
HAL Id: tel-00600578
https://theses.hal.science/tel-00600578

Submitted on 15 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe Navigation for Autonomous Vehicles in Dynamic
Environments: an Inevitable Collision State (ICS)

Perspective
Luis Martinez-Gomez

To cite this version:
Luis Martinez-Gomez. Safe Navigation for Autonomous Vehicles in Dynamic Environments: an In-
evitable Collision State (ICS) Perspective. Automatic. Université de Grenoble, 2010. English. �NNT :
�. �tel-00600578�

https://theses.hal.science/tel-00600578
https://hal.archives-ouvertes.fr

Université de Grenoble

Thèse

Pour obtenir le grade de

Docteur de l’Université de Grenoble
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée et soutenue publiquement par

Luis Alfredo Martínez Gómez

le 5 novembre 2010

Safe Navigation for Autonomous Vehicles in Dynamic
Environments: an ICS Perspective

Thèse dirigée par Thierry Fraichard

Jury

M. Augustin Lux Président
M. Rachid Alami Rapporteur
M. Luis Montano Rapporteur
M. Michel Parent Examinateur
M. Thierry Fraichard Examinateur

Thèse préparée au sein du Laboratoire d’Informatique de Grenoble et l’INRIA Grenoble,
dans l’École Doctorale de Mathématiques, Sciences et Technologies de l’Information,

Informatique

2

Abstract

This thesis deals with the problem of safe navigation for autonomous vehicles
in dynamic environments. Motion safety is defined by means of Inevitable
Collision States (ICS). An ICS is a state for which, no matter what the future
trajectory of the vehicle is, a collision eventually occurs. For obvious safety
reasons, the autonomous system should never ever find itself in one of such
states. To accomplish this objective the problem is addressed in two parts.
The first part focus in determine which states are safe for the vehicle (non-
ICS). The second part concentrates in how to select a valid control to move
from one safe state to the other. Once its found, the vehicle can apply it to
successfully navigate the environment. Simulations and experimental results
are presented to validate the approach.

3

4

Résumé

Cette thèse traite le problème de navigation sûre pour les véhicules autonomes
en environnement dynamique. La sûreté est définie par le concept des Etats
de Collisions Inévitables (ICS). Un ICS est un état dans lequel, quelque soit
le contrôle appliqué au système robotique étudié, celui-ci entre en collision
avec un obstacle. Pour sa propre sécurité et celle de son environnement, il
est impératif qu’un système robotique n’entre donc jamais dans un tel état.
Ce problème est traité en deux parties. La première partie est consacrée
à caractériser les etats de collisions inévitables. La deuxième partie à la
création d’un système de navigation permetant d’éviter telles etats. Des
résultats en simulation et sur une plateforme expérimentale sont présentés
pour valider l’approche.

5

6

Contents

1 Introduction 11

1.1 Solving motion safety difficulties with an ICS perspective . . . 14
1.2 Contribution . 15
1.3 Document organization . 16

2 Motion Safety- State of the Art 19

2.1 Motion Safety Analysis . 20
2.2 Navigation Methods . 24

2.2.1 Deliberative Methods 24
2.2.2 Reactive Methods . 28
2.2.3 Alternative Methods 39

2.3 Conclusion . 41

3 Conceptual framework 43

3.1 Notations . 43
3.2 ICS definition . 44
3.3 ICS and Motion Safety Criteria 45
3.4 Motion Safety Definition . 46
3.5 Motion Safety Level Achievable by ICS 48
3.6 ICS properties . 49
3.7 Conclusion . 52

4 Determining Safe States 53

4.1 Preliminaries . 53
4.1.1 Evasive Manoeuvres 53
4.1.2 Braking and Imitating Manoeuvres 55
4.1.3 General ICS Checking Algorithm 57

4.2 Ics-Check: a 2D ICS Checking Algorithm 58
4.2.1 2D Reasoning . 58
4.2.2 Valid Lookahead . 60
4.2.3 Ics-Check Algorithm 61

7

8 CONTENTS

4.2.4 Complexity Analysis 61
4.3 Ics-Check: an Efficient Implementation 62

4.3.1 Exploiting Graphics Rendering Techniques 62
4.3.2 Precomputing As Much As Possible 64

4.4 Ics-Check At Work . 64
4.4.1 Robotic Systems . 64
4.4.2 Workspace Model . 66
4.4.3 Car-Like System Case Study 67
4.4.4 Other Examples . 71
4.4.5 Ics-Check Performances 72

4.5 Conclusion . 72

5 Navigation 75

5.1 ICS-Avoid . 76
5.1.1 Overview . 76
5.1.2 Safe Control Kernel . 77
5.1.3 Augmenting Ics-Check 78
5.1.4 Ics-Avoid Algorithm 79
5.1.5 Sampling strategies . 80

5.2 Benchmarking Ics-Avoid with Other Navigation Methods . . 82
5.2.1 Simulation Setup . 83
5.2.2 Conclusion Benchmarking 86

5.3 Conclusion . 87

6 Experimental Results 89

6.1 Experimental Platform . 90
6.1.1 Hardware . 90
6.1.2 Software Architecture 91

6.2 Navigation Components . 93
6.2.1 Organization of Components 93
6.2.2 Robot System . 94
6.2.3 Mapping . 95
6.2.4 Localization . 95
6.2.5 Detection and Tracking of Moving objects 96
6.2.6 Model of the Future 96
6.2.7 ICS-Check . 96
6.2.8 ICS-Avoid . 97

6.3 Evaluation . 97
6.3.1 Experimental Conditions 97
6.3.2 Collision With an Object 99

6.4 Analysis . 102

CONTENTS 9

7 Conclusions 105

7.1 Contributions . 106
7.2 Discussion . 107
7.3 Future Work . 107

10 CONTENTS

Chapter 1

Introduction

If we take a moment and look around us, we won’t find ourselves in one
of those old movies’ scenes where robots are everywhere, helping humans
in all sort of tasks. For something like that happens, it will be necessary
first to overcome some challenges. Issues that have prevented us to confront
our robots with the real world, away from the ideal conditions found in
the comfort of our labs. One such challenge is giving our robots the
ability to safely navigate among the persons and objects that populate the
environments they will be confronted with. Safe navigation means the ability
to go from one location to another while avoiding dangerous situations, such
as collisions. The challenge in all this can easily be verified if we take another
moment and look once more around us. We will observe that some objects
and humans don’t remain static, all the contrary, they move. That is to say,
we are dealing with a dynamic environment.

