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Notations

The parameters presented below are used in this manuscript.

a Half of contact patch length (unit: length)

b Contact patch width (unit: length)

µ Friction coefficient

kx Tread longitudinal stiffness (unit: force/length)

ky Tread lateral stiffness (unit: force/length)

CS Longitudinal slip stiffness (unit: force)

Cα Lateral slip (or cornering) stiffness, (unit: force)

V Tyre forward velocity (unit: length/time)

Vx Longitudinal component of the forward velocity (unit: length/time)

Vy Lateral component of the forward velocity (unit: length/time)

Vs Slip velocity (unit: length/time)

Vxs Longitudinal component of the slip velocity (unit: length/time)

Vys Lateral component of the slip velocity (unit: length/time)

w Tyre angular velocity (unit: angle/time)

Re Effective rolling radius (unit: length)

SL Longitudinal slip ratio

α Tyre side slip angle (unit: rad)

Sα Lateral slip ratio

υx Longitudinal tyre tread displacement (unit: length)

υy Lateral tyre tread displacement (unit: length)

γ Camber angle (unit: rad)

ψ Yaw angle (unit: rad)

µ Actual friction coefficient

µo Tyre to road coefficient of static friction

Fx Longitudinal tractive or braking tyre force (unit: force)

Fy Lateral tyre force (unit: force)

Fz Vertical tyre force (unit: force)



General introduction

Mx Tyre overturning moment (unit: force times length)

My Tyre rolling resistance moment (unit: force times length)

Mz Tyre self-aligning moment (unit: force times length)

B Stiffness factor (Magic Formula)

C Shape factor (Magic Formula)

D Peak value (Magic Formula)

E Curvature factor (Magic Formula)

SH Horizontal shift (Magic Formula)

SV Vertical shift (Magic Formula)

Y Output variable Fx, Fy or Mz (Magic Formula)

X Input variable Sα or SL (Magic Formula)

BCD Slope at the origin of the curve of Y = f(X) (Magic Formula)

ii



Le commencement de toutes les

sciences, c’est l’étonnement de ce que

les choses sont ce qu’elles sont.

Aristote

General introduction

The wheel is one of the oldest human inventions. It is more often assumed that the wheel

appeared 3500 years before Jesus Christ in Mesopotamia. According to this hypothesis, it

is after observing a pebble rolling that human realised the possible advantages that could

offer this perfect circular shape. In the past, tree boles were used for moving heavy charges

such as manufacturing materials. It is probably by understanding this principle eliminates

a significant part of the friction force that the concept of wheel has borned. The evidence is

that the invention of wheel is the origin of the revolution of human and goods transporta-

tion. Moreover, the wheel has been going through remarkable improvement with time. In

fact, wheel was first made using stone, then wood, later with steel, aluminum and finally

with composites. For example, the initial wood made wheel was circled (coated) with steel

in order to increase its stiffness as well as its life time. Meanwhile, the notion of vehicle

comfort has taken place and overcoming inconveniences due to the road unevenness has

quickly become an important issue. The major wheel improvement has started with the

use of rubber. Indeed, in 1869, Clément Ader, a french scientist and industrialist, decided

to circle (coat) the wood-made (or steel-made) wheel with rubber. The main advantage is

the damping property of the rubber. However, the wheel as described above designates a

unique solid part. In England, Thomsom (1846) and John Boyd Dunlop (1889) produced

what is commonly called hosepipe and bicycle ’gut’: a rubber pipe vulcanised on a textile

material frame and inflated with air. Edouard Michelin (1890), a former machine manu-

facturer, invented the steel rod tyre, which can be mounted and taken off from a circular

support termed rim. It is the invention of the first tyre, which is relatively close to modern

tyre in shape.

The tyre is the only contact point of ground vehicles with the road and therefore, the

tyre properties play a fundamental role when determining the dynamic behaviour of these

vehicles. Representative tyre model is then necessary for functional virtual simulation.

However, the performances and the environment challenges have led to the use of more
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General introduction

and more complex composite materials in tyre manufacturing. As a consequence, it is dif-

ficult to physically represent the tyre real behaviour on the road. Indeed, it is required to

consider either extensive and complex models or models with considerable simplification

for representing the tyre full behaviour on the road. In this context, getting a suitable

model for a given application becomes also a challenge for a simple model may not be

realistic enough, and for a more complex one may be difficult to handle and perhaps,

unnecessary for the given application.

In the aeronautical fields, contributing to better understanding the tyre dynamics as

well as the improvement of the use of optimal and representative tyre models is one of the

objectives of Messier-Dowty company, a landing gear manufacturer. This thesis is done

in collaboration with Messier-Dowty and is founded by the french national project called

MACAO (Modélisation Avancée de Composants Aéronautiques et Outils associés).

In the project MACAO, there are several industrial partners (Airbus-France, Messier-

Dowty, Turbomeca, etc), research centres and universities (CEA, CS, ONERA, UHA,

INSA-Toulouse, etc). This project has been launched in order to promote the use of nu-

merical simulation by the different partners. In fact, the improvement of simulation per-

formances has become necessary because of the new competitive challenges (productivity,

time to market, reactivity) and technologies (environment, energy, etc). The objective

is to take advantage of performances of the modern simulation tools by providing new

models and developing tools which allow the simulation of systems and new physical phe-

nomenon.

The industrial partner Messier-Dowty has the expertness in the landing gear domain.

However, the landing gear is a part of a complex system, the aircraft, and is directly

articulated to the fuselage and to the wheel. With respect to the load cases, the landing

gear has to meet the JAR/FAR (airworthiness authority organisation) regulations in or-

der to obtain an airworthiness certificate. These load cases include the influence of the

aircraft fuselage as well as the one of the wheel (tyre). Messier-Dowty receives fuselage

specifications from the aircraft manufacturer and tyre ones from the tyre manufacturer. If

the JAR/FAR regulations to date aim to ensure robust landing gear, it does not require

the analysis of the landing gear reaction under the various and complex behaviour of the

wheel, specially its tyre. Therefore, the modelling of the tyre dynamics did not constitute

a main issue for landing gear manufacturers for long time (specially in the civil aircraft

fields). Nowadays, because of the competitive challenges, previously mentioned, the ten-

dency started to change. Thus, the objective of Messier-Dowty is to develop models for
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simulating the tyre-road interaction characteristics with respect to the aircraft run types.

These run types include acceleration/braking during take off/landing, cornering and com-

bined cornering-acceleration/braking during taxiing, at steady-state condition. This thesis

is done in collaboration with Messier-Dowty company in order to contribute to answering

this problematic.

The work performed can be described as follows. In one hand, the literature studies

in the field of tyre-road interaction modelling are investigated and then, the motivations

as well as the limitations of the models are highlighted. In fact, it is shown that each

model is developed in a specific tyre run type condition, based on a given approach which

involves a certain number of assumptions. With respect to the hypotheses adopted, the

model derived may be more or less representative of the real tyre behaviour. In the other

hand, based on the literature survey of tyre models, the study requirements and the mea-

surements data constraints, an a priori choice of suitable tyre models is proposed for the

tyre run types conditions proposed by Messier-Dowty. This a priori chosen models are

investigated and the advantages as well as the limitations of each model are discussed.

Extension of some models for improving their representativeness and a further develop-

ment of tyre models are proposed in order to better capture the tyre physical behaviour

with respect to the considered tyre run type.

Besides, it should be underlined that tyre models are mainly nonlinear and depend on

parameters obtained from measurements data. These measurements data are often few

or/and incomplete, especially in the aircraft domain, and involve high costs. Thus, some

parameters are estimated with more or less precision. Among all the parameters, however,

some only have a small or insignificant influence on the model response and therefore, do

not need to be determined precisely. In the other hand, some parameters are determinant

for the model response and thus influence its uncertainty significantly. These parameters

may require additional measurement data in order to be estimated with relatively high

accuracy. In order to prepare and plan the experiments, it is necessary to distinguish the

parameters with an insignificant influence on the response uncertainty, so as to set them

at their nominal value in their interval of variation. For this sake, a method for carrying

out sensitivity analysis on a model is presented. This method helps to classify a model

parameters into a hierarchy with respect to the importance of their influence on the model

response.

The approach adopted for carrying out the objectives of the thesis is described within

five chapters. In chapter 1, a survey of the literature steady-state tyre models are pre-
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General introduction

sented. The models are described according to the main categories commonly encountered

in the literature, physical, semi-physical and empirical. Then, by taking into account the

main factors which play an important role in tyre modelling, it is proposed a classification

for the physical and the semi-empirical models, which are studied in the following chap-

ters.

The physical category of models are investigated in chapter 2 in order to propose suit-

able tyre models for the applications in the context of the thesis. First, based on the

literature survey of steady-state tyre models, the study requirements and the measure-

ments data constraints, an a priori choice of suitable physical models is proposed. Then,

the a priori chosen models are investigated and an extension of a model is also presented,

which help to improve its representativeness. Then, it is shown that the physical models

present some significant limitations or/and cannot be used in the context of the thesis.

Therefore, the semi-empirical models are investigated in chapter 3. An a priori choice of

a semi-empirical model is presented and the modelling results are discussed.

In chapter 4, a further study of the tyre forces and moment generation at the particular

case of pure cornering in steady-state condition is shown. Based on a simple but compre-

hensive physical approach, the generation of the longitudinal component of the tyre force

and the one of the self-aligning moment at pure cornering are exhaustively described.

Finally, in chapter 5, the necessity of performing sensitivity analysis is presented. Then,

a methodology for carrying out sensitivity analysis on a model is proposed and applied

on two examples of tyre models. All the parameters of each model are classified into a

hierarchy with respect to the importance of their influence on the model response.

The work performed in the context of the thesis has led to the following publications.

Publications

International journals (2)

1. R. Kiébré, F. Anstett-Collin and M. Basset.A physical model for induced longitu-

dinal force on tyre during steady-state pure cornering. International Journal of

Vehicle Systems Modelling and Testing, Vol. 5, Nos. 2/3 (2010),

pp: 161-175.

2. R. Kiébré, F. Anstett-Collin and M. Basset (2010). Sensitivity analysis for studying

influential parameters in tyre models. International Journal of Vehicle Systems
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International journals under review (2)

3. R. Kiébré, F. Anstett-Collin and M. Basset (2010). Better understanding the self-

aligning moment generation at pure lateral slip. Vehicle System Dynamics.

Under review.

4. R. Kiébré, F. Anstett-Collin, M. Basset (2010). Using the Magic Formula model for

induced longitudinal force at pure lateral slip. International Journal of Vehicle

Design. Under review.

International Congress with selection panel and Proceedings

5. R. Kiébré, F. Anstett-Collin and M. Basset. Analyse de sensibilité pour l’étude des

paramètres influents dans les modèles d’interface pneu/sol. Proceedings of Six-

ième Conférence Internationale Francophone d’Automatique, CIFA, Nancy,

France, 02-03 June, 2010.

6. R. Kiébré, F. Anstett-Collin and M. Basset. Sensitivity analysis for tyre/road in-

terface model. Sixth International Conference on Sensitivity Analysis of

Model Output, SAMO - Milano, Italy, 19-22 July, 2010. Procedia - Social and

Behavioral Sciences, Volume 2, Issue 6 (2010), pp: 7688-7689.

7. R. Kiébré, F. Anstett-Collin and M. Basset. Real shear forces and moment gener-

ated by tyre during pure lateral slip. Proceedings of the 2010 ASME Interna-

tional Mechanical Engineering Congress & Exposition (IMECE), Vancou-
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Une bonne idée doit être simple sur le

fond, ce qui ne l’empêche pas de

prendre toutes les complexités

imaginables dans la forme. Voyez la

roue...

Bernard Tirtiaux

Chapter 1

Review of tyre models for

steady-state responses

Carrying out a review of the current state of research regarding tyre-road interface mod-

elling for steady-state responses is the first step towards choosing appropriate models for

simulating the steady-state tyre responses with respect to the tyre run types under interest.

To help comparing the different models, they are described according to the three categories

commonly used in the literature, physical, semi-empirical and empirical. It is proposed

a classification for the physical and the semi-empirical models, which are studied in the

following chapters. This classification is based on the main factors playing an important

role in tyre modelling. These factors include the distribution of the normal pressure over

the contact patch, the definition of the friction coefficient at the tyre-road interface and

the representation of the tyre carcass. The equations derived as well as the number of

parameters involved are taken into account to assess the relative complexity of each model.

1.1 Introduction

The tyre properties play a crucial role when determining ground vehicle dynamic behaviour

because the tyre-road interface is the only contact surface with the ground and the major

part of the efforts applied to the vehicle passes through the tyre. Due to this fundamental

role of tyres, a lot of studies have been focused on the derivation of tyre models. The

description of the tyre behaviour on the road can be from simple expressions to more

advanced ones, depending on the level of accuracy required for a specific purpose. Thus,

several tyre models have been proposed in the literature. One can distinguish two main

kinds of models describing the tyre behaviour, the steady-state and the transient dynamics

1
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models. In the sense used in tyre dynamics work [1], the steady-state refers to the situation

in which the phase relationships between all motions of the tyre structure are fixed and

so, no longer vary with time. In this case, all the vehicle states, speed, yaw rate and

path curvature, remain constant. This aspect is more devoted to pure tyre characteristics

studies. In the other hand, in transient state, the phase relationship between the motions

of the vehicle is varying with time. Thus, the transient investigations deal with forces and

deformations at the tyre-road interface arising from road roughness, tyre-wheel assembly

non-uniformities, the operating conditions, etc. An overview for transient response can

be found in [2]. This chapter is focused exclusively on steady-state tyre models because

it corresponds to the thesis requirement defined by Messier-Dowty company. Moreover, it

is important to mention that the company has limited the objectives of the study to the

tyre steady-state response because there are no measurements data of the tyre transient-

dynamic behaviour. Thus, it would not be possible to validate any investigation on the

tyre response under this condition.

Among the steady-state models, one can also distinguish the physical, the semi-empirical

and the empirical models. The physical models are based on the theory of the tyre

physical structure behaviour [3, 4, 5, 6]. Because of the tyre structure complexity, physical

models which aim at describing the tyre in great details can become intractable. Thus,

assumptions are often made so that they fail to be fully physical and can become semi-

empirical or empirical models. The empirical models are mathematical models describing

measured tyre characteristics through mathematical formulas and interpolation schemes

[7, 8, 9]. These formulas have a given structure and involve parameters which are usually

assessed with regression techniques to yield a best fit with measured data. The semi-

empirical models are based on use of a number of tyre basic characteristics, typically

obtained from measurements, and combined with the theory of the physical tyre structure

behaviour [10, 11, 12, 13, 14, 15, 16].

The aim of this chapter is to provide a literature survey of the previous researches

in tyre modelling for steady-state responses. Due to the important number of models

encountered in the literature, there is a real need to list and classify these models in

order to help choosing the appropriate models for the steady-state applications required

in the present work. The different models are presented according to the three categories

commonly used in the literature, physical, semi-empirical and empirical. The principle

of development (assumptions or/and approximations) as well as the conditions of validity

of each model are described. Then, based on the main factors playing an important role

in tyre modelling, it is proposed a classification for the physical and the semi-empirical
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models. These factors include the distribution of the normal pressure over the tyre-road

contact patch, the definition of the friction coefficient at the tyre-road interface and the

definition of the carcass. The equations derived, the number of parameters involved and

the effort required for determining these parameters are taken into account to assess the

relative complexity of each model.

The chapter is organized as follows. Section 1.2 presents the main types of tyres

that are commonly encountered as well as their particularities. In section 1.3, the tyre

orientation, characteristics and operating variables are defined. Then, in section 1.4,

the current physical models are reviewed. The motivations and the limitations of these

physical models are discussed and a classification is proposed. Section 1.5 is devoted to

semi-empirical models and a classification is also provided. Empirical models are presented

in section 1.6.

For the sake of clarity, the equations of physical models are voluntarily left out, in

order to lighten the description of the models. However, the equations of some models are

given in appendix B.

1.2 Main types of tyres

The aircraft tyre is a mechanical structure composed of a flexible carcass of high-tensile-

strength cords fastened to steel-cable beeds that firmly anchor the assembly to the rim.

The behavioral characteristics of a tyre depend on the operating conditions and also on

the tyre construction. Indeed, two basic types of tyre construction are broadly available,

radial and bias-ply tyres.

Radial tyre

The radial tyre construction is characterized by parallel plies (rubberised fabrics reinforced

by cords of nylon, rayon, polyester or fibreglass) running directly from one bead to the

other at an angle of 90◦ to the circumference, figure 1.1A. These plies form the commonly

termed tyre carcass. The advantages of this type of carcass construction are the extreme

flexibility and the soft ride. The directional stability is ensured by the use of stiff belt

fabric or steel wire 2 that runs around the circumference of the tyre between the carcass 5

and the tread 1. The cord angle helps to keep the tread flat during cornering despite the

lateral deflection.
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Bias tyre

In the bias tyre construction, the carcass is composed of two or more plies extending from

bead to bead with the cords at angle of 35 to 40◦ to the circumference and alternating

in direction from ply to ply, figure 1.1B. These cords angle results in soft tyres for ride

comfort. Bias-ply carcass is laterally stiffer than a radial ply-carcass. Today, bias tyres

are no longer widely used, however, they are still accepted for certain military aircrafts

and for some ground vehicles (example of trucks).

Generally speaking, aircraft tyres and most ground vehicle tyres are relatively similar

in structure and shape. However, there is a significant difference between their material

characteristics and their operating conditions. Indeed, the tyres of most ground vehicle are

designed either for high speed and relative low load, example of sport/racing cars (about

320Km/h), or for high load and low velocity, example of earth mover (top speed: 70Km/h,

gross weight: 70Tonnes). In the other hand, an aircraft tyre is designed to combine both

high load and high speed, example of Airbus A380 (maximum take off speed: 360Km/h,

maximum weight: 560Tonnes).

Figure 1.1: A. Radial tyre carcass - B. Belted - bias tyre carcass

1 Tread

2 Tread reinforcement ply (bias)/Protector ply (radial)

3 Undertread

4 Sidewall

5 Carcass plies

4
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6 Carcass plies turn-ups

7 Liner

8 Bead

9 Chafer strips (bias)/Flipper strip (radial)

To describe the tyre-road interaction characteristics, there is not a real need to make a

distinction between bias and radial tyres. Therefore, such distinction is not made in this

report.

1.3 Definitions of tyre characteristics

To describe and compare the literature tyre models, it is first necessary to define the

operating variables (parameters), which describe the tyre orientation, motion and shear

forces generation in the contact patch. The tyre models will be cast in the same coordinates

system with the same operating variables, which are presented next.

1.3.1 Coordinate systems and operating variables

Several coordinate systems are used in tyre modelling and they differ mainly from the tyre

orientation and from the sign conventions of the operating variables. Figures A.1 and A.2

in appendix A, describe the coordinate systems commonly used in the literature for tyre

modelling. In the present study, ISO coordinate system is adopted (see also figure 1.2).

Besides, figure 1.2 represents a rolling tyre by a string with a given width. This tyre

is inclined with respect to the vertical axis by an angle termed camber angle γ. The

coordinate system originates at the centre of the contact patch, point C, and x − y axes

are in the road plane. The forward velocity V shows an angle, noted α, with respect to

the wheel plane which is directed by the longitudinal axis x. This angle α is called side

slip angle and results from tyre lateral deflection in the contact patch during cornering

manœuvre for example. Both angles α and γ are considered positive in their respective

direction as shown in figure 1.2. Vx and Vy are the wheel velocity components. If a braking

or driving torque is applied on the rolling wheel, the tyre material will begin to elongate in

the contact patch. This displacement of the tyre material causes the rolling velocity, Vr, to

exceed the longitudinal velocity Vx (driving torque) or to decrease relatively to it (braking

torque). The difference between rolling velocity and longitudinal velocity represents the

longitudinal slip velocity Vsx. A normalized parameter, termed longitudinal slip ratio SL
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Vy

Vs
Vx

Vsx

Vr
V

z

ψ

γ

γ

α

w

Wheel axis

C

Fx Fy

Fz

xy

edge

Figure 1.2: ISO tyre coordinate system

is then defined as follows:

SL = −Vx − Vr

Vx
= −Vx − Rew

Vx
(longitudinal slip ratio) (1.1)

where w is the wheel angular velocity and Re, the effective rolling radius, which will be

defined in the next paragraph. The following notation is often adopted: Vxs = Vx − Vr.

The lateral slip ratio, noted Sα, is defined as the ratio of the lateral velocity Vy and the

longitudinal one Vx. It also corresponds to the tangent of the side slip angle α, figure 1.2.

Sα =
Vy

Vx
= tanα (lateral or side slip ratio) (1.2)

The resultant slip velocity Vs and the resultant slip ratio S are defined as follow.

Vs =
√

V 2
sx + V 2

y

S =
√

S2
L + S2

α

(1.3)
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When an inclined wheel (wheel with camber angle γ) is making a turn along a circular

flat surface, it is appropriated to consider the turning motion in the description of the tyre

shear forces and moments [17]. The turning motion is the resultant of the camber and the

spin angular motion, noted γ and ψ respectively. The turn slip parameter ϕ is defined as

follows:

ϕ =
ψ̇

Vx
− V̇r

Vx
sin γ (1.4)

where ψ̇ represents the tyre spin angular speed and Vr the rolling velocity.

In steady-state motion condition of the wheel, the spin slip is simply equal to the road

curvature:
ψ̇

Vx
=

1

ρ
, where ρ is the radius of the circular path of the wheel.

1.3.2 Definitions

Free-rolling: it refers to a wheel in motion without driving/braking torque, side slip,

camber, or turn slip. In this particular case, the longitudinal velocity Vx is equal to

the rolling velocity Vr. The effective-rolling radius Re is then defined as the ratio the

longitudinal velocity Vx of the free-rolling wheel over its angular velocity w.

Re =
Vr

w
=

Vx

w
(free-rolling) (1.5)

Pure longitudinal slip: it designates the situation where the wheel is submitted to driving

or braking torque exclusively. The tyre deformation in the contact patch is then assumed

to be exclusively in the longitudinal direction (x axis) and therefore, only longitudinal

force Fx, also termed pure longitudinal force, is developed.

Pure lateral slip: it describes the condition in which the tyre is submitted to a cornering

manœuvre without driving/braking torque, camber and turn slip. The tyre is also said

to be at pure side slip or pure cornering condition. The tyre deformation in the contact

patch is then considered to be exclusively in the lateral direction (y axis), which induces

a side slip angle noted α. This lateral deformation generates a lateral force Fy, also called

pure lateral force.

Combined slip: it refers to a situation in which the wheel is submitted to braking or

driving torque in combination with cornering manœuvre.

Longitudinal slip stiffness CL: it represents the slope at the origin of the curve Fx = f(SL).

CS =
∂Fx

∂SL

∣

∣

∣

∣

SL=0,Sα=0

(1.6)
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Cornering stiffness Cα: it is the slope at the origin of the curve Fy = f(Sα).

Cα =
∂Fy

∂Sα

∣

∣

∣

∣

Sα=0,SL=0

(1.7)

1.4 Physical models

In physical models, the expressions of the tyre characteristics are developed based on tyre

displacement in the contact patch, which depends on its physical properties. The main

factors playing an important role in physical models development are the friction properties

in the tyre-road interface, the distribution of the normal pressure, the compliances of the

belt carcass and of the tread band.

Next, the literature survey of mathematical physical models are presented. The final equa-

tions of some models are provided in appendix B.1. References which contain description

of the theoretical approach and the full equations of each model are also given.

1.4.1 Brush model

The brush model [3, 5, 6, 18] is based on a relative simple representation of the tyre

structure and it assumes the tyre to behave as an elastic material. In fact, the tyre tread

are represented by an array of small elastic rectangular elements attached to a rigid ring,

figure 1.3a.
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z

w

V

Fx

Fy

Fz

2a
x

y

Leading edge

Tread elements

α

Rigid

ring

Normal pressure

distribution p(x)

a) Tyre representation according to brush model
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b) Contact patch representation (Top view)

Figure 1.3: Brush model concept
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The tread elements form the tread band surface which comes into contact with the road

surface. The compliance of these elements is assumed to represent the elasticity of the

combination of carcass, belt and actual tread elements of the real tyre. During free rolling

of the tyre (that is without action of driving/braking torque, side slip, camber or turning),

the wheel moves along a straight line parallel to the ground and in the direction of the

wheel plane. In this particular case, the tread elements are deemed vertical and move from

the leading edge to the trailing one without horizontal deflection and therefore, without

fore/aft or side force. A possible presence of rolling resistance is disregarded and when

tread element deflection occurs due to shear force, it is always supposed to be parallel

to the road surface. The undeformed contact patch shape is assumed rectangular, figure

1.3b, where the letter a represents its half-length and b its width. A parabolic normal

pressure distribution p, which vanishes at the contact entry and exit points, is considered

in the contact patch. At small slips (longitudinal and/or lateral slip), the tread band is

supposed to be in complete adhesion with the road surface. But, when slips parameters

rise, a sliding zone appears from the trailing edge. This sliding zone increases with slips

parameters up to full sliding. The tyre forces in the adhesion zone are assumed to be

caused by the tyre elastic deformations. In the sliding zone, the tyre forces are caused by

sliding friction. The model deals with pure and combined slips conditions.

Several models are derived from the brush model concept and they are presented in the

following subsections.

1.4.2 Fiala model

In the Fiala model, the same approach as in the brush model is used to model the tyre

structure and its deflection in the contact patch [19]. A parabolic normal pressure distri-

bution over a rectangular contact patch is assumed. The static friction coefficient (friction

at zero slip) is used in conjunction with the dynamic one (friction at full sliding) to define

a linear friction vs slip velocity. The model equations are developed only for pure slip

conditions (longitudinal or lateral slip). The pure lateral force, for example, is a parabolic

curve for side slip angle values less than the critical one α∗, and is assumed to be constant

(horizontal curve) after this critical value, figure 1.4. It should be noted that Fiala model

is actually used by Messier-Dowty company and therefore, it will be further investigated

in chapter 2.
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Figure 1.4: Lateral force and self-aligning moment curves shapes according to Fiala tyre

model (same shape for brush model)

Next, the elastic beam model that handles differently the tread band modelling is pre-

sented.

1.4.3 Elastic beam theory

In the elastic beam theory, the tyre is treated as an elastic beam attached to a fixed base

(wheel rim) [20]. In the contact patch, the tyre deflection is described using the classic

elastic beam theory. The contact patch is assumed rectangular. If a parabolic normal

pressure distribution is supposed, the shape of the tyre lateral displacement in the contact

patch is quite similar to that obtained with the brush model as already illustrated in

figure 1.3b. In fact, the lateral deflection of the tread band follows a linear shape in the

adhesion region of the contact patch. In the sliding zone, the tyre deformation is caused

by sliding friction and its shape is mainly governed by the normal pressure distribution.

Besides, the model forces and moments equations are developed for pure and combined

slips conditions.
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Figure 1.5: Top view of tyre lateral deflection - elastic beam theory

The previous presented models consider the tyre-road contact patch to be possibly divided

into two zones, an adhesion zone and a sliding one, with respect to slips parameters.

They do not assumed any transition between these two zones. The following models,

termed HSRI - NBS, introduce a transition zone in their approach for describing the tyre

deformation in the contact patch.

1.4.4 HSRI - NBS models

The United States Highway Safety Research Institute, HSRI, has developed a model

termed HSRI-NBS [21]. Three versions are successively presented, each one being an

extension of the previous model.

In the first version, HSRI-NBS-I model, the tyre tread are considered as an array of elastic

rectangular blocks attached to an elastically supported ring, figure 1.6. The ring, which

represents the tyre carcass, has a bending stiffness. It is separated from the rim by a

spring foundation which allows to simulate the longitudinal and lateral carcass motion.

Similar to the brush model concept, the tread elements form the tread band surface which

comes into contact with the road surface and their shear deformations are supposed to be

parallel to the road surface. The friction coefficient is supposed to be a linearly decreasing

function of sliding speed. A rectangular contact patch, which may be divided into adhe-

sion and sliding zones (relatively to the slips parameters) is also assumed. The normal

pressure distribution is deemed uniform over the contact. However, it is found that the

approximations made for this model do not allow a derivation of reasonable equations for
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Figure 1.6: Tyre tread, belt and carcass representation - HSRI - NBS models

the tyre characteristics, especially for the self-aligning moment. Thus, a second version,

HSRI - NBS- II model, is proposed.

In HSRI-NBS-II model [21], a transition region is introduced between the adhesion and

the sliding regions to avoid an abrupt change from adhesion to sliding, figure 1.7. The

definitions for the tyre carcass, the tread elements, the normal pressure and the friction

coefficients remain the same as in the previous version. Nevertheless, the assumption of

uniform normal pressure distribution in the HSRI - NBS-II model is found not to be real-

istic enough and a third version, HSRI-NBS-III model, is proposed. In this third version,

a parabolic normal pressure distribution is assumed and the simulation results were found

better when compared to those of the previous versions. The model forces and moments

equations are developed for pure and combined slips conditions, see appendix B.1.3.
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Figure 1.7: Tread deflection in the contact patch - HSRI - NBS model

Sakai model, presented next, uses the brush model concept in combination with the elastic

beam theory to defined the tyre structure and its contact with the road.

1.4.5 Model of Sakai

In the model of Sakai [21, 22], the contact patch is represented using the brush model con-

cept, which assumes tread elements to form a rectangular contact with the road surface.

The tread elements are considered to be attached to the tyre carcass. The tyre carcass is

supposed to behave as an elastic beam. A parabolic normal pressure distribution, which

vanishes at the contact entry and exit points, is considered. Besides, a static friction

coefficient is assumed in the adhesion zone and an anisotropic sliding friction coefficient

in the sliding zone. In combined slip conditions, the lateral force is expressed as function

of both longitudinal and lateral slip parameters SL and Sα, respectively. This expression

is presumed to take into account the influence of the braking and driving tractive force

(longitudinal force) on lateral force generation. In [21], it is shown that Sakai model pro-

vides reasonable modelling results for the traction and cornering forces when compared

with measurements data. The models forces and moments equations are developed for

pure and combined slips conditions, see appendix B.1.5.

