tives; A, moyenne pour les Appala
hes;U, Moyenne pour l'Oural. 8



RÉSUMÉ ÉTENDU
rustale R. Il s'agit d'un mé
anisme alternatif ou 
omplémentaire à 
elui proposéau 
ours de 
ette thèse. Pour tester les e�ets relatifs et les limites des deux ap-pro
hes, une modélisation 
ouplant érosion en surfa
e, déformation lithosphérique,évolution thermique et variations de densité asso
iées au métamorphisme, est req-uise. L'appro
he développée par Hetényi et al. (2010) permet de prendre en 
ompte,dans le modèles numériques aux éléments �nis, des variations de densité induites parmétamorphisme, et 
e tout en respe
tant la 
onservation de la masse. Cet algorithmea été in
lut à ADELI au 
ours de 
ette thèse, et une étude préliminaire a déjà étéréalisée.Variations Spatio-Temporelles d'Érodabilité et Orogénèse: Con
ernantl'évolution à long terme des orogènes, Beaumont et al. (1992) et Willett (1999)ont mis en éviden
e, par modélisation numérique, le 
ontr�le majeur exer
é parle 
limat sur l'évolution géodynamique des orogènes: les ro
hes profondes étantadve
tées au 
ours de l'orogène vers les zones en surfa
e présentant les taux depré
ipitation et d'érosion les plus élevés. Je propose que des variations spatialesou temporelles d'érodabilité pourraient avoir des impa
ts tout aussi majeurs sur ladynamique orogénique. En e�et l'érodabilité, étant une fon
tion de la lithologie(Sklar and Dietri
h, 2001; Attal and Lavé, 2009), varie spatialement à la surfa
e dela plupart des orogènes (par exemple les Himalayas, Pyrénées, Alpes européennes,Andes, Taiwan, la Sierra Nevada), mais aussi temporellement ave
 la déformation, ladiagenèse ou le métamorphisme (Fig. 6). Cette perspe
tive, qui a déja été abordéenumériquement dans le 
as des 
haînes ina
tives lors de 
ette thèse, mérite surtoutd'être traitée dans le 
as des 
haînes a
tives.Fra
tures, Élasti
ité Équivalente, et Chargement Intersismique: Aplus 
ourte é
helle de temps, les résultats obtenus par l'étude de l'élasti
ité équiv-alente de la zone de faille de St Clément ont potentiellement des impli
ations surla dynamique des 
y
les sismiques. Un résultat important de 
ette étude a été demettre en éviden
e que les fra
tures s
ellées 
ontribuent moins à la baisse de rigiditéque les fra
tures ouvertes ou les failles. Je suggère que l'évolution de l'élasti
itééquivalente autour d'une faille majeure, par la 
réation de fra
ture au 
ours dela phase 
osismique et postsismique et par le s
ellement de 
es mêmes fra
turespendant la phase intersismique d'un 
y
le sismique, peut avoir des réper
ussionsgéodynamiques. De tels pro
essus pourraient induire des variations temporelles derigidité dans la zone d'endommagement et par 
onséquent mener à des variationsdu taux de 
hargement des 
ontraintes sur le plan prin
ipal de la faille, au 
ours dela phase intersismique.
9



RÉSUMÉ ÉTENDU

m
e

ta
m

o
rp

h
is

m

fracturation

rock nature

central area
silicate

border area
calcitic/detritic

border area
calcitic/detritic

diagenesis

thrust fault

river

erodability transition

c
ru

s
ta

l
b
a
s
e
m

e
n
t

?

low highFigure 6: S
héma des prin
ipaux pro
essus a�e
tant l'érodibalité des ro
hes en 
on-texte orogénique et post-orogénique. I
i, nous supposons que la zone axiale de la
haîne de montagnes est dominée par des sili
ates, alors que ses piédmonts sont denature 
al
itique ou détritique. L'érodibilité varie dans l'espa
e en fon
tion de lanature des ro
hes de surfa
e: les ro
hes 
al
itiques ou détritiques étant générale-ment plus sensibles à l'érosion qu'un granite ou un gneiss. La diagenèse diminuel'érodabilité en augmentant la densité, en diminuant la porosité, et en 
imentant lespores inter-grains et les fra
tures. L'e�et du métamorphisme (supposé i
i prograde)sur l'érodabilité est double, d'une part il tend à augmenter la densité de la ro
he,d'autre part il 
rée des fragilités par a
quisition de linéation ou de foliation. Lesfra
tures ont pour e�et d'a�aiblir mé
aniquement les ro
hes et ainsi augmententl'érodabilité vis à vis de l'abrasion, favorisant ainsi l'érosion par plu
king (Molnaret al., 2007).
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Introdu
tion
The time s
ale of human observation is a real limit to our understanding of theplanet Earth. For instan
e, 
omparing Earth history sin
e its 
reation 4.5 Ga ago,with the story of a 1h30-long movie with 25 fps, our re
ords during human his-tory ∼ 3000 yr would only represent one tenth of a single frame. Would you beable to understand a movie with only one snapshot? This is the di�
ult task thatgeos
ientists have to 
hallenge. Fortunately for them, some �ngerprints of the paststates of the Earth have been re
orded. In parti
ular the Earth's surfa
e o�ers themost a

essible and 
omplete observations of the planet, and gives some insights onits evolution and on the governing me
hanisms that shape it. The most spe
ta
-ular and 
onvin
ing example is the relief of 
ontinental orogens, whi
h appears ass
ars whi
h a�e
t Earth's surfa
e topography (Fig. 7). Orogeni
 relief results from
omplex intera
tions between 
limate, surfa
e pro
esses, te
toni
 motion and solidEarth deformation. This manus
ript is an attempt to 
ontribute towards a betterunderstanding of these pro
esses and intera
tions that shape Earth's surfa
e, witha parti
ular fo
us on the role of the lithology and ro
k e�e
tive properties.In Part 1, I try to give an overview of the physi
al pro
esses that 
ontrols theshape and the evolution of Earth's surfa
e elevation in orogeni
 settings, with a par-ti
ular fo
us on the erosional and lithospheri
 deformation me
hanisms that 
reate,support and remove orogeni
 reliefs. A fo
us is made on the numeri
al methodsthat allow one to study these pro
esses and their intera
tions, in one, two and threedimensions. I also present a new lo
al remeshing algorithm dedi
ated to the imple-mentation of surfa
e erosion in numeri
al modeling using triangular �nite elements.In Part 2, I investigate the potentiality and limits of measuring the resistan
e ofro
k masses to erosion, i.e. erodibility, with a in-situ method: the S
hmidt hammer,whi
h is do
umented to o�er an empiri
al relation between ro
k properties, su
h aselasti
ty or strength, and its rebound. First I empiri
ally and theoreti
ally analyseand review the relation between S
hmidt hammer and erodibility. Then I apply thismethod to perform a transe
t of ro
k erodibility a

ross the Taiwan mountain belt,and to explore the relation between S
hmidt hammer rebound and the diageneti
grade of the Annot Sandstone. From these two preliminary experiments, it appearsthat fra
tures and their densities have a dominant 
ontrol on S
hmidt hammerrebound. Thus in a dedi
ated experiment, I study the in�uen
e of fra
tures typeand density on S
hmidt hammer rebound in a fault zone.In Part 3, I use and develop numeri
al models to study the in�uen
e of ro
kerodibility on lands
apes morphology and temporal evolution. In parti
ular I �rstfo
us on the 
ontrol of lands
apes wavelength by ro
k erodibility, and I assess thelimits of drainage density to predi
t su
h 
ontrol. Se
ond, taking advantage of theremeshing algorithm developed, I employ a 2D numeri
al model, to investigate the11



INTRODUCTION

0 8500Elevation(m)Figure 7: Elevation of the topography of the Earth's land surfa
e relative to sea level.The data 
ome from the NASA and are initially from the Shuttle Radar TopographyMission 30-ar
se
ond data (SRTM30) and the RadarSat Antarti
 Mapping Proje
tDigital Elevation Model Version 2 (RAMP2). The data in the 
ylindri
al equidistantproje
tion, utilizing the WGS-84 datum.evolution of old mountain belts that are no longer in a 
ontext of te
toni
 plate
onvergen
e, i.e. post-orogeni
 mountain belts. These belts have two remarkableproperties: (1) they maintain high elevation during an unexpe
tedly long perdiod oftime (above 100 Ma), (2) they are underlain by very thi
k 
rustal roots in respe
tto their surfa
e elevation. I numeri
ally explore the 
onditions of surfa
e erosionand of lithospheri
 deformation that are 
ompatible with both of these properties.In parti
ular, I fo
us on the in�uen
e of erosion e�
ien
y and erodibility on theirevolution and on the de
ay time of the relief of these post-orogeni
 belts. Based onthis study I reassess general models of post-orogeni
 evolution.Finally, after a 
on
lusion, I brie�y present some future work that needs to bedeveloped in the 
oming years.
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Part ISurfa
e Pro
esses, Solid EarthRheology and their Modeling
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RésuméDans 
ette partie je présente la physique, et les méthodes numériques de modélisa-tion asso
iées, de la rhéologie de la lithosphère, des transferts de 
haleur, et des pro-
essus de surfa
e en traitant notamment les lois d'érosion. Deux familles prin
ipalesde lois d'érosion existent: (1) les lois empiriques basées sur des prin
ipes hypothé-tiques des pro
essus qui gouvernent la physique de l'érosion, 
omme la 
ontrainte 
i-saillante de l'eau; (2) les lois basées sur la mé
anique des pro
essus d'érosion, 
ommel'abrasion par impa
ts de galets. Les lois d'érosion, qui s'expriment 
lassiquement
omme des équation di�érentielles de l'élévation de la surfa
e, sont modélisées àl'aide de la méthode des di�éren
es �nies. Les di�éren
es �nies sont aussi utiliséespour modéliser les transferts de 
haleur par adve
tion et di�usion. D'autre part larhéologie de la lithosphère est modélisée par la méthode des éléments �nis, qui per-met de prendre en 
ompte simulaténement l'élasti
tité, la vis
osité, et la plasti
té.Dans 
ette dernière appro
he, lorsque la déformation 
umulée, ou que le gradient dedéformation, deviennent importants, le remaillage des éléments �nis devient né
es-saire pour maintenir la qualité de la solution numérique. J'introduis don
 un nouvelalgorithme de remaillage lo
al qui permet de 
oupler e�
a
ement l'érosion ave
 ladéformation dans les modèles lagrangiens ave
 des éléments �nis triangulaires. Cettedernière partie fait l'objet d'un arti
le sous presse à Computers & Geos
ien
es.Abstra
tIn this �rst part I present the physi
s, and asso
iated numeri
al modeling meth-ods, of lithospheri
 rheology, heat transfer, and surfa
e pro
esses with a fo
us onerosion laws. Two main 
lasses of physi
al erosion law exist: (1) empiri
al erosionlaws that are based on hypotheti
al prin
iples of the pro
esses that govern physi
sof erosion, su
h as water shear-stress; (2) pro
ess-based erosion laws that are basedon the me
hani
s of the pro
esses, su
h as abrasion by pebble impa
ts. Erosionlaws, 
lassi
aly expressed as di�erential equations of surfa
e elevation, are modeledwith �nite di�eren
es methods. Finite di�eren
es are also employed to model heattransfers, with adve
tion and di�usion. On the other hand, lithospheri
 rheologyis modeled with the �nite element method, whi
h allows one to 
onsider elasti
ity,vis
osity and plasti
ity into a single approa
h. In this latter approa
h, when fa
-ing large 
umulated deformation, or deformation gradient, remeshing of the �niteelements be
omes ne
essary to maintain the quality of the numeri
al solution. Ithus introdu
e a new lo
al remeshing algorithm that allows one to e�
iently 
ou-ple erosion to lithospheri
 deformation in lagrangian models with triangular �niteelements. This last part has been published in Computers & Geos
ien
es.
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Chapter 1Numeri
al modeling of Erosion andLithospheri
 deformation: pro
essesand intera
tionsEarth's surfa
e topography 
orresponds to the frontier between internal and exter-nal envelopes. Its evolution is governed by the transfer of ro
k: te
toni
s adve
tsro
ks whi
h are then transported and redistributed at the surfa
e after erosion. Thissystem is subje
ted to feedba
ks and intera
tions, as it is now well a

epted thatmass transfer at the surfa
e a�e
t te
toni
s, and that te
toni
s partly 
ontrols ero-sion by modifying elevation and its spatial derivatives. Earth's surfa
e evolution isalso sensitive to transfers of water 
oming from the atmosphere, as water or i
e are
onsidered as the main agents of erosion and transport.In this 
hapter, I brie�y present the numeri
al methods that allow modeling ofsurfa
e pro
esses and lithospheri
 deformation. The aim is to o�er the reader anoverview, rather than an exhaustive review, that will help him to understand thekey topi
s addressed in this manus
ript. For further details, we invite the reader torefer to these following books:� Quantitative Modeling of Earth Surfa
e Pro
esses (Pelletier , 2008);� Geodynami
s (Tur
otte and S
hubert , 2002);� Deformation of Earth Materials (Karato, 2008);� Numeri
al Geodynami
 Modelling (Gerya, 2009);� The Finite Element Method for Solid and Stru
tural Me
hani
s (Zienkiewi
zet al., 2005);� The Nature of Mathemati
al Modeling (Gershenfeld , 1999);� Numeri
al Re
ipes in Fortran (Press et al., 2007).First I des
ribe surfa
e pro
esses and their numeri
al modeling in 1D and 2D,then I fo
us on lithospheri
 deformation and the �nite element method in 2D. NextI address the question of numeri
al modeling of the intera
tions between surfa
e pro-
esses and lithospheri
 deformation and I present a new lo
al remeshing algorithmdedi
ated to this problem. 17



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONS1 Mathemati
al Representation of a Physi
al Sys-tem and Numeri
al ModelingBefore addressing s
ienti�
 questions, it is essential to de�ne what is a physi
alsystem, a physi
al model, a numeri
al model, an analyti
al model and to assesstheir respe
tive limits. A physi
al system is a system that is governed by physi
alpro
esses, whi
h 
an be observed and des
ribed or not by physi
al laws. A phys-i
al model is as a 
opy of a physi
al system, whi
h translates the physi
s into amathemati
al (or analogi
al) des
ription. It is mainly limited by the physi
al rep-resentation of the system. A physi
al model 
an be simulated with analyti
al ornumeri
al model. An analyti
al model is the perfe
t mathemati
al representationof the physi
al system, as it does not su�er from any approximation. On the otherhand a numeri
al model is a 
omputer program that attempts to simulate thephysi
al model, and is not an exa
t 
opy as it su�ers from numeri
al approxima-tion. Clearly when possible analyti
al models are preferable to numeri
al models,even if many numeri
al methods minimize approximation errors.When 
onsidering a 
omplex physi
al systems su
h as the Earth's surfa
e andits evolution, the limits of its simulation are manifold:� First the physi
al model only approximates the physi
al system. For instan
eonly empiri
al laws exist to des
ribe erosion of a �uvial system.� The physi
al model 
an not be de�ned without a large set of equations thatin
ludes the �rst-order physi
s: 
onservations or 
ontinuity equations (mass,energy, momentum), 
onstitutive equations of ro
k material (e.g., elasti
ity,vis
osity, plasti
ity, heat), erosion and transport equations. Many of theseequations exhibit temporal or spatial partial derivatives at di�erent orders,whi
h prevents one from having a general analyti
al solution.From this last statement two 
lassi
al strategies are possible to solve the problem:� Simplifying the physi
al model (whi
h is already a simple view of the physi
alsystem) by making hypothese on the 
onditions that apply to the system (e.g.,boundary 
onditions) in order to obtain an anlyti
al solution. Generally thestronger the assumptions are, the simpler it is to get a solution. This strategyo�ers a mathemati
ally perfe
t solution to a weak physi
al model that stronglyapproximates the physi
al system.� Conserving the physi
al model, but solving the set of equations with mathe-mati
al s
hemes (e.g., �nite di�eren
es) implemented into a numeri
al model.This o�ers an approximate mathemati
al solution to a strong physi
al model.In the following I mainly adopt the se
ond strategy. Indeed, I 
onsider that existingnumeri
al methods to have su�
ient quality to redu
e numeri
al approximationsand thus o�er pra
ti
al solutions to a wide range of problems with varying boundary
onditions and 
onstitutive laws. The main drawba
k of numeri
al modeling is itsinherent high 
omputational 
ost.It is also important to 
learly de�ne what is the dimension of a model: what is aone- (1D) two- (2D) or three-dimensional (3D) model. Following (Pelletier , 2008)18



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONS

Figure 1.1: Histograms 
omparing me
hani
al and 
hemi
al denudation/weatheringrates for the main drained basins of the world (Summer�eld and Hulton, 1994).Me
hani
al erosion is 
learly the dominant erosion pro
ess.I use the 
onvention that the dimensionality of the problem refers to the number ofindependent spatial variables. Therefore, Earth's surfa
e elevation h(x, y, t), whi
his the main variable used to des
ribe geomorphologi
 systems, is a fun
tion of 2independent spatial variables x and y: it is a 2D fun
tion. Con
ordingly a topo-graphi
 pro�le h(x, t) is a 1D fun
tion. Solving the temperature of the lithospherein a volume is a 3D problem as it is a fun
tion of 3 independent spatial variables
T (x, y, z, t).In the following we introdu
e the physi
al system that is investigated in thismanus
ript and present the numeri
al methods that are suitable to model it.2 Numeri
al Modeling of Surfa
e Pro
essesSurfa
e pro
esses 
an be de�ned as all the pro
esses that redistribute mass at thesurfa
e of the Earth: erosion, transport and deposition. In this manus
ript I fo
usmainly on erosional pro
esses.2.1 A General Overview of Erosional Pro
esses in OrogensIn a
tive orogens, the intensity of me
hani
al erosion is several orders of mag-nitude higher than 
hemi
al weathering (Fig. 1.1). Among me
hani
al pro
essesgla
ier erosion, �uvial in
ision and hillslope erosion are preponderant. Gla
ier ero-sion 
an play an important role in s
ulpting lands
apes, espe
ially by limiting the19



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSmaximum elevation of mountain belts (Brozovi
 et al., 1997; Whipple and Tu
ker ,1999). However in the following I fo
us only on the intera
tions between te
toni
sand erosion in non-gla
iated mountain belts. Thus I don't des
ribe in detail the dy-nami
s of gla
ier erosion. I invite the reader to refer to Herman and Braun (2008)for details on the numeri
al implementation of gla
ier erosion. In this se
tion Ibrie�y present the physi
s of �uvial in
ision and hillslope erosion at di�erent spatials
ales: from the physi
al s
ale, the s
ale at whi
h pro
esses take pla
e, to the s
aleof lands
apes, the appropriate s
ale for modeling intera
tions between te
toni
s anderosion.2.1.1 Physi
al S
aleErosion is the result of two 
omplex pro
ess. The �rst group 
omprises those whi
ha

omplish the disintegration of the ro
ks, redu
ing them to fragments, pebbles, sandand 
lay. The se
ond 
omprises those pro
esses whi
h remove the debris and 
arryit away to other parts of the world. Dutton (1882)2.1.1.a River ErosionMe
hani
al �uvial erosion pro
esses of bedro
k vary 
onsiderably between �eldsettings: abrasion by bed load and suspended load; plu
king of joint ro
ks; 
avi-tation (e.g., Whipple et al., 2000). For instan
e, the Hérault river, lo
ated in theSouth of Fran
e, exhibits eviden
e of both bedro
k abrasion and plu
king (Fig. 1.2),whi
h are the two dominant me
hani
al erosion pro
esses. As it is 
lassi
ally de�nedin geomorphology, bedro
k abrasion 
onsists of the me
hani
al erosion of a bedro
ksurfa
e by fri
tion and impa
ts with moving parti
les transported by the river water�ow. On the other hand, plu
king 
onsists of the formation and extra
tion of blo
ksfrom the bedro
k. These two pro
esses 
orrespond to the physi
al system of rivererosion. Here we attempt to des
ribe from the physi
al system, a set of equationsthat allows to de�ne a physi
al model of river erosion at the s
ale of the pro
esses.Cavitation Erosion by 
avitation is the 
onsequen
e of the 
reation of air bubblesin turbulent �ow areas of low pressure, and their implosion in �ow areas of highpressure. If implosion o

urs at the 
onta
t with ro
k, it indu
es ro
k damagesfollowing an in
rease of pressure and temperature (e.g., Arndt , 1981;Momber , 2003).However it not 
lear whether or not 
avitation is an a
tive pro
ess of river bedro
kerosion (Han
o
k et al., 1998; Whipple et al., 2000).Abrasion In orogens, river bedro
k abrasion mainly o

urs by the repetitive salta-tion of bed load and its resulting impa
ts (e.g., Sklar and Dietri
h, 2004). Howeverin spe
ial 
onditions, su
h as rivers with �ne sediments, steep slopes and large �oods,abrasion by suspended load also takes pla
e (Lamb et al., 2008).Bed load saltation indu
es abrasion of bedro
k during impa
ts, in parti
ular bythe formation of a network of 
ra
ks after multiple impa
ts (Engel and Ling , 1978).In brittle materials, the volume of eroded material Vi per impa
t is s
aled by theverti
al kineti
 energy of the impa
ting parti
le and by the 
apa
ity of the bedro
k20
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B C

A

1 m

20 cm 10 cmFigure 1.2: Pi
tures of the Herault river, South of Fran
e. A: The Hérault river in thein the Gorges de l'Hérault . B: Abrasion dominated part of the river (�owing fromright to left), illustrated by rounded bedro
ks whi
h are geometri
ally orthogonalto the water �ow . C: Lo
ation of a bedro
k blo
k that has been previously plu
ked(water �owing from bottom to top). Note the presen
e of fra
tures.
21
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Figure 1.3: Variation of erosion rate by abrasion with ro
k tensile strength of bedro
k(Sklar and Dietri
h, 2001). Abrasion rates are inversely proportionnal to the squareof the tensile strength.to store the impa
t energy into elasti
 energy (Bitter , 1963; Sklar and Dietri
h,2004):
Vi =

πρpφ
3
pv

2
pY

6kpσ
2
T

, (1.1)with ρp the impa
ting parti
le density, φp its diameter and vp its verti
al velo
-ity, kp a dimensionless 
oe�
ient that depends on the me
hani
al properties of theimpa
ting parti
le, Y the Young's modulus of the impa
ted susbtrate and σT itstensile strength. This relation, whi
h was derived for elasti
 brittle materials, issupported by experimental abrasion of arti�
ial materials (glass, plasti
, metals)with sub-millimiter non-natural erodents (steel shot, alumina, 
erami
s) at veryhigh velo
ities. It is unknown whether these results 
an be applied to du
tile riverbedro
k or to abrasion by low-velo
ity pebbles with a wide range of sizes. In par-ti
ular, 
on
erning the 
ontrols that exert the mass of the impa
ting parti
le πρpφ
3
p,its verti
al velo
ity (tangential velo
ity is important in du
tile materials), and theelasti
-plasti
 substrate rheology.Two major experimental studies 
larify the fa
tors that 
ontrol abrasion ofbedro
k 
lose to realisti
 
onditions:� Sklar and Dietri
h (2001) dedu
ed from bedro
k abrasion mill experimentsthat Vi is inversely proportional to σ2

T when 
ompiling a large range of litholo-gies (Fig. 1.3). Thus at �rst order the equation of abrasion (Eq. 1.1) is 
orre
twith respe
t to σT .� Using a 
ir
ular �ume with realisti
 �ow velo
ity ∼ 1 m.s−1 and rounded sedi-ments, Attal and Lavé (2009) found an empiri
al relation between the attrition22
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(c)

Figure 1.4: In�uen
e of lithology and transport 
onditions on abrasion rates (Attaland Lavé, 2009). Comparision of abrasion rates between (a) Attal and Lavé (2009)and (b) a 
ompilation of previously published experimental abrasion results forsimilar lithologies. (
): S
hemi-s
hemati
 diagram of the abrasion rate dependen
yon the transport stage). Both the lithology and the transport 
ondition have a �rstorder 
ontrol of the abrasion rates of river bedro
k. The transport stage τ ⋆/τ ⋆
c isthe ratio of the Shield stress on its 
riti
al value for parti
le entrainment.

23
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Figure 1.5: Simpli�ed s
hemati
 illustration of the pro
esses and for
es 
ontributingto erosion by plu
king (Whipple et al., 2000). Impa
ts by large pebbles drive 
ra
kpropagation. Eventually opening of existing fra
tures by 
last wedging o

urs. Sur-fa
e drag for
es and di�erential pressures a

ross the blo
k 
ould a
t to lift it. Afterremoval of a blo
k, it is probably easier to remove its neighbors.rate (i.e. the inter-pebble abrasion rate) and the square of pebble velo
ity,quite independently of the mass of pebbles. This 
on�rms the proportionalitybetween abrasion rate and the square of the velo
ity of the parti
le, even ifhere the velo
ity 
orresponds to the mean velo
ity during the experiment andnot to the verti
al velo
ity just before the impa
t (Eq. 1.1). Moreover theseresults also depend on the transport 
apa
ity of the �ow and on the probabil-ity of inter-parti
le 
ollision, whi
h are both related to the number and size ofpebbles at 
onstant �ow speed.It remains that the fa
tors that 
ontrol the physi
s of real river bedro
k abrasion,whi
h is the most 
ommon erosion pro
ess, is still an on-going issue. Still it is by farbetter understood than plu
king, whi
h is 
onsidered as the se
ond most 
ommonerosion pro
ess.Plu
kingPlu
king of bedro
k requires the validation of di�erent physi
al stages to o

ur:ro
k dis
ontinuities (e.g., fra
tures, joints) propagation around the blo
k in 3D (thepre-
onditioning phase) and blo
k extra
tion (the erosion phase) (Whipple et al.,2000). Many un
ertainties remain on the physi
s of plu
king. In parti
ular it is not
lear:� During pre-
onditioning, whether bedro
k fra
turation by bed load impa
t isimportant, or if pre-fra
turation by te
toni
s pro
esses and asso
iated defor-mation is su�
ient to isolate blo
ks from the bedro
k;� During erosion, whether deta
hment and quarrying of isolated blo
ks is 
on-trolled by �ow 
onditions and lo
al pressure e�e
ts, or by bed load impa
ts.24



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSPlu
king-dominated river bedro
k exhibits moderate to high fra
ture density (with aspa
ing below a few meters), whereas plu
king has not been do
umented for bedro
kwith low fra
ture density. Thus it appears that the pre-
onditioning phase that pro-du
es me
hani
ally dis
ontinuous blo
k at bedro
k surfa
e is a ne
essary 
onditionfor plu
king, but it is probably not a su�
ient 
ondition depending mainly on �ow
onditions and bed load 
hara
teristi
s.The other ne
essary 
ondition for plu
king is the entrainment of the me
hani
allyisolated blo
k. Following Whipple et al. (2000) let's 
onsider a re
tangular blo
k ofthi
kness h, width w, length l, and density ρs (Fig. 1.5). This blo
k is surrounded bybedro
k. For
es resisting verti
al entrainment are the normal 
omponent of blo
kbuoyant weight in the water with a density ρw, fri
tion on the lateral Fl, upstream
Fu and downstream Fd blo
k edges, and the averaged pressure for
e that applies atthe surfa
e of the blo
k Ps. In the 
ase of verti
al entrainment, the verti
al for
e
Flift that is required to lift the blo
k is,

Flift

wl
≥ Ps + (ρs − ρw)gh + 2Fl

h

w
+ (Fu + Fd)

h

l
. (1.2)It has been proposed that this lifting for
e 
ould be the �uid pressure under theblo
k that o

urs when a set of dis
ontinuities has formed around the blo
k. Nowlet's 
onsider the same setting, but with the downstream neighbour being alreadyplu
ked (Han
o
k et al., 1998). In this setting entrainment is horizontal, and thehorizontal for
e Fslide required to slide the blo
k is,

Fslide

wl
≥ µ(ρs − ρw)gh + 2Fl

h

w
, (1.3)with µ the 
oe�
ient of basal fri
tion, whi
h mainly depends on the ruggedness of thebasal surfa
e. The for
es that 
ould slide the blo
k are the shear stress generated bywater �ow or large pebble impa
ts with velo
ity ve
tor with a horizontal 
omponent.This simple analysis reveals that plu
king is favored by blo
ks with a low height,and by a low ratio of height over width or length. It 
on�rms that the e�
ien
y ofplu
king in
reases with fra
ture density if the network of fra
tures exhibits at least3 di�erent orientations.During this thesis I have started to investigate the me
hani
s of erosion by plu
k-ing using both experimentation based on 
ir
ular �ume (Attal and Lavé, 2009) andnumeri
al modeling. However the results are too preliminary to be e�
iently pre-sented in this manus
ript.Competition between Plu
king and Abrasion: The Hérault riverThe Hérault river o�ers both plu
king and abrasion dominated environments.Moreover, at some lo
ations, both erosion pro
esses are simultaneously a
tive. Fig-ure 1.6 presents an interpreted pi
ture of a lo
ation where both plu
king and abrasionare a
tive. Plu
king o

urs only for relatively low limestone layer thi
kness, as ituses the interlayer interfa
e as a me
hani
al dis
ontinuity that eases blo
k removal.This 
on�rms that the density of me
hani
al dis
ontinuities is a 
ontrolling fa
tor onplu
king e�
ien
y. Abrasion in
reases where water height, and 
onsequently shearstress, in
reases. 25
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Figure 1.6: Pi
ture of the Hérault river (A) and its geomorphologi
al interpretation(B). The river �ows downward. At this lo
ation 3 limestone layers are present,and the total erosion in
reases from right to left. The red layer (∼ 15 
m thi
k)is above the two other layers, the orange one (∼ 40 
m thi
k) is intermediate, andthe yellow one (∼ 50 
m thi
k) sets the base. It is interesting to note that only thered layer shows eviden
es of plu
king, and it 
orrelates with a lower layer thi
kness.On the other hand, the orange and yellow layers only exhibit eviden
es of abrasion.However abrasion of these layers is strongly in�uen
ed by the 
hronology of plu
kingevents, whi
h has set the starting time of abrasion of these layers. At least two othereviden
es of plu
king are present on the orange layer. Interestingly, plu
king resultsin the exhumation of the inter-layer roughness whi
h 
an be used as a time-markerof erosion. Roughness de
reases at the present surfa
e of the orange layer from rightto left, whi
h indi
ates that total abrasion, whi
h smoothes this rougnhess, is moreintense 
lose to the river and/or that plu
king of the red layer is older 
lose to theriver.
26
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S

q
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Non-linear

linear

S
cFigure 1.7: Sediment �ux qs as a fun
tion of the slope S for the linear (dashed line)and the non-linear (solid line) di�usion models of hillslope erosion. The 
riti
al slope

Sc above whi
h landsliding o

urs is indi
ated by a dotted line.2.1.1.b Hillslope ErosionHillslope erosion pro
esses are also dependent on the lo
al 
ontext: landslidingin steep areas, soil-
reeping, burrowing by animals, rainsplash and runo� on soil-mantled hillslopes (Dietri
h et al., 1987; Bryan, 2000). Splash erosion is driven byrainsplash kineti
 energy (Ekern, 1950). Its e�
ien
y depends mainly on raindrop
hara
teristi
s, wind 
onditions (e.g., Pedersen and Hasholt , 1995) and soil prop-erties (Cruse and Larson, 1977). Runo� erosion is due to hydrauli
 �ow onto soil.It is dependent on hydrauli
 �ow 
onditions and on soil 
onditions whi
h 
ontrolrespe
tively, erosion for
es, and soil response to erosion for
es (Bryan, 2000). Soil
reeping is due to the disturban
e of soil by animals and the displa
ement of soilparti
les by wetting-drying 
y
les (Heimsath et al., 2002). Triggering 
onditions andme
hanisms for landslides and debris �ows vary between landslide types. Steepnessof the slope, fra
turation and pore pressure are some 
ommon triggering fa
tors oflandsliding.All these pro
esses (i.e., runo�, 
reep, rainsplash) are termed as disturban
es.Hillslope erosion is thus a result of a 
ompetition between the energy introdu
edinto the system by these disturban
es and gravitational and fri
tional for
es thatdissipate energy and a
t to balan
e the system. Disturban
es are 
lassi
aly 
onsid-ered as random and isotropi
 pro
esses, whi
h 
an be modeled by a 
onstant powersupply at geomorphi
 time s
ale.For soil-mantled hillslopes, transport of soil parti
les is 
lassi
aly des
ribed as adi�usive pro
ess of the lo
al topographi
 gradient ∇z (Culling , 1960, 1963; Roeringet al., 1999),
qs = K∇z , (1.4)where qs is the �ux of parti
les (i.e. sediments), and K is the 
oe�
ient of di�u-sion. Field estimates of downslope sediment �ux on low to moderate gradient are27
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onsistent with linear di�usion over both short (S
humm, 1967) and long times
ales(M
Kean et al., 1993).When 
onsidering high lo
al topographi
 gradient, non-linear di�usion is re-quired, (Roering et al., 1999),
qs =

K∇z

1 − (|∇z|/Sc)2
, (1.5)with Sc the 
ri
ti
al slope above whi
h landsliding o

urs. Figure 1.7 
omparessediment �uxes as a fun
tion of the topographi
 gradient for the linear and non-linear di�usion.Pra
ti
ally, these models of parti
le transport also assume that soil produ
tionrate from regolith is at least equal to the transport rate, so that transport is notlimited by produ
tion (e.g., Heimsath et al., 1997).As other di�usion laws, hillslope erosion laws based on di�usion assume thatthe motion of parti
les is only dependent of the lo
al properties of the hillslope, i.e.mainly the lo
al topographi
 gradient ∇z. Here the 
hara
teristi
 transport lengthfor ea
h parti
le, asso
iated to the di�usion law, is assumed to be small (lo
al) 
om-pared to the s
ale of the hillslope (non-lo
al). This assumption may not hold in the
ase of steep hillslopes, where non-lo
ality is believed to be an important featureof hillslope transport (Tu
ker and Bradley , 2010). Foufoula-Georgiou et al. (2010)derive an anlyti
al model of hillslope transport based on the assumption of non-lo
ality where the sediment �ux at a point is also a fun
tion of upslope topography.It is interesting to note that non-lo
ality also results in non-linear di�usion (Eq. 1.5).2.1.2 Lands
ape S
aleUps
aling from physi
al pro
ess (10−2-10 m) to the s
ale of a lands
ape (> 102 m) in-volves taking into a

ount the spatial variability of erosion pro
ess, their intera
tionswith solid Earth deformation, and the dynami
s of the system at the appropriatetime s
ale (geomorphi
 times
ale). It is un
ommon that a single pro
ess shapes themorphology of a lands
ape, and thus it is di�
ult to extra
t lands
ape dynami
properties from its dire
t observation, from one �snapshot�.In non-gla
iated orogens, lands
apes are disse
ted in several hillslopes by the�uvial network. Thus the 
hara
teristi
 size of hillslopes 101-103 m, is limited andbounded by rivers. Hillslopes 
an be des
ribed at the s
ale of a lands
ape by the lawsthat are derived for the s
ale of the pro
esses, i.e., by non-linear di�usion (Eq. 1.5).This is supported by observation of lo
al relief for a
tive orogens whi
h �ts non-linear di�usion with respe
t to their mean slope (Montgomery and Gran, 2001a). Itis also important to note that under spe
i�
 
onditions, su
h as in a
tive orogens,hillslopes are dominated by landslides (Hovius et al., 1997) and 
an be modeled bya 
riti
al angle of repose at �rst order (e.g., Lavé, 2005). Thus in the following weonly fo
us on ups
aling river erosion to the s
ale of lands
apes.2.1.2.a Me
hanisti
 Approa
hThe last de
ade has seen an in
reasing awareness of the need for a me
hanisti
 riverin
ision law. Sklar and Dietri
h (2004) derive from Eq.1.1 a me
hanisti
 model oferosion by saltating bed load abrasion, in whi
h the erosion rate E is de�ned as28
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t of the average volume of ro
k deta
hed per parti
le-bedro
k impa
t Vi,the rate of parti
le impa
ts per unit bed area per unit time Ir, and the fra
tion ofexposed bedro
k on the river bed Fe,
E = ViIrFe . (1.6)The parti
le impa
t rate is de�ned as,

Ir =
6qs

πρpΦ3
pLs

, (1.7)with qs the parti
le �ux, Φp the parti
le diameter, ρs its density, and Ls the hoplength. The fra
tion of exposed bedro
k on the river bed varies between 
ompletelyexposed bedro
k to 
ompletely alluviated 
onditions, where the bedro
k is prote
tedfrom a thi
k layer of bed load whi
h dissipates impa
t kineti
 energy into inter-parti
les fri
tion. Sklar and Dietri
h (2004) assumes that Fe varies linearly betweenthese two end-members, so that
Fe = 1 − qs/qt for qs ≤ qt , (1.8)where qt is the transport 
apa
ity for a fully-alluviated river bed. Note that it isdebated whether Fe should be linearly or exponentially related to qs/qt (Turowskiet al., 2007). Combining previous equation leads to a me
hanisti
 expression of therate of river erosion by saltating bed-load abrasion,
E =

qsv
2
pY

Lskpσ
2
T

(

1 −
qs

qt

)

. (1.9)Lamb et al. (2008) and Chatanantavet and Parker (2009) have extended this me
h-anisti
 model to abrasion by suspended load and to plu
king, respe
tively. Su
hmodels are able to reprodu
e many 
hara
teristi
 features of river in
ision, su
h askni
kpoint migration (Chatanantavet and Parker , 2009) or the tools or 
over e�e
ts(Fe), whi
h are respe
tively the shortage of abrasive sediments, and the prote
tionof bedo
k by sediments, respe
tively (Sklar and Dietri
h, 1998, 2004, 2006; Turowskiet al., 2007). Moreover, it enables predi
ting river pro�les depending on the domi-nant erosion me
hanism. On the other hand, these models are di�
ult to apply tonatural 
ases or to use in models 
oupling erosion and te
toni
s, due to the highnumber of model parameters, many of whi
h are poorly 
onstrained.2.1.2.b Empiri
al Approa
hTwo main 
lasses of models are 
lassi
aly used to model long-term river erosion:transport-limited models (e.g.,Willgoose et al., 1991) whi
h assume that the erosionrate is limited by the rate at whi
h sediments are transported, and deta
hment-limited models (e.g., Howard and Kerby , 1983) whi
h assume that erosion rate is notlimited by transport but only by the rate of parti
le-deta
hment from the bedro
k.Deta
hment-limited Models In deta
hment-limited 
onditions, river in
isionof the bedro
k is 
lassi
aly dedu
ed from the so-
alled stream-power model (Howardand Kerby , 1983; Howard , 1994; Whipple and Tu
ker , 1999), where the erosion rate29



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSof a river E is a power fun
tion of the drainage (or 
ontributing, or upslope) area
A and of the lo
al 
hannel bed-slope S:

E = KAmSn , (1.10)with K a 
onstant that depends on bedro
k erodibility, 
limate, 
hannel geometryand perhaps sediment supply, m and n are the area and slope empiri
al exponents.This model was �rst applied to explain 
hanges in badland topographies (Howardand Kerby , 1983).The stream-power erosion law 
ould be related (empiri
ally) to di�erent me
h-anisti
 models of river erosion depending on the value of m and n (Tu
ker andWhipple, 2002):� bed shear-stress for m ≃ 0.3 and n ≃ 0.7 (Howard and Kerby , 1983);� stream-power per unit 
hannel length for m ≃ 1 and n = 1 (Seidl and Dietri
h,1992);� stream-power per unit bed area for m ≃ 0.5 and n ≃ 1 (Whipple and Tu
ker ,1999);All these models use an equation 1.10 that has the form of a non-linear adve
tionequation as in 1D it 
an be expressed as,
∂h

∂t
= −KAm|

∂h

∂x
|n , (1.11)where h is the river 
hannel elevation, and x is along-stream distan
e.In Chapter 8 I explore the impli
ations of a deta
hment-limited erosion law onthe wavelength of lands
apes.Transport-limited Models In transport-limited models (e.g., Willgoose et al.,1991), the �uvial sediment volumetri
 transport 
apa
ity Qt is 
ast as a powerfun
tion of slope S and drainage area A,

Qt = KAmSn , (1.12)where K is the transport e�
ien
y fa
tor, and is a fun
tion of grain size and density,bed roughness, 
limate, hydrology, and 
hannel geometry. Equating volumetri
 totaltransport rate Qs with 
apa
ity Qt, and imposing 
ontinuity of mass leads to,
∂h

∂t
= −K

∂

∂x

[

Am|
∂h

∂x
|n/W

]

, (1.13)where W is 
hannel width. This equation has a strong di�usive 
omponent (∂h/∂t α −
∂2h/∂x2 for n = 1). It is also interesting to note that transport-limitedmodels is alsodependent on non-lo
al properties of sediment supply, 
ompared to the deta
hment-limited model.We invite the reader to refer to Tu
ker and Whipple (2002) for a detailed 
ompar-ison between transport- and deta
hment-limited models, and to Sklar and Dietri
h(2006) for a 
omplete overview of existing model of river in
ision. It is important30



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSto note that both transport- and deta
hment-limited models 
an be extended toin
lude a 
riti
al threshold for transport or deta
hment, respe
tively.Last Gasparini et al. (2007) demonstrated that the stream-power model 
an infa
t be derived from the me
hanisti
 model of river erosion by bed load abrasion.This implies that the stream-power whi
h is based on simple physi
s (i.e., for in-stan
e erosion rate proportional to shear-stress) reprodu
es me
hanisti
 erosion witha simple physi
s and s
aling properties. Thus the stream-power model is probablythe most suitable model to 
ouple with a te
toni
s model.Steady State: A physi
al system in steady-state has numerous propertiesthat are not 
hanging with time. This implies that for any properties ofthe physi
al system, for instan
e the elevation h of the Earth's surfa
e, thepartial derivative with respe
t to time is zero:
∂h

∂t
= 0 . (1.14)In many systems, su
h as the Earth's surfa
e, steady state is not a
hieveduntil some time has elapsed after the system is initiated. This initialsituation is de�ned as a transient state. By 
onsidering the Earth's sur-fa
e,Willett and Brandon (2002) de�ned 4 properties, relevant to the dy-nami
 of an orogen, able to a
hieve steady state:1. Erosional �ux steady state, ∂qs/∂t = 0.2. Topographi
 elevation steady state, ∂h/∂t = 0.3. Subsurfa
e thermal steady state, ∂T/∂t = 0.4. Exhumational steady state, that 
hara
terizes the 
ooling age of min-erals 
onsidered as thermo
hronologi
 systems.Surfa
e pro
esses dynami
s is mainly 
onstrained by the observation of theirresulting spatial properties and s
aling at steady-state. For instan
e a riversubmitted to uplift and erosion by stream power is expe
ted to exhibit apower-law relation between its lo
al slope and drainage area at steady state(e.g., Howard , 1994), The exponent of the power law being dependent onthe slope and area exponents.2.2 Modeling of Fluvial and Hillslope Erosion in 1DIn the following we present numeri
al methods that allow modeling of the evolu-tion of hillslopes or river h(x, t) submitted to erosion in 1D. Numeri
al s
hemesbased on the �nite di�eren
es are the most 
ommonly used methods to solve dif-ferential equations. It is based on the resolution of a di�erential equation on adis
retized spa
e (for spatial derivative) or time (for temporal derivative) whi
h are
alled nodes. Finite di�eren
es approximate the solutions of di�erential equations byrepla
ing derivative expressions with approximately equivalent di�eren
e quotients.By de�nition, the �rst derivative of a fun
tion f is,

f ′(a) = lim
a→0

f(x + a) − f(x)

a
, (1.15)31



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSand a reasonable approximation for that derivative is,
f ′(a) =

f(x + a) − f(a)

a
, (1.16)for a small value of a. Intuitively the quality of the approximation depends on thevalue of a, whi
h is the spa
ing between the nodes of the dis
retized spa
e or time.This is 
alled a forward s
heme.Approximation of derivatives 
an be obtained from Taylor's polynomia of thedi�erentiable fun
tion 
onsidered,

f(x + a) = f(x) +
f ′(x)