Robot navigation in dynamic environments has been studied extensively
by the robotics community and some of their results were illustrated
rather brilliantly by the 2007 DARPA Urban Challenge1. The challenge
called for autonomous car-like vehicles to drive 96 kilometers through an
urban environment amidst other vehicles. Six autonomous vehicles finished
successfully the race thus proving that autonomous urban driving could
become a reality. Note however that, despite their strengths, the Urban
Challenge vehicles have not yet met the challenge of fully autonomous urban
driving (how about handling traffic lights or pedestrians for instance?).
Moreover, several collisions took place in the competition (Fig. 1.1). The
accidents put in evidence that motion safety (the ability for an autonomous
robotic system to avoid collision with the objects of its environment) remains
an open problem in mobile robotics.

1http://www.darpa.mil/grandchallenge.

11

http://www.darpa.mil/grandchallenge

12

(a) Talos (MIT) & Skynet (Cornell) (b) Terramax (Oshkosh)

Figure 1.1: Collisions in DARPA Urban Challenge.

Motion safety is a basic requirement for any mobile robot application.
However it takes a major role when dealing with those applications where
human lives are susceptible of risk. Whenever the robots’ size and dynamics
are considerable special attention must be made to guarantee the robot will
not harm the people around it.

One example of such applications is driverless vehicles (Figure 1.2),
i.e., an autonomous vehicle that can drive itself without the assistance
of a human driver. The main idea behind automated driving is to take
the persons out of the vehicle’s control loop. The reason is that a great
percentage of traffic accidents (around 90%) are attributable to human
mistakes: errors in judgment of the road and car conditions, inattentiveness
or simply taking the wrong action [RAH+09]. Besides the human losses,
medical costs and property damage, accidents have also a negative impact in
the environment. They are one of the main reasons of traffic congestion and
its consequent increment in wasted fuel and air pollution. Driverless cars
have the potential to transform the transportation industry by eliminating
the accidents and drastically reducing their adverse effects. The first steps
to achieve this goal have already been taken. Research projects funded by
government agencies (HAVEit [HAK+08], SPARC [HBK+05], etc.) and
the technology developed lately in the automotive industry (radar-based
cruise control, lane-change warning devices, precrash systems, etc.) are a
clear indication of this trend. However, as was evidenced by the DARPA
Urban Challenge, there are still significant challenges to meet. Notably,
guaranteeing the motion safety of the vehicle.

CHAPTER 1. INTRODUCTION 13

(a) INRIA Cycab (b) CMU Chevy Boss

Figure 1.2: Driverless vehicles.

Service robotics is an other example of the applications where motion
safety is critical. As its name suggest, a service robot operates autonomously
to perform tasks or services which are useful to the well-being of human
beings. They are increasingly becoming a possible answer to solve some
of the challenges posed by the demographic changes seen in industrialized
countries. These changes have altered the balance of age groups causing a
significant increase in the elderly population of the concerned nations. This
means that a diminishing younger population is now faced with the challenge
of providing solutions for the needs of its older fellow citizens. Needs that
ranges from basic household tasks, such as cleaning, to more sophisticated
ones, like filling the fridge with groceries (Fig. 1.3a) or assisting persons
in their mobility. One example of the type of technology that provides
this type of assistance is the autonomous wheelchair (Figure 1.3b). These
devices increase considerably the range of action of a classic wheelchair.
They improve the independence, convenience and mobility freedom of their
users. They are also designed to respond to different levels of disabilities
by adjusting the amount of user involvement in controlling the device. If
required, they can operate in full autonomous mode, taking their users from
one place to another through different kinds of settings (indoors or outdoors)
in challenging dynamic environments as those found in homes or public
spaces. Areas where the robotic devices will need to interact constantly
with humans. As opposed to the small robots found nowdays in homes (e.g.,
vacuum cleaner robots) the next generation of service robots will need to
address more seriously the motion safety of their actions to guarantee that
their movements will not cause harm. If a small vacuum cleaner robot collides
with a piece of furniture is not big deal; if an autonomous wheelchair carrying
a person collides and someone get hurt is quite a different matter.

14

1.1. SOLVING MOTION SAFETY DIFFICULTIES WITH AN ICS

PERSPECTIVE

(a) Mobile Manipulator (b) Autonomous Wheelchair.

Figure 1.3: Service Robots.

1.1 Solving Motion Safety Difficulties with

an Inevitable Collision State Perspective

Dynamic environments are challenging. Specially when it comes to solve
the difficulties associated with the motion safety of an autonomous robotic
system. The complexity stem from one inherent characteristic of these
changing environments: time.

To begin with, there is a real-time decision constraint. A robotic system
cannot safely remain passive in a dynamic environment as it risks to be
collided by a moving object. It has only a limited amount of time to come
up with a decision that allows it to avoid a possible collision. If it takes too
much time to make the decision it may find itself in a situation which can
be catastrophic for its own safety.

Furthermore, avoiding collisions in dynamic environments requires
to explicitly reason about the future. This allows to account for other
time-dependent constraints such as the robot system’s dynamics and moving
objects future behaviour. Failure to do so yields navigation strategies whose
motion safety is not guaranteed (in the sense that situations where collisions
will eventually occur can happen). In general, the system’s dynamics are
usually known a priori and thus they can be used to reason about the

CHAPTER 1. INTRODUCTION 15

robot future behaviour because they allow to accurately predict its future
states. Now, to account for the moving objects two issues arise. The first
one concerns the determination of a description or model of their future
behaviour. In certain cases, this knowledge may be available beforehand,
e.g., space applications. In most cases however, it will be necessary to
estimate this future behaviour (in a deterministic or probabilistic manner)
using whatever information available, typically sensor data. This thesis will
suppose that this first issue is already solved, i.e., it is assumed that a model
of the future has been determined. Thus the work will concentrate only in
the second issue necessary to account for the moving objects. This second
issue is once a model of the future is available how to reason about it in
order to produce safe navigation strategies. In essence, the process to arrive
to a decision that guarantee the motion safety of the system with respect to
a given model of the future. This thesis propose that this decision is taken
by reasoning with the perspective given by the Inevitable Collision States
(ICS) concept.