Ratti model, presented below, is also based on brush model concept.
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1.4.6 Model of Ratti

In the model of Ratti [23], the tyre structure representation is similar to that of the brush

model, except the ring which is supposed flexible with a given stiffness instead of a rigid

ring. It is proposed a model, which describes the contact patch dimensions as function

of the vertical load and of the tyre vertical stiffness. As in the Sakai model, the lateral

force is expressed as function of both longitudinal and lateral slips parameters SL and Sα,

respectively, which is also assumed to take into consideration the influence of the driv-

ing/braking tractive force on lateral force generation. The models forces and moments

equations are developed for pure and combined slip conditions, see appendix B.1.6.

The tread simulation model, presented next, is a further extension of the brush model

which enables to enlarge its application range with finer and more accurate description of

the tyre features.

1.4.7 Tread simulation model

In the tread simulation model [10], the contact patch is divided into a number of zones

of equal length, in each of which a tread element is followed. In this way, the forces and

moments acting on the tread elements are determined while moving through the zones.

Then, the total forces and moments are obtained by integration over the entire zones. The

belt distortion caused by these forces can be also calculated. The tread simulation model

enables to investigate the effects of an arbitrary pressure distribution, the velocity and the

pressure dependent friction coefficient, the anisotropic stiffness properties of the tyre, the

combined lateral, longitudinal and camber or turn slip and the lateral bending of the tyre

carcass. The tread simulation model is actually one of the most advanced mathematical

physical models that provide simulation results close to the reality [10].

The next model proposes a new approach for modelling the tyre and the contact patch.

1.4.8 Mathematical-physical 2D tyre model

The mathematical-physical 2D model describes the tyre behaviour using two main ele-

ments [24], as illustrated in figure 1.8. In one hand, the tyre structure is modelled by

two rigid bodies, a disc and a ring, linked to each other with elastic springs and viscous

linear dampers (for dynamic studies). In the other hand, the contact patch is modelled

by a number of parallel brush elements which are linked to a flexible truss. The truss is
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supported by a rigid plate which is joined to the ring by residual stiffnesses and damping

elements. An arbitrary distributed normal pressure is assumed. The model forces and

moments expressions are developed under pure and combined slips conditions, and also

take into account the influence of camber, yaw and turn slip.

Wheel rim

Longitudinal stiffness

Lateral stiffness

Vertical stiffness

and damping

and damping

and damping

and dampings

Brush elements

Contact model using brush

model concept combined

with residual stiffnesses

Road

Figure 1.8: Tyre and tyre-road contact representation - Mathematical-physical 2D tyre

model
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1.4.9 Classification of the physical models

Table 1.1 attempts to provide a classification of the different physical models presented

previously. The criteria considered for this classification are the following:

• Definition of the friction coefficient: isotropic or not.

Isotropic friction coefficient would assume same value for friction coefficient in the

two directions of the contact patch plane, µ = µx = µy.

• Distribution of the normal pressure: uniform, parabolic or arbitrary.

• Definition of the tyre belt and carcass: flexible or rigid.

• Consideration of the influence of camber γ and yaw ψ angles.

• Complexity: the complexity includes the level of approximation made on the tyre

structure, the contact patch modelling and the number of parameters involved in

the model equations. It is worth emphasizing that the notion of complexity is very

relative because the effort for obtaining required measurements data and the compu-

tation time of each model should also be considered as well as the above mentioned

criteria. These last two criteria cannot be checked in the case of this study due to

a lack of required measurements data. Therefore, they are not considered in the

classification. In Table 1.1, the complexity is represented by different bar chart, as

explained below:

: low complexity model

: relative simple model

: middle complexity model

: high complexity model

: very high complexity model

17



Chapter 1. Review of tyre models for steady-state responses

Models Friction coef-

ficient

Normal

pressure

Carcass defi-

nition

γ, ψ con-

sidered

Complexity

Tread simula-

tion

Anisotropic Parabolic

Arbitrary

Flexible Yes

Mathematical

physical 2D

Anisotropic Arbitrary Flexible Yes

HSRI-NBS-III Isotropic Parabolic Flexible No

Ratti Anisotropic Parabolic

Arbitrary

Flexible Yes

Sakai Anisotropic Parabolic Flexible No

Brush model Isotropic Parabolic Rigid Yes

Fiala Isotropic Parabolic Rigid No

Beam theory Isotropic Parabolic Rigid No

Table 1.1: Classification of physical models

1.4.10 Comments on physical models

Based on the above description of each model, relative realistic approximations of tyre

structure would include at least a flexible carcass in addition to the flexibility of the tread

band. An assumption of parabolic distribution for the normal pressure would be rela-

tively reasonable while arbitrary or distribution based on interpolation of experiments

data might be more realistic. In general, the influence of the carcass definition in the

modelling results of physical models is remarkable when computing lateral force and self

aligning moment [4, 21]. In fact, it is shown that the modelling results of traction/braking

force (longitudinal force) do not show significant difference between both rigid and flexi-

ble carcass assumptions. The normal pressure distribution model is a major factor which

determines the status of the contact patch: adhesion or/and sliding. Consequently, the

normal pressure distribution has a direct influence on physical model capability since their

forces and moments development are based on tyre deformations in the contact patch. Be-

sides, in practice, the friction coefficient is more often considered isotropic for most tyre

models.

Table 1.1 can be summarized as follows. First, the tread simulation model is stated

to be more complex because, in addition to the criteria mentioned in table 1.1, it assumes

a friction model which is considered to depend on both sliding speed and normal pressure
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distribution in the contact patch. To achieve the technique which consists in dividing the

contact into a number of small zones followed by tread elements, it is required a good

knowledge of the tyre features such as the tread band dimensions and properties (compli-

ances), the bending and yaw compliances of the carcass. The computation time will be

certainly higher.

In addition to the separated description of the tyre belt and the contact patch in the Math-

ematical physical 2D model, it is required an important set of specific tyre measurements

data (or comparison with results provided by 3D finite element model) for determining the

contact properties as well as the main and the residual stiffnesses [24]. It is then classified

with a middle complexity.

In the other hand, Fiala model is similar to the brush model. The models of Sakai and

Ratti are extensions of the brush model in which the main additional feature is the as-

sumption of a flexible carcass. HSRI-NBS-III model mainly differs from Ratti model by

its definition of a transition zone between adhesion and sliding zones. However, when

considering a given condition of the tyre modelling, the effort for computing Fiala, Sakai,

Ratti, HSRI-NBS-III and brush models may be considered to be the same, even though

they would not give exactly the same modelling results. They are classified with low com-

plexity.

In the literature, the development of some models is achieved by combining the physi-

cal approaches with tendency of observed data. These models are termed semi-empirical

models and are presented in the next section.

1.5 Semi-empirical models

The semi-empirical models are an alternative to the physical models. Indeed, they are

based on observed data and also contain structures that find their origin in physical

models. The main objective of this category of models is to provide a relative accurate

description of the tyre behaviour based on observed data and by using parameters that

are physically related to the tyre and the tyre-road interface properties. Each model forces

and moments are expressed using some of the physical parameters defined in section 1.3

in combination with empirical parameters, which can be considered as fitting parameters

without physical meanings. In the next subsections, the semi-empirical functions proposed

in the literature for modelling the tyre shear forces and moments are shown.
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1.5.1 Model of Smiley and Horne

In [25], Smiley and Horne propose empirical expressions for the nonrolling and rolling

tyre characteristics. Efforts are made to express the tyre static and dynamic responses as

function of the tyre. However, these expressions derived from interpolation of bias aircraft

tyres around 1960. Nevertheless, a general expression is derived for the lateral force at

pure lateral slip condition [4]:

Fy = −Cαα(1 − α2

3(α∗)2
) if α ≤ α∗,

Fy = −µFzsgn(α) else

(1.8)

where α∗ =
3µFz

2Cα
is the critical side slip angle.

The expressions of Somieski model presented below are also based on the definition of

critical slip angle.

1.5.2 Somieski model

The nonlinear mathematical model of Somieski [15] proposes the following expressions for

the lateral force Fy and the self aligning moment Mz at pure lateral slip condition:

Fy = −CααFz for α ≤ α∗

Fy = −Cαα∗Fzsgn(α) for α ≥ α∗

(1.9)

Mz

Fz
= CMα

αg

180
sin(

180α

αg
) for α ≤ αg

Mz = 0 else

(1.10)

where αg is the critical slip angle for the self-aligning moment, α∗ the critical slip angle

for lateral force, Cα the cornering stiffness and CMα, the self-aligning moment derivative

parameter.

Next, the model of Shim and Margolis is presented.

1.5.3 Model of Shim and Margolis

The analytical model proposed by Shim and Margolis [14] describes the pure driving/braking,

pure cornering and combined slip tyre shear longitudinal and lateral forces. The model is
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1.5. Semi-empirical models

described belows:

• At pure longitudinal or lateral slip condition the shear forces are expressed as follows:

Fxo = µpmFzo
FzµpSL

FzoµpmSLo

Fyo = −CααoFzo
Fzµpα

Fzoµpmαsgn(α)o

(1.11)

where Fxo and Fyo designate the pure longitudinal and the pure lateral force respec-

tively.

• For a tyre rolling at pure slip condition with a camber angle γ, the shear forces

become:
Fx = Fxo cos γ

Fy = Fyo sin γ

(1.12)

• In combined slip conditions, normalized expressions are proposed for the longitudinal

and lateral forces Fx and Fy, respectively, as follows:

F̄x = S̄Lµ̄pF̄z

[

n2(1 − ᾱ2)

n2 − ᾱ4

]

1

2

F̄y = ᾱµ̄pF̄z

[

n2 − ᾱ4(1 − S̄2
L) − ᾱ2S̄2

L

n2 − ᾱ4

]

1

2

(1.13)

where:
n the shape factor,

µpm the maximum friction coefficient, about 1.05 for a dry road,

µp the maximum friction coefficient under current road conditions,

Fzo the nominal vertical load,

Fz the actual vertical load,

SLo the longitudinal slip ratio at which the pure traction force is maximum,

αo the lateral slip angle at which the pure lateral force is maximum,

Cα the cornering stiffness.

F̄y =
Fy

Cααo
; S̄L =

SL

SLo
; ᾱ =

α

αo
; F̄z =

Fz

Fzo
; µ̄p =

µp

µpm
; F̄x =

Fx

µpmFzo

The unified semi-empirical model, presented next, is also based on the used of normalized

slip parameters.
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1.5.4 Unified semi-empirical model

The unified semi-empirical model proposes expressions for the tyre shear forces where the

slip parameters are normalized with the vertical load [13]. The longitudinal and lateral

forces, Fx and Fy respectively, are proposed in both pure and combined slip conditions as

follows:

F̄x = 1 − exp(−φx − E1φ
2
x − (E2

1 +
1

12
)φ3

x)

F̄y = 1 − exp(−φy − E1φ
2
y − (E2

1 +
1

12
)φ3

y)

The normalized resultant force in combined slip condition is then derived:

F̄ = 1 − exp(−φ − E1φ
2 − (E2

1 +
1

12
)φ3)

(1.14)

where:

φx =
CSSL

µxFz
the normalized longitudinal slip ratio,

φy =
CαSα

µyFz
the normalized lateral slip,

φ =
√

φ2
x + φ2

y the normalized resultant slip.

The parameter E1 is given by E1 =
0.5

1 + exp(−(Fz − a1)/a2)
, where a1,2 are constant.

Remark: The same approach based on normalizing the shear forces and moments ex-

pressions is also presented by Milliken in [26].

Next, the model of Dugoff is presented.

1.5.5 Model of Dugoff

In the model of Dugoff [3], the longitudinal and lateral forces Fx and Fy, respectively, in

combined slip condition are expressed as follows:

Fx = CS
SL

1 + SL
f(λ)

Fy = −Cα
tan(α)

1 + SL
f(λ)

(1.15)
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1.5. Semi-empirical models

where

λ =
µFz(1 + SL)

2 [(CSSL)2 + (Cα tan(α))2]
1

2

and

f(λ) = (2 − λ)λ if λ < 1

f(λ) = 1 if λ ≥ 1
(1.16)

f(λ) is somewhat a weighting function, which adjusts the friction coefficient with re-

spect to the vertical load Fz and the tyre slip parameters.

The model of Kamm is presented next.

1.5.6 Model of Kamm

The model of Kamm [4] is based on the slip-circle concept. In the slip-circle concept, the

curve of the lateral force plotted against the longitudinal force (or inversely) is assumed

to be inside a portion of a circle. The slip-circle concept is also termed the friction circle

concept. The model proposes the resultant force F in combined slip condition as function

of the longitudinal force (or the lateral force) and the slip parameters.

Longitudinal force: Fx = F (S)
SL

S

Lateral force: Fy = ksF (S)
Sα

S

(1.17)

where F is the resultant force, S =
√

S2
L + S2

α and ks a correlative factor.

In the model presented next, the tyre shear forces in combined slip condition are pro-

posed as function of those at pure slip condition.

1.5.7 Nicholas and Comstock model

In the model of Nicholas and Comstock [4], it is assumed that a relationship exists be-

tween shear forces at pure and in combined slip conditions. Moreover, in combined slip

conditions, the model considers the longitudinal slip has an influence on the lateral force
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Chapter 1. Review of tyre models for steady-state responses

generation and inversely. The longitudinal and lateral shear forces in combined slip con-

dition are then proposed as follows:

Longitudinal force: Fx(SL, Sα) =
Fx(SL) Fy(Sα)SL

√

S2
LF 2

y (Sα) + tan2(α)F 2
x (SL)

Lateral force: Fy(SL, Sα) =
Fx(SL) Fy(Sα) tan(α)

√

S2
LF 2

y (Sα) + tan2(α)F 2
x (SL)

(1.18)

where Fx(SL) and Fy(Sα) designate respectively the pure longitudinal and the pure lateral

forces. Fx(SL, Sα) and Fx(SL, Sα) represent respectively the longitudinal and the lateral

forces at combined slip condition.

Next, the model of Rimondi and Gavardi is presented.

1.5.8 Model of Rimondi and Gavardi

In the model of Rimondi and Gavardi [9], the longitudinal force Fx and the lateral force

Fy are expressed using exponential function.

Fy = µFµ

[

1 − exp
{

−Cαα
µFz

(

1 + ACαα
µFz

)}]

Fx = CS exp(−A
√

κ) + µFz

(

1 − exp(CSκ
µFz

)
)(

1 − exp(−A
√

κ)
)

(1.19)

where A is a shape factor that is supposed to depend on the vertical load Fz and κ = −SL.

The model Schieschke is presented below.

1.5.9 Model of Schieschke

In the model of Schieschke [7], the lateral force is expressed by using 2-order polynomial

functions, which are defined with respect to a critical slip angle αo = − a1

2a2
.

Fy = a1α + a2α
2 for α ≤ αo

Fy = a1α1 + a2α
2
1 for α > αo

α1 = αs − (αs − αo) exp[−(α − αo)/(αs − αo)]
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1.5. Semi-empirical models

where a1 = Cα (cornering stiffness) and a2 =
−1

4C2
αF ∗

y

. αs is the side slip angle at which

Fy reaches its asymptotic value F ∗
y .

A common used model, termed Magic Formula, is presented next.

1.5.10 Magic Formula

The Magic Formula is a widely used tyre model which permits to calculate the tyre forces

and the moments in various conditions [27]. It was first an empirical model based on

a sin(atan) function and was used for pure longitudinal or lateral slip condition. The

original function is presented below:

y(x) = D sin[C arctan(Bx − E(Bx − arctan(Bx)))]

Y (X) = y(x) + Sv

x = X + Sh

(1.20)

where

B the stiffness factor,

C the shape factor,

D the peak value,

E the curvature factor,

Sh the horizontal shift,

Sv the vertical shift,

Y the model output Fx, Fy or Mz,

X the input variable Sα or SL.

BCD the slope at the origin (x = 0, y = 0)

Figure 1.9 illustrates an example of a shear force representation by Magic Formula, where

ys is the asymptotic value at large slip values, ys = Dsin(πC/2) and xm the input variable

at which the shear force reaches its peak value D.

Then, several versions of Magic Formula in which its use is extended to combined longi-

tudinal and lateral slip, camber or turn slip situation are proposed from a physical view

point [10, 11, 27, 28]. The equations derived include then a set of an important number

of fitting micro-coefficients which have to be determined from experiments data. Never-

theless, it provides simulation results that better fit measurements data. The equations of

the shear forces and moment at both pure longitudinal and lateral slip conditions of the
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Chapter 1. Review of tyre models for steady-state responses

2002 version of Magic Formula model [10] are presented in appendix B.1.7.

D

Sv

Sh

X

Y

x

y

xm

ys

Arctan(BCD)

patc

Figure 1.9: Example a shear force representation by Magic Formula

Remark:

Some other models propose new approaches for modelling the tyre shear forces and mo-

ments. For instance, the similarity method [7, 29] is based on the observation that the

pure slip curves remain approximatively similar in shape when the tyre runs at conditions

different from the reference one. The reference condition refers to the tyre running at its

nominal load, at zero camber angle, at either free rolling or at zero side slip angle and on

a given flat road surface. The equations of the forces and moments, in the current slip

situation, are then proposed as functions of those in the reference condition. The Dihua

model, proposed in [16], uses the tread simulation model concept (Section 1.4.7) which

consists in dividing the contact length into a number of equal elements. Then, functions

are proposed for each shear force and moment developed in each element. The total force

and moment are obtained by summing the contribution of each element. In tyre model

TMeasy [30], the shear force characteristic (curve) is divided into mainly four parts. The

limits of each part are defined such that an interpolation function (parabolic function or

rational function) would fit the corresponding portion of curve. At pure slip condition,

the self-aligning moment is proposed as the product of the lateral force and a pneumatic

trail. For they are similar to at least one of the already presented models and therefore
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1.5. Semi-empirical models

do not provide new relevant features, and also for clarity reason, a full description of the

models mentioned in this paragraph are not presented.

Besides, providing modelling results of semi-empirical models would be the best way to

compare them. Due to the lack of required measurements data, it is just chosen to list

semi-empirical models in table 1.2 in which information about each model complexity is

given by the same bar chart as already described in section 1.4.9. It is also mentioned

whether the model takes into account the influence of camber and turn slip.

Models Camber γ Complexity

Magic Formula Yes

TMeasy Yes

Rimondi and Gavardi No

Unified semi-empirical No

Nicholas and Comstock Yes

Kamm No

Dugoff No

Shim and Margolis Yes

Smiley and Horne Yes

Somieski No

Table 1.2: Semi-empirical models

Based on the classification criteria, table 1.2 can be summed up as follows.

Firstly, the Magic Formula has been classified with high complexity. Indeed, a significant

effort is required to estimate the model set of fitting parameters as well as their varia-

tion limits. Due to the important number of these parameters (see late version of Magic

Formula in [10]), the required effort is clearly greater than the one required for the other

models presented in table 1.2. In the other hand, when considering the expressions of the

remaining semi-empirical models, it can be underlined that they are represented by relative

simple functions and therefore, they can be associated with the same complexity bar chart.

The next section presents models that describe the tyre properties based exclusively on

interpolation of experiments data. These models are known as empirical models.
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1.6 Empirical models

The empirical models are based on mathematical functions that describe the tyre charac-

teristics by interpolation schemes. Indeed, these functions have a given structure (polyno-

mial, exponential, ...) and possess parameters which are assessed by regression techniques

to yield a best fit to the measured data [7, 8, 9]. An important number of experiments

data are often required to establish the model range of application and validity. As in

the semi-empirical models, the development of the different equations are based on the

tendency of tyre characteristics curves. The parameters involved in empirical models do

not necessary have any physical meaning and do not describe any features of the contact

patch or of the tyre structure. The empirical models proposed in the literature are listed

in table 1.3. The literature does not show relevant references with application of the listed

empirical models and therefore, they cannot be reasonably compared to each other as well

as it is hard to state on their level of complexity. Thus, it is chosen to only list these

models.
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Models Equations

Model of Chiesa [4]

In combined slip condition, the lateral

force Fy is proposed as a n-order poly-

nomial function of the slip angle α. Fx

is supposed known.

Fy =
√

1 − ( Fx

2µFz

)n Fz ((a1 + a2Fz)α

+ (a3 + a4Fz)α
2 + ...)

where a1,2,3... are constant (coefficients), Fz is the normal

force and µ the friction coefficient.

Model of Holmes [4]

At pure lateral slip condition, the lat-

eral force Fy is given as a polynomial

function of the side slip angle α and

the longitudinal velocity Vx.

Fy = a0 + a1Vx + a2V
2

x + a3a4α
2 + a5α

3 + a6Q + a7P

where P is the tyre-pattern constant, Q a tyre-tread con-

stant. The coefficients a1,...7 are constant.

Model of Burckhardt [4]

In combined slip condition, the resul-

tant force F is supposed to be an expo-

nential function of the resultant slip S

and the tread elements lateral deflec-

tion υy.

F = (a1(1 − ea2S) − a3S)e−c4Sυy (1 − c5F
2

z )

where a1,2,3 and c4,5 are constant.

Model of Szostak [8]

In combined slip condition, the resul-

tant force F is expressed as a ratio-

nal function. This expression can also

be extended to the longitudinal and

lateral tyre forces, Fx and Fy respec-

tively, by replacing the combined slip

parameter σ with σx or σy.

F = µFz

a1σ
3 + a2σ

2 + Cσ/µFz

a1σ3 + a3σ2 + a4σ + 1

a1, a2, a3, a4 are constant, C is the slope at the ori-

gin of F curve as function of σ. σx =
SL

1 − SL

;

σy = − tanα ; σ =
√

σ2
x + σ2

y

Table 1.3: The empirical models and their equations

1.7 Conclusion

From the present study, it can be underlined that the organisation of the models into

the three categories, physical, semi-empirical and empirical, helps to compare them to

each other but, it does not provide enough information for choosing a model for a given

application. In fact, due to the complexity of the tyre structure and its behaviour, each

model from the same category shows more or less significant particularity. Indeed, each

29



Chapter 1. Review of tyre models for steady-state responses

physical model proposes a different approach in the tyre structure description, and each

semi-empirical or empirical model uses a different form of function for representing the

tyre-road interface shear forces and moments. The classification provided in tables 1.1

and 1.2 attempts to underline these particularities by appreciating each model according

to its specific approach. Based on these classifications in combination with the literature

description of each model, it can be underlined that more a model is accurate, more it in-

volves advanced and complex approach and consequently, complex equations are derived.

It is then clear that choosing a tyre model requires the following considerations. If the

time and the measurements data constraints do not constitute a drawback and if a precise

description of the tyre physical parameters (example of material stiffnesses) is required,

then, advanced physical models are suitable. However, a too comprehensive physical

model can sometime lead to an inefficient use of computation time and resources. In this

case, a suitable semi-empirical model may lead to more appropriate compromise. If the

purpose is only a rough description of the tyre physical behaviour, a simple physical or

semi-empirical model may be considered. Finally, if physical interpretation of the results

and parameters used is not required, then empirical models may be studied.

In the context of this thesis, Messier-Dowty company is interested in physical oriented tyre

models. The possibility to physically interpret the majority of a model parameters will be

considered and thus, the suitable model(s) would either be physical or semi-empirical.

In the next chapter, based on the above description of the steady-state tyre models and the

objectives of the present work, some physical models are a priori chosen and investigated.
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Faites choix d’un censeur solide et

salutaire, - Que la raison conduise et

le savoir éclaire.

Nicolas Boileau-Despréaux

Chapter 2

Choosing suitable physical models

In chapter 1, the current steady-state tyre models are reviewed and a classification is pro-

posed. The present chapter aims at taking this classification into account in combination

with the needs of the study in order to choose suitable model(s) for modelling the tyre

characteristics in the required conditions. For this purpose, the physical category of mod-

els are first investigated and an a priori choice of models is given. They are Sakai and

HSRI-NBS-III. The model of Fiala, actually used by Messier-Dowty, is also investigated.

The modelling results of the three models are compared to measurements data. Then, their

limitations are underlined. Propositions for improving and extending them are also car-

ried out and discussed. The different modelling results presented in this chapter mainly

concern pure cornering because the available measurements data, which can be used for the

validation, are limited to this condition (pure cornering).

2.1 Introduction

The review of existing steady-state tyre models presented in chapter 1 has clearly under-

lined the large spectrum of these models and their conditions of validity. It is shown that

for the same application, several models based on different approaches are available. These

approaches can be distinguished in the following manner. In one hand, there are simple

models which rely on considerable simplification of the tyre structure representation and

the development of the equations. In the other hand, there are extensive and complex

models with relative high accuracy and prediction capability. It is shown that choosing

a tyre model requires first the consideration of a certain number of practical constraints,

such as measurements data, time, physical meaning of parameters involved and the level

of accuracy required for the model responses. Since the ability to physically interpret

the model(s) parameters is required in the scope of this thesis (defined by Messier-Dowty
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company), models based on physical approaches will be first preferred. Then, the mea-

surements data constraint has to be considered for the available data are limited. The

accuracy of the desired model will be determined by the possibility of estimating its pa-

rameters.

The aim of this chapter is first to make an a priori choice of physical oriented tyre

models capable of representing the steady-state forces and moments of an aircraft tyre dur-

ing its manœuvers conditions such as pure driving/braking, pure cornering, combined slip

and parking. Then, the modelling results of the a priori chosen models will be compared

to measurements data in order to validate this choice. A more appropriate compromise

between modelling results agreement with measurements data and the above mentioned

practical constraints will be considered.

Since the choice of an a priori model should take into account the possibility to validate

it, the different types of measurements data available in the context of this study and

which could be used for validating a model are first presented, section 2.2. Then, physical

category models are investigated in section 2.3. The modelling results of a priori chosen

physical models are discussed in section 2.4 and their limitations are underlined in section

2.5. Finally, in section 2.6, an extension of the Fiala model is proposed in order to improve

its representativeness.

2.2 Available measurements data

The available measurements data are presented below according to the type of manœuvre

performed on the wheel.

⋄ Pure cornering

Pure cornering has been performed on a civil aircraft wheel (tyre) mounted on a

test bench (flat-track type). Three different inflation pressures, 11.3 bars, 14 bars

and 16 bars, are considered. The nominal inflation pressure of the tyre is 16 bars.

At each inflation pressure, the longitudinal force Fx, the lateral force Fy and the

self-aligning moment Mz data are recorded vs the side slip angle α, 0 ≤ α ≤ 20◦, in

steady-state conditions. The experiment is repeated for five different vertical loads,

24.4kN , 68.3kN , 112.2kN , 156kN and 200kN . During each test, the vertical load

is kept constant as well as the forward velocity, V = 8m/s. No driving/braking

torque, camber or turn slip is applied on the wheel.

⋄ Static longitudinal loading

The static longitudinal loading has consisted in mounting the tyre on a test bench
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and loading it at the desired vertical load Fz. The rotational movement is blocked,

w = 0. The part of the test bench that represents the road is gradually displaced in

the longitudinal direction while recording the longitudinal force vs the longitudinal

displacement. The test is repeated for the same inflation pressures and vertical

loads already mentioned at the pure cornering condition. The tyre longitudinal

carcass stiffness kx is derived as the slope at the origin of the curve representing the

longitudinal static force Fx vs the longitudinal displacement υx.

⋄ Static lateral loading

The static lateral loading test procedure is the same as in the case of static longi-

tudinal loading except that the test bench displacement is performed in the lateral

direction. The lateral force is then recorded vs the lateral displacement. The exper-

iment is repeated for inflation pressures 14 bars and 16 bars, and for vertical loads

already mentioned at the pure cornering condition. The tyre lateral stiffness ky is

derived as the slope at the origin of the curve representing the static lateral force Fy

vs the lateral displacement υy.

⋄ Torsion torque

After setting the tyre at the desired inflation pressure and vertical load, a torsion

torque is applied relatively to the vertical axis of the unrolling wheel. The torsion

torque is then recorded vs the torsion angle. The tyre torsional stiffness kψ is derived

as the slope at the origin of the curve representing the torsion torque vs the torsion

angle. Inflation pressures 14 bars and 16 bars are used. The vertical loads are the

same as those used at the pure cornering condition.

It can be underlined that the measurements data presented above concern only pure cor-

nering and static loading conditions. When considering the tyre run types which should

be studied in this thesis, it is remarked that measurements data are not available for the

pure driving/braking, the combined slip and parking conditions. Therefore, it will not be

possible to validate any model representativeness of tyre in the mentioned conditions.

Next, the above measurements data are taken into account to choose a priori suitable

physical models.
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2.3 A priori choice of suitable physical models

The main criteria for choosing appropriate models are the tyre run types conditions, the

models structural requirement (physical based models in the present case) and the mea-

surements data constraints. The structural criterion can be answered by considering the

physical category of models enumerated in table 1.1 from chapter 1, section 1.4.9. All

the models presented in this table allow the simulation of the pure cornering, the pure

driving/braking. Except Fiala model, all of them also deal with the combined slip. Based

on the literature description of the physical models, a first a priori choice of model would

be Tread simulation model because it is found to be the more advanced physical model

which provides modelling results close to the reality [10]. However, the measurements

data required for estimating this model parameters cannot be satisfied in the context of

this study, especially the tyre structure properties (carcass and tread stiffnesses) and the

contact patch properties (anisotropic friction coefficients, precise normal pressure distri-

bution over the contact, etc). In the same manner, when considering the Mathematical

physical 2D model, the available measurements data do not allow the determination of

the main and residual stiffnesses as well as the tyre tread stiffnesses.

Sakai and HSRI-NBS-III models are studied and compared in [21] for passenger car tyres,

and they can be considered to present relative acceptable compromise between tyre struc-

ture representation and measurements data requirement. Ratti and HSRI-NBS-III models

are similar, except the definition of a transition region between adhesion and sliding zones

of the contact patch in HSRI-NBS-III model. Therefore, HSRI-NBS-III model may be

expected to provide either similar or better modelling results relative to Ratti model.

Moreover, the measurements data required for estimating Sakai, HSRI-NBS-III and Ratti

models can satisfied in the context of the study. The a priori choice would then be Sakai

and HSRI-NBS-III models. Fiala model is actually used by Messier-Dowty company and

will be used in addition to Sakai and HSRI-NBS-III models for comparison.