1!
a +

f (2)(x)

2!
a2 + ... +

f (n)(x)

n!
an + Rn(x) , (1.17)where Rn(x) is a remainder term denoting the di�eren
e between the Taylor poly-nomia of degree n and the original fun
tion, and 
hara
terizes the amplitude of theerror due to dis
retization. Taylor's polynomia allows one to express a derivative ofdegree n as a fun
tion of the derivative of smaller degree between 1 and n − 1 (forinstan
e �rst degreee Eq. 1.16).It is also possible to de�ne a ba
kward s
heme for the �rst derivative,

f ′(a) =
f(x) − f(x − a)

a
+

R1(x)

a
, (1.18)and a 
entered s
heme,

f ′(a) =
f(x + a) − f(x − a)

2a
+

R2(x)

a
. (1.19)2.2.1 Fluvial in
isionHere, rather than presenting numeri
al s
hemes that allow one to model river in
i-sion, we fo
us on the ones that were used in the following 
hapters of this manus
ript.We invite the reader to refer to Pelletier (2008) for a review of the numeri
al meth-ods that 
an be used for �uvial in
ision.First let's 
onsider on
e again the generi
 form of river long-term erosion bystream power,

∂h(x, t)

∂t
= −KAm|

∂h(x, t)

∂x
|n , (1.20)where h is river elevation, A is the 
ontributing area, and m and n some 
onstantexponents. This is an adve
tion equation, that 
an be rewritten if 
onsidering theexponents of the stream-power erosion per unit bed area (m = 0.5 and n = 1) as,

∂h(x, t)

∂t
= c

∂h(x, t)

∂x
, (1.21)Two partial derivatives are present in this equation, on the left hand side a partialderivative of river elevation h(x, t) with respe
t to time t, and on the right hand sidea partial derivative of river elevation h(x, t) with respe
t to along-stream distan
e x.Thus two numeri
al s
hemes are required to solve this equation. The dis
retizationis expressed through the j-th index for time, and through the i-th indi
e for spa
e.The time and spa
e in
rements are ∆t = tj+1 − tj and ∆x = xi+1 − xi.32
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x (m)Figure 1.8: Kni
kpoint adve
tion (from right to left) using the Upwind-di�eren
es
heme presented in Eq. 1.27. Note the progressive numeri
al di�usion of the kni
k-point on its edges with time.To illustrate how to solve the pre
eding equation, let's 
onsider the evolution ofa kni
kpoint submitted to river in
ision by stream power assuming a homogeneous
A and n = 1. Under these 
onditions the stream-power equation is,

∂h(x, t)

∂t
= −Kknick|

∂h(x, t)

∂x
| , (1.22)with Kknick in
luding both erodibility and drainage area.Then let's de�ne a numeri
al s
heme for the time derivative. Pra
ti
ally it is
onvenient to use an expli
t forward s
heme, where the derivative at the timestep jis expressed as,

∂h(x, t)

∂t
|i =

h(xi, tj+1) − h(xi, tj)

tj+1 − tj
, (1.23)and its 
ompa
t form is,

∂h

∂t
|i =

hj+1
i − hj

i

∆t
. (1.24)For the spa
e derivative, the most 
ommon s
heme is the 
entered one,

∂h

∂x
|i =

hj
i+1 − hj

i−1

2∆x
. (1.25)However it is un
onditionally unstable for the adve
tion equation.Thus it is more appropriate to use an upwind-di�eren
e s
heme, where the slopeis 
al
ulated along the dire
tion of transport. Combining both temporal �nite dif-feren
e with the spatial one using Upwind-di�eren
e leads to,

hj+1
i − hj

i

∆t
= Kj

i

hj
i+1 − hj

i

∆x
if Kj

i > 0 , (1.26)
= Kj

i

hj
i − hj

i−1

∆x
if Kj

i < 0 . (1.27)Figure 1.8 presents the adve
tion of a kni
kpoint using this numeri
al s
heme.The kni
kpoint is adve
ted from right to left, however numeri
al di�usion o

urs onthe boundaries of the kni
kpoint. Following Pelletier (2008) it is 
onvenient to usethe pro
edure of Smolarkiewi
z (1983) to 
orre
t this numeri
al di�usion.The Upwind-di�eren
e s
heme is used in Chapter 8, while Smolarkiewi
z 
orre
-tion is applied in Chapter 2. 33
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x (m)Figure 1.9: Evolution of a hillslope submittted to erosion by di�usion of its elevation.Two spatial boundary 
onditions are applied as the erosion rate is nul at the bothends of the model.2.2.2 Hillslope erosionAt �rst order, soil-mantled hillslope erosion 
an be modeled by a linear-di�usionlaw of hillslope elevation h (Eq. 1.4). Combining a transport law proportional tohillslope elevation gradient with 
onservation of mass leads to the equation of lineardi�usion,
∂h(x, t)

∂t
= K

∂2h(x, t)

∂x2
, (1.28)with K the 
oe�
ient of di�usion, here assumed homogeneous.On
e again two numeri
al s
hemes (time and spa
e) are required to solve thisequation. An expli
it forward s
heme is employed for time dis
retization, and anexpli
t 
entered s
heme of degree 2 for spa
e dis
retization,

hj+1
i − hj

i

∆t
= Kj

i

hj
i+1 − 2hj

i + hj
i−1

∆x2
. (1.29)Figure 1.9 shows the evolution of a hillslope with this numeri
al s
heme.2.3 Modeling of Fluvial and Hillslope Erosion in 2DIn a
tive orogens, the basi
 units of lands
apes are hillslopes, whi
h are separatedfrom ea
h other by the �uvial network (see Fig. 1.10). Hillslope erosion and rivererosion are 
oupled: river erosion lowers the base level of hillslopes, and hillslopeson the other hand are the �rst sour
e of sediments that erode the river.2.3.1 Modeling Lands
ape Evolution

2D plan view models make it possible to investigate the e�e
ts of this 
ou-pling on the lands
ape dynami
s and morphology. The last two de
ades have seen34
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Figure 1.10: Mosai
 of aerial pi
tures of the Himalaya, Nepal (sour
e: NASA). Theimage is 
entered on the Everest. Note the presen
e of rivers whi
h disse
t thelands
ape into isolated hillslopes.an in
reasing number of studies using surfa
e pro
esses models (SPM) with bothdi�erent physi
s and numeri
al implementation (Willgoose et al., 1991; Beaumontet al., 1992; Howard , 1994; Braun and Sambridge, 1997; Tu
ker and Slingerland ,1996; Tu
ker et al., 2001a; Pelletier , 2004; Perron et al., 2008).The spa
e dis
retization is either uniform using a square grid 
omposed of regularpixels (e.g., Pelletier , 2004), or non-uniform with an irregular and adaptative tri-angular grid (Braun and Sambridge, 1997; Tu
ker et al., 2001b). This latter optiono�ers more adaptability as the grid 
an be re�ned where it is required, for instan
erivers. Moreover they 
an be 
oupled to numeri
al 
odes of solid earth deformation,whi
h employ irregular and adaptative grids that for
e both the verti
al and thehorizontal velo
ity of the surfa
e (Braun et al., 2008).Evolution of lands
ape elevation h 
lassi
aly follows:
∂h

∂t
= U − Eriv − Ehill , (1.30)with U the uplift rate, Eriv and Ehill the erosion rate due to river and to hills-lope erosion laws, respe
tively. The degree of 
omplexity of the physi
s used tomodel lands
ape evolution is also very variable, ranging from long-term �uvial ero-sion by stream power with hillslopes 
ontrolled by a 
ri
ti
al slope of landsliding(Pelletier , 2004), to sto
hasti
 �uvial erosion by stream power and non-linear dif-fusion of hillslopes (Tu
ker et al., 2001a). However, as already mentioned, in a
tiveorogens hillslopes are dominated by landslides (Hovius et al., 1997) and long-termriver erosion is reasonably modeled by a deta
hment-limited law (Lavé and Avoua
,2001). These dominant physi
al pro
esses of erosion in a
tive orogens are thus takeninto a

ount by the modeling approa
h of Pelletier (2004) and DeLong et al. (2007).2.3.2 A Simple Surfa
e Pro
esse ModelHere I present a simple method to model lands
ape evolution in 2D. FollowingPelletier (2004), the surfa
e pro
esses model (SPM) that is developed here assumesthat:� hillslopes are dominated by landslides and follow a 
riti
al angle of repose φc;� river erosion follows stream-power per unit bed area with m = 0.5 and n = 1;35
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Figure 1.11: S
hemati
 representation of the surfa
e pro
esse model behaviour under
onstant uplift rate and both �uvial and hillslope erosion (DeLong et al., 2007).Time in
reases from left to right, solid lines indi
ates the �uvial network, and pixelelevation is indi
ated by a gray s
ale.
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0Figure 1.12: Evolution of the elevation h of surfa
e of the SPM model under 
on-stant uplift rate and both �uvial and hillslope erosion. Time in
reases from left toright until rea
hing topographi
 steady-state. Surfa
e elevation is indi
ated by the
olormap. The model is a square with 3 km of side length, and in
ludes 10.000 pixels.� the entire lands
ape is subje
ted to a 
onstant and homogeneous uplift rate
U , exept at the boundaries of the model where elevation is kept 
onstant atthe base level.Figure 1.11 shows a s
hemati
 evolution of the SPM. Drainage area is determined us-ing a bifur
ation method that routes �ow to multiple downslope dire
tions, weightedby lo
al slope (Freeman, 1991; Pelletier , 2004).Numeri
al implementation of this SPM requires iteration over the following steps:� Uplift the surfa
e and respe
t boundary 
onditions;� Compute slope and for
e it to respe
t the 
riti
al slope of landsliding;� Fill river pits by sedimentation;� Compute drainage area with the �ow algortithm;� Dedu
e �uvial erosion rate and modify surfa
e elevation.To illustrate this SPM, �gure 1.12 presents the time evolution of the surfa
e of themodel until rea
hing a topographi
 steady-state. SPM topographi
 out
omes allow
omparing of predi
ted topography with real topographies, and o�er both a way to
onstrain the 2D behaviour of erosion laws and to test their transient dynami
s.In Chapter 7 we investigate the relation between erodibility and the wavelengthof lands
apes using this SPM. 36



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONS2.4 2D in 1DPra
ti
ally 1D or 2D models of surfa
e pro
esses are 
ompatible with 2D or 3Dsolid earth models, respe
tively. The main bene�t of 2D solid earth models aretheir relatively small 
omputational times 
ompared to 3D models. However the
oupling with surfa
e pro
esses, whi
h is natural with 3D models, is not naturalwith 2D models. Indeed the pertinent variable for the upper boundary of a 2Dsolid earth model, whi
h me
hani
ally responds to gravitational for
es, is the meanelevation, not the elevation of the river 
hannel (Godard et al., 2006; Willett , 2010).Thus to 
ouple both �uvial and hillslope erosion with a 2D solid earth model,it is required to integrate the elevation from 2D to 1D and to divide by the totallateral length L of the topography 
onsidered, in order to get a 1D pro�le of themean elevation:
hmean(x, t) =

1

L

∫

y

h(x, y, t) dy . (1.31)In the following we propose to extend the formalism of the integration of land-s
ape evolution of a re
tangular watershed from 2D to 1D des
ribed by Lavé (2005)to: � a watershed represented by Ha
k's law (Willett , 2010);� �uvial in
ision taking into a

ount a sto
hasti
 distribution of water dis
harge(Lague et al., 2005);The watershed is 
omposed of the main river that de�nes the watershed, of itstributaries, and of the hillslopes that make up the non-�uvial reliefs. Compared toWillett (2010) we also propose to take into a

ount realisti
 self-adapting hillsloperelief in the tributary basins (Lavé, 2005). The methods that we employ numeri-
ally solve the evolution of the main river, and 
onsider that tributary rivers (and
onsequently hillslopes) 
an be analyti
ally derived using the same evolution law asfor the main river.2.4.1 Geometri
al des
ription of the physi
al system2.4.1.a Main river and main watershedThe watershed des
ribed here follows Ha
k's law (Ha
k , 1957; Rigon et al., 1996),whi
h provides a relationship between the area of the watershed A and the lengthof its main (i.e., the longest) river xl,
A = kaxl

h , (1.32)with ka and h empiri
al 
onstants.Main river tributaries, whi
h �ow orthogonally to the main river (Stolar et al.,2007) have a length yl whi
h is dedu
ed from Ha
k's law,
yl =

1

2
kaxl

h−1 , (1.33)Note that it is possible to 
onsider the sinuosity of both the main and tributaryrivers by multiplying their 
artesian lengths by their averaged sinuosity s0,
xl = s0x , yl = s0y . (1.34)37



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONS2.4.1.b Tributary �uvial networkIn this se
tion we aim to express the length and area of the tributary �uvial network.A 
lassi
al framework to des
ribe a �uvial network is to use Horton's (Horton, 1945)ordering, in whi
h the geometri
al 
ara
teristi
s of the stream segments of order iare related to the upper order stream segments by the following relationships,
ni

ni+1
= Rn ,

∆Li+1

∆Li
= RL ,

Ai+1

Ai
= RA , (1.35)where ni, ∆Li and Ai are the number of stream segments of order i, their averagelength, and their average 
ontributing area, respe
tively. Rn, RL and RA are thebifur
ation, length and area ratios. It 
an be shown that bifur
ation, area and lengthratios are linked to the order of the stream segment 
onsidered by the followingexpression, 1 − ω = ln(RL)−ln(RN )

ln(RA)
.The length L of a �uvial network that drains an area A 
an be expressed as adensity fun
tion (Fig. 1
 Lavé, 2005),
fL(A) = KLA−ω , (1.36)where KL and ω are 
onstants. This density fun
tion strongly depends on the
hannel organization and bran
hing network. If the drainage density is roughlyuniform over the watershed 
onsidered (here tributary basins), KL is proportionalto AT

A1−ω
0 −A1−ω

T

, with A0 the average head sour
e area of the �uvial network 
onsideredand AT the total area of the watershed 
onsidered. This last expression redu
es to
∼ AT when ω > 1 and AT >> A0. Note that KL is uniform and independant of A.At this stage we have expressed by a density fun
tion the length of a �uvialnetwork that 
omprises an area between A and A + dA. Integrating this densityfun
tion over the total area AT of a tributary watershed gives the total length ofthe �uvial network in this watershed,

Ltot =

∫ AT

A0

fL(A)dA , (1.37)
= KL

∫ AT

A0

A−ωdA , (1.38)
=

KL

1 − ω
(A1−ω

T − A1−ω
0 ) . (1.39)Linking the tributaries to the main watershed gives an expression of the totalarea of ea
h tributary watershed. Indeed, the length yl of the longest tributary riveris dire
tly dependent on the main river length xl at its 
on�uen
e with the tributary.Using Ha
k's law, the total area of the tributary watershed AT is,

AT = kayl
h , (1.40)

=
1

2h
kh+1

a xl
h(h−1) , (1.41)2.4.1.
 HillslopesThe hillslopes are de�ned as the non-�uvial part of the main watershed, whi
h 
or-responds to the non-�uvial part of the tributaries. As a 
onsequen
e, the proportion38



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSof a watershed o

upied by hillslopes 
an be des
ribed using the des
ription of thetributary �uvial network.Dividing the total area AT of the tributary watershed by two times the totallength of its �uvial network Ltot roughly gives a 
hara
teristi
 width whill of hillslopesin the tributary watershed 
onsidered,
whill =

AT

2Ltot

, (1.42)
=

(1 − ω)

2KL

AT

(A1−ω
T − A1−ω

0 )
, (1.43)Alternatively, a simpli�ed expression of whill 
an be obtained by noti
ing thatthe head sour
es of the �uvial network are part of the hillslopes. Thus the hillslopewidth 
an be de�ned from the average head sour
e area, assuming that Ha
k's lawis valid at the head of the �uvial network,

whill =

(

A0

ka

)1/h

. (1.44)This last expression will be used in the following.2.4.2 Evolution of the physi
al systemThe physi
al system that was geometri
ally des
ribed in the previous se
tion, issubmitted to both erosion and uplift. The uplift fun
tion 
an be dedu
ed by 
ouplingwith a geodynami
al model. Erosion o

urs along the main river of the watershed,but also along its tributaries, and on the hillslopes.2.4.2.a Main river erosionFollowing Lavé and Avoua
 (2001), we adopt a simple deta
hment-limited relationthat has provided �rst-order results a

ross the Subhimalaya. This relation statesthat the instantaneous bedro
k in
ision rate of a river i is proportional to its unitstream power,
i = k

((

Q

W

)m

Sα − τc

)

, (1.45)with S the lo
al 
hannel slope, Q the water dis
harge, W the width of the river 
han-nel, m and α the stream power exponents, τc a 
riti
al unit stream-power thresholdfor in
ision, and k a dimensional erodibility 
oe�
ient.E�e
tive dis
harge Assuming that Q re�e
ts a long-term e�e
tive dis
harge, we
an empiri
ally des
ribe its downstream variations,
Q = kQAξ(P̄ − P0) , (1.46)with ξ an exponent, kQ a dimensional 
oe�
ient, P0 a pre
ipitation threshold, and

P̄ the upstream spatially averaged pre
ipitation rate P over the drainage area,
P̄ (A) =

1

A

∫ A

P (A′)dA′ , (1.47)39



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSThe downstream variations of the river 
hannel width is also empiri
ally des
ribed(Leopold and Maddo
k , 1953; Montgomery and Gran, 2001b; Snyder et al., 2003),
W = kaQ

ωa , (1.48)with ωa an exponent and ka a dimensional 
oe�
ient. Combining previous equationsand assuming that an e�e
tive dis
harge allows to reprodu
e long-term river in
isionrate I, leads to,
I = k

(

keffA
γ(P̄ − P0)

βSα − τc

)

, (1.49)with γ = ξm(1 − ωa) the apparent area exponent, β = m(1 − ωa) the apparentpre
ipitation exponent, and keff = k−m
a k

m(1−ωa)
Q .Sto
hasti
 distribution of dis
harge Now instead of using an e�e
tive waterdis
harge to des
ribe long-term erosion, we rather use an erosion law that re�e
tsinstantaneous erosion and integrates it over a sto
hasti
 distribution of dis
harge toexpress the long-term river erosion law (Lague et al., 2005).The downstream variation of river width is still expressed by,

Wa = kaQ̄
ωa , (1.50)and its at-a-station temporal variations by,

W = Wa

(

Q

Q̄

)ωs

, (1.51)with Q the instantaneous river water dis
harge, Q̄ the river mean water dis
harge(averaged over time), and ωs an exponent. Combining the last two equations leadsto,
W = kW Qωs

⋆ Q̄ωa , (1.52)with Q⋆ = Q/Q̄ the normalized water dis
harge (or water dis
harge ratio), and kWa 
onstant. Combining last equation with Eq. 1.45 gives,
i = k

(

k−m
W Qm(1−ωs)

⋆ Q̄m(1−ωa)Sα − τc

)

. (1.53)Now we make the assumption that the at-a-station river water dis
harge temporalvariability 
an be expressed through a power law distribution,
pdf(Q⋆) =

χχ+1

Γ(χ + 1))
Q−(χ+2)

⋆ , (1.54)with χ an exponent, and Γ the Gamma fun
tion su
h that if χ is an integer then
Γ(χ + 1) = χ!. Then we 
an integrate the in
ision rate to express the long-termin
ision rate,

I =

∫ Qm⋆

Qc⋆

pdf(Q⋆)i(Q⋆)dQ⋆ , (1.55)with i the in
ision rate de�ned in Eq. 1.53. Qc⋆ is the 
riti
al water dis
hargeratio and is de�ned su
h that i(Qc⋆) = 0, i.e. Qc⋆ is the minimum dis
harge forwhi
h the 
riti
al unit stream-power threshold for in
ision is over
ome. Qm⋆ is themaximum water dis
harge ratio at the times
ale 
onsidered. Note that a power law40



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSdistribution for water dis
harge is an approximation that holds if the 
ontributionof low dis
harge events to erosion is negligible, as it does not reprodu
e the de
reaseof number of events for dis
harge below the average dis
harge (Lague et al., 2005).It is thus a 
orre
t approximation when Qc⋆ is large or when the long-term in
isionrate is dominated by the largest events. Here we also make the assumption thatthe previous equation 
an be integrated with the parameters of the in
ision lawindependant of the water dis
harge, and we obtain for m(1 − ωs) − (χ + 1) 6= 1,
I = k

χχ+1

Γ(χ + 1)

(

k−m
W Q̄m(1−ωa)Sα (Q

m(1−ωs)−(χ+1)
m⋆ − Q

m(1−ωs)−(χ+1)
c⋆ )

m(1 − ωs) − (χ + 1)

− τc
(Q

−(χ+1)
m⋆ − Q

−(χ+1)
c⋆ )

−(χ + 1)

)

. (1.56)At large times
ale and in most settings Qm⋆ ≫ Qc⋆, and if m(1 − ωs) − (χ +
1) < 1 (whi
h is likely to be true) then any dependen
y with Qm⋆ rapidly vanisheswith in
reasing time in Eq. 1.56, and I 
onverges to a 
onstant whose approximateexpression is:

I = −k
χχ+1

Γ(χ + 1)

(

k−m
W Q̄m(1−ωa)Sα Q

m(1−ωs)−(χ+1)
c⋆

m(1 − ωs) − (χ + 1)

+ τc
Q

−(χ+1)
c⋆

χ + 1

)

. (1.57)In order to simplify previous equation, let's noti
e thatQ
m(1−ωs)
c⋆ = km

W Q̄−m(1−ωa)S−ατc,whi
h gives,
I = −k

χχ+1

Γ(χ + 1)
τcQ

−(χ+1)
c⋆

m(1 − ωs)

(χ + 1)(m(1 − ωs) − (χ + 1))
. (1.58)Ultimately inje
ting Qc⋆ and using Q̄ = kQAξ(P̄ −P0) in the previous equation leadsto,

I =

(

k

τ ′

c

)

kstoA
γ′

(P̄ − P0)
β′

Sα′

, (1.59)with,
τ ′

c = τ
χ

m(1−ωs)
c (1.60)

ksto = −
χχ+1

Γ(χ + 1)

m(1 − ωs)

(χ + 1)(m(1 − ωs) − (χ + 1))
k

−(χ+1)
(1−ωs)

W k
(χ+1)(1−ωa)

(1−ωs)

Q (1.61)
β ′ =

(χ + 1)(1 − ωa)

(1 − ωs)
(1.62)

γ′ = ξβ ′ (1.63)
α′ =

α(χ + 1)

m(1 − ωs)
(1.64)(1.65)We 
an even more simplify previous equation by de�ning an apparent 
oe�
ient oferodibility k′ = k/τ ′

c, whi
h leads to,
I = k′kstoA

γ′

(P̄ − P0)
β′

Sα′

. (1.66)41



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONS2.4.2.b Erosion of the �uvial networks and hillslopes of the tributarywatershedsMain river erosion ḣriv drives the evolution of the mean total topography ˙̄h througha transfer fun
tion. This transfer fun
tion is dependent on the erosion of both thetributary rivers ḣtrib and the hillslopes ḣhill, and on the geometry of the system.To de�ne this fun
tion, we �rst make the assumption that the tributary rivers aresubje
ted to the same erosion law as the main river, and that hillslopes are 
ontrolledby a stability angle above whi
h landsliding o

urs. In a se
ond 
ase we 
onsider amore 
omplex system, where hillslopes are not only 
ontrolled by landsliding, but
an also be eroded by di�usion of their elevation when their average slope is belowthe stability angle. In ea
h 
ase we make the assumption that hillslope erosion is inbalan
e with the lo
al �uvial network.2.4.2.
 Hillslope evolutionHere we assume that hillslopes are 
ontrolled by a stability angle φc, above whi
hlandsliding o

urs. Combining this de�nition with the width of the hillslopes (Eq. 1.44)leads to the following expression of the mean hillslope relief,
h̄hill =

tan(φc)

2
whill , (1.67)

=
tan(φc)

2

(

A0

ka

)1/h

, (1.68)2.4.2.d Tributary evolutionThe volume of topography above a point in a tributary �uvial network V (AT ), 
anbe viewed as the sta
k of topographi
 sli
es. Using the density fun
tion de�ned inEq. 1.36 ea
h sli
e has a volume of AfL(A)S(A)dA, with dA the in
rement of areathat de�nes the sli
e. Integrating this equation over the total area of the tributary�uvial network gives the volume of topography belonging to this �uvial network,
V (AT ) =

∫ AT

A0

AfL(A)S(A)dA . (1.69)Dividing this volume by the total area of the tributary watershed gives the average�uvial relief in the tributary watershed 
onsidered,
h̄trib =

V (AT )

AT
. (1.70)To expli
itly express the slope in Eq. 1.70, we need to make the assumption thatthe tributary is in steady state, and that ˙̄htrib = u− i = 0. Using the stream powerequation, it is now possible to derive the slope of the tributary �uvial network as afun
tion of the area, assuming that erodibility, uplift, pre
ipitation are uniform inthe tributary watershed, for an e�e
tive water dis
harge (Eq. 1.49),

S(A) =

(

u/k + τc

keffAγ(P̄ − P0)β

)1/α

, (1.71)42



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSor for a sto
hasti
 distribution of water dis
harge (Eq. 1.66),
S(A) =

(

u/k′

kstoAγ′(P̄ − P0)β′

)1/α′

. (1.72)Combining the previous equation with the expression of the tributary mean�uvial relief and integrating, leads to the following equations for an e�e
tive waterdis
harge (Eq. 1.49),
h̄trib =

(

u/k + τc

keff(P̄ − P0)β

)1/α
(

KL(A
2−ω−γ/α
T − A

2−ω−γ/α
0 )

(2 − ω − γ/α)AT

)

,

if ω + γ/α 6= 2 ,

(1.73)and
h̄trib =

(

u/k + τc

keff(P̄ − P0)β

)1/α(
KLln(AT /A0)

AT

)

,

if ω + γ/α = 2 ,

(1.74)or for a sto
hasti
 distribution of water dis
harge (Eq. 1.66),
h̄trib =

(

u/k′

ksto(P̄ − P0)β′

)1/α′
(

KL(A
2−ω−γ′/α′

T − A
2−ω−γ′/α′

0 )

(2 − ω − γ′/α′)AT

)

,

if ω + γ′/α′ 6= 2 ,

(1.75)and
h̄trib =

(

u/k′

ksto(P̄ − P0)β′

)1/α′ (

KLln(AT /A0)

AT

)

,

if ω + γ′/α′ = 2 .

(1.76)2.4.2.e Denudation Rate of the Mean TopographyAs we have previously assumed that the tributaries were at steady state, theirin
ision rates equal their uplift rates. Thus inverting the previous equation gives theexpressions of the denudation rate at steady-state, for an e�e
tive water dis
harge(Eq. 1.49),
i = k

(

keff(P̄ − P0)
β

(

(2 − ω − γ/α)AT

KL(A
2−ω−γ/α
T − A

2−ω−γ/α
0 )

h̄trib

)α

− τc

)

,

if ω + γ/α 6= 2 ,

(1.77)and
i = k

(

keff(P̄ − P0)
β

(

AT

KLln(AT /A0)
h̄trib

)α

− τc

)

,

if ω + γ/α = 2 ,

(1.78)43



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSor for a sto
hasti
 distribution of water dis
harge (Eq. 1.66),
i = k′



ksto(P̄ − P0)
β′

(

(2 − ω − γ′/α′)AT

KL(A
2−ω−γ′/α′

T − A
2−ω−γ′/α′

0 )
h̄trib

)α′


 ,

if ω + γ′/α′ 6= 2 ,

(1.79)and
i = k′

(

ksto(P̄ − P0)
β′

(

AT

KLln(AT /A0)
h̄trib

)α′
)

,

if ω + γ′/α′ = 2 ,

(1.80)The 
hannel head belongs to both the hillslopes and the tributay �uvial network.Thus it imposes two 
onditions: (1) the lo
al slope at the 
hannel head in A =
A0 is 
ontrolled by the stability angle S(A0) ≤ tan(φc); (2) the inverted meanin
ision rate i 
omputed for the tributary is valid at the 
hannel head and i(A0) = i.Thus the inversion of the tributary mean in
ision needs to be pro
essed iteratively.The pro
edure is equivalent using an e�e
tive water dis
harge or using a sto
hasti
distribution of water dis
harge. Using this iterative algorithm enables to 
omputethe in
ision rate of the mean topography, and to take into a

ount a sour
e areathat balan
es the in
ision rate of the tributary.2.4.2.f Transient and Steady-state Evolution of the River and Mean To-pographyFigure 1.13 shows the evolution of the river pro�le and of the mean topographywhen subje
ted to uniform uplift. Similar to 2D SPM, erosion by the main river isregressive (from the boundaries to the 
enter of the model). It sets the low pointsof tributary basins, whi
h are then eroded on
e the regressive erosion wave of themain river rea
hes the point of their 
on�uen
e. At this stage mean topography andmain river elevation are no more similar as the lo
al relief of the tributary basinsstarts to develop.Topographi
 steady-state (E = U) is rea
hed, �rst for the main river when theregressive wave has propagated all along the main river up to the main divide.Then the mean topography rea
hed steady-state, when the regressive wave has alsopropagated up to the divide of the tributary basins, and hillslopes have rea
hed their
riti
al slope.In Chapter 8, I use the integration of lands
ape evolution from 2D to 1D with asto
hasti
 distribution of water dis
harge to model the topographi
 de
ay of post-orogeni
 mountain belts with a 2D deformation model.3 Numeri
al Modeling of Lithospheri
 Thermi
s, Me-
hani
s and MetamorphismIn the following we introdu
e the numeri
al methods that allow modeling of thethermal and me
hani
al behaviour of the lithosphere. In parti
ular a fo
us is made44
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Figure 1.13: Time evolution of the river (blue line) and of the mean topography(bla
k line) with a uniform uplift until rea
hing steady-state. The initial topographyis a triangular surfa
e with a summit of elevation h = 1 m at the 
enter. All theparameters of the model are kept 
onstant and uniform. Note that drainage area isnot 
omputed assuming a basin's geometry following Ha
k's law, but for self-similarand re
tangular basins (Lavé, 2005).
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CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSon the �nite element solutions to the me
hani
s of the lithosphere, and it is illus-trated with the �nite element model (FEM) 
alled ADELI (Hassani et al., 1997).Then I brie�y present the thermal behaviour of the lithosphere and its numeri
almodeling with �nite di�eren
es.3.1 Finite Element Models (FEM)Zienkiewi
z et al. (2005): The limitations of the human mind are su
h that it 
annotgrasp the behaviour of its 
omplex surroundings and 
reations in one operation. Thusthe pro
ess of subdividing all systems into their individual 
omponents or elements,whose behaviour is readily understood, and then rebuilding the original system fromsu
h 
omponents to study its behaviour is a natural way in whi
h the engineer, thes
ientist, or even the e
onomist pro
eeds.3.1.1 Prin
iples of Finite Element ModelingMany physi
al phenomena in Earth s
ien
es 
an be des
ribed in terms of partialdi�erential equations. Solving these equations by 
lassi
al analyti
al methods forarbitrary shapes is almost impossible. The �nite element method (FEM) is a nu-meri
al approa
h by whi
h these partial di�erential equations 
an be approximatelysolved.The �nite element method 
onsists of the following �ve steps:1. Prepro
essing: subdividing the problem domain Ω into �nite elements.2. Element formulation: development of equations for elements.3. Assembly: obtaining the equations of the entire system from the equations ofindividual elements.4. Solving the equations.5. Postpro
essing: determining quantities of interest, su
h as stresses and strains,and obtaining visualizations of the response.3.1.1.a The ElementTriangular element was the �rst �nite element proposed for 
ontinuous prob-lem in 2D. Let's 
onsider one triangular element in the 
oordinate system (x,y)(Fig. 1.14) with three nodes a, b, and c. In a me
hani
al formulation, the dis
retizeddispla
ements Unodes at the nodes of the element, de�ne the degree of freedom of theelement 
onsidered,
Unodes =

















ux
a

uy
a

ux
b

uy
b

ux
c

uy
c
















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Figure 1.14: Triangular �nite element and its asso
iated displa
ement Unodes at its
3 nodes a,, b and c, in the xy 
oordinates.
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CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSFrom this dis
retized displa
ement, it is possible to de�ne a 
ontinuous displa
e-ment u inside the element by interpolation of the nodal values, using a fun
tion ofinterpolation (shape-fun
tion hereinafter):
u =

(

ux

uy

)

=

(

fa(x, y)ux
a + fb(x, y)ux

b + fc(x, y)ux
c

fa(x, y)uy
a + fb(x, y)uy

b + fc(x, y)uy
c

)

,with fa(x, y), fb(x, y) and fc(x, y) the shape fun
tions that are fun
tions of x and y.For triangular elements 
ommon shape fun
tion 
onsist of polynomia of �rst degreewith fn(x, y) = αn + βnx + γny. Note that shape fun
tions 
an also be de�ned fordi�erent shapes of elements, su
h as re
tangular elements.3.1.1.b Assembly: Example of a a 1D Elasti
 BarElementary Rigidity Let's 
onsider a linear 1D bar made up of linear elementswith 2 nodes (Fig 1.15). External for
es Fa and Fb are applied at the nodes, and wewant to 
ompute the resulting displa
ement in the bar. In this setting, 
ontinuousdispla
ement using a linear interpolation of nodal values is expressed as,
u(x) = (L − x)ua + xub (1.81)The bar is assumed elasti
 with a length L and a se
tion of area A. Stress σx in thebar is a linear fun
tion of strain εx,

σx = Eεx , (1.82)where E is the Young's modulus of the elasti
 bar, εx = ub−ua

L
.For
e balan
e implies that the external for
es Fe (Fa and Fb) applied to the nodesare equal to the internal for
es Fi:

Fa = −σxA and Fb = σxA . (1.83)This equation 
an be developped and expressed in its matri
ial form,
(

Fa

Fb

)

= −
EA

L

(

1 −1
−1 1

)(

ua

ub

)

,and in its 
ompa
t matri
ial form
Fe = KUnodes . (1.84)with Fe the external for
es and K the element sti�ness (or rigidity) matrix of theelement,

K = −
EA

L

(

1 −1
−1 1

)

.Global Rigidity Now let's 
onsider the same model but with 2 jointing elements,with b the node 
ommon to the 2 elements (Fig 1.15). Both elements share the samerigidity matrix. Combining these matri
es, through the assembly phase, leads to asingle matri
ial equation,




Fa

Fb

Fc



 = −
EA

L





1 −1 0
−1 2 −1
0 −1 1









ua

ub

uc



 ,48
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Figure 1.15: (A) Linear �nite element in 1D and (B) a �nite element model madeup of 2 linear elements.and the 
ompa
t matri
ial form is,
Fe = KgloUnodes , (1.85)where Kglo is the global sti�ness (or rigidity) matrix of the model 
omposed of 2 ele-ments, and 
an be generalized to larger number. Solving the FEM problem 
onsiststhen of inverting the global rigidity matrix Kglo to express the nodal displa
ement

Unodes as a fun
tion of the imposed nodal for
es Fnodes. Then the 
ontinuous dis-pla
ement u is dire
tly obtained by interpolation of the nodal displa
ement Unodesusing the shape fun
tions.This method is global and is neither limited to linear elements in 1D nor to elas-ti
ty. When 
onsidering large models made up of a large number of nodes, invertingthe global rigidity matrix 
an result in extensive 
omputational 
ost. Two method-ologies are 
lassi
aly implement in FEM to solve this system: (1) Impli
it methodsin whi
h the stati
 system Eq. 1.85 is linearized into a large system of algebrai
 equa-tions. These methods are 
omputationally expensive. (2) Expli
t methods su
h asthe Dynami
 Relaxation (DR) (Underwood , 1983) whi
h is employed in ADELI. Inthe following I present the basi
 methodology of DR.3.1.2 ADELI: a Tool for Lithospheri
 Me
hani
sADELI is a Fortran 77 �nite element software developed by Hassani et al. (1997)to model the thermo-me
hani
al behaviour of the lithosphere at geologi
al times
ales in 2D. A 3D version exists but has not been used in the following. TheFEM analysis is performed in large strain using the 
on
ept of obje
tive (i.e. La-grangian) derivative. While the spa
e is dis
retized using linear triangular elements,the time approximation is done using an expli
it �nite di�eren
e method based onthe Dynami
 Relaxation method, and more spe
i�
ally on the algorithm proposedby Cundall and Board (1988). The main 
apabilities of ADELI are:49



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONS1. Meshes of various sizes and shapes 
an be automati
ally generated startingfrom the de�nition of their boundaries, and an arbitrary number of materials
an be de�ned.2. The rheology 
an be 
hosen elasti
 (linear 
ompressible), elastoplasti
 (VonMises or Dru
ker-Prager), vis
oelasti
 (linear or non-linear Maxwell body), ora 
ombination of two anelasti
 behaviours.3. Conta
t problems between bodies are treated using Coulomb fri
tion via animpli
it algorithm for steep 
onta
t and dry fri
tion.4. Thermal properties 
an be used in order to 
ompute a transient or steay-statethermal solution.5. Body for
es 
orresponding to a 
onstant gravity �eld 
an be in
luded.6. Boundary 
onditions are given in terms of velo
ities and/or stress on the meshborder, and in terms of temperature and/or heat �ow for the thermal problem.7. Initial 
onditions 
an be adjusted for internal stress and temperature.I have developed and implemented new features into ADELI:1. Possibility of using lo
al remeshing with the Dynami
al Lagrangian Remeshingalgorithm of Braun and Sambridge (1994) and/or with the Surfa
e LagrangianRemeshing of Steer et al. and/or global remeshing/re�ning of Hassani et al.(1997).2. A large variety of 1D surfa
e erosion laws in
luding linear di�usion (Avoua
and Burov , 1996), stream-power using sto
hasti
 or e�e
tive water dis
harge(Lavé,2005; Godard et al., 2006) with possibility to follow both river or mean topog-raphy elevation.3. Metamorphi
 Phase Change and asso
iated density 
hanges are implemented
onsistently with mass 
ontinuity and elasti
 rheology (Hetényi et al., 2010).In Chapter 8 I use ADELI to model post-orogeni
 me
hani
al and thermal evo-lution in 2D3.1.2.a Dynami
 RelaxationThe 
ode ADELI (Hassani et al., 1997) employs Dynami
 Relaxation to solve thematri
ial problem asso
iated with FEM (Underwood , 1983). This is an expli
ititerative pro
edure, in whi
h the stati
 system (Eq. 1.85) is transferred to an arti�
ialdynami
 spa
e by adding arti�
ial inertia and damping for
es,
MÜnodes + CU̇nodes + KgloUnodes = Fe , (1.86)where M is a �
tious mass matrix 
hosen in a diagonal form, and C a �
tious damp-ing matrix. The steady state solution of this arti�
ial dynami
 system (Eq. 1.86) isthe solution of the stati
 system. It is rea
hed when the inertial regularizing term50
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Potential
Energy

Location

elastic

non-elasticFigure 1.16: S
hemati
 view at atomi
 s
ale of elasti
 (re
overable) and non-elasti
(non-re
overable) deformation. In elasti
 deformation, the in
rement of potentialenergy of the atom due to a soli
itation is not su�
ient to ex
eed the potentialenergy of the hill, while in non-elasti
 it is su�
ent.
MÜ is negligible 
ompared to the for
es involved in the problem. Inverting thisequation gives an expression of the nodal a

eleration,

Ü = M−1(Fe − Fi − CU̇), (1.87)with Fi = KstiffU the internal nodal for
es 
al
ulated from the integration of the
onstituve law (Eq. 1.88). Velo
ity and displa
ement are then 
omputed by nu-meri
al integration.The main bene�ts of Dynami
al Relaxation is its lower 
omputational 
ost 
om-pared to impli
it methods, and its ability to solve �nite element problems withnon-trivial inversion of the global sti�ness matrix. The main 
ounterpart is its highsensitivity to transient instabilities, whi
h 
an amplify and result in large errors.Thus it is extremely important to limit su
h instabilities.3.2 Lithosphere Me
hani
s3.2.1 Rheology at Atomi
 S
aleRheology is the physi
al property 
hara
terizing �ow/deformation behaviour ofa material under me
hani
al, thermal or 
hemi
al soli
itations (Karato, 2008). Let's
onsider properties of deformation at the atomi
 s
ale the s
ale at whi
h most defor-mation pro
esses o

ur (exept fra
ture). At stati
 equilibrium, ea
h atom o

upies aposition 
orresponding to the minimum potential energy (Fig. 1.16). Upon applyinga stress, atoms move from their stable positions, and depending on the intensity ofthe stress, two types of deformation are possible: (1) If the stress is small, or thetemperature is low (or time is short), then only small instantaneous displa
ementwill o

ur. Consequently, when the stress is removed, atoms go ba
k to their initial(and stable position). This is 
alled elasti
 or re
overable or reversible deforma-tion. (2) In 
ontrast when a large stress is applied, or at high temperature (or timeis long), then the material will respond not only instantaneously but also throughdelayed, time-dependent deformation and a fra
tion of the deformation is not re-versible. This is 
alled non-elasti
 deformation. Mi
ros
opi
ally , this o

urs when51



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSthe atomi
 motion is so large that atoms move, over the potential energy hill, to thenext stable position.Two kinds of non-elasti
 deformation exist: (1) If the stress is removed, the atomwill not move ba
k to its initial position, as no energy is added to the system, unlessthe deformation 
auses elasti
 strain inside the material (ba
k stress). In this 
aseafter the removal of the external stress, atomi
 motion o

urs in su
h a way so asto redu
e the ba
k stress asso
iated with elasti
 strain so that the �nal equilibriumwill have no permanent strain: strain is re
overable but time-dependent. This is
alled anelasti
 deformation. (2) In 
ontrast deformation 
an be time-dependentand strain is non-re
overable. This is 
alled vis
ous or plasti
 deformation.The latter deformation 
an o

ur nearly instantaneously and be non-re
overable.For instan
e, fra
ture is nearly time-independent, but deformation is non-re
overable.Fra
ture involves the ma
ros
opi
 breaking of 
hemi
al bonds whi
h o

urs in most
ases in a lo
alized fashion. This is 
alled brittle deformation and 
an be 
onsideredas an end-member of plasti
 deformation.3.2.2 Rheologi
al lawsIn ADELI the elasti
 part of ea
h 
omponent of the strain ǫij is fun
tion of thestress tensor σ, through Hooke's law,
ǫij =