An Inevitable Collision State for a given robotic system is a state for
which, no matter what the future trajectory followed by the system is, a
collision with an object eventually occurs. They are particularly well suited
for navigation in dynamic environments since ICS take into account both
the dynamic constraints of the robotic system and the future behaviour of
the moving objects. Through the perspective given by ICS, the motion
safety difficulties can be addressed in an incremental way. Starting from
a theoretical basis to formally define what motion safety is in the context
of dynamic environments to the implementation of the tools needed in a
safe navigation strategy (if a robotic system doesn’t wants to be involved
in a collision it should never ever end up in an ICS). However, employing
ICS presents its own challenges. First, the intrinsic complexity of their
characterization must be worked out to determine if a state is an ICS or
not. Once the safety verification of a given state can be performed, the next
move is to employ that information in a collision avoidance scheme to keep
the robotic system at hand safe from falling in an ICS.

1.2 Contribution

The contribution of the thesis is three-fold:

1. It explores key issues that have an impact in the motion safety of robotic
systems operating in dynamic environments.

16 1.3. DOCUMENT ORGANIZATION

2. It furthers the study of the Inevitable Collision States from a theoretical
point of view.

3. It lays out the foundations of a practical solution to the problem of
motion safety in dynamic environments from an Inevitable Collision
States perspective. Specifically it address two main points:

(a) The characterization of the ICS set for a given robotic system
with an algorithm or ICS-Checker that determines whether a
given state is an ICS or not. This is an intricate problem since
characterizing the ICS set requires in theory to reason on the
state-time space of the robotic system at hand, and above all to
consider all possible trajectories that the robotic system can follow
from any given state. Similar to a Collision-Checker that plays a
key role in path planning and navigation in static environments,
it could be argued that an ICS-Checker is a fundamental tool for
motion planning and navigation in dynamic environments. Like
its static counterpart, an ICS-Checker must be computationally
efficient so that it can meet the real-time decision constraint
imposed by dynamic environments.

(b) The determination of a control that takes the robotic system from
one non-ICS state to another within a collision avoidance scheme.
This decision-making module has as objective to keep the robotic
system safe. By preventing the system to fall in an ICS is possible
to guarantee its motion safety with respect to the model of the
future which is used. The guarantee is derived from the ICS
definition. When the robotic system’s state is not an ICS it means
that at least one collision-free trajectory exists and in consequence
that is possible to follow it to avoid collision.

1.3 Document organization

The document is organized as follows. Chapter 2 presents first an analysis
of the motion safety problem identifying the key aspects that must be used
in the evaluation of any navigation method. Armed with such key issues
or safety criteria a literature review is presented to locate this work in the
context of what it has been done in the research community. Chapter 3 lays
the foundations for the rest of the document. It presents a definition of what
it is understood as motion safety and introduces the necessary notations
to formally define the Inevitable Collision States (ICS) and its properties.

CHAPTER 1. INTRODUCTION 17

Chapter 4 presents Ics-Check. A generic and efficient way of determining
the safety of a given state for planar robotic systems with arbitrary dynamics
moving in dynamic environments. Chapter 5 explains Ics-Avoid, the ICS-
based collision avoidance scheme, which takes the safe states, verified with the
algorithms presented in the previous chapter, and use them to safely navigate
through a dynamic environment. The principle which allows to guarantee
safe transitions between non-ICS states is also introduced. Chapter 6 shows
the results from simulation and real experiments: a wheelchair in indoor
environments. The approach is shown to be tractable and an evaluation of
its weak points is presented. Finally, Chapter 7 summarize the approach, the
contributions of the work and outline the lines of research for future work.

Résumé

Dans le Chapitre 1, nous avons présenté une introduction générale de la thèse,
les motivations et objectifs du travail ainsi que les principales contributions
du manuscrit.

La motivation principale du travail est le problème de navigation sûre
pour les véhicules autonomes en environnement dynamique. Ce problème
prend une importance quand les robots sont opérés dans des environnement
où les personnes sont présentes. Des exemples des dites applications sont les
voitures automatisées et les robots de service.

La difficulté principale dans la détermination d’un mouvement sûr
dans des environnements dynamiques vient du fait qui dans les dits
environnements existe le facteur du temps. En effet, le temps impose
des restrictions dans les décisions du robot et dans le modèle utilisé pour
représenter les caractéristiques du robot et les objets de l’environnement.

Une manière d’aborder ce problème est par le concept des Etats de
Collisions Inévitables (ICS). Un ICS est un état dans lequel, quelque soit
le contrôle appliqué au système robotique étudié, celui-ci entre en collision
avec un obstacle. Donc le principales contributions du manuscrit sont:

• Approfondir l’étude du concept d’ICS et son impact dans la sécurité
de mouvement

• La conception d’algorithmes pour une solution pratique du problème
de navigation sûre dans des environnements dynamiques par l’emploi
d’ICS.

18 1.3. DOCUMENT ORGANIZATION

Chapter 2

Motion Safety- State of the Art

Since the early days of mobile robotics, researchers have seek to give to
their robots the power to successfully navigate through their environment.
This task, so natural in some of the simplest creatures, has proved to be
a challenging one. Part of the challenge comes from the large spectrum of
techniques that must work together to achieve the desired result. Among
them are techniques for localization, mapping, path planning, obstacle
avoidance and motion control. This work will concentrate in what from
now on will be called “navigation methods” (methods at a decisional level
that focus in determining the robot future course of action). Although a
huge diversity and variety of these methods can be found in the literature,
this chapter won’t opt to make an exhaustive enumeration and description
of them (that will be more appropriate for another kind of endeavour, like
writing a book in the subject). Instead, an evaluation of a selection of the
most prominent ones will be made. The evaluation is based in key issues
that appear in an analysis of the notion of motion safety for robotic systems.
These issues or safety criteria will turn out to be useful in determining the
limits and the appropriate conditions to employ a given method. With the
light given by them it will be easier to understand how the motion safety
problem has been addressed in the robotics community and see, that in
fact, many assumptions made by the navigation methods have been accepted
without challenging them or validating their impact in the motion safety of
the robotic system. As consequence, the applications where the navigation
methods are employed may be regarded as safe when in reality they are not.
This may become critical specially with the applications where human lives
are involved.