In the next section, the complete forces and moments expressions of each a priori chosen

model are first presented.

2.3.1 Sakai model

The final expressions for the longitudinal force Fx, the lateral force Fy and the self aligning

moment Mz are reminded below.
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• Tyre forces and moment before full sliding (0 < ξa ≤ 2a)

Fx = CS
SL

1 − SL
(
ξa

2a
)2 − µxFz

SL
√

S2
L + S2

α

[

1 − 3(
ξa

2a
)2 + 2(

ξa

2a
)3

]

Fy = −(Cα + CSSL)
Sα

1 − SL
(
ξa

2a
)2 − µyFz

Sα
√

S2
L + S2

α

[

1 − 3(
ξa

2a
)2 + 2(

ξa

2a
)3

]

(2.1)

Mz =
a

3

[

3(Cα + CSSL) − 2Cα
ξa

a

]

(
ξa

2a
)2

Sα

1 − SL

−a

[

µxSL(1 + 3
ξa

2a
) − 3µy

ξa

2a

]

Fz
Sα

√

S2
L + S2

α

(1 − ξa

2a
)2

ξa

2a
− FxFy

ky

(2.2)

• Full sliding case (ξa = 0)

Fx = µxFz
SL

√

S2
L + S2

α

Fy = −µyFz
Sα

√

S2
L + S2

α

(2.3)

Mz =
µxµyF

2
z SLSα

ky(S2
L + S2

α)
(2.4)

where ξa is the length of the adhesion zone in the contact patch and is expressed as follows:

ξa

2a
= 1 −

√

(SLCS)2 + (SαCα)2

3µ0Fz(1 − SL)
(2.5)
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Sakai model parameters are listed in table 2.1.

a half length of the contact patch

ky carcass (ring) lateral stiffness

CS longitudinal slip stiffness

Cα cornering stiffness

µ0 static friction coefficient

µx longitudinal friction coefficient

µy lateral friction coefficient

Table 2.1: Sakai model parameters

Next, HSRI-NBS - III model final equations are presented.

2.3.2 HSRI-NBS-III model

The main particularity of HSRI-NBS-III model is its definition of a transition zone between

the adhesion and the sliding zones in the contact patch. For instance, the lateral tyre

force Fy is developed distinctly from each zone and its total expression is the sum of the

contribution of the three zones. The final expressions for the longitudinal force Fx, the

lateral force Fy and the self-aligning moment Mz are reminded below.

• Forces expressions in the adhesion zone: 0 ≤ ξa ≤ 2a.

Fxa = CS
SL

1 − SL

(

ξa

2a

)2

Fya = −Cα
Sα

1 − SL

(

ξa

2a

)2

(2.6)

• Forces expressions in the transition zone: 0 ≤ ξa ≤ ξs ≤ 2a.

Fxt =





1

3
CS

SL

1 − SL
(3 − ξa

a
− ξs

2a
)
ξa

2a
/(1 − ξa

2a
) + µFz

SL
√

S2
L + S2

α

(3 − ξs

a
− ξa

2a
)
ξs

2a



 (
ξs

2a
− ξa

2a
)

Fyt = −





1

3
Cα

Sα

1 − SL
(3 − ξa

a
− ξs

2a
)
ξa

2a
/(1 − ξa

2a
) + µFz

Sα
√

S2
L + S2

α

(3 − ξs

a
− ξa

2a
)
ξs

2a



 (
ξs

2a
− ξa

2a
)

(2.7)
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• Forces expressions in the sliding zone.

Fxs = µFz
SL

√

S2
L + S2

α

[

1 − 3(
ξs

2a
)2 + 2(

ξs

2a
)3

]

Fys = −µFz
Sα

√

S2
L + S2

α

[

1 − 3(
ξs

2a
)2 + 2(

ξs

2a
)3

] (2.8)

• Self-aligning moment expression in the adhesion zone: 0 ≤ ξa ≤ 2a.

Mza =
2a

3

[

2(CS − Cα)
SL

1 − SL

ξa

2a
− 1

2
Cα(2

ξa

a
− 3)

]

Sα

1 − SL

(

ξa

2a

)2

(2.9)

• Self-aligning moment expression in the sliding zone.

Mzs = 2aSα

{

(

1

Cα
− 1

CS

)

SLµ2F 2
z

(S2
L + S2

α)

3

5

[

1 + 3
ξs

2a
+ 6(

ξs

2a
)2

]

(1 − ξs

2a
)2

− µFz
√

S2
L + S2

α

[

1 +
ξs

2a
+ (

ξs

2a
)2

]

}

(1 − ξs

2a
)

(2.10)
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• Self-aligning moment expression in the transition zone: 0 ≤ ξa ≤ ξs ≤ 2a.

Mzt = 2aSα

[

(CS − Cα)

{

SL

(1 − SL)2
(
ξa

2a
)2

1

15
[6(

ξa

2a
)2 + 3

ξaξs

4a2

+(
ξs

2a
)2 − 15

ξs

2a
− 5

ξs

2a
+ 10]/(1 − ξa

2a
)2

+
SLµFz

(1 − SL)
√

S2
L + S2

α

(

1

CS
+

1

Cα

)

ξaξs

40a2

[

3(
ξs

2a
)2

+3(
ξa

2a
)2 +

ξaξs

a2
− 5(

ξa

a
+

ξs

a
) + 10

]

/(1 − ξa

2a
)

+
SLµ2F 2

z

(S2
L + S2

α)CSCα

3

10
[6(

ξs

2a
)2 +

3ξaξs

4a2
+ (

ξa

2a
)2

−15
ξs

2a
− 5

ξa

2a
+ 10]

}

+
Cα

1 − SL

ξa

12a
[3 − 3

ξa

2a
(2 − ξa

2a
) − ξs

2a
(3 − ξs

2a
) +

ξaξs

2a2
]/(1 − ξa

2a
)

+
µFz

√

S2
L + S2

α

ξs

4a

[

3 − 3
ξs

2a
(2 − ξa

2a
) − ξa

2a
(3 − ξa

2a
)

+
ξaξs

2a2

]

]

(
ξs

2a
− ξa

2a
)

(2.11)

• Final expressions for the longitudinal and lateral forces

Fx = Fxa + Fxt + Fxs

Fy = Fya + Fyt + Fys

• Final expression for the self-aligning moment

Mz = Mza + Mzt + Mzs

Remarks:

Fxa, Fya,Mza are the contributions of the adhesion zone.
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2.3. A priori choice of suitable physical models

Fxt, Fyt, Mzt are the contributions of the transition zone.

Fxs, Fys,Mzs are the contributions of the sliding zone.

The length of the adhesion zone ξa and that of the transition zone ξs are given by the

following expressions:

ξa

2a
= 1 −

√

(SLCS)2 + (SαCα)2

3µ0Fz(1 − SL)

ξs

2a
= 1 −

(

CSCα

CS + Cα

)

√

S2
L + S2

α

3µFz(1 − SL)

(2.12)

The friction coefficient is proposed as follows: µ = µo(1 − AsVs), where µ is the actual

friction coefficient and As, the sensitivity parameter of the static friction coefficient µ0

relative to the resultant sliding speed Vs.

HSRI-NBS-III model parameters are presented in table 2.2.

a half length of the contact patch

CS longitudinal slip stiffness

Cα cornering stiffness

µ0 static friction coefficient

As sensitivity parameter of µo relatively to the sliding speed Vs

µ actual friction coefficient

Table 2.2: HSRI-NBS-III model parameters

Fiala model final equations are presented next.

2.3.3 Fiala model

Fiala model is developed exclusively for pure slip conditions. The final expressions of the

forces and the moments are reminded below.

• Expression of the pure longitudinal force Fx

Fx = CSSL if |SL| ≤ S∗
L

Fx = sgn(SL)

{

µFz −
(µFz)

2

4|SL|CS

}

if |SL| > S∗
L

(2.13)
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• Expression of the pure lateral force Fy

Fy = −µFz(1 − H3)sgn(α) if |α| ≤ α∗

Fy = −µFzsgn(α) if |α| > α∗
(2.14)

• Expression of the self-aligning moment Mz

Mz = 2µFzR2(1 − H)H3sgn(α) if |α| ≤ α∗

Mz = 0 if |α| > α∗

(2.15)

where R2 is the tyre carcass radius also equivalent to the tyre half-width. The term

sgn(α) designates the sign of the side slip angle α.

• Expression of the rolling resistance moment My

My = −CrFz tyre in forward motion

My = CrFz tyre in backward motion (2.16)

The parameter H is given by:

H = 1 − Cα|tanα|
3µFz

(2.17)

The critical limit of the longitudinal slip parameter is expressed as follows:

S∗
L =

µFz

2Cs
(2.18)

The critical limit of the side slip angle is given by:

α∗ = arctan
(3µFz

Cα

)

(2.19)

The friction coefficient µ is proposed as function of the resultant slip parameter,

which is termed comprehensive slip ratio and noted SLα.

µ = µ0 − SLα(µ0 − µs)

where µo is the static friction coefficient, µs the full sliding friction coefficient and

SLα =
√

S2
L + S2

α.
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Fiala model parameters are summarized in table 2.3.

R2 tire carcass radius

CS longitudinal slip stiffness

Cα cornering stiffness

Cr rolling resistance stiffness

µo static friction coefficient

µs full sliding friction coefficient

µ actual friction coefficient

Table 2.3: Fiala model parameters

Next, the modelling results of these three models are compared to measurements data.

2.4 Comparison of Sakai, Fiala and HSRI-NBS-III models

This section focuses on simulating the three models which equations have been reminded

above. First, an approach for measuring or estimating (identifying) the parameters values

is presented. Then, for each a priori chosen model, the lateral force Fy and the self-aligning

moment Mz parameters are estimated using the measurements data described in section

2.2. Finally, the modelling results are compared with the corresponding measurements

data.

2.4.1 General approach for estimating parameters

Two groups of parameters can be distinguished for the considered models, static and dy-

namic parameters. Static parameters refer to parameters which are measured from non

rolling tyre and dynamic parameters designate those measured (or estimated) from rolling

tyre.

Static parameters

⋄ Contact patch dimensions

The contact patch dimensions can be directcly measured on the mark of the loaded

tyre footprint.

⋄ Longitudinal stiffness kx

The value of the tyre longitudinal carcass stiffness kx is obtained by estimating the

slope at the origin of the curve representing the longitudinal static force Fxstatic vs
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the longitudinal displacement υx.

kx =
∂Fxstatic

∂υx

∣

∣

∣

∣

υx=0

⋄ Lateral stiffness ky

The value of the tyre lateral stiffness ky is estimated as the slope at the origin of the

curve representing the static lateral force Fystatic vs the lateral displacement υy.

ky =
∂Fystatic

∂υy

∣

∣

∣

∣

υy=0

Dynamic parameters

⋄ Longitudinal slip stiffness CS

The longitudinal slip stiffness CS is determined as the slope at the origin of the curve

representing the longitudinal force Fx of the rolling tyre vs the longitudinal slip SL

(see chapter 1, section 1.3).

CS =
∂Fx

∂SL

∣

∣

∣

∣

SL=0,Sα=0

⋄ Cornering stiffness Cα

The cornering stiffness Cα is assumed to be the slope at the origin of the curve

representing the rolling tyre lateral force Fy vs the side slip angle Sα. (see chapter

1, section 1.3).

Cα =
∂Fy

∂α

∣

∣

∣

∣

Sα=0,SL=0

⋄ Tyre/road interface friction parameters µo, µx, µy and As

There are two approaches for estimating the values of these parameters, direct and

indirect methods.

Direct methods

Direct methods are based on mathematical formulas which allow to determine the

friction coefficients from measurements data such as tyre forces, slip stiffnesses, ve-

locity... For instance, a common used method consists in evaluating the friction

coefficient as the ratio of the maximum longitudinal or lateral force over the vertical
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2.4. Comparison of Sakai, Fiala and HSRI-NBS-III models

force, µx,y =
Fx,ymax

Fz
.

Indirect methods

More often, indirect methods consist in recording the noise produced in the tyre-

road interface using noise sensor or in recording the road properties with an optical

sensor. Then, these measurements data are correlated with the friction coefficients.

One main inconvenient of the method which uses noise sensor is the fact that it is not

possible to completely distinguish the environment noise from that of the tyre-road

interface.

Remark:

The friction coefficient will be assumed uniform and constant all over the contact patch

for the three a priori chosen models. Moreover, since the modelling takes an interest ex-

clusively in the lateral tyre behavior (pure cornering), only µy is concerned and it will be

simply noted µ.

Next, the lateral force Fy and the self-aligning moment Mz parameters values are de-

termined for each model.

2.4.2 Modelling results

Table 2.4 presents the lateral force Fy and the self-aligning momentMz parameters values

for Sakai, HSRI NBS III and Fiala models. Parameter Cα is estimated as described in the

above section 2.4.1. The value of µ is determined (approximatively) as the ratio of the

maximum lateral force over the vertical load Fz, µ ∼ Fymax

Fz
. The value of parameter R2

(Fiala model) is supposed to be the half-length of the tyre width, R2 = 0.2275m. However,

it is important to mention that this value for parameter R2 assumes a theoretical tyre with

full surface (without grooves). Values for parameter a (half-length of the contact patch)

are obtained by extrapolating measurements data, which give values of a vs vertical loads

Fz. The formula shown in equation (2.20) is used for calculating the error.

ErrorF = 100

√

√

√

√

√

√

√

n
∑

i=1
(FMeasure,i − FModel,i)

2

n
∑

i=1
(FMeasure,i)

2
(2.20)

where FMeasure,i and FModel,i are each measurement point and the model evaluation, re-

spectively.
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Inflation pressure p = 11.3 bars

Fz = 112.2kN Fz = 156kN Fz = 200kN

Cα = 6.4175 × 105N/rad Cα = 6.6910 × 105N/rad Cα = 6.5882 × 105N/rad

a = 0.228m a = 0.245m a = 0.263m

R2 = 0.2275m R2 = 0.2275m R2 = 0.2275m

µ = 0.526 µ = 0.482 µ = 0.4419

Fymax = 59.05kN Fymax = 75.25kN Fymax = 88.38kN

Inflation pressure p = 16 bars

Fz = 112.2kN Fz = 156kN Fz = 200kN

Cα = 6.4663 × 105N/rad Cα = 7.5717 × 105N/rad Cα = 8.0217 × 105N/rad

a = 0.203m a = 0.225m a = 0.234mm

R2 = 0.2275m R2 = 0.2275m R2 = 0.2275m

µ = 0.513 µ = 0.4872 µ = 0.451

Fymax = 57.55kN Fymax = 76.25kN Fymax = 90.2kN

Table 2.4: Models parameters values

Remark

It is only chosen to presents the modelling results for inflation pressures 11.3 bars and 16

bars for clarity reason. Indeed, the tendency of each model representativeness is similar

for inflation pressure 14 bars and therefore, presenting its modeling results would not nec-

essary provide additional information for the models analysis.

The parameters values presented in table 2.4 are used to simulate each model lateral

force Fy and self-aligning moment Mz according to their corresponding expressions pre-

sented previously. In one hand, figures 2.1 and 2.2 show that all three models present

approximatively the same agreement for the lateral force. Their corresponding curves

coincide and present relative good agreement with measurements data. The maximum

error is about 1.1%. In the other hand, it is observed that Sakai and HSRI-NBS-III mod-

els show similar modelling results for Mz, which are in general lower than measurements

data, figures 2.3 and 2.4. The maximum error is about 45%. In the case of Fiala model,

figures 2.5 and 2.6, significant deviations are also observed between measurements data

and modelling results. The maximum error is about 30%.

It can be concluded all three models may be adopted for representing the pure lateral
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2.4. Comparison of Sakai, Fiala and HSRI-NBS-III models

force Fy in steady-state conditions but, they cannot be used in their original version for

representing the self-aligning moment Mz. Thus, it might be necessary to thoroughly

investigate each model Mz expression in order to determine the limitations.
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2.4.3 Discussion: a priori chosen models and measurements data

To understand the theoretical concept of Sakai, HSRI NBS III and Fiala tyre models, a

schematic representation of the lateral force Fy and the self aligning moment Mz is shown

in figure 2.7. In this figure, αmax corresponds to the value of the side slip where the

self-aligning moment reaches its maximum value Mzmax. Parameter α∗ is the critical side

slip at which the lateral force reaches its maximum Fymax value and remains constant.

Moreover, at α∗, the self-aligning moment becomes zero et remains constant too. In the

Sakai and HSRI NBS III models, the critical side slip α∗ is determined when the parameter

ξa = 0 (full sliding).
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Figure 2.7: Fiala tyre model: theoretical concept of Fy and Mz

The measurements data show that when the self-aligning moment reaches zero, it does not

stay constant but rebuilds in the negative part of the graph (see figure 2.4 for example).

Besides, the value of the side slip at which the self-aligning moment reaches zero does

not necessary correspond to the point where the lateral force reaches its maximum value

Fymax. For example, for Fz = 156kN and at p = 16 bars, the self-aligning moment reaches

zero at α ∼ 16 degrees (figure 2.4) while the lateral force reaches its maximum value at

α ∼ 14.5◦ (figure 2.2). Moreover, the lateral force does not stay constant after reaching

this maximum value but, slightly decreases. The remark is valid for all the measurements

data used in the context of this study.

In figures 2.1 and 2.2, the values of α, at which the different modelling results of the lateral

force reach the maximum value Fymax, do not correspond to full sliding condition. In the

other hand, the values of α at which the different modelling results of the self-aligning

moment reach zero in figures 2.3, 2.4, 2.5 and 2.6 do not correspond to full sliding condi-

tion too. The real full sliding (real values of α∗) will occur after these points. The tests

results used in the context of this study did not reach full sliding point.

Conclusion

The values of the critical side slip α∗ in the application of section 2.4.2 are underesti-

mated. It is reminded that the friction coefficient µ, used for estimating the critical slip

limit α∗, is assumed constant and equal to the ratio of Fymax over the vertical load Fz.

This assumption may not be realistic enough and would contribute to the incorrect value

of α∗. Besides, the models studied are based on a simple approach (brush model ap-

49



Chapter 2. Choosing suitable physical models

proach), which assumes the tyre to behave as an elastic material. Due to the complexity

of the tyre behaviour, this assumption certainly presents important deviation at relative

high side slip angle and may also contribute to the uncertainty on the value of α∗.

However, since the modelling results of the lateral force are considered acceptable for the

study, it is decided to investigate the models of the self-aligning moment and possibly

overcome the limitations.

In the next section, the Fiala tyre model Mz expression is analysed and its limitations

are underlined. Extension of its equation is proposed in order to better fit the measure-

ments data. Notice that only Fiala model Mz expression is investigated, but the same

approach can be used for both Sakai and HSRI-NBS-III models. The choice of the Fiala

model is due to the fact that it shows relative smaller deviation when it is compared to

the two other models.

2.5 Limits of physical models: example of Fiala model

Consider the self-aligning moment function, equation (2.15) and note Hmax, the value of

H at which the self-aligning moment reaches its maximum value Mzmax. The derivative of

equation (2.15) relatively to parameter H, (
dMz

dH
), allows to determined Hmax as follows:

Hmax =
3

4
(2.21)

From equation (2.17), the following expression is also deduced for Hmax:

Hmax = 1 − Cα|tan(αmax)|
3µFz

then

|tan(αmax)| =
3µFz

4Cα
(2.22)

αmax corresponds to the value of the side slip angle α at which the self-aligning moment

reaches its maximum value. αmax also represents the inflection point of the parabolic

function which repasses by zero at α∗ (saturation point for the Fiala model). If the above

expression of tan(αmax) is compared with equation (2.19), the following relation can be

derived:

tan(α∗) = 4tan(αmax) (2.23)

The equation (2.23) presents a constraint (relation) between α∗ and αmax which may not

be always verified in practice. Besides, in equation (2.15), parameter R2 represents the
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maximum value of the pneumatic trail, often noted t. This pneumatic trail t allows a def-

inition of an equivalent expression for the self-aligning moment Mz: M(α) = t(α)Fy(α),

with tmax = R2. However, the tyre surface contains grooves and the contact is not perfect.

Therefore, this assumption, tmax = R2, is not necessary verified.

In the following section, an attempt to enhance the Fiala self-aligning moment expres-

sion to better fit the measurements data is proposed.

2.6 Enhancement of Fiala model

The objective of this section is to propose a modified version of Fiala model self-aligning

moment expression, equation (2.15), to better fit the measurements data and eventually

make Fiala model full applicable at steady-state pure cornering condition.

The main limitations in the Fiala tyre model are the constraint between α∗ and αmax

(equation (2.23)), the fact of considering a constant friction coefficient µ which is based

on the Coulomb static friction law (and may not be realistic enough for a rolling tyre) and

the use of the tyre half-width R2 as maximum of the pneumatic trail.

In order to adjust the pneumatic trail (to make it more realistic), a weighting factor, noted

λR, is adopted. Then, λRR2 is used in stead of R2 in the Fiala Mz equation (2.15), where

0 < λR ≤ 1.

To adjust the value of α∗ (hence αmax), measurements data up to full sliding are necessary.

Moreover, a new expression has to be proposed forMz between the point where it reaches

zero for the first time and the point of full sliding. Due to the lack of data up to full

sliding, it is decided to estimate a value of the side slip angle, noted α0, which corresponds

to the point where Mz passes by zero for the first time. Then, the validity of the Fiala

self-aligning moment model will be extended up to α0. Parameter α0 is estimated by

adjusting the friction coefficient in equation (2.19). In fact, a weighting factor λµ is used

and µ is adjusted within its range of variation, 0 ≤ µ ≤ 1. λµµ is then used in stead of µ

in equation (2.15).

The expression of the self-aligning moment Mz, equation (2.15), becomes then:

Mz = 2λµµFzλRR2(1 − H)H3sgn(α) if |α| ≤ α0 (2.24)

For |α| > α0, the self-aligning moment would be 0, which is not realistic according to

the measurements data. This part will be studied later in chapter 4. We also prefer the

notation α0 in stead of α
∗, because α∗ is assumed to be the point where full sliding starts.
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When analysing the modified version of the self-aligning moment, equation (2.24), the

weighting factors λR and λµ are finally used in a product form and they seams to repre-

sent one weighting factor which would be λ = λRλµ. However, one weighting factor cannot

be used because λR is used for adjusting the magnitude of the self-aligning moment and

λµ is independently used for estimating α0 in equation (2.19).

Next the new expression of Mz, equation (2.24) is used and the modelling results are

compared to the measurements data.

2.6.1 Modelling results

The Fiala model Mz new expression, equation (2.24), is simulated using the same para-

meters values from table 2.4. The values of the weighting factors λR and λµ are determined

by using the optimisation function fminsearch from Matlab software. The different values

for λµ and λR are shown in table 2.5.

Inflation pressure p = 11.3 bars

Fz = 112.2kN Fz = 156kN Fz = 200kN

λR = 0.81m λR = 0.9m λR = 0.96m

λµ = 1.349 λµ = 1.433 λµ = 1.527

Inflation pressure p = 16 bars

Fz = 112.2kN Fz = 156kN Fz = 200kN

λR = 0.66m λR = 0.78m λR = 0.88m

λµ = 1.364 λµ = 1.408 λµ = 1.49

Table 2.5: Weighting factors for the modified version of the Fiala model

Figures 2.8 and 2.9 show the comparison of the modelling results with the measurements

data. The expression ‘Fiala - M’ means modified version of the Fiala model. The new

expression of the self-aligning moment gives better modelling results when compared to

the original Mz model. The maximum error observed is about 15% when the side slip

angle varies up to α0 (between 16◦ and 20◦ depending on the vertical load). Besides, in

practice, the landing gear is rarely steered up to these values estimated for α0. Thus, the

new version of the Fiala model may be used for simulating the steady-state pure cornering

with relative satisfactory, figures 2.8 and 2.9.
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Nevertheless, a major inconvenient remains when using Fiala physical type of models,

even the above new version, because their parameters are only valid for a given vertical
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load Fz and a given inflation pressure. If one of these two conditions is changed, new

parameters have to be identified or measured. Some interpolation functions are proposed

in the literature in order to overcome this constraint, see for example [10, 31]. In the next

section, an extension of Fiala model is proposed by expressing its parameters as function

of the vertical load Fz.

2.6.2 Expressing the Fiala model parameters as function of Fz

The parameters of Fiala model are determined for a given vertical load Fz and a given

inflation pressure. Now, the objective is to propose an extension of Fiala model in which

its parameters are expressed as a function of the vertical load Fz.

From the description of Fiala model in section 2.3.3, it is deduced that the parameters

to express as a function of Fz are the cornering stiffness Cα and the friction coefficient

µ. In [10], Pacejka proposes an empirical function for Cα and µ. The same functions are

adopted in the present study. The corresponding expressions are presented in the following

equation:

Cα = aα sin

[

2 arctan

(

Fz

bα

)

]

µc = (aµ + bµFz)

(2.25)

where µc represents the corrected value of the friction coefficient: µc = λµµ. Quantities

aα, bα, aµ and bµ are empirical parameters to be identified from sets of Cα and µc data.

In equations (2.24), parameters Cα and λµµ = µc are replaced by their corresponding

expressions from equation (2.25). The values of parameters aα, bα, aµ and bµ are estimated

by using the optimisation function fminsearch from Matlab software. The data of Cα are

taken from table 2.4 and those for µc are obtained by multiplying each value of µ in table

2.4 by the corresponding weighting factor λµ shown in table 2.5.

For inflation pressure p = 11, 3 bars, Cα and µc read:

Cα = 6.7714 × 105 sin

[

2 arctan

(

Fz

1.5686 × 105

)

]

µc = −3.9 × 10−7 × Fz + 0.75

(2.26)

and for inflation pressure p = 16 bars, Cα and µc read:
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Cα = 8.0722 × 105 sin

[

2 arctan

(

Fz

2.2394 × 105

)

]

µc = −3.4 × 10−7 × Fz + 0.74

(2.27)

Figure 2.10 and 2.11 show the modelling results obtained for Cα and µc as function of

Fz using equation (2.25). The model of Cα shows good agreement with measurements

data. In fact the least squares fitting shows correlation coefficients more than 0.99. The

linear model proposed for the friction coefficient µc also presents relative good agreement

with measurements data but, since reference values for this parameter are not available,

a conclusion cannot be made on its tendency.

Remark

The extensions proposed to enhance the validity of Fiala model have included empiri-

cal parameters which must be estimated from measurements data. In order to properly

identify these parameters, it is necessary to determine the reference values as well as the

variation limits of each parameter. Therefore, several tests have to be performed on tyres

in various conditions, such as forward speed, longitudinal and lateral slips, vertical loads,

etc. However, such investigation is not possible in the case of this study. Secondly, be-

cause empirical parameters are involved into the new equations, the model fails to be fully

physical and becomes semi-empirical.
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2.7 Conclusion

The present study requirements are taken into account with the practical constraints to

choose a priori suitable physical models, Sakai, HSRI-NBS-III. The Fiala model, which

is actually used by Messier-Dowty company, is also studied. The modelling results have

shown that the lateral force is relatively better represented by all three models in the

range of the side slip angle used. However, the self-aligning moment modelling results

present significant deviation when compared to measurements data. An attempt to en-

hance the self-aligning moment equation of the Fiala model is proposed in order to better

fit measurements data. Moreover, the parameters are expressed as function of the verti-

cal load, that allows prediction capability of the Fiala model with respect to the vertical

load. However, it is shown that this enhancement of the Fiala model still presents some

limitations (unrealistic saturation point) and includes empirical parameters. The model

becomes semi-physical in stead of physical. Besides, the included empirical parameters

require some sets of measurements data in order to determine their reference values as well

as their limits of variation. Since such investigation is not possible in the context of the

present study, it is found worth investigating existing semi-empirical models which have

already been used in the literature.
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L’embarras est l’angoisse du choix.

Albert Brie

Chapter 3

Choosing suitable semi-empirical

models

In this chapter, the semi-empirical models presented in chapter 1 are first analysed. Then,

Magic Formula model is a priori chosen for studying the steady-state tyre forces and mo-

ments. At pure cornering condition, the modelling results of this model show better agree-

ment with measurements data when they are compared to those obtained with the physical

models in chapter 2. Moreover, a tyre test rig is built in the simulation environment, Msc

Adams software, and Magic Formula model is used to characterise the tyre-road interac-

tion. It is also shown that the pure cornering modelling results from the test rig are quite

similar to those obtained with the direct use of the model equations. Besides, Magic For-

mula proposes expressions for modelling the tyre characteristics in the entire steady-state

conditions required for the present study and therefore, it is adopted as adequate model.

3.1 Introduction

The physical models investigated in chapter 2 have shown significant limitations for use

in the context of this thesis. Moreover, advanced physical models could not be considered

since the data required for their use are not available. An attempt to adapt a model has

been presented. However, it is shown that this extension has included empirical param-

eters and the model becomes semi-physical in stead of physical. Therefore, it is found

worth investigating existing semi-empirical models.

The objective of this chapter is first to make an a priori choice of semi-empirical

tyre model(s) capable of representing the steady-state forces and moments of an aircraft

tyre during its manœuvers conditions such as pure driving/braking, pure cornering, com-

bined slip and parking. Then, the modelling results of the a priori chosen model(s) will
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be compared to measurements data in order to validate this choice. The possibility to

physically interpret the majority of the model(s) parameters will be considered as well

as their representativeness with respect to the limited available measurements data. The

measurements data are the same as those presented in chapter 2.

This chapter is organised as follows. The semi-empirical category models are inves-

tigated in section 3.2. Then, the modelling results of an a priori chosen model, Magic

Formula, are discussed. A tyre test rig is modelled in section 3.3 in order to simulate

the pure cornering using the Magic Formula model as it is implemented in the software

Msc Adams. It is reminded that this software is the one actually used by Messier-Dowty

company.