1 + ν

E
σij −

ν

E
trace(σ)δij , (1.88)where E and ν are the Young's modulus and the Poisson's ratio, respe
tively. Whilethe vis
ous part of ea
h 
omponent of strain rate is fun
tion of the deviatori
 stress

(σ1 − σ3) and temperature T through the Power law,
˙ǫij = γ0(σ1 − σ3)

ne(−Ea/RT ) , (1.89)where γ0 is the standard �udity, n the power law exponent, Ea the a
tivation energyand R the universal gaz 
onstant. The limit between the vis
o-elasti
 and the elasti
-plasti
 (or -brittle) domains is de�ned by a Dru
ker-Prager failure 
riterion or stressthreshold,
σc = α

c

tan(Φ)
, (1.90)with c the 
ohesion of the material, Φ its internal angle of fri
tion, and α =

6 sin(Φ)/(3 − sin(Φ)). The material be
omes plasti
 when the e�e
tive stress σeffbe
omes higher than the stress threshold,
σeff − σc > 0 , (1.91)where σeff = J2(σ)+J1(σ)α, with J1 and J2 the �rst (isotropi
, i.e. pressure) andse
ond (deviatori
) invariant of the stress �eld, respe
tively. In 2D the Dru
ker-Prager limit is,

1

2
(σ1 − σ3) =

(

c cot(Φ) +
1

2
(σ1 + σ3)

)

. (1.92)Figure 1.17 illustrates the behaviour of the vis
o-elasti
 and elasto-plasti
 rheologi
allaw used in ADELI. 52
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CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSLast it is possible to a priori de�ne fra
tures, inside the �nite element model,whi
h respe
t the Coulomb fri
tion law.3.3 Thermal Behaviour of the Lithosphere and its ModelingSolid earth rheology is a primary fun
tion of the temperature. In geodynami
alsystems, su
h as the lithosphere, the temperature varies strongly (for instan
e slabsubdu
tion indu
es a 
ooling of its surrounding). Thus it is required in long-termgeodynami
al models to solve both the me
hani
s and thermi
s of the system 
on-sidered. Here I �rst present the basi
 physi
s of heat transfer and then I present itsnumeri
al implementation into ADELI (Hassani et al., 1997).3.3.1 Physi
s of Heat TransfersThe basi
 relation for 
ondu
tive heat transport is Fourier's law, whi
h states thatthe �ux q at a point in a medium is dire
tly proportional to the spatial gradient ofthe temperature T at the point,
q = −k~∇T . (1.93)Combining this equation with heat 
onservation gives the heat equation, whi
hallows to des
ribe the time evolution of the temperature T in a medium submittedto 
ondu
tion, 
onve
tion and in presen
e of a heat sour
e. In its fundamental formit is expressed as an equation of adve
tion and di�usion:

ρCp

(

∂T

∂t
+ ~u · ~∇T

)

= ∇ ·
(

k~∇T
)

+ H , (1.94)where ρ is the density of the material, Cp its spe
i�
 heat 
apa
ity, k its 
ondu
tivity,and H is a volumi
 heat sour
e term (mainly radiogeni
 heat produ
tion in theEarth). The ve
tor ~u is the velo
ity of the material whi
h results in adve
tionof heat. Note that in ADELI, whi
h is based on a Lagrangian formalism, heat isnaturally adve
ted. Under this 
ondition the adve
tion-di�usion equation be
omesa di�usion-only equation,
ρCp

∂T

∂t
= ∇ ·

(

k~∇T
)

+ H . (1.95)3.3.2 Numeri
al Implementation in ADELIThe di�usion equation is solved in 2D using an expli
it Euler s
heme that 
omputesfor ea
h node the heat �ux that exists within ea
h linked element. The method isiterative so that the temperature 
onverges toward a steady-state solution, whi
ho

urs when the heat �uxes indu
ed by the spatial gradient of the temperature �eldbalan
e the external heat for
ing �uxes generated by boundary 
onditions and heatsour
es.Contrary to many dire
t solvers, this iterative solver presents the main bene�tof being independent of the nature of the boundary 
onditions.54



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSTable 1.1: Present rates of heat release Hr and half-life τ1/2 of the important ra-dioa
tive isotopes of the Earth (Tur
otte and S
hubert , 2002).Isotope Hr (W.kg−1) τ1/2 (Ma)
238U 9.46 · 10−5 4.47 · 103

235U 5.69 · 10−4 7.04 · 102

U 9.81 · 10−5

232Th 2.64 · 10−5 1.40 · 104

40K 2.92 · 10−5 1.25 · 103

K 3.48 · 10−93.3.3 Heat Flux, Heat Sour
es and Temperature of the LithosphereThe Earth's surfa
e heat �ow is the �rst eviden
e of a thermal a
tivity in the innerEarth. In the 
ontinents the mean surfa
e heat �ow is 65±1.6 W.m−2 (Tur
otte andS
hubert , 2002). Regions of 
ontinental te
toni
s, su
h as the Alps or Himalayan
ollision zone exhibit normal heat �ows. In stable 
ontinental areas, the surfa
e heat�ow is strongly 
orrelated with the 
on
entration of radio
ative isotopes in surfa
ero
ks. This is due to the produ
tion of heat during the �ssion of the radioa
tiveisotopes of uranium, thorium and potassium. Today heat is produ
ed primary by
238U and 232Th, but in the distant past 235U and 40K were the dominant heat pro-du
ers due to their shorter half-lives (see Table 1.1). The largest 
on
entrationsof heat-produ
ing radioa
tive isotopes are found 
lose to the surfa
e of the Earth.Typi
ally in 
ontinents, the upper 
rust exhibits higher 
on
entration than the lower
rust, whi
h also exhibits higher 
on
entration than the upper mantle.This produ
tion of heat by radioa
tive isotopes is also 
alled radiogeni
 heat pro-du
tion, and 
orresponds to the heat sour
e term in equation 1.95. Note that otherme
hanisms are able to produ
e heat in the Earth (Gerya, 2009): The shear heatingwhi
h is related to the dissipation of the me
hani
al energy during irreversible non-elasti
 deformation; the adiabati
 heat produ
tion or 
omsuption whi
h is relatedto 
hanges in pressure; the latent heat produ
tion or 
omsuption that is due tophase transformations in ro
ks subje
ted to 
hanges in pressure and temperature.However these heat sour
es are se
ondary when 
onsidering the entire lithosphereas they are very depedent on lo
al 
onditions (P , T , strain).Some parts of the surfa
e heat �ow are also related to the overall global 
oolingof the Eart through geologi
 time. However this 
ooling �ux is poorly 
onstrained.Pra
ti
ally, when 
onsidering numeri
al modeling of the lithosphere, the e�e
t ofglobal 
ooling is in
luded by de�ning a basal heat �ow.3.3.4 Steady-State GeothermsTemerature-depth pro�les within the Earth are 
alled geotherms. If we 
onsidera 1D 
olumn with 
onstant bounday 
onditions, the 
olumn may eventually rea
h astate of thermal equilibrium, a steady-state. At steady-state, i.e. when ∂T/∂t = 0,and if assuming that thermal 
ondu
tivity is homogeneous, the 1D form of the heat55
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CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSequation (Eq. 1.95) is simply,
∂2T

∂z2
= −

H

k
, (1.96)with z the depth. Sin
e this is a se
ond-order di�erential equation, it 
an be solvedif assuming 2 boundary 
onditions, su
h as:� Temperature T = 0 at z = 0.� Heat �ow Q = −Qd at Z = d, with d the thi
kness of the 
olumn and Qd thebasal heat �ow.Intergration of Eq. 1.96 and for
ing the solution to respe
t these boundary 
onditionsimplies,

T = −
H

2k
z2 +

Qd + Hd

k
z , (1.97)with H the radiogeni
 heat produ
tion of the medium 
onsidered and k its thermal
ondu
tivity.To express the equation of the steady-state geotherm of the lithosphere, it is re-quired to 
onsider two layers: (1) the 
rust and (2) the upper mantle. The boundary
onditions remain the same for ea
h layer, and for
ing the 
ontinuity of temperatureat the Moho leads to,

T = −
H1

2k
z2 +

(

Q2

k
+

H2

k
(d1 − d2) +

H1d1

k

)

z for 0 ≤ z < d1 , (1.98)
T = −

H2

2k
z2 +

(

Q2

k
+

H2d2

k

)

z +
H1 − H2

2k
d2

1 for d1 ≤ z ≤ d2 , (1.99)with H1 and H2 the radiogeni
 heat produ
tion of the 
rust ormantle, d1 and d2their respe
tive thi
kness, and Q2 = Qd the basal heat �ow of the lithospheri
 partof the mantle. Figure 1.18 presents a range of possible geotherms for the lithosphereobtained using previous equations.4 Coupling of Surfa
e Pro
esses and Lithospheri
DeformationIn the last two se
tions I have des
ribed the laws that allow one to model sur-fa
e pro
esses, lithospheri
 me
hani
s and thermi
s. In the following, after brie�ypresenting the nature of the intera
tions between these pro
esses, I introdu
e thenumeri
al methods to 
ouple them into a single numeri
al model.4.1 A Brief Overview4.1.1 The Earth's Surfa
e Intera
ts with its External/Internal EnvelopesEarth's surfa
e is by de�nition the interfa
e between Earth's lithosphere (top in-ternal envelope) and atmosphere (external envelope). As mentioned previously thelaws that govern the thermal and me
hani
al evolution of the lithosphere (and of57
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Figure 1.19: S
hemati
 overview of the physi
al pro
esses that 
ontrol Earth's sur-fa
e elevation and properties, in
luding solid earth deformation, atmospheri
 pro-
esses and surfa
e pro
esses.
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CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSthe atmosphere) are expressed as di�erential equations, and their solutions are ex-tremely sensitive to boundary 
onditions. The Earth'surfa
e being the main bound-ary 
ondition of the lithosphere and of the atmosphere, its me
hani
al and thermal
onditions, su
h as its temperature (and �ow) or its elevation (or slope), are �rstorder for
ing terms of the lithosphere and atmosphere evolution.However it is also observed that the evolution of the lithosphere and of theatmosphere a�e
ts the 
onditions of the Earth's surfa
e. For instan
e, a 
onvergentte
toni
 setting 
an result in building of a mountain belt, with its asso
iated in
reaseof surfa
e elevation. Conversely, 
limati
 
y
les su
h as the Milankovit
h ones,whi
h depend on the e

entri
ity, axial tilt and pre
ession of the Earth's orbit,a�e
t surfa
e temperature. Thus the atmosphere and lithosphere behaviours are�rst order 
ontrols of Earth's surfa
e 
onditions.De�nition of Intera
tion and Feeba
ks: Here it is important to 
larifywhat means intera
tion and feedba
k :� An intera
tion is an a
tion that o

urs as two or more obje
ts havean e�e
t upon one another.� A (positive or negtive) feedba
k is the e�e
t by whi
h an a
tion thato

ured in the past, in�uen
es (positively or negatively) the samea
tion but o

uring afterwards.Thus the physi
al system made up of the Earth's surfa
e, the lithosphere andthe atmosphere is subje
ted to intera
tions, potentially with positive or negativefeedba
ks. Moreover this physi
al system is strongly for
ed and modulated by thephysi
al and 
hemi
al pro
esses that o

ur dire
tly on the surfa
e, su
h as erosionor sedimentation, and results in 
hanging its elevation and properties. These surfa
epro
esses are in�uen
ed by the behaviour of the atmosphere and of the lithosphere.For instan
e river in
ision is dependent on the pre
ipitation input, that modi�es thewater dis
harge, and on the spatial patttern of uplift that modi�es the river slope.Figure 1.19 is an attempt to summarize the possible 
ontrols of surfa
e pro
esses,atmospheri
 pro
esses, and lithospheri
 deformation on the Earth's surfa
e, and in-versely.4.1.2 What are these Intera
tions?The last two de
ades have seen an in
reasing number of studies fo
using on the in-tera
tions between 
limate (meaning here the atmospheri
 pro
esses that in�uen
esurfa
e pro
esses, basi
ally pre
ipitation and temperature), surfa
e erosion, and te
-toni
s (e.g., Beaumont et al., 1992; Avoua
 and Burov , 1996; Willett , 1999; Dadsonet al., 2003; Godard et al., 2006).In Taiwan Earthquakes and Typhoons Control Sediment Fluxes Dadsonet al. (2003) found a positive 
orrelation between present-day erosion rate (riversediment �uxes) with the seismi
 moment and the pattern of pre
ipitation duringlarge typhoons. This is not really surprising, as earthquakes and typhoons area
knowledged as potential triggering fa
tors of landsliding, whi
h in turn feeds riverswith sediments. However their results also show that erosion predi
ted by stream-power does not 
orrelate with present-day sediment �uxes whereas it 
orrelates with59



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSexhumation rates dedu
ed from Apatite Fission Tra
ks (AFT) at geologi
 time s
ale(> 1 Ma).Do Pre
ipitation Rates and Patterns Control Erosion Rates? Anotherissue in geomorphology 
on
erns the potential 
ontrol of pre
ipitation on erosion.At short time s
ale (∼ 10 yr) extremes pre
ipitation events su
h as typhoons inTaiwan (Dadson et al., 2003), or abnormaly intense monsoon in the arid part of theNepal Himalaya (Gabet et al., 2004a,b; Bookhagen et al., 2005a,b), 
ontrol hillslopeerosion by triggering landslides. In 
ontrast to short-term erosion, long-term erosionis strongly in�uen
ed by �uvial in
ision. Rivers set the lo
al base level of erosion foradja
ent hillslopes, and thus the rate of river lowering di
tates the rate of hillslopeerosion (Burbank , 2002).Reiners et al. (2003) and Gruji
 et al. (2006) do
umented a positive spatial
orrelation between pre
ipitation and erosion rates at geologi
 time s
ale in theCas
ades and in the Bhutan Himalayas, respe
tively. On the other hand, Burbanket al. (2003) and Gabet et al. (2008) found no signi�
ant 
orrelation between pre-
ipitation rate and long-term erosion rate (> 0.1 Ma) in the Greater Himalaya ofNepal. This latter observation is 
onsistent with the stream-power formalism, whi
h
orrelates long-term erosion rates with upslope 
umulated pre
ipitation (a proxy forwater �ow), not with lo
al pre
ipitation. Nontheless it is interesting to relate theseobservations to orographi
 pre
ipitation (Roe et al., 2003; Roe, 2005), whi
h statesthat when 
onsidering a two-sided range: (1) pre
ipitation rate is greater on thewindward side; (2) and intensity of the pre
ipitation in
reases with in
reasing slopeand elevation. What is the signature of an orogen where erosion is 
ontrolled byorographi
 pre
ipitation?Mountain Building and Orographi
 Pre
ipitation Dahlen and Suppe (1988)�rst a
knowledged the role of erosion as a driver of te
toni
s pro
esses in mountainbelts, by 
onsidering a Coulomb approa
h that relates deviatori
 stress τij , to stress
σij and pressure P :

τij = σij − Pδij . (1.100)Removal of material from the Earth's surfa
e by erosion should redu
e magnitudes ofverti
al 
ompressive stress (and 
onsequently P ), and as a result deviatori
 stresses
τij should in
rease in regions undergoing horizontal shortening, even with no 
hangein magnitudes of horizontal 
ompressive stress a

ros the belt. Non-elasti
 defor-mation, su
h as vis
ous or plasti
 one, being sensitive to deviatori
 stresses, erosionresults in an in
rease of the mountain belt deformation.Be
ause of the la
k of data 
onstraining the evolution of an orogen under an oro-graphi
 gradient of pre
ipitation, assessing the e�e
t of su
h pro
ess on mountainbuilding is a problem that 
an typi
ally be addressed with numeri
al modeling. Firstnumeri
al result: in a
tively deforming mountain belts, intera
tions and feedba
ksbetween te
toni
s, 
limate and surfa
e pro
esses in�uen
e not only the geomorphol-ogy but may also 
ontrol pattern and rates of strain in orogens (Beaumont et al.,1992). Se
ond numeri
al result: Willett (1999) found that orographi
 pre
ipitationexerts a fundamental 
ontrol on the lo
ation of zones of high or low strain (Fig. 1.20),60



CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONS

A)

B)

Figure 1.20: Results of the numeri
al modeling approa
h of the intera
tion betweenorographi
 pre
ipitation, stream power erosion and vis
o-plasti
 deformation duringmountain building (Willett , 1999). The wet side submitted to pre
ipitation is eitherlo
ated on the retrowedge side (A) or on the prowedge side (B) of the range. Theadve
ted mesh shows the total deformation and exhumation relative to the realsurfa
e (bold solid line). Strain rate is indi
ated by a gray s
ale.
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CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONSand 
ontrols the lo
ation of the water divide and its lateral migration. Here appearsfor the �rst time, the notion of intera
tion between atmospheri
 pro
esses, erosionand lithospheri
 deformation.De�nition of Uplift: Following England and Molnar (1990) we de�ne themeaning of surfa
e uplift , ro
k uplift and exhumation:� Surfa
e uplift is the net in
rement of mean elevation of the Earth'ssurfa
e U = h(x, t) − h(x, t − 1).� Ro
k uplift is the in
rement of elevation of the ro
k parti
le (without
onsidering erosion), due to a me
hani
al and internal pro
ess.� Exhumation is equal to the thi
kness of ro
k removed from the Earth'ssurfa
e.Surfa
e Uplift = Ro
k Uplift + ExhumationLo
al Isostasy: The prin
iple of lo
al isostatsy states that there is a regionbeneath the lithosphere where ro
ks are so weak that they 
annot sustainany horizontal stress gradient over geologi
al times (e.g., Braun and Robert ,2005). Isostati
 equilibrium implies that the weight of adja
ent lithospheri

olumns must be equal. Mass unloading by surfa
e erosion, disturbs thisequilibrium, and leads to verti
al motion.� First let's 
onsider the stati
 
ase of a mountain belt made up of atopographi
 elevation Htopo and with a 
rustal root of thi
kness Hroot,surrounded by a a 
rust of thi
kness Hcrust with a density ρc, andstanding on a mantle of density ρm. Here lo
al isostati
 equilibriumimplies,
Lρc = (Htopo + Hcrust + Hroot)ρc = Hcrustρc + Hrootρm , (1.101)whi
h gives an expression of the ratio of the topographi
 elevation on
rustal root thi
kness R, that only depends on the density of the 
rustand mantle,

R =
Htopo

Hroot

=
ρm − ρc

ρc

. (1.102)
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CHAPTER 1. NUMERICAL MODELING OF EROSION AND LITHOSPHERICDEFORMATION: PROCESSES AND INTERACTIONS� Now let's 
onsider the 
ase of a homogeneous erosion of a plateauby an amount E, and let's 
ompute the indu
ed isostati
 ro
k uplift
Urock. Isostati
 equilibrium relation before and after erosion are,

(Htopo + Hcrust + Hroot)ρc = Hcrustρc + Hrootρm , (1.103)
(−E + Htopo + Hcrust + Hroot)ρc = Hcrustρc + (Hroot − Urock)ρm ,and substra
ting them leads to expression of ro
k and surfa
e uplift,

Urock = E
ρc

ρm
and Usurf = E

ρc − ρm

ρm
. (1.104)Considering ρc = 2900 kg.m−3 and ρm = 3300 kg.m−3 leads to a netde
rease of surfa
e elevation of only ∼ 12 % of the amount of verti
alerosion.� Eventually let's 
onsider the 
ase of an non-homogeneous erosion ofa plateau only by valley pro
esses su
h as �uvial or gla
ier erosion,by an amount E. The mean verti
al erosion is E/2, and the indu
edro
k uplift is

Urock =
E

2

ρc

ρm
. (1.105)This ro
k uplift leads to a net surfa
e uplift of

Usurf = E
ρc − ρm

ρm

for the valleys ,Usurf = Urock =
E

2

ρc

ρm

for the ridges .(1.106)Thus isostasy 
an lead to surfa
e uplift of the ridges of a topography,only if the hillslopes have not yet rea
hed their slope of equilibrium, forinstan
e the Tibetan plateau before its Cenozoi
 global uplift (Molnarand England , 1990).Chi
ken or Egg: Cenozoi
 Uplift of Mountain Belts Another striking ob-servation of a possible intera
tion between 
limate, erosion and te
toni
s is the
on
urren
e of both global uplift of mountain belts and global 
ooling of the 
limateduring the late Cenozoi
. The �rst assumption was that uplift of mountain ranges inthe late Cenozoi
, su
h as Tibet, has lead to 
ooling of the 
limate by: (1) a�e
tingatmospheri
 
ir
ulation (Raymo et al., 1988; Ruddiman et al., 1988; Ruddiman andKutzba
h, 1989), and (2) by te
toni
ally driving an in
rease of 
hemi
al weathering,resulting in a de
rease of atmospheri
 CO2 
on
entration (Raymo and Ruddiman,1992). Another possible explanation, proposed by Molnar and England (1990), isthat this global 
limate 
ooling has in
reased gla
ier erosion, and the frequen
y ofstorms and 
onsequently �uvial in
ision, whi
h in turn has favoured an isostati
uplift of mountain peaks (see Fig. 1.21). In this latter assumption, global 
oolingis the for
ing pro
ess of the 
limate-te
toni
s intera
tion, while in the �rst one thefor
ing pro
ess is an in
rease of uplift indu
ed by te
toni
s a
tivity.It is interesting to note that this debate is still extremely a
tive: (1) Re
entobservations by Willenbring and von Blan
kenburg (2010) show that the Cenozoi
63
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Htopo
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E = Emean(1)

E

E = E/2mean(2)

ρc

ρmFigure 1.21: Erosion and isostasy in the 
ase of (1) plateau erosion or (2) valleyerosion. The setting in
ludes a mountain belt of elevation Htopo, and a 
rustal rootof thi
kness Hroot, while the thi
kness of the 
rust elsewhere is Hcrust. The densityof 
rust and the mantle are ρc and ρm, respe
tively. The amount of verti
al erosionin both 
ases is E, but it translates into a mean verti
al erosion of E/2 in the 
aseof valley erosion.uplift of mountain belt has not resulted in a signi�
ant in
rease of sediment �uxesfrom 
ontinents to o
eans, whi
h tends to favour the assumption of a te
toni
 for
ingof global uplift (Goddéris, 2010). (2) On the other hand Clift et al. (2008) observea 
orrelation between monsoon intensity and exhumation during the past 25 Ma,whi
h 
an be interpreted as a 
ausal relationship (West , 2008). This debate willprobably be solved when a 
lear relationship will be de�ned between exhumationand sediment �uxes, to de
ipher whether or not sediment residen
e time 
ould varywith 
limate and bu�er the erosional signal (e.g., Allen, 2008; Dosseto et al., 2010).Te
toni
s, Fra
turing of Ro
k and Erosion Another intera
tion between de-formation and erosion (
limate is not expli
itely involved here) is the role of ro
kfra
turing indu
ed by te
toni
s (Fig. 1.22). Molnar et al. (2007) argue that te
toni
splays its most important role with respe
t to erosion, not by raising topography as itis 
lassi
aly admitted, but by fra
turing ro
k so that its fragments 
an be readily ex-tra
ted by erosion. The me
hanisms of erosion that are dire
tly sensitive to fra
turedensity are mainly gla
ier or river plu
king and hillslope landsliding or ro
kfalling.Abrasion is also sensitive to fra
tures as it globally weakens e�e
tive properties ofro
ks. As a 
orollary, both deeply exhumed lower 
rust and post-te
toni
 igneousro
ks, undeformed under brittle 
onditions, should be more resitant to erosion.In Chapter 5 I explore the in�uen
e of fra
ture density on ro
k hardness.4.2 Numeri
al Method to 
ouple 1D SPM and ADELI in 2D4.2.1 Coupling AlgorithmAs previously mentioned ADELI is a Lagrangian 
ode, where the nodes and elementsfollow the motion of the model. Implementation of surfa
e erosion in Lagrangian
ode is 
on
eptually quite dire
t as it only requires to modify the position of surfa
enodes a

ordingly to the erosion rate integrated over the time step. I have 
oupled64
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A) B)

Figure 1.22: E�e
ts of te
toni
s and subsequent fra
turing on erosion. (A) Drillingrates as a fun
tion of the spasing of fra
tures in limestone, modi�ed from Thuro(1997) and Molnar et al. (2007). The % s
ale shows the enhan
ement in drillingrate with de
reased spa
ing of fra
tures. Red dashed line is an empiri
al �t. Drillinge�
ien
y informs qualitatively on the resistan
e of the ro
k to erosion. (B) Cartoonillustrating the role of te
toni
s in the generation of faults within ro
k that is ulti-mately delivered to the surfa
e of the Earth, from Molnar et al. (2007). Fra
tureshere are generated by the strain indu
ed by bending of the hanging wall of the mainfault. The resulting fra
tured ro
k mass is then translated to the surfa
e, wherefra
tures in�uen
e surfa
e erosion.ADELI with the SPM developped by Lavé (2005) following the algorithm proposedby Willett (2010):1. Solve the deformation problem using ADELI, and apply the displa
ement ofthe surfa
e to the SPM.2. Update divide positions and �ll 
losed basins by sedimentation.3. Update the distribution of pre
ipitation for instan
e using an orographi
 lawof pre
ipitation.4. Compute in
ision of the main river and update its elevation.5. Compute erosion of the tributaries, update their elevation, and dedu
e meantopography and drainage density.4.2.2 Numeri
al Consequen
es of the CouplingEven if su
han algorithm is easy to implement in a FEM, its use raises other pra
ti
alquestions 
on
erning the a

ura
y of the modeling:1. First, moving nodes at the surfa
e towards the inner part of the model theo-reti
ally requires to update the velo
ity �eld of the surfa
e nodes. Indeed, asvelo
ity is a 
ontinuous fun
tion of the spa
e (using shape fun
tions), mov-ing nodes arti�
ially (for instan
e by erosion) into this spa
e independently oftheir velo
ities, puts them into a ambiguous me
hani
al 
ondition as their ve-lo
ities do not 
orrespond to their positions. Rigorous modeling would requireto update node velo
ities, a

ordingly to the 
ontinuous velo
ity �eld de�nedbefore moving the nodes. However when 
onsidering both small arti�
ial dis-pla
ement 
ompared to the 
hara
teristi
 element dimension, and linear shape65
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tions, su
h e�e
ts should not signi�
antly in�uen
e the a

ura
y of themodeling. Thus we have negle
t this e�e
t in the following.2. Se
ond deforming surfa
e elements, eroding their nodes belonging to the topsurfa
e, results in a de
rease of their area, of their shape fa
tor quality, and oftheir mass. This 
onjugated e�e
t strongly de
reases the a

ura
y of the �niteelement solution, and moreover leads to a geometri
al dead-end if nothing isdone.In Chapter 2 I present a new lo
al remeshing algorithm that I have developed tosolve this problem of Lagrangian FEM.
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Chapter 2Surfa
e Lagrangian Remeshing: anew tool for studying long termevolution of 
ontinental lithospherefrom 2D numeri
al modelling
In Press, Computers & Geos
ien
esSteer, P., Cattin, R., Lavé, J. and Godard, V.Abstra
tIn this paper we present a new lo
al remeshing algorithm that is dedi
ated to theproblem of erosion in �nite element models whose grid follows the movement of thefree surfa
e. The method, whi
h we name Surfa
e Lagrangian Remeshing (SLR),is adapted to 2D Lagrangian models whi
h 
ouple surfa
e erosion with deformationof Earth materials. The remeshing pro
edure preserves nodes de�ning the surfa
esubmitted to erosion and removes nodes belonging to surfa
e elements whose inter-nal angles or area is 
riti
ally low. This algorithm is ideally suited to tra
k longterm surfa
e evolution. To validate the method we perform a set of numeri
al tests,using triangular �nite elements, to 
ompare the results obtained with the SLR al-gorithm with global remeshing and with analyti
al results. The results show goodagreements with analyti
al solutions. Interpolation errors asso
iated with remeshingare generated lo
aly and numeri
al di�usion is restri
ted to the remeshed domainitself. In addition this method is 
omputationally 
ostless 
ompared to 
lassi
alglobal remeshing algorithms. We propose to 
ouple the SLR method with the Dy-nami
al Lagrangian Remeshing (DLR) algorithm to enable lo
al remeshing only ofLagrangian models 
oupling large deformation of Earth materials with large erosion.1 Introdu
tionOver the last two de
ades studies based on numeri
al modelling have demonstratedthat the intera
tion of surfa
e erosion and deformation of 
ontinental lithosphere isa key pro
ess in orogeni
 evolution (e.g., Avoua
 and Burov , 1996; Beaumont et al.,67



CHAPTER 2. SURFACE LAGRANGIAN REMESHING: A NEW TOOL FORSTUDYING LONG TERM EVOLUTION OF CONTINENTAL LITHOSPHERE FROM2D NUMERICAL MODELLING1992; Godard et al., 2009;Willett , 1999). These numeri
al approa
hes are 
ommonlybased on both an erosion law 
ontrolling the evolution of surfa
e topography and athermo-me
hani
al �nite element model (FEM) that a

ounts for lithospheri
 defor-mation. However, as previously mentioned (e.g., Kurfeÿ and Heidba
h, 2009), themajor limitation of 
oupled models is that the FEM based on a Lagrangian formula-tion 
annot perform simulations over very long time s
ales, due to the developmentof large 
umulative deformation. Finite element methods are based on the spatialdis
retization of tensor and s
alar values onto a �nite number of elements. In theLagrangian formulation the shape and lo
ation of these elements evolve with thedeformation within the model together with erosion pro
esses at the top surfa
e.The quality of the numeri
al solution is 
losely linked to the shape fun
tions used tointerpolate dis
rete node quantities into 
ontinuous �eld variables. Shape fun
tionsare geometri
ally de�ned and as a 
onsequen
e 
umulated deformation of elementsover long time s
ales leads to a de
rease in the quality of interpolation.To over
ome this major limitation, most of the numeri
al approa
hes use remesh-ing algorithms to work on undistorted and well fo
used mesh. Remeshing is thenasso
iated with transfer of parameter �elds between two subsequent meshes. This re-quires interpolation, whi
h is a 
ommon sour
e of numeri
al di�usion. In geos
ien
es,remeshing is 
ommonly used for the study of 
ra
k propagation (e.g., Belyts
hko andBla
k , 1999), �ow des
ription (e.g., Hwang and Wu, 1992) or long-time lithospheri
deformation (e.g., Godard et al., 2009; Yamato et al., 2007). Most of these algo-rithms perform global remeshing, whi
h requires transferring the �eld variables overthe entire model.To redu
e numeri
al di�usion asso
iated with the remeshing pro
edure manynumeri
al strategies have been developed. For example Yamato et al. (2007) use anarray of additional passive markers to interpolate �eld variables. Fullsa
k (1995) hasdevelopped a FEM based on the arbitrary Lagrangian-Eulerian (ALE) formulation.In this formulation the �nite element 
al
ulation is not performed on the tra
kingmesh (a Lagragian one) but rather on an Eulerian one. Even if those methods(passive markers and ALE) are e�
ient to redu
e interpolation errors, they lead toexpensive CPU time-
ost or require large amounts of memory. Yet note that ALEmethods 
an be enhan
ed by the use of adaptative grid based on an o
tree division ofspa
e, whi
h enables to interpolate �eld variables only for the appropriate elements(Braun et al., 2008; Thieulot et al., 2008).An alternative approa
h is lo
al remeshing algorithms, where only the distortedelements and their neighbours are remeshed. The additional bene�t of these algo-rithms is that they redu
e CPU time 
ost asso
iated with remeshing. Braun andSambridge (1994) propose the lo
al Dynami
al Lagrangian Remeshing (DLR) algo-rithm to deal with the distortion of the triangular elements of Lagrangian FEM. Thismethod is suited to address high deformation problems. However it is not adaptedto numeri
al modelling with intense erosion, in whi
h mass removal by erosion notonly a�e
ts the surfa
e elements shape but also redu
es their area.In this paper, using the Lagrangian FEM 
ode ADELI (Hassani et al., 1997)we propose a 
omplementary approa
h 
alled Surfa
e Lagrangian Remeshing (SLRhereinafter) algorithm to deal with the distortion and area de
rease of surfa
e ele-ments by erosion. In what follows after a detailed presentation and tests of the SLRmethod, we will fo
us on the appli
ation of this method to study 
lassi
al surfa
e68



CHAPTER 2. SURFACE LAGRANGIAN REMESHING: A NEW TOOL FORSTUDYING LONG TERM EVOLUTION OF CONTINENTAL LITHOSPHERE FROM2D NUMERICAL MODELLINGerosion laws. Coupled with the DLR method, this lo
al remeshing te
hnique 
an beapplied to investigate a wide set of geodynami
al problems in
luding intera
tionsbetween deformation and erosion.2 Lo
al remeshing algorithms2.1 Coupling erosion and deformation: remeshing approa
hCompared to global remeshing, lo
al remeshing only modi�es a small area 
loseto the distorted elements. The Dynami
al Lagrangian Remeshing (DLR) algorithm(Braun and Sambridge, 1994) was developped to deal with distortion by deformationof the triangular elements of Lagrangian FEM. DLR 
onsists of a permanent re
on-ne
tion of nodes with their 
loser neighbours by a Delaunay triangulation (Fig. 2.1).It for
es elements to respe
t the Delaunay 
ondition on the grid: the stri
t inte-rior of the 
ir
um
ir
le of ea
h triangular element 
ontains no node. As previouslymentioned, this method is very e�
ient to model high deformation problems, but it
annot be applied to remesh surfa
e elements a�e
ted by erosion. Here we proposethe SLR method as a 
omplementary algorithm to the DLR method and dedi
atedto surfa
e erosion. At depth the DLR algorithm deals with the remeshing of higlydeformed non-Delaunay elements (see Fig. 2.1 bottom image) whereas the SLR al-gorithm enables to keep un�attened elements at surfa
e (see Fig. 2.1 top image).From now on we fo
us our study only on the SLR method. We refer the reader toBraun and Sambridge (1994) for further details on the DLR method.2.2 Surfa
e Lagrangian Remeshing (SLR) algorithmThe main di�
ulty whi
h must be solved by the SLR method 
onsists in the lo-
al remeshing of deformed surfa
e elements without altering the topographi
 pro�leitself. This latter is a 
riti
ally important feature of the models investigating 
ou-pling between surfa
e pro
esses and te
toni
s. Thus, in the SLR algorithm only theinternal nodes, i.e. the nodes that do not belong to the surfa
e, are 
on
erned byremeshing.In our approa
h we use triangular elements initially generated by the Delaunaytriangulation. We de�ne the 
riti
al elements, with respe
t to remeshing, as theelements whi
h exhibit at least one small internal angle αint < αcri or a small area
A/Aini < Acri. Two geometri
al 
onditions apply on the 
riti
al angle αcri: (1)
tan(αcri) must be greater than the ratio of the maximum erosion ∆hmax during onetime step, over the minimum verti
al height of the surfa
e elements hmin,

tan(αcri) > ∆hmax/hmin . (2.1)(2) αcri must be smaller than 25°to avoid mesh destru
tion. The 
riti
al area Acri isa se
ondary 
riterion, whi
h preserves the simulations from both frequent remeshingand major area de
rease of surfa
e elements. In the following the 
riti
al angle αcriand area Acri are set to 18°and 50% of the initial area, respe
tively.The SLR method is applied to the top surfa
e of the model and 
onsists ofthree stages: (1) internal nodes sharing at least one 
onne
tion with surfa
e nodes69
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 prin
iple of the SLR (top) and DLR (bot-tom) methods (Braun and Sambridge, 1994). Top image: the initial mesh is erodeduntil at least one angle or one area of a triangular element of the surfa
e be
omes
riti
al; After erosion, the area A of the �lled triangle is 
riti
al, 
ompared to itsinitial value Ai, A/Ai < Ac, where Ac = 0.5 is the 
riti
al area ratio. A remeshing
riterion on the internal angles of the surfa
e triangles is also de�ned. A trianglewith at least one internal angle below 18°be
omes 
riti
al. Nodes of the 
riti
al tri-angle, whi
h are not at surfa
e, are removed from the mesh. Triangles that in
ludethese removed nodes are deleted. Remaining nodes are re
onne
ted by a Delaunaytriangulation algorithm. After remeshing, the old mesh is indi
ated by gray lines.Bottom image: the initial mesh is deformed at depth until the Delaunay 
onditionbe
omes false, i.e. the stri
t interior of the 
ir
um
ir
le of ea
h triangular element
ontains no node. After re
onne
tion of these nodes to their 
losest neighbours, theDelaunay 
ondition be
omes true again.
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riti
al elements are removed from the mesh. (2) Next, 
riti
alelements and their dire
t neighbours are also deleted from the mesh and repla
edby new triangular elements following a Delaunay triangulation algorithm (Renka,1997). (3) Finally, tensor and s
alar values de�ned by elements are interpolatedfrom the old to the new mesh. We use a simple 
onservative interpolation s
heme,in whi
h ea
h new element value Vnew is equal to the spatial integral of the oldelements value Vold on the new element domain Ω divided by the area of Ω,
Vnew =

∫

Ω
Vold(ω) dω
∫

Ω
dω

, (2.2)where dω is an in�nitesimal area.The SLR algorithm presents three main advantages: (1) by remeshing only 
rit-i
al and highly deformed surfa
e elements, SLR method generates numeri
al errorsonly on the lo
al remeshed domain. (2) Nodal values are not interpolated duringremeshing as there is no redistribution of node positions during remeshing. (3) The
ombination of nodes de�ning the surfa
e is kept 
onstant and thus it does not ar-ti�
ially introdu
e any surfa
e pro�le 
hange, whi
h would be a major drawba
kwhen 
onsidering geomorphologi
al issues.3 Validation of the SLR method3.1 SLR and tra
king of the surfa
eTo 
he
k the ability of the SLR method to preserve surfa
e pro�le during remeshing,simple models of erosion using SLR are 
ompared with 
orresponding analyti
al so-lutions (Fig. 2.2). The numeri
al solutions are obtained with the FEM 
ode ADELI(Hassani et al., 1997). These experiments of 
omparison 
onsist in eroding 
om-pletely, until peneplanation at t = t⋆, a triangular-shaped mountain with a basalwidth of 100 km and a summit height of 3 km lying over a rigid and in
ompressiblemedium. The top surfa
e is subje
ted to di�erent erosion laws: erosion by di�usionof elevation ∂h/∂t = K∂2h/∂x2 (Avoua
 and Burov , 1996) or erosion proportionalto slope ∂h/∂t = K∂h/∂x (Beaumont et al., 2001), where K is the 
oe�
ient ofdi�usion and a 
oe�
ient of denudation, respe
tively. Analyti
al solutions are givenin 6.1.In both 
ases the numeri
al results obtained with the SLR method are in verygood agreements with the analyti
al solutions (to the order of 1 cm 
ompared to 3 kmof 
umulated erosion, see Fig. 2.2) while ∼ 200 remeshings were performed in ea
hexperiment. However in the slope-dependent erosion law, the numeri
al solutionprogressively diverges from the analyti
al one at the foot of the mountain where thetopographi
 slope varies abruptly. This is due to di�usion of the numeri
al solution,whi
h is inherent to the upwind-di�eren
ing numeri
al s
heme used for numeri
allysolving the surfa
e slope. In these 2 experiments, the ∼ 200 SLR phases, whi
hwere ne
esssary to rea
h peneplanation, have not signi�
antly altered the evolutionof the surfa
e. 71
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Figure 2.2: Time evolution of the surfa
e of the model for di�erent erosion lawsplotted at ea
h 20% (∆t = t⋆/5) of the numeri
al experiment: (a) erosion pro-portional to slope with K = 4.0 · 10−10 m.s−1, and (b) erosion by di�usion with
K = 3.0 ·10−5 m2.s−1. Results from these numeri
al experiments are 
ompared withthe 
orresponding analyti
al solution. Note that in (b) only the erosive 
omponentof the di�usion law is simulated.3.2 Comparison between SLR and global remeshingTo further quantify the robustness of the SLR method, we performed a set of tests,whi
h 
ompare the results obtained with SLR and a global remeshing method usingthe same interpolation s
heme. The set-up of the model (Fig. 2.3) used here issimilar to the previous one, apart from the rheology whi
h is elasti
 and is de�nedby a Young's modulus, E = 40 GPa and a Poisson's ratio ν = 0.25. Ea
h 
omponentof the elasti
 strain ǫij is a fun
tion of the stress tensor σ, through Hooke's law,

ǫij =
1 + ν

E
σij −

ν

E
trace(σ)δij. (2.3)The boundaries of the model are �xed ex
ept the top surfa
e whi
h is subje
ted toa more realisti
 erosion law and follows a 
lassi
al shear-stress �uvial in
ision law(Gilbert , 1877; Howard and Kerby , 1983; Howard et al., 1994; Lavé and Avoua
,2001). This approa
h is not fully 
ompatible with me
hani
al modeling, whi
h re-quires to 
onsider mean elevation as the pertinent upper boundary variable (Godardet al., 2006). We refer the reader to Lavé (2005) and Willett (2010) for furtherdetails on how to in
orporate erosion in geodynami
 models.Time evolution of the river elevation h is expressed as follow,

∂h/∂t = KP γAβ(∂h/∂x)α, (2.4)where K is a 
oe�
ient related to bedro
k erodibility, P the mean pre
ipitation rateof the watershed 
onsidered, A the watershed area and α, β, γ, some exponents,set equal to 0.7, 0.27 and 0.33 respe
tively (Godard et al., 2006; Lavé and Avoua
,2001). The area is dedu
ed from Ha
k's law, A = kaL
h, where L is the length ofthe river, ka and h two empiri
al 
onstants (Ha
k , 1957). The bedro
k erodibilityand pre
ipitation rate are set to K = 6.4 · 10−10 m0.13.s−0.67 and to P = 1 m.a−1,respe
tively. The model lasts 10 Ma with 104 time steps. This setting enables a
omplete peneplanation of the topography after ∼ 6 Ma.72
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al experiments (peneplanation) is 
ompared tothe state of strain of an unremeshed referen
e model, for whi
h erosion is simulatedby an instantaneous removal of the mountain load whit no remeshing. As the plateis purely elasti
 there should be no di�eren
e between this modelling and the globalor lo
al remeshed numeri
al experiments with progressive erosion.In a �rst approximation both approa
hes using global and lo
al remeshing algo-rithms give 
on
ordant results showing a lo
alized deformation zone at depth belowthe initially high elevated area (Fig. 2.3). However a more detailed analysis of thestrain pattern and a 
omparison with the referen
e model results reveal some majordi�eren
es in
luding a zone of intense deformation (< −6.10−4) at 50-90 km depthobtained in the global remeshed experiment only. The results obtained with theSLR method appear to be signi�
antly 
loser to the referen
e model, apart from thetop surfa
e where repetitive lo
al remeshing has lead to numeri
al errors. This il-lustrates the role of the remeshed domain size: global remeshing interpolates tensorand s
alar values de�ned by elements over the entire model, while SLR interpolatethese values only in the remeshed area. Thus SLR prevents the development ofwidespread numeri
al di�usion that is inherent to global remeshing methods.By produ
ing numeri
al errors, remeshing 
an a�e
t the stability of the simula-tion. Here we use the FEM 
ode ADELI whi
h uses an interative expli
it approa
hand solves Newton's se
ond law to obtain the stati
 solution of a steady-state mod-elling (see a detailed des
ription in 6.2). The 
onvergen
e of the algorithm is thusasso
iated with the minimization of unbalan
ed for
es (Eq. 2.16), whi
h 
an beexpressed through the inertial ratio,
Ir =