19

20 2.1. MOTION SAFETY ANALYSIS

2.1 Motion Safety Analysis

When looking to the reasons why a robot system collides in a dynamic
environment is possible to make a distinction between two kinds. The first
kind are those who have nothing to do with the way in which the motion
safety problem is addressed. The second kind are those who do. Examples
of the first ones are easy to list. They include robot hardware failure, errors
or bugs in the software, misperception of the environment (e.g., an erroneous
interpretation of the sensor data), etc. The latter, on the contrary, are much
harder to enumerate. Fortunately, analysis like the one done in [Fra07] have
explored the motion safety issue at an abstract level and have laid down
“safety criteria” whose violation by a navigation method is likely to yield
collisions. The safety criteria are associated with how the key aspect of time
is handled by a robotic system when deciding its future course of action.
Specifically, a robotic system in a dynamic environment needs to:

1. Reasons about the future,

2. while respecting a decision time constraint,

3. with the appropriate lookahead.

To illustrate them a simple example called the “compactor scenario” will
be employed (Figure 2.1). In this example we have a point robotic system
(denoted as A) which is placed between two plates. One plate is moving
(Bm) and the other is static (Bf).

W

lm

Bf

Bm

vm
dm

position lineA

Figure 2.1: Compactor scenario.

CHAPTER 2. MOTION SAFETY- STATE OF THE ART 21

The moving plate close the gap between it and the static one as it advances
towards the latter with a velocity vm. If the system doesn’t move out of the
way it will be crush between the plates. To ease the explanation, lets suppose
that the system can only move right or left along a horizontal line (henceforth
called the position line). In this way the robot state (the set of variables that
adequately describe the condition of the system) is 1D and determined by its
scalar position on the position line. Assuming the robotic system is controlled
by its velocity (limited to a maximum) v ∈ [−vmax, vmax] then the dynamics
of A is given by ṡ = v. Let dm denotes the distance between A and the
moving plate Bm, the time to collision can be easily computed: tc = dm/vm.
Let the distance to reach the nearest side of the plate is lm (on the left side in
this case), a collision is inevitable if the minimum time to escape (the time it
takes to traverse lm) is greater than the time to collision: te = lm/vmax > tc.
Assume that the robot is not in that situation and can escape a collision.
Now, let’s see what happens when the robot needs to decide its future course
of action.

If the system starts its decision process by considering the first point of
the safety criteria then it will need to reason about the future . One way
of doing it is to add the time dimension (T) to the configuration (C) or state
space (S) as in [ELP87, Fra98]. In this representation the system’s dynamics
and the future behaviour of the objects can be considered simultaneously.
Figure 2.2 shows the compactor scenario in S × T . There the State×Time
space of the system A is 2D: position×time. The robot’s dynamics are
represented with the concept of reachable states, in this scenario is an upside-
down infinite cone whose apex is the current position ofA and whose aperture
is a function of vmax. Now, the future behaviour of the moving plate Bm is
represented with states which are forbidden at a specific time (collision states
CS). During its motion, Bm sweeps across the position line from time tc for
a duration depending upon the width of Bm and its velocity vm. This yields
a rectangular set of state-time (p, t) wherein A is in collision with Bm (the
rectangle labeled CS in Fig. 2.2). CS is a forbidden region that Amust avoid.
A future course of action of the system must be in such way that the state
trajectory of the system in S × T doesn’t intersect the collision states and is
inside the system’s reachable states. The space-time model clearly captures
the fact that, if A stays put, it eventually enters CS and a collision occur.
It also shows that if the future evolution of Bm is not taken into account
(i.e., if Bm is treated like a fixed object), the region CS does not appear in
the space-time and A cannot be aware of the upcoming collision risk (hence
the importance of modeling and reasoning about the future evolution of the
moving objects).

22 2.1. MOTION SAFETY ANALYSIS

S

T

CS
tc

A

vmax−vmax

Figure 2.2: Reasoning about the future.

Furthermore, the robotic system cannot take much time to make a
decision if it wants to avoid being crushed by the compactor. It has
to respect a decision time constraint . In the compactor scenario is
quite obvious that if the robot takes more time than the time to collision
tc = dm/vm to come up with a decision then a collision will have occurred
before the system has even decided what it would do next. Now, this is
not enough, the system A has to move to the right or to the left until
it exits the compactor in order to avoid a collision. Thus, the decision
time value must be selected in such way that it leaves enough time to
the system to escape. If A decides to move to the left, it takes at least
time te to exit the compactor which means that A should start moving
to the left at least before time tl = tc − te, otherwise it does not have
the time to exit the compactor on the left side. Likewise, there is an
upper bound tr on the time where A should start moving to the right
(Figure 2.3). The maximum time that A has in order to make a move is
tc − max(tl, tr) whose value will depend if the system is closer to the left
or to the right side of the compactor. Lets assume that td is the time it
takes A to decide its future motion. If td is greater than tc − max(tl, tr)
then A is doomed, a collision will be inevitable. Here is the decision time
constraint mentioned above. Note how the value of td depends on the state
and of the environment where the robotic system is immersed (through the
position, size and velocity of Bm). Its value can become arbitrary small, just
consider that the moving plate Bm is closer to A, i.e., dm → 0, then the time
to collision tends to zero tc → 0 and in consequence the decision time td → 0.

CHAPTER 2. MOTION SAFETY- STATE OF THE ART 23

S

T

CS
tc

A

vmax

te

tl

tr

Figure 2.3: Decision time constraint.

It has been shown that modeling the future evolution of the environment
and reasoning about it is necessary for the safety of the robot. Now the
question is: with what lookahead?. In other words, how far into the future
should the modeling/reasoning go? Following with the compactor example,
the answer is straightforward: the lookahead time tla must be greater than
te + td. If not, by the time A becomes aware of the risk caused by Bm, it no
longer has the time to decide that it should move to the left and execute this
motion. Similar to the decision time constraint, the lookahead depends on
the environment considered and in fact can become arbitrary large. Consider
in this example that Bm is very long and very slow, i.e., lm → ∞ and vm → 0
then tla → ∞.

S

T

CS
tc

A

te

tlatd

Figure 2.4: Appropriate lookahead.