3.2 A priori choice of semi-empirical model

Among the literature steady-state semi-empirical models presented in chapter 1, one of

the common used models is Magic Formula (MF), also termed Pacejka model. It is a

predictive model which parameters take into account the dependency of camber, yaw or

turn slip, vertical load and inflation pressure. Because of its set of important number of

parameters and the effort required for estimating them, Magic Formula is found to be the

more complex model when it is compared to the other semi-empirical models presented in

chapter 1. But, it is also the model for which the literature provides sufficient references

of application studies, [7, 10, 11, 32]. Moreover, a parameter identification tool, termed

MF-Tool, is available and allows the estimation of the parameters used in the model. In

addition, Magic Formula is a part of a complete model, termed MF-Swift (Magic Formula

- Short Wavelength Intermediate Frequency Tyre), which is commercially available as a

software. The complete model MF-Swift is composed of two main parts, MF (Magic For-

mula) that handles the steady-state tyre behaviour, and Swift that handles the transient

dynamics part. The transient-dynamic part, Swift, is not treated in this thesis because

of the lack of required measurements data but it may be an interest for Messier-Dowty

company Even though the model is based on an empirical interpolation function, several

of its parameters are associated with the physical properties of the tyre and the tyre-road

interface, such as the cornering stiffness, the friction coefficient, the vertical stiffness, etc.

The model is then termed semi-empirical. Magic Formula is then the a priori chosen

semi-empirical model.

Next, a list of the common used versions of MF are reminded as well as their particu-
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larities. For the sake of clarity, only the pure cornering lateral force and the self-aligning

moment expressions of the 2002 version of Magic Formula are reminded. A brief descrip-

tion of the parameters identification tool, termed MF-Tool, is also presented in section

3.2.2. Then, by using the 2002 version of Magic Formula, the pure cornering modelling

results by direct use of the model equations are presented in section 3.2.3 as well as those

obtained by using the same model in the simulation environment Msc Adams software.

3.2.1 Magic Formula versions

Several versions of Magic Formula have been developed, see for example [10, 11, 27, 33].

Among the different versions of Magic Formula model, on may mention PAC89/94, MF-

Tyre5.1/5.2 MC-Tyre1.0/1.1, MF-Swift 6.0 and MF-Swift 6.1. Figure 3.1 illustrates the

particularities of each version.

The main differences between them are the simulation conditions (steady-state or dy-

namics, pure or/and combined slip) and the number of parameters involved. For example,

PAC94 is the extended version of PAC89, which takes into account the combined slip

condition. Versions MF-Tyre5.1 and MF-Tyre5.2 represent the same tyre conditions but

version MF-Tyre5.2 includes additional fitting parameters for reducing interpolation error.

In the same manner, version MF-Swift6.1 is the extended version of MF-Swift6.0, which

proposes an expression for the rolling resistance and includes inflation pressure depen-

dency in the model parameters expressions. The 2002 version of Magic Formula, which

is equivalent to the steady-state part (MF part) of MF-Swift6.0, is adopted in this part

for the investigation. Notice that the steady-state part of the version MF-Swift6.1 would

be the complete and suitable version (latest version) to use. However, the inflation pres-

sure dependency in the expressions of its parameters is its main difference from the 2002

version, and it is not possible to model and validate this aspect (the inflation pressure

dependency) with the available measurements data. The 2002 version is then preferred.

Moreover, the 2002 version is a default version implemented in the software Msc Adams.

59



Chapter 3. Choosing suitable semi-empirical models

Pure longitudinal force Fx

Pure lateral force Fy

Pure overturning moment Mx

Pure self-aligning moment Mz

Combined slip forces Fx and Fy

Combined slip aligning moment Mz

Loaded radius & rolling radius

Contact patch length and width

Longitudinal stiffness

Lateral stiffness

Enveloping behaviour

2D cleat experiments

3D cleat experiments

Rolling resistance

R
u
n
ty
p
e

P
A
C
8
9

P
A
C
9
4

M
F
-T

y
re

5
.1
/
5
.2

M
C
-T

y
re

1
.0
/
1
.1

M
F
-S
w
if
t
6
.0

M
F
-S
w
if
t
6
.1

S
te
a
d
y
-s
ta
te

a
n
a
ly
si
s

T
y
re

b
a
si
c
p
a
ra
m
et
er
s

D
y
n
a
m
ic

a
n
a
ly
si
s

Figure 3.1: Examples of Magic Formula and MF-Swift versions

Remark on figure 3.1:

⋄ Enveloping: it consists in recording the longitudinal force Fx and the vertical force

Fz while the tyre running over a specified cleat at a fixed axle height and relative

low velocity. Expressions are proposed for describing the profile of these two forces.
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3.2. A priori choice of semi-empirical model

⋄ Cleat experiments: it consists in recording the tyre forces and moments during en-

veloping test but at relative high speed. These tests allow to estimate tyre undamped

natural frequencies, tyre belt mass, tyre moments of inertia, and load and speed in-

fluences. The specific shapes and dimensions of the cleats are described in MF-Swift

software manual.

The pure cornering lateral force and self-aligning moment expressions of the 2002 version

of Magic Formula are reminded below.

The lateral shear force Fy is given by:

Fy = Dy sin
[

Cy arctanByαy − Ey(Byαy − arctan(Byαy))
]

+ SV y (3.1)

where :

αy = α + SH (3.2)

γy = γ.λγy (corrected camber angle) (3.3)

Cy = pCy1.λCy (3.4)

Dy = µyFzξ2 (3.5)

µy is the lateral friction coefficient and reads:

µy = (pDy1 + pDy2.dfz)(1 + pDy3.γ
2
y)λµy (3.6)

Ey = (pEy1 + pEy2.dfz)[1 − (pEy3 + pEy4.γy)sgn(αy)]γEy where Ey ≤ 1 (3.7)

The cornering stiffness is derived as shown below:

Cα = Ky =
∂Fy

∂sα

∣

∣

∣

∣

Sα=0

Cα0 = Ky0 = pKy1.Fz0 sin[2 arctan(
Fz

pKy2Fz0λFz0

)]λFz0
.λKy (3.8)

Cα = Ky = Ky0(1 − pKy3|γy|)ξ3 (3.9)
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By =
Cα

CyDy
(3.10)

SHy = (pHy1 + pHy2.dfz)λHy + pHy3.γy.ξ0 + ξ4 − 1 (3.11)

SV y = Fz{(pV y1 + pV y2.dfz)λV y + (pV y3 + pV y4.dfz)γy}λµy.ξ4 (3.12)

The self-aligning moment Mz at pure lateral slip condition is proposed as follows :

Mz = −tFy + Mzr (3.13)

where t represents the pneumatic trail and is expressed as shown below:

t = Dt cos[Ct arctan{Btαt − Et(Btαt − arctan(Btαt))}] cos(α)

αt = α + SHt

(3.14)

The residual self-aligning moment Mzr is given by:

Mzr = Dr cos[Cr arctan(Brαr)] cos(α) (3.15)

αr = α + SHf (3.16)

SHf = SHy + SV y/Ky (3.17)

γz = γ.λγz (3.18)

Bt = (qBz1 + qBz2.dfz + qBz3.df
2
z )(1 + qBz4.γz + qBz5|γz|)λKy/λµy (3.19)

Ct = qCz1 (3.20)

Dt = Fz(qDz1 + qDz2.dfz)(1 + qDz3.γz + qDz4.γ
2
z )

R0

Fz0
λtξ5 (3.21)
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Et = (qEz1+qEz2.dfz+qEz3.df
2
z ){1+(qEz1+qEz2.γz)(

2

π
arctan(BtCtαt)} with Et ≤ 1

(3.22)

SHt = qHz1 + qHz2.dfz + (qHz3 + qHz4.dfz)γz (3.23)

Dr = Fz[qDz6 + qDz7.dfz)γr + (qDz8 + qDz9.dfz)γz]R0λµγ + ξ8 − 1 (3.24)

dfz =
Fz − Fz0

Fz0

Fz0 is the nominal tyre vertical load and Fz the actual tyre vertical load.

R0 is the tyre unloaded radius.

Next, a programme, termed MF-Tool, that is used for estimating Magic Formula param-

eters is presented.

3.2.2 Presentation of the parameters identification tool: MF-Tool

MF-Tool is a programme which allows the estimation of parameters values for MF and

MF-Swift versions presented previously in figure 3.1. It uses Levenberg-Marquardt algo-

rithm [34], which is based on an iterative technique locating the minimum of a multivariate

function that is expressed as the sum of squares of non-linear real-valued functions. To

identify a given version of MF or MF-Swift parameters with MF-Tool, it is required to pro-

vide inputs (tyre forces, moments, stiffnesses, etc) in some recommended conditions which

are described in MF-Tool users manual. These conditions are mainly the slip conditions

(pure or combined slips), the vertical load Fz, the inflation pressure and the wheel speed.

Indeed, according to the chosen version of model and the measurements data provided,

MF-Tool determines the values of the corresponding parameters that permit better fitting

of these measurements data.

Figure 3.2 presents the different steps before using a given version of MF or MF-Swift. Be-

tween these steps, the parameters estimation one can be mentioned, which can be achieved

with MF-Tool. The measurements data should be saved in a standard file format, TYDEX

Files (TF) [35], which is the formal file format recognised by MF-Tool (see an example of

TYDEX file in appendix C). After the fitting process, a tyre property file, with extension

’.tir’, is exported from MF-Tool and contains all the parameters that have been estimated

as well as the tyre specific parameters (example: the nominal load, the nominal inflation
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pressure, the unloaded radius, the tyre width, tyre vertical stiffness, etc). This property

file is used in the simulation environment (simulation software). An example of a tyre

property file is presented in appendix D.

+

Tests

on tyre

Signal

processing
Parameter fitting

MF-Tool data base

MF-Tool data base

MF-Tyre

MF-Swift
MBS

solver

SimulationMesures

MF-Tool

TPFTF

Model

Figure 3.2: The different steps before using MF or MF-Swift. TF: TYDEX File - TPF:

Tyre Property File - MBS: Multi Body System

3.2.3 Magic Formula modelling results

In this section, the interpolation capability of the 2002 version of Magic Formula is checked

by interpolating the measurements data of the lateral force Fy and the self-aligning moment

Mz at pure cornering condition. Then, its prediction capability is also checked by carrying

out cross-validation. The cross-validation consists first in determining the parameters

values of Fy and Mz models at some given vertical loads Fz and secondly, in using these

values for estimating (predicting) the same characteristics (Fy and Mz) at vertical loads

different from those used for the interpolation. Then, the estimated results are compared

to the measurements data.

MF-Tool is used to determine the values of the model parameters. MF-Tool manual

recommends to use measurements data at three different vertical loads corresponding to

40%, 80% and 120% of the nominal load. The nominal load for the considered tyre

is Fz0 = 243.8kN . The three recommanded vertical loads would then read, 97.52kN ,

195.04kN and 292.56kN respectively. It can be remarked that the available measurements

data do not match this requirement. However, a judicious choice of three vertical loads

data between those available can lead to relative good interpolation results in MF-Tool.

Several combinations of data for the interpolation have been tried but the one coresponding

to loads 68.3kN , 112.2kN and 156kN gives the smallest error for the cross-validation.

Thus, the lateral force and the self-aligning moment results for these three vertical loads

are used for the interpolation in MF-Tool. Next, the parameters determined from this
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interpolation are used for estimating the lateral force and the self-aligning moment for

vertical loads: 24.4kN and 200kN .

To take into account the dependency of parameters with respect to the inflation pressure,

it is recommended to use measurements data at p0 and p0 ± 0.5 for the interpolation

(fitting) process, where p0 represents the nominal inflation pressure and is equal to 16

bars. In contrary to the case of the vertical loads, no option was found for determining

reasonable parameters with inflation pressures, 11.3 bars, 14 bars and 16 bars. It is then

chosen to not consider its influence.

Figures 3.3, 3.4, 3.5 and 3.6 show the modelling results obtained for the lateral force Fy

and the self-aligning moment Mz at pure cornering at inflation pressure 11.3 bars and 16

bars. In these figures, the expression ’MF - Fitted data’ means that the corresponding

measurements data have been used in the fitting (interpolation) process with MF-Tool.

The corresponding curves represent then the interpolation results of MF. It is the case

of data at vertical loads 68.3kN , 112.2kN and 200kN . The second expression, ’MF -

Estimated data’, means that the designated measurements data have not been used in

the fitting process with MF-Tool, and therefore, the proposed curves are estimated (pre-

dicted) by the model. It is the case of data at vertical loads 24.38kN and 156kN . For each

vertical load, the interpolated or estimated results are compared with the measurements

data. The maximum of the standard deviation between measurements data and simula-

tion (interpolated or predicted) is 1.9% for Fy and 8.8% for Mz. Therefore, the model

better represents the lateral force than the self-aligning moment. Nevertheless, deviations

observed for both lateral force and self-aligning moment can be considered to be within

acceptable range.
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The influence of the inflation pressure on the pure cornering force and moment cannot be

modelled because the inflation pressures used for the measurements are too different from

each other and cannot be handled by MF-Tool. Nevertheless, in the next paragraphs, the

measurements data are commented and compared to the literature studies, example [33].

3.2.3.1 Effect of inflation pressure on Fy

Consider the cornering stiffness Cα, which is the gradient of the curve Fy = f(α), measured

at zero side slip angle at a given vertical load. In [33], it is observed for passenger car tyres

that an increase of inflation pressure at low vertical load leads to low cornering stiffness

Cα. However, at relative high vertical load, an increase of inflation pressure leads to a

rise of cornering stiffness. The same phenomenon seems to appear on aircraft tyres as

shown in figures 3.7, 3.8, 3.9 and 3.10. For example, in figure 3.7, which corresponds to

the vertical load of 24.4kN (10% of nominal load), the slope Cα tends to slightly decrease

when inflation pressure is increased. Cα takes the values 165.3kN/rad, 148.4kN/rad and

134kN/rad for inflation pressures 11.3 bars, 14 bars and 16 bars respectively. In the

other hand, figure 3.10 shows that for the vertical load of 200kN (82% of nominal load),

the slope Cα slightly increases when the inflation pressure rises. Cα takes the values

658.8kN/rad, 712.5kN/rad and 802.2kN/rad for inflation pressures 11.3 bars, 14 bars

and 16 bars respectively. However, since, the measurements data do not cover sufficient

range of the tyre vertical load, it is not possible to conclude on the general tendency of

the lateral force with regard to the inflation pressure. Equation (3.25) shows the current

Magic Formula expression for the cornering stiffness as a function of the inflation pressure

[33].

Cα = Ky = pKy1(1 + ppy1dp2)Fz0 sin[2 arctan(
Fz

pKy2(1 + ppy2dp2)Fz0λFz0

)] (3.25)

where dp =
p − p0

p0
, p the current inflation pressure, p0 the nominal inflation pressure and

Fz the current vertical load. pKy1, ppy1 and pKy2, ppy2 are constants.

The influence of inflation pressure on the peak of the lateral force is taken into account in

the expression of the lateral friction coefficient µy:

µy = (pDy1 + pDy2dfz)(1 + pDy3dp + pDy4dp2) (3.26)

where dfz =
Fz − Fz0

Fz0
and Fz0 the nominal vertical load. pDy1, pDy2, pDy3, pDy4 are

constants.
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Figure 3.7: Influence of inflation pressure on Fy Fz = 24.4kN
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Figure 3.9: Influence of inflation pressure on Fy - Fz = 156kN
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Figure 3.10: Influence of inflation pressure on Fy - Fz = 200kN
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3.2.3.2 Effect of inflation pressure on Mz

In figures 3.11, 3.12, 3.13 and 3.14, the inflation pressure also shows an influence on the

self-aligning moment Mz. When the inflation pressure is increased, the peak of Mz tends

to decrease for all the considered vertical loads. In addition, the slope at the origin of

the curve Mz = f(α) tends to slightly decrease with the inflation pressure at relative low

vertical loads, see curves for vertical load 24.4kN in figure 3.11. In fact, the slope takes the

values 3725Nm/rad, 3440Nm/rad and 3250Nm/rad for the inflation pressures 11.3 bars,

14 bars and 16 bars respectively. But, at relative high vertical loads, example of 200kN

in figure 3.14, the influence of the inflation pressure on the slope becomes less significant

and unpredictable while its influence on the peak value of Mz remains important.

In general, an increase of the inflation pressure results in a higher vertical stiffness, and

therefore in a shorter contact length and a smaller pneumatic trail. The pneumatic trail

is the relation of the self-aligning moment and the lateral force. In addition, the change

in contact length is relatively larger than the change of lateral force, which causes the

self-aligning moment to decrease with the inflation pressure [33].
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Figure 3.11: Influence of inflation pressure on Mz - Fz = 24.4kN
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Equation (3.27) describes the current Magic Formula expression of the pneumatic trail as

a function of the inflation pressure.

Dt = Fz(qDz1 + qDz2dfz)(1 − qpz1dp)
R0

Fz0
(3.27)

where qDz1, qDz2 and qpz1 are constants. R0 is the unloaded tyre radius. Fz0, Fz and dfz

are same as already defined in equation (3.26).

3.3 Simulating Magic Formula as implemented in Msc Adams

software

The objective is to integrate Magic Formula in a multi-body system that represents a tyre

test machine and to model pure cornering in the same conditions used for the previous

mentioned measurements data. The simulation environment used is Msc Adams software.

It will help to validate the choice of Magic Formula model for studying the steady-state

tyre-road interaction forces and moments and also to check the ability of the model to be

integrated in the simulation environment.

Up to year 2009, PAC89/94, PAC-Time and PAC2002 are default versions of MF imple-
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mented in Msc Adams software. In the application presented next, PAC2002 version as

implemented in Msc Adams is considered. The simulation is carried out by developing a

tyre test rig that can reproduce the functional model of a real test machine. Measurements

data are used to validate the tyre model results from the test rig.

3.3.1 Tyre test rig model in Msc Adams

Figure 3.15 presents a schematic representation of the test rig model that illustrates the

principle of operation. The tyre test rig contains a tyre-part that rolls forward and interacts

on a flat uniform road surface. The tyre-part is connected to a frame-part by a revolute

joint aligned with the spin axis of the wheel. The frame-part is connected to the sideslide-

part by a cylindrical joint that is aligned in the vertical direction. The cylindrical joint

allows in one hand, a rotational motion that is used to set or vary the side slip angle of the

tyre during simulation. In the other hand, the cylindrical joint allows a vertical translation

motion that can be used to control the vertical position of the wheel center relative to the

runway. This translation motion can be deleted, and a vertical wheel load can be defined

that allows the tyre to locate on the runway as a function of the tyre vertical stiffness and

damping. The definition of the wheel load introduces then another degree of freedom in

the model.

The model is set to ignore gravitational force, so that the applied wheel load can be

varied and set equal to the desired vertical load during simulation. The sideslide-part is

connected to the carrier-part by a translation joint aligned in the lateral direction. This

motion is used to set the lateral position of the tyre. Then, the tyre can be dragged in

a sideways direction relative to the runway. The carrier-part is connected to the ground

(road-part) by a translation joint aligned with the direction of travel of the wheel. The

forward velocity of the tyre during simulation is controlled by applying a motion on this

translation joint. The model has therefore two rigid body degrees of freedom. The first

degree of freedom is associated with the spin motion of the tyre which depends on the

longitudinal force: traction, braking or rolling resistance. The second degree of freedom

is the vertical position of the wheel center that is defined by the wheel load, the vertical

stiffness and damping of the tyre. In the present work, a vertical load is defined and

the vertical translation motion of the cylindrical joint is canceled. Only pure cornering is

considered and therefore, it is considered that no traction or braking force is generated.

All parts are supposed rigid relative to the tyre stiffnesses.

Remark: The camber angle motion is not modelled in the test rig because it is not taken

into account in this study.

74



3.3. Simulating Magic Formula as implemented in Msc Adams software

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Tyre-part

Vertical motion

Lateral motion

Forward velocity

steering angle

carrier-part

Road-part

sideslide-part

wheel load

frame-part

axis system

railing

Figure 3.15: Adams tyre test rig model used in Adams - Principle of operation

3.3.2 Steady-state pure cornering

For each inflation pressure, a tyre property file (with extension ’.tir’) is exported from

MF-Tool and contains all the parameters that have been estimated for the model. On the

test rig, the steering rate is set at 2◦/s and the slip angle α is swept from 0 to 20◦. The

forward velocity is set constant at 8 m/s. Msc Adams uses the property file with the test

rig to determine the lateral force Fy and the self-aligning moment Mz at each step of the

simulation. The simulation is repeated for the following vertical loads: 24.4kN , 68.3kN ,
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112.2kN , 156kN and 200kN .

Simulation results

The lateral force and the self-aligning moment simulation results obtained fromMsc Adams

tyre test rig are compared to measurements data. It is found that the simulation results

are quite similar to those obtained from the direct use of the model equations already

presented in section 3.2.3. Thus, it is chosen to not repeat the same curves in this section.

3.3.3 Parking manœuvres

When the wheel is being steered at low or zero speed, the manœuvre is often termed

parking. Experiments have shown that the torque acting on the tyre at such conditions

often becomes very large [10].
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Figure 3.16: Fy and Mz evolution from static torsion to dynamic cornering

Figure 3.16 presents simulation results of a tyre submitted to static torsion and to dynamic

pure cornering successively. The test rig described previously is used and the tyre is first

loaded at the vertical load of Fz = 150kN with the inflation pressure of 16 bars. Then a

sinusoidal steer angle variation ψ is imposed on the cylindrical joint, that links the frame-
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part to the sideslip-part, at time t = 0. The longitudinal velocity Vx is kept zero from

time t = 0 to time t = 2s, after which it is progressively increased up to 5m/s at time

t = 4s. Since Magic Formula describes the tyre-road interaction for a rolling wheel. It

can be remarked that the lateral force ( its absolute value |Fy|) as well as the self-aligning
moment Mz start building up at time t = 2s where the longitudinal speed Vx is different

from zero. Before this time, Vx = 0 and the tyre responds to the steer angle by developing

a torsion torque exclusively.

The Magic Formula equation used previously for representing the self-aligning moment

is only valid for a rolling wheel in which the lateral motion generates lateral tyre tread

displacement (lateral slip) and thus a lateral force. The self-aligning moment is then

supposed to be the product of this lateral force and the pneumatic trail, which represents

the shift of the lateral force line of action from the contact patch center. However, at very

low or zero speed, the torsional deformation of the tyre is quantitatively more dominant

and the tyre lateral slip definition (Sα =
Vy

Vx
) tends to be infinite and does not make sense.

Then, the Magic Formula equations cannot be used in their original form. Based on the

work of Van der Jagt [36], Pacejka [10] proposes the following empirical expressions for

modelling the tyre torque at low and zero speed.

Mz = Mzϕ1 + Mzϕ2 (3.28)

where

Mzϕ1 = wV low.DDrϕCDrϕBDrϕR0ϕ
′

Mzϕ2 = (1 − wV low).DDrϕ sin

[

CDrϕ arctan(BDrϕR0ϕ
′)

]

(3.29)

wV low is an empirical parameter defined as follow:

wV low =
1

2

[

1 + cos

(

π
Vx

Vlow

)]

if |Vx| ≤ Vlow

wV low = 0 else

(3.30)

Vlow represents the critical limit of the longitudinal velocity below which the self-aligning

moment is significantly influenced by the tyre velocity. Consequently, the previous Magic

Formula equation for Mz is no longer valid below this critical speed and equation (3.28)

should be considered. R0 is the free unloaded tyre radius. DDrϕ, CDrϕ and BDrϕ are

empirical parameters and ϕ′ is the transient turn slip angle.

From equation (3.29), it can be remarked that the first component Mzϕ1 decreases in
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magnitude with increasing speed until it vanishes at Vx = Vlow while the second component

Mzϕ2 increases from zero to its maximum value at Vx = Vlow.

In figure 3.16, the static torsion torque for 0 ≤ t ≤ 2s, is simply a hand calculation

obtained as the product of the tyre torsional stiffness (∼ 86kN/rad) and the torsion

angle ψ. However, for 2 < t ≤ 4.5s, the curves corresponding to the self-aligning torque

Mz and the lateral force Fy are estimated by Msc Adams using Magic Formula pure

cornering equations. Since the critical speed Vlow as well as the empirical parameters

are not available (not provided in the tyre property file), the transition phase (low speed

zone), which describes the influence of the tyre speed on Mz from zero to Vlow, is not

taken into account. However, it is found worth presenting figure 3.16 because it helps to

emphasise the difference between the static torque and the torque of the dynamic tyre.

For the considered tyre, it can be remarked that for the same steering angle, the static

torque is twice greater than the dynamic one.

3.3.4 Lateral relaxation length σy

In general, experimental determination of the lateral relaxation length is performed by

first applying a steering angle to the wheel, then loading it at the desired vertical load and

finally, starting rolling the wheel at a relative low velocity (e.g. 0.5m/s). A lateral force

builds up progressively in the tyre-ground interface. Then, the lateral relaxation length

corresponds to the distance rolled by the tyre before the lateral force Fy reaches 63% of its

maximum value Fymax. In the literature, the lateral relaxation length σy is often defined

as the ratio of the cornering stiffness Cα over the tyre lateral stiffness ky.

σy =
Cα

ky
(3.31)

In the latest version of Magic Formula implemented in Msc Adams, for a given inflation

pressure, the lateral stiffness ky is assumed constant independently of the vertical load [33].

In fact, only the average stiffness for all vertical load conditions used in the measurement

process is considered:

ky =
1

N

N
∑

i=1

kyi (3.32)

where ky is the average value of lateral stiffness, kyi the stiffness value at the vertical load

Fzi, and N the number of vertical load conditions.

In the tyre test rig, the vertical load is set at Fz = 200kN , the side slip angle α at 1◦ and

the forward velocity Vx at 0.5m/s. Then, the relaxation length is determined as shown

in figure 3.17. The relaxation length is found to be σy = 0.65m that corresponds to the
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lateral force |Fy| ∼ 7.8kN .

Finally, the vertical load is varied from 130kN to 300kN and the corresponding relaxation

lengths are modelled. The results at both inflation pressures 14 bars and 16 bars are

plotted in figure 3.18 (the lateral stiffness values are only available for these two inflation

pressures). Since Pacejka model PAC2002 considers that the lateral stiffness ky does

not depend on the vertical load at each inflation pressure, equation (3.31), the lateral

relaxation length σy is therefore governed by the cornering stiffness Cα. At low vertical

loads, when the inflation pressure is increased, the cornering stiffness decreases, which

leads to low relaxation length, figure 3.18. However, at relative high vertical loads, the

cornering stiffness increases with inflation pressure, which leads to high relaxation length.
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Remark

From the study of physical and semi-empirical models, chapters 2 and 3 respectively, it

can be underlined that the lack of measurements data in the required manœuvre condi-

tions makes it difficult to provide a definitive choice of suitable model(s). In fact, the

estimation of a chosen or/and a developed model parameters as well as the validation

of the modelling results require measurements data. Magic Formula model is adopted

as suitable model for the investigation but its validity is only checked at pure cornering

condition. Validation of this model in the remaining tyre manœuvre conditions such as

pure longitudinal slip (driving/braking), combined slip and parking are then necessary in

oder to make a definitive choice.

3.4 Conclusion

The interpolation and the prediction capability of Magic Formula model (2002 version)

have been tested at pure cornering condition. Indeed, in one hand, some measurements

data (of the lateral force and of the self-aligning moment) are used for estimating Magic

Formula parameters with MF-Tool (interpolation step). In the other hand, the determined

parameters are used to estimate the lateral force and the self-aligning moment at verti-
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cal loads different from those used for the interpolation with MF-Tool (prediction step).

The maximum of the standard deviation between measurements data and modelling re-

sults (interpolated or predicted) is 1.9% for the lateral force and 8.8% for the self-aligning

moment. These deviations can be considered to be within acceptable range. Because of

lack of measurements data, pure driving/braking, combined slip, parking and influence of

inflation pressure could not be studied.

A tyre test rig model has been developed in Msc Adams software for simulating pure

cornering using the version PAC2002 (in steady-state conditions, PAC2002 is equivalent

to the 2002 version of MF). In the case of pure cornering, it is found that the modelling

results are quite similar to those obtained from the direct use of the model equations.

Moreover, it is underlined that Magic Formula current versions (example of the 2002

version) propose expressions for modelling the tyre characteristics in the entire steady-state

conditions required for the present study. With respect to the satisfactory agreement ob-

tained at pure cornering, it may be expected that the model will provide similar modelling

results for the tyre characteristics at pure driving/braking, combined slip and parking con-

ditions.

Besides, it can be remarked that Magic Formula as well as the other literature tyre models

studied do not consider a longitudinal force Fx during pure cornering and therefore, the

models do not propose any expression for it. However, the measurements data described

in chapter 2 mentioned that a longitudinal force has been recorded at pure cornering.

Moreover, this longitudinal force increases with the side slip angle and also with relative

significant magnitude when compared to the lateral force one. It is then obvious that the

side slip angle has significant influence on the tyre drag force (longitudinal force), and this

phenomenon is neither modelled by Magic Formula nor by the models presented in chapter

1. Thus, the next chapter will focus on studying the generation of this longitudinal force

at pure cornering.

81





Les équations n’explosent pas.

Bertrand Russel

Chapter 4

Real shear forces and moment at

pure lateral slip

From the tyre models investigation performed in chapters 2 and 3, it is underlined that

longitudinal force has been neglected in general at pure cornering condition. Therefore, in

the contact patch, the total force is assumed to be equal to its lateral component. However,

in the context of this study, a longitudinal force has been recorded at pure cornering per-

formed on an aircraft tyre. It is shown that this force increases with the side slip angle

and also with relative significant magnitude when compared to the lateral force one. In this

chapter, the Poisson ratio, which describes the contraction of an incompressible material

when it is stretched in one direction, is taken into account in a comprehensive physical

approach to describe the generation of this longitudinal force. This force is also referred

as induced longitudinal force. Moreover, an exhaustive description of the self-aligning mo-

ment generation at pure lateral slip is proposed by decomposing it into contributions of the

induced longitudinal force and the lateral force. Relative simple model is proposed for the

induced longitudinal force as well as for the self-aligning moment and finally, both models

results are compared to measurements data [37, 38, 39].