‖Fe + Fi‖

‖Fe‖ + ‖Fi‖
, (2.5)where Fe and Fi are the external and internal nodal for
es a
ting on the system,respe
tively. This parameter 
an thus be used as a proxy of the numeri
al stabilityduring an experiment: a de
rease (in
rease) of Ir 
an be asso
iated to a numeri
alstability in
rease (de
rease) with time.For both methods (SLR and global remeshing) we obtain an in
rease in numeri
alstability with time a�e
ted by large pulses of Ir in
rease asso
iated with remesh-ing phases (Fig. 2.4). Our results suggest (1) a lower destabilisation e�e
t due tothe SLR method: the inertial ratio exhibits peaks of twi
e higher amplitude duringglobal remeshing than during SLR and (2) a more frequent remeshing with the SLRmethod: only 6 global remeshing are needed when 44 SLR are required. These twofeatures 
an be easily explained by the di�eren
es between the two remeshing meth-ods. Global remeshing, 
ontrary to SLR, 
ompletely reorganizes the distribution ofnodes and in parti
ular those 
lose to the surfa
e. This enables to spa
e out theremeshing phases, but in
reases the numeri
al di�usion, due to interpolation on agreater amount of elements. 73
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Figure 2.3: Results of the numeri
al experiments 
omparing lo
al and global remesh-ing with the referen
e one. (a) Set-up of the di�erent experiments. The medium A issubmitted either to erosion (SLR, Global) or to instantaneous removal (Referen
e),while the elasti
 medium B boundary 
onditions remain 
onstant in the di�erentexperiments. The model 
ounts approximatively 6000 elements. Bulk strain �eldobtained at 10 Ma for the referen
e model (b), with the Surfa
e Lagrangian Remesh-ing (SLR) algorithm (
) and with global remeshing (d). Also are represented thedi�eren
es of the bulk strain �eld between (e) the SLR experiment and the referen
eone, and between (f) the Global and the referen
e ones. Note that SLR produ
eserrors lo
alized only at the surfa
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Figure 2.4: Evolution of the inertial ratio Ir for the SLR method (bold line) and forthe global remeshing method (dashed line)3.3 Remeshing and 
omputational 
ostIn the previous experiments our model is meshed with ∼ 6000 elements. The 
umu-lated CPU time for the remeshing and subsequent interpolation is ∼ 1.0 s, while itis equal to ∼ 400 s for global remeshing.To test the e�
ien
y of the SLR method in a more general way we 
ompare theCPU time asso
iated with lo
al and global remeshing for models with a numberof elements between 500 and 20000 (Fig. 2.5). Our results show that the CPUtime for ea
h remeshing phase in
reases proportionally to the square of the numberof elements for global remeshing, whereas it is almost 
onstant for SLR. A

uratesimulations require a large amout of elements, whi
h 
an easily ex
eed 104. In this
ase ea
h global remeshing phase CPU time largely ex
eed 100 s. Simultaneously thenumber of remeshing phases in
reases proportionally with the number of elements.These two 
ombined e�e
ts favour the use of the SLR method, whi
h requires only
∼ 5 s of 
umulated remeshing time for 20000 elements, while ∼ 19 h are neededwith global remeshing.3.4 Remeshing with the Dynami
 Relaxation methodADELI employs the dynami
 relaxation (DR) method for time dis
retization (Un-derwood , 1983). As it is an expli
it numeri
al s
heme, the asso
iated FEM is 
on-ditionally stable (6.2). Thus we need to 
he
k that the errors introdu
ed duringremeshing do not lead to numeri
al divergen
e. This is likely to o

ur when the
hanges in Ir due to ea
h remeshing are 
umulated with time. To avoid this a

u-mulation of errors, the time period between ea
h remeshing ∆trmesh must be greaterthan the numeri
al relaxation time tdamp needed to restore a level of Ir prior toremeshing. For instan
e in the experiment with ∼ 6000 elements and for the SLRmethod tdamp is equal to∼ 50 time steps. The evolution of Ir shows a global de
reaseex
ept between 1000 and 2000 time steps, where ∆trmesh < tdamp (Fig. 2.4).Furthermore if we use a vis
o-elasti
 rheology instead of the elasti
 one used inthe models presented in this paper, the time between remeshing events needs to be75
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Figure 2.6: Time evolution of the surfa
e of the model for erosion by river in
isionplotted at ea
h 20% (∆t = t⋆/5) of the numeri
al experiment. (a) Homogeneouserodibility with K = Ka = 6.4 ·10−10 m0.13.s−0.67 and the pre
pitation rate set equalto P = 1 m.a−1. Experiment (b) presents a spatial 
ontrast of erodibility to riverin
ision, with K = Kb = 2.15 · 10−9 m0.13.s−0.67 the 
oe�
ient of erodibility at theborders of the model being 5 times greater than at the 
enter. Note the elasti
rebound asso
iated with unloading by erosion removal.greater than trelax the vis
ous relaxation time,
trelax =

min(µeff)

E
, (2.6)where min(µeff) is the minimum e�e
tive vis
osity of the medium 
onsidered.4 Appli
ation and limitations4.1 River in
ision and ro
k erodibilityTo further assess the abilities and limitations of the SLR algorithm, we apply it tomodel erosion by river in
ision (Eq. 2.4). The set-up of the model is the same as inthe previous se
tion. In the two experiments presented here (Fig. 2.6) the 
oe�
ientof bedro
k erodibility is either homogeneous or presents an abrupt 
ontrast, i.e.the borders of the mountain are 5 times more erodible than its 
enter. The SLRalgorithm is su

essful to deal with both and manages to keep 
onstant the numberof nodes setting the surfa
e and subsequently the horizontal resolution. Detailedinvestigations are now required to deepen our understanding of ro
k erodibility inthe interplay between erosion and te
toni
s.4.2 LimitationsAs a 
onsequen
e the verti
al resolution de
reases where the erosion rate exhibitsa spatial gradient. Here it happens at the transition zone between high and lowerodibility (Fig. 2.6b).Another limitation, whi
h is not illustrated here, is the singularity that repre-sents, for the SLR method, a single element forming an a
ute triangular mountain77



CHAPTER 2. SURFACE LAGRANGIAN REMESHING: A NEW TOOL FORSTUDYING LONG TERM EVOLUTION OF CONTINENTAL LITHOSPHERE FROM2D NUMERICAL MODELLINGsummit. In our models this singularity mainly o

urs if the slope of the surfa
e isgreater than 45°on both sides of the mountain summit. In this setting it is impossi-ble for the SLR to remesh the element forming the summit, as all its nodes belongto the surfa
e. However this singularity 
an be avoided by swapping the basal fa
eof su
h a triangular element with its dire
t neighbour.When 
onsidering surfa
e pro
esses, the main limitation of the SLR algorithmis that it requires to be modi�ed to allow modelling of sedimentation law. Forinstan
e we were not able to simulate the sedimentation part of the di�usion lawusing SLR (Fig. 2.2). Conversly SLR is not adapted to extensional settings. Bothsedimentation and extension would rather require to add nodes where stret
hing ofsurfa
e elements is important (small internal angle or large area).
5 Con
lusionOur study has demonstrated the e�
ien
y of the lo
al remeshing algorithm proposedin this paper. Compared to global remeshing, the SLR method is 
omputationally
ostless, and produ
es only lo
alized numeri
al errors, as interpolation o

urs lo
allyon the remeshed elements. Sin
e the nodes of the free surfa
e of the model arepreserved throughout the simulation, SLR is an appropriate method in the 
ontextof numeri
al modelling with a parti
ular interest in geomorphology. The SLR isthus a robust remeshing algorithm that enables to simulate erosion over long times
ale in FEM modelling. It was su

esfully applied to study river erosion over anabrupt 
ontrast of ro
k erodibility.However it is not suited for studies with both erosion and sedimentation. Theappli
ations of the SLR is not limited to 2D models using triangular elements.Its fundamental prin
iples 
an be easily transposed to 3D FEM using tetrahedralelements.Coupled with DLR, these lo
al remeshing algorithms represent both a prospe
tfor FEM based on Lagrangian formulation and an alternative to ALE and passivemarkers methods by their abilities to deal with both large deformation and higherosion (e.g., Braun et al., 2008; Fullsa
k , 1995; Thieulot et al., 2008; Yamato et al.,2007). The 
oupled SLR-DLR remeshing algorithm has the potential to provide ane�
ient way to study a wide range of 
omplex geologi
al settings, whi
h require to
ouple deformation of Earth materials with surfa
e erosion (e.g., Godard et al., 2006;Kaus and Be
ker , 2008; Willett , 1999).
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CHAPTER 2. SURFACE LAGRANGIAN REMESHING: A NEW TOOL FORSTUDYING LONG TERM EVOLUTION OF CONTINENTAL LITHOSPHERE FROM2D NUMERICAL MODELLING6 Appendix6.1 Analyti
al solutions of erosion lawsLet's 
onsider the elevation of the right side of a triangular mountain belt initiallyde�ned as h(x, t = 0) = −(H/l)x + H , where H is the elevation of the summitand l is the horizontal distan
e between the summit and the foot of the mountain.Analyti
al evolution of this mountain belt h(x, t) submitted to a slope-dependenterosion law,
∂h(x, t)

∂t
= K

∂h(x, t)

∂x
, (2.7)is given by

h(x, t) = h(x, t = 0) − K
H

l
t , (2.8)where K is a 
oe�
ient of denudation.Analyti
al evolution of the same mountain belt h(x, t) submitted to di�usion ofelevation,

∂h(x, t)

∂t
= K

∂2h(x, t)

∂x2
, (2.9)with the boundary 
onditions,

h(x = l, t) = 0 , (2.10)
∂h(x = 0, t)/∂x = 0 , (2.11)is given by

h(x, t) =

∫ l

0

h(ζ, 0)G(x, t, ζ)dζ , (2.12)where
G(x, t, ζ) =

2

l

l
∑

n=0

cos

(

π(2n + 1)

2l
x

)

cos

(

π(2n + 1)

2l
ζ

)

exp

(

−
Kπ2(2n + 1)2

4l2
t

)

,(2.13)with K the 
oe�
ient of di�usion. The numeri
al integration of Eq. 2.12 was 
arriedout by means of a trapezoidal rule.6.2 Numeri
al methodFinite element method dedu
es the nodal displa
ement U by solving the for
e-balan
e equation whi
h results for long-term geodynami
 problems in the followingsystem of simultaneous equations,
KstiffU = Fe, (2.14)where Kstiff is the sti�ness matrix and Fe the external nodal for
es. Two method-ologies are 
ommonly used to solve this problem. Impli
it methods in whi
h thestati
 system 2.14 is linearized into a large system of algebrai
 equation. Thesemethods are 
omputationally expensive. The �nite element 
ode ADELI (Hassaniet al., 1997) used in this study rather employs Dynami
 Relaxation (DR) to solve79



CHAPTER 2. SURFACE LAGRANGIAN REMESHING: A NEW TOOL FORSTUDYING LONG TERM EVOLUTION OF CONTINENTAL LITHOSPHERE FROM2D NUMERICAL MODELLINGprevious equation (Underwood , 1983). This is an expli
it iterative pro
edure, inwhi
h the stati
 system (Eq. 2.14) is transferred to an arti�
ial dynami
 spa
e byadding arti�
ial inertia and damping for
es,
MÜ + CU̇ + KstiffU = Fe, (2.15)where M is a �
tious mass matrix 
hosen in a diagonal form, and C a �
tious damp-ing matrix. The steady state solution of this arti�
ial dynami
 system (Eq. 2.15) isthe solution of the stati
 system (Eq. 2.14). It is rea
hed when the inertial regulariz-ing term MÜ is negligible 
ompared to the for
es involved in the problem. InvertingEq. 2.15 gives an expression of the nodal a

eleration,
Ü = M−1(Fe − Fi − CU̇), (2.16)with Fi = KstiffU the internal nodal for
es 
al
ulated from the integration of the
onstitutive law (Eq. 2.3). Velo
ity and displa
ement are then 
omputed by nu-meri
al integration of a

eleration.6.3 Erosion rate and Criti
al AngleThe 
hoi
e of the 
riti
al angle is 
onstrained by the erosion rate and the size ofsurfa
e elements. Figure 2.7 presents the distribution of su

essful experiments, i.e.where SLR was able to tra
k the surfa
e, in fun
tion of the ratio of erosion rate toelement size and of the 
riti
al angle. Su

essful experiments o

ur when the 
riti
alangle is su�
iently small (< 35◦) to avoid a destru
tion of the mesh, and when it issu�
iently large so that the amount of element erosion during one time step makesan angulary de
rease smaller than the 
riti
al angle.
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Figure 2.7: Results of the numeri
al experiments testing the 
ompatibility of theSLR method with triangular elements as a fun
tion of the 
riti
al angle α and of theratio of erosion per time steps ∆h over the 
hara
teri
 height of elements l. Ea
hpoint 
orresponds to a simulation whi
h 
onsists in 
ompletely eroding a triangularmountain belt, using here a homogeneous and 
onstant erosion rate. The 
olor 
odeindi
ates the ratio of mean elements area Amean at the end of the simulation overits initial value Astart. Filled 
ir
les are su

esfull simulations, while empty squares
orrespond to simulations that have failed to tra
k the top surfa
e. This is likely tohappen when α < arctan(∆h/l) whi
h is represented with a bold 
ontinuous bla
kline. Simulations that exhibits high values of Amean/Astart have a low resolution. Ithappens when the SLR method leads to a destru
tion of the mesh, as the mesh onlypresents 
riti
al elements. Reasonable values of α lie between 10 and 25°.
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RésuméDans 
ette partie j'examine la possibilité de mesurer l'érodabilité in-situ ave
 unmarteau de S
hmidt. Tout d'abord j'analyse les relations entre le rebond R dumarteau de S
hmidt et l'érodabilité K, prédites par les lois d'érosion déduites del'étude des pro
essus, en utilisant une relation empirique entre R et l'élasti
ité oula résistan
e. Je 
onfronte ensuite 
es relations ave
 les résultats empiriques d'uneexperien
e dédiée. Une loi exponentielle entre R et K est obtenue dans la pre-mière appro
he, alors qu'une loi en puissan
e est obtenue dans la se
onde. Ensuitej'applique 
ette méthode pour réaliser un transe
t d'érodabilité à travers Taiwan,qui révèle un 
ontr�le de R à la fois par la lithologie et la fra
turation. Je présenteaussi les résultats d'une étude de terrain dédiée à la 
ompréhension de l'e�et de ladiagénèse des Grès d'Annot sur R. A partir d'un jeu de données pétrogénétiqueset pétrophysiques, j'évalue le 
ontr�le du grade diagénétique sur R et propose un
ontr�le par la diagénèse mais aussi par la densité de fra
ture. En�n je présente lesrésultats d'une expérien
e dédiée à l'étude de la relation entre fra
turation et R dansune zone de faille. Les résultats suggèrent que les fra
tures 
ontr�llent l'élasti
itééquivalente et don
 R, ave
 une dé
roissan
e de l'élasti
té équivalente lorsque ladensité de fra
ture augmente. Toutefois l'amplitude de 
et e�et est dépendante dutype de fra
ture. Cette derniére étude a été soumise à Journal of Stru
tural Geology.Abstra
tIn this part, I investigate the potentiality of measuring in-situ ro
k erodibility with aS
hmidt hammer. I �rst analyse relations between S
hmidt hammer rebound R anderodibility K that are predi
ted by pro
ess-based laws of erosion, using empiri
al �t-ting between R and ro
k elasti
ty and strength. I then 
ompare these relations withthe empiri
al results of a dedi
ated experiment. An exponential relation between Rand K is obtained in the �rst approa
h while a power law relation is obtained inthe se
ond. Then I apply this method to perform a transe
t of erodibility a

rossTaiwan mountain belt, whi
h reveals a 
ontrol of R by both lithology and fra
tura-tion. I also presents the results of a �eld study dedi
ated to investigate the e�e
t ofthe diagenesis of the Annot Sandstone on R. Using a set of petrogeneti
 and petro-physi
 data, I assess the 
ontrol of the diageneti
 grade on R and propose a 
ontrolby both diagenesis and fra
ture density. Last I present the results of an experimentdedi
ated to study the link between fra
tures on R in a fault zone. The resultssuggest that fra
tures 
ontrol the e�e
tive elasti
ty and thus R, with an in
reasingfra
ture density leading to a de
rease of the elasti
ty. However, the amplitude ofthis e�e
t of fra
ture density on R depends on the fra
ture type.This last study hasbeen submitted to Journal of Stru
tural Geology.
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Chapter 3S
hmidt Hammer Rebound andRo
k erodibilityThe S
hmidt hammer test is an inexpensive, qui
k and non-destru
tive method usedfor relatively quantifying the hardness of 
on
retes and ro
ks (S
hmidt , 1951). Itsrebound value is empiri
ally related to the petrophysi
al parameters or the testedsample, su
h as its uniaxial 
ompressive strength (σUCS) or its Young's modulus (E).In this preliminary study we are interested in assessing the potentiality of S
hmidthammer to measure erodibility to abrasion dire
tly in the �eld. First we presentthe S
hmidt hammer and its measure, then we review empiri
al 
onstraints on therelations between S
hmidt hammer rebound R, ro
k properties, and erodibility, anddis
uss the potential models to 
onvert the rebound into relative erodibility.1 The S
hmidt HammerThe S
hmidt hammer 
onsists of a spring-loaded piston made of a steel mass(Fig. 3.1). When the hammer is pressed orthogonally against a surfa
e, the pistonis automati
ally released onto the plunger, and the rebound height of the piston is
onsidered to be an index of surfa
e hardness. Part of the impa
t energy of thepiston is 
onsumed largely by absorption, i.e. plasti
 deformation under the plungertip, and by transformation into heat and sound (e.g., Aydin and Basu, 2005). Theremaining energy represents the impa
t penetration elasti
 resistan
e (or hardness)of the surfa
e and enables the piston rebound. The harder the surfa
e, the shorterthe penetration time (smaller impulse) or depth (lesser energy loss), and hen
e thegreater the rebound (smaller momentum 
hange).First let's 
onsider the 
ase where there are no gravitational for
es (Fig. 3.2).The energy released by the key spring is equal to the kineti
 energy of the pistonwhen released onto the plunger (Basu and Aydin, 2004),
1

2
kx2

1 =
1

2
Mv2

1 , (3.1)with k the key spring elasti
 
onstant, x1 the initial stret
h of the spring, M themass of the piston, and v1 the velo
ity of the piston when it �rst tou
hes the plunger.87
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CHAPTER 3. SCHMIDT HAMMER REBOUND AND ROCK ERODIBILITYSimilarly, the kineti
 energy of the piston when the rebound starts, is equal to theenergy of the key spring stret
hed by x2 when the piston is at it maximum reboundheight,
1

2
kx2

2 =
1

2
Mv2

2 , (3.2)with v2 the initial rebound velo
ity of the piston. Combining these previous equa-tions leads to,
x2

x1
=

v2

v1
, (3.3)and to the expression of the rebound number R,

R =
x2

x1

× 100 =
v2

v1

× 100 . (3.4)A

urate measurements requires to 
onsider gravitational for
es and to 
orre
t therebound number for its e�e
t (Basu and Aydin, 2004).2 S
hmidt Hammer Rebound, Ro
k Properties andErodibility: Empiri
al ConstrainsRo
k properties and S
hmidt Hammer Rebound Due to its simpli
ty, S
hmidthammer has been widely used in petrophysi
s as it o�ers a qui
k and inexpensiveme
hani
al test of ro
k hardness. Many studies �nd empiri
al relations between Rand the weathering grade of ro
ks, their moisture 
ontent, their uniaxial 
ompressivestrength σUCS, their Young's modulus E or P-wave velo
ity VP (see Aydin and Basu(2005) or Goudie (2006) for a review). In parti
ular R and σUCS or E are found tobe related either by a power or exponential fun
tion, whi
h 
an be generalized bythe following expressions,
σUCS = aebR E = cedR , (3.5)
σUCS = aRb E = cRd , (3.6)where a, b, c, and d are postive 
onstants that mainly depends on the ro
k type.Erodibility and S
hmidt Hammer Rebound: Empiri
al Models As al-ready mentioned, Sklar and Dietri
h (2004) proposed that the volume Vi of bedro
kthat is removed by abrasion during an impa
t by a pebble is,

Vi =
πρpφ

3
pv

2
pE

6kpσ2
t

, (3.7)with ρp the impa
ting parti
le density, φp its diameter and vp its verti
al velo
ity, kp adimensionless 
oe�
ient that depends on the me
hani
al properties of the impa
tingparti
le, E the Young's modulus of the impa
ted susbtrate and σt its tensile strength.From this equation it is possible to extra
t an expression of bedro
k erodibility K,i.e. the 
apa
ity of the bedro
k to be eroded, by removing the terms that dependon the pebble properties,
K ∝

E

σ2
t

. (3.8)89



CHAPTER 3. SCHMIDT HAMMER REBOUND AND ROCK ERODIBILITYOn the other hand Sklar and Dietri
h (2001) found empiri
ally that erodibility s
aleswith the inverse of the square of tensile strength, not with Young's modulus,
K ∝

1

σ2
t

. (3.9)Moreover assuming that tensile strength is proportional to 
ompressive strength,
σt ∝ σUCS , gives at �rst order a relation of proportionality between erodibility Kmand S
hmidt hammer rebound R assuming Sklar and Dietri
h (2004) model,

Km ∝ e(d−2b)R or Km ∝ R(d−2b) , (3.10)or Sklar and Dietri
h (2001) model,
Km ∝ e(−2b)R or Km ∝ R(−2b) . (3.11)We employ Km rather than K to di�erentiate erodibility obtained from empiri
almodeling, from measured erodibilityThese relations give a theoreti
al basis that motivated us to asses relative ro
kerodibility with a S
hmidt hammer. However it is also important to understand thelimits of these expressions:� First, it 
an only be applied to ro
k that does not exhibit fra
tures or me
han-i
al dis
ontinuities that have or ex
eed the 
hara
teristi
 size of the sampledvolume by the S
hmidt hammer (radius of ∼ 30cm). Otherwise the tensilestrength would 
learly diverges from 
ompressive strength, and ultimatelytending towards zero. Moreover in su
h 
onditions, the model of Sklar andDietri
h (2004) does not apply.� Se
ond, the di�erent published relations between R and E or σUCS were de-rived empiri
ally and only for a limited range of ro
k types (sometimes onlyone). In 
onsequen
e this relation is probably 
orre
t when 
omparing erodi-bility of di�erent ro
ks that share the same type, but is hypotheti
al when
onsidering di�erent ro
k types. Indeed, the 
onstants a, b, c, d, and the 
o-e�
ient of proportionality between σt and σUCS are likely to vary with ro
ktype.On the other hand Dubille (2008) dire
tly 
ompared erodibility and S
hmidthammer rebound (N-type) for di�erent ro
k types. Erodibility was determined froma 
ir
ular �ume using realisti
 �ow and pebble velo
ities (Attal and Lavé, 2006). Inthe experiments of Dubille (2008), erodibility is related to the rate of mass loss byabrasion for impa
ts between pebbles during transport, everyting else than lithologybeing equal. Using argillites, pelites, and sandstones with a wide range of densities,he found a power relation between K and R,

K = 1014.5R−9.1 . (3.12)Pra
ti
al Considerations 90



CHAPTER 3. SCHMIDT HAMMER REBOUND AND ROCK ERODIBILITYTable 3.1: Table that summarizes the potential relations between erodibility Kand S
hmidt hammer rebound R, using empiri
al exponenetial or power relationsbetween R and Young's modulus E and 
ompressive strength UCS. The modelsof Sklar and Dietri
h (2001) and Sklar and Dietri
h (2004) are tested. The rangeof the exponents b and d that are tested represent a 
ompilation of values obtainedfrom Aydin and Basu (2005).
b (UCS) d (E) Sklar and Dietri
h (2001) Sklar and Dietri
h (2004)Exponential 0.055 0.055 K ∝ e−0.11R K ∝ e−0.055R0.04 0.07 K ∝ e−0.08R K ∝ e−0.01R0.07 0.04 K ∝ e−0.14R K ∝ e−0.10RPower 1 1 K ∝ R−2 K ∝ R−14.3 1 K ∝ R−8.6 K ∝ R−7.6Quite remarkably, b and d, whi
h set the exponent of the power or exponentialrelation determined from 
omparison between R and UCS or E, are found to bequite independent of the ro
k type:� b and d are both equal to ∼ 0.055±0.015 for the exponential relation (Xu et al.(1990): Mi
a-s
hist, Prasinite, Serpentinite, Gabro; Aydin and Basu (2005):Granite weathered or not; YIlmaz and Sendr (2002): Gypsum; Katz et al.(2000): Limestone, Sandstone).� For the power law relation, s
attering of b (UCS) and d (E) is more impor-tant: between 1 and 4.3 for the b, with most values 
lose to 1; 1 for d (YIlmazand Sendr (2002): Marl; Dearman et al. (1978): Granite; Shorey et al. (1984):Coal; Haramy and DeMar
o (1985): Coal; Ghose (1986): Coal; Singh et al.(1983): Sandstone, Siltsone, Mudstone, Seatearth; O'Rourke (1989): Sand-stone, Siltsone,Limestone, anhydride; Sa
hpazis (1990): 33 di�erent Carbon-ates; Tugrul and Zarif (1999): Granite; Ya³ar and Erdo§an (2004): Carbon-ates, Sandstone, Basalt).Table 3.1 summarizes the di�erent relations that are expe
ted from these setsof parameters with an exponential or power relation and using either the Sklar andDietri
h (2001) or the Sklar and Dietri
h (2004) model. As expe
ted, it is importantto note that ea
h relation predi
ts a de
reasing erodibility with in
reasing value ofS
hmidt hammer rebound.Figure 3.3 presents the relative range of erodibility Km obtained with the modelsproposed in Table 3.1 assuming 
lassi
al exponents. It is interesting to note thatfor the exponential model, Km varies between 1 and 2 orders of magnitude for therange of rebound to whi
h is sensitive the S
hmidt hammer (10-70), and between

1 and 7 orders of magnitude for the power law relation. As expe
ted, the modelof Sklar and Dietri
h (2001) gives a broader range of variation than the model ofSklar and Dietri
h (2004). Note that the empiri
al �t obtained by Dubille (2008)predi
ts that erodibility 
an vary over 8 orders of magnitude for a realisti
 range of
R values. 91
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Figure 3.3: Semi-log plot of the relation between erodibility Knorm and S
hmidthammer rebound R for the exponential (left) or power law (right) relation testingeither the model of Sklar and Dietri
h (2001) (red) or Sklar and Dietri
h (2004)(blue). The range of exponents α that are tested represent the range do
umentedby Aydin and Basu (2005). Knorm is the normalized value of Km, so that Knormequates 100 for R = 10. Note that the empiri
al �t obtained by Dubille (2008) isalso indi
ated in bla
k.3 Testing the ModelsErodibility and S
hmidt Hammer Rebound DatasetsTo test the model, two sets of data are 
ompared (Fig. 3.4):� The erodiblity dataset of Attal and Lavé (2009) based on a broad range of ro
ktypes using s
hists, sandstones, marbles, limestones, gneiss, granites, vol
ani
ro
ks and quartzite. Similarly to Dubille (2008) erodibility was determinedfrom a 
ir
ular �ume with realisti
 �ow and pebble velo
ities (Attal and Lavé,2006). To the dataset presented by Attal and Lavé (2009) were added othervalues obtained from a smaller �ume (M. Attal, unpublished data).� The S
hmidt hammer rebound (N-type) dataset 
ompiled in this study fromseveral studies referen
ed in Aydin and Basu (2005).From these distributions, K and R are 
learly anti-
orrelated at �rst order. Forinstan
e, s
hists have high K and low R, while quartzites have low K and high
R. Even if in
luding a broad range of lithologies, it is important to note thaterodibility varies between 2 to 3 orders of magnitude only. This is not supportingpower relations between K and R with large negative exponents, whi
h 
learlypredi
t too large variations of erodibility dedu
ed from R.Models vs DatasetsWe use the models de�ned previously (Table 3.1) to 
ompare S
hmidt hammerdedu
ed erodibility Km with measured erodibility (Attal and Lavé, 2009). Figure 3.592
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Figure 3.4: Distribution of (A) erodibilityK (Attal and Lavé, 2009) and (B) S
hmidthammer rebound R (
ompilation of previous studies, see Aydin and Basu (2005))for di�erent lithologies. Note that the two datasets are not the same, and that thesedistributions only give indi
ations on the e�e
t of lithology on both K and R.presents the 
omparison. We assess the sets of of 
oe�
ients and exponents that givethe best qualitative �ts between the measures and the models, for the exponentialand power models. Interestingly, the exponent of the best �t exponential model(exp(−0.11R)), is in agreement with both the model of Sklar and Dietri
h (2001) andempiri
al parametrization (Aydin and Basu, 2005), while it represents an extremevalue of the model of Sklar and Dietri
h (2004). The power model gives a good �tfor an intermediary exponent 
lose to −4. Alternatively, the empiri
al �t obtainedby Dubille (2008) leads a to broader range of Km than measured K (Attal and Lavé,2009).4 Dis
ussion and Preliminary Con
lusionFrom this preliminary study, it appears that S
hmidt hammer is a suitable toolto assess relative erodibility for di�erent lithologies. Even if it is not 
lear whi
hmodel to use to 
onvert S
hmidt hammer rebound R into erodibility K by abrasion.Building su
h a model requires either to measure both K and R and to assessan empiri
al �t (Dubille, 2008), or to use empiri
al relations between R and ro
kproperties (Aydin and Basu, 2005), and between K and the same ro
k properties(Sklar and Dietri
h, 2001, 2004). Even if the �rst approa
h is 
on
eptually better,it appears that the results of Dubille (2008), whi
h predi
t a power relation, arenot in good agreement with R 
ompiled from previous studies (see Aydin and Basu(2005)) when 
onsidering a broader range of lithologies. On the other hand, these
ond approa
h whi
h a priori predi
ts either an exponential or a power relationbetween K and R, allows one to obtain a good qualitative �t between Km dedu
edfrom the R dataset (see Aydin and Basu (2005)), and measured K dataset (Attaland Lavé, 2009). The exponents of the power or exponential relations are moreover
onsistent with the exponents obtained by previous studies of the relation between
R and ro
k properties. From the two models of Sklar and Dietri
h (2004) andSklar and Dietri
h (2001) that relate Km to ro
k properties, the latter give the bestresults. 93



CHAPTER 3. SCHMIDT HAMMER REBOUND AND ROCK ERODIBILITY

10

Schist

Sandstone

Marble

Limestone

Gneiss

Granite

Volcanics

Quartzite
-2

10
-1

10
0

10
1

10
2

Km

K =10 exp(-0.11R)m

2.2

A

10
-2

10
-1

10
0

10
1

10
2

Km

K =10 Rm

4.8 -4

B
Schist

Sandstone

Marble

Limestone

Gneiss

Granite

Volcanics

Quartzite

10
-4

10
-2

10
0

10
2

10
4

Km

K =10 Rm

14.5 -9.1

Schist

Sandstone

Marble

Limestone

Gneiss

Granite

Volcanics

Quartzite

C

Figure 3.5: Distribution of measured erodibility (blue square) Attal and Lavé (2009)and of modeled erodibility (red dots) obtained in this study from a 
ompilation of Rvalues: (A) exponential and (B) power model and (C) power empiri
al �t o.btainedby (Dubille, 2008). For the �rst two models, only the best �t models (assessedqualitatively) are presented. 94



Chapter 4A Preliminary Experimental Studyof Ro
k Hardness a
ross the TaiwanMountain BeltIn Prep.Steer, P., Simoes, M., Huang, C. and Cattin, R.Abstra
tA preliminary experimental study of ro
k hardness a
ross the Taiwan mountain beltwas 
arried out. Ro
k hardness was measured with a S
hmidt hammer. 23 out
ropslo
alised in the Western Foothills, in the Slate Belt and in the Tananao S
hist, werestudied. Our results show a weak to moderate lithologi
al 
ontrol on the S
hmidthammer rebound values, with Tananao metamorphi
 s
hists having a higher hard-ness than the 
onsolidated sandstones of the Western Foothills, and the slates ofthe Slate Belt having the lowest hardness. In addition our results do not 
orrelatewith uniaxial 
ompressive strength measured in laboratory. This result 
ould indi-
ate a 
ontrol by ro
k mass dis
ontinuities su
h as fra
ture or s
histosity. It alsohighlights the need to 
onsider e�e
tive properties of ro
k mass when investigatingro
k properties su
h as erodibility.1 Introdu
tionThe erosion of mountain belts 
ontrols their topographi
 and stru
tural evolution,and in�uen
es the pattern and rates of ro
k adve
tion towards Earth's surfa
e(Avoua
 and Burov , 1996; Beaumont et al., 1992;Willett , 1999). The Taiwan moun-tain belt represents a key natural experimental �eld of intera
tions between te
toni
sand �uvial or hillslope erosion with unmat
hed te
toni
 a
tivity, erosion rates (Dad-son et al., 2003) and extreme 
limati
 
onditions (Fuller et al., 2006; Simoes andAvoua
, 2006). First, 
onvergen
e rate a
ross the belt is high, estimated by GPS to
80 mm.yr−1 (Yu et al., 1997; Loevenbru
k et al., 2001). It results in high exhuma-tion rate 5 − 7 mm.yr−1 (Liu, 1982; Fuller et al., 2006; Simoes et al., 2007), andfrequent earthquakes, i.e. twelve seisms with MW > 6 during the last 
entury forthe southern part of Taiwan. Se
ond, pre
ipitation is important, ∼ 2.5 m.yr−1, and95



CHAPTER 4. A PRELIMINARY EXPERIMENTAL STUDY OF ROCK HARDNESSACROSS THE TAIWAN MOUNTAIN BELTo

urs mainly during the typhoon season with an average of four typhoons per year(Shieh et al., 2000). Third, ro
k resistan
e to �uvial erosion is estimated to be atleast one order of magnitude lower than in the Himalayas, i.e. with higher erodibil-ity (Hilley and Stre
ker , 2004). These three 
ombined e�e
ts result in high erosionrates, estimated to 3 − 6 mm.yr−1 within the a
tively deforming mountains duringthe last 30 years (Dadson et al., 2003), and are in agreement with mean exhumationdedu
ed from kinemati
 modeling (Simoes et al., 2007). Moreover erosion rates areexpe
ted to be high at all times
ales (Dadson et al., 2003).Erosion of the Taiwan mountain belt is dominated by hillslope landsliding and�uvial erosion. This latter sets the lo
ation of the lo
al lower points of the lands
apesand 
on
ordingly di
tates the pa
e of hillslope landsliding. At de
adale time s
ale,erosion rates of Taiwanese river basins are 
ontrolled by earthquake and typhoonevents (Dadson et al., 2003, 2004). In 
ontrast, at geologi
al time s
ale, erosionrates are 
ontrolled mainly by the erodibility of the river bedro
k, the topographi
signature of lands
apes su
h as lo
al slope or the organisation of the �uvial network.These two latters aspe
ts are strongly dependant on te
toni
 deformation. In thisstudy we assess ro
k erodibility a
ross the southern part of the Taiwan mountain beltusing a S
hmidt hammer. S
hmidt hammer permits the non-destru
tive estimate ofuniaxial 
ompressive strength (UCS) and Young's modulus (E) of ro
k materials(Aydin and Basu, 2005). In addition, we make the assumption that ro
k hardnessmeasured by a S
hmidt hammer is a proxy for erodibility.First we introdu
e the geologi
al and geodynami
al settings of the studied area.Then we present the S
hmidt hammer measurements and show the results. Finallywe 
ompare our results with existing datasets and dis
uss their impli
ations onerosion in Taiwan.2 Geodynami
al and Geologi
al SettingsThe Taiwan mountain belt has resulted from the 
ollision between the Luzonvol
ani
 ar
 and the Chinese 
ontinental margin, whi
h started about 6.5 Ma agoin the north (e.g., Lin et al., 2003), and has sin
ed propagated southward (Byrneand Liu, 2002; Simoes and Avoua
, 2006; Suppe, 1981). The Taiwan mountainbelt is 
onsidered as a 
riti
al wedge growing essentially by frontal a

retion andtherefore submitted to distributed shortening (e.g., Willett et al., 2001). Howeverthis 
lassi
al model is 
hallenged by re
ent observations and modeling that 
all for asigni�
ant 
ontribution of underplating to the growth of the orogeni
 wedge (Simoesand Avoua
, 2006; Simoes et al., 2007).The studied area (Fig. 4.1) is lo
ated in the southern part of Taiwan, and in-
ludes from West to East: parts of the Western Foothills, of the Slate Belt andof the the Tananao S
hists. Lithologies en
ountered 
onsist of poorly 
onsolidatedto 
onsolidated sandstones, shales and slates in the Western Foothills thrust belt,slates, s
hists and sandstones in the Slate Belt, s
hists and greens
hists (
hlorite)in the Tananao S
hist belt (Fig. 4.2) (Ho, 1986; Beyssa
 et al., 2007). If refer-ing to the 
ir
ular �ume experiments of Attal and Lavé (2009), all these lithologiesare asso
iated with high erodibility, and are likely to depend on the diageneti
 ormetamorphi
 grade for the sandstone and the s
hists, respe
tively.96
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Figure 4.1: Geologi
 map of the Taiwan Mountain Belt. The bla
k square indi
atesthe lo
ation of the studied area. 97
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CHAPTER 4. A PRELIMINARY EXPERIMENTAL STUDY OF ROCK HARDNESSACROSS THE TAIWAN MOUNTAIN BELTTable 4.1: Table 
omparing S
hmidt hammer rebound values (R) obtained in thisstudy and uniaxial 
ompressive strength (UCS) from Dadson et al. (2003).Western Foothills Slate Belt Tananao S
histmean σ min-max mean σ min-max mean σ min-max
R 38.6 12.1 15-61 32.9 11.7 13-63 40 13.8 15-67
UCS (MPa) 20 13.8 0.1-109.2 39.2 34.4 1.5-253.4 45.3 23.1 1.2-189.93 S
hmidt Hammer Ro
k Hardness a
ross TaiwanData were 
olle
ted during 3 days in May 2009, and 23 out
rops were studiedwith the S
hmidt hammer. In parallel, samples were extra
ted at ea
h out
rop forpotential future studies. For pra
ti
al reasons all the out
rops were sele
ted alongthe Southern Cross-Island Highway in order to perform a full transe
t a
ross theTaiwan mountain belt. A total of ∼ 120 measures were realised, with 10 impa
tsper measure. At the s
ale of the out
rop, the sele
tion of measure points was donerandomly. Very weak lithologies with rebound values below the sensitivity limit ofthe S
hmidt hammer (∼ 15) were not sampled. Figure 4.3 show the variations ofS
hmidt hammer rebound values (R) a
ross the Taiwan mountain belt. Globallythe highest rebounds R are obtained for the metamorphi
 s
hists of the TananaoS
hist and for the 
emented sandstones of the Western Foothills. The Slate Beltexhibits low values of R in the western part dominated by slates, whereas high valuesare obtained in the eastern part dominated by s
hists. Sandstones in the WesternFoothills globally show an in
reasing gradient of R from West to East, probably dueto an in
rease of ro
k 
ohesion with 
ementation and diagenesis.Figure 4.4 presents the values of R as a fun
tion of the lithology. This sorting
on�rms that the 
hloriti
 s
hists (or greens
hists) and the sandstones have the high-est hardness of the lithologies en
ountered in the studied area, with median valuesaround 40. A
tually, basalts have the highest hardness 45, but are not representa-tive of Taiwanese lithologies. Slaty sandstones and s
hists have medium to low Rvalues, with high dispersion whi
h 
ould be asso
iated with varying proportion ofslates or of the spa
ing between the plans of s
histosity, respe
tively. Finally slateshave the lowest R values.4 Dis
ussion and Con
lusion4.1 Comparing S
hmidt Hammer Hardness with Uniaxial Com-pressive StrengthTaking advantage of a pre-existing geote
hni
al dataset on Taiwan (supplemen-tary materials, Dadson et al., 2003) we 
ompare the in-situ ro
k hardness obtainedin this study with a S
hmidt hammer, with the uniaxial 
ompressive strength mea-sured in laboratory (see Table 4.1). Note that we only have a

ess to the datasetpublished in Dadson et al. (2003) and not to the details of this dataset su
h as the99
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 map showing the lo
ation of the S
hmidt hammermeasures (blue points) a

ross the south of the Taiwan mountain belt. B: S
hmidthammer rebound values R for ea
h out
rop, with ea
h measure representing oneimpa
t. Lithology of measured ro
k is indi
ated: sandstone (blue plus signs), slatysandstone (green 
ross), slate (
yan asterisk), s
hist (red diamond), 
hloriti
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hist(yellow square), 
hloriti
 s
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k
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le). C: S
hmidt hammer rebound mean values for ea
h out
rop with the errorsbars being equal to the standard deviation. Mean values were 
orre
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CHAPTER 4. A PRELIMINARY EXPERIMENTAL STUDY OF ROCK HARDNESSACROSS THE TAIWAN MOUNTAIN BELTlo
ation or the lithologies of the samples used in Dadson et al. (2003). Thus it is notpossible to extensively interpret the 
omparison. At �rst order R and UCS are not
orrelated. This is surprising as many robust empiri
al relationships exist between
UCS and R (see Aydin and Basu (2005) for a review). This absen
e of 
orrelation
an be explained by di�erent fa
tors: (1) A possible di�eren
e between the represen-tativity of the lithologies measured with the S
hmidt hammer and lithologies of thesamples used for determination of UCS. It is important to note that the 
omparisonis realised here for stu
tural units and not for lithologi
al untis. (2) The e�e
t ofro
k mass dis
ontinuities, su
h as fra
tures or s
histosity plans, whi
h probably havea stronger e�e
t on R than UCS, as the volume sampled with a S
hmidt hammer(∼ 30 cm of 
hara
teristi
 radius) is probably one order of magnitude greater thanthe volume of the samples used for the determination of UCS (
lassi
aly 1−10 cm).(3) A dis
repan
y between R and UCS that has not been do
umented yet.4.2 Impli
ations for Erosion of Taiwan at Geologi
 Times
aleLong-term river erosion, and by extension lands
ape erosion in mountaineous area,is 
ontrolled mainly by the spatial and temporal distribution of pre
ipitation, bythe topographi
 properties of the �uvial network (slope, uplslope area) and by the
apa
ity of the 
orresponding bedro
k to be eroded, i.e. erodibility. This latteris di�
ult to quantify dire
tly as it depends on the me
hanisms of erosion (e.g.,abrasion, plu
king), on the 
hara
teristi
 s
ale at whi
h erosion o

urs, and on thee�e
tive properties of the bedro
k (e.g., 
omposition, 
ohesion of grains or minerals,fra
ture density). Thus at �rst order it is useful to simplify this appraisal to isolatethe dominant 
ontrol on erodibility. Sklar and Dietri
h (2001) empiri
ally dedu
edfrom abrasion experiments that erodibility negatively 
orrelates with the square ofro
k tensile strength. In parallel, tensile and 
ompressional strength are empiri
allyrelated (e.g., Bieniawski , 1967), whi
h supports the initial assumption of this study,that R is a proxy for erodibility.Under this assumption, our results 
an be interpreted in terms of relative erodi-bility: the Tananao S
hist is the less erodible part of the studied area, while the
entral part of the Taiwan mountain belt is the more erodible (Slate Belt); the West-ern Foothills are more erodible on their western part, while the erodibility of theeastern part is 
omparable to the Tananao S
hist. This spatial pattern of erodibilityis not 
lassi
al, as many mountain belts exhibit me
hani
ally strong units (probablywith low erodibility) 
oin
iding with their 
entral area (e.g., Pyrenees, Himalayas,Sierra Nevada, European Alps). However this appraisal needs to be modulated bythe relative small variations of R values between the di�erent lithologies en
oun-tered.4.3 AfterwordsThis work represents a preliminary study that requires future works in order to leadto a publi
ation. In parti
ular, a 
omparison between S
hmidt hammer reboundand erodibility measured with a 
ir
ular �ume (Attal and Lavé, 2009) is needed to
larify the relation between R and erodibility. For that purpose a large number ofsamples, that 
orrepsond to the tested out
rops, were extra
ted. We also suggestthat the te
toni
 or metamorphi
 fabri
s of tested ro
ks in�uen
e R. Unfortunately102