24 2.2. NAVIGATION METHODS

In summary, the motion safety requirements for a robotic system boil
down to three rules:

1. Reasoning about the future to consider: its own dynamics and the
environment objects’ future behaviour.

2. Decision time constraint: upper-bounded decision time td.

3. Appropriate lookahead: lower-bounded lookahead tla.

These three safety criteria are related to time. In a dynamic environment,
the time dimension is the key aspect. In the compactor scenario, the bounds
in td and tc are: td < tc−te and tla ≥ te+td with tc = dm/vm and te = lm/vmax.

If a method neglect or relax the safety criteria then the system’s motion
safety will be impacted. This assertion will become clearer as a presentation
of a selection of methods which are considered relevant is made in the
next section. Each method will be first approached by a description of the
principles and techniques in which they are based. Then, their capacity to
guarantee collision avoidance will be analyzed. In doing so, it will be shown
how the assumptions made by them that do affect the motion safety of the
robotic system are related to the safety criteria presented in this section.

2.2 Navigation Methods

When reviewing and classifying the extensive body of work present in the
literature one difficulty comes from the varied ways the navigation problem
can be conceptualized and decomposed in smaller parts. However, this
variety tends to fade away when viewed through the “classic” perspective
of deliberative/reactive levels.

2.2.1 Deliberative Methods

The deliberative or global methods intend to produce a complete set of
actions. The solution, when found, is commonly known as a global or long
term plan. Given some general knowledge about the environment (usually a
priori information in the form of a map) and a goal to reach in it, the methods
on this level produce a path that when executed will cause the robot to attain
its target.

CHAPTER 2. MOTION SAFETY- STATE OF THE ART 25

Motion planning algorithms

Motion planning algorithms have a long and prosperous history by now. They
origin can be traced back to the the classic definition of the “Piano Mover’s
Problem” [Rei79] but it is the seminal work in the Configuration Space (C)
[LP83] that laid the foundations of the field. A configuration of a robotic
system is the specification of the position and orientation of the system’s
reference frame with respect to the workspace. The configuration space is
simply the set of all possible configurations of the robotic system. The beauty
of the configuration space is that the robotic system (denoted as A from now
on) is represented as a point, regardless of its actual shape. Static obstacles
are mapped to forbidden regions (the set of system configurations where an
intersection in the workspace occurs). Accordingly, the configuration space
is divided into disjoint subsets of the configuration space (free space Cfree,
obstacle space Cobs and contact space Ccontact). The basic motion planning
problem can be stated as:

Given an initial configuration qinitial and a goal configuration qgoal is it
possible to compute a collision-free motion between them?

The search for an answer to this question has derived in a large number
of algorithms which can be roughly classified in:

• roadmap methods

• cell decompositions

• sampling-based methods

The reader is referred to one of the books in the subject
[CLH+05, Lat91, LaV06] to find a detailed description of the methods and
the techniques employed. Next, a brief presentation of their characteristics
is done.

The basic idea behind the roadmap methods is to capture the
connectivity of the Cfree by building a graph or “roadmap”. In doing so, these
methods reduce the dimensionality of the problem which is why they are also
known as “retraction” methods. Once the graph has been built the problem
is reduced to first connect the initial and final configuration to the graph and
then use a graph search algorithm (such as Dijkstra[Dij59] or A*[Dij68]) to
find a path that connects qinitial to qgoal. These methods are complete, i.e.,
they will always find a path in finite time when one exists, and will let us
know in finite time if no path exists. The hard part of these methods consist

26 2.2. NAVIGATION METHODS

in building the graph. Among the strategies that have been proposed to
do that are: visibility graph [LPW79], voronoi roadmap [CD88, CB00] and
silhouette method [Can88].

These methods were originally designed to deal with static environments,
however, they can also be used in dynamic ones. There are basically two
ways of doing this. The first is to represent the dynamic environment
by adding the time dimension to the configuration or the state space
as in [ELP87, Fra98]. In doing so, the dimensionality of the problem
increase. The second option is simply to replan from scratch each time
new information arrives. Given an updated graph or roadmap, a new path
can can be planned from the current configuration of the robot to the goal
configuration. Unfortunately the two options are not viable if we consider
the safety criteria reviewed in the previous section. In particular we have
the time decision constraint. The complexity of a general solution for
these methods is too high (PSPACE-hard [Can88]) for either increasing the
dimensionality of the problem or plan from scratch frequently.

Cell decompositions methods consist in decomposing the free space
into a number of disjoint sets called cells. A connectivity graph that
represents the adjacency relation between the cells is employed to search
a path between two configurations. Each cell is represented as node in
this graph. Two nodes are connected in the graph if and only if the two
corresponding cells are adjacent. There are two types of methods: exact (e.g.,
trapezoidal [Cha87], critical-curve [SS83a], cylindrical algebraic [SS83b] and
connected balls [BK01, VKA05]) and approximate (e.g., rectanguloid[Elf89]
and 2m tree). The main difference (as their names indicate) is that the exact
methods generates an exact decomposition (i.e., the union of the cells is
exactly the free space) whereas the approximate methods try to approximate
the structure of C with cells that have a simple shape like, for example,
rectanguloids.

Similar to the previous approaches the cell decomposition methods were
conceived for static environments. Furthermore, most of them operate
in low dimensional spaces (the complexity of the subdivision algorithm
increase exponentially with the dimension of the space). This characteristic
make impractical to use a S × T representation to account for dynamic
environments. Furthermore, the time decision constraint of the safety
criteria makes infeasible to plan from scratch each time a change in the
environment is detected: a complete plan from the current configuration to
the goal configuration is computationally expensive. One alternative option
to comply with the decision time constraint is to repair the path only in the
portions that are affected by a detected change in the environment. This

CHAPTER 2. MOTION SAFETY- STATE OF THE ART 27

means that the subdivision algorithm must be run in the affected regions of
C or S, the adjacency graph repaired accordingly and a valid path in the
renewed graph found. Replanning algorithms such as [Ste95, KL02, LFG+05]
are fast enough for finding a new path once the adjacency graph has been
built, however performing the space decomposition and repairing the
adjacency graph still remains in practice limited to low dimensional spaces.
This is the reason why this kind of replan strategy use at best S and not
S × T . The consequence is that the representation of the environment
is usually only a time slice and not a complete picture of the dynamic
environment with its time dimension. As seen in the motion safety analysis,
reasoning without considering the future behaviour of obstacles has an
adverse impact in the motion safety of the robots.