4.1 Introduction

The behaviour of the tyre is complex and it is required to consider either extensive and

complex models or models with considerable simplification for its full solution. Indeed,

the major part of the steady-state tyre mathematical models that exist in the literature

are all developed according to two hypotheses. The first hypothesis is pure longitudinal

or pure lateral tyre slip condition and the second is combined tyre slip condition. Pure
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lateral slip describes the transversal velocity of the tyre during cornering manœuvre with-

out braking/driving torque, camber and turn slip. The tyre is also said to be at pure

cornering condition. At pure lateral slip condition, it has been also deemed that the tread

band displacement in the contact patch is exclusively in the transversal (lateral) direction

and therefore, only transversal (lateral) force is developed.

It is worth mentioning that in reality, longitudinal force is always generated by the tyre

during pure cornering. But, for some types of tyres (example of passenger cars tyres), this

longitudinal force is often negligible when compared to the lateral force during pure cor-

nering. However, with respect to the considered tyre properties and its loading conditions

(example of aircraft tyres), this assumption of zero longitudinal force at pure cornering

may lead to a misinterpretation of the tyre real behaviour. In fact, the non uniform lateral

tread stretching in the contact patch generates a longitudinal tread contraction (displace-

ment) and as a result, a longitudinal force is developed [37, 38, 39].

The aim of the present chapter is to physically describe the generation of this longi-

tudinal force at pure cornering. For this purpose, a simple but comprehensive physical

approach is first used to describe the tyre tread displacement in the longitudinal direction

at pure cornering and a model is proposed for the corresponding longitudinal force. This

force is referred as induced longitudinal force. Then, the same approach is used to provide

an exhaustive description of the self-aligning moment generation. The relative simplicity

of the approach used in this chapter is achieved by the means of some assumptions on

the tyre structure modelling. These assumptions are similar to those adopted in the basic

brush model development as they are presented in [3, 10] for example. Due to this basic

representation of the tyre structure, the scope of this chapter is mainly to provide a com-

prehensive description of the longitudinal force and the self-aligning moment generation

at pure lateral slip rather than deriving models that better fit with measurements data.

Finally, the Magic Formula model is proposed for representing this longitudinal force at

pure lateral slip.

This chapter is organised as follows. In section 4.2, the context and the motivation of

this study are presented. Then, section 4.3 describes the tyre deformation in the contact

patch and also presents the development of the induced longitudinal force model. In sec-

tion 4.4, the self-aligning moment model is presented. The developed models are validated

using measurements data in section 4.5. Finally, in section 4.6, a Magic Formula based

model is proposed for representing the induced longitudinal force.
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4.2 Context and motivation of the study

4.2.1 Tyre deformation at pure lateral slip condition

The approach of pure lateral slip is widely used in tyre-road interface modelling. In fact,

several models for the tyre-road interface characteristics have been developed under the

assumptions that defines pure lateral slip, which will be briefly described in this section.
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Figure 4.1: Pure cornering - General view of the tyre deformation in the contact patch

Consider a rolling tyre without camber and turn slip. When a cornering manœuvre is

performed on the wheel, the wheel speed vector V shows an angle with respect to the

wheel plane. This angle is commonly designated as the side slip angle α, figure 4.1. If

neither braking nor driving torque is applied in addition to the side slip, the tyre is said

to be at pure lateral slip (or pure cornering) condition. The tread band deflection is

considered to be exclusively in the lateral direction and therefore, only a lateral force Fy

is generated. The longitudinal force Fx is then assumed zero. The line of action of this

force Fy is shifted from the centre O of the contact patch with distance of tx, in (O,~x, ~y)

axis system of the contact patch plane. Thus, a moment designated as the self-aligning

moment Mz is generated and can be expressed as follows:
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Chapter 4. Real shear forces and moment at pure lateral slip

|Mz| = tx|Fy| (4.1)

where tx is termed the pneumatic trail.

For relative small side slip angle α, the tyre tread band surface is considered to be in

full adherence with the road surface. But, as α rises, sliding occurs progressively from the

trailing edge of the contact patch where the friction limit is reached first. The contact

patch is then divided into two zones: adhesion and sliding zones. At the same time, the

deformation shape of the contact patch becomes more symmetric and, as a result, the

pneumatic trail tx gets smaller. If the side slip angle α is increased enough, the tyre will

completely loose adherence with the road surface and will start sliding. The tyre is said

to be at full sliding condition and the line of action of Fy coincides with the contact patch

y axis. It results in a zero self-aligning moment Mz independently of angle α.

However, with some type of tyres, the longitudinal force Fx at pure cornering may not

be negligible. As it is underlined in [37], the non symmetric lateral deformation of the

tyre in the contact induces tread deformation in the longitudinal direction (along the x

axis). Consequently, a longitudinal force Fx is generated and acts as a braking force. The

line of action of Fx is shifted from the centre O of the contact patch with distance of ty.

Suppose that point G represents the point of action of both forces Fx and Fy, figure 4.1.

Its coordinates read G(XG, YG), where

tx = |XG|
ty = |YG|

(4.2)

The self-aligning moment Mz is now the sum of two moments, one caused by Fx and the

other by Fy:

Mz = XGFy − YGFx (4.3)

If α 6= 0, it can be remarked from equation (4.3) that a zero value of Mz does not necessary

imply the tyre is in full sliding condition with respect to the road surface and the point

of action G of the forces coincides with the centre O of the contact patch. Indeed, the

condition of zero Mz may be also satisfied if XGFy = YGFx.

Consider figures 4.2, 4.3, 4.4 and 4.5 which present measurements data obtained in real

situation of pure cornering performed on a civil aircraft tyre. This tyre is mounted on a
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4.2. Context and motivation of the study

test bench and pure cornering is performed. The longitudinal force Fx, the lateral force

Fy and the self-aligning moment Mz data are recorded vs the side slip angle α. During

each test, the vertical load is kept constant as well as the forward velocity V , (V = 8m/s).

No driving/braking torque, camber or turn slip is applied on the wheel. In one hand, it is

observed that a longitudinal force Fx, which acts like a braking force and increases with

side slip angle α, is generated in addition to the lateral force Fy, figures 4.2 and 4.4. In

the other hand, it is remarked that the evolution of the self-aligning moment Mz can be

decomposed into three phases. In the first phase, Mz increases with the side slip angle α

up to its maximum value. In the second phase, Mz decreases with the side slip angle α

until it reaches zero. The third phase corresponds to the range of α for which Mz restarts

building up but, with an opposite sign (in the opposite sign part of the graph).

The measurements data described above are in good agreement with the previous remark

on the real shear forces developed in the contact patch during pure lateral slip. In fact, the

data show the longitudinal force Fx may not be neglected and therefore, the self-aligning

moment would obey to the theoretical representation of equation (4.3).
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Next, the objective is to physically describe the generation of this longitudinal force. Then,

the self-aligning moment model, equation (4.3), is derived by determining the coordinates

(XG, YG) of the action point G of both forces Fx and Fy.

The approach used in the present document for modelling the wheel structure and the

contact between the tyre and the road is first described below.

4.2.2 Wheel structure and tyre-road contact representation

In the model derived in this study, the tyre tread are represented by an array of small

elastic rectangular elements attached to a rigid ring, figure 4.6. The tread elements form

the tread band surface which comes into contact with the road surface. The compliance

of these elements is assumed to represent the elasticity of the combination of carcass, belt

and actual tread elements of the real tyre. During free rolling of the tyre (that is without

action of driving/braking torque, side slip, camber or turning), the wheel moves along

a straight line parallel to the ground and in the direction of the wheel plane. In this

particular case, the tread elements are deemed vertical and move from the leading edge to

the trailing one without horizontal deflection and therefore, without fore/aft or side force.

A possible presence of rolling resistance is disregarded and when tread element deflection

occurs due to shear force, it is always supposed to be parallel to the road surface. The
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Chapter 4. Real shear forces and moment at pure lateral slip

undeformed contact patch shape is assumed rectangular, figure 4.7, where the letter a

represents its half-length and b its width. A parabolic normal pressure distribution p,

which vanishes at the contact entry and exit points, is considered in the contact patch.

Equation (4.4) describes the normal pressure distribution.

p(x) = p0(1 − x2

a2
) (4.4)

The parameter p0 is a constant and is deduced from the condition that this pressure

distribution equilibrates the vertical force Fz. Thus, p0 =
3Fz

4ab
and equation (4.4) becomes:

p(x) =
3Fz

4ab
(1 − x2

a2
) (4.5)

The two zones that may exist in the contact patch are shown in figure 4.7. The lateral

tread deflection in the adhesion zone is assumed linear up to the transition abscissa xt.

In the sliding zone, the shape of the lateral deflection is mainly determined by the shape

of the normal pressure distribution p. In the present case, it has a parabolic shape. The

point of action of both forces Fx and Fy is represented by G(XG, YG).
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Figure 4.6: Tyre representation (Brush model)

90



4.3. Longitudinal force model

υxA

B

Deformed center ligne

of the contact patch

Initial center ligne

of the contact patch

O

b

V

G

Fx

Fy

tx

ty
x

y

Trailing

edge

Leading

edge

Sliding Adhesion

υy

a−a xt

Undeformed shape

of the contact patch

α

Figure 4.7: Contact patch presentation (Top view)

In the next section, based on the contact patch approach described above, expressions for

the lateral displacement υy and for the longitudinal contraction υx are derived. Then, the

induced longitudinal force model is proposed.

4.3 Longitudinal force model

Consider the tyre contact patch as presented in figure 4.7. During cornering, the direction

of the forward velocity V shows an angle, denoted side slip angle α, with respect to the

wheel plane. The tread band is then displaced in the lateral direction. In the contact

patch, two zones may occur depending on the magnitude of the side slip angle α, the

adhesion and the sliding zones. In the adhesion zone, the lateral tread band displacement,

υy, is assumed to be a linear function of x while in the sliding zone its shape is governed

by the normal pressure distribution (parabolic shape in this case).

In the case of relative small side slip angles, the tread band surface can be considered

to be in full adhesion with the road surface in the entire contact patch. Thus, the tread

band lateral displacement, υy, is assumed exclusively linear along the contact patch. Its

magnitude depends on the side slip angle α as shown in the following expression:

υy = −(a − x) tanα (4.6)
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Chapter 4. Real shear forces and moment at pure lateral slip

By assuming the tyre tread band as an elastic material, the lateral force per unit contact

length
dFy

dx
is proportional to the displacement υy of the tread band.

dFy

dx
= kyυy = −ky(a − x) tanα (4.7)

where ky represents the lateral compliance (stiffness) of the elastic tread band. The total

lateral force is obtained by integrating the elementary force, equation (4.7), over the entire

contact patch.

Fy =
a
∫

−a

dFy = −2a2ky tanα (4.8)

In the literature ([3, 10] for example), it is assumed that Cα = 2a2ky is the cornering

stiffness (unit: force) and represents the slope at the origin of the curve Fy = f(α).

Cα =
∂Fy

∂α

∣

∣

∣

∣

α=0

(4.9)

In the same manner, it is assumed that CS = 2a2kx, where kx represents the longitudinal

(tangential) stiffness of the elastic tyre tread band, and CS is the longitudinal slip stiffness

(unit: force). CS also represents the slope at the origin of the longitudinal force Fx vs the

longitudinal slip.

Next, the following expressions for kx and ky will be used:

kx =
CS

2a2
, ky =

Cα

2a2
(4.10)

Besides, the lateral deformation of the tyre tread band εy reads:

εy =
|υy|
b

(4.11)

As it is shown in [37], the nonuniform tyre lateral stretching, υy, in the contact patch

induces a non compensated longitudinal contraction ~υx = υx~x, which is oriented towards

the leading edge. For example, a point will move from its initial and undeformed position

A to its deformed one B due to the side slip angle as shown in figure 4.7. The displacement

of the point from A to B has two components: a displacement υx along the x axis and a

displacement υy along the y axis. υx is responsible for the induced longitudinal force Fx,

and υy for the lateral force Fy.

The Poisson coefficient ν can be defined as the ratio of the longitudinal deformation

εx over the lateral deformation εy.
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4.3. Longitudinal force model

εx =
|υx|

a − x
(longitudinal deformation), x 6= a

ν =
εx

εy
(Poisson ratio)

(4.12)

By using equations (4.6), (4.11) and (4.12), the expression for the longitudinal displace-

ment (contraction), υx is derived as follows:

υx =
ν(a − x)2

b
| tanα| (4.13)

By assuming the tyre tread band as an elastic material, the longitudinal force per unit

contact length
dFx

dx
is proportional to the displacement υx of the tread band.

dFx

dx
= −kxυx = −ν(a − x)2

2ba2
CS | tanα| (4.14)

where kx is replaced by its corresponding expression from equation (4.10). The minus sign

in equation (4.14) illustrates the reaction force of the ground on the tyre in the longitudi-

nal direction.

For relative small side slip angle, the total longitudinal force is obtained by integrating

the elementary force, equation (4.14), over the entire contact patch.

Fx =
a
∫

−a

dFx

Fx = −νCS | tanα|
2ba2

a
∫

−a

(a − x)2dx

Fx = −4aνCS

3b
| tanα|

(4.15)

The expression of Fx obtained in equation (4.15) is only valid for relative small side slip

angle for which it is assumed a full adhesion in the contact patch. However, when the

slip angle α reaches a certain limit, the maximum friction force will be attained in some

areas of the contact patch and the tread will start sliding. The sliding area occurs first

at the trailing edge and increases with slip angle α. Therefore, when considering the

general case (no assumption of small side slip), the contact patch must be divided into

two zones: adhesion and sliding zones, figure 4.7. Quantity xt represents the transition

abscissa between adhesion and sliding zones. The elementary longitudinal force is devel-

oped distinctly in each zone and the total longitudinal force Fx is the sum of two forces

93



Chapter 4. Real shear forces and moment at pure lateral slip

generated in each zone. The tread band lateral displacement υy is considered linear in the

adhesion zone and the corresponding longitudinal force per unit contact length,
dFxa

dx
, has

the same expression as already presented in equation (4.14).

Fxa =
a
∫

xt

dFxa

Fxa = −νCS

6ba2
(a3 − 3a2xt + 3ax2

t − x3
t )| tanα|

(4.16)

where Fxa represents the longitudinal force induced in the adhesion zone.

The longitudinal and lateral forces in the sliding zone are noted Fxs and Fys respectively.

By considering the Coulomb friction law, the lateral force per unit contact length in the

sliding zone reads:

dFys

dx
= −µ

dFz(x)

dx
sgn(α) (Coulomb friction law) (4.17)

where Fz(x) is the vertical load distribution along the x axis and sgn(α) denotes the sign

of the slip angle α in the ISO coordinate system. The friction coefficient µ is generally

comprised between 0 and 1, and is function of road and tyre surfaces state. The maximum

adherence between tyre and road is obtained when µ = 1. Values of µ close to 0 represent

poor adherence condition as for instance the cases of contact with wearied tyre, wet, snow

or ice road. More often, µ is interpreted as the ratio of the maximum lateral or longitudinal

force (Fymax, Fxmax respectively) over the total vertical load Fz.

From the normal pressure distribution given in equation (4.5), the vertical load distribution

Fz(x) reads:
dFz(x)

dx
= bp(x) =

3Fz

4a
(1 − x2

a2
) (4.18)

Since the tyre tread band is assumed elastic and associated with a compliance of ky, the

lateral displacement υys in the sliding zone is derived as follows:

υys =
1

ky

dFys

dx
(4.19)

By using equations (4.17) and (4.18), the lateral displacement υys from equation (4.19)

becomes:

υys = − 3µFz

2aCα
(a2 − x2)sgn(α) (4.20)

where ky has been replaced by its expression from equation (4.10).

From equations (4.12) and (4.20), the longitudinal contraction induced by the tread lateral

displacement in the sliding region is deduced:
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4.3. Longitudinal force model

υxs =
ν

b
(a − x)|υys|

υxs =
3µνFz

2baCα
(a2 − x2)(a − x)

(4.21)

The longitudinal force per unit contact length in the sliding zone is derived as follows:
dFxs

dx
= −kxυxs. Then, kx and υxs are replaced by their corresponding expression from

equations (4.10) and (4.21), respectively. Finally, the contribution of the sliding zone to

the total longitudinal force is obtained by integrating dFxs over the sliding zone.

Fxs =
xt
∫

−a

dFxs

Fxs = −µνFzCS

16ba3Cα
(12a3xt − 6a2x2

t − 4ax3
t + 3x4

t + 11a4)

(4.22)

At the transition point xt, a continuity of the lateral displacement is supposed: υya(xt) =

υys(xt). In the same manner, both longitudinal displacements υxa and υxs from the

adhesion and the sliding zones, respectively, are equal at the transition point xt.

υxa(xt) = υxs(xt) (4.23)

If υxa (υxa = υx from equation (4.13)) and υxs (equation (4.21)) are replaced by their

corresponding expressions, equation (4.23) becomes:

ν(a − xt)
2

b
| tanα| =

3µνFz

2baCα
(a2 − x2

t )(a − xt)

| tanα| =
3µFz

2aCα
(a + xt)

(4.24)

By noting K =
xt

a
and from equation (4.24):

K =
2Cα| tanα|

3µFz
− 1 (4.25)

Then, the longitudinal force from the adhesion zone and from the sliding zone, equation

(4.16) and (4.22) respectively, become:

Fxa = −νaCs

6b
(1 − 3K + 3K2 − K3)| tanα|

Fxs = −µνaFzCS

16bCα
(12K − 6K2 − 4K3 + 3K4 + 11)

(4.26)
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The total longitudinal force is then the sum of the contributions of the adhesion and the

sliding zones.

Fx = Fxa + Fxs

Fx = −νaCs

6b
(1 − 3K + 3K2 − K3)| tanα|

− µνaFzCS

16bCα
(12K − 6K2 − 4K3 + 3K4 + 11)

(4.27)

Remark:

From equation (4.25), it can be verified that the transition point will never coincide with

the trailing edge unless the side slip angle α is zero (xt > −a always if α 6= 0). Therefore,

there will always be sliding in the contact patch if a parabolic normal pressure distribution

is assumed. This will not be the case if a uniform normal pressure distribution was sup-

posed, but it provides less accurate modelling results when compared to parabolic normal

pressure assumption [21].

If the side slip angle α is increased enough, full sliding may occur. In the particular

case of full sliding, the transition abscissa xt will coincide with the leading edge, xt = a.

Consider αfs as the value of the side slip angle at which the tyre reaches full sliding. The

expression of αfs may be determined by taking xt = a in equation (4.25).

αfs = arctan(
3µFz

Cα
) (4.28)

After the critical value αfs of the side slip angle, the lateral tread displacement is uniform

along the x axis. The lateral force is supposed to reach its maximum value and its point

of application is deemed to coincide with the center of the contact patch. The entry and

exit points (leading and trailing edges) of the contact patch are free to contract uniformly

too. Therefore, the induced longitudinal forces (which are considered proportional to the

longitudinal tread displacement) from both leading and trailing edges equilibrate each

other.
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Finally, the induced longitudinal force can be summarized as follows:

if α < αfs (full adhesion or adhesion + sliding)

Fx = −νaCs

6b
(1 − 3K + 3K2 − K3)| tanα|

− µνaFzCS

16bCα
(12K − 6K2 − 4K3 + 3K4 + 11)

if α ≥ αfs (full sliding)

Fx = 0

(4.29)

with K and αfs being given in equations (4.25) and (4.28) respectively.

Comment on the critical side slip

The expression of αfs in equation (4.28) is exactly the same as the one given for the critical

side slip limit α∗ of the Fiala model (see equation (2.19) in chapter 2). This equivalence is

due to the fact that the brush model approach is used in the development of both models.

As it is already underlined in section 2.4.3 of chapter 2, the brush model approach presents

some limitations at relative high side slip angle and need to be improved in order to derive

a more realistic expression for the critical side slip angle αfs (or α∗ for the Fiala model).

Tyre data which would help to use an improved approach are not available in the context

of this study.

In the next section, based on the contact patch approach described above, expressions

for the coordinates (XG, YG) are derived and a model for the self-aligning moment Mz is

proposed based on equation (4.3).

4.4 Self-aligning moment model

Consider the contact patch as presented in figure 4.7. It can be remarked that the position

(coordinates XG and YG) of the action point G depends on the lateral displacement υy of

the tyre in the contact patch.
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When considering the general case (no assumption of small side slip angle), this lateral

displacement can be summarized as follows:

if − a ≤ xt ≤ x ≤ a (adhesion zone)

υy = υya = −(a − x) tanα

if − a ≤ x < xt ≤ a (sliding zone)

υy = υys = − 3µFz

2aCα
(a2 − x2)sgn(α)

(4.30)

where υya and υys represent the tyre lateral displacement in the adhesion zone and in the

sliding zone respectively. Equation (4.30) also describes the shape of the deformed centre

line of the contact as shown in figure 4.7. The barycentre G of the surface generated by the

centre line deformation is also the point of action of both forces Fx and Fy. It is assumed

that the displacement of the contact patch in the longitudinal direction is negligible when

compared to its initial length L = 2a. Therefore, the contact patch length is deemed

unchanged and equal to 2a.

Now, we focus on determining the coordinates (XG, YG) of the barycenter G. Consider

that S is the total surface generated by the centre line deformation. The derivative of S

vs the variable x is: dS = υydx. S is then given by the following equation:

S =
xt
∫

−a

|υys|dx +
a
∫

xt

|υya|dx

S =
µFz

2aCα
(2a3 + 3a2xt − x3

t ) +
tan(α)

2
(a2 − 2axt + x2

t )

(4.31)

From the definition of the barycenter of a flat surface, the value of the coordinates XG

and YG read:

XG =
1

S

∫ ∫

xdS, YG =
1

S

∫ ∫

ydS (4.32)

where y is the lateral tread displacement designated by υy. Equation (4.32) can then be

rewritten as shown below:

XG =
xt
∫

−a

xυysdx +
a
∫

xt

xυyadx

YG =
xt
∫

−a

υ2
ysdx +

a
∫

xt

υ2
yadx

(4.33)
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4.5. Application

By solving equation (4.33), with υya and υys given by equation (4.30), the following

expressions are obtained for the coordinates XG and YG.

XG =
1

S

[

3µFz

8aCα
(−a4 + 2a2x2

t − x4
t ) +

tanα

6
(a3 − 3ax2

t + 2x3
t )

]

YG =
1

S

[

(

3µFz

2
√

15aCα

)2

(8a5 + 15a4xt − 10a2x3
t + 3x5

t )

+
(tanα)2

3
(a3 − 3a2xt + 3ax2

t − x3
t )

]

(4.34)

When using the notation K =
xt

a
, where K has the same expression as presented in

equation (4.25), the expressions for XG and YG shown in equations (4.34) become:

XG =
a3

S

[

3µFz

8Cα
(−1 + 2K2 − K4) +

tanα

6
(1 − 3K2 + 2K3)

]

YG =
a3

S

[

(

3µFz

2
√

15Cα

)2

(8 + 15K − 10K3 + 3K5)

+
(tanα)2

3
(1 − 3K + 3K2 − K3)

]

(4.35)

where XG and YG determine the position of the action point G of both forces Fx and Fy.

Finally, the self-aligning moment Mz model is obtained by replacing XG and YG in equa-

tion (4.3) by their corresponding expression in equation (4.35).

Next, the modelling results of both longitudinal force and self-aligning moment models

are compared to measurements data.

4.5 Application

The aim of this section is to compare modelling results of the longitudinal force Fx and the

self-aligning moment Mz models derived from the contact patch investigation, equations

(4.29) and (4.3) respectively, with measurements data presented in section 4.2.

To compute the developed models, it is assumed that the tyre tread stiffnesses are isotropic.
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Chapter 4. Real shear forces and moment at pure lateral slip

Thus, the longitudinal and lateral tread stiffnesses, kx and ky respectively, are assumed

equal: kx = ky = k. Therefore, CS = Cα = 2a2k. In this application, the value of k is

determined through static load deflection curves. In fact, k is the slope at the origin of

the curve that gives the static longitudinal or lateral load vs tyre longitudinal or lateral

displacement. k slightly varies with the vertical load Fz. The mean value of k is therefore

considered for this application. The values of the contact patch length 2a are determined

through an interpolation of static vertical loading data which give contact patch length 2a

vs vertical load Fz. The values of XG and YG are determined by using their corresponding

expression from equation (4.35).

In order to determine the friction coefficient, a reference value at each inflation pressure

and at each vertical load is necessary. Indeed, as already mentioned in chapter 2, the fact

of considering a constant friction coefficient, which equal to the ratio of the maximum

lateral (or longitudinal) force over the vertical load, is based on the Coulomb friction law

(in static) and is not accurate enough for a dynamic study. However, reference data of

the friction coefficient are not available in the context of this study.

Average values of 0.87 and 0.9 are adopted for µ at inflation pressure 14 bars and 16 bars,

respectively. The value of µ at inflation pressure 16 bars is chosen relatively higher because

the average value of the ratio of the longitudinal force (or of the lateral force) over the

vertical load at inflation pressure 16 bars was found relatively higher in the same order.

Finally, the Poisson ratio is assumed equal to 0.35 at room temperature. This value is

an estimation but common at room temperature for many polymers used in tyres, see for

example [40]. The values of the different parameters are given in table 4.1.

Inflation pressure p = 14 bars; ν = 0.35; k = 3350kN/m

Fz = 68kN Fz = 112.2kN Fz = 156kN

a = 0.175m a = 0.22m a = 0.235m

b = 0.22m b = 0.24m b = 0.27m

µ = 0.87 µ = 0.87 µ = 0.87

Inflation pressure p = 16 bars; ν = 0.35; k = 3350kN/m

Fz = 68kN Fz = 112.2kN Fz = 156kN

a = 0.16m a = 0.203m a = 0.225m

b = 0.19m b = 0.221m b = 0.25m

µ = 0.9 µ = 0.9 µ = 0.9

Table 4.1: Values of the models parameters
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4.5. Application

4.5.1 Longitudinal force modelling results

The longitudinal force model presented in equation (4.29) is simulated using the parame-

ters values shown in table 4.1. Since the induced longitudinal displacement υx (or υxs) is

a function of the side slip angle α, we chose to plot the longitudinal force against the side

slip angle, as presented in figures 4.8 and 4.9. These figures show the modelling results

which are compared with the experimental data. It can be remarked that the dispersion

between data and modelling results increases with the side slip angle, which is certainly

due to the fact that the approach used presents some limitations at relative high side slip.

For both inflation pressures, 14 bars and 16 bars, the maximum error is approximately

9.5%, which may be considered reasonable. Therefore, at relative small side slip, it may

be said the physical approach used in the development of the model allows a relative good

representation of the real longitudinal behaviour of the tyre during pure cornering.
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- maximum error: ErrorFy ∼ 8%
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- maximum error: ErrorFy ∼ 9.5%

4.5.2 Self-aligning moment modelling results

Figures 4.10a and 4.10b illustrate the modelling results of the individual contribution of Fx

and Fy to the self-aligning moment for inflation pressure 14 bars and 16 bars, respectively.

It can be underlined that the longitudinal force Fx plays a crucial role in the evolution of

the tyre self-aligning moment Mz. Consider αmax as the value of the side slip angle α at

which Mz attains it maximum value Mzmax. It can be remarked that Mz is mainly due to

the contribution of the lateral force Fy for side slip angle 0 ≤ α < αmax. Beyond this limit

of α, the contribution of Fx becomes progressively significant vs α while the contribution

of Fy decreases. Since the part of Mz due to Fx is opposite in sign to the one due to Fy,

the sum of both contributions will be equal to zero at a certain value of the side slip angle

that we may designate by αmz0, Mz(αmz0) = 0. However, because the contribution of each

force is not zero at αmz0, the point of their action G does not coincide with the centre

O of the contact patch and therefore, the tyre is not in full sliding condition (adhesion

still exists in the contact patch). Beyond αmz0, the contribution of Fx to Mz continues

increasing while the one of Fy decreases. Mz becomes then mainly due to Fx and that

explains why its curve passes in the negative side of the graph.
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Figure 4.10: Decomposition of Mz into contribution of Fx and Fy - (a) p = 14 bars - (b)

p = 14 bars

Figures 4.11 and 4.12 show the modelling results of Mz model which are compared with

the experiments data. For both inflation pressures, 14 bars and 16 bars, the dispersion
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Chapter 4. Real shear forces and moment at pure lateral slip

between modelling results and measurements data becomes significant when α gets rela-

tively higher, and specially after Mz repasses by zero. This is due to the limitations of the

approach used in the development the current model. The maximum error is about 20%.

For each curve, the dispersion may be considered acceptable up to the point where Mz

reaches zero (maximum error less than 15%). Moreover, the tendency of the modelling

results helps to understand the reason why the self-aligning moment does not stay con-

stant after reaching zero. It may be concluded that, the physical approach adopted allows

a relative good description of the self-aligning moment generation during pure cornering.
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Remarks

By neglecting the longitudinal force Fx in their approach for tyre-road interface modelling

during pure cornering, the majority of the physical mathematical models in the literature

can only approximate the self-aligning moment up to the side slip angle at which Mz = 0.

Beyond this limit, the models equations are unable to provide a possible evolution of Mz

and consider the tyre to be in full sliding conditions. Thus, Mz = 0 independently of

α. Some models (Magic Formula [10], TMeasy [30] for example) provide interpolation

functions for Mz all over its range of variation. But a comprehensive description of Mz is

not provided.

Besides, it is worth mentioning that some parameters used for this application, such as

the contact patch dimensions, the tyre lateral stiffness, are determined from static loading

tests. In reality, when the tyre rolls, these parameters may change more or less significantly.

Moreover, the normal pressure distribution over the contact patch is most likely arbitrary

than parabolic and, the tread band displacement does not vanish exactly at the entry

and exit points (or sides) of the contact patch. When the side slip angle gets relatively

higher, the behaviour of the tyre becomes complexer than an elastic material. Thus, one

can believe that the model agreement can be improved by taking into consideration the

105



Chapter 4. Real shear forces and moment at pure lateral slip

remarks on these features. In addition, the investigation is focused on steady-state pure

cornering. Further investigation could extend the study to the tyre transient dynamics

behaviour.

4.6 Using the Magic Formula model for the induced longitu-

dinal force

As already mentioned in the introduction, Magic Formula as well as the majority of the

tyre models that exist in the literature, see chapter 1, are developed according to two

hypotheses. The first hypothesis is pure longitudinal or pure lateral tyre slip conditions

and the second is combined tyre slip conditions. In the first hypothesis, the term pure

is used to mean that the tyre tread band displacement (deflection) in the contact patch

is exclusively in the mentioned direction. At pure lateral slip for example, it has been

also deemed that the tread band displacement in the contact patch is exclusively in the

transversal (lateral) direction and therefore, only transversal (lateral) force is developed.