CHAPTER 4. A PRELIMINARY EXPERIMENTAL STUDY OF ROCK HARDNESSACROSS THE TAIWAN MOUNTAIN BELTwe la
k information on the lo
al dis
ontinuities that are potentialy of great in�uen
efor our results. Thus a se
ond �eld investigation is also probably required with aparti
ular fo
us on the e�e
t of e�e
tive properties and ro
k me
hani
al anisotropyon R and on erodibility and erosion.N° R̄ σ(R) 1 2 3 4 5 6 7 8 9 1001 25,4 5,9 22 11 27 22 26 28 29 29 30 3019,5 2,2 14 19 20 21 21 21 19 18 21 2121,9 1,9 18 23 25 22 23 22 22 22 22 2002 47,1 5,9 40 42 49 54 55 47 46 37 50 5148,8 4,7 39 51 49 51 46 54 54 51 49 4452,3 3,5 46 46 52 53 55 56 54 53 54 5403 43,5 5,3 40 44 37 50 49 43 49 48 38 3736,3 3,0 35 32 32 38 36 38 40 41 35 3644,2 7,8 50 37 41 39 52 45 51 51 48 2804 41,2 7,3 30 47 44 47 44 26 41 44 43 4632,1 2,8 28 34 31 33 27 33 31 35 35 3440,6 4,4 35 39 37 41 43 49 36 44 38 4405 56,8 3,8 52 51 59 61 53 54 59 60 60 5954,6 4,1 48 55 51 49 56 59 59 54 59 5633,0 3,4 26 30 32 35 33 38 35 36 34 3123,2 2,9 16 26 26 25 23 23 22 22 24 2521,1 4,1 25 27 21 26 21 23 18 15 18 1706 37,3 7,0 23 45 38 45 42 30 33 38 42 3740,3 5,1 40 41 34 33 44 47 42 42 46 3439,4 7,2 41 49 38 44 36 42 37 24 48 3507 16,2 1,2 15 15 15 17 15 17 18 16 18 1626,7 4,3 24 31 20 20 27 28 25 32 30 3038,4 1,8 40 40 40 37 39 39 39 39 35 3618,7 2,4 15 16 18 21 17 20 19 19 19 2334,8 4,4 23 33 34 36 37 37 36 37 38 3715,7 ,5 15 16 16 16 16 16 16 16 15 1532,7 4,3 32 33 38 30 30 32 36 40 25 3123,6 2,0 25 25 23 26 25 24 19 23 24 2233,7 3,6 25 33 34 37 35 35 36 37 31 3421,4 2,7 16 20 19 24 25 23 24 21 21 2116,5 2,1 14 16 17 18 20 15 17 13 17 1817,5 3,6 14 15 16 14 19 24 17 14 21 2116,0 2,9 10 13 13 17 17 18 18 18 17 1919,7 3,1 17 19 13 20 20 22 22 24 21 1922,6 3,3 20 15 22 25 27 25 24 22 23 2308 42,0 12,5 23 37 36 50 50 46 21 45 55 5742,8 12,0 23 25 42 53 36 55 56 39 51 4839,9 3,5 34 44 42 41 46 39 39 37 40 3709 49,6 1,0 48 51 49 51 49 50 49 50 49 5038,9 2,4 36 40 42 38 38 39 40 43 36 3743,9 6,3 32 38 49 47 44 37 49 51 49 43103



CHAPTER 4. A PRELIMINARY EXPERIMENTAL STUDY OF ROCK HARDNESSACROSS THE TAIWAN MOUNTAIN BELT24,6 2,6 24 26 26 26 28 27 22 24 24 1918,8 2,4 22 22 16 22 20 17 17 18 17 1710 30,6 4,3 24 33 26 32 30 36 36 31 33 2523,2 3,6 21 20 26 27 25 26 19 24 27 1717,3 1,2 16 15 18 18 18 19 17 18 17 1732,0 2,7 28 33 31 28 35 35 32 34 30 3425,5 1,8 23 26 28 27 25 24 26 28 24 2444,0 6,8 47 48 51 46 40 46 50 30 47 3540,1 4,0 40 42 38 34 44 41 41 43 33 4511 27,8 5,0 21 23 28 32 31 32 28 32 32 1939,3 4,5 37 38 38 37 35 39 47 35 39 4840,8 5,6 41 29 41 35 39 46 47 40 46 4429,8 4,6 32 27 33 36 26 25 37 28 30 2431,8 8,0 22 33 40 40 30 22 42 21 32 3612 51,4 6,3 42 60 48 54 60 55 44 49 55 4727,6 4,3 22 24 25 26 29 25 31 27 30 3747,9 4,9 45 51 48 51 51 51 54 46 37 4551,3 4,4 46 55 46 52 49 55 59 49 48 5413 49,3 8,9 32 57 41 53 58 58 56 47 41 5056,6 4,3 57 50 63 63 58 55 58 55 56 5114 23,2 1,4 23 26 23 23 24 22 24 24 22 2127,5 1,8 28 29 30 30 26 28 27 26 25 2620,3 ,9 19 21 19 20 22 20 21 21 20 2015 40,0 2,7 37 37 41 37 39 40 39 44 42 4441,4 5,7 33 41 40 41 45 48 48 42 45 3144,5 6,9 28 41 46 47 43 53 48 50 41 4835,8 3,8 33 40 32 40 39 28 36 37 36 3740,1 10,5 21 21 42 40 45 42 47 48 46 4916 30,8 5,5 19 30 26 32 35 39 33 28 33 3316,0 ,9 17 16 16 15 17 17 15 15 17 1538,1 4,8 30 33 33 40 37 42 40 45 39 4225,0 1,5 23 24 24 24 25 25 27 24 27 2739,6 3,0 44 42 41 38 39 36 37 44 38 3732,4 3,4 26 32 34 30 34 33 37 28 35 3517 31,3 11,9 14 17 15 28 39 37 35 43 44 4128,2 7,0 24 34 16 31 33 31 40 27 21 2527,5 4,2 17 24 28 30 30 29 29 32 27 2918 27,9 7,2 19 20 31 34 40 27 26 26 36 2029,1 5,4 21 29 32 39 28 28 24 26 28 3625,5 4,0 20 25 18 24 27 28 26 30 27 3019 17,6 ,5 18 17 17 18 17 18 18 17 18 1829,9 2,5 24 28 29 31 32 32 30 30 32 3121,9 3,2 17 22 27 21 25 26 21 18 21 2131,4 2,2 28 31 30 29 33 35 31 31 32 3431,7 6,3 16 30 30 37 38 37 34 30 31 3420 17,9 1,4 15 19 19 19 16 18 18 19 18 1850,2 6,7 48 40 53 53 57 45 56 52 40 58104



CHAPTER 4. A PRELIMINARY EXPERIMENTAL STUDY OF ROCK HARDNESSACROSS THE TAIWAN MOUNTAIN BELT25,6 3,0 20 27 27 23 23 29 25 28 29 2550,3 2,6 46 51 50 54 55 49 49 50 50 4941,4 5,9 28 36 40 42 46 45 43 40 48 4655,5 8,9 49 60 58 55 55 61 62 60 33 6246,1 11,0 24 33 41 56 56 53 44 58 50 4660,6 3,7 52 57 65 64 61 62 61 60 62 6250,2 9,2 32 37 58 55 46 58 55 58 49 5459,2 7,6 42 57 65 66 64 59 62 65 51 6141,7 4,1 40 34 42 36 41 44 45 45 43 4748,7 7,4 47 48 44 54 33 44 49 57 53 5821 27,3 2,5 25 28 28 30 27 26 28 22 30 2956,1 2,5 58 59 59 58 55 57 53 53 56 5344,4 5,5 49 44 54 40 46 45 34 40 47 4529,8 4,3 25 27 32 33 36 23 27 29 35 3142,3 5,1 35 37 47 48 47 43 48 41 36 4134,2 3,1 32 37 35 36 30 31 32 33 36 4052,1 5,9 46 48 51 42 56 60 49 59 57 5322 35,0 1,6 35 34 36 35 34 34 37 34 38 3338,1 2,3 38 40 40 40 40 35 39 36 39 3425,3 2,8 23 22 23 27 27 28 29 27 26 2143,1 4,7 35 42 39 42 41 43 47 42 51 4926,7 7,0 24 20 31 29 16 21 33 36 35 2253,0 5,6 49 60 45 61 58 48 51 54 56 4845,0 5,8 47 53 48 52 44 50 39 39 38 4023 58,5 8,2 40 60 50 60 67 65 64 61 55 6358,6 3,2 57 52 60 61 58 61 62 61 55 5961,2 2,0 58 59 63 60 62 62 64 63 59 6043,0 4,3 34 40 43 43 45 45 48 46 47 3930,5 8,0 19 26 33 33 29 33 40 43 18 3126,1 7,4 15 17 20 22 26 27 31 34 35 3421,8 4,2 16 20 20 21 23 15 23 26 27 27N° East (m) North (m) Alt (m) Ro
k Type Formation01 186146 2559410 40 Sandstone Q02 200694 2553301 220 Sandstone P
03 203534 2552134 319 Sandstone MP04 207092 2551710 287 Sandstone MP05 210396 2552668 562 Slaty Sandstone M306 210159 2551955 581 Slaty Sandstone M307 215025 2552665 402 Slaty Sandstone M308 219786 2551429 508 Basalt09 221393 2560072 565 Slate Mi10 232482 2574257 1003 Sandstone Mi11 233548 2575831 1264 Slates Mi12 240451 2574618 2258 Slaty Sandstone Pilushan13 242651 2573251 2535 Chloriti
 S
hist Pilushan14 245165 2573749 2865 S
hist Pilushan105
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 S
hist Pilushan16 250564 2569082 1828 Chloriti
 S
hist Pilushan17 250993 2566237 1208 Chloriti
 S
hist Pilushan18 253142 2563566 699 S
hist Wulu19 257152 2560841 650 S
hist Wulu20 258310 2559917 561 S
hist Pilushan21 260221 2559898 482 Slaty Sandstone Hsin-Wu22 261829 2559567 396 Chloriti
 S
hist Wulu23 263403 2559154 408 S
hist Yuli Belt
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Chapter 5Experimental Study of Ro
kHardness - Diageneti
 GradeRelationship: Appli
ation to theAnnot Sandstone, Fren
h-ItalianAlpsIn Prep.Steer, P., Cattin, R., Gibert, B., Labaume, P., Loggia, D., Soliva, R.,Taboada, A., Jolivet, M., Lavé, J. and Sizun, J.P.Abstra
tIn the large s
ale studies of lands
ape evolution, ro
k erodibility is a key parameterwhi
h 
ontrols the 
apa
ity of ro
ks to be eroded under the a
tion of erosive agents.This parameter is primary 
ontrolled by lithology. However, it also integrates bothmi
ros
opi
 and ma
ros
opi
 parameters su
h as grain 
ohesion or fra
ture density.Despite its extensive use in erosion laws for �eld or numeri
al studies, quantifyingriver bedro
k erodibility is still an ongoing issue. Previous studies have highlightedthe �rst order 
ontrol of ro
k nature on bedro
k erodibility. Here we rather in-vestigate the e�e
t of diageneti
 grade using both laboratory measurements andro
k hardness data 
olle
ted in the �eld with a S
hmidt hammer. We 
onsiderS
hmidt hammer rebound as a proxy for erodibility. Our approa
h is applied to thewell-studied Annot sandstones lo
alized in the southern part of the external Fren
h-Italian Alps. Due to thrust front propagation in the external Alpine domain, thisUpper Eo
ene - Lower Oligo
ene foreland basin formation has been partly buriedbelow allo
htonous units during the Oligo
ene. Exhumed by thrusting during thelate Mio
ene, this formation now exhibits a 
lear diageneti
 gradient in
reasing fromWest to East. Taking advantage of the availability of a large petrographi
 and petro-physi
 dataset, we study the spatial variation of the Annot Sandstone erodibilitywith the estimated diageneti
 grade. Our preliminiary results reveal that erodibilityis 
orrelated to the diageneti
 grade, with the external (western) part of the AnnotSandstone exhibiting higher erodibility than the internal (eastern) part. At the s
ale107



CHAPTER 5. EXPERIMENTAL STUDY OF ROCK HARDNESS - DIAGENETICGRADE RELATIONSHIP: APPLICATION TO THE ANNOT SANDSTONE,FRENCH-ITALIAN ALPSof the out
rop, erodibility is 
hara
terized by a high variability whi
h statisti
allydoes not 
orrelate with density, elasti
 parameters, porosity or mineral 
ontent. Werather suggest that for equivalent diageneti
 grade, erodibility is mostly 
ontrolledby the density of fra
turation.1 Introdu
tionEarth surfa
e topography is the result of the motion of te
toni
 plates, that deformsEarth's exterior and forms topographi
 relief, and of erosion whi
h shapes upliftedregions. Last de
ades have seen a growing awareness of the e�e
t of 
limate on rivererosion and on its intera
tions with te
oni
s (e.g.,Willett , 1999; Dadson et al., 2004;Roe, 2005). Even if bedro
k lithology is predi
ted by river in
ision formalism to beas well a primary 
ontrol on river erosion (Howard et al., 1994; Godard et al., 2006),its e�e
ts on erosion have not been extensively do
umented. Lithologi
al variationsare di�
ult to a

ount for and bedro
k 
hara
teristi
s are often 
ombined into asingle 
oe�
ient of erodibility (Sto
k and Montgomery , 1999). Ro
k properties that
ontrol the resistan
e to me
hani
al erosion, i.e. erodibility, are s
ale dependent(Godard et al., 2009): (1) at the mineral s
ale, resistan
e is 
ontroled by mineralhardness; (2) when ups
aling at the mineral assemblage s
ale whi
h is the relevants
ale for river abrasion pro
esses (Sklar and Dietri
h, 2001), resistan
e is in addition
ontrolled by the 
ohesion of the mineral assemblage whi
h depends on porosity,fabri
s and fra
tures, and on their respe
tive orientations and spatial density. Somere
ent e�orts have lead to an experimental 
hara
terization of ro
k erodibility fordi�erent lithologies using rounded fragments in a 
ir
ular �ume (Attal and Lavé,2006, 2009; Godard et al., 2009). Despite that, erodibility and more parti
ularly itsrelation to ro
k e�e
tive properties remains badly 
onstrained.Some other studies propose that ro
k erodibility 
an be quanti�ed using in-situdevi
es su
h as the S
hmidt hammer (Duvall et al., 2004; Goudie, 2006; Goode andWohl , 2010; Viles et al.). S
hmidt hammer permits the non-destru
tive estimate ofuniaxial 
ompressive strength (UCS) and Young's modulus (E) of ro
k materials(Aydin and Basu, 2005). Sklar and Dietri
h (2001) demonstrated an inverse relationbetween erodibility (K) and the square of tensile trength (σt). If assuming that UCSand σt are proportional (e.g., Bieniawski , 1967), thus K and R are anti-
orrelated.Here we 
onsider that R is a proxy for K. We investigate the e�e
t of diagenesison erodibility using: (1) a pre-existing petrogeneti
 datatset (Labaume et al., 2008b)with samples that were measured in laboratory; (2) and R values 
olle
ted in-situ.Our approa
h is applied to the well-studied Annot Sandstone formation, lo
alizedin the southern part of the external Fren
h-Italian Alps, whi
h presents a 
lear di-ageneti
 gradient (Labaume et al., 2008a). First we both introdu
e the geologi
alsetting of the Annot Sandstone and the studied out
rops 
hosen at di�erent dia-geneti
 grade. We then present the spatial variations of S
hmidt hammer reboundin relation to the diageneti
 grade. Next S
hmidt hammer rebound is 
ompared toa range of petrogeneti
 indexes in
luding elasti
 properties. Last we diss
uss ourresults in relation to fra
turation of the tested out
rops, and 
on
lude on the e�e
tsof diageneti
 grade on erodibility. 108
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Figure 5.1: Stru
tural sket
h of the SW external Alps (A) and of the studied area(B) with distribution of the maximum temperatures and possible related burialdepths rea
hed by the Annot Sandstone formation (modi�ed from Labaume et al.(2008a)). Temperatures are inferred from a petrographi
 study and apatite fssiontra
k (AFT) thermo
hronology. Burial depths are 
al
ulated assuming a paleo-geothermal gradient of 25 − 30 ◦C.km−1. Lo
ation of the four studied out
rops isindi
ated with 
olor markers.2 Regional Setting2.1 Geologi
al SettingThe Annot Sandstone formation 
aps the inner part of the external Alpine units(Digne, Castellane and Ni
e ar
s), the Paleozoi
 substratum of whi
h forms theArgentera and Barrot massifs (Fig. 5.1). The northern part of this formation is
overed by the allo
htonous Embrunais-Ubaye nappes, issued from the internal Alpseast of the Pennini
 front.The Annot Sandstone, whi
h 
orresponds to a sand-ri
h turbidite system (Du For-nel et al., 2004; Joseph and Lomas, 2004), was mainly sour
ed in the 
rystallinebasement of the Corsi
a-Sardinia massif (Jean et al., 1985; Gar
ia et al., 2004).This formation 
orresponds to a sand-ri
h turbidite system (Du Fornel et al., 2004;Joseph and Lomas, 2004) and was deposed during the foreland subsiden
e of theexternal Alps in the Late Eo
ene - Early Oligo
ene (Ravenne et al., 1987). Thenin Late Oligo
ene, thrusting above the Annot Sandstone formation o

urs at theempla
ement of the Penninin
 front and upper Embrunais-Ubaye (Ker
khove, 1969;Fry , 1989; Corsini et al., 2004). The Annot Sandstone formation was then partially109



CHAPTER 5. EXPERIMENTAL STUDY OF ROCK HARDNESS - DIAGENETICGRADE RELATIONSHIP: APPLICATION TO THE ANNOT SANDSTONE,FRENCH-ITALIAN ALPS
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Figure 5.2: Pi
tures of the Rouaine, S
a�arels, Braux and Moutière out
rops andtheir 
orrespind markers. Diageneti
 grade in
reases from left (SW) to right (NE).exhumed by uplifting of the Argentera and Barrot massifs (Bigot-Cormier et al.,2006) whi
h resulted in the erosion of nappes 
overing the Annot Sandstone forma-tion, and to the formation of normal faults that 
utted through the nappes (Labaumeet al., 1989). Sin
e then these normal faults were rea
tivated as strike-slip faults byN-S 
ompression during the Plio-Quaternary.2.2 Diageneti
 Gradient and Studied Out
ropsThe Annot Sandstone formation now exhibits a strong diageneti
 gradient, fromrelatively un
onsolidated sandstones in the SW to strongly lithi�ed sandstones inthe NE. This �eld observation is 
onsistent with petrologi
 observations and aptite�ssion tra
ks (AFT) thermo
hronology data, whi
h both indi
ate an in
rease of themaximum temperatures rea
hed during burial by the Annot Sandstone formationfrom SW to NE (Labaume et al., 2008a). Asso
iated burial depths range from lessthan 2 km in the SW up to 10 km in the NE.Four out
rops were tested with a S
hmidt hammer. The Rouaine out
rop (Fig 5.2)is lo
ated in the SW of the Annot Sandstone formation and presents the lowest di-ageneti
 grade with un
onsolidated sandstones. The S
a�arels and Braux out
ropsare of higher diageneti
 grade and exhibit some main layers of 
onsolidated sand-stones (∼ 0.1 − 2 m thi
k), separated by thin layers dominated by marls. Last,the Moutiére out
rop lo
ated in the NE of the Annot Sandstone formation exhibitsthe highest diageneti
 grade, with layers of strongly lithi�ed sandstones (0.1− 10 mthi
k) separated by a few thin layers of shales. Se
ondary ma
ros
opi
 fra
tures arepresent at the three last out
rops, with a qualitative in
rease of apparent fra
turedensity with diageneti
 grade.3 Method: S
hmidt Hammer MeasuresEa
h outr
op was measured with a S
hmidt hammer of type N. It was initially
on
eived to test the hardness of 
on
rete in-situ. Sin
e then it has been applied110



CHAPTER 5. EXPERIMENTAL STUDY OF ROCK HARDNESS - DIAGENETICGRADE RELATIONSHIP: APPLICATION TO THE ANNOT SANDSTONE,FRENCH-ITALIAN ALPS

0 2 4 6 8 10
35

40

45

50

55

60

R

Number of  succesive impacts

value = median ( 7 impacts )

Figure 5.3: Statisti
al distribution of the mean S
hmidt Hammer rebound value (R)as a fun
tion of the number of impa
ts. Errorbars indi
ates the standard deviationthat a�e
ts the distribution of ea
h impa
t when 
onsidering the ∼ 250 measuresof this study. Note that only the last seven impa
ts present the same statisti
aldistribution, and we 
onsider its median value as representative.to geomorphology to assess either ro
k weathering (e.g., Aydin and Basu, 2005;M
Carroll , 1991) or me
hani
al erodibility (Duvall et al., 2004; Goudie, 2006; Goodeand Wohl , 2010; Viles et al.). As previously mentioned the intensity of its reboundvalue (R) 
orrelates well with ro
k uniaxial 
ompressive strength (UCS) and Young'smodulus (E) measured in laboratory (see Aydin and Basu (2005) for a review of theempiri
al laws).
During this study, a total of ∼ 250 measures was a
quired. The Rouaine out
ropwas measured only 10 times due to the spatial homogeneity of its sandstone. Onthe other hand the S
a�arels, Braux and Moutière ones in
lude between 50 and

100 measures so as to 
apture lithologi
al variability. Only layers dominated bysandstones were tested. We have measured R at the same approximate lo
ation thanthe extra
ted samples of a petrogeneti
 study (Labaume et al., 2008b). The distan
ebetween the lo
ation the measures of R and the extra
ted samples is ∼ 10 cm.We make the assumptions that: (1) this distan
e is su�
iently small to allow a
omparison of the two datasets; (2) this distan
e is large enough so that the voidvolumes of the extra
ted samples do not signi�
antly a�e
t R measures.For ea
h measure 10 impa
ts were realized. The distribution of R as a fun
tionof the number of impa
t shows a global in
rease during the three �rst impa
ts andthen 
onverges towards a 
onstant value (Fig. 5.3). This in
rease 
an be related toro
k weathering (Aydin and Basu, 2005). However this is out of the s
ope of thispaper, and we rather fo
us on the median value of the last seven impa
ts whi
hseems to be statisti
ally representative of the rebound of the ro
k.111



CHAPTER 5. EXPERIMENTAL STUDY OF ROCK HARDNESS - DIAGENETICGRADE RELATIONSHIP: APPLICATION TO THE ANNOT SANDSTONE,FRENCH-ITALIAN ALPS

20

30

40

50

60

R
ou

ai
ne

S
ca

ffa
re

ls

B
ra

ux

M
ou

tiè
re

R

median

25 %

75%

outlier limit

outlier limit

T (°C)max

Z (km)max

1.5-1.8 2.0-2.4 2.2-2.6 7.3-8.6

40 50 60 225

Diagenetic Grade

Fracture density

Figure 5.4: Boxplot of the distribution of S
hmidt Hammer rebound value (R) for theRouaine, S
a�arels, Braux and Moutière out
rops. The diageneti
 grade in
reasesfrom letf to right. The temperature and maximum burial depths are indi
ated witha red and a blue arrow, respe
tively.4 Results4.1 S
hmidt Hammer Rebound and Diageneti
 GradeFigure 5.4 shows the distribution of R as a fun
tion of the diageneti
 gradeof ea
h out
rop. The Rouaine and Moutière sandstones, whi
h present the lowestand highest diageneti
 grade, 
learly also exhibit the lowest and highest R values,respe
tively. The mean R value is 24 for Rouaine, whereas 59 was obtained forMoutiére. Thus at �rst order there is a 
orrelation between R and the diageneti
grade. However this observation does not hold at se
ond order, when 
onsideringlow to intermediary diageneti
 grade, at the S
a�arels and Braux out
rops. Theyhave mean R values of 57 and 54 respe
tively, whi
h is high and very 
lose to thevalue obtained for the Moutiére sandstones, while it is 
loser to the Rouaine onewhen 
onsidering the diageneti
 grade. Qualitatively, R values seem to 
orrelatewith the apparent 
ohesion and 
ompa
tion of ro
k materials, whi
h strongly in-
reases between the Rouaine and S
a�arels or Braux outr
ops. The s
attering ofthe R values is important ex
ept for the Rouaine out
rop. Interestingly this absen
e112
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e) of s
attering qualitatively 
orrelates with the absen
e (or presen
e) ofapparent ma
rosopi
 fra
tures.4.2 S
hmidt Hammer and Petrogeneti
 IndexesTo futher assess the e�e
t of diageneti
 grade on R values, we 
ompare ourdataset with a pre-existing petrogeneti
 study of the same out
rops (Labaume et al.,2008a). Due to the un
onsolidated nature of the Rouaine sandstones, whi
h doesnot allow for sample extra
tion, only the S
a�arels, Braux and Moutière sandstoneswere extensively studied. Moreover ea
h measure previously done with the S
hmidtHammer does not ne
essary 
orrespond to an extra
ted sample. These measureswere 
onsequently ex
luded. The petrogeneti
 dataset in
ludes: (1) qualitative 
layand 
al
ite 
ement indexes ranging from 0 to 3; (2) ro
k bulk density ρbulk; (3)P-wave a

ousti
 velo
ity Vp; (4) water porosity; (5) and ro
k permeability K.Figure 5.5 presents R values as a fun
tion of ea
h of these petrogeneti
 indexes.Clay 
ontent de
reases with the diageneti
 grade, while 
al
ite 
ontent is apparentlynot 
orrelated to the diageneti
 grade. As expe
ted, porosity and permeability de-
rease with the diageneti
 grade. Con
ordingly ro
k bulk density in
reases with thediageneti
 grade, su
h as P-wave velo
ity. As a 
onsequen
e and quite surprisingly
R does not signi�
antly 
orrelate at �rst order with any of these indexes. This isunexpe
ted, as previous studies have proposed some empiri
al relations between Rand elasti
 parameters or P-wave velo
ity (see Aydin and Basu (2005)). We relatedthis absen
e of 
orrelation to the e�e
tive properties of ro
ks whi
h are known tobe s
ale dependent. Petrogeneti
 samples have a 
hara
teristi
 dimension of 1 to
10 cm, while S
hmidt Hammer 
hara
eristi
 sampling size ranges between 10 cmand 1 m, from our estimates. The observed apparent in
rease of fra
ture densitywith the diageneti
 grade 
an potentially explain this s
ale e�e
t.5 Dis
ussion and 
on
lusionIn this paper we have studied the e�e
t of the diageneti
 grade of the Annot sand-stones on ro
k erodibility measured with a S
hmidt hammer. Our study has high-lighted a �rst order 
orrelation between the diageneti
 grade of sandstones and thevalues of S
hmidt Hammer rebound. The 
hange from a non-
ohesive to a 
ohesivero
k mass seems to explain most of this 
orrelation. As a 
onsequen
e ro
k erodi-bility is likely to strongly in
rease with the diageneti
 grade of sandstones mainlywhen going from a non-
ohesive to a 
ohesive ro
k mass.No qualitative 
orrelations between petrogeneti
 properties and S
hmidt Ham-mer rebound values are observed for 
ohesive sandstones, and in parti
ular betweenelasti
 properties measured in laboratory and S
hmidt Hammer rebound values,whereas a 
orrelation exists between diageneti
 grade and the elasti
 and petro-geneti
 properties. This 
an be explained by the s
ale dependen
y of ro
k masse�e
tive properties. In this paper, we assume that the apparent ma
ros
opi
 fra
-ture density, whi
h qualitatively in
reases with the diageneti
 grade, is the mainfa
tor responsible of this s
ale e�e
t. As a 
onsequen
e ro
k erodibility dedu
edfrom laboratory experiments (Sklar and Dietri
h, 2001; Attal and Lavé, 2009) 
an113
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Figure 5.5: Plot of the distribution of S
hmidt Hammer rebound values (R) as afun
tion of petrogeneti
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al
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tly extrapolated to larger spatial s
ale, without an estimate of ma
ro-s
opi
 fra
ture density. Our observations are 
onsistent with me
hani
al theoriesa
knowledging the 
ontribution of fra
ture on ro
k rheology (e.g., Hudson, 1980). Italso supports the idea that fra
turation is possibly the dominant fa
tor 
ontrolingro
k erodibility (Molnar et al., 2007).5.1 AfterwordsThis study represents a preliminary study that requires future works to lead to apubli
ation. In parti
ular a 
omparison between in-situ parameters, in
luding P-and S-wave velo
ity and fra
ture density, and the parameters dedu
ed in laboratoryand presented in this study is needed.A
knowledgmentsWe a
knowledge the National Par
 of Mer
antour. This study was funded by theERODROCK proje
t of Geos
ien
es Montpellier.
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Chapter 6In-situ quanti�
ation of the e�e
tiveelasti
ity of a fault zone, and itsrelationship to fra
ture density
Submitted, Journal of Stru
tural GeologySteer, P., Bigot, A., Cattin, R. and Soliva, R.
Abstra
tUp to now, most studies set up to assess e�e
tive elasti
 properties of fra
turedro
k masses, have employed theoreti
al or numeri
al approa
hes based on labora-tory measurements that may not be representative of the s
ale of fault zones. Inthis paper, we study the e�e
t of fra
ture properties su
h as density and types atthe s
ale of an out
rop, on the e�e
tive elasti
ty measured with a S
hmidt hammer.The out
rop studied, dominated by limestones, is part of the deformation zone of theSt Clément fault, in the south of Fran
e. First, we �nd relationships between fra
-ture density and e�e
tive elasti
ty, with a negative 
orrelation for faults and openfra
tures and with a positive 
orrelation for sealed fra
tures. These 
orrelations are
ompatible with theoreti
al models of e�e
tive elasti
ity. Then we de�ne a linearmodel, to 
onsider simultaneously ea
h fra
ture type density, that we invert usingthe least squares method so as to mat
h the spatial distribution of e�e
tive elasti
-ity. The results of the inversion 
on�rm that sealed fra
tures have a positive e�e
ton e�e
tive elasti
ity, while open fra
tures and faults, depending on the lithology
onsidered, have the strongest negative e�e
t. Moreover, the inversion allows to 
on-strain the representative volume to whi
h are sensitive S
hmidt hammer measures(30 to 50 cm of radius). This study represents to our knowledge the �rst in-situattempt to quantify the relative e�e
t of fra
ture types on the e�e
tive elasti
tyof a ro
k mass in a fault zone. Our results may have geodynami
al 
onsequen
es,related to the interseismi
 stress build-up of major faults by sealing of fra
tures inthe damage zone. 117



CHAPTER 6. IN-SITU QUANTIFICATION OF THE EFFECTIVE ELASTICITY OFA FAULT ZONE, AND ITS RELATIONSHIP TO FRACTURE DENSITY1 Introdu
tionRo
k dis
ontinuities, su
h as faults or fra
tures, play a major role in geologi
al sys-tems, leading to large heterogeneity and anisotropy in hydrauli
, thermal as wellas geome
hani
al properties of ro
ks. The spatial density of me
hani
al dis
ontinu-ities signi�
antly a�e
ts the elasti
 behaviour of a fra
tured ro
k medium (Bristow ,1960;Walsh, 1965; O'Connell and Budiansky , 1974; Ka
hanov , 1980; Hudson, 1980;S
hoenberg , 1980; Bieniawski , 1993), its 
ompressive strength (Kemeny and Cook ,1986) and its permeability to �uids (Renshaw , 1996), the brittle strain of a fault pop-ulation (S
holz and Cowie, 1990; S
hultz , 2003) and the e�
ien
y of river or gla
iererosion of a fra
tured bedro
k (Molnar et al., 2007). For instan
e, the ar
hite
tureof major fault zones is 
ommonly represented by a 
entral zone of proto
ata
lasiteand ultra
ata
lasite, surrounded by a large damage or pro
ess zone 
ontaining mi
roand ma
ro-fra
tures (e.g., Caine et al., 1996). These latter a�e
t the me
hani
ale�e
tive properties of the damage zone and thus the behaviour and growth of majorfault (Segall and Pollard , 1980; Cowie and S
holz , 1992; Katz et al., 2000; Aydin,2009) and their slip distributions (Bürgmann et al., 1994).A 
ommon way to 
hara
terize the e�e
ts of fra
tures on a ro
k mass, 
onsists inassessing the resulting e�e
tive properties from both laboratory experiments (e.g.,Sayers and Ka
hanov , 1995) and theoreti
al approa
hes (e.g., Ka
hanov , 1992). Be-
ause of potential s
ale e�e
ts asso
iated with me
hani
al dis
onituies (e.g., S
hlis-
he et al., 1996; Bonnet et al., 2001), the representativity of e�e
tive properties,determined from laboratory samples or other small-s
ale measurements (< 10 cm)when ups
aling to the dimension of a fault zone (> 1m), must be seriously ques-tioned. The S
hmidt hammer o�ers the possibility to obtain a dire
t and in-situestimate of the e�e
tive properties of a ro
k mass at a greater s
ale than laboratoryexperiments (10−100 cm). It was developed in the late 1940s for non-destru
tivetesting of 
on
rete hardness (S
hmidt , 1951), and later to estimate ro
k hardness.In parti
ular its measures are found to 
orrelate with the Young's modulus of a ro
kmass (e.g., Aydin and Basu, 2005; Goudie, 2006).In this paper we investigate the e�e
t of fra
tures, and more spe
i�
ally theirtypes and spatial densities, on the e�e
tive elasti
ty of a fault zone, estimated withan un-mat
hed density of S
hmidt hammer measures of 25 measures per m2. Quali-tative as well as a quantitative 
omparisons of ro
k e�e
tive elasti
ity with fra
tureproperties are 
arried out. This analysis is applied to an out
rop (19 m × 3 m)lo
ated 
lose to the St Clément fault zone, in the south of Fran
e. First, we brie�ypresent the out
rop and its geologi
al setting. Then the 
olle
ted data and methodsare des
ribed and illustrated by preliminary results. Next we present the results ofa statisti
al analysis and dis
uss the robustness and validity of the proposed modelwith respe
t to theoreti
al and empiri
al predi
tions.2 Data and Preliminiary ResultsThe study area is lo
ated 
lose to the St Clément fault zone (∼ 10 km North ofMontpellier, Fran
e, Fig. 6.1), where fra
turation, in relation to the lo
al te
toni
setting, has already been do
umented (Taha, 1986; Soliva et al., 2010) and is similarto other related faults (Et
he
opar et al., 1981; Rispoli , 1981). Data were 
olle
ted118
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CHAPTER 6. IN-SITU QUANTIFICATION OF THE EFFECTIVE ELASTICITY OFA FAULT ZONE, AND ITS RELATIONSHIP TO FRACTURE DENSITYover four weeks in April and May of 2010 along an out
rop oriented perpendi
ularto the major fault within the study area. The dataset 
omprises both a detailedmapping of fra
tures and a dense set of S
hmidt hammer measurements (Fig. 6.2),whi
h is a simple method to quantitatively assess in situ ro
k hardness (e.g., Aydinand Basu, 2005; Aydin, 2009).2.1 Studied out
rop: St Clément Fault ZoneThe brittle te
toni
 stru
tures observed (Fig. 6.2a) were formed during a main phaseof extension related to the onshore landward part of the Oligo
ene-Aquitanian Gulfof Lion rifted margin (Auzende et al., 1973; Séranne et al., 1995; Benedi
to, 1996).As suggested by the presen
e of a fault s
arp and a hanging wall depression in-�lledby syn-rift Oligo
ene sediments, the main part of the brittle deformation observedin the study area is due to the NW-SE extension related to Oligo
ene-Aquitanianrifting. However, the main surfa
e of the studied fault, whi
h is 60°dipping, alsoshows oblique and sinistral strike slips and therefore potential fra
tures related tothese horizontal slip 
omponents. This suggests that the fault was initiated �rst asa normal fault, during a not well do
umented NW-SE middle Creta
eous extension,and rea
tivated as a sinistral strike slip during the Paleo
ene-Eo
ene Pyrenean 
om-pression, before the main normal fault Oligo
ene movement (Arthaud and Mattauer ,1969). Therefore, even if a minor part of the deformation is related to a strike slipmovement, most of the fra
tures, the stylolites, the 
ata
lasti
 fault 
ore and thefault surfa
es are 
onsistent with normal faulting.In the study area, the faults appear to be limited at depth by a Triassi
 me-
hani
ally soft layer (evaporiti
 level) allowing a major dé
ollement in whi
h the StClément fault probably ends (Benedi
to, 1996; Séranne et al., 1995). The St Clémentfault therefore 
uts the entire sedimentary 
over and the 
umulative displa
ementhas been estimated to be 
lose to 500 m in the study area. At the surfa
e, the fault
uts the lower Creta
eous series 
omposed of Berriasian mi
riti
 limestone, thatsometimes 
ontains marly layers in its upper part. The study out
rop exposes thefootwall of the eroded main fault zone, whi
h is 
omposed of these lower Creta
eouslimestones.2.2 Mapping of Fra
turesThe out
rop 
ontains two se
ondary faults both of de
ametri
 normal displa
e-ment, 
ontaining a 
ata
lasti
 
ore (NW fault) and a shale smeared 
ore (SE fault)(Fig. 6.2a). These two faults are surrounded by their kinemati
ally 
oherent damagezones 
omposed of minor normal faults, sparite sealed mode I fra
tures, bed paral-lel stylolites and also unsealed de
on�nement fra
tures (open fra
tures hereinafter)that are randomly oriented and potentially related to the late events of exhumationof the out
rop. To assess their spatial distribution, these di�erent types of fra
tureshave been mapped and reported in Figure 6.2b. For resolution issues, only fra
tureswith a minimum planar length of ∼ 5 cm are mapped. A 
oordinate mesh 
omposedof squares with dimension of 1 m× 1 m is used to give a 
ommon spatial referentialwith the S
hmidt hammer dataset. 120
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Figure 6.2: (A) In terms of lithology, the studied out
rop mostly 
onsist of graylimestones with parts of brown marlstone and 
ata
lasites lo
ated within the SEand NW se
ondary fault zones, respe
tively. (B) Four types of fra
tures are 
on-sidered: faults (red lines), open fra
tures (green lines), sealed fra
tures (blue lines)and stylolites (yellow lines). (C) Spatial distribution of S
hmidt hammer reboundvalues.
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Figure 6.3: Whisker plot showing the evolution of R as a fun
tion of the numberof impa
t, for the entire dataset (739 measures). In this study 10 impa
ts werene
essary for ea
h measure (a total of 7390 impa
ts).2.3 S
hmidt Hammer ReboundThe S
hmidt hammer 
onsists of a spring-loaded mass that is released against aplunger when the hammer is pressed onto a hard surfa
e. Part of the impa
t energyis 
onsumed by absorption, i.e. plasti
 deformation under the plunger tip, and bytransformation into heat and sound. The remaining energy represents the impa
tpenetration resistan
e (or hardness) whi
h indu
es the rebound of the mass (Basuand Aydin, 2004). The distan
e traveled by the mass after the rebound (expressedas a per
entage of its initial distan
e to the plunger) is 
alled the rebound (R here-inafter). At �rst order, the S
hmidt Hammer hardness 
orrelates with the uniaxial
ompressive strength (UCS) and Young's modulus (E) of ro
k materials (see Aydinand Basu (2005) or Yagiz (2009) for a review). However, it is also sensitive to otherro
k mass properties su
h as surfa
e smoothness, ro
k density, 
ementation, weath-ering and moisture 
ontent (e.g., M
Carroll , 1991; Sumner and Nel , 2002; Goudie,2006).In-situ ro
k strength measurements are performed using the standard (N-type)Pro
eq S
hmidt hammer that releases an impa
t energy of 2.207 N.m. Rebound is
orre
ted for the in�uen
e of gravitational for
es using the automati
 normalizationprovided by the manufa
turer. All the rebound values R are obtained from a total often 
onse
utive mostly horizontal impa
ts. In general, the rebound value in
reasesbetween the �rst and the se
ond impa
t, while the subsequent impa
ts only produ
eminor 
hanges (Fig. 6.3). As previouly mentioned by Aydin and Basu (2005), therebound in
rease between the �rst and the se
ond impa
t 
an be asso
iated to theweathering grade of the out
rop, and the 
hange in subsequent rebounds 
an be122
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Figure 6.4: S
himdt hammer histogram distribution (10 bins) asso
iated with ea
htype of fra
ture (bla
k bars): (A) faults, (B) open-fra
tures, (C) sealed fra
tures, and(D) stylolites. The gray bars give the total distribution related to all fra
tures. n isthe number (or 
ount) of S
hmidt hammer measures whi
h are 
loser than 20 cm toa fra
ture. The distribution of R for ea
h fra
ture type was assessed independentlyof the others. Note that the total sum of the distributions obtained in this way, isnot equal to the total distribution related to all fra
tures.related to minor 
ollapse or 
ra
king beyond the original zone of 
ompa
tion. In thefollowing, the mean rebound value Rmean at ea
h site will be used (R = Rmean). Inthis study, the S
hmidt hammer was found to be empiri
ally sensitive to R rangingfrom 15 to 62. Rebounds lower than 15 were not measured by the S
hmidt hammer.However these unmeasured rebounds (0 < R < 15) 
ontain physi
al informationwhi
h 
an not be ignored, as they are related to very low ro
k hardness. Thus wehave arbitrarily de
ided to randomly distribute these values between 0 and 15.To assess the real inhomogenity of the study out
rop we use a 
losely spa
edgrid of observation points that forms over the study out
rop a dense array of �eldmeasurements. Five to twelve rows of nearly equally spa
ed observation points aredistributed over all the exposed surfa
e (Fig. 6.2
). A spa
ing of 25 cm betweenmeasure points is used, leading to a total amount of 739 rebound values (i.e., 7390impa
ts).2.4 Distribution of Fra
tures and S
hmidt Hammer ReboundTo assess a preliminary relationship between fra
ture and R, we 
ompute the dis-tribution of R asso
iated with ea
h fra
ture type 
onsidered independently. Notethat ea
h point of S
hmidt hammer measure is potentially representative of several123
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ture types (Fig. 6.4). Therefore for ea
h point of S
hmidt hammer measure, thepresen
e of ea
h fra
ture type is evaluated: if a fra
ture is at distan
e less than
20 cm from a point of measure, then this point is 
onsidered as representative ofthis type of fra
ture and is in
luded in the distribution (one 
ount). This radiusof 20 cm was 
hosen to be 
lose to the a priori window size, ∼ 30 cm, at whi
hthe S
hmidt hammer is sensitive, and to be below the distan
e between S
hmidthammer measures 25 cm to prevent from spatial overlap.The resulting distributions show three di�erent relations between fra
ture typesand R: (1) faults are less represented at high values of R (> 20) 
ompared tothe total distribution, 
onsidering all fra
ture types; (2) sealed-fra
tures are lessrepresented at low values of R; (3) open-fra
tures as well as stylolites are equallyrepresented at ea
h value or R.In addition, stylolites and open-fra
tures are present at almost every point ofS
hmidt hammer measure as their distributions are very 
lose to the total distri-bution. Thus, they are not expe
ted to have a signi�
ant statisti
al e�e
t on R,
ompared to the total distribution. In 
ontrast, faults and sealed-fra
tures are notpresent at ea
h point of S
hmidt hammer measure and are under-represented for highor low values of R, respe
tively. Thus, they are expe
ted to have a statisti
al e�e
ton R with respe
t to the total distribution: positive e�e
t for the sealed-fra
turesand negative e�e
t for the faults.To verify this hypothese we make further statisti
al analysis of these data, andin parti
ular we fo
us on the relations between the spatial distribution of fra
turedensity and R.3 Statisti
al Analysis Method3.1 Smoothing RIn order to further 
ompare S
hmidt hammer rebound values and fra
ture density,we make the assumption that statisti
ally, a non-negligible part of the spatial vari-ations of R is not related to the presen
e of mapped fra
tures only. This is justi�edat least by: (1) fra
tures with a planar length below 5 cm are not mapped, andthe mi
rofa
tures that are not mapped 
an a�e
t R; (2) lo
al variations of surfa
eroughness, weathering grade and moisture 
ontent are expe
ted to a�e
t R (Aydinand Basu, 2005; M
Carroll , 1991; Sumner and Nel , 2002); (3) a possible undersam-pling for R, as Niedzielski et al. (2009) suggested the use of 10-40 impa
ts at ea
hsite to statisti
aly assess the rebound value R for limestones (rather than 10 in thisstudy). Thus, in order to minimize these lo
al e�e
ts, we smooth (or blur) the valuesof R, using a 
entered box with a size of 3 points in ea
h dire
tion. Hen
eforth, onlysmoothed values of R will be 
onsidered.3.2 Fra
ture DensityA 
ommon feature of e�e
tive me
hani
al models is that fra
tures are representedby a single 
ontinuous spatial parameter, the fra
ture density ρ (e.g., Bristow , 1960;Walsh, 1965), whi
h 
an be expressed in its two- or three-dimensional form. As124
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k good 
onstraints on the 3D geometry of fra
tures that are observed at thesurfa
e of the out
rop (in 2D), we only fo
us on the 2D form of fra
ture density,
ρ =