As opposed to classic roadmap methods, sampling based methods ,
avoid to explicitly build a representation of the free space (or equivalently
a construction of Cobs). Instead they conduct a search that probes C with a
“sampling” scheme. To that end, a collision checker is in charge of verify if the
given sample belongs to the occupied or free space. These type of methods
have been demonstrated to work well in high dimensional spaces where is
difficult to do a discretization ({eg cell decomposition) or to use roadmap
methods efficiently. They satisfy a weaker form of completeness (as many
of them are based in random sampling they are said to be probabilistically
complete i.e., the probability to found an existing solution converges to
one as the number of samples increase). Among the examples of this kind
of methods are: randomized path planner (RPP) [BJ91], Ariadne’s clew
[BATM93], probabilistic roadmap planners (PRM) [KSLO96] and rapidly-
exploring random trees (RRT) [LaV98, LK01].

As these planners can work with high dimensional spaces they can operate
in S × T to represent a dynamic environment. This is why navigation
schemes that deal explicitly with dynamic environments have been proposed
based in these methods. The method in [HKLR02] is a PRM based planner
that encodes the kinematic and/or dynamic motion constraints of the robot
with a control system that samples the robot’s state-time space by picking
control inputs at random and integrating its equations of motion which
results in a probabilistic roadmap. The roadmap is not precomputed but
instead a new roadmap that connects the initial and goal state is constructed
from scratch at each planning query. In [vdBO05] a roadmap is precomputed
for the static part of the environment without considering neither the
dynamic obstacles nor the time dimension. In the query phase, the method
only needs to deal with the dynamic obstacles when searching for a trajectory
between the start and goal configurations. To find the trajectory there is a

28 2.2. NAVIGATION METHODS

local level where trajectories on single edges of the roadmap are found in
a grid in state-time space and a global level where the local trajectories
are coordinated using an A* based search to find a global trajectory in
the entire roadmap. The work of [BV03] is an example of extending RRTs
to interleave planning and execution. They introduce two additions to the
planner: the waypoint cache for replanning and adaptive cost penalty search.
The waypoint cache serves to use a plan that was found in a previous iteration
as a guide for the current iteration. The adaptive cost penalty search is based
in the idea that having a plan that could be a not very good one is better
than no plan at all, and once a plan is in the cache the search is biased toward
improving it. Finally in Anytime RRT [FS06] the principle is to locally repair
a plan computed with the classical RRT by deleting the invalidated nodes and
performing a new search to add new nodes that preserve the path between
the initial and final configurations.

All this methods can take into consideration the safety criteria of
reasoning about the future and appropriate lookahead. However, as the
running time of a randomized technique cannot be upper bounded it can
be argued that given the intrinsic complexity of motion planning in dynamic
environments it seems unlikely that a hard decision time constraint could
ever be met in realistic situations.

2.2.2 Reactive Methods

Reactive methods foresee for the immediate time and return a single action
to be performed right away. This level deals with the unexpected events
encountered during the execution of a previous conceived plan (normally
coming from the deliberative level). The methods take constant updated
information (frequently provided by sensor readings) and modifies the current
plan with local modifications in order to avoid the detected objects. The
reactive methods are relatively simple techniques in nature which make them
suitable for execution in real-time.

Potential Field Methods

In the potential field methods the robotic system is considered as a particle
immersed in an artificial potential field where is attracted to the goal and
repulsed away from obstacles. Therefore, the model of the environment is
specified with a potential function that determines the forces exerted in the
robotic system. According to the source of the available information about
the environment, the forces can be computed off-line (when the information is
known a priori) or on-line (relying in sensor readings detecting close obstacles

CHAPTER 2. MOTION SAFETY- STATE OF THE ART 29

during execution). The robot choose in an iterative fashion the movement to
take by selecting a direction which is conventionally pointed by the negative
gradient of the sum of forces. The procedure continues until the robot reaches
the goal configuration if successful.

Conventional potential field methods [BK89, Kha86] are subject to
problems like the local minima, that, as its name suggests, is a local minimum
point in the artificial field which is not the goal and where the robot system
is taken when following the direction pointed by the gradient. Two main
techniques are used to overcome this problem. The first one is to replace the
gradient descent strategy for a guided search (if the robot is trapped in a
local minimum heuristics such as random walk or search algorithms such as
depth-first, best-first or A* are employed to attempt to find a way out). The
second one is to produce potential fields which are navigation functions in
the sense of [RK92] (i.e., they are smooth and have only one local minimum
situated at the goal thus eliminating the local minima problem, an example,
which can be used when complete knowledge of the environment is available,
is the non-optimal navigation functions generated using harmonic potential
functions [KK92]).

One of the most relevant assumptions from a motion safety point of
view is that all these methods consider that the surrounding environment is
static. The methods make the assumption that the distance to obstacles (a
main parameter in the computation of the repulsive forces) remains constant
during the decision time step. This assumption doesn’t hold in dynamic
environments. As explained in the motion safety analysis one safety criteria
when dealing with dynamic environments is the need to reason about the
future behaviour of the obstacles. Recent works [GC02, Hua08] propose
an extension more appropriate for dynamic environments. They account
for the motion of obstacles by defining a potential function which takes
into consideration not only the distance to the obstacles but also their
instantaneous velocities. However, problems of local minima do exist in the
resulting potential field which are worked out by heuristics or guided search
that don’t give guarantees that a solution will be found. Another feature of
the potential field methods that can have an impact in the motion safety of
the robot is that the result is expressed as a force that indicates the direction
where the robot should move. This is alright for holonomic robots that
can move freely in the space but the great majority of robotic models have
kinematic and dynamic constraints that impede that the direction indicated
by the method be followed right away. As a result a low-level controller is
required to attain the desired direction and the motion before convergence is
reached can at times be quite different from the expected one. In a sentence,
these methods don’t reason about the future of the system by neglecting its

30 2.2. NAVIGATION METHODS

own dynamics. This situation can result in problems with the motion safety
of the system.

Vector Field Histogram Methods

Among these methods are Vector Field Histogram (VFH) [BK91] and
its extensions VFH+ [UB98] and VFH* [UB00]. These methods create a
local map of the environment around the robot. They use a polar histogram
grid. Similar to the occupancy grids, each cell of the histogram grid stores
the probability value that an obstacle is present in the direction associated
with the cell. From this histogram grid the direction to where the robot
should move is calculated. The procedure starts by finding all openings
large enough in the histogram where the robotic system is capable of passing
through. Then, each opening that is found is evaluated with a cost function.
The cost function weights factors such as target direction, wheel direction
and previous direction.