Therefore, Magic Formula model only proposes expression for modelling the tyre lateral

force. However, in the previous section, the mechanism of generation of the longitudinal

force during pure lateral slip has been described. Moreover, it is shown that this force

may not be negligible for some aircraft tyres, specially when the side slip gets relatively

higher. The previous approach has mainly provided a comprehensive description of the

longitudinal force generation at pure lateral slip rather than deriving models that better

fit with measurements data. In this section, a method for using the Magic Formula to

model the induced longitudinal force is proposed. In fact, by using the induced longitu-

dinal displacement derived previously, a Magic Formula based expression is proposed for

representing the induced longitudinal force [41].

Consider the equation (4.36) which reminds the longitudinal tread contraction in the ad-

hesion and the sliding zones, respectively.

if − a ≤ xt ≤ x ≤ a (adhesion zone)

υxa =
ν(a − x)2

b
| tanα|

if − a ≤ x < xt ≤ a (sliding zone)

υxs =
3µνFz

2baCα
(a2 − x2)(a − x)

(4.36)
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4.6. Using the Magic Formula model for the induced longitudinal force

The total tread contraction υxtot is obtained by integrating equation (4.36) over the entire

contact patch length.

υxtot =
xt
∫

−a

υxadx +
a
∫

xt

υxsdx

υxtot = −νa3

3b
(1 − 3K + 3K2 − K3)| tanα| − µνa3Fz

8bCα
(12K − 6K2 − 4K3 + 3K4 + 11)

(4.37)

The induced longitudinal slip, noted SLind, can be defined as the ratio of total tread

contraction υxtot over the length of the contact patch.

SLind =
υxtot

2a
(4.38)

Consider the general form of Magic Formula for a given value of vertical load and camber

angle as presented in [10]:

Y (X) = Dsin

[

Carctan

(

B(X + Sh) − E

(

B(X + Sh) − arctanB(X + Sh)

)

)]

+ Sv

(4.39)

where:

B stiffness factor,

C shape factor,

D peak value,

E curvature factor,

BCD slope at the origin (X = 0, Y = 0),

Sh horizontal shift,

Sv vertical shift,

Y output variables Fx, Fy or Mz,

X input variables SL (for Fx) or Sα (for Fy and Mz),

Remark

In the late versions of Magic Formula, parameters B, C, D, E, Sh, Sv are expressed as

function of vertical load, camber or turn slip (example of [10]), and of inflation pressure

(example of [33]). But in the present study, we limit the model to its original expression

presented above.
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Chapter 4. Real shear forces and moment at pure lateral slip

To use equation (4.39) for representing the induced longitudinal force Fx, it is neces-

sary to define the input variable SL, which represents the longitudinal slip. Generally

speaking, SLind from equation (4.38) is equivalent to SL. Next, the notation SLind is used

in stead of SL. The equation (4.38) is used for estimating SLind. The induced longitudinal

force model is then represented by equation (4.39) in which the term X is replaced by

SLind.

4.7 Modelling results

The induced longitudinal slip SLind is calculated using equation (4.37) and the results

are plotted in figures 4.13 and 4.14. Then, the model parameters B, C, D, E, Sh, Sv are

estimated using measurements data of the induced longitudinal force and the optimization

function fminsearch from Matlab software. Quantity SLind represents the input variable

of the model. The model parameters values are presented in table 4.2 for both inflation

pressures 14 bars and 16 bars. It is underlined that at zero side slip angle α, the induced

longitudinal slip is assumed zero (condition of free rolling) and the possible longitudinal

force is attributed to rolling resistance. Therefore, parameters Sh and Sv are assumed to

be equal to zero.
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Figure 4.14: Induced longitudinal slip SLind - p = 16 bars

Inflation pressure p = 14 bars

Fz = 68kN Fz = 112.2kN Fz = 156kN

B = 4 B = 3.996 B = 3.32

C = 1.482 C = 1.315 C = 1.605

E = -7.197 E = -5.097 E = 0

Sh = 0 Sh = 0 Sh = -0.0001

Sv = 0 Sv = 0 Sv = 0

D = 16292N D= 29700N D = 38110N

Inflation pressure p = 16 bars

Fz = 68kN Fz = 112.2kN Fz = 156kN

B = 4 B = 3.96 B = 3.775

C = 1.468 C = 1.439 C = 1.364

E = -8.162 E = -8.448 E = -6.118

Sh = 0 Sh= 0 Sh = 0

Sv = 0 Sv = 0 Sv = 0

D = 16048N D = 25301N D = 38188N

Table 4.2: Values of the model parameters
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Chapter 4. Real shear forces and moment at pure lateral slip

Figures 4.15 and 4.16 presents the modelling results obtained using the proposed Magic

Formula model. The results are compared with the measurements data as well as the

results obtained by using the physical brush model based expression presented in equation

(4.29). It can be remarked that the Magic Formula model better fits measurements data

than the brush model based expression.
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4.8 Conclusion

In this chapter, the brush model concept is taken into account in a comprehensive physical

approach to describe the tyre deformation in the contact patch at pure cornering.

In one hand, it is shown that the non uniform tyre lateral tread displacement in the con-

tact patch may generate longitudinal tread contraction. This longitudinal contraction is

similar to the longitudinal tread displacement when a braking action is applied on the

wheel. Therefore, a longitudinal force is developed and acts as a braking force. With

respect to the tyre properties and loading conditions, this force may be more or less signi-

ficant. A relative simple and physical model is proposed for this force, which is referred as

induced longitudinal force. In the other hand, the self-aligning moment at pure cornering

condition is decomposed into contributions of the induced longitudinal force and the la-

teral force. This decomposition has allowed an exhaustive description of the self-aligning

moment generation. It is shown that the induced longitudinal force may be determinant
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Chapter 4. Real shear forces and moment at pure lateral slip

in the generation of the self-aligning moment. Indeed, by taking this force into consi-

deration, it has been possible to explain why the self-aligning moment may become zero

before the tyre reaches its full sliding condition. Moreover, the fact that the sign of the

self-aligning moment can change during its evolution, relative to the side slip angle, has

been physically explained. A model for the self-aligning moment is derived as function of

both induced longitudinal force and lateral force. Finally, an extension of Magic Formula

model for induced longitudinal force, at pure cornering, is proposed.

Besides, since the major part of a given model parameters have to be estimated from

measurements data, it may be possible to wonder how close is an estimated value to the

real one? What is the importance of a specific parameter on the model response? Is it

necessary to precisely estimate its value? The aim of the next chapter is to provide means

that help to respond to these questions.
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Sans l’incertitude l’aventure

n’existerait pas.

Alain Séjourné

Chapter 5

Sensitivity analysis for tyre models

Through the tyre models investigations presented in chapters 2, 3 and 4, it can be under-

lined that tyre models are mainly nonlinear and depend on parameters which have to be

estimated from measurements data. One of the problems of great importance related to

this issue is to efficiently prepare and plan the experiments. Indeed, it may be necessary

to determine the parameters that have more influence on the model output and thus, are

responsible for the output uncertainty which has to be reduced. For this sake, a methodol-

ogy for carrying out sensitivity analysis on a model is presented. Then, the variance-based

global sensitivity analysis is described. This type of sensitivity analysis consists in studying

and quantifying the contribution of each parameter in the total variance of the model re-

sponse. Application is presented for two tyre models, Fiala and Magic Formula (the basic

Magic Formula version) models. Then, each model parameters are classified into a hier-

archy with respect to the importance of their influence on the model response [42, 43, 44].

Thus, to improve the accuracy of these models responses, it is necessary to pay particu-

lar attention to measurements data which help to better estimate the values of their more

influential parameters.

5.1 Introduction

In general, the tyre models available in the literature are nonlinear and complex. They

depend on a certain number of parameters obtained from experimental data. These mea-

surement data are often few or/and uncomplete, especially in the aircraft domain, and

involve high costs. A number of parameters are estimated with more or less precision,

which may lead to unacceptable uncertainty on the model output. Among all the parame-

ters, however, some only have a small or insignificant influence on the model response and

therefore, do not need to be determined precisely. In the other hand, some parameters
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Chapter 5. Sensitivity analysis for tyre models

are determinant for the model response and thus influence its uncertainty significantly.

These parameters may require additional measurement data in order to be estimated with

relatively high accuracy. In order to prepare and plan the experiments, it is necessary to

distinguish the parameters with an insignificant influence on the response uncertainty, so

as to set them at their nominal value in their interval of variation, thanks to the sensitivity

analysis.

Different approaches have been proposed in the literature, for sensitivity analyses of non-

linear models [45, 46, 47, 48, 49, 50, 51, 52]. There are qualitative [48] and quantitative

approaches [47]. The qualitative approaches help to classify the parameters into a hi-

erarchy with respect to the importance of their influence on the model response. The

quantitative approaches are constructive in the sense that they not only allow the classifi-

cation of the parameters into a hierarchy but also provide the means for the quantification

of each parameter influence, contrary to the qualitative approaches. The present study

focuses exclusively on the quantitative approaches. There are two types of quantitative

approaches: local and global. Local approaches help to determine the impact of a small

parameter variation around a nominal value. This impact is determined by calculating the

partial derivative of the output function vs the corresponding parameter at the nominal

value [53]. The global approaches also allow the determination of the same impact but by

varying the parameter in its entire range of variation. These methods are based on the

analysis of the output variance [46, 47, 51]. They consist in calculating the contribution of

the individual parameter to the total variance of the model output. Each parameter has

two types of contribution to the total output variance. In one hand, there is the main con-

tribution of the parameter, which corresponds to the contribution of the parameter alone.

In the other hand, there is the collective contribution of the parameter, which represents

the influence of its interactions with the other parameters. The total contribution of the

parameter is the sum of its main and collective contributions.

The aim of this chapter is first to provide a methodology for sensitivity analysis

[42, 43, 44]. Then, variance-based global sensitivity analysis is performed on two tyre

models, the Fiala model [19] and the Pacejka model, which is a basic function of the Magic

Formula [10]. The study focuses on these two models because they are already studied

and used for modelling the tyre forces and moments in chapters 2 and 3. Moreover, only

the analysis of the lateral force and the self-aligning moment models is presented but the

same approach can be used for studying the remaining tyre characteristics expressions.

This chapter is organised as follows. Section 5.2 presents the main objectives of the

sensitivity analysis and the proposed approach, followed by the definition of the sensitivity
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indices and a method for their estimation. Then, the tyre models are studied in section

5.3 and a variance-based sensitivity analysis is carried out. For each model, the influence

of the parameters is quantified and the most influential parameters are highlighted.

5.2 Sensitivity analysis

The main objectives of sensitivity analysis can be summarized as follows.

• To attest the reliability of or the confidence in the model prediction. For example, if

the sensitivity analysis shows a high influence of an input parameter which in reality

is known to have little (or no) influence, then the model is not reliable and should

be modified.

• To determine the parameters which have the greatest influence on the total output

variance. These parameters are responsible for the uncertainty of the output. So, the

quality of the output can be increased by reducing the error in the most influential

parameters.

• To identify the parameters which have little or no influence on the total variance of

the model output. These parameters can be set at their nominal values, which will

reduce the number of parameters (and also reduce the model complexity) with no

significant effect on its accuracy.

• To determine which parameters interact with the others. In fact, a parameter on

its own may not be influential, while its interactions with the others have a greater

importance in the model response.

Consider a mathematical model in its general form:

M : y = f(x1, . . . , xn) (5.1)

where y ∈ R represents the model output and xi ∈ R, i = 1, . . . , n the n unknown pa-

rameters, which are considered as random and independent variables. The function f is

nonlinear with respect to xi. Performing a sensitivity analysis on model M allows the

identification of the parameters xi which have the greatest influence on its response y.

The approach describing the steps necessary to carry out a sensitivity analysis is pre-

sented below.
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5.2.1 Description of the sensitivity analysis approach

Performing a sensitivity analysis requires the following steps.

a) Definition of the model

This first step consists in clearly determining the output y of the model M as a

function of the predefined parameters xi.

b) Assignment of the variation limits and the probability density function

Each parameter xi is considered as a random variable. It is then necessary to de-

termine the variation limits of each parameter xi and to estimate the most probable

value of the parameter within these limits in order to choose the most appropriate

probability density function. The variation limits as well as the probability density

function may depend on various issues such as physical, technical and economical

possibilities or/and limitations. The probability density functions most often con-

sidered are normal, lognormal and uniform distributions.

c) Generation of input vectors

This step consists in choosing an appropriate sampling method for generating the

possible values for each parameter xi within its limits of variation and according to

its distribution function during simulation. Among the sampling procedures, one can

distinguish random sampling, quasi-random sampling and Latin hypercube sampling

[54, 55, 56]. As mentioned in [56], Latin hypercube sampling may be an appropriate

method for computationally demanding models. When it is not the case, random

sampling may be considered.

d) Determination of the model response distribution

For each sample value of the parameters xi, the output y is calculated. It is then

possible to have an overview on the model uncertainty by plotting (for example) the

histogram of frequencies as well as the cumulative frequencies for y.

e) Calculation of the sensitivity indices

The final step consists in evaluating quantitatively the influence of the parameters

xi on the output y, by calculating the sensitivity indices.

The next subsection presents the definition of the sensitivity indices based on the analysis

of the output variance.
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5.2.2 Sensitivity indices

Consider the model M described by equation (5.1). In order to appreciate the contribution

of the parameter xi to the total variance of the output y, it is necessary to calculate the

conditional variance of y while setting xi = x∗
i , denoted V (y|xi). Since the true value

x∗
i of xi is not known, the expectation of V (y|xi) for all possible values in the interval

of variation of xi is considered instead. This expectation is denoted E(V (y|xi)). The

greater the contribution of parameter xi to the total variance of y is, the lower quantity

E(V (y|xi)) will be. The total variance of y, denoted V (y), can be expressed as a function

of the expectation E(V (y|xi)). V (y) then becomes:

V (y) = V (E(y|xi)) + E(V (y|xi)) (5.2)

where the term V (E(y|xi)) is the variance of the conditional expectation of y when xi is

set (xi supposed known). This term is also an indicator of the influence of xi on the total

variance of y. Indeed, the more parameter xi contributes to the total variance of y, the

greater quantity V (E(y|xi)) will be. In order to use a normalized indicator, the sensitivity

index of parameter xi, denoted Si [57, 58], is defined as follows:

Si =
V (E(y|xi))

V (y)
(5.3)

The value of the sensitivity index Si lies between 0 and 1. The closer to 1 its value is, the

more parameter xi contributes to the total variance of y.

The sum of the sensitivity indices Si, i = 1, ..., n, associated to each parameter xi verifies

the following relation:

n
∑

i=1

Si ≤ 1 (5.4)

Remark: If the model M is additive, it can be re-expressed as follows:

M : y = a0 +
n

∑

i=1

fi(xi) (5.5)

where a0 is a constant, the functions fi, i = 1, ..., n, are possibly nonlinear with respect

to xi. In the case of an additive model, the following expression holds:

n
∑

i=1

Si = 1 (5.6)

If modelM is nonlinear and non additive, the interactions between the different parameters

will also influence the total variance of y. In this case, the sensitivity index Si is no longer
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the most appropriate indicator and the total sensitivity index, denoted ST i [57, 58], is

preferred. The total sensitivity index is defined as:

ST i = 1 − V (E(y|x∼i))

V (y)
(5.7)

where the term V (E(y|x∼i)) represents the variance of the conditional expectation of y

when all parameters are supposed known except parameter xi. The total sensitivity index

STi includes the contribution due to parameter xi alone, which also corresponds to index

Si, and the contribution due to the interactions of xi with the other parameters. In [46],

it is demonstrated that the total variance of y can be decomposed as:

V (y) =
n

∑

i=1

Vi +
n

∑

i=1

n
∑

j=i+1

Vij + . . . + V12...n (5.8)

where :
Vi = V (E(y|xi))

Vij = V (E(y|xi, xj) − Vi − Vj

...

(5.9)

If equation (5.8) is divided by V (y), the following relation is obtained:

1 =

n
∑

i=1

Si +

n
∑

i=1

n
∑

j=i+1

Sij + . . . + S12...n (5.10)

where Si represents the sensitivity index of parameter xi (contribution of xi alone to the

total variance V (y)) and is often called first order sensitivity index. The terms Sij , ...,

S12...n are given by:

Sij =
Vij

V (y)
...

S12...n =
V12...n

V (y)

(5.11)

The term Sij represents the contribution due to the interaction of parameter xi with

parameter xj and is called second order sensitivity index. In the same manner, the term

S12...n represents the contribution due to the interaction of parameter xi with the remaining

parameters and is called n order sensitivity index. Thus, the total sensitivity index STi of

parameter xi is expressed as:

STi = Si +

n
∑

j=1
j 6=i

Sij +

n
∑

j=1
j 6=i

n
∑

k=j+1
k 6=i
j 6=i

Sijk + . . . + Sijk...n
(5.12)
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The sensitivity indices presented previously are often calculated analytically when the

function f of model M is known and relatively simple. However, some models may be

complex with a high number of parameters so that analytical calculations of the sensitivity

indices become time consuming or even sometimes impossible. It is therefore necessary to

estimate them.

The following subsection presents a method of estimating the sensitivity indices, often

referred to as the Monte Carlo method.

5.2.3 Estimating sensitivity indices

Several methods of estimating the sensitivity indices are available in the literature [45, 46,

52, 59, 60]. The approach used in this study is based on the Monte Carlo method [46].

Consider a random sample of size N for each parameter of model M and suppose that xk
i

denotes the kth value of parameter xi in its random sample. The estimated value of the

expectation of y, denoted Ê(y), is given by:

Ê(y) =
1

N

N
∑

k=1

f(xk
1, . . . , x

k
n) (5.13)

In the same manner, the estimated value of the variance of y, denoted V̂ (y), is the follow-

ing:

V̂ (y) =
1

N

N
∑

k=1

f2(xk
1, . . . , x

k
n) − (Ê(y))2 (5.14)

In [46], a technique for the estimation of the conditional variance of y with respect to xi is

proposed. It is based on the estimation of the expectation of y and requires two samples

of the same size N for each parameter xi. Suppose that xk1
i denotes the kth value of

the parameter xi from sample 1 and xk2
i , the kth value of parameter xi from sample 2.

The estimated value of the conditional variance of y with respect to xi, denoted V̂i, is the

following [46]:

V̂i = Ûi − (Ê(y))2 (5.15)

where Ûi is given by the expression below:

Ûi =
1

N

N
∑

k=1

f(xk1
1 , . . . , xk1

i−1, x
k1
i , xk1

i+1, . . . , x
k1
n )

× f(xk2
1 , . . . , xk2

i−1, x
k1
i , xk2

i+1, . . . , x
k2
n )

(5.16)
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The estimated value of the first order sensitivity index, denoted Ŝi, is then obtained:

Ŝi =
V̂i

V̂ (y)
(5.17)

Moreover, the estimated value of the second order sensitivity index, Ŝij , is:

Ŝij =
V̂ij

V̂ (y)
(5.18)

where V̂ij is given by:

V̂ij = Ûij − (Ê(y))2 − V̂i − V̂j (5.19)

The term Ûij is the estimated value of the mean square of y and is obtained by varying

all its parameters except xi and xj :

Ûij =
1

N

N
∑

k=1

f(xk1
1 , . . . , xk1

i−1, x
k1
i , xk1

i+1, . . . , x
k1
j−1, x

k1
j , xk1

j+1, . . . , x
k1
n )

× f(xk2
1 , . . . , xk2

i−1, x
k1
i , xk2

i+1, . . . , x
k2
j−1, x

k1
j , xk2

j+1, . . . , x
k2
n )

(5.20)

The same method is used to estimate the sensitivity indices of a higher order. Finally, the

total sensitivity index of xi is expressed as:

ŜTi = 1 − V̂∼i

V̂ (y)
(5.21)

where V̂∼i is the estimated conditional variance of y with respect to all parameters except

xi. It also means that V̂∼i is estimated by varying only xi while keeping all the other

parameters constant. V̂∼i is given by:

V̂∼i = Û∼i − (Ê(y))2

Û∼i =
1

N

N
∑

k=1

f(xk1
1 , . . . , xk1

i−1, x
k1
i , xk1

i+1, . . . , x
k1
n )

× f(xk1
1 , . . . , xk1

i−1, x
k2
i , xk1

i+1, . . . , x
k1
n )

(5.22)

In the next section, these sensitivity indices are determined for two tyre models in order

to determine their most influential parameters.
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5.3. Application of sensitivity analysis on tyre models

5.3 Application of sensitivity analysis on tyre models

For the two models considered in this chapter, the study will focus exclusively on each

model expression for the lateral force and for the self-aligning moment at steady-state pure

lateral slip. The measurements data used here are taken from those presented in chapter

2. Besides, the parameters of each considered model are assumed independent.

5.3.1 Fiala tyre model

5.3.1.1 Lateral force model Fy

For the Fiala model, the steady-state lateral force Fy at pure lateral slip is expressed as

follows:

Fy = −µyFz

(

1 −
(

1 − Cαy| tanαy|
3µyFz

)3
)

sgn(αy) (5.23)

where Cαy is the cornering stiffness, Fz the vertical load (Fz > 0) and µy the lateral

friction coefficient. Parameter αy is the side slip angle. The term sgn(αy) represents the

sign of the side slip angle αy. A sensitivity analysis is performed on the Fiala lateral force

model Fy. The approach presented in section 5.2.1 is applied to complete this study.

a) Definition of the model

The lateral force Fy represents the model output. The vertical load Fz is measured

and thus considered as known. It will be fixed at Fz = 90kN. However, it is re-

marked that the tendency of the sensitivity analysis results is similar if a different

value (within the variation range used for the measurements data presented in chap-

ter 2) is used for Fz. Parameters Cαy, µy and αy are unknown and their values

are determined from measurements data. Therefore, they are the parameters whose

influence should be studied.

b) Assignment of the variation limits and probability density function

The variation limits of Cαy are estimated using a database, which considers an inter-

polation function similar to that presented in [10] and which gives Cαy as a sin(atan)

function of the vertical load Fz. The variation interval of Cαy is estimated to be

[179.02kN/rad; 1165kN/rad]. The value of Cαy strongly depends on the tyre lateral

stiffness. In fact, it may be considered that the stiffer the tyre carcass is, the greater

Cαy will be independently of the friction state in the tyre-road interface.
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Then, the maximum value Fymax which the lateral force can reach, depends on

the tyre-road contact state and is most often assumed to be proportional to the

maximum value of the friction coefficient, Fymax = µymaxFz. The value of µymax

corresponds to the upper limit of the friction coefficient interval. In the present case,

it is supposed that µymax = 1, which is simply based on the Coulomb’s friction law

and means that the maximum value which the lateral force can reach is 90kN. µy

is assumed to vary in the interval [0.4; 1]. However, for some specific tyres, µymax

can be greater than 1 and as a result, the importance of µy in the output may be

significantly different [42].

Finally, parameter αy is supposed to vary in the interval [0; 20◦] ([0; 0.35rad]). It

can be mentioned that, for the measurements data used in this thesis, the maximum

lateral force is observed for side slip angle beyond 14◦ and it may reach up to 20◦

with respect to the road and vertical load conditions for most civil aircraft tyres.

Parameters Cαy, µy and αy are assumed independent. They are deemed to follow a

uniform distribution law in their corresponding interval.

Remark

Simulations with a normal distribution law for each parameter within its range of

variation, not presented here, were also performed. The simulation results show the

same trend in the distribution of the output and the sensitivity indices are not sig-

nificantly different from those obtained under assumption of a uniform distribution

law. It seems that the variation limits of the parameter are more influential than

the distribution itself.

c) Generation of the parameters

The model presented in equation (5.23) is not computationally demanding and so,

random sampling has been adopted (function rand from Matlab software). A sample

size of N = 100000 is considered for each parameter.

d) Determination of the output distribution

The output Fy is generated according to equation (5.23) and using the previous

samples for µy, Cαy and αy.

Figure 5.1 presents the histogram of frequencies for the lateral force Fy with respect

to its classes. Figure 5.2 presents the cumulative frequencies for Fy, which has been

normalized. The mean value of Fy is -52.85 kN and its 95% confidence interval is

[-120.95kN;-8.64kN], revealing an uncertainty of 112.3 kN which represents 212% of
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5.3. Application of sensitivity analysis on tyre models

the mean value of Fy. The objective is to estimate the contribution of αy, µy and

Cαy to this uncertainty.
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Figure 5.1: Fiala lateral force model: Histogram of frequencies
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Figure 5.2: Fiala lateral force model: Cumulative frequencies

e) Calculation of the sensitivity indices

Consider the lateral force Fy given by equation (5.23). To estimate the sensitivity

indices, two samples of the same size N = 100000 are assumed for each param-

eter. Equations (5.13) and (5.14) are used to estimate the mean value of model

Fy, Ê(Fy) = −52.85kN, and its variance, V̂ (Fy) = 1.40 × 108, respectively. Then,
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Chapter 5. Sensitivity analysis for tyre models

the first order sensitivity indices, Sµy , SCαy and Sαy , are estimated using equation

(5.17).

The different indices are plotted in figure 5.3 and their corresponding values are

given in table 5.1.

First order indices Total indices

Sαy = 0.348 STαy = 0.758

SCαy = 0.1665 STCαy = 0.5574

Sµy = 0.0166 STµy = 0.3417

Table 5.1: Sensitivity indices for the Fiala lateral force model Fy
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Figure 5.3: Sensitivity indices for the Fiala lateral force model Fy

The first order index of the parameter αy is the most important (Sαy = 0.348).

So, the slip angle is the most influential parameter in the lateral force model. Pa-

rameter Cαy follows (SCαy = 0.1665). Finally, the sensitivity index of µy is low

(Sµy = 0.0166). As a result, it can be underlined that when considering the influence

of each parameter alone, only the side slip angle αy and the cornering stiffness Cαy

have significant influence on the Fiala lateral force model response. However, for each
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5.3. Application of sensitivity analysis on tyre models

parameter, the value of the total sensitivity index is higher than the one of the first

order. This is due to important influence of the interactions between the parameters.

Indeed, the sum of the first order indices is about 0.53 (Sµy +SCαy +Sαy = 0.5311),

which means that the contribution due to the interactions of the parameters is as

important as their individual contribution.

In fact, the parameter µy determines the maximum value which the lateral force Fy

can reach. However, this maximum value of Fy is also determined by a given value of

the side slip angle αy. This explains the influence of the interaction between param-

eters µy and αy. In the other hand, parameter Cαy determines the lateral deflection

of the tyre. The influence of the parameter Cαy on its own and of its interaction

with the other parameters is not negligible as the lateral force is related to this tyre

lateral deflection. In a word, for the Fiala lateral force model, the improved accuracy

in the slip angle αy, in the cornering stiffness Cαy and in the friction coefficient µy

is necessary in order to reduce the uncertainty in the lateral force.

Remark on the sample size
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Figure 5.4: Fiala lateral force model Fy: sensitivity indices for different sample sizes

Tests with smaller and higher sample sizes have also been considered in the investigation

of the Fiala lateral force model. It has been noted that the values of the sensitivity indices

do not vary significantly with the sample size. For example, figure 5.4 shows the values

obtained for the different indices of the Fiala lateral force model with respect to the sample
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size. The sensitivity indices seem to be mainly sensitive to parameters limits of variation

rather than to the sample size. However, further investigations could help to determine the

sample size(s) which lead(s) to a better compromise between precision and computation

time.

The same remark can done for the self-aligning moment and for the Magic Formula model

presented in the next sections.

5.3.1.2 Self-aligning moment model Mz

The equation (5.24) presents the self-aligning moment expression of the Fiala model at

pure lateral slip in steady-state condition.

Mz = 2µzR2Fz(1 − H)H3sign(αz) (5.24)

where H = 1 − Cαz| tan(αz)|
(3µzFz)

.

Quantity R2 represents the tyre half width. The parameters Cαz, µz and αz have the

same meaning and the same variation limits as parameters Cαy, µy and αy already pre-

sented in the case of the pure lateral force Fy, equation (5.23). The subscript z is only

used to distinguish the self-aligning moment parameters from those of the lateral force

Fy designated with subscript y. A sensitivity analysis is performed on the self-aligning

moment model Mz using the previous approach as presented below.

a) Definition of the model

The self-aligning momentMz represents the model output. As in the case of the Fiala

lateral force model, the vertical load, Fz, is supposed known and it is fixed at 90kN .

The tyre half width, R2, is also supposed known and its value is 0.2275m. Parameters

Cαz , µz and αz are unknown and their values are determined from measurements

data. Thus, they are the parameters whose influence should be studied.

b) Assignment of the variation limits and probability density function

The parameters Cαz, µz and αz have the same meaning and the same variation limits

as the parameters Cαy, µy and αy already presented in the case of the pure lateral

force Fy, equation (5.23). Thus, the following intervals [179.02kN/rad; 1165kN/rad],

[0.4; 1], [0; 0.35rad] are considered for the parameters Cαz, µz and αz, respectively.

Moreover, parameters Cαz, µz and αz are assumed independent. They are deemed

to follow a uniform distribution law in their corresponding interval.
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c) Generation of the parameters

The model presented in equation (5.24) is not computationally demanding and so,

random sampling has been adopted (function rand from Matlab software). A sample

size of N = 100000 is considered for each parameter.

d) Determination of the output distribution

The output Mz is generated according to equation (5.24) and using the previous

samples for µz, Cαz and αz. The mean value of Mz is 1.721kNm and its 95%

confidence interval is [0.5kNm; 3.81kNm]. This interval indicates an uncertainty of

3.31kNm which is equivalent to 192% of the mean value of Mz. The objective is to

estimate the contribution of µz, Cαz and αz to this uncertainty.

e) Calculation of the sensitivity indices

Consider the self-aligning moment Mz model given in equation (5.24). Two samples

of the same size N = 100000 are assumed for each parameter. Equations (5.13)

and (5.14) are used to estimate the mean value of model Mz, Ê(Mz) = 1.721kNm,

and its variance, V̂ (Mz) = 6.87 × 106, respectively. Then, the first order sensitivity

indices, Sµz , SCαz and Sαz , are estimated using equation (5.17).