1

A

N
∑

i=1

a2
i , (6.1)where ai is the radius or half-length of the i-th fra
ture, and N is the number offra
tures that interse
t the area A 
onsidered. Pra
ti
ally we use a 
ir
ular window
entered on ea
h point of S
hmidt hammer measure to determine fra
ture density.Here we make the a priori assumption that S
hmidt hammer rebound is sensitive toro
k mass properties for a spheri
al volume with a radius of ∼ 30 cm. Thus fra
turedensity is estimated using a sliding-window with a radius Lwindow = 30 cm.3.3 E�e
tive Sti�ness and Fra
ture DensityFollowingHudson (1980) we assume a �rst-order linear relation between the e�e
tivesti�ness tensor of a fra
tured ro
k mass ce and the 
ontribution of a single set offra
tures to sti�ness ∆c,

ce = c0 + ∆c , (6.2)where c0 is a ba
kground sti�ness of the host ro
k. If L di�erently oriented fra
turesets are present, their sti�ness 
ontributions ∆cj , are simply summed up (Hudson,1981),
∆c =

L
∑

j=1

∆cj . (6.3)For ea
h fra
ture set, ∆cj is proportional to the s
alar fra
ture density of the 
or-responding set of fra
tures, with a 
oe�
ient of proportionality K that depends onboth the Young's modulus and Poisson's 
oe�
ient of the host ro
k, E0 and ν0, andof the fra
ture in�ll, Ef and νf (Hudson, 1980, 1981). Note that K is expe
ted tobe negative, so that fra
tures de
rease the e�e
tive sti�ness 
ompared to the ba
k-ground sti�ness. Then we 
an expli
itely express the e�e
tive sti�ness tensor as alinear fun
tion of fra
ture density for ea
h fra
ture sets ρj ,
ce = c0 +

L
∑

j=1

K(E0, ν0, Ef , νf)ρj . (6.4)3.4 Fra
ture Density and R: a Linear ModelWe are interested in the e�e
tive sti�ness of the fra
tured ro
k, as seen by theS
hmidt hammer. Out
omes from empiri
al studies propose either a linear, poweror exponential relation between R and Young's modulus E of the ro
k (e.g., Aydinand Basu, 2005; Goudie, 2006). Here we make two important assumptions: (1) Therelation between R and E is linear as empiri
ally observed by Sa
hpazis (1990) orbyDearman et al. (1978), and (2) we equate e�e
tive sti�ness and Young's modulus,whi
h is equivalent to assume that elasti
 deformation indu
ed by S
hmidt hammerimpa
t is uniaxial in the dire
tion of the impa
t. Under these assumptions we125
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Figure 6.5: Relationship between S
himdt hammer rebound R and fra
ture density
ρ for ea
h type of fra
ture 
onsidered independently: (A) faults, (B) open-fra
tures,(C) sealed fra
tures, and (D) stylolites. The 
oe�
ients of 
orrelation give estimatesof the relation between fra
ture density and R. The radius of the fra
ture densitysliding-window is 30 cm.
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an de�ne a linear model between R and fra
ture. Ea
h Ri measurement is thusdes
ribed by a linear 
ombination of ea
h fra
ture type density ρji,
Ri =

∑

j

mjρji + R0 , (6.5)where mj are the 
oe�
ients asso
iated to the fra
ture density of the j -th fra
turetype, i.e. fault, open-fra
ture, sealed-fra
ture or stylolite, and R0 is the ba
kground
R value. Note that this latter is related to the ba
kground sti�ness c0, and that the
mj 
oe�
ients are related to the elasti
 parameters of the host ro
k, assumed to behomogeneous, and to the elasti
 parameters of the fra
ture in�lls, whi
h are expe
tedto vary with fra
ture type. This model is supported by our measurements, whi
hsuggest a relation between R and fra
ture density for ea
h fra
ture type (Fig. 6.5):(1) a negative 
orrelation between fault density ρfault and R; (2) a positive 
orre-lation between sealed-fra
ture ρsealed−fracture density and R; (3) an almost neutralrelation between open-fra
ture ρopen−fracture or stylolite ρstylolite density and R. Inthe following, we set the ba
kground value R0 equal to the mean of the R values forthe entire out
rop (R0 = 32). This impli
itely assumes that fra
tures statisti
allyexhibit, as expe
ted, a negative e�e
t (negative 
orrelation), but also a positive ef-fe
t (positive 
orrelation) on the e�e
tive sti�ness. This is only dependent on the
hoi
e of the ba
kground value. For instan
e, taking R0 = max(R) will lead tofra
tures only exhibiting a negative e�e
t.3.5 Linear Model InversionEquation 6.5 
an be arranged into the following matrix equation,

d = Gm , (6.6)with d a ve
tor of N rebound measurements, m a ve
tor of dimension 4 related tothe 
oe�
ient mj and
G =













ρfault,1 ρopen−fracture,1 ρsealed−fracture,1 ρstylolite,1

ρfault,2 ρopen−fracture,2 ρsealed−fracture,2 ρstylolite,2

. . . .

. . . .
ρfault,N ρopen−fracture,N ρsealed−fracture,N ρstylolite,N













. (6.7)The weight mj of ea
h fra
ture type is thus obtained from the well-known leastsquares solution to the inverse problem of the equation 6.6 (Menke, 1989),
mest = [GT G]−1GT d . (6.8)The quality of the inversion is then estimated by the mis�t Φ, whi
h we de�ne as the

2D 
oe�
ient of 
orrelation between the data Rblur and the result of the inversion
Rinv:

Φ =

∑

m

∑

n(Rinv(m, n) − R̄inv)(Rblur(m, n) − R̄blur)
√

(
∑

m

∑

n(Rinv(m, n) − R̄inv)
) (
∑

m

∑

n(Rblur(m, n) − R̄blur)
)

, (6.9)where m and n are the 2D spatial index, and R̄inv and R̄blur are the averagedvalues. Φ is free to vary between −1 (perfe
t anti-
orrelation), 0 (no 
orrelation)and 1 (perfe
t 
orrelation). 127
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Figure 6.6: (A) Observed Rblur (top) and inverted Rinv (bottom) S
hmidt hammerdistribution along the study out
rop. (B) Relationship between 
al
ulated and ob-served S
hmidt hammer rebound, with its asso
iated 
oe�
ient of 
orrelation. Thethreshold of sensitivity of the S
hmidt hammer is indi
ated with a dotted line. (C)Fra
ture density for ea
h fra
ture type used as data in the inversion. The mj 
o-e�
ients represent the weight of ea
h j -th fra
ture type in the linear model (Rinv)dedu
ed from the least square inversion.4 Statisti
al Results and Parametri
 StudyFigure 6.6a 
ompares the results of the least-squares linear inversion Rinv with thedata Rblur. At �rst order the spatial distribution of Rinv and Rblur are 
onsistent,the mis�t Φ being equal to 0.62 (Fig. 6.6b). However, a 
loser look at the detailsreveals some se
ond order dis
repan
ies between the inverted model and the data:(1) Espe
ially at the bottom of the 
ata
lasite 
ore of the se
onday fault (X ∼ 14 m,
Y ∼ 0.5 m) where Rblur > Rinv. This 
ould be explained by potential heterogeneitieson both the dimension of the blo
ks that make up the 
ata
lasite 
ores, and on their
ohesion, whi
h should a�e
t the e�e
tive elasti
ity. (2) The fault that a�e
ts the
enter of the out
rop (X ∼ 10 m) does not seem to have a signi�
ant e�e
t on R andleads in its zone of in�uen
e to Rblur > Rinv. (3) Other dis
repan
ies are also presentat the left of this se
ondary fault (X ∼ 13 m, Y ∼ 1.8 m) and at the extreme rightof the out
rop (X ∼ 18 m, Y ∼ 0.5 m), and both exhibit Rblur > Rinv. We suggestthat these dis
repan
ies 
ould be related to the presen
e of small sealed fra
tures,128
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ount due to their size. These observations imply thata linear 
ombination of fra
ture density 
an su

essfully explain the main spatialvariations of R.4.1 Fra
ture Type and REa
h fra
ture type has a di�erent e�e
t on R. These e�e
ts 
an be relatively quan-ti�ed from the results of the inversion. Indeed Rinv is the sum of ea
h fra
turetype density (see Eq. 6.5), weighted by their inverted 
oe�
ient: mfault = −48.2,
mopen−fracture = −3.0, mstylolite = 3.7 and msealed−fracture = 50.2. It is 
ru
ial tounderstand that these weighting 
oe�
ients are de�ned relative to the ba
kround
R0 value, whi
h here equates the mean R value. Under this 
ondition: (1) faultsand sealed-fra
tures have a strong negative or positive e�e
t on R, respe
tively; (2)stylolites and open-fra
tures have almost no apparent e�e
t, as their 
ontributionsto Rinv is negligible 
ompared to the the two other types of fra
tures. As a resultof the inversion, only faults and sealed fra
tures signi�
antly a�e
t the mean of the
R values.4.2 Optimal Window SizeUntil now, we have 
omputed fra
ture density using a spheri
al sliding-window witha radius Lwindow = 30 cm. Here we test the e�e
t of varying Lwindow on the mis�tvalue Φ of the inversion, and on the weighting 
oe�
ient mj of ea
h fra
ture type(Fig. 6.7). The mis�t qui
kly in
reases between 0 and 50 cm to rea
h a value of
Φ ≈ 0.7. Then it remains approximativley 
onstant between 50 and 150 cm. Theseresults give somes 
onstraints on the sensitivity of the S
hmidt hammer to ro
k massvolume: (1) The mis�t (or 
oe�
ient of 
orrelation) is more signi�
ant (Φ > 0.5) for
Lwindow > 15 cm; (2) S
hmidt hammer is sensitive to fra
ture for at least a radius of
Lwindow = 50 cm; (3) It is not possible from this evolution to rule out the possibilitythat S
hmidt hammer is sensitive to a greater volume, even if it seems unlikely (noin
rease of Φ for Lwindow > 50 cm); (4) 90 % of the highest mis�t value (Φ = 0.7)is rea
hed for Lwindow = 30 cm, whi
h 
an be seen as a su�
ient radius to 
apturemost of the 
orrelation between fra
ture density and R. This is 
onsistent whi
h the
hoi
e of Lwindow = 30 cm as the a priori window size to study the e�e
t of fra
turedensity with the S
hmidt hammer.Furthermore, the weighting 
oe�
ient of the faults and sealed fra
tures de
reasesor in
reases with Lwindow, respe
tively, while it remains almost nil for the stylolitesand open fra
tures, or at least negligible. These results validate the robustness ofthe inversion, as varying Lwindow to a small extent does not dramati
ally 
hangeneither the mis�t nor the weighting 
oe�
ients.4.3 Lithologi
al Control on RThe out
rop is dominated by limestones, but also in
ludes marls and 
ata
lastiteswhi
h are mostly lo
ated in the se
ondary fault zones of the out
rop (see Fig. 6.2a).129
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Figure 6.8: Same as �gure 6.5, ex
ept that bla
k dots show the relationship betweenS
himdt hammer rebound and fra
ture density for limestone only, while gray dotsrepresent the entire out
rop (in
luding marls).This is generally inherent to faults, whi
h in 
ontrast to fra
tures, allow signi�-
ant relative displa
ement (here de
ametri
) of asso
iated lithologi
al units. Con-sequently these lithologi
al heterogeneities are 
on
ordant with high fault densityzones. This 
oin
iden
e may have led us to mis-understand the e�e
t of fault den-sity on R, due to a lithologi
al bias. On this out
rop, marls are the most probablesour
e of lithologi
al 
ontrol on R, as their e�e
tive properties strongly di�er fromlimestones.To test the importan
e of a lithologi
al 
ontrol by marls, we removed from thedataset R values whi
h are lo
ated in the marly parts of the out
rop (SE faultzone), so as to 
onsider only limestones and 
ata
lasites. Figure 6.8 presents thenew distribution of R values as a fun
tion of fra
ture density for ea
h fra
turetype. As expe
ted faults seem to have a redu
ed e�e
t on R, as the 
oe�
ient of
orrelation between ρfault and R has dropped from −0.49 to −0.20, when 
omparingwith the entire out
rop (Fig. 6.5). Simultaneously, open fra
tures have no longera negligible e�e
t, as their 
oe�
ient of 
orrelation has de
reased from −0.18 to
−0.38. Distributions of R as a fun
tion of stylolites or sealed fra
ture density donot signi�
antly vary between the entire out
rop and limestone part of the out
rop.To further test the e�e
t of the lithology, an inversion using the linear modelwas performed on the limestones and 
ata
lasites only. The weighting 
oe�
ientsresulting from the inversion are: mfault = −3.2, mopen−fracture = −17.1, mstylolite =
−7.9 and msealed−fracture = 34.2. Contrary to the inversion 
onsidering the entireout
rop, faults do not have a strong negative e�e
t, whereas open-fra
tures have astronger negative e�e
t. On the other hand, the in�uen
e of sealed-fra
tures and131



CHAPTER 6. IN-SITU QUANTIFICATION OF THE EFFECTIVE ELASTICITY OFA FAULT ZONE, AND ITS RELATIONSHIP TO FRACTURE DENSITYTable 6.1: Table summarizing the weighting 
oe�
ients asso
iated with the fra
turedensity of ea
h fra
ture type, resulting from the inversions performed 
onsideringdi�erent ba
kground value R0 or di�erent lithologies.Lithology R0 Fault Open-fra
ture Stylolite Sealed-fra
tureAll R0 = mean(R) -48.2 -3.0 -3.7 50.2
R0 = max(R) -132.4 -93.3 -73.8 -35.0No marls R0 = mean(R) -3.2 -17.1 -7.9 34.2
R0 = max(R) -72.1 -91.0 -75.0 -36.1stylolites remains approximately 
onstant, independently of the lithology. Theseresults are 
onsistent with the dire
t observations (Fig. 6.8).5 Dis
ussion5.1 Ba
kground R0: Mean or Max?The results of the inversion of the linear model are dependent on the R0 whi
h setsthe ba
kground value. As mentioned, R0 is related to the ba
rgound sti�ness ofthe ro
k ex
luding the 
ontributions of the fra
tures 
onsidered in this study. Untilthen R0 was de�ned as the mean R value of the out
rop. The inversion has lead topositive (sealed-fra
ture) or negative 
oe�
ients (fault, open-fra
ture), whi
h 
anbe interpreted in terms of positive or negative e�e
ts of the asso
iated fra
ture type
ompared to the ba
kground value. However there is no a priori physi
al basis forsetting R0 equal to the mean value. Indeed, R0 should be equal to the mean Rvalue that would exhibit the out
rop if it was not fra
tured by the fra
tures thatare 
onsidered in the inversion.If we assume that: (1) the e�e
tive sti�ness of the host ro
k is homogeneousover the out
rop, (2) that other fra
tures than the ones 
onsidered in the inversion,for instan
e fra
tures with a length < 5 cm, have a negligible e�e
t on R, (3) andthat fra
tures only have a negative e�e
t, then the maximum R value represents alower bound for the ba
kground value R0. Thus if we set R0 equal to the maximum

R value (64), we obtain after inversion the following set of 
oe�
ients: mfault =
−132, 4, mopen−fracture = −93.3, mstylolite = −73.8 and msealed−fracture = −35.0. Asexpe
ted, all the weighting 
oe�
ients are negative, and all fra
ture types have anegative e�e
t. This is 
onsistent with the theory of Hudson (1980) that predi
ts anegative e�e
t of fra
tures on the e�e
tive sti�ness 
ompared to the host ba
kgroundsti�ness. Table 6.1 
ompares the 
oe�
ients asso
iated with ea
h fra
ture types forthe di�erent inversions perfomed in this study.Despite that, we 
an not rule out the possibility that fra
tures, for instan
esealed-fra
tures, have a positive e�e
t, and that R0 is lower than the maximum Rvalue. Espe
ially if we 
onsider that R0 re�e
ts the ba
kground value of the ro
kmass with other me
hani
al defaults, su
h as the fra
tures that were not 
onsideredin the version, i.e. fra
tures that were not mapped. The distribution of the mis�t(
oe�
ient of 
orrelation) as a fun
tion of the ba
kground R0 value (Fig. 6.9) o�ersa 
onstraint on this latter. In parti
ular, the maximum mis�t, or 
oe�
ient of132
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CHAPTER 6. IN-SITU QUANTIFICATION OF THE EFFECTIVE ELASTICITY OFA FAULT ZONE, AND ITS RELATIONSHIP TO FRACTURE DENSITY
orrelation, is obtained for 20 < R0 < 35, 
lose to the mean R value (32). Notethat the mis�t is lower for R0 equals to the maximum R value than for the mean
R value. This result validates a posteriori the approa
h of setting the ba
kgroundvalue R0 equal to the mean R value.5.2 Fra
ture Density and E�e
tive Sti�ness: Linear Rela-tion?Following Hudson (1980) we have assumed that the e�e
tive sti�ness was at �rst-order a linear fun
tion of fra
ture density. The assumption underlying this relation,is that the 
ontribution to sti�ness of ea
h single fra
ture 
an be summed up. Asillustrated by Gre
hka and Ka
hanov (2006a) it is a 
orre
t approximation for fra
-ture density 
lose to zero, whereas it overpredi
ts the negative e�e
t of high-fra
turedensity, ultimately leading to negative sti�ness. Alternatively, S
hoenberg (1980) orKa
hanov (1980) propose that the e�e
tive 
omplian
e, and not the e�e
tive sti�-ness, is a linear relation of fra
ture density for non-intera
ting fra
tures. Moreoverthe validity of this latter is 
on�rmed numeri
ally for strongly intera
ting and in-terse
ting fra
tures with arbitrary shapes (Gre
hka and Ka
hanov , 2006b; Gre
hkaet al., 2006; Gre
hka and Ka
hanov , 2006a). We favor the theory proposed byHudson (1980) only for 
onvenien
e, as it makes possible to de�ne a linear modelbetween R and fra
ture density. A dis
ussion on the 
onstrains that our resultsprovide on the validity of e�e
tive medium theories is 
learly out of the s
ope of thispaper.More importantly, we have assumed that the S
hmidt hammer is a suitable toolto study the e�e
tive properties of a fra
tured ro
k, with fra
ture lengths > 5 cm.However the linear relation between e�e
tive sti�ness or 
omplian
e and fra
turedensity is valid if the 
hara
teristi
 fra
ture dimension is small 
ompared to thewavelength of the elasti
 waves dynami
ally generated by the S
hmidt hammerimpa
t. To our knowledge, no 
onstraints exist on this latter in limestones nor forany other ro
k types. However, Rotonda (2001) found that S
hmidt hammer impa
tgenerates body and surfa
e waves with a velo
ity around 2 km.s−1 for Rayleighwaves and 3 km.s−1 for P-waves in 
on
retes. The frequen
ies of both have a broadspe
trum, and the maximum frequen
y re
orded is 45 kHz (Rotonda, 2001). Thisprovides an estimate of the lower bound for the wavelength of the waves generated byS
hmidt hammer impa
t: 4.5 cm and 6.5 cm for Rayleigh and P waves, respe
tively.If assuming that these wavelengths apply for limestones, then this supports the
hoi
e of 
onsidering only fra
tures with a planar length greater than ∼ 5 cm.5.3 E�e
tive Sti�ness and R: Linear Relation?We have de�ned a linear model that 
ombines fra
ture density for ea
h type offra
ture into a single parameter Rinv, in order to 
ompare it statisti
ally with therebound value R of the S
hmidt hammer. As mentioned, it is debated whether thismodel is a 
orre
t approximation with respe
t to the e�e
t of fra
tures on e�e
tiveelasti
ity. Morover it is valid only if there is a linear relation between R and Young'smodulus E. This latter is debated as well, as di�erent empiri
al studies (see Aydinand Basu (2005) or Yagiz (2009) for a review) �nd either a linear (e.g., Sa
hpazis,134



CHAPTER 6. IN-SITU QUANTIFICATION OF THE EFFECTIVE ELASTICITY OFA FAULT ZONE, AND ITS RELATIONSHIP TO FRACTURE DENSITY1990; Dearman et al., 1978), a power (e.g., Katz et al., 2000), or an exponential (e.g.,Xu et al., 1990; YIlmaz and Sendr , 2002; Aydin and Basu, 2005) relation between
R and E,

E ∝ R , (6.10)
or E ∝ Rα , (6.11)
or E ∝ eαR , (6.12)with α a 
onstant that depends mainly on the lithology 
onsidered. Inje
ting the
ombination of fra
ture density (Eq 6.5) into these empiri
al relations leads to,

R =
∑

j

mjρji + R0 , (6.13)
or R = β

(

∑

j

mjρji

)
1
α

+ R0 , (6.14)
or R =

β

α
log

(

∑

j

mjρji

)

+ R0 , (6.15)with β a 
oe�
ient of proportionality that vanishes for the linear relation into the
mj 
oe�
ients. On
e again, there is no physi
al basis to favor a linear relationbetween E and R, ex
ept that 
on
eptually it represents the simplest approa
hwhi
h requires fewer paramaters to invert.5.4 Impli
ations for Fault Zone RheologyOur results present new insights into the rheology of a fault zone. Our statisti
alresults suggest that fra
ture 
ontributions to sti�ness, relative to the ba
kgroundvalue, depend on the fra
ture type: faults, open-fra
tures and stylolites have a mod-erate to strong negative e�e
t on e�e
tive sti�ness; whereas sealed-fra
tures have aslightly negative to positive e�e
t on e�e
tive sti�ness, depending on the 
hoi
e ofthe ba
kground sti�ness value. Faults and fra
tures are 
reated during the 
oseismi
phase of the seismi
 
y
le, while sealed-fra
tures result from sealing (or healing) thato

urs during the interseismi
 phase (e.g., Sibson, 1992; Gratier et al., 1994; Renardet al., 2000). Fra
ture sealing is the 
onsequen
e of external material pre
ipitationor deposition in the related veins (Gratier et al., 1994; Evans and Chester , 1995;Renard et al., 2000). It is likely to o

ur after previous pressure solution of thesame material in stylolites (Gratier et al., 1994; Renard et al., 2000). A

ording toexperiments, the time s
ale of su
h fra
ture sealing, 
ontrolled by the kineti
s ofpressure solution and asso
iated with deposition pro
esses, is in the order of severaltens of years to several millions of years, and is strongly dependent on temperature,�uid 
ir
ulation, and ro
k texture (Rutter and Elliott , 1976; Hi
kman and Evans,1991; Gratier , 1993; Renard et al., 2000). Fra
tures, su
h as sealed-fra
tures, arelo
ated in the damage zone of main faults. We suggest that 
hanging the e�e
tiveelasti
ity around a major fault, by fra
ture sealing during the interseismi
 phase ofa seismi
 
y
le, may have geodynami
al e�e
ts. In parti
ular it 
ould potentially af-fe
t the relation between plate te
toni
s far-�eld motion, and the interseismi
 stressbuild-up of major faults. Our results are 
onsistent with an in
rease of the rate ofinterseismi
 stress build-up with sealing of fra
tures present in the damage zone.135
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lusionHere we have investigated the e�e
tive elasti
ty of a fault zone dominated by lime-stones, using high-density S
hmidt hammer measures (25 measures per m2). Ourstudy demonstrates that S
hmidt hammer 
an be used to assess ro
k fra
tures atthe s
ale of an out
rop. Indeed, our results suggest that ro
k mass e�e
tive elasti
ityis strongly sensitive to the 2D form of fra
ture density: e�e
tive sti�ness is anti-
orrelated to the density of faults and open fra
tures density, while it is 
orrelated tothe density of sealed fra
tures. These results are 
onsitent with theoreti
al modelswhi
h predi
t a linear relationship between e�e
tive sti�ness and fra
ture density(Hudson, 1980). A least squares inversion using a linear model has led us to a set ofweighting 
oe�
ients, whi
h represents the sensitivity of e�e
tive Young's modulusor sti�ness to the fra
ture density of ea
h fra
ture type. These 
oe�
ients are 
on-sistent to the ones that were determined independently: a negative e�e
t of faultsand open-fra
tures on e�e
tive elasti
ty, and a positive e�e
t for sealed-fra
tures, if
onsidering a mean ba
kground R0 value. It is important to note that this resultis extremely dependent on the 
hoi
e of R0. For instan
e taking into a

ount a R0equals to the maximum R value, leads to a set of negative weighting 
oe�
ients,but still with sealed-fra
tures having a higher weighting 
oe�
ient than the otherfra
ture types.In addition, the best values of mis�t are obtained for a sliding-window (wherefra
ture density is determined) with a radius greater than 15 cm and probably lowerthan 50 cm. This empiri
al result gives some new 
onstraints on the representativevolume of S
hmidt hammer measures, when 
onsidering a fra
tured ro
k mass. Onlythe 2D form of fra
ture density was 
onsidered due to the la
k of good 
onstrains onthe 3D geometry and orientation of ea
h fra
ture type. Thus, our results possiblyhide dependen
ies on 3D e�e
ts. In parti
ular open fra
tures, whi
h are randomlyorientated in 2D, may also be randomly orientated in 3D. However, some �eldeviden
es make us 
on�dent that most of the faults, sealed fra
tures and stylolitesare 
utting perpendi
ularly the plan of the out
rop.This study represents to our knowledge the �rst attempt to 
onstrain in-situ therelations between fra
ture density and e�e
tive elasti
ty of a ro
k mass. We believeit 
ould represent a step forward in the 
omprehension of me
hani
al pro
esses whi
hare dependent on ro
k e�e
tive properties. For instan
e it 
ould help to 
larify andquantify the relation between fra
ture density and the resistan
e of a ro
k to erosion,whi
h is assumed to be a key fa
tor of the intera
tions between te
toni
s and erosion(Molnar et al., 2007). We also suggest that our results may have geodynami
al
onsequen
es, related to the interseismi
 stress build-up of major faults by sealingof fra
tures in the damage zone.A
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Epilogue on S
hmidt HammerThe �rst appli
ation of S
hmidt hammer was to perform a transe
t of erodibilitya
ross the Taiwan mountain belt. The lithologies en
outered in
lude sandstones,slates, s
hists, and green s
hists, whi
h represent high to moderate erodibility (Attaland Lavé, 2009). Statisti
ally, slates have the lowest hardness (possibly highesterodibility), while sandstones and s
hists have the highest hardness (possibly lowesterodibility). Spatially, slates are lo
alised in the 
entral area of Taiwan mountainbelt, in the Slate Belts, whi
h also is the most elevated part of Taiwan. This patternof erodibility di�ers from most mountain belts whi
h exhibit low erodibility in their
entral area (e.g., Pyrenees, Himalaya, Longmen Shan, European Alps). To validatethis pattern of erodibility, abrasion tests using samples from the same out
rops arenow needed.The se
ond appli
ation of S
hmidt hammer was dedi
ated to measure the ef-fe
t of diagenesis on R and erodibility, using the well do
umented Annot Sandstoneformation (Southern Fren
h Alps) (Labaume et al., 2008b,a). Four out
rops weretested, 
hosen to 
apture a strong diageneti
 gradient, with the external out
ropbeing made-up of poorly 
onsolidated sandstones, while the internal one has beenburied up to 6−8 km and exhibits 
onsolidated (and fra
tured) sandstones. R is at�rst order 
orrelated to the diageneti
 grade, as the R is greater in the internal partthan in the external one. However most of the spatial evolution of R seems to be
ontrolled by the transition from poorly 
onsolidated to 
onsolidated, not dire
tlywith the burial depth. Surprisingly, R is not 
orrelated to bulk density, P-wave ve-lo
ity, porosity, permeability, or to the 
ontent of 
al
ite or 
lay. This is not expe
tedsin
e most studies (see Aydin and Basu (2005) for a review) have do
umented anempiri
al link between R and Young's modulus or P-wave velo
ity. We suggest thatthis absen
e of 
orrelation is related to the in
rease of apparent fra
ture density withthe diageneti
 grade, whi
h 
ounter-balan
es the e�e
t of diagenesis. Therefore it isrequired to quantify fra
ture density and its e�e
t on ro
k elasti
ty for the Annotsandstones tested in this thesis.The last appli
ation was 
onsequently dedi
ated to assess the e�e
t of fra
turetype and density on the e�e
tive elasti
ity as seen by the S
hmidt hammer, atthe s
ale of an out
rop lo
ated in a fault zone. This experiment 
onsists in anunmat
hed number of S
hmidt hammer measures (750 with 7500 impa
ts), parallelto a re
ording of open-fra
tures, sealed-fra
tures, faults and stylolites. As expe
ted,the 
omparison of the two revealed that in
reasing fra
ture density de
reases thee�e
tive sti�ness, with an amplitude that varies with fra
ture type. A linear modelthat sums up fra
ture density for ea
h fra
ture type into a single parameter isthen inverted to �t the observed map of R. The 
orrelation between both maps issigni�
ant ∼ 0.7 for the best �tting models. The weighting 
oe�
ients asso
iated137



EPILOGUE ON SCHMIDT HAMMERwith ea
h fra
ture type reaveal that faults and open-fra
tures have a greater negativeimpa
t than the sealed fra
tures. These results 
on�rm the assumption expressedfrom Annot sandstones observation, that fra
tures and e�e
tive properties a�e
tS
hmidt hammer rebound.From the experiments presented in this thesis, it is possible to summarize thepotentiality of S
hmidt hammer rebound R to 
apture erodibility K:� R 
an be empiri
ally related to K either by a power K ∝ Rα or exponential
K ∝ exp(αR) fun
tion, with α a negative exponent;� Compared to 
lassi
al abrasion experiments (Sklar and Dietri
h, 2001; Attaland Lavé, 2009), R 
aptures the e�e
tive properties of ro
k medium at a
hara
teristi
 s
ale that 
orresponds to erosion pro
esses (1 to 30 cm);� It is a 
heap, portable and qui
k devi
e whi
h is suitable for �eld studies andin-situ experiments.
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Part IIIRo
k Erodibility and the Spatial andTemporal Evolution of Orogens: aModeling Approa
h
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RésuméDans 
ette partie j'étudie, à l'aide de la modélisation numérique, la relation entreérodabilité et morphologie des paysages en temps et en espa
e. D'abord, j'explorela relation entre érodabilité et longueur d'onde des paysages, en utilisant un mod-èle planaire, qui 
onsidère à la fois l'érosion �uviale par stream-power et un angle
ritique de dé
len
hement des glissements de terrain pour les versants. Le modèlepermet de reproduire un espa
ement 
onstant entre les rivières pour un rapport
onstant d'érodabilité sur le taux de soulèvement à l'état d'équilibre dynamique,
e qui est 
ohérent ave
 la théorie du stream-power. Je montre que les indi
es
lassiques utilisés pour déterminer la longueur d'onde du paysage, tels que la den-sité de drainage basé sur un seuil arbitraire de l'aire drainée, ne sont pas adéquatspour évaluer le lien entre longueur d'onde du paysage et l'érodabilité ou le tauxde soulèvement. Deuxièmement, j'explore l'e�et de l'érosion et de la rhéologie surle temps de dé
roissan
e des 
haînes de montagnes post-orogéniques, à partir d'unmodèle numérique 2D qui 
ouple le 
omportement mé
anique ou thermique de lalithosphère à l'érosion de surfa
e. Je démontre que l'e�
a
ité de l'érosion, qui estfortement dépendante de l'érodabilité, est le premier fa
teur de dé
roissan
e de latopographie au 
ours de la phase post-orogénique. Asso
ié à l'érosion de surfa
e,une transition d'isostasie lo
ale à isostasie régionale permet de reproduire la diminu-tion du ratio de l'élévation de la surfa
e sur l'épaisseur de la ra
ine 
rustale, qui estobservée dans les 
haînes de montagnes post-orogéniques.Abstra
tIn this part I investigate with numeri
al modeling the relation between erodibilityand the temporal and spatial evolution of lands
ape morphology. First, I explorethe relation between erodibility and the wavelength of lands
apes, using a plan-viewmodel that 
onsiders a stream power formalism for river erosion and a landslide 
rite-rion angle for hillslope. The model reprodu
es a 
onstant spa
ing between rivers fora 
onstant ratio of erodibility to uplift rate at steady-state, whi
h is 
onsistent withstream-power predi
tion. I show that 
lassi
al morphologi
al indexes used to assesslands
ape wavelength, su
h as drainage density using an arbitrary threshold on thedrainage area, are not suitable to assess the link betweeen lands
ape wavelengthand erodibility or uplift. Se
ond, I explore the e�e
t of erosion and rheology on thetime de
ay of post-orogeni
 mountain belt, using a 2D numeri
al model that 
oupleslithospheri
 deformation and thermal behaviour to surfa
e erosion. As expe
ted, Idemonstrate that erosion e�
ien
y, that is strongly dependent on erodibility, is the�rst 
ontroling fa
tor of the time s
ale of topographi
 de
ay. Asso
iated with surfa
eerosion, a transition from lo
al isostasy to regional isostasy reprodu
es the de
reaseof the ratio of surfa
e elevation to 
rustal root thi
kness that is observed for realpost-orogeni
 mountain belts.
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Chapter 7Relief Wavelength andS
ale-dependent Metri
s: APreliminary Numeri
al Approa
h
In Prep.Steer, P., Godard, V., and Hurtrez, J.E.Abstra
tWe used a plan view lands
ape evolution model to assess the relation between to-pographi
 wavelength, uplift rate and erodibility. From theoreti
al predi
tion, to-pographi
 wavelength is expe
ted to be a power fun
tion of the ratio of uplift rateto erodibility with a positive exponent. Syntheti
 topographies out
oming from themodel present 3 di�erent types: topographies with only �uvial network, with onlyhillslopes, and with both hillslopes and �uvial network. Only this latter type is
onsistent with the modeling approa
h, the other two having either a theoreti
alwavelength below the pixel resolution or above the model size. Studying type 2syntheti
 topographies we �nd a dependen
y of drainage density on the ratio upliftrate to erodibility following a power law with a positive exponent, as expe
ted. Lastwe show that this relation only emerges when 
onsidering the true �uvial network,while 
onsidering drainage density based on arbitrary threshold over drainage areato identify the �uvial network leads to a strong bias.1 Introdu
tionNumeri
al lands
ape evolution models are useful tools to determine the spatial im-pli
ations of river in
ision laws. Many studies have fo
used on the 1D river geome-tries predi
ted by the stream-power erosion law (e.g., Howard , 1980; Whipple andTu
ker , 2002). At steady-state the 
on
avity of a river pro�le is expe
ted to bedire
tly dependent of the uplift rate, erodibility, and on the slope and drainage areaexponents that de�ne the river in
ision law. On the other hand, only a few studieshave investigated the 2D lands
ape geometries predi
ted by stream-power in
isionlaw (Tu
ker and Whipple, 2002; Lague and Davy , 2003; DeLong et al., 2007; Perron143



CHAPTER 7. RELIEF WAVELENGTH AND SCALE-DEPENDENT METRICS: APRELIMINARY NUMERICAL APPROACHet al., 2009). In this te
hni
al note, using a simple 2D plan view lands
ape evolu-tion model in
luding river in
ision and hillslope landsliding, we explore the e�e
t ofvarying uplift rate and erodibility on the wavelength of out
oming syntheti
 topog-graphies. We �rst present the modeling approa
h, then we assess the limits of themodel in terms of resolution and asso
iated wavelength. Last, we assess the e�e
tof using lands
ape metri
s based on arbitrary threshold to 
harar
terize lands
apewavelength on their potential to 
apture uplift or erodibility.2 Modeling Approa
hRe
ent studies have underlined the key role played by �uvial in
ision in drivingungla
iated lands
ape denudation (Whipple and Tu
ker , 1999). Two leading 
lassesof models des
ribe the long-term erosion rate of a river: transport- or deta
hment-limited (e.g., Tu
ker and Whipple, 2002). In this study we only use a deta
hment-limited relation that links erosion rate to the unit stream-power of river 
hannel(Howard et al., 1994; Perron et al., 2008). In this formalism, the evolution of theelevation z of a river is
∂z

∂t
= U − K

((

A

w

)p

Sn − τc

)

if

(

A

w

)p

Sn > τc , (7.1)
∂z

∂t
= U if

(

A

w

)p

Sn ≤ τc , (7.2)with U the uplift rate, K a 
oe�
ient of erosion e�
ien
y that in
ludes bedro
kerodibility and 
limati
 dependen
es, A the 
ontributing area, w the width of �owin the dominant �uvial pathway, S is the along-
hannel lo
al slope, p and n aredimensionless 
oe�
ients, and τc is the deta
hment threshold below whi
h no erosiontakes pla
e. In uniform lithologi
al and te
toni
 settings, the mean 
hannel widthin
reases downstream with the water dis
harge a

ording to a power law (Leopoldand Maddo
k , 1953; Montgomery and Gran, 2001a; Snyder et al., 2003). Mean
hannel width 
an be taken as a referen
e for the e�e
tive �ow width of this 
hannel,and 
ontributing area as a proxy for water dis
harge. Using these assumptions leadsto,
w = kwAω , (7.3)with kw an amplitude fa
tor, and ω is a s
aling exponent. Combining last equationsgives,

∂z

∂t
= U − K (AmSn − τc) if AmSn > τc , (7.4)

∂z

∂t
= U if AmSn ≤ τc , (7.5)by integrating kw into K and τc, and with m = p − ω.Rivers down
ut the lands
apes and set the low points of the topography and for
ethe hillslopes to adapt (Burbank et al., 1996). In a
tive orogens, hillslope erosion isdominated by landslides (Hovius et al., 1997). Thus, we assume in the following thathillslopes display a 
riti
al slope of repose Sc, and that they rea
t instantaneously toany lo
al base level drop (Lavé, 2005; Godard et al., 2006). For the sake of simpli
ity144