VFH+ extended the method by changing to a robot model which could
take into consideration non-holonomic constraints. To find an opening in
the histogram grid, instead of only using straight line paths, VFH+ also
use circular arcs paths that describe more accurately the robotic system
capabilities. Another improvement was the capacity to consider robots of
different sizes.

Finally, the most recent extension VFH* improves some of the problems
inherent to local navigation methods. The main contribution of this method
is that it verifies that the direction chosen by the method can guide the
robot around an obstacle without getting trapped. This verification is done
by combining an A* search algorithm with appropriate cost and heuristic
functions.

All these methods assume implicitly an static environment. Their
histogram grids are not capable of capturing appropriately the information
concerning the motion of the obstacles present in a dynamic environment
(although they are robust in the sense that they accumulates in a probabilistic
fashion the sensor readings). In consequence the time dimension cannot be
taken into consideration. This limitation impacts the motion safety of the
robotic system because the methods fail to comply with one of the safety
criteria presented in Section 2: reason about the future behaviour of the
moving objects of its environment. Even if the methods operate at high
rates a direction that has been chosen by them can become quickly invalid
and even dangerous for the robot’s motion safety if an unseen obstacle’s block
it in the future.

CHAPTER 2. MOTION SAFETY- STATE OF THE ART 31

Velocity Space Methods

Of the many reactive methods at hand, worthy of special mention are those
which operates in the Velocity Space (V-Space). The V-Space represents
the set of all the velocities that are achievable by the robotic system. Two
types of constraints are usually imposed by the navigation methods to the
admissible set in the V-Space (the set of velocities from where the robot can
select one command to apply at each time step). First, those derived from
the system limitations (kinematic or dynamic) and, second, constraints of
the physical environment coming from obstacles blocking certain velocities
values due to their positions (if the robot select such velocity a collision
would take place).

The Curvature Velocity Method (CVM) [Sim96] operates in the
V-space composed of linear and angular velocities (v,ω respectively). The
objects present in the environment are assumed to have a circular shape
to allow an easier computation of the distance that the robot system will
traverse from its position to the obstacle. The distance is computed assuming
the robot follows a constant curvature path (where the curvature is given by
κ = ω

v
). Only curvatures that lie inside the kinematic capabilities of the

robotic system are considered valid for an objective function that serves to
make the selection of the final command to apply to the robotic system. The
objective function takes into consideration the distance to obstacles (giving
preference of traveling longer distances without colliding with obstacles),
the speed (preferring to travel at faster speeds) and heading (to bias the
progression of the system towards the goal).

Among the assumptions reproached to the CVM are that obstacles need
to be circular (which may be acceptable for some environments but not for
others), the approximation of the robot movement only with circular arcs
(when in fact the robot can change direction many times and draw different
paths) and finally and probably the one with more impact in the motion
safety of the system: that the environment is static. Once more, the safety
criteria concerning reasoning about the future behaviour of obstacles is
neglected.

The Lane Curvature Method (LCM) [NS98] is an extension to
CVM to address some of its problems. In particular those derived from
the assumption that the robotic system moves only along paths of circular
arcs. The method divides the environment in a set of lanes that are built
considering the maximum distance to obstacles along a desired goal heading
and merging lanes when the distance between adjacent lanes is similar. The

32 2.2. NAVIGATION METHODS

most promising lane is chosen with the help of an objective function. The
local heading of the robotic system is set appropriately to change lane if
the selected one is not the same as the one where the robot is. Although
the extension allow more flexibility in the paths described by the robots
it doesn’t address the assumption of a static environment. In a sentence,
it improves the reasoning about the future of system by having a more
accurate model of the robot’s dynamics but completely ignores the future
behaviour of the obstacles.

The Dynamic Window Approach (DWA) [FBT97] is one the most
representative reactive avoidance methods using a V-Space representation.
Its search space is also composed by all possible pairs of linear and angular
velocities. A “dynamic window” enclose the set of reachable velocities (Vr)
around the current velocity vector (vc). It is computed for a short time
interval (∆t) by taken into consideration the constraints of the robotic system
in its translational and rotational acceleration/deceleration capabilities:

Vr = {(v, ω)|v ∈ [vc − v̇d∆t, vc + v̇a∆t] ∧ ω ∈ [ωc − ω̇d∆t, ωc + ω̇a∆t]} (2.1)

A velocity command is included into the admissible set (Va) if the system
is capable of coming to a stop before colliding with a detected object in the
environment:

Va = {(v, ω)|v ≤
√

2ρmin(v, ω)v̇b ∧ ω ≤
√

2ρmin(v, ω)ω̇b} (2.2)

were ρmin(v, ω) represents the distance to the closest obstacle in the circular
path traced by the system when applying the controls (v, ω). Figure 2.5
illustrate the working principle, it shows the V-Space of the considered
system with the admissible velocities noted as Va, the forbidden velocities
V C
a (those which would take the system to collision, shown in red) and the

set of reachable velocities belonging to the dynamic window (built around the
current velocity vector). Choosing one velocity among those in the admissible
set boils down to the optimization of an objective function. The objective
function favours three items: the progression towards the goal, the clearance
to obstacles and fast forward motion.

The DWA exhibits some limitations. To begin with, it is susceptible
to local minima unless a mechanism to incorporate information about the
connectivity of the free space is employed (Global Dynamic Window) [BK99].
It also assumes that the system moves only in circular arcs paths (at least
during the considered ∆t) which simplifies the computation of the distance
to an object but which reduce the space of solutions by not considering
a wider variety of paths. Finally, only the velocities that fall at the

CHAPTER 2. MOTION SAFETY- STATE OF THE ART 33

interior of the dynamic window are considered to choose the instantaneous
command to execute. Stated differently, an obstacle which is detected but
that falls outside of the dynamic window when mapped to a velocity will
be ignored. This implies that it discards potential valuable information
which could help to achieve better performance. As shown in the motion
safety analysis having an appropriate lookahead is critical for the motion
safety of the robotic system. DWA simply choose to have a lookahead that
has an arbitrarily value (the duration of the decision time step) and that
probably is too shortsighted because it does not consider the particularities
of the environment. Additionally, DWA also makes the assumption that the
environment remains frozen during the decision time step and thus, it doesn’t
reasons about the future behaviour of the objects.