The different indices are plotted in figure 5.5 and their corresponding values are

given in table 5.2.

First order indices Total indices

Sαz = 0.368 STαz = 0.768

SCαz = 0.092 STCαz = 0.63

Sµz = 0.071 STµz = 0.522

Table 5.2: Sensitivity indices for the Fiala self-aligning moment model Mz

Parameter αz has the highest first order sensitivity index (Sαz = 0.368). The first

order sensitivity indices of parameters Cαz (SCαz = 0.092) and µz (Sµz = 0.071) are

low and close to each other. Nevertheless, the total sensitivity indices of parameters

Cαz (STCαz = 0.63) and µz (STµz = 0.522) cannot be neglected. The sum of the first

order indices is 0.531 (Sµz +SCαz +Sα = 0.531), which implies that the contribution

due to the interactions of the parameters is relatively as important as their individual

contribution. As in the case of the lateral force, the improved accuracy in the slip
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angle αz, in the cornering stiffness Cαz and in the friction coefficient µz are necessary

in order to reduce the uncertainty in the self-aligning moment.
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Figure 5.5: Sensitivity indices for the Fiala self-aligning moment model Mz

5.3.2 Magic Formula model

5.3.2.1 Lateral force model Fy

In pure cornering condition, an interpolation function, called Magic Formula, is proposed

for the lateral force as presented in equation below:

Fy = Dy sin
[

Cy arctanBy(αy + Shy) − Ey(By(αy + Shy) − arctan(By(αy + Shy)))
]

+ Svy

(5.25)

where Dy = µyFz is the peak value of the lateral force Fy, Cα = ByCyDy the cornering

stiffness. Parameter Cy is called shape factor and By is given by By =
Cα

CyDy
.

By using the above description of the parameters, equation (5.25) can be rewritten as
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follows.

Fy = µyFz sin[Cy arctan(
Cα

µyFzCy
(αy + Shy) − Ey(

Cα

µyFzCy
(αy

+ Shy) − arctan(
Cα

µyFzCy
(αy + Shy))))] + Svy

(5.26)

The lateral force expression presented above corresponds to the basic (initial) version of the

Magic Formula but the extended new versions [10] may be used. Next, a sensitivity analysis

is carried out on the Magic Formula lateral force model using the proposed approach.

a) Definition of the model

The lateral force Fy presented in equation (5.26) is the model output. For the same

reason as in the Fiala model, Fz is considered known and fixed at 90kN. Parameters

µy, αy, Cy, Cα, Ey, Shy and Svy are unknown and are under study.

b) Assignment of the variation limits and probability density function

Based on the tyre database, the variation limits of Cy, Ey, Shy and Svy are estimated

by the following intervals: [1; 2], [-3; 0.5], [-0.0037rad; 0.0037rad] and [-3322N;

3322N] respectively. Similarly to the case of the Fiala model, the variation limits

of parameters αy, µy and Cα are [0; 20◦], [0.4; 1] and [179.02kN/rad; 1165kN/rad],

respectively. A uniform distribution law is assumed for parameters αy, µy, Cy, Cα,

Ey, Shy and Svy in their corresponding range of variation.

c) Generation of input vectors

The lateral force model as presented in equation (5.26) is not computationally de-

manding. So, random sampling has been adopted (function rand from Matlab soft-

ware). A sample size of N = 100000 is considered for each parameter.

d) Determination of the output distribution

Output Fy is generated according to equation (5.26) using the samples for the pa-

rameters. Figure 5.6 presents the histogram of frequencies for the lateral force Fy,

with respect to its classes. Figure 5.7 presents the cumulative frequencies for Fy

which has been normalized.

The mean value of Fy is -75.07kN and its 95% confidence interval is [-180kN;-6.14kN],

indicating an uncertainty of 173.85kN and equivalent to 231% of the mean value of

Fy. The objective is to classify all the parameters according to their contribution to

this uncertainty.
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Figure 5.6: Magic Formula lateral force model Fy: Histogram of frequencies
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Figure 5.7: Magic Formula lateral force model Fy: Cumulative frequencies

e) Calculation of the sensitivity indices

Assume the expression of the lateral force Fy as described by equation (5.26). Two

samples of the same size N = 100000 are considered for each parameter. The

estimated mean value of Fy is Ê(Fy) = −75.07kN (equation (5.13)) and its estimated

variance is V̂ (Fy) = 2.23×109 (equation (5.14)). Equation (5.17) is used to estimate

the first order indices Sαy , Sµy , SCα , SCy , SEy , SShy
and SSvy . The total sensitivity
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indices STαy , STµy , STCα , STCy , STEy , STShy
and STSvy are estimated using equation

(5.21). The different indices are plotted in figure 5.8 and their corresponding values

are given in table 5.3.

First order indices Total indices

Sαy = 0.4387 STαy = 0.5867

Sµy = 0.1883 STµy = 0.3661

SCα = 0.1609 STCα = 0.2657

SEy =≃ 0 STEy = 0.0072

SCy ≃ 0 STCy = 0.0035

SSvy ≃ 0 STSvy = 0.0017

SShy
≃ 0 STShy

≃ 0

Table 5.3: Sensitivity indices for the Magic Formula lateral force model Fy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

collective contribution

main contribution

αy CyCα Ey
µy Svy Shy

Figure 5.8: Sensitivity indices for the Magic Formula lateral force model (Fy)

Figure 5.8 allows the different parameters to be classified into a hierarchy accord-
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ing to their influence on the total variance of the lateral force. It is shown that

parameter αy has the highest sensitivity index (Sαy = 0.4387). Therefore, this pa-

rameter is the most influential. Then, parameters µy and Cα follow (Sµy = 0.1883

and SCα = 0.1609). Finally, parameters Cy, Ey, Svy and Shy have their sensitivity

indices close to 0. Therefore, their influence on the total variance of the model re-

sponse can be considered negligible. Moreover, the sum of the first order sensitivity

indices of the parameters is 0.7879. Thus, the interactions between the parameters

have less influence on the lateral force when it is compared to the case of the Fiala

model.

In the lateral force model of Magic Formula, parameters αy, Cα (the same as Cαy or

Cαz) and µy have the same physical meaning for the tyre as previously mentioned

in the analysis of the Fiala model. Parameters Cy, Ey, Svy and Shy are empirical

parameters used for adjusting the curve shape and for reducing the interpolation er-

ror. This might be the reason why their individual and total influence are negligible.

To conclude, in the Magic Formula, only three parameters, the slip angle αy, the fric-

tion coefficient µy and the cornering stiffness Cα, significantly influence the lateral

force. Consequently, improving their accuracy would help to considerably improve

the uncertainty in the lateral force Fy. Concerning parameters Cy, Ey, Svy and Shy,

each one can be fixed at its nominal value in the corresponding interval of variation

with no significant effect on the accuracy of the model response.

5.3.2.2 Self-aligning moment model Mz

The interpolation function (Magic Formula) proposed for the lateral force in equation

(5.26) is a generic function that may be also used for representing the self-aligning moment.

Mz = Dz sin
[

Cz arctanBz(αz + Shz) − Ez(Bz(αz + Shz) − arctan(Bz(αz + Shz)))
]

+ Svz

(5.27)

It can be noted that the function form of the self-aligning moment modelMz is the same as

the one of the lateral force model Fy presented in equation (5.26). However, the definition

of some parameters changes. Indeed, Dz is the peak value of the self-aligning moment,

CMz = BzCzDz, the self-aligning moment constant. Parameter Cz is termed shape factor

and Bz is given by Bz =
CMz

CzDz
.
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By using the above definition of the parameters, equation (5.27) can be rewritten as

follows:

Mz = Dz sin[Cz arctan(
CMz

DzCz
(αz + Shz) − Ez(

CMz

DzCz
(αz

+ Shz) − arctan(
CMz

DzCz
(αz + Shz))))] + Svz

(5.28)

Next, a sensitivity analysis is performed on the self-aligning moment model using the

proposed approach.

a) Definition of the model

The self-aligning moment Mz presented in equation (5.28) is the model output.

Similar to the case of the Magic Formula lateral force model Fy, equation (5.26),

the parameters Dz, αz, Cz, CMz, Ez, Shz and Svz are unknown and are then under

study.

b) Assignment of the variation limits and probability density function

The variation limits of αz, [0; 0.35rad], remain unchanged. Those of parameters

CMz, Cz, Dz, Ez, Shz and Svz change and are estimated by the following intervals:

[17.9kNm/rad; 51.2kNm/rad], [0.8; 1.6], [0.83kNm; 3.02kNm], [-13; -3], [-0.0011rad;

0.0011rad] and [-0.12kNm; 0.12kNm], respectively. The value of the vertical load Fz

is fixed at 90kN (the same as in the case of the lateral force model). Moreover, a

uniform distribution law is assumed for parameters αz, CMz, Cz, Dz, Ez, Shz and

Svz in their corresponding range of variation.

c) Generation of input vectors

The self-aligning moment model as presented here is not computationally demand-

ing. So, random sampling has been adopted (function rand from Matlab software).

A sample size of N = 100000 is considered for each parameter.

d) Determination of the output distribution

The output Mz is generated according to equation (5.28) using the samples for the

parameters αz, CMz, Cz, Dz, Ez, Shz and Svz. The mean value of Mz is 1.55kNm

and its 95% confidence interval is [0.204kNm; 2.56kNm], this interval indicates an

uncertainty of 2.356kNm, which is equivalent to 152% of the mean value of Mz.

e) Calculation of the sensitivity indices

Assume the expression of the self-aligning moment Mz as described by equation
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(5.28). Two samples of the same size N = 100000 are considered for each parameter.

The estimated mean value of Mz is Ê(Mz) = 1.55kNm (equation (5.13)) and its

estimated variance is V̂ (Mz) = 3.7284 × 105 (equation (5.14)). The first order and

the total indices are plotted in figure 5.9 and their corresponding values are given in

table 5.4.

First order indices Total indices

Sαz = 0.3 STαz = 0.42

SDz = 0.53 STµz = 0.621

SCMz
= 0.005 STCMz

= 0.0386

SEz =≃ 0.0033 STEz = 0.0045

SCz ≃ 0.030 STCz = 0.043

SSvz ≃ 0 STSvz = 0

SShz
≃ 0 STShz

≃ 0

Table 5.4: Values of the sensitivity indices - Magic Formula self-aligning moment model

Mz

The analysis shows that the parameter αz is not the most influent, contrary to the

case of the lateral force model. Indeed, the parameter Dz has the highest sensitivity

index (SDz = 0.53). Then follows the parameter αz (Sαz = 0.3). Parameter Cz has

the third highest sensitivity index (SCz = 0.03), but this value is relatively low. The

sum of the first order sensitivity indices is 0.8677. This value is relatively higher

and close to 1. Similar to the case of the lateral force, the influence due to the

interactions between the parameters may be considered negligible.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

collective contribution

main contribution

Dz αz
EzCz Svz

ShzCMz

Figure 5.9: Sensitivity indices for the Magic Formula self-aligning moment model Mz

Remark

In this analysis, the same function form is used for representing both the lateral force and

the self-aligning moment in the Magic Formula model. Indeed, the main difference between

them is the variation limits of the parameters. The analysis has shown that the variation

limits of the parameters are determinant for their influence on the model output. In fact,

in the lateral force model, it is shown that three parameters have significant influence on

the model output and the side slip angle αy has the highest sensitivity index. However,

in the case of the self-aligning moment, only two parameters have significant influence on

the model output and the side slip angle αz has the second highest sensitivity index. A

good knowledge of the parameters variation limits is therefore necessary for performing a

reliable sensitivity analysis.
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5.4 Conclusion

A methodology for sensitivity analysis on a model has been presented. Then, variance-

based global sensitivity analysis has been performed on two models, Fiala and Magic

Formula models. This sensitivity analysis consists in quantifying the contribution of each

parameter to the total variance of the model output.

In the Fiala model, the lateral force and the self-aligning moment depend on three

parameters, the side slip angle, the friction coefficient and the cornering stiffness. It has

been shown that, when considering each parameter alone, only the side slip angle and the

cornering stiffness have significant influence on the lateral force. However, the interaction

between the three parameters also have an important influence on the model response.

Therefore, improving the accuracy of these three parameters would help to reduce the

uncertainty of the lateral force and the self-aligning moment models.

In the case of Magic Formula model, the lateral force and the self-aligning moment

expression depend on seven parameters. It has been shown that, only three of them, the

side slip angle, the friction coefficient and the cornering stiffness, influence the lateral

force model response significantly. Then, these parameters are to be estimated with more

precision. In the self-aligning moment, only two parameters, the side slip angle and the

peak value, have significant influence.

Moreover, it has been underlined that a good knowledge of the parameters variation limits

of each model is necessary for performing a reliable sensitivity analysis.

Besides, the parameters of both models studied are assumed independent. However,

tyre models often include correlated parameters. Thus, further investigations on methods

of sensitivity analysis for models with correlated parameters may be necessary. It could

also be interesting to compare the results of the proposed method with those obtained by

other methods of sensitivity analysis (McKay, FAST, ...) in order to determine the best

compromise between convergence of the sensitivity indices and computation time.
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Dans les sciences, le chemin est plus

important que le but. Les sciences

n’ont pas de fin.

Erwin Chargaff

General conclusion

In the numerical simulation of ground vehicle, the tyre model plays a crucial role. For

that reason, it is necessary to consider a representative tyre model. However, experience

has shown that it is difficult to realistically represent the tyre dynamics from a physical

point of view. In collaboration with Messier-Dowty company, this thesis has contributed

to better understand the actual literature studies in the field of aircraft tyre-road inter-

action modelling and therefore, to help making an optimal choice of model for a specific

application. To complete this study, a survey of the literature tyre models has been pro-

posed first. The models are presented according to the main categories usually adopted

for developing tyre models, physical, semi-physical and empirical.

Due to the tyre structure complexity, physical tyre models are more often developed

under considerable simplification. The validity range as well as the representativeness of

these models may present some limitations. The attempts of certain approaches to be

more exhaustive in the tyre representation often lead to extensive and complex models,

which involve an important number of the tyre physical and mechanical properties. The

main drawback of these complex physical models is that several of the tyre mechanical

parameters depend on the tyre dynamics and are not directly measurable. In the case

of semi-empirical (or empirical) models, representative models not only are complex but

also involve several empirical parameters without physical meaning. In each category of

models, it can be underlined that choosing a suitable model for a particular application

mainly depends on the possibility to obtain the required measurements data for estimating

the model parameters.

Based on the objectives of the thesis, an a priori choice of physical models has been

investigated and the validity range as well as the limitations of each model have been

underlined. Indeed, the attempt to represent measurements data recorded at the partic-

ular case of pure lateral slip has shown significant dispersion. Some further improvement

of these models is proposed but, because of the limited available measurements data in

the context of this thesis, this improvement has not been exhaustive. The investigation

of advanced physical models cannot be also considered because of the limited data. The
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semi-empirical tyre model Magic Formula has shown better representation of the tyre

characteristics at pure lateral slip. Despite the use of several empirical parameters in

Magic Formula model, it allows the derivation and the interpretation of some physical

tyre features such as the friction coefficient, the tyre slip stiffnesses. Nevertheless, some

limitations are underlined:

• the assumption of zero longitudinal force at pure lateral slip was found to be non

representative in the case of the measurements data used in this study

• the model proposes an interpolation function and therefore does not allow an ex-

haustive description of the tyre forces and moments generation.

To overcome these limitations, simple but comprehensive physical approach was adopted

and a description of the longitudinal force generation at pure lateral slip is proposed. Then,

by taking this force into consideration, an exhaustive description of the self-aligning mo-

ment generation is presented. It is shown that this longitudinal force at pure lateral slip

significantly contributes to the generation of self-aligning moment at relative high lateral

slip. Finally, an extension of Magic Formula is proposed in order to take into account the

longitudinal force at pure lateral slip.

Besides, the different models involve parameters which have to be estimated from mea-

surements data. However, all the parameters do not influence the model response in the

same manner. It may be interesting to determine parameters with significant influence on

the model response, and which should be estimated with more precision. For this sake, a

methodology for carrying out sensitivity analysis on a model is presented and applied on

the basic Magic Formula model and on the Fiala model.

In this thesis, it is shown that the Magic Formula model is applicable for representing

the tyre response at pure lateral slip in steady-state condition. However, if measurements

data are available, the next steps to investigate will be:

• Influence of the forward velocity on the tyre response

The majority of the tyre models are developed for rolling tyre and they are valid

for rolling velocity beyond a certain limit. In fact, when the tyre is steered at very

low or zero velocity, experiments have shown that the tyre response is significantly

different and cannot be represented by the same approach as in relative high velocity.

Such conditions, denoted parking manœuvre, are commonly observed during taxiing

and towing. Therefore, it is necessary to investigate the effect of the forward speed

138



on the pure lateral slip in order to complete the validation study of Magic Formula

model.

• Pure driving/braking condition

Pure driving or braking is often denoted pure longitudinal slip. It allows to charac-

terise the driving or braking capabilities of the tyre in a given operating condition

(vertical load, inflation pressure, speed, etc). The driving or braking capabilities are

also a part of the fundamental functions of an aircraft. Indeed, during acceleration

to take off, the aircraft should reach a target speed within a short distance (for

military aircraft, the acceleration may reach 9 times the gravitational acceleration

G). The tyre is then submitted to important variation of longitudinal slip as well as

forward speed. In the other hand, the aircraft should stop within a relative short

distance after landing at considerable high speed. This implies an application of im-

portant braking torque on the wheels. Like in the case of pure lateral slip, reliable

tyre longitudinal characteristics data at different forward speeds are necessary to ex-

haustively study the validity of the Magic Formula model. Moreover, in reality, the

tyre vertical load may be considered to decrease progressively during acceleration to

take-off. It might be an interest to investigate this aspect during longitudinal tyre

experiments.

• Combined cornering and driving/braking condition

Magic Formula model proposes the combined slip tyre characteristics as function of

the ones in pure longitudinal and pure lateral slip condition. Though, this approach

has been successfully applicable on most ground vehicles tyres, the literature does

not show such validation study for aircraft tyres.

Besides, if the knowledge of the tyre bahaviour in steady-state conditions is necessary,

the interest for its transient-dynamic behaviour should be at least the same. In fact,

various studies have shown that the tyre dynamics plays an important role in the non-

controlled oscillations of the landing gear, commonly called shimmy. Moreover, because

the tyre transient-dynamic behaviour is more complex than the steady-state one, reliable

tyre data as well as further development of advanced model are necessary in order to

accurately model the shimmy phenomenon.
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Appendix A

Coordinate systems

Figures A.1 and A.2 show the common coordinate systems used in the literature [61].
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Figure A.1: Literature coordinate systems and sign conventions
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Appendix B

Equations

In this section, the expressions for forces and moments, corresponding to some physical

models described in chapter 1, are presented.

B.1 Physical Models

B.1.1 Brush Model (section 1.4.1)

The pure lateral slip force is derived as follows:

Fy = −3µFzθySα[1 − |θySα| +
1

3
(θySα)2] if |α| ≤ α∗

Fy = −µFzsgn(α) if |α| > α∗ but (<
π

2
)

The self-aligning moment is given by:

Mz = µFzaθySα[1 − 3|θySα| + 3|(θySα)2 − |θySα|3] if |α| ≤ α∗

Mz = 0 if |α| > α∗ but (< π
2 )

(B.1)

where tanα∗ =
1

θy
and θy =

2kya
2

3µFz
.

The pure longitudinal slip force is:

Fx = CSSL if |SL| ≤ S∗
L

Fx = sgn(SL)

{

µFz −
(µFz)

2

4|SL|CS

}

if |SL| > S∗
L

(B.2)

where S∗
L is the longitudinal slip ratio at which full sliding occurs: S∗

L =
µFz

2CS
.



In combined slip condition, the resultant force F is developed under some simplifications

such as:

• equal longitudinal and lateral tread stiffness: k = ky = kx

• isotropic friction coefficients: µ = µx = µy

• isotropic model parameter θ = θx = θy =
2

3

ka2

µFz

|F | = µFz[3θS − 3(θS)2 + (θS)3] if S ≤ S∗ with S∗ =
1

θ
|F | = µFz if S ≥ S∗

S =
√

S2
L + S2

α

(B.3)

B.1.2 Fiala model (section 1.4.2)

Fiala model expressions for forces and moments are developed for pure slip conditions.

• Expression of the pure longitudinal force Fx

Fx = CSSL if |SL| ≤ S∗
L

Fx = sgn(SL)
{

µFz − (µFz)2

4|SL|CS

}

if |SL| > S∗
L

(B.4)

• Expression of the pure lateral force Fy

Fy = −µ|Fz|(1 − H3)sgn(α) if |α| ≤ α∗

Fy = −µ|Fz|sgn(α) if |α| > α∗
(B.5)

• Expression of the self-aligning moment Mz

Mz = 2µ|Fz|R2(1 − H)H3sgn(α) if |α| ≤ α∗

Mz = 0 if |α| > α∗

(B.6)

R2 is the tyre carcass radius.
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• Expression of the rolling resistance moment My

My = −CrFz tyre in forward motion

My = CrFz tyre in backward motion (B.7)

The parameter H is given by:

H = 1 − Cα|tanα|
3µFz

(B.8)

The critical limit of the longitudinal slip parameter is expressed as follows:

S∗
L =

µFz

2Cs
The critical limit of the slip angle is given by:

α∗ = arctan|3µFz/Cα| (B.9)

B.1.3 HSRI-NBS-I model (section 1.4.4)

The longitudinal force in combined slip condition is expressed as follows:

Fx =















































CS
SL

1 − SL
ξa = 2a (full adhesion)

CS
SL

1 − SL

ξa

2a

(

2 − ξa

2a

)

ξa < 2a

CSµFz

[

C2
S + (SαCα)2

]− 1

2 ξa = 0 (full sliding)

(B.10)

The expression for the lateral force in combined slip condition is derived as shown below:

Fy =















































−Cα
Sα

1 − SL
ξa = 2a (full adhesion)

−Cα
Sα

1 − SL

ξa

2a

(

2 − ξa

2a

)

ξa < 2a

−CαSαµFz

[

C2
S + (SαCα)2

]− 1

2 ξa = 0 (full sliding)

(B.11)

with
ξa

2a
=

1

2
µFz(1 − SL)

[

(SLCS)2 + (SαCα)2
]−0.5
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B.1.4 HSRI-NBS-III Model (section 1.4.4)

The complete expressions for forces and moment are described below.

• Forces expressions in the adhesion zone

Fxa = CS
SL

1 − SL

(

ξa

2a

)2

Fya = −Cα
Sα

1 − SL

(

ξa

2a

)2 (B.12)

• Forces expressions in the transition zone

Fxt =





1

3
CS

SL

1 − SL
(3 − ξa

a
− ξs

2a
)
ξa

2a
/(1 − ξa

2a
) + µFz

SL
√

S2
L + S2

α

(3 − ξs

a
− ξa

2a
)
ξs

2a



 (
ξs

2a
− ξa

2a
)

Fyt = −





1

3
Cα

Sα

1 − SL
(3 − ξa

a
− ξs

2a
)
ξa

2a
/(1 − ξa

2a
) + µFz

Sα
√

S2
L + S2

α

(3 − ξs

a
− ξa

2a
)
ξs

2a



 (
ξs

2a
− ξa

2a
)

• Forces expressions in the sliding zone

Fxs = µFz
SL

√

S2
L + S2

α

[

1 − 3(
ξs

2a
)2 + 2(

ξs

2a
)3

]

Fys = −µFz
Sα

√

S2
L + S2

α

[

1 − 3(
ξs

2a
)2 + 2(

ξs

2a
)3

] (B.13)

• Self-aligning moment expression in the adhesion zone

Mza =
2a

3

[

2(CS − Cα)
SL

1 − SL

ξa

2a
− 1

2
Cα(2

ξa

a
− 3)

]

Sα

1 − SL

(

ξa

2a

)2

(B.14)

• Self-aligning moment expression in the transition zone
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Mzt = 2aSα

[

(CS − Cα)

{

SL

(1 − SL)2
(
ξa

2a
)2

1

15
[6(

ξa

2a
)2 + 3

ξaξs

4a2

+(
ξs

2a
)2 − 15

ξs

2a
− 5

ξs

2a
+ 10]/(1 − ξa

2a
)2

+
SLµFz

(1 − SL)
√

S2
L + S2

α

(

1

CS
+

1

Cα

)

ξaξs

40a2

[

3(
ξs

2a
)2

+3(
ξa

2a
)2 +

ξaξs

a2
− 5(

ξa

a
+

ξs

a
) + 10

]

/(1 − ξa

2a
)

+
SLµ2F 2

z

(S2
L + S2

α)CSCα

3

10
[6(

ξs

2a
)2 +

3ξaξs

4a2
+ (

ξa

2a
)2

−15
ξs

2a
− 5

ξa

2a
+ 10]

}

+
Cα

1 − SL

ξa

12a
[3 − 3

ξa

2a
(2 − ξa

2a
) − ξs

2a
(3 − ξs

2a
) +

ξaξs

2a2
]/(1 − ξa

2a
)

+
µFz

√

S2
L + S2

α

ξs

4a

[

3 − 3
ξs

2a
(2 − ξa

2a
) − ξa

2a
(3 − ξa

2a
)

+
ξaξs

2a2

]

]

(
ξs

2a
− ξa

2a
)

(B.15)

• Self-aligning moment expression in the sliding zone

Mzs = 2aSα

{

(

1

Cα
− 1

CS

)

SLµ2F 2
z

(S2
L + S2

α)

3

5

[

1 + 3
ξs

2a
+ 6(

ξs

2a
)2

]

(1 − ξs

2a
)2

− µFz
√

S2
L + S2

α

[

1 +
ξs

2a
+ (

ξs

2a
)2

]

}

(1 − ξs

2a
)

(B.16)

• Final expressions for the longitudinal and lateral forces

Fx = Fxa + Fxt + Fxs

Fy = Fya + Fyt + Fys
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• Final expression for the self-aligning moment

Mz = Mza + Mzt + Mzs

Remark:

Fxa, Fya,Mza are the contributions of the adhesion zone and exist only if 0 ≤ ξa ≤ 2a.

Fxt, Fyt,Mzt are the contributions of the transition zone and exist only if 0 ≤ ξa ≤ ξs ≤ 2a.

Fxs, Fys, Mzs are the contributions of the sliding zone and always exist if a parabolic nor-

mal pressure distribution is considered in the contact patch. For uniform normal pressure

distribution for instance, the sliding zone occurs after a certain limit of the longitudinal

slip parameter SL or/and of the lateral slip parameter Sα.

The length of the adhesion zone ξa, figure 1.7 in section 1.4.4, is given by the follow-

ing expression:

ξa

2a
= 1 −

√

(SLCS)2 + (SαCα)2

3µ0Fz(1 − SL)
(B.17)

The length of the transition zone ξs figure 1.7 in section 1.4.4, is given by:

ξs

2a
= 1 −

(

CSCα

CS + Cα

)

√

S2
L + S2

α

3µFz(1 − SL)
(B.18)

where µ = µo(1 − AsVs) and Vs =
√

S2
L + S2

α|V | cos α.

B.1.5 Model of Sakai (section 1.4.5)

The expressions for the forces and moment in combined slip condition are derived as shown

below.

• Tyre forces and moment before full sliding (0 < ξa < 2a)
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Fx = CS
SL

1 − SL
(
ξa

2a
)2 − µxFz

SL
√

S2
L + S2

α

[

1 − 3(
ξa

2a
)2 + 2(

ξa

2a
)3

]

Fy = −(Cα + CSSL)
Sα

1 − SL
(
ξa

2a
)2 − µyFz

Sα
√

S2
L + S2

α

[

1 − 3(
ξa

2a
)2 + 2(

ξa

2a
)3

]

(B.19)

Mz =
a

3

[

3(Cα + CSSL) − 2Cα
ξa

a

]

(
ξa

2a
)2

Sα

1 − SL

−a

[

µxSL(1 + 3
ξa

2a
) − 3µy

ξa

2a

]

Fz
Sα

√

S2
L + S2

α

(1 − ξa

2a
)2

ξa

2a
− FxFy

Ccy

(B.20)

• Full sliding case (ξa = 0)

Fx = µxFz
SL

√

S2
L + S2

α

Fy = −µyFz
Sα

√

S2
L + S2

α

(B.21)

Mz =
µxµyF

2
z SLSα

Ccy(S2
L + S2

α)
(B.22)

where the length of the adhesion zone ξa is expressed as follows:

ξa

2a
= 1 −

√

(SLCS)2 + (SαCα)2

3µ0Fz(1 − SL)
(B.23)

B.1.6 Model of Ratti (section 1.4.6)

The contributions of the adhesion zone read:

Fxa = −CS
SL

1 − SL
v2
a

Fya = −Cα
Sα

1 − Sα
v2
a

(B.24)
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The contributions of the sliding zone read:

Fxs = − FzSL
√

(

SL

µxs

)2

+

(

Sα

µys

)2

1
∫

va

p(v)dv

Fys = − FzSα
√

(

SL

µxs

)2

+

(

Sα

µys

)2

1
∫

va

p(v)dv

(B.25)

Total longitudinal and lateral forces:

Fx = Fxa + Fxs

Fy = Fya + Fys

(B.26)

where:

v =
ξ

2a
dimensionless variable (0 ≤ ξ ≤ 2a ⇒ 0 ≤ v ≤ 1), va =

ξa

2a
,

ξa adhesion region length same as calculated in Sakai model, equation (2.5),

p(v) dimensionless normal pressure distribution (
1
∫

0

p(v)dv = 1),

µxs, µys anisotropic friction coefficients in the sliding region.

B.1.7 Semi-Empirical models

Magic Formula (section 5.26)

The equations of the 2002 version of Magic Formula model [10] are presented below. For

clarity reason it is chosen to only present the shear forces and moment equations of this

version at both pure longitudinal and lateral slip conditions. The full set of equations are

available in [10] for example. The presented version does not take the inflation pressure

dependency into consideration.