CHAPTER 7. RELIEF WAVELENGTH AND SCALE-DEPENDENT METRICS: APRELIMINARY NUMERICAL APPROACHno other hillslope pro
esses are 
onsidered in this study. Sedimentation only o

ursin 
losed basins whi
h are �lled with sediments to the spill point, so that the rivers�ow downhill to the edge of the model. Otherwise sediments are instantaneouslyand e�
iently �ushed out of the system.Following Pelletier (2004), we apply both the river unit stream-power erosion lawand the hillslope landsliding slope 
riterion to a two dimensional plan view surfa
epro
esses model. The numeri
al model solves Equation 7.5 on a re
tangular grid,made up of pixels, that is subje
ted to a uniform rate of ro
k uplift and to a �xedelevation boundary 
ondition on every side of the model. The 
ontributing areais determined using a bifur
ation method that routes �ow to multiple downslopedire
tions, weighted by slope (Freeman, 1991; Pelletier , 2004). Contrary to Pel-letier (2010) we do not minimize the grid-resolution dependen
e of the �ow routingalgorithm, although we re
ognize it might in�uen
e our modeling results.The main bene�t of this simple modeling approa
h is that it requires only a smallset of model parameters: U , K, Sc, τc, m and n. Moreover other simple assumptionsallow to redu
e the number of free parameters: (1) The landsliding threshold slope iskept 
onstant, Sc = 0.8, whi
h 
orresponds to an angle of ∼ 40◦, a value 
ommonlyobserved for the angle of respose of hillsopes in a
tive mountain belts; (2) We negle
tthe 
riti
al erosion threshold; (3) Following Snyder et al. (2000), we set n = 1 and weimpose m/n = 0.5 as it is 
lassi
ally assumed in the unit stream-power formalism.As a 
onsequen
e, the parameters of the model are only the uplift rate U and the
oe�
ient of erosion e�
ien
y K.3 Resolution and Relief S
ale of Syntheti
 Land-s
apes3.1 Relief S
ale of Syntheti
 Lands
apesWe test the e�e
t of varying U and K on the s
aling of syntheti
 topographieswhi
h out
ome from our model (see Fig. 7.1). Ea
h model is represented by a squarebox with a total dimension ∆x = 45 km, and a pixel resolution δx = 90 m. Ea
hsimulation is performed until a dynami
 topographi
 steady state is rea
hed (Willettand Brandon, 2002).The �rst qualitative observation is that both the wavelength and the maximumelevation rea
hed by the model in
rease with the ratio U/K. As previously observedby DeLong et al. (2007) 3 types of syntheti
 topographies emerge from this modelingapproa
h: (1) Type 1 topographies have no pixels that have rea
hed the 
riti
al slope
Sc, i.e. rivers only; (2) Type 2 topographies have some pixels that exhibit the 
riti
alslope and others that have lower slope, i.e. a 
ombination of rivers and hillslopes; (3)Type 3 topographies only have pixels with a 
riti
al threshold, i.e. hillslopes only.DeLong et al. (2007) relates these 3 types of syntheti
 topographies to the dominanterosion pro
ess taking pla
e in the model, with type 1 being 
ompletely dominatedby �uvial in
ision (i.e., for ea
h pixel), type 3 by hillslope landsliding, and type 2representing a state where the dominant erosion pro
ess varies spatially. Howeverthis 
lassi�
ation hides some more fundamental dependen
ies on the resolution and145
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Figure 7.1: Left: Elevation of syntheti
 topographies resulting from our models asa fun
tion of the ratio U/K, and distribution of 
orresponding topographi
 types.Right: Slope-area log-log distribution asso
iated with ea
h topography. Type 1topography presents only river pixels, while type 3 presents only hillslope pixels.Type 2 topographies present both hillslope and river pixels. Interse
tion of the
riti
al slope with the linear regression of the �uvial pixel gives the 
riti
al area
Acreg of the topography whi
h 
an be 
ompared to its theoreti
al value Ac dedu
edfrom the ratio U/K. 146



CHAPTER 7. RELIEF WAVELENGTH AND SCALE-DEPENDENT METRICS: APRELIMINARY NUMERICAL APPROACHdimension of the model.3.2 Theoreti
al predi
tion of Relief S
alesTo investigate these dependen
ies we need to 
onsider the dynami
 steady-state ofa 1D river, when erosion rate balan
es uplift rate. At steady-state, river erosion lawpredi
ts a power law relation between A and S all along the river 
hannel,
S =

(

K

U

)1/n

A−m/n . (7.6)In syntheti
 lands
apes dominated by river erosion and hillslopes landsliding,this relation theoreti
aly implies a s
aling 
riterion of relief. Indeed at the head ofriver 
hannels, where the jun
tion between rivers and hillslopes o

urs, lo
al slopeis equal to Sc. At this point the 
ontributing area is also 
riti
al Ac, as it representsthe minimum 
ontributing area that allows to initiate a river 
hannel with a 
riti
alslope. Under this 
ondition, Equation 7.6 allows to express Ac as an expli
it fun
tionof Sc,
Ac =

(

U

K

)1/m

S−n/m
c . (7.7)Conversely this 
riti
al area also implies a 
riti
al horizontal distan
e between theriver 
hannel and divide dc, and a 
riti
al hillslope relief Rc. In our approa
h Ac,

dc and Rc are fun
tions of the ratio U/K as Sc, m and n are kept 
onstant. Con-sequently the wavelength and amplitude of syntheti
 topographies are a fun
tion of
U/K.3.3 Resolution LimitsAs observed in our modeling (Fig. 7.1) the formalism of unit stream-power pre-di
ts an in
rease of Ac with an in
rease of the ratio U/K. However our modelingapproa
h presents two theoreti
al limits of resolution: The lower limit whi
h 
orre-sponds to the pixel resolution δx = 90 m, and the upper limit whi
h 
orrespondsto the total dimension of the model ∆x = 45 km. These limits 
an be translatedin terms of 
ontributing area, and represents the lower , Alow

c = δx2, and upper,
Aup

c = ∆x2, 
riti
al area that 
an be modeled with this resolution and dimension.Pra
ti
ally be
ause the model is symetri
al in the two horizontal dire
tions, theupper 
riti
al area is ne
essary below Aup
c = 1

4
∆x2.In the following we test the impli
ation of these resolution limits on the 
lassi-�
ation proposed by (DeLong et al., 2007). For this purpose we perform a uniformMonte Carlo sampling of the paramater spa
e Ω(U, K) with 100 models (Fig. 7.2).A 
omparison between the types of syntheti
 topographies and their 
riti
al area Acreveals that the resolution limits 
ontrol the distribution of the topographi
 types:below Alow

c all models are of type 1 and above Aup
c all models are of type 3. How-ever it appears that Aup

c is not the true limit between type 2 and type 3 as somemodels of type 3 are lo
ated below Aup
c . The true limit is found empiri
ally to be

Aup
c ≃ 1

50
∆x2. We suggest this is due to the low degree of �ow 
onvergen
e on a147
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al area Ac dedu
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h presents only river or hillslope pixels, respe
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K

)1/m
S
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Figure 7.3: Distribution of (A) the true 
hannel density ρchannel and (B) of themaximum elevation Zmax for models of type 2 in the parameter spa
e Ω(U, K) inlog-log.tilted plane (e.g., type 3 topography), whi
h prevents from rea
hing the 
riti
al area
Ac.Type 1 and type 3 models exhibit topographies with a relief s
ale that does not�t in the resolution limits of the model. In
reasing the resolution or the dimensionof the model would result in a modi�
ation of the distribution of model types. Itimplies that syntheti
 topographies emerging from surfa
e pro
esses modeling arevalid with respe
t to the resolution, only when exhibiting type 2 topography.4 S
ale-dependen
e of Lands
apes Metri
s4.1 Head-sour
e Area and Drainage DensityAnother 
on
lusion of the Monte Carlo sampling is that the 
riti
al area Ac measuredfrom the topographies of the models and the one dedu
ed analyti
ally (Eq. 7.7) are
onsistent for models of type 2. First this result validates the robustness of thenumeri
al method of our modeling approa
h. More importantly it gives a robust
riterion for distinguishing river pixels (A > Ac) from hillslope pixels (A < Ac),whi
h enables identifying the �uvial network in ea
h model of type 2.

A 
lassi
al metri
 of �uvial network is drainage density ρchannel (Horton, 1932,1945). It is equal to the total length of river 
hannels divided by the total basinarea, and is a dimensional parameter (m−1). Figure 7.3 presents the drainage den-sity for ea
h model of type 2. As expe
ted drainage density, whi
h is inverselyproportional to the root of Ac, in
reases with the ratio U/K. We 
onsider it is thetrue drainage density as it was determined using the a
tual river network produ
edby our simulations. 149
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Figure 7.4: A: Log-log plot of drainage density ρchannel as a fun
tion of the ratioof uplift on erodbility U/K for di�erent threshold on the 
riti
al area Ac used foridentifying the �uvial network. The 
olorbar indi
ates the values of these thresholds
Ac. Moreover 
olor 
ir
les indi
ates the true drainage density with its 
orresponding
Ac indi
ated by the 
olor. B: Log-log plot of the lo
al relief R as a fun
tion of theratio U/K for di�erent window size L.4.2 Arbitrary Head-Sour
e Area Criterion and Drainage Den-sityContrary to our approa
h many studies have extra
ted the �uvial network andits asso
iated drainage density from Digital Elevation Model (DEM) using an ar-bitrary threshold on the 
ontributing area (e.g., Hurtrez et al., 1999). We investi-gate the in�uen
e of the value of this threshold on the relationships between U , Kand drainage density. Figure 7.4 presents the distribution of drainage density forea
h model as a fun
tion of U and K for di�erent 
riti
al area thresholds. Sur-prisingly, the pattern of drainage density varies signi�
antly with the 
riti
al areathreshold: (1) For a threshold below the pixel resolution δx2, drainage density ishomogeneously equal to 1/δx, as all the pixels are 
onsidered as river 
hannels. (2)Inversely for a threshold 
lose to the total area of the topography ∆x2 drainagedensity approa
hes 0. (3) In between, the pattern of drainage density is inverse tothe true one for Ac ≤ 0.1 km2, while it is approximatively 
onsistent with the trueone for Ac ≃ 1 km2. However, none of these patterns allow to 
learly establish astrong relationship between drainage density and the ratio U/K. The amplitudeand pattern of drainage density as a fun
tion of the ratio U/K varies 
onsiderablywith the threshold. This highlights the real limit of lands
ape metri
s based on arbi-trary threshold to de
ipher physi
al properties from DEM or syntheti
 topographies.5 Con
lusionIn this te
hni
al note we have investigated the relation between erodibility, upliftrate and the wavelength of syntheti
 lans
apes at steady-state. Following DeLonget al. (2007) three types of syntheti
 topographies are obtained. We argue thatonly type 2 topographies, i.e. with both 
riti
al hillslopes and developed �uvialnetwork, are 
onsistent with the modeling approa
h. Type 1 and 3 that exhibit150



CHAPTER 7. RELIEF WAVELENGTH AND SCALE-DEPENDENT METRICS: APRELIMINARY NUMERICAL APPROACHonly river or only hillslopes, respe
tively, represent out
omes of models that su�erfrom resolution issues. Type 1 and 3 topographies are asso
iated with 
riti
al head-sour
e area below pixel resolution or too large with respe
t to the size of the model,respe
tively. Wavelengths of type 2 topographies exhibit 
lear dependen
ies on theratio of uplift rate to erodibility, whi
h is 
onsistent with theoreti
al predi
tion atsteady-state (Tu
ker and Whipple, 2002). Drainage density is a lands
ape metri

lassi
aly used to determine topographi
 wavelength. We show that the relationbetween drainage density and the ratio U/K exhibits the predi
ted in
reasing trendonly when 
onsidering the true �uvial network. On the other hand, drainage densityasso
iated with �uvial network determined from arbitrary threshold on drainagearea, does not exhibit the same trend. This te
hni
al note illustrates the ne
essityof using only true �uvial networks to assess the ratio U/K from drainage densitydetermined from a digital elevation model .
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Chapter 8Post-Orogeni
 Evolution of MountainBelts: Insights from Numeri
alModeling
Submitted, Journal of Geophysi
al Resear
hSteer, P., Cattin, R., Lavé, J. and Godard, V.
Abstra
tIn this study we are interested in 
onstraining the erosional and rheologi
al 
ondi-tions that allow one to repodu
e the progressive temporal de
rease of surfa
e eleva-tion divided by 
rustal root thi
kness (R) after orogeny. A �nite element model that
ouples surfa
e pro
esses to lithospheri
 deformation and thermal behavior is used toinvestigate the long-term evolution of mountain belts. Using a range of realisti
 val-ues for the geometry of the initial range, 
oe�
ient of erosion e�
ien
y, and thermal
onditions, we show that a topographi
 de
ay driven by erosion and 
ompensatedby regional isostasy is 
onsistent with the temporal de
rease of R observed in mostmountain ranges. Sampling the model spa
e with a uniform Monte-Carlo algorithmand using a least absolute value 
riterion, leads us to 
onstraining the 
ombinationsof paramater values that are 
onsistent with the de
rease of R. The �rst prominentfa
tor that 
ontrols the quality of the �t is the 
oe�
ient of erosion e�
ien
y, withbest �tting models asso
iated with moderate to high values. Se
ond is the initialgeometry of the range with higher or narrower ranges requiring lower 
oe�
ient oferosion e�
ien
y. A temporal de
rease of R is rea
hed independently of the initialgeometry. The vis
osity of the 
rust on the other hand does not appear as a 
on-trolling fa
tor. Best �tting models are obtained for 
onditions of erosional 
ollapse,not for gravitational 
ollapse, whi
h suggest that this latter is not asso
iated witha temporal de
rease of R. In addition best �tting models exhibit a topographi
de
ay that is similar to the temporal distribution of the elevation of post-orogeni
mountain belts. 153



CHAPTER 8. POST-OROGENIC EVOLUTION OF MOUNTAIN BELTS: INSIGHTSFROM NUMERICAL MODELING1 Introdu
tionThe persisten
e of mountainous topography in post-orogeni
 mountain belts overhundreds of millions of years is an observation that questions 
lassi
al 
on
epts ofsurfa
e erosion and its intera
tions with lithospheri
 deformation (Baldwin et al.,2003). Analyses of modern sediment-load data versus relief amplitude implies de
aytime of the order of ∼ 25 Ma (Pinet and Souriau, 1988). Even taking into a

ountro
k uplift generated by isostati
 
ompensation further in
reases the de
ay timesup to ∼ 70 Ma (Pazzaglia and Brandon, 1996; Pelletier , 2008). This value is still�ve fold smaller than the age of Paleozoi
 orogens with peak elevation well above
1 km (e.g. Appala
hians, Urals). On the other hand by 
onsidering time-s
alesasso
iated with river erosion by stream-power, Baldwin et al. (2003) demonstratedthat the de
ay time 
an be in
reased up to a fa
tor 20 by taking into a

ount somespe
i�
 features of river driven erosion su
h as sto
hasti
 distribution of �ood eventsand 
riti
al in
ision threshold.Futhermore, post-orogeni
 mountain belts are also asso
iated with very thi
k
rustal roots that geometri
ally 
orrespond to over-
ompensated surfa
e topography.The ratio between surfa
e topography elevation and the thi
kness of the 
rustal root(R hereinafter) is smaller in post-orogeni
 belts than in orogeni
 belts and de
reaseswith the age of the orogen (Fis
her , 2002; Fren
h et al., 2009) (Fig. 8.1). This dis-tribution suggests a rapid de
rease of R during ∼ 25 Ma, followed by a slowdownof the R de
rease until rea
hing an almost 
onstant value around 300 Ma. Twogeodynami
al me
hanisms are proposed by Fis
her (2002) to explain this de
reaseof R: (1) A rapid in
rease of the lithospheri
 strength whi
h inhibits 
rustal rootuplift asso
iated with erosional unloading at surfa
e; (2) A progressive de
rease ofthe density 
ontrast between 
rust and mantle due to metamorphi
 rea
tions, thatde
reases the buoyan
y of the 
rustal root. The latter is supported by Bouguer grav-ity anomalies whi
h are best explained by a de
rease of the density 
ontrast at theMoho between the 
rustal root and the mantle (Fis
her , 2002; Fren
h et al., 2009).However metamorphi
 rea
tions that 
ould a

ount for this progressive in
rease ofthe density of the 
rustal root after orogeny are still un
onstrained.These two 
hallenging observations of post-orogeni
 evolution, i.e. large de
aytime and a progressive de
rease of R, are 
losely related: unloading by surfa
eerosion sets the pa
e of internal deformation, a
ting to balan
e the gravitationalfor
es at lithospheri
 s
ale, and 
onsequently 
ontrols ro
k uplift of the 
rustal rootand surfa
e (e.g., Beaumont et al., 1992; Avoua
 and Burov , 1996;Willett , 1999). Asa 
onsequen
e the evolution that leads post-orogeni
 topography to peneplenationover hundreds of millions years and to the over-balan
ing of the underlying 
rustalroot, 
an not be fully understood without a 
oupled modeling of surfa
e erosion andinternal deformation.Thus in this paper to explore potential s
enarios of post-orogeni
 evolution ofmountain belts in the framework of the intera
tions between erosion and deformationwe use a 
oupled 2D Finite Element Model (FEM), whi
h in
ludes both solid Earthdeformation and Surfa
e Pro
esses Model (SPM). The main purpose of this modelingapproa
h is to point out the basi
 physi
s whi
h 
ontrol post-orogeni
 evolution, witha redu
ed set of parameters, rather than trying to mimi
 the geometry and featuresof a spe
i�
 mountain range. In parti
ular, we fo
us on the erosional and rheologi
al
onditions that enable reprodu
ing the observed de
rease of R with the age of the154
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ofennian Orogen.orogen.First we detail the FEM and SPM used in the modeling approa
h. Then wepresent the behaviour of an arbitrary model and test its sensitivity to the modelparameters. Then we present the results of the inversion of R using a Monte Carlosampling algorithm of the model spa
e with a least absolute 
riterion. Finally wepropose and dis
uss physi
al models of post-orogeni
 evolution that are 
onsistentwith both the data presented by Fis
her (2002) and with the geometri
al propertiesof real ina
tive orogens.
2 Modeling of Post-Orogeni
 EvolutionFollowing Lambe
k and Stephenson (1985) we assume an already developed moun-tain range as initial 
ondition, formed by unspe
i�ed me
hanisms. We assume for
onvenien
e that, (1) the initial topography is lo
ally 
ompensated and (2) dur-ing the post-orogeni
 phase surfa
e erosion is balan
ed by regional isostasy and bylateral vis
ous �ow of the 
rustal root. 155
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hani
al modelused in this study. The mantle and the 
rust are represented by two layers withdi�erent rheologies and thermal properties (Table 8.1). As an initial 
ondition, thetopography is isostati
ally 
ompensated by a 
rustal root. Surfa
e is submittedto erosion. Temperature varies with depth, and is dependent on radiogeni
 heatprodu
tion and basal verti
al heat �ow. Free verti
al displa
ements are allowed atboth ends of the model, whi
h is supported at its base by hydrostati
 pressure.2.1 System GeometryFollowing Avoua
 and Burov (1996) the initial geometry of our 2D model is a simple
on
eptual orogen (Fig. 8.2). It in
ludes a triangular mountain, with a basal width
W and a summit height H . This topography is balan
ed by a 
rustal root with athi
kness Hroot, and respe
ts lo
al isostasy as an initial 
ondition. Lo
al isostasyimplies that the ratio R = H/Hroot equals (ρm − ρc)/ρc. The 
rust, 35 km thi
k,lies over an upper mantle. The entire model is 2000 km wide and 200 km thi
k toprevent the 
enter of the model from boundary e�e
ts.2.2 Thermo-Me
hani
al Modeling and Boundary ConditionsWe use ADELI, a 2D Lagrangian FEM (Hassani et al., 1997) 
onsisting in a 
oupledthermo-me
hani
al solver, to model the post-orogeni
 evolution of the mountainrange. It a

ounts for the me
hani
al layering of the lithosphere and the non-Newtonian vis
ous rheology of ro
ks as a fun
tion of temperature and stress. Theelasti
 part of ea
h 
omponent of strain ǫij is fun
tion of the stress tensor σ, throughHooke's law,

ǫij =
1 + ν

E
σij −

ν

E
trace(σ)δij, (8.1)where E and ν are the Young's modulus and the Poisson's ratio, respe
tively. Whilethe vis
ous part of the strain rate ǫ̇ is de�ned as,

ǫ̇ = γ0(σ1 − σ3)
ne(−Ea/RT ), (8.2)where T is the temperature,γ0 the standard �udity, n the power law exponent, Eathe a
tivation energy and R the universal gas 
onstant.156



CHAPTER 8. POST-OROGENIC EVOLUTION OF MOUNTAIN BELTS: INSIGHTSFROM NUMERICAL MODELINGTable 8.1: Rheologi
al parameters and material properties used for the thermo-me
hani
al model: density, ρ; Young's modulus, E; Poisson's ratio, ν; standard�uidity, γ0; power law exponent, n; a
tivation energy, Ea; 
oe�
ient of thermal
ondu
tivity, λ; spe
i�
 heat 
apa
ity, Cp. Parameters from Carter and Tsenn(1987); Tsenn and Carter (1987); Kirby and Kronenberg (1987). Universal gas
onstant R = 8.314 J.mol−1.K−1.Crust (Diabase) Mantle (Olivine)
ρ (kg.m−3) 2900 3300
E (GPa) 20 70
ν 0.25 0.25
γ0 (Pa−n.s−1) 6.31 · 10−20 7.00 · 10−14

n 3.05 3.0
Ea (kJ.mol−1) 276 510
λ (W.m−1.K−1) 3.0 3.0
Cp (J.kg−1.K−1) 1070 1070Two lithologi
al layers are used: the 
ontinental 
rust and the upper mantle,whi
h are assumed here to have the rheologi
al properties of diabase and olivine,respe
tively (see Table 8.1). Those rheologies are dependent on temperature T ,whi
h is 
al
ulated from the heat equation,

ρCp

(

∂T

∂t
+ ~u · ~∇T

)

= div
(

λ~∇T
)

+ Pr , (8.3)where ρ is the density, λ the 
oe�
ient of thermal 
ondu
tivity, Cp the spe
i�
 heat
apa
ity, Pr the radiogeni
 heat produ
tion, and ~u the velo
ity of the material.The model is supported by hydrostati
 pressure at its base, and free verti
alvelo
ity 
onditions on its sides. Those boundary 
onditions allow the model tobalan
e surfa
e unloading either by regional isostasy or by internal deformation.Thus they enable a 
oupling between unloading by erosion at surfa
e and ro
k-uplift. This 
oupling depends on the me
hani
al and thermal properties of thelithosphere. Surfa
e temperature respe
ts a Diri
hlet 
ondition with T = 273 K.The base of the lithosphere and both verti
al boundaries of the model are submittedto Neumann 
onditions. To avoid lateral heat loss horizontal heat �ow remains zero.Further on, a basal verti
al heat �ow of 10.0 mW.m−2 will be used as the referen
evalue (Tur
otte and S
hubert , 2002). In the following, we detail the surfa
e pro
essesmodel applied to the upper boundary (i.e. topographi
 surfa
e) of the model.2.3 Surfa
e Pro
esses Model with a Sto
hasti
 Approa
hMany surfa
e pro
esses 
ontribute to erosion in orogeni
 or post-orogeni
 settings.However, �uvial down
utting is believed to be the 
ontroling fa
tor of lands
apeerosion (Burbank et al., 1996; Lavé and Avoua
, 2001; Godard et al., 2010). Riversdown
ut the lands
apes and set the lo
al base level for topographi
 denudation:Despite their prominent role, rivers do not a

ount for the mean topography oflands
apes, whi
h is the pertinent variable for the upper boundary 
ondition inme
hani
al modeling (Godard et al., 2006; Willett , 2010). We therefore use the157



CHAPTER 8. POST-OROGENIC EVOLUTION OF MOUNTAIN BELTS: INSIGHTSFROM NUMERICAL MODELINGTable 8.2: Paramaters used in the surfa
e pro
esses model, from Lavé (2005); Lagueet al. (2005).Dis
harge parameters Basin geometry Fluvial network
m 0.6 Lbasin (km) 50 KL (km1.88) 868
kw (s0.45.m−0.35) 0.45 AOmin (km2) 0.1 ω 1.44
ωa 0.45 φc (°) 40 s0 1.5
ωs 0.2 E�e
tive dis
harge Sto
hasti
 dis
harge
χ 1 α 0.7 α′ 2.9

β 0.33 β ′ 1.4
γ 0.28 γ′ 1.2method proposed by Lavé (2005) to 
ompute the 1D mean topography of a 2Dlands
ape 
ontrolled by river in
ision and hillslope landsliding.2.3.1 Des
ription of the 2D ModelFollowing Lavé (2005), the surfa
e model is divided into several re
tangular parallelbasins 
hara
terized by regular outlet spa
ing (Hovius, 1996). They are made upof a main river that is oriented perpendi
ular to the range axis, and a series oftributaries feeding the main river.In our modeling the erosion rate of the main river follows a simple deta
hment-limited relation that has provided satisfa
tory �rst-order results a

ross the Subhi-malaya rivers (Lavé and Avoua
, 2001). This relation states that the instantaneousbedro
k in
ision rate of a river i is proportional to its unit stream power,

i = k

((

Q

w

)m

Sα − τc

)

, (8.4)with S the lo
al 
hannel slope, Q the water dis
harge, w the width of the river 
han-nel, m and α the stream power exponents, τc a 
riti
al unit stream-power thresholdfor in
ision, and k a dimensional erodibility 
oe�
ient.Sedimentation o

urs in 
losed basins whi
h are �lled with sediments to the spillpoint, so that the main river �ows downhill to the edge of the model. This impliesthat there is su�
ient sediment supplied to �ll basins, and ex
ludes the existen
e ofendorhei
 basins.In a
tive orogens the erosion of hillslopes is dominated by landsliding (Hoviuset al., 1997). In post-orogeni
 settings hillslopes are also submitted to di�usivepro
esses, su
h as soil 
reep (e.g., Dietri
h et al., 1987; Heimsath et al., 1997; Roeringet al., 1999). However, in order to simplify our model, we hereinafter assume thathillslopes are only 
ontrolled by instantaneous landsliding, and display a 
riti
alangle of repose φc.2.3.2 A Sto
hasti
 Approa
h for Water Dis
hargeIn orogeni
 settings it is 
lassi
ally assumed that river geometries re�e
t the e�e
t ofboth long-term te
toni
s and erosion, and that this latter is 
ontrolled by a dominantor e�e
tive river water dis
harge (e.g., Howard and Kerby , 1983; Lavé and Avoua
,2001). In addition, models of river erosion, su
h as stream power in
ision, generally158
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onsider that the 
riti
al threshold for in
ision is negligible 
ompared to the e�e
tivestream power. However in post-orogeni
 settings the progressive de
ay of topographyresults in the de
rease of the e�e
tive stream power. In su
h 
on�guration the e�e
tof the 
riti
al threshold for in
ison be
omes in
reasingly important with topographi
de
ay (Baldwin et al., 2003). This implies a 
omplete 
essation of erosion when thee�e
tive stream power equals the 
riti
al threshold, and an in�nite post-orogeni
topography de
ay time. Thus the 
on
ept of e�e
tive dis
harge is not appropriateto model post-orogeni
 evolution.Following Lague et al. (2005) we instead in
lude a sto
hasti
 distribution ofdis
harge to express the long-term river erosion law. We make the simple assumptionthat the temporal variability of the lo
al at-a-station river water dis
harge 
an beexpressed through a power law distribution,
pdf(Q⋆) = kpdf

χχ+1

Γ(χ + 1)
Q−(χ+2)

⋆ dQ⋆ , (8.5)with Q⋆ = Q/Q̄ the water dis
harge ratio and Q̄ the average water dis
harge, χan exponent, that de
reases with in
reasing water dis
harge variability, ranging
ommonly between 0 and 2 (Lague et al., 2005; Tur
otte and Greene, 1993) andeventually up to 5 (Molnar et al., 2006), and kpdf a 
onstant (see appendix 6)).This distribution is 
onsistent with real dis
harge distribution for high-�ow events,but largely over-predi
ts the frequen
y of low-�ow events (Lague et al., 2005). It isonly suitable in settings where the erosive impa
t of low-�ow events is negligible.Hen
eforth we assume that post-orogeni
 mountain belts are 
ompatible with thisdistribution, yet a
knowledging that we la
k 
onstraints to support this in detail.A

ordingly, it implies a de
rease of the frequen
y of erosive-�ow events, i.e. abovethe erosion threshold, with topographi
 de
ay during the post-orogeni
 phase. Thenwe 
an integrate the instantaneous in
ision rate i to express the long-term in
isionrate I,
I =

∫ Qm⋆

Qc⋆

pdf(Q⋆)i(Q⋆)dQ⋆, (8.6)with i the instantaneous in
ision rate de�ned in Eq. 8.4. Qc⋆ is the 
riti
al waterdis
harge ratio and is de�ned su
h that i(Q⋆ ≤ Qc⋆) = 0, and Qm⋆ is the maxi-mum water dis
harge ratio at the times
ale 
onsidered. Extending the analyti
alderivation �rst proposed by Lague et al. (2005), the integration (see appendix 6) ul-timately leads to an equation that shares the same generi
 expression as the e�e
tivestream-power or shear-stress in
ision law,
I = k′Aγ′

Sα′

, (8.7)where k′ = kstokP̄ β′

/τ ′

c is a 
oe�
ient of erosion e�
ien
y that depends on theerodibility 
oe�
ient k, dis
harge variability χ, the mean pre
ipitation rate P̄ overthe drained area A, the apparent 
riti
al unit stream-power threshold for in
ision τ ′

cand on a 
onstant ksto. These latter both depend on dis
harge variability χ, su
has the slope α′, pre
ipitation β ′, and area γ′ exponents. We refer the reader toappendix 6 and to Lague et al. (2005) for more details on the integration, and onthe assumptions that lie behind. 159



CHAPTER 8. POST-OROGENIC EVOLUTION OF MOUNTAIN BELTS: INSIGHTSFROM NUMERICAL MODELING

-100 -50 0 50 100
0

0.5

1

1.5

2

2.5

3

X (km)

h
 (

k
m

)

h
topo

h
riv

Figure 8.3: Evolution of the main river hriv (dashed line) and of the mean topography
htopo for a rigid lithosphere with no isostasy, for an arbitrary set of model parameters,at t = 0, 9, 27, 90, 300 Ma. The initial river and mean topography pro�ls 
onsists ina triangular mountain belt with a width of W = 250 km and a height of H = 3 km.The 
oe�
ient of erosion e�
ien
y is set to k′ = 3.8 · 10−17 m−1.4.s−1.2.3.3 From 2D to 1D ModelIn spa
e we integrate the previous equation to express both the evolution of themain river pro�le and of the mean relief pro�le in 1D (Lavé, 2005). The mean relief
hmean is the sum of the main river elevation hriv, of the mean tributary relief h̄triband of the mean hillslope relief h̄hill. The time evolution of the main river pro�leriver is,

ḣriv = U − I , (8.8)where U is the ro
k uplift dedu
ed from the �nite element model. Assuming thatthe tributary rivers follow the same in
ision law as the main river and that they arein steady-state, leads to the following expression of the denudation rate of the meantopography,
ḣmean = k′

(

(2 − ω − γ′/α′)AT

KL(A
2−ω−γ′/α′

T − A
2−ω−γ′/α′

0 )
h̄trib

)α′

, (8.9)
with h̄trib = hmean − hriv − h̄hill (8.10)where A0 and AT are the tributary head sour
e area and total area respe
tively,

KL and ω are the exponents of the density fun
tion fL(A) = KLA−ω that de�nesin a given watershed the length of a �uvial network that drains an area A. Inaddition, as h̄hill depends on A0, whi
h is related to the denudation rate of the meantopography, this equation needs to be 
omputed iteratively. We invite the reader torefer to Lavé (2005) for more details on the spatial integration of surfa
e pro
essesform 2D to 1D. Figure 8.3 illustrates the time evolution of a river pro�le and of its
orresponding mean topography in the 
ase of a rigid lithosphere with no isostasy.160



CHAPTER 8. POST-OROGENIC EVOLUTION OF MOUNTAIN BELTS: INSIGHTSFROM NUMERICAL MODELING2.4 Coupling Erosion and Deformation in Numeri
al ModelsWe 
ouple this SPM with the FEM following a method similar to Willett (2010):(1) Solve the deformation problem using the FEM, and apply the displa
ement ofthe surfa
e to the SPM; (2) Update divides position and �ll 
lose basins by sed-imentation; (3) Compute in
ision of the main river and update its elevation; (4)Compute erosion of the tributaries, update their elevation, and dedu
e mean topog-raphy. Note that, 
omparatively to Willett (2010), the distribution of pre
ipitationis not updated at ea
h time step as it is assumed to be homogeneous all over thesurfa
e.In addition, we use a lo
al remeshing algorithm, 
alled Surfa
e LagrangianRemeshing (SLR) (Steer et al.), whi
h is dedi
ated to the problem of erosion inLagrangian FEM. It is 
ombined with a global remeshing method (Hassani et al.,1997) whi
h deals with deformation of elements at depth. This 
ombination enablesminimizing numeri
al errors asso
iated with remeshing in post-orogeni
 modeling,where erosion is the dominant pro
ess. ADELI employs the dynami
 relaxation(DR) numeri
al s
heme for time dis
retization (Underwood , 1983), whi
h is an iter-ative expli
it method solving Newton's se
ond law to obtain the stati
 solution of asteady-state modeling (see Hassani et al. (1997) and Steer et al. for more details).This method is fully 
ompatible with post-orogeni
 settings, where geodynami
sinertial terms are negligible.The initial pro�le of the river follows the mean topographi
 pro�le (triangularshape, see Fig. 8.2). Thus to over
ome this nonrealisti
 initial 
ondition, 2 mm.a−1of 
onvergen
e are imposed to the lateral boundary of the model during the �rst
3 Ma to for
e the river to tend towards its steady-state pro�le.In ea
h of the following experiments, 3 millions of time steps were ne
essary tomodel post-orogeni
 evolution over 300 Ma. The models were dis
retized in∼ 20.000triangular elements with smaller elements at surfa
e than at depth. It allows fora horizontal resolution of ∼ 3 km in surfa
e, whi
h is an appropriate s
ale for thedes
ription of surfa
e pro
esses in our formalism.2.5 Range of Parametri
 explorationThe main purpose of our modeling approa
h is to assess the 
onditions of surfa
eerosion and lithosperi
 deformation that are 
ompatible with a temporal de
rease of
R. In parti
ular we want to quantify: (1) the in�uen
e of the initial topographi
 (andasso
iated 
rustal root) amplitude and wavelength, as it 
ontrols the gravitationaland erosional perturbation; (2) the e�e
t of surfa
e erosion e�
ien
y as it sets thepa
e of elevation de
ay, erosional unloading and subsequent ro
k uplift generated byisostasy; (3) the in�uen
e of the 
rustal root lateral vis
ous �ow whi
h is a potentialme
hanism of 
ompensation a

ounting for surfa
e unloading.As a 
onsequen
e we need to 
hoose a set of relevant parameters that allowen
ompassing of ea
h of these potential me
hanism of post-orogeni
 evolution. Thisset in
ludes: (1) the initial basal width W of the orogen ranging between 100 and
400 km, whi
h 
orresponds to the range of width of present-day a
tive orogens(Fig. 8.4); (2) the elevation of the mean topography at the 
enter of the range,
H ranging between 2 and 5 km and also 
orresponds to observed values for a
tiveorogens; (3) the 
oe�
ient of erosion e�
ien
y or k′ ranging between 10−18 and161
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10−15 m−1.4.s−1, whi
h 
orresponds to a realisti
 range of terrestrial values for χ = 1(J. Lavé, unpublished data); (4) the radiogeni
 heat produ
tion of the entire 
rust
Pr ranging between 0 and 1 µW.m−3, whi
h 
orresponds to an average range ofvalues (Kre²l et al., 1978; Furukawa, 1995; Furukawa and Shinjoe, 1997; Pinet andJaupart , 1987; Brady et al., 2006). Several variables 
an impa
t the amplitude ofvis
ous spreading: in a sear
h for simpli
ity we assume here that varying the thermalstu
ture through radiogeni
 heat produ
tion variations, enables a

ounting for thee�e
t of other variables like the ones indu
ed by the 
hosen vis
osity rheology. Forthis last point we re
ognize large potential variations. Similarly, the 
oe�
ient ofwater dis
harge variability is kept 
onstant χ = 1 for all the models, and we admitthat varying it would modify the sensitivity of the model to erosion and the time s
aleof topographi
 de
ay. Moreover we do not 
onsider temporal or spatial variationsof any parameters.This set of parameters makes it possible to test the e�e
t of the initial geom-etry, of the surfa
e erosion e�
ien
y and of the 
rustal root e�e
tive vis
osity onthe evolution of post-orogeni
 belts with realisti
 values. In this set, k′ is the less
onstrained parameters, whi
h presents the greater range of realisti
 values, severalorders of magnitude, while the range of the other parameters is more limited, ap-proximatively extending over one order of magnitude.3 Model Results and Sensitivity3.1 Surfa
e Topography and Crustal Thi
kness EvolutionTo illustrate the behavior of the model during post-orogeni
 
onditions, we test thefollowing arbitrary set of parameters: H = 3 km, W = 250 km, Pr = 0.5 µW.m−3and k′ = 3.8 · 10−17 m−1.4.s−1 (Fig. 8.5). As expe
ted, the evolution of the meanelevation shows a global de
rease, espe
ially in the summit area. This de
reaseis 
ontrolled by a joint e�e
t of both erosion and ro
k uplift indu
ed by isostati

ompensation. Ro
k uplift a�e
ts topographi
 mean elevation but also Moho depth,whi
h 
ontrary to the surfa
e is not a�e
ted by erosion. In this model elevation ofthe summit has de
reased from 3 to 1.6 km in 300 Ma, and has experien
ed about
0.9 km of 
umulated ro
k uplift if 
onsidering that ro
k uplift at surfa
e is equalto the uplift of the Moho. Under this assumption the 
umulated exhumation atthe summit is about 2.3 km. To maintain lo
al isostasy, the 
umulated uplift ofthe Moho should have been U = 2.3ρc/ρm = 2.0 km. Clearly this 
ondition is notrea
hed, and it results in a de
rease of R. However note that this de
rease is not asintense as what is suggested by data from post-orogeni
 belts (Fig. 8.1).In this model erosion is fo
used on the range, while uplift is more widespreadand also a�e
ts the foreland. This di�eren
e of wavelength between erosion anduplift in surfa
e is the 
onsequen
e of the rheologi
al properties of the lithosphere.In this model, the elasti
 
ore of the lithosphere is too thi
k to allow stri
t lo
alisostati
 
ompensation of erosion. It results in a de
rease of the R ratio relativelyto its isostati
 value R = (ρm − ρc)/ρc. This de
rease is 
ontrolled by the transitionfrom lo
al to regional isostasy, whi
h mainly depends on the rheologi
al propertiesof the lithosphere, and on the pattern of surfa
e erosion of the mean elevation. This163
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Figure 8.5: Evolution of the pro�les of (A) mean elevation htopo, and (B) Moho'sdepth zmoho relatively to its initial value zini
moho, for an arbitrary model at t =

0, 9, 27, 90, 300 Ma. (C) Time evolution of the ratio R of surfa
e elevation on 
rustalroot thi
kness, with the bla
k �lled 
ir
les indi
ating timing of pro�les presentedin A and B. Gray shading 
orresponds to te
toni
 for
ing phase during 3 Ma. Theparameters of the model are: the width of the initial mountain belt W = 250 km, itssummit elevation H = 3 km, the radiogeni
 heat produ
tion rate Pr = 0.5 µW.m−3and the 
oe�
ient of erosion e�
ien
y k′ = 3.8 · 10−17 m−1.4.s−1. The model issimilar to the one presented in Fig. 8.3 ex
ept for the rheology.
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Figure 8.6: Sensitivity of the ratio R of surfa
e elevation on 
rustal root thi
knessto the parameters of the models: (A) the 
oe�
ient of erosion e�
ien
y k′, (B)the radiogeni
 heat produ
tion rate Pr, (C) the summit elevation H , and (D) thewidth of the range W . The bla
k solid line 
orresponds to the model presented inthe Figure 8.5, while the dashed and dotted lines 
orrespond to a de
rease or anin
rease of the parameter 
onsidered, respe
tively.out
ome highlights the in�uen
e of the initial stru
ture of the modeled orogen, thatwe have assumed for 
onvenien
e to be in a state of lo
al isostasy. Dynami
ally, themodel also exhibits a progressive slowing of the rate of R de
rease. This is due tothe progressive de
rease of the erosion rate asso
iated with the de
rease of elevationand slope.3.2 Model Sensitivity: Geometry, Surfa
e Pro
esses and CrustalRheologyBefore detailing the tests of sensitivity it is important to re
all that k′ varies overseveral orders of magnitude, whereas H , W and Pr are restri
ted to approximativelyone order of magnitude. To 
onstrain the sensitivity of this arbitrary post-orogeni
model, we use the previous parameter set and vary ea
h parameter independently165



CHAPTER 8. POST-OROGENIC EVOLUTION OF MOUNTAIN BELTS: INSIGHTSFROM NUMERICAL MODELINGof the others in the range of their realisti
 values (Fig. 8.6). (1) Clearly, the modelis �rst sensitive to the 
oe�
ient of erosion e�
ien
y as in
reasing or de
reasing itby an order of magnitude results in a dramati
al in
rease or de
rease of the rateof R evolution, respe
tively. In a purely elasti
 model, in
reasing or de
reasing k′,in
reases or de
reases the rate of evolution of R 
orrespondingly. In a vis
o-elasti
model, this behavior is modulated by the vis
ous response of the lithosphere toerosion, that a
ts to damp the erosional for
ing. (2) The model is also sensitiveto the initial geometry of the range, with a higher or narrower range resulting ina lower R, and vi
e versa. The slope of the initial belt 2H/W partly 
ontrols theerosion rate: higher or narrower range results in higher initial transverse river slopeand therefore indu
es higher initial erosion rate as well as faster R de
rease. Onthe other hand, the wavelength and the amplitude of the the range load, 
ontrolsthe pattern and amplitude of the �exural rebound. When 
onsidering a 
onstantrange load equal to HW/2 (i.e. the gravitational perturbation) and a 
onstantrheology, the ratio of the uplift wavelength to W in
reases when W de
reases (and
onsequently H in
reases). As a 
onsequen
e the uplift is more widespread thanthe pattern of erosion that is fo
used on the range, whi
h results in a de
rease of R.(3) The model is apparently not signi�
antly sensitive to the radiogeni
 produ
tionrate of the 
rust, whi
h only indu
es minor 
hanges of R.However, these �rst observations are dependent of the arbitrary set of parame-ters that were used in these models. Moreover, the sensitivity tests were performedfor ea
h parameter independently of the others. This does not make it possible topredi
t the e�e
t on R of varying several parameters simultaneously and in parti
-ular the existen
e of eventual trade-o�s between those parameters.
4 Post-Orogeni
 Over-Compensation and ErosionalDe
ayEa
h mountain range is unique in terms of rheology, initial width and height, 
li-mati
 and erosional 
onditions, and 
onsequently has followed a distin
tive de
ayhistory. However, data proposed by Fis
her (2002) on young and old mountainranges (Fig. 8.1), suggest that they follow a relatively 
ommon destiny in terms of
R evolution. Using the forward model de�ned previously, we seek through a MonteCarlo approa
h to determine the 
ombination of model parameters that allow re-produ
ing of this global tenden
y. In other words, we invert the model to determinevalues of ea
h variable 
ompatible with the mean R de
rease. Yet we a
knowledgethat variable values of ea
h spe
i�
 mountain range 
an depart from this mean trendgiven sligthly di�erent settings.The dataset that is used in the inversion (Fig. 8.1), 
onsists in the time evolutionof R (i.e. the ratio of surfa
e topography on 
rustal root thi
kness), restri
ted to thelast 300 Ma (Fis
her , 2002; Fren
h et al., 2009). We do not explore Proterozoi
 oro-gens in our modeling be
ause the 
hara
teristi
 time for the evolution of R appearsto be typi
ally shorter than 300 Ma, and be
ause pra
ti
ally modeling Proterozoi
would require to multiply by 10 the time 
ost asso
iated with ea
h single model.Moreover, we 
onsider the s
atter in R values for ea
h a
tive and ina
tive orogen166