At pure longitudinal slip condition, the longitudinal shear force Fx is given by:

Fx = Dxsin[CxarctanBxSL − Ex(BxSL − arctanBxSL)] + SV x (B.27)

where :

SL = α + SHx (B.28)

152



Cx = pCx1.λCx , Cx > 0 (B.29)

Dx = µx.Fzξ1 , Dx > 0 (B.30)

µx is the longitudinal friction coefficient

µx = (pDx1 + pDx2.dfz)(1 − pDx3.γ
2)λµx (B.31)

Ex = (pEx1 + PEx2.df
2
z )[1 − pEx4.sign(SL)]λEx where Ex ≤ 1 (B.32)

The longitudinal slip stiffness is derived as follows:

Kx =
∂Fx

∂SL

∣

∣

∣

∣

SL=0

:

Kx = Fz(pKx1 + pKx2.dfz)exp(pKx3.dfz)λKx (B.33)

Bx =
Kx

CxDx
(B.34)

where Kx is equivalent to the longitudinal slip stiffness CS , see equation (1.6) in section

1.3.

SHx = (pHx1 + pHx2.dfz)λHx (B.35)

SV x = (pHx1 + pHx2.dfz)λV x.λHµxξ1 (B.36)

At pure lateral slip condition, the lateral shear force Fy is given by:

Fy = Dy sin
[

Cy arctanByαy − Ey(Byαy − arctan(Byαy))
]

+ SV y (B.37)
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where :

αy = α + SH (B.38)

γy = γ.λγy (corrected camber angle) (B.39)

Cy = pCy1.λCy (B.40)

Dy = µyFzξ2 (B.41)

µy is the lateral friction coefficient

µy = (pDy1 + pDy2.dfz)(1 + pDy3.γ
2
y)λµy (B.42)

Ey = (pEy1 + pEy2.dfz)[1 − (pEy3 + pEy4.γy)sgn(αy)]γEy where Ey ≤ 1 (B.43)

The cornering stiffness is derived as shown below:

Cα = Ky =
∂Fy

∂sα

∣

∣

∣

∣

Sα=0

Cα0 = Ky0 = pKy1.Fz0 sin[2 arctan(
Fz

pKy2Fz0λFz0

)]λFz0
.λKy (B.44)

Cα = Ky = Ky0(1 − pKy3|γy|)ξ3 (B.45)

By =
Cα

CyDy
(B.46)

SHy = (pHy1 + pHy2.dfz)λHy + pHy3.γy.ξ0 + ξ4 − 1 (B.47)

SV y = Fz{(pV y1 + pV y2.dfz)λV y + (pV y3 + pV y4.dfz)γy}λµy.ξ4 (B.48)
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The self-aligning moment Mz at pure lateral slip condition is proposed as follows :

Mz = −tFy + Mzr (B.49)

where t represents the pneumatic trail and is expressed as shown below:

t = Dt cos[Ct arctan{Btαt − Et(Btαt − arctan(Btαt))}] cos(α)

αt = α + SHt

(B.50)

The residual self-aligning moment Mzr is given by:

Mzr = Dr cos[Cr arctan(Brαr)] cos(α) (B.51)

αr = α + SHf (B.52)

SHf = SHy + SV y/Ky (B.53)

γz = γ.λγz (B.54)

Bt = (qBz1 + qBz2.dfz + qBz3.df
2
z )(1 + qBz4.γz + qBz5|γz|)λKy/λµy (B.55)

Ct = qCz1 (B.56)

Dt = Fz(qDz1 + qDz2.dfz)(1 + qDz3.γz + qDz4.γ
2
z )

R0

Fz0
λtξ5 (B.57)

Et = (qEz1+qEz2.dfz+qEz3.df
2
z ){1+(qEz1+qEz2.γz)(

2

π
arctan(BtCtαt)} with Et ≤ 1

(B.58)

SHt = qHz1 + qHz2.dfz + (qHz3 + qHz4.dfz)γz (B.59)
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Dr = Fz[qDz6 + qDz7.dfz)γr + (qDz8 + qDz9.dfz)γz]R0λµγ + ξ8 − 1 (B.60)

dfz =
Fz − Fz0

Fz0
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Appendix C

How to enter data in MF-Tool?

(TYDEX file format)

C.1 Introduction to the TYDEX file format

The tyre data exchange format (TYDEX) has been developed and unified by an interna-

tional tyre working group to make the tyre measurement data exchange easier [35]. The

data file may consist up to 12 keywords as shown bellow:

**HEADER

**COMMENTS

**CONSTANTS

**MEASURCHANNELS

**MEASURDATA

**MODELDEFINITION

**MODELPARAMETERS

**MODELCOEFFICIENTS

**MODELCHANNELS

**MODELOUPUTS

**MODELEND

**END

• Each keyword starts in column 1 with 2 asterisks (**). They may be written in

lower, upper or mixed case letters. They must not contain any blank,



• Each keyword (except **MODELEND and **END) is header of a block containing

special information on the data,

• The keyword **HEADER and **END must appear in every TYDEX file. The other

keywords are optional and depends on the case of application.

This appendix focuses on TYDEX file format for use in the parameters identification

software MF-Tool. MF-Tool is a parameters identification tool for tyre model Magic For-

mula and MF-Swift (see chapter 3). This type of TYDEX files contains only measurement

data and do not define any model. In general, the required keywords are:

**HEADER

**COMMENTS

**CONSTANTS

**MEASURCHANNELS

**MEASURDATA

**MODELPARAMETERS

**MODELEND

**END

These keywords are described below through an example of lateral force and self-

aligning moment data of an aircraft tyre. The data are recorded during steady state pure

cornering. The example of TYDEX file format presented may be considered as a standard

format for all steady state tyre forces and moments parameters identification in MF-Tool.

However, for the tyre transient and dynamics data sets, the content of some keywords

changes and it is recommended to see MF-tool manual for sample of examples for each

case.
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**HEADER

This block contains information to identify the measurement. The content can be written

in lower or upper case letters or mixed. Example of **HEADER block format:

**HEADER

RELEASE 1.3

MEASID DT61-Ac0-200W-p17.tdx

SUPPLIER TNO Automotive

DATE 27-Jun-2007

CLCKTIME 13:57

The content is not fix and one may include more information as needed.

**COMMENTS

This block contains information that cannot be put into other blocks or which is additional

user information. During post processing, these information can be read and printed. But

if the line is preceded by ’ !’ it will be ignored during post processing. Example of **COM-

MENT block format:

**COMMENTS

Copyright 2007 TNO

For more product information:

TNO Automotive, Integrated Safety

P.O.Box 756, 5700 AT Helmond, The Netherlands

Phone: +31 (0)40 265 2600

Fax: +31 (0)40 265 2601

E-mail: delfttyre@tno.nl

URL: http://www.delft-tyre.com

**CONSTANTS

This block contains measured data, model data and characters information which are

constant for whole measurement or model given in the file. In general, all information

about tyre, rim and test conditions are mentioned in this block. The number of constant

are unlimited. Their names are fixed and associated with definite meanings for use in the

post processing. The unit of each constant is mentioned and can be easily changed by

specifying it. Example of **CONSTANTS block format:
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**CONSTANTS

NOMWIDTH Nominal section width of tyre m 0.455

ASPRATIO Nominal aspect ratio % 71.6

RIMDIAME Nominal rim diameter m 0.5588

RIMWIDTH Rim width m 0.3493

MANUFACT Manufacturer Delft Tyre

IDENTITY Identity 1270x455R22

INFLPRES Infl. pres (tyre at amb.temp) bar 14

TRCKSURF Surface of track Asphalt

TRCKCOND Track condition Dry

TRAJVELW Trajectory velocity m/s 8

FZW Nominal wheel load N 68280

LONGSLIP Longitudinal slip - 0.0000

INCLANGL Nominal camber angle rad 0.0000

**MEASURCHANNELS

This block contains only measured data (e.g. time dependent data). This block gives

the channel text, the unit and if necessary, the factors for conversion into physical units.

Only parameters with numerical values are allowed. Parameters number is not limited and

their names are fixed and associated with definite meanings for use in the post processing.

Example of **MEASURCHANNELS block format:

**MEASURCHANNELS

MEASNUMB Measurement Point No. - 1 0 0

SLIPANGL Slip angle (Alpha) rad 1 0 0

INCLANGL Camber angle (Gamma) rad 1 0 0

LONGSLIP Longitudinal slip (Kappa) - 1 0 0

FX Longitudinal force (Fx) N 1 0 0

FYW Side force (Fy) N 1 0 0

FZW Wheel load (Fz) N 1 0 0

MZW Self aligning torque (Mz) Nm 1 0 0

The fifth column contains factor to convert each corresponding parameters into physi-

cal unit. Let’s call this factor a. The sixth column contains offset to shift measurement

values. Let’s call this factor b. The seventh column contains offset to shift physical values.

Let’s call this factor c. Finally, the following expression is used:

160



dphysical = a(dmeasured + b) + c

dmeasured is the measured value,

dphysical is the physical value.

**MEASURDATA n

This block contains all measured data sample by sample. The measured data are given in

the same order as mentioned in the **MEASURCHANNELS. The number of values per

line, n, corresponds to the number of channels in **MEASURCHANNELS. Every new

measurement sample starts in a new line. The number n can be omitted if all values of

the same sample can be put into one line. The format of the values can be integer or real

and all values have to be separated by at least one blank. Example of **MEASURDATA

format:

**MEASURDATA

1.0000e+000 0 0 0 0 0 6.8280e+004 0

2.0000e+000 3.4907e-002 0 0 0 -5.1000e+002 6.8280e+004 0

3.0000e+000 1.0472e-001 0 0 0 -3.4700e+003 6.8280e+004 0

4.0000e+000 1.7453e-001 0 0 0 -6.9700e+003 6.8280e+004 0

5.0000e+000 2.6180e-001 0 0 0 -1.0880e+004 6.8280e+004 0

6.0000e+000 3.4907e-001 0 0 0 -1.4200e+004 6.8280e+004 0

7.0000e+000 5.2360e-001 0 0 0 -1.9410e+004 6.8280e+004 0

8.0000e+000 6.9813e-001 0 0 0 -2.3840e+004 6.8280e+004 0

**MODELPARAMETERS

This block contains the list of parameters which describe the tyre characteristics. Each

line is formatted and contains one single parameter. Example of **MODELPARAME-

TERS format:

**MODELPARAMETERS

RFREE Unloaded radius m 0.635

FZ_NOM Nominal vertical load N 243760

NOMPRES Nominal inflation pressure bar 16
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C.2 Example of TYDEX file for use in MF-Tool

The example of TYDEX file provided in this section has been used in this work (see the

modelling results of Magic Formula presented in chpater 3). It contains data recorded from

pure cornering test on an aircraft tyre and concerns the lateral force and the self-aligning

moment. This example can be used as a standard format for all tyre forces and moments

parameters identification in MF-Tool.

Just copy the example below (from **HEADER block to **END block) into a text file,

then modify each block by entering the right information concerning the new tyre charac-

teristics and measured data. Finally, save the text file which is ready for Magic Formula

(MF) or MF-Swift parameters identification in MF-Tool.

**HEADER

RELEASE 1.3

MEASID DT61-Ac0-200W-p17.tdx

SUPPLIER TNO Automotive

DATE 27-Jun-2007

CLCKTIME 13:57

**COMMENTS

Copyright 2007 TNO

For more product information:

TNO Automotive, Integrated Safety

P.O.Box 756, 5700 AT Helmond, The Netherlands

Phone: +31 (0)40 265 2600

Fax: +31 (0)40 265 2601

E-mail: delfttyre@tno.nl

URL: http://www.delft-tyre.com
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**CONSTANTS

NOMWIDTH Nominal section width of tyre m 0.455

ASPRATIO Nominal aspect ratio % 71.6

RIMDIAME Nominal rim diameter m 0.5588

RIMWIDTH Rim width m 0.3493

MANUFACT Manufacturer Delft Tyre

IDENTITY Identity 1270x455R22

INFLPRES Infl. pres (tyre at amb.temp) bar 14

TRCKSURF Surface of track Asphalt

TRCKCOND Track condition Dry

TRAJVELW Trajectory velocity m/s 8

FZW Nominal wheel load N 68280

LONGSLIP Longitudinal slip - 0.0000

INCLANGL Nominal camber angle rad 0.0000

**MEASURCHANNELS

MEASNUMB Measurement Point No. - 1 0 0

SLIPANGL Slip angle (Alpha) rad 1 0 0

INCLANGL Camber angle (Gamma) rad 1 0 0

LONGSLIP Longitudinal slip (Kappa) - 1 0 0

FX Longitudinal force (Fx) N 1 0 0

FYW Side force (Fy) N 1 0 0

FZW Wheel load (Fz) N 1 0 0

MZW Self aligning torque (Mz) Nm 1 0 0

**MEASURDATA

1.0000e+000 0 0 0 0 0 6.8280e+004 0

2.0000e+000 3.4907e-002 0 0 0 -5.1000e+002 6.8280e+004 0

3.0000e+000 1.0472e-001 0 0 0 -3.4700e+003 6.8280e+004 0

4.0000e+000 1.7453e-001 0 0 0 -6.9700e+003 6.8280e+004 0

5.0000e+000 2.6180e-001 0 0 0 -1.0880e+004 6.8280e+004 0

6.0000e+000 3.4907e-001 0 0 0 -1.4200e+004 6.8280e+004 0

7.0000e+000 5.2360e-001 0 0 0 -1.9410e+004 6.8280e+004 0

8.0000e+000 6.9813e-001 0 0 0 -2.3840e+004 6.8280e+004 0
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**MODELPARAMETERS

RFREE Unloaded radius m 0.635

FZ_NOM Nominal vertical load N 243760

NOMPRES Nominal inflation pressure bar 16

**MODELEND

**END

After completing the estimation of the model parameters, MF-Tool allows to export a

file called ’tyre property file’, which will be used in the simulation environment (software).

An example of the tyre property file is presented in the next appendix.
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Appendix D

Example of a tyre property file

This appendix shows an example of a tyre property file obtained after estimating the

parameters of the Magic Formula model (version 2002) with MF-Tool. It corresponds

to the tyre property file at inflation pressure 14 bars used for the application in chapter

3. It mainly contains the general information on the tyre (MDI_HEADER), then the

USE_MODE which specifies the type of calculation performed, the tyre run type condition

(pure or combined slip), the units of the different quantities used and the values of the

Magic Formula parameters. Notice that only the values of the parameters that correspond

to the pure lateral force are true. The others are default values associated to the parameters

during the fitting process with MF-Tool.

[MDI_HEADER]

FILE_TYPE =’tir’

FILE_VERSION =3.0

FILE_FORMAT =’ASCII’

! : FILE_NAME : C: pneu1-03ms.tir

! : TIRE_VERSION : MF-Tyre 5.2

! : MF-TOOL TEMPLATE : acar12_mftyre52

! : COMMENT : Tire 1270x455R22

! : COMMENT : Manufacturer Delft Tyre

! : COMMENT : Nom. section width (m) 0.455

! : COMMENT : Nom. aspect ratio (-) 0.71

! : COMMENT : Infl. pressure (Pa) 1400000

! : COMMENT : Rim radius (m) 0.2794

! : COMMENT : Measurement ID

! : COMMENT : Test speed (m/s) 8

! : COMMENT : Road surface Asphalt



! : COMMENT : Road condition Dry

! : FILE_FORMAT : ASCII

! : DATESTAMP : 15 octob. 2010, 07:11:15

! : USER : MF-Tool 6.1

! : Generated by : Administrator1

! : Copyright TNO, 15 octob. 2010, 07:11:15

!

! USE_MODE specifies the type of calculation performed:

! 0: Fz only, no Magic Formula evaluation

! 1: Fx,My only

! 2: Fy,Mx,Mz only

! 3: Fx,Fy,Mx,My,Mz uncombined force/moment calculation

! 4: Fx,Fy,Mx,My,Mz combined force/moment calculation

! +10: including relaxation behaviour

! *-1: mirroring of tyre characteristics

! example: USE_MODE = -12 implies:

! -calculation of Fy,Mx,Mz only

! -including relaxation effects

! -mirrored tyre characteristics

$—————————————————————-units

[UNITS]

LENGTH =’meter’

FORCE =’newton’

ANGLE =’radians’

MASS =’kg’

TIME =’second’

$—————————————————————-model

[MODEL]

PROPERTY_FILE_FORMAT =’MF-TYRE’

TYPE =’CAR’

FITTYP = 6 $Magic Formula Version number

USE_MODE = 2 $Tyre use switch (IUSED)

MFSAFE1 = 99

MFSAFE2 = 99

MFSAFE3 = 1
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VXLOW = 1

LONGVL = 1 $Measurement speed

$———————————————————–dimensions

[DIMENSION]

UNLOADED_RADIUS = 0.635 $ Free tyre radius

WIDTH = 0.455 $ Nominal section width of the tyre

ASPECT_RATIO = 0.71 $ Nominal aspect ratio

RIM_RADIUS = 0.2794 $ Nominal rim radius

RIM_WIDTH = 0.3493 $ Rim width

$—————————————————————-shape

[SHAPE]

radial width

1.0 0.0

1.0 0.4

1.0 0.9

0.9 1.0

$————————————————————parameter

[VERTICAL]

VERTICAL_STIFFNESS = 2000000 $Tyre vertical stiffness

VERTICAL_DAMPING = 500 $Tyre vertical damping

BREFF = 8.4 $Low load stiffness e.r.r.

DREFF = 0.27 $Peak value of e.r.r.

FREFF = 0.07 $High load stiffness e.r.r.

FNOMIN = 243760 $Nominal wheel load

$——————————————————long_slip_range

[LONG_SLIP_RANGE]

KPUMIN = -1.5 $Minimum valid wheel slip

KPUMAX = 1.5 $Maximum valid wheel slip

$—————————————————–slip_angle_range

[SLIP_ANGLE_RANGE]

ALPMIN = -1.5708 $Minimum valid slip angle

ALPMAX = 1.5708 $Maximum valid slip angle

$———————————————-inclination_slip_range

[INCLINATION_ANGLE_RANGE]

CAMMIN = 0 $Minimum valid camber angle

CAMMAX = 0 $Maximum valid camber angle

$————————————————-vertical_force_range
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[VERTICAL_FORCE_RANGE]

FZMIN = 2438 $Minimum allowed wheel load

FZMAX = 487520 $Maximum allowed wheel load

$————————————————————–scaling

[SCALING_COEFFICIENTS]

LFZO = 1 $Scale factor of nominal (rated) load

LCX = 1 $Scale factor of Fx shape factor

LMUX = 1 $Scale factor of Fx peak friction coefficient

LEX = 1 $Scale factor of Fx curvature factor

LKX = 1 $Scale factor of Fx slip stiffness

LHX = 1 $Scale factor of Fx horizontal shift

LVX = 1 $Scale factor of Fx vertical shift

LGAX = 1 $Scale factor of camber for Fx

LCY = 1 $Scale factor of Fy shape factor

LMUY = 1 $Scale factor of Fy peak friction coefficient

LEY = 1 $Scale factor of Fy curvature factor

LKY = 1 $Scale factor of Fy cornering stiffness

LHY = 1 $Scale factor of Fy horizontal shift

LVY = 1 $Scale factor of Fy vertical shift

LGAY = 1 $Scale factor of camber for Fy

LTR = 1 $Scale factor of Peak of pneumatic trail

LRES = 1 $Scale factor for offset of residual torque

LGAZ = 1 $Scale factor of camber for Mz

LXAL = 1 $Scale factor of alpha influence on Fx

LYKA = 1 $Scale factor of alpha influence on Fx

LVYKA = 1 $Scale factor of kappa induced Fy

LS = 1 $Scale factor of Moment arm of Fx

LSGKP = 1 $Scale factor of Relaxation length of Fx

LSGAL = 1 $Scale factor of Relaxation length of Fy

LGYR = 1 $Scale factor of gyroscopic torque

LMX = 1 $Scale factor of overturning couple

LVMX = 1 $Scale factor of Mx vertical shift

LMY = 1 $Scale factor of rolling resistance torque

$———————————————————longitudinal
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[LONGITUDINAL_COEFFICIENTS]

PCX1 = 1.65 $Shape factor Cfx for longitudinal force

PDX1 = 1 $Longitudinal friction Mux at Fznom

PDX2 = 0 $Variation of friction Mux with load

PDX3 = 0 $Variation of friction Mux with camber

PEX1 = 0 $Longitudinal curvature Efx at Fznom

PEX2 = 0 $Variation of curvature Efx with load

PEX3 = 0 $Variation of curvature Efx with load squared

PEX4 = 0 $Factor in curvature Efx while driving

PKX1 = 20 $Longitudinal slip stiffness Kfx/Fz at Fznom

PKX2 = 0 $Variation of slip stiffness Kfx/Fz with load

PKX3 = 0 $Exponent in slip stiffness Kfx/Fz with load

PHX1 = 0 $Horizontal shift Shx at Fznom

PHX2 = 0 $Variation of shift Shx with load

PVX1 = 0 $Vertical shift Svx/Fz at Fznom

PVX2 = 0 $Variation of shift Svx/Fz with load

RBX1 = 10 $Slope factor for combined slip Fx reduction

RBX2 = 6 $Variation of slope Fx reduction with kappa

RCX1 = 1 $Shape factor for combined slip Fx reduction

REX1 = 0 $Curvature factor of combined Fx

REX2 = 0 $Curvature factor of combined Fx with load

RHX1 = 0 $Shift factor for combined slip Fx reduction

PTX1 = 0 $Relaxation length SigKap0/Fz at Fznom

PTX2 = 0 $Variation of SigKap0/Fz with load

PTX3 = 0 $Variation of SigKap0/Fz with exponent of load

$———————————————————-overturning

[OVERTURNING_COEFFICIENTS]

QSX1 = 0 $Lateral force induced overturning moment

QSX2 = 0 $Camber induced overturning couple

QSX3 = 0 $Fy induced overturning couple

$————————————————————–lateral
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[LATERAL_COEFFICIENTS]

PCY1 = 2 $Shape factor Cfy for lateral forces

PDY1 = 0.4072 $Lateral friction Muy

PDY2 = -0.21897 $Variation of friction Muy with load

PDY3 = 0 $Variation of friction Muy with squared camber

PEY1 = 0.4536 $Lateral curvature Efy at Fznom

PEY2 = 0.08415 $Variation of curvature Efy with load

PEY3 = 0 $Zero order camber dependency of curvature Efy

PEY4 = 0 $Variation of curvature Efy with camber

PKY1 = -3.24 $Maximum value of stiffness Kfy/Fznom

PKY2 = 1.1953 $Load at which Kfy reaches maximum value

PKY3 = 0 $Variation of Kfy/Fznom with camber

PHY1 = -0.002228 $Horizontal shift Shy at Fznom

PHY2 = -0.00463 $Variation of shift Shy with load

PHY3 = 0 $Variation of shift Shy with camber

PVY1 = 0 $Vertical shift in Svy/Fz at Fznom

PVY2 = 0 $Variation of shift Svy/Fz with load

PVY3 = 0 $Variation of shift Svy/Fz with camber

PVY4 = 0 $Variation of shift Svy/Fz with camber and load

RBY1 = 16 $Slope factor for combined Fy reduction

RBY2 = 0 $Variation of slope Fy reduction with alpha

RBY3 = 0 $Shift term for alpha in slope Fy reduction

RCY1 = 1 $Shape factor for combined Fy reduction

REY1 = 0 $Curvature factor of combined Fy

REY2 = 0 $Curvature factor of combined Fy with load

RHY1 = 0 $Shift factor for combined Fy reduction

RHY2 = 0 $Shift factor for combined Fy reduction with load

RVY1 = 0 $Kappa induced side force Svyk/Muy*Fz at Fznom

RVY2 = 0 $Variation of Svyk/Muy*Fz with load

RVY3 = 0 $Variation of Svyk/Muy*Fz with camber

RVY4 = 0 $Variation of Svyk/Muy*Fz with alpha

RVY5 = 1.9 $Variation of Svyk/Muy*Fz with kappa

RVY6 = 0 $Variation of Svyk/Muy*Fz with atan(kappa)

PTY1 = 0 $Peak value of relaxation length SigAlp0/R0

PTY2 = 0 $Value of Fz/Fznom where SigAlp0 is extreme
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$—————————————————rolling resistance

[ROLLING_COEFFICIENTS]

QSY1 = 0.01 $Rolling resistance torque coefficient

QSY2 = 0 $Rolling resistance torque depending on Fx

QSY3 = 0 $Rolling resistance torque depending on speed

QSY4 = 0 $Rolling resistance torque depending on speed4

$————————————————————-aligning

[ALIGNING_COEFFICIENTS]

QBZ1 = 6.578 $Trail slope factor for trail Bpt at Fznom

QBZ2 = 2.2864 $Variation of slope Bpt with load

QBZ3 = 1.736 $Variation of slope Bpt with load squared

QBZ4 = 0 $Variation of slope Bpt with camber

QBZ5 = 0 $Variation of slope Bpt with absolute camber

QBZ9 = 0.021653 $Slope factor Br of residual torque Mzr

QBZ10 = 0 $Slope factor Br of residual torque Mzr

QCZ1 = 1.2554 $Shape factor Cpt for pneumatic trail

QDZ1 = 0.16092 $Peak trail Dpt" = Dpt*(Fz/Fznom*R0)

QDZ2 = -0.13556 $Variation of peak Dpt" with load

QDZ3 = 0 $Variation of peak Dpt" with camber

QDZ4 = 0 $Variation of peak Dpt" with camber squared

QDZ6 = 9.755E-4 $Peak residual torque Dmr" = Dmr/(Fz*R0)

QDZ7 = 0.006212 $Variation of peak factor Dmr" with load

QDZ8 = 0 $Variation of peak factor Dmr" with camber

QDZ9 = 0 $Variation of peak factor Dmr" with camber and load

QEZ1 = -1.5765 $Trail curvature Ept at Fznom

QEZ2 = 1.27 $Variation of curvature Ept with load

QEZ3 = 0 $Variation of curvature Ept with load squared

QEZ4 = 0 $Variation of curvature Ept with sign of Alpha-t

QEZ5 = 0 $Variation of Ept with camber and sign Alpha-t

QHZ1 = -0.013036 $Trail horizontal shift Sht at Fznom

QHZ2 = -0.026794 $Variation of shift Sht with load

QHZ3 = 0 $Variation of shift Sht with camber

QHZ4 = 0 $Variation of shift Sht with camber and load

SSZ1 = 0 $Nominal value of s/R0: effect of Fx on Mz

SSZ2 = 0 $Variation of distance s/R0 with Fy/Fznom
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SSZ3 = 0 $Variation of distance s/R0 with camber

SSZ4 = 0 $Variation of distance s/R0 with load and camber

QTZ1 = 0 $Gyration torque constant

MBELT = 50 $Belt mass of the wheel
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Summary

In the aeronautics transport domain, the improvement of the security, the reliabil-

ity and the comfort requires also a reliable control of the aircraft on the ground. Since the

tyre is the only contact point of the aircraft with the ground, the tyre properties would

play a fundamental role when determining the aircraft dynamic behaviour. Thus advanced

and representative tyre model is necessary. However, it may be difficult to realistically

model the tyre due to the complexity of its structure (composite of polymers, fibres, steel,

etc). Indeed, it is required to consider either extensive and complex models or models

with considerable simplification for representing the tyre full behaviour on the road. In

this context, getting a suitable model for a given application becomes a challenge for a

simple model may not be realistic enough and a more complex one may be difficult to

handle and perhaps, unnecessary for the given application.

In collaboration with Messier-Dowty company, this thesis has contributed to better un-

derstand the actual literature studies in the field of aircraft tyre-road interaction modelling

and therefore, to help making an optimal choice of model for a specific application. The

objectives have been to propose models for representing the tyre behaviour on the ground

with respect to the aircraft run types. These run types include acceleration/braking (dur-

ing landing) and cornering (during taxiing) at steady-state condition. Physical oriented

models are preferred.

To complete this study, a literature survey of the previous researches in tyre modelling

for steady-state responses is first carried out. The different models are then presented ac-

cording to the three categories commonly used in the literature, physical, semi-empirical

and empirical. The principle of development (assumptions or/and approximations) as

well as the conditions of validity of each model are described. Then, based on the main

factors playing an important role in tyre modelling, it is proposed a classification for the

physical and the semi-empirical models, which are also investigated. It is underlined that

choosing a tyre model for a given application requires a certain number of considerations,

which mainly include the measurement data constraints, the expected level of accuracy,

the needs in physical interpretation of the model parameters and results, and the time

constraint.

Based on the classification of the models, the study requirements and the measurement

data constraints, an a priori choice of suitable models is proposed. Then, the a priori cho-

sen models are investigated and the advantages as well as the limitations of each model

are discussed.
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In the context of this study, a longitudinal force has been recorded at pure cornering

performed on aircraft tyres. This force increases with side slip angle and also with relative

significant magnitude when compared to the lateral force one. It is therefore underlined

that in the particular case of aircraft tyres, the longitudinal component of the tyre-road

interaction force may not be negligible as it has been widely assumed in the literature.

Then, a further investigation of the tyre deformation in the contact patch at pure cornering

is carried out. Based on a simple but comprehensive physical approach, it is demonstrated

that, at pure cornering (pure lateral slip), the non uniform lateral tread stretching in the

contact patch generates a longitudinal tread contraction (displacement) and as a result, a

longitudinal force is developed. This force is referred as induced longitudinal force. More-

over, an exhaustive description of the self-aligning moment generation at pure cornering

is carried out by decomposing it into contributions of the induced longitudinal force and

the lateral force.

Besides, it should be underlined that tyre models are mainly nonlinear and depend on

parameters obtained from measurement data. One of the problems of great importance

related to this issue is to efficiently fix and plan the experiments. The sensitivity analysis

is proposed as a means for determining the parameters that have most influence on the

model output and thus, are responsible for the output uncertainty. It is then possible to

significantly reduce the model response uncertainty by focusing on measurements data,

which help to better estimate the most influential parameters.

Keywords: aircraft tyre model; steady-state behaviour; physical; sensitivity analysis;

influential parameters; model uncertainty.
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