CHAPTER 8. POST-OROGENIC EVOLUTION OF MOUNTAIN BELTS: INSIGHTSFROM NUMERICAL MODELINGaround the average trend as an estimate of the standard deviation on R.4.1 Monte Carlo Sampling and Least Absolute Values Inver-sionTo explore the sensitivity of the model to its parameters, the model spa
e is sampledby ∼ 300 models using a Monte Carlo algorithm with a uniform sear
h. This latterhas the main advantage of being robust and easily implemented. To assess theagreement between the modeled evolution of R and the real R dataset, we 
omputea mis�t Φ for ea
h model that is determined from a least absolute values 
riterion(Fig. 8.7),
Φ =

1

N

N
∑

i=1

|Ri,m − Ri,d|

σi
, (8.11)where N is the number of orogen, Ri,m and Ri,d are the R values extra
ted fromthe model and from the data, respe
tively, and σi is the standard deviation of Ri,d.We do not seek to �nd a single best �tting model for the entire dataset, and thusthe least absolute values method is well suited as it is robust, i.e. less sensible tooutliers.4.2 Temporal Evolution of ROur results suggest that part of our models 
an explain the major trend of theobserved R de
rease (Fig. 8.7): (1) the progressive de
rease of surfa
e mean elevationdriven by river in
ision whi
h down
uts the lands
apes; (2) the a

ommodation oferosional mass unloading at surfa
e by a global uplift of the lithosphere due toregional isostasy, and not only of the 
rustal root. (3) the progressive slowing oferosion rate with time and topographi
 de
ay, whi
h 
ontrol the dynami
 trend ofthe evolution of R.The low values of mis�t obtained (∼ 0.2) a posteriori 
on�rm that the modelingapproa
h is 
onsistent with post-orogeni
 evolution. Moreover this global trend,obtained with the best �tting models, is also 
onsistent with R values of Proterozoi
orogens (R < 0.025), even if they are not 
onsidered in the inversion.4.3 Exploring the Model Spa
eThe inversion gives an a posteriori 
onstraint on ea
h parameter of the model spa
e.Figure 8.8 shows the distribution of the mis�t Φ as a fun
tion of ea
h 
ouple ofparameters of the model spa
e. The main out
ome of these distributions is thaterosion e�
ien
y k′ has a strong 
ontrol on the mis�t, as all the best �tting models(Φ < 1) range between 5 · 10−17 and 1 · 10−15, almost independently of the otherparameters. This result 
on�rms the out
omes of the arbitrary model, suggestingthat the rate of R de
rease is proportional to erosion e�
ien
y.The distribution of mis�t shows a se
ondary 
ontrol by the geometry of the initialbelt, whi
h slightly modulates the previous result: lower or wider orogens requirehigher erosion e�
ien
y to yield a good �t. This geometri
al 
ontrol is asso
iatedwith river erosion whi
h is a�e
ted by the initial slope of the orogen 2H/W : a lower167
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Figure 8.7: Comparison of the evolution of surfa
e topography/
rustal root thi
k-ness (R), for young and old orogens (modi�ed from Fis
her (2002) and Fren
h et al.(2009)), and for the best �tting models (Φ < 1) with respe
t to the least absolutevalues inversion with Φ the mis�t (Lower values indi
ating better �tting models).We only 
onsider the average R values for the entire a
tive orogens and for ea
h post-orogeni
 belts. The data used in the inversion is represented with bla
k �lled 
ir
les.Error bars represents the sparsity of the raw data taking into a

ount their errorbars (see Fig 8.1). It is used as an approximation of the standard deviation σi in theinversion. The horizontal gray dashed line indi
ates the value of R 
orresponding togeometri
al isostasy assuming no density variations during post-orogeni
 evolution.O, average for the a
tive orogens; WA, Western Alps; BR, Brooks Range; PR, Cen-tral Pyrenees; CN, Cantabrians Mountains; LL: La
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CHAPTER 8. POST-OROGENIC EVOLUTION OF MOUNTAIN BELTS: INSIGHTSFROM NUMERICAL MODELINGor a wider range requiring a higher erosion e�
ien
y to maintain the high erosionrate required to �t the de
rease of R with time.Interestingly, the best �tting models are not restri
ted to a parti
ular range ofinitial width W or height H of the mountain belt. As expe
ted from the out
omesof the arbitrary model, the radiogeni
 heat produ
tion rate does not in�uen
e thedistribution of the mis�t.4.4 Intera
tions between Erosion and DeformationIn this study, we are in parti
ular interested in understanding the 
ompetition be-tween surfa
e erosion and the long-term vis
o-elasti
 deformation of the 
rustalroot. Thus to simplify the intertwinned dependen
ies of the explored parametersthrough the 
onstitutive laws of the model, we de�ne two variables that 
hara
ter-ize expli
itely vis
ous deformation and surfa
e erosion: the e�e
tive vis
osity of the
rustal root (e.g., Godard et al., 2009),
µeff =

J2(σ
′)1−n

2γ0 · e(−Ea/RT )
, (8.12)where J2(σ

′) is the se
ond invariant of the deviatori
 stress tensor σ′,
J2(σ

′) =
√

3(σ′2
xx + σ′2

yy + σ′
yyσ′

xx + σ′2
xy), (8.13)and the geometri
al initial 
hara
teristi
 erosion rate,

Igeo = k′(Lbasin
W

2
)γ′

(
H

W/2
)α′

, (8.14)
∝ k′W−1.7H2.9 , (8.15)whi
h 
hara
terizes both the e�e
t of the initial geometry, with W and H , and of theerosion e�
ien
y (k′) on the erosion rate. It is equal to the maximum initial erosionrate of the river (Eq. 8.7), whi
h is obtained at the edges of the initial triangularbelt at a distan
e W/2 of the divide. At these points, the drained area and slopeare equal to A = LbasinW/2 and S = 2H/W , respe
tively.Figure 8.9 shows the distribution of the mis�t as a fun
tion of Igeo and of theminimum value of µeff obtained for ea
h model in the 
rustal root below the maindivide. At �rst order the distribution is 
on
entri
 with most of the best �ttingmodels (Φ < 1) 
onverging towards Igeo around 0.1 m.a−1. This suggests that theerosion rate is the prominent fa
tor that 
ontrols post-orogeni
 topographi
 de
ay.Best �tting models are obtained for a large range of 
rustal e�e
tive vis
osities, from

1021 to 1024 Pa.s. This suggests that this latter does not represent a limiting fa
torfor R de
rease, at least in the range of parameters values explored in our modelingapproa
h.Nonetheless, e�e
tive vis
osities of 1021 to 1024 Pa.s 
orrespond to Maxwell re-laxation time, trelax = µeff

E
, between 1 ka and 1 Ma, assuming a Young's modulus of

20−60 GPa. As a 
onsequen
e delayed vis
ous deformation o

urs in the models, asthe relaxation time is mu
h smaller than the post-orogeni
 time s
ale (> 100 Ma).Thus even if erosion is the main fa
tor that 
ontrols post-orogeni
 evolution in our170
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Figure 8.10: S
hemati
 representation of a river pro�le under (A) erosional 
ollapse,(C) gravitational 
ollapse, and (B) for an intermediary 
ase where the upper partof the river pro�le is dominated by gravitational 
ollapse whereas the lower partis dominated by erosional 
ollapse. Under erosional 
ollapse the river pro�le is
on
ave, while it is 
onvex under gravitational 
ollapse. Extension o

urs where thedivergen
e of the 
rustal vis
ous �ow is negative, whereas 
ompression o

urs whereit is positive.models, vis
ous behavior of the lithosphere needs to be 
onsidered. In parti
ularit is assumed to 
ontrol the type of post-orogeni
 
ollapse (e.g., Jadame
 et al., 2007).5 Dis
ussion5.0.1 Erosional or Gravitational Collapse?Two types of 
ollapse me
hanisms are 
ommonly 
onsidered for post-orogeni
 evolu-tion: (1) an erosional driven 
ollapse of the topography 
oupled to an elasti
 isostati
uplift (e.g., Baldwin et al., 2003); (2) a gravitational 
ollapse by vis
ous extensionof the 
rustal root asso
iated with a de
rease of surfa
e topography (e.g., Rey et al.,2001).In our model, we impli
itly assume a strong me
hani
al 
oupling between thelower and upper parts of the 
rust as we have de�ned only one rheologi
al layer forthe 
rust. As a 
onsequen
e, if gravitational 
ollapse of the 
rustal root o

urs, it islikely to deform the upper part of the 
rust as well. As neither faulting nor plasti
tyare allowed in the model, 
rustal 
ollapse is expe
ted to leave a distributed vis
o-elasti
 �ngerprint on the surfa
e of the model, in
luding surfa
e extension wherethe divergen
e of vis
ous �ow F in the 
rust is negative, and surfa
e 
ompressionwhere it is positive (Fig. 8.10). In parti
ular, river pro�les are expe
ted to re
ordboth in
ision and gravitational 
ollapse, whi
h are asso
iated with 
on
avity and
onvexity, respe
tively.To de
ipher if gravitational 
ollapse o

urs, we 
ompute for ea
h model thedegree of 
onvexity of the river pro�le. We de�ned it as the ratio of pro�le length thatis 
onvex over the total pro�le length, i.e. river pro�le that is above the base level,172
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CHAPTER 8. POST-OROGENIC EVOLUTION OF MOUNTAIN BELTS: INSIGHTSFROM NUMERICAL MODELINGand retain the temporal maximum as the 
hara
teristi
 value Cconv. It re
ords themaximum amplitude of the gravitational spreading during the whole post-orogeni
de
ay (Fig. 8.11). The maximum 
onvexity index ranges between 0 and ∼ 20%, butfor most of the models 
onvex rea
hes represent less than 5% of the river pro�lealong the range. Thus, the range of the parameters of our models allow mainlyfor erosional 
ollapse, with a few models being partly 
ontrolled by gravitational
ollapse. Gravitational 
ollapse, when it o


urs, mainly a�e
ts the 
enter of theorogen, whi
h is the hotter part of the 
rust and the less vis
ous. It is important tonote that in the range of parameters that were tested, no models present river pro�lethat are strongly dominated by gravitational 
ollapse. The distribution of Cconv asa fun
tion of µeff and Igeo (Fig. 8.11) indi
ates that: erosional 
ollapse stronglydominates for high erosion rates and high e�e
tive vis
osity; partial gravitational
ollapse, when o

uring, is asso
iated with low e�e
tive vis
osity and low erosionrates. These results are 
onsistent with the out
omes of the analyti
al approa
h ofJadame
 et al. (2007).In addition, good �tting models (Φ < 1) are strongly dominated by erosional
ollapse. This result suggests that a majority of orogens presents a dominant post-orogeni
 erosional de
ay with surfa
e topography isostati
ally over-
ompensated by
rustal root. However the existen
e of mountain ranges with a
tive extension andlateral 
rustal es
ape like in Tibet (Armijo et al., 1986) or in the Fren
h Her
ynianbelt (Gibson, 1991; Faure et al., 2002), demonstrates that gravitational orogeni

ollapse de�nitively 
an 
ontrol the orogeni
 de
ay. Further modelings in
ludingplateau like geometry, or evolving boundary 
onditions during orogeni
 de
ay arerequired to provide a framework to gravitational 
ollapse.5.1 Comparison With Previous Studies5.1.1 Erosional De
ay or Root Densi�
ation?Here we present the evolution of the mean elevation of the axial part of the range
H for the 10 best models, i.e. with the lowest mis�t (Fig. 8.12). All the modelsfollow the same trend, whi
h 
onsists of a rapid de
rease followed by a progressiveslowing of the de
rease. This trend is mainly driven by surfa
e erosion and bypartial subsequent regional isostati
 uplift. From these models mean topography ispredi
ted to be below 2 km after 100 Ma, and below 1.5 km after 300 Ma. Thistemporal de
ay of surfa
e elevation is 
onsistent with the temporal distribution ofelevation of natural mountain belts. Thus, our modeling approa
h is in agreementwith the distribution of both mountain belt elevations and R values. Moreover thisagreement is obtained using realisti
 values of the model parameters. This suggeststhat surfa
e erosion driven by river in
ision following a stream-power law with asto
hasti
 distribution of water dis
harge, asso
iated with a transition from lo
alto regional isostati
 uplift, is a potential me
hanism of post-orogeni
 topographi
de
ay and temporal de
rease of R.The best model solutions 
onverge towards moderate to high values of erosione�
ien
y k′ in the range of realisti
 values. On the other hand, post-orogeni
 moun-tains belts used to invert the model, represent a wide range of 
limati
 or surfa
elithologi
al 
onditions, whi
h are not ne
essary asso
iated with high k′ values nor174
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CHAPTER 8. POST-OROGENIC EVOLUTION OF MOUNTAIN BELTS: INSIGHTSFROM NUMERICAL MODELINGwith dis
harge distribution parameter χ = 1. This may suggest that our modelingapproa
h 
ould be asso
iated with other me
hanisms leading to both a partial de-
rease of R and surfa
e elevation with time. Compared to previous studies for whi
hpost-orogeni
 evolution of R is related to to a temporal de
rease of of density 
on-trast a
ross the Moho (Fis
her , 2002; Fren
h et al., 2009), our approa
h representsan alternative or a 
omplementary explanation for both R de
rease and topographi
de
ay.Densi�
ation of the 
rustal root, relative to the underlying mantle, by metamor-phi
 rea
tions should redu
e its buoyan
y. Two ways of metamorphi
 rea
tions 
anbe evoked to explain a de
rease of R with time: (1) Metamorphi
 rea
tions indu
edby lithospheri
 
ooling and resulting in an in
rease of density (Fis
her , 2002). In-
reasing the volume fra
tion of garnet inside the granulite fa
ies of a ma�
 lower
rust, or 
hanging to the e
logite fa
ies, would result in an overall densi�
ation ofthe 
rustal root. Whether su
h rea
tions starting from e.g. granulite fa
ies at quasi-
onstant pressure and de
reasing temperature would in
rease density is stronglydependent on the availability of �uids (Hetényi et al., 2010). (2) Delayed prograderea
tions 
atalysed by aqueous �uids, su
h as e
logitisation, 
ould in
rease 
rustalroot density, with a delay between rea
hing the pressure-temperature (P -T ) 
ondi-tions of the fa
ies and resulting densi�
ation (e.g., Hetényi et al., 2007). The sour
eof �uids 
an be either from dehydratation rea
tions or external supply (e.g., Lee
h,2001). However, both geophysi
al and �eld eviden
e suggests that the densi�
ationby e
logitisation o

urs during the 
onstru
tion of the orogeni
 wedges, at least forthe Himalayas and S
andinavian Caledonides (Hetényi et al., 2007; Labrousse et al.,2010). The aformentioned time delay between rea
hing P -T 
onditions of the e
log-ite fa
ies and subsequent metamorphi
 rea
tions was estimated to be between 7 and
10 Ma for the ma�
 Himalayan lower 
rust (Hetényi et al., 2007). This order ofmagnitude for the delay of e
logitisation does not support a progressive in
rease of
rustal root density during hundreds of million years.Thus, if metamorphi
 densi�
ation of the 
rustal root 
ould play a role on theinitial buoyan
y of mountain range, it is not 
lear whether or not it 
ould be themain fa
tor 
ontroling the temporal de
rease of R for most post-orogeni
 mountainbelts. Contrary to surfa
e erosion driven by �uvial in
ision, 
rustal root densi�
a-tion requires parti
ular 
onditions, mostly depending on the availability of �uids, tobe e�e
tive, and it is still spe
ulative if it 
ould be progressive in time.5.1.2 Initial Condition: Lo
al or Regional Isostasy?For pra
ti
al reasons, we have assumed the initial orogen to be in a state of lo
alisostasy, i.e. the thi
kness of the 
rustal root 
ompensates the load asso
iated withthe mean elevation of the topography. This represents an end member model, itsopposite being a 
omplete regional isostasy, where the topographi
 load is fullysupported by the �exure of the elasti
 lithosphere. Departures from lo
al isostasyare mainly observed near the border of mountain belts, whi
h indi
ates that theirtopography may be partly 
ompensated by regional �exure (Karner and Watts, 1983;Lyon-Caen and Molnar , 1985; Royden, 1993;Watts et al., 1995; Cattin et al., 2001).On the other hand, lo
al isostasy su

essfully predi
ts the 
rustal thi
kness andgravity anomaly over the 
entral parts of many natural mountain belts (Woollard ,176



CHAPTER 8. POST-OROGENIC EVOLUTION OF MOUNTAIN BELTS: INSIGHTSFROM NUMERICAL MODELING1969). This is supported by the distribution of R for a
tive orogens (Fig.8.7), whi
hsuggests a state 
lose to lo
al isostasy at the 
enter of the orogens, despite a widerange of values. As we are parti
ularly interested in the evolution of the 
entralpart of orogens, not of their borders, the assumption of lo
al isostasy as an initial
ondition is justi�ed.5.1.3 Sedimentation and Transport-limited or Deta
hment-limitedFollowing Godard et al. (2006) river in
ision is driven by a deta
hment-limited lawand sedimentation is limited to 
losed basins so that the main rivers �ow downhillto the edge of the model. This approa
h prevents from feedba
ks between piedmontsedimentation on the border of the range and the dynami
s of �uvial in
ision. Pied-mont sedimentation, by raising the e�e
tive base level of rivers bedro
k erosion, isexpe
ted to de
rease the erosion rate and to in
rease the time s
ale of topographi
de
ay (Baldwin et al., 2003; Pelletier , 2004). It has been proposed to be a governingfa
tor whi
h explains the 
onstan
y of topographi
 
hara
teristi
s su
h as height andwidth of the Appala
hians and Urals (Pelletier , 2004), and the applanation of thePyrennees at high elevation (Babault et al., 2005). Moreover Baldwin et al. (2003)propose that a transition from deta
hment- to transport-limited 
onditions in
reasesby a fa
tor 2 − 3 the de
ay time of post-orogeni
 topography. Su
h a transition isexpe
ted during topographi
 de
ay (Whipple and Tu
ker , 2002), with alluvial 
overprote
ting river bedro
k, and thus inhibiting erosion. A transition from deta
hment-to transport-limited, and the addition of sediment deposition in the adja
ent basinswould have to be introdu
ed in future modeling to explore their potential e�e
ts onorogeni
 de
ay. However as a result of our modeling approa
h, whi
h explains mostof post-orogeni
 evolution using only a deta
hment-limited formalism 
oupled with
lose basins sedimentation, more 
omplexity is not required at �rst order.6 Con
lusionThis study investigates the long-term post-orogeni
 evolution of a mountain belt,using a 2D thermo-me
hani
al �nite element model (Hassani et al., 1997) whi
h
ouples surfa
e pro
esses to lithospheri
 deformation. The model in
ludes: Fluvialin
ision by shear-stress (Lavé and Avoua
, 2001) with a sto
hasti
 distribution ofwater dis
harge and a 
riti
al in
ision threshold (Baldwin et al., 2003; Lague et al.,2005), and hillslopes landsliding (Lavé, 2005); Vis
o-elasti
 lithospheri
 deformation
oupled to a regional isostati
 support of the lithosphere.In parti
ular we fo
us on the 
onditions and model parameters that make itpossible to reprodu
e the temporal de
rease of the ratio R of surfa
e elevation to
rustal root thi
kness (Fis
her , 2002; Fren
h et al., 2009). The model parametersare the initial width W and height H of the range, the 
oe�
ient of erosion e�
ien
y
k′, and the radiogeni
 heat produ
tion rate of the 
rust Pr. Using an arbitrary setof parameter values, we show that this trend is sensitive at �rst order to erosione�
ien
y and to the initial geometry of the mountain belt: higher erosion e�
ien
yor initial mountain belt slope leading to a qui
ker R de
rease. Over
ompensation ofthe 
rustal root being a

ommodated by fo
used erosion on the range, and partialsubsequent regional uplift. 177



CHAPTER 8. POST-OROGENIC EVOLUTION OF MOUNTAIN BELTS: INSIGHTSFROM NUMERICAL MODELINGSampling the model spa
e with a uniform Monte-Carlo algorithm and using aleast absolute value 
riterion, leads to 
ombinations of model parameters 
ompatiblewith the data. The inversion 
on�rms the out
omes of the arbitrary model, andhighlights the prominent role of surfa
e erosion e�
ien
y on the temporal de
reaseof R, in
luding the e�e
t of erodibility, 
limate and mountain belt geometry. Onthe other hand, 
rustal vis
osity does not exert a strong 
ontrol on the results.Interestingly, gravitational 
ollapse (e.g., Rey et al., 2001) does not signi�
antlya�e
t the model behavior in the range of parameter values investigated.In addition, the topographi
 de
ay predi
ted by the 10 best �tting models is
onsistent with the temporal distribution of post-orogeni
 elevation. This demon-strates that post-orogeni
 evolution 
an be explained by surfa
e erosion following adeta
hment-limited formalism of river in
ision with sto
hasti
 �oods and a transi-tion from lo
al to regional isostasy. Introdu
ing more 
omplexity into the modelingapproa
h is not ne
essary at �rst order. Yet our modeling out
omes represent analternative or a 
omplement to an erosional 
ontrol by sediment �ux and piedmontsedimentation (Baldwin et al., 2003; Pelletier , 2004) and to 
rustal root densi�
a-tion by metamorphism (Fis
her , 2002). Taking into a

ount metamorphi
 phase
hange (Hetényi et al., 2010) in post-orogeni
 modelings is now required to assessthe potential in�uen
e of metamorphism on post-orogeni
 evolution.Appendix: Integration in Time of the In
ision LawFollowing the work of Lague et al. (2005), we express the details of the integrationof the in
ision law, with the assumption that the river water dis
harge is sto
hasti
and follows a power-law distribution (e.g., Tur
otte and Greene, 1993;Molnar et al.,2006).The downstream variations of the river width wa is expressed by,
wa = kaQ̄

ωa , (8.16)where ka is an amplitude fa
tor, and ωa a s
aling exponent. The lo
al, at-a-stationtemporal variation of �ow width w with dis
harge is des
ribed as a fun
tion of wa,
w = wa

(

Q

Q̄

)ωs

, (8.17)with Q the instantaneous river water dis
harge, Q̄ the river average water dis
harge,and ωs a s
aling exponent. Combining last two equations leads to,
w = kwQωs

⋆ Q̄ωa , (8.18)with Q⋆ = Q/Q̄ the water dis
harge ratio. Combining last equation with Eq. 8.4gives,
i = k

(

k−m
w Qm(1−ωs)

⋆ Q̄m(1−ωa)Sα − τc

)

. (8.19)Now we make the assumption that the temporal variability of the at-a-station riverwater dis
harge 
an be expressed through a power law distribution,
pdf(Q⋆) = kpdfQ

−(χ+2)
⋆ dQ⋆ , (8.20)178



CHAPTER 8. POST-OROGENIC EVOLUTION OF MOUNTAIN BELTS: INSIGHTSFROM NUMERICAL MODELINGwith χ an exponent and kpdf = χχ+1

Γ(χ+1)
a 
onstant that was 
hosen so that to be
onsistent with the formalism of Lague et al. (2005). Γ is the Gamma fun
tion su
hthat if χ is an integer then Γ(χ + 1) = χ!. Then we 
an integrate the instantaneousin
ision rate to express the long-term in
ision rate,

I =

∫ Qm⋆

Qc⋆

pdf(Q⋆)i(Q⋆)dQ⋆, (8.21)with i the instantaneous in
ision rate de�ned in Eq. 8.4. Qc⋆ is the 
riti
al waterdis
harge ratio and is de�ned su
h that i(Qstar ≤ Qc⋆) = 0, and Qm⋆ is the maximumwater dis
harge ratio at the times
ale 
onsidered. Note that a power law distributionfor water dis
harge is an approximation that holds if Qc⋆ is large, as it does notreprodu
e the de
rease of number of events for dis
harge below the average dis
harge.Here we also make the assumption that previous equation 
an be integrated with theparameters of the in
ision law independant of the water dis
harge, and we obtainfor m(1 − ωs) − (χ + 1) 6= 1,
I = kkpdf

(

k−m
w Q̄m(1−ωa)Sα (Q

m(1−ωs)−(χ+1)
m⋆ − Q

m(1−ωs)−(χ+1)
c⋆ )

m(1 − ωs) − (χ + 1)

− τc
(Q

−(χ+1)
m⋆ − Q

−(χ+1)
c⋆ )

−(χ + 1)

)

. (8.22)At large times
ale and in most settings Qm⋆ ≫ Qc⋆, and if m(1− ωs)− (χ + 1) < 1(whi
h is true with our model parameters) then any dependen
y with Qm⋆ rapidlyvanishes in Eq. 8.22, and I 
onverges on a 
onstant whose approximate expressionis:
I = −kkpdf

(

k−m
w Q̄m(1−ωa)Sα Q

m(1−ωs)−(χ+1)
c⋆

m(1 − ωs) − (χ + 1)

+ τc
Q

−(χ+1)
c⋆

χ + 1

)

. (8.23)In order to simplify previous equation, let's noti
e thatQ
m(1−ωs)
c⋆ = kwwmQ̄−m(1−ωa)S−ατc,whi
h gives,

I = −kkpdfτcQ
−(χ+1)
c⋆

m(1 − ωs)

(χ + 1)(m(1 − ωs) − (χ + 1))
. (8.24)Using Qc⋆ and Q̄ = kQAξP̄ , where P̄ is the average pre
ipitation in the drained area

A, in the previous equation leads to,
I =

(

k

τ ′

c

)

kstoA
γ′

P̄ β′

Sα′

, (8.25)179
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τ ′

c = τ
χ

m(1−ωs)
c (8.26)

ksto = −kpdf
m(1 − ωs)

(χ + 1)(m(1 − ωs) − (χ + 1))
k

−(χ+1)
(1−ωs)
w k

(χ+1)(1−ωa)
(1−ωs)

Q (8.27)
β ′ =

(χ + 1)(1 − ωa)

(1 − ωs)
(8.28)

γ′ = ξβ ′ (8.29)
α′ =

α(χ + 1)

m(1 − ωs)
(8.30)Ultimately we 
an even more simplify previous equation by de�ning an apparent
oe�
ient of erosion e�
ien
y k′ = kstokP̄ β′

/τ ′

c, whi
h leads to,
I = k′Aγ′

Sα′

. (8.31)a
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Con
lusionThis thesis presents new assessments of the relations between erosion, erodibilityand deformation in orogeni
 settings. This work has been fo
used on three mainaxes in
luding improvement of numeri
al 
odes, in-situ a
quisition of �eld data, andnumeri
al modeling.Building Numeri
al Tools to Study Erodibility, Erosion and Deforma-tion Several numeri
al tools were developed during this thesis. A 2D plan viewlands
ape evolution models that in
ludes river in
ision and hillslope landsliding wasdeveloped. Resolution issues 
on
erning modeling of relief wavelength were investi-gated and solved (these issues have also motivated the following paper: Pelletier ,2010). Following Lavé (2005) integration of 2D surfa
e pro
esses in 1D was ex-tended to a sto
hasti
 distribution of water dis
harge (Lague et al., 2005). It allowsto e�
iently 
ouple surfa
e pro
esses and solid Earth deformation into 2D numeri-
al models. For that purpose, a new remeshing algorithm 
alled Surfa
e LagrangianRemeshing (SLR) was developed. It allows to take into a

ount long-term ero-sion into 2D Lagrangian numeri
al 
odes based on triangular �nite elements, su
has ADELI (Hassani et al., 1997). It is a 
omplementary algorithm to Dynami
alLagrangian Remeshing (DLR, Braun and Sambridge, 1994) or to other remeshingalgorithms dealing with internal deformation of triangular elements. The main fea-tures of SLR are its speed, a

ura
y and its appli
ability to 2D and 3D numeri
almodels.A
quiring Data: S
hmidt Hammer Rebound, Erodibility and E�e
tiveProperties S
hmidt hammer rebound has been used by many studies (e.g., Du-vall et al., 2004; Yanites et al., 2010) as a proxy for the 
ontrol of lithology onerosion. Up to now, ex
ept for the pioneering empiri
al work of Dubille (2008),the link between erodibility (K) and S
hmidt hammer rebound (R) was not reallyestimated. First I propose, from the abrasion model of Sklar and Dietri
h (2001)and the results of empiri
al studies (Aydin and Basu, 2005; Yagiz , 2009), that Rand K are possibly related either by a power or exponential law, K ∝ R−4 or
K ∝ exp(−0.11R). In this thesis, R was measured for several �eld settings: Taiwana
tive orogen, the diageneti
 Annot sandstones and St Clement fault zone. Taiwanand Annot experiments reveal that e�e
tive properties strongly a�e
t R as well asro
k nature and geologi
al history, i.e. mainly diagenesis and metamorphism. Alinear model based on e�e
tive medium theory (Hudson, 1980, 1981) that sums upfra
ture density into a single parameter is proposed. This model was applied to afault zone that in
ludes se
ondary faults, dry and sealed fra
tures, tested with anunmat
hed number of R measures (750 measures, 7500 rebounds) and resolution183



CONCLUSION(25 measures per square meter). The modeled 2D image signi�
antly 
orrelateswith the observed map of R. This result demonstrates that fra
ture density 
an bequanti�ed with a S
hmidt hammer, and more importantly that e�e
tive elasti
ity issensitive to fra
ture type and to healing. Moreover, 
ompared to 
lassi
al abrasionexperiments (Sklar and Dietri
h, 2001; Attal and Lavé, 2009), R 
aptures the e�e
-tive properties of ro
k medium at a s
ale that is 
orresponding to erosion pro
esses,in the order of 1 to 30 cm.Numeri
al Modeling: Erosion, Rheology and Post-Orogeni
 EvolutionThe new version of ADELI, in
luding SLR and 2D surfa
e pro
esses integrated in
1D, was applied to study post-orogeni
 evolution of mountain belts. In parti
ular Ihave fo
used on the parameters, de�ning the e�
ien
y of surfa
e erosion and litho-spheri
 rheology, allowing to reprodu
e a temporal de
rease of the ratio of surfa
eelevation on 
rustal root thi
kness (R) (Fis
her , 2002) and a topographi
 de
ay,whi
h are both observed. Using realisti
 model parameters, it appears that a model
oupling surfa
e erosion governed by river in
ision intergrating a sto
hasti
 distri-bution of dis
harge (Baldwin et al., 2003; Lague et al., 2005) and partial subsequentregional isostati
 uplift is 
onsistent with both observations. The time s
ale of bothtopographi
 de
ay and R de
rease is 
ontrolled at �rst order by surfa
e erosion rate,whi
h depends on both the initial geometry of the mountain belt and on the 
oe�-
ient of erosion e�
ien
y. This highlights the 
ontrol of 
limate and erodibility onthe perseveran
e of topography. This modeling approa
h does not 
onsider potentialdensi�
ation of the 
rustal root asso
iated with metamorphism during post-orogeni
evolution, whi
h is suggested by Fis
her (2002) to be the dominant me
hanism 
on-trolling the temporal de
rease of R. I suggest that the two approa
hes are notantagonist but rather 
omplementary. From a numeri
al prospe
t, metamorphismphase 
hange (MPC) (Hetényi et al., 2010) was implemented into ADELI in orderto de
ipher the respe
tive preponderan
e of both me
hanisms.
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ONGOING STUDIES AND FUTURE WORKMetamorphi
 Phase Change and Post-Orogeni
 Evo-lutionAs mentioned in Chapter 8, Fis
her (2002) proposed that density variation indu
edby metamorphism is a 
ontrolling fa
tor of post-orogeni
 evolution. In parti
ular,a densi�
ation of the 
rustal root would result in a de
rease of buoyan
y and ofthe ratio of surfa
e elevation to 
rustal root thi
kness R, as observed. This is analternative or 
omplementary approa
h to the one investigated in Chapter 8, wheresurfa
e erosion partially 
ompensated by regional isostasy leads to a de
rease of R.To 
onstrain the relative e�e
ts and limits of both approa
hes, requires to modelsimultaneously surfa
e erosion, lithospheri
 me
hani
al and thermal behaviour, anddensi�
ation asso
iated with metamorphism. The �rst approa
h to take into a

ountmetamorphism into �nite element modeling, would be to 
hange the density of ea
helement, a

ording to the density of the fa
ies 
orresponding to the pressure P andtemperature T 
onditions. This would lead to �
reation� or �suppresion� of masswhere density in
reases or de
reases respe
tively. Thus it is not 
onsistent withmass 
onservation. To 
orre
t this requires 
hanging the volume of ea
h elementinversely to the 
hange of density. Implementation of metamorphi
 phase 
hange(MPC hereinafter) in the �nite element Cast3M was developed initially by Hetényiet al. (2010). In the following we present the implementation of MPC into ADELI,and present some preliminary results.Prin
iple of MPC in FEMChanging element volumes to respe
t mass 
onservation 
an be performed bydi�erent approa
hes:� Intuitively, moving the nodes of the elements inward (densi�
ation) or outward(de
rease of density) is the simplest approa
h. However, su
h an implementa-tion is not 
onsistent with me
hani
al solving in �nite element, as it rules outthe rheologi
al response of the medium 
onsidered and the boundary 
ondi-tions of the model.� Imposing a deformation �eld that would a
t to redu
e (densi�
ation) or stret
h(de
rease of density). On
e again this approa
h is not 
ompatible with takinginto a

ount the boundary 
onditions of the model.� Imposing a stress �eld.This latter approa
h has been implemented into ADELI, and the asso
iated al-gorithm is presented in Figure 8.13. We make the assumption that deformationasso
iated with metamorphism is elasti
 whi
h allows to 
onvert a 
hange of densityinto a stress �eld in
rement through Hooke's law.Stresses resulting from MPC σMPC 
an rea
h 105 Pa (Hetényi et al., 2010),whi
h is equivalent to stress drop during earthquakes (S
holz , 1990). This is signif-i
ant 
ompared to the internal stresses σINT of most geodynami
al systems. Thusit prevents from a dire
t modi�
ation of the stresses, at least in the quasi-stati
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Figure 8.13: The introdu
tion of mineral phase 
hanges into �nite element models isa stepwise iterative pro
edure. The evolving P-T 
onditions determine the densityof the elements through petrogeneti
 grids. The 
hange in density is translatedinto volumetri
 variations, that 
an be expressed as isotropi
 strain. In the elasti
assumption, these 
an be 
onverted to stress variations, whi
h provide the feedba
kto the �nite element 
ode. The indu
ed deformation of the mesh 
onverges towardsthe imposed density (and hen
e volume) values and veri�es 
onservation of mass.
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Figure 8.14: Petrogeneti
 grid for a water-saturated ma�
 system, representing the
ontinental lower 
rust. Same exa
t mineral 
omposition as Hetényi et al. (2007),and 
al
ulation made with PerpleX (Connolly , 2005). The letters denote the mainmetamorphi
 fa
ies: GS - greens
hist, A - amphibolite, G - granulite, BS - blues
hist,E - e
logite. Important variations of density o

ur as a fun
tion of pressure andtemperature 
onditions. This illustratee both the potential 
ontrol of metamorphi
rea
tions on pro
esses that are buoyan
y-dependent, and the possible feedba
ksbetween me
hani
s, thermi
s and metamorphism.approximation used in ADELI. Following Hetényi et al. (2010) we rather apply anumeri
al damping fa
tor F (< 1) to the metamorphi
 stresses,
σINT = σINT + FσMPC . (8.32)

F 
an also be interpreted as a kineti
 
oe�
ieent asso
iated with density 
hanges.These 
hanges are dedu
ed from variations of P -T 
onditions with respe
t to petro-geneti
 grids (Fig. 8.14) resulting from thermome
hani
al stati
 solutions (Connolly ,2005). It is important to note that petrogeneti
 solutions are not asso
iated withkineti
 
oe�
ients, whi
h prevents from giving a theoreti
al basis to F . Thus the
hoi
e of F is mostly 
onstrained by numeri
al 
onsiderations, su
h as respe
tingquasi-stati
 approximation. Nonetheless we a
knowledge that F hides a dependen
yon the kineti
s of MPC. Pra
ti
ally, values between 10 and 100 were tested here orby Hetényi et al. (2010).Appli
ation to Post-Orogeni
 EvolutionIn a �rst attempt to illustrate the potental e�e
t of metamorphism, we haverun 3 post-orogeni
 models (Fig. 8.15) similar to the one presented in Chapter 8,ex
ept that density in the lower 
rust is allowed to vary with MPC a

ording tothe petrogeneti
 grid presented in Figure 8.14. Contrary to retrograde rea
tions,prograde rea
tions lead to a densi�
ation of the 
rustal root and to a de
rease ofits buoyan
y. Consequently, the thi
kness of the 
rustal root is greater for prograde188
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entralarea of the mountain belt is sili
ate dominated, and the foothills or border areas are
al
iti
 or detriti
 dominated. Erodibility varies spatially with the nature of surfa
ero
ks: 
al
iti
 or detriti
 ro
k being generally more erodible than granite or gneiss.Diagenesis de
reases erodibility by in
reasing its density, de
reasing its porosity,and by 
imenting inter-grains pore or fra
tures. The e�e
t of metamorphism onerodibility is not dire
t, as on the one hand it in
reases ro
k density, but on theother hand it 
reates lineation or foliation. Faults and fra
tures weaken the ro
k andde
rease erodibility with respe
t to abrasion and favor erosion by plu
king (Molnaret al., 2007).than retrograde rea
tions, while summit elevation is higher in the retrograde 
ase.Thus prograde metamorphism is a potential fa
tor that 
ould explain de
rease of theratio of surfa
e elevation to 
rustal root thi
kness. However further investigationsare now required to validate these preliminary results.Spatio-Temporal Variation of Erodibility and OrogenyWillett (1999) proposed that a spatial gradient of pre
ipitation, su
h as the oneobtained by orographi
 pre
ipitation, 
ontrol orogeny by for
ing internal ro
ks toadve
t where erosion is the more intense. In rivers dominated by shear-stress in
i-sion, erodibility is as well as pre
ipitation a �rst-order 
ontroling fa
tor of erosione�
ien
y. Moreover erodibility is do
umented to be a fun
tion of ro
k type (Sklarand Dietri
h, 2001; Attal and Lavé, 2009) whi
h varies both with spa
e and timein most mountain belts (e.g., Himalaya, Pyrenees, European Alps, Andes, Taiwan,Sierra Nevada), deformation (Chapter 6), diagenesis and metamorphism (Fig. 8.16).In parti
ular the foothills of most mountain belts (e.g., Siwaliks) are 
ommonly moreerodible than the inner part (e.g., Higher Himalaya). I suggest that spatial and tem-poral gradient of erodibility 
an 
ontrol the amplitude and lo
ation of topography190
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Figure 8.17: S
hemati
 image presenting the distribution of fra
tures during theseismi
 
y
le of a strike-slip fault.in mountain belts.However to better understand the link between erodibility, erosion and ro
kadve
tion, it is required to de�ne a model of 
hannel width not only as a fun
tionof drainage area but also of lo
al slope (Attal et al., 2008). How rivers geometryadjusts to spatial or temporal 
hanges in erodibility is likely to be a 
ontroling fa
torof the e�e
ts of erodibility on orogeny.Cra
king and Healing the Damage Zone of MajorFaults and Interseismi
 Stress Build-up: a Numeri
alApproa
hAn important result of Chapter 6 is that the negative 
ontribution to sti�ness ofsealed fra
tures is less than open fra
tures. We thus suggested that this 
ould haveimportant impli
ation on the interseismi
 stress build-up of major faults.As illustrated by Figure 8.17, faults and fra
tures are 
reated during the 
oseismi
phase of the seismi
 
y
le, while sealed-fra
tures result from sealing (or healing) thato

urs during the interseismi
 phase (e.g., Sibson, 1992; Gratier et al., 1994; Renardet al., 2000). Fra
ture sealing is the 
onsequen
e of external material pre
ipitationor deposition in the related veins (Gratier et al., 1994; Evans and Chester , 1995;Renard et al., 2000). It is likely to o

ur after previous pressure solution of thesame material in stylolites (Gratier et al., 1994; Renard et al., 2000). A

ording toexperiments, the time s
ale of su
h fra
ture sealing, 
ontrolled by the the kineti
s ofpressure solution and asso
iated with deposition pro
esses, is on the order of severaltens of years to several millions years, and are strongly dependent on temperature,�uid 
ir
ulation, and ro
k texture (Rutter and Elliott , 1976; Hi
kman and Evans,1991; Gratier , 1993; Renard et al., 2000). Fra
tures, su
h as sealed-fra
tures, arelo
ated in the damage zone of main faults. We suggest that 
hanging the e�e
tiveelasti
ity around a major fault, by 
reation of fra
ture during the 
oseismi
 andpostseismi
 phase and by sealing of these fra
tures during the interseismi
 phase of aseismi
 
y
le, may have geodynami
al e�e
ts. In parti
ular it 
ould lead to variationof sti�ness in the damage zone and 
onsequently to variation of interseismi
 stress191
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Figure 8.18: S
hemati
 representation of (A) a 
lassi
al linear model of stress vari-ation during the seismi
 
y
le tangentially to the main fault plane, and (B) of thenumber of dry (open) and sealed (healed) fra
tures and of (C) 
orresponding Young'smodulus in the damage zone surrouding the main strike-slip fault. Note that thelinear model of stress build-up was de�ned independently of fra
tures present in thedamage zone.build-up on the main fault.Classi
al models of seismi
 
y
le (Fig. 8.18A) 
onsider that the interseismi
 stressbuild-up is a linear fun
tion of time sin
e the last 
oseismi
 event. Gratier et al.(2003) proposed that healing rate de
reases exponentially with time. From the
on
lusion of Chapter 6 it is reasonable to assume that healed fra
tures have anegligible e�e
t on the e�e
tive sti�ness 
ompared to open or dry fra
tures, whi
hhave a negative 
ontribution that is dire
tly proportional to their spatial density(Hudson, 1980, 1981). In a fault zone, fra
tures are lo
alised in the damage zone.Thus Young's modulus of the damage zone is likely to vary during the interseismi
phase of a seismi
 
y
le. Su
h variation of Young's modulus is expe
ted to a�e
tthe interseismi
 stress build up of the main fault.When 
onsidering a strike-slip fault, the in�uen
e of fra
ture opening and healingon interseismi
 stress build-up is likely to be dependent on: (1) the initial fra
turedensity of dry fra
turex whi
h sets the 
ontrast of Young's modulus between thedamage zone E2 and the host ro
k E1 (with E1 > E2); (2) the kineti
s of theexponential healing rate k1−2 whi
h sets the kineti
s of Young's modulus re
overyfrom E2 to E1 in the damage zone; (3) the width of the damage zone W2 and thewidth of the inta
t elasti
 plate; (4) The elasti
 thi
kness of the te
toni
 plate Dand its length L: (5) the velo
ity V a
ross the fault zone. Following the work ofJolivet et al. (2008) I intend to implement this set-up in ADELI 3D (Fig.8.19).192
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