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

Vr

Va

V-Space

Dynamic Window Vd

Current Velocity

Figure 2.5: Dynamic Window.

Time Varying Dynamic Window (TVDW) [SP07] extends the
classic Dynamic Window Approach by calculating at each time instant a
set of immediate future obstacles trajectories in order to check for collision
in the short term. In this respect TVDW is superior to DWA because it
considers the safety criteria related to reasoning about the future behaviour
of the obstacles and don’t simply assume that the environment is static. The
approach is not limited to a particular obstacle shape but instead assume that
the representation of the environment is given as an occupancy grid map. The
cells on the grid should be classified as free or occupied, and for the occupied
cells a further important distinction is required: the identification of those
that move (the ones that belong to the dynamic objects). For each moving
cell (MC) its velocity vector with linear and angular velocities (vmc, ωmc)
and motion heading θmc is assumed to be known. With this information, the
set of predicted obstacle trajectories is generated. Each one starting from
a MC and drawing the path resulting from applying the known (vmc, ωmc)
during a ∆t interval. The lookahead in TVDW is set equal to the time it
takes to the robotic system to stop when traveling at maximum speed, so

34 2.2. NAVIGATION METHODS

usually is much longer than the DWA time step. A robot velocity pair (v, ω)
is considered admissible if no collision occurs between the MC trajectories
and the DW trajectory corresponding to that velocity vector. Figure 2.6
illustrates the method. It shows a circular robot system A, its set of DW
trajectories (resulting from different values for the tuple (v, ω)), the moving
cells and their trajectories. The set of admissible controls for the system
are those which their trajectories don’t produce a collision (shown in green).
Similar to DWA, this method also use a cost function to select one velocity
control from the admissible set.

A

Collision Points

TVDW Trajectories

MC

Figure 2.6: Time Varying Dynamic Window.

One of the assumptions made by TVDW (and also DWA) that have an
impact in the motion safety of the system is related to what they consider
to be a safe state. For those methods the robotic system has reached a safe
state when it is static. Is not hard to come up with a situation when this
can be extremely dangerous (e.g., an autonomous car stopping in the train
tracks when the train is approaching). For some systems this may even
not be possible (a fixed wing AUV can’t just stop in the middle of the air
without crashing). Other assumption made by these methods its the type
of paths that can be described by the robotic system (only circular arcs).
Those type of paths are only a gross approximation of what the system can
achieve, i.e., the dynamics of the robot.

Dynamic Velocity Space (DVS) [OM05] is an interesting method
that builds a velocity space that captures the dynamicity of the environment.
It employs the concept of estimated arriving time to compute the times
to potential collision and potential escape (assuming that the obstacles
move with constant linear velocity and that the robotic system moves only
in straight or circular arcs). This time-related information is added to a
surface in the velocity-time space (DOV S) combining the collision and escape

CHAPTER 2. MOTION SAFETY- STATE OF THE ART 35

information of individual obstacles. A 2D projection VDOV S of the DOV S
surface is used to characterize the set of forbidden velocities. Dynamic
constraints are considered through a window of admissible velocities (which
can span several sampling periods). The selected velocity is such that it
is close to the goal (which is mapped to a velocity in the 2D projection
considering the robot heading and given preference to high velocities),
belongs to admissible velocities and is not inside of the forbidden set.

From the safety criteria point of view this method does reasons about
the future behaviour of the obstacle, unfortunately it does it in a simplified
way by considering their movement only as constant linear velocities. Is
not clear how the collision and escape times could be computed in more
general models of motion. Furthermore, the reasoning about the future
of the robotic system is limited to straight and circular arcs which may
be restrictive for some applications. However, an interesting characteristic
of the method is its ability to cope with selectable lookahead values by
adjusting the span of sampling periods to characterize the set of admissible
velocities.

The Velocity Obstacles (VO) family of methods are others simple
but effective navigation methods well suited for dynamic environments. In
its simpler and original form [FS98], VO is a reactive approach that operates
also in the V-Space of the robotic system considered (here the V-Space is
composed of linear velocities v = (vx, vy)). VO takes into account the future
behaviour of the moving objects. The hypothesis is that the obstacle will
maintain its current linear velocity and thus its future trajectory is a constant
linear one. Each object in the environment yields a set of forbidden velocities
whose shape is that of a cone (cf Fig.2.7 depicts the linear velocity space of
the robotic system, the red conical region on the right is the set of forbidden
velocities that would yield a collision between the robot A and the moving
object B). Should the robotic system select a forbidden velocity, it would
collide with the moving object at a later time (possibly infinite) in the future.
Formally:

V O = {v|∃t > 0, (v − vB)t ∈ D(xB − xA, rA + rB)} (2.3)

where the robot system A, has position xA and radius rA; and obstacle
B has position xB , velocity vB and radius rB . In practice, velocities

yielding a collision occurring after a given time horizon (tH) are considered
as admissible.

One issue (often overlooked) with VO is that, in a closed environment,
every velocity is forbidden since it eventually yield a collision. For that

36 2.2. NAVIGATION METHODS

reason, the lookahead time in VO cannot be arbitrarily large which means
that in some circumstances will not be possible to set an appropriate value
as indicated by the safety criteria. Other assumption made by VO is that the
shape of the system and obstacles must be discs (an non circular obstacle
must be approximated by a patch of contiguous discs). Furthermore, the
assumption that the future behaviour of obstacles is a linear constant velocity
can be very restrictive in some situations (imagine a car entering a curve in
a highway).

vb

vb

A

B

V O
λl

λr

CCA,B

va

−vb
va,b

Figure 2.7: Velocity Obstacles.

VO was extended by Non-Linear Velocity Obstacles (NLVO)
[LLS05] to consider known arbitrary velocity profiles for the moving objects,
i.e., object trajectories that are not necessary constant linear ones. NLVO
consist of all velocities of A at t0 that would result in collision with B at any
time t0 ≤ t ≤ tH . Geometrically (Fig.2.8), NLV O(t) is a scaled B, bounded
by the cone formed between A and B(t), thus, NLVO is a warped cone with
apex at A and formally defined as:

NLV O =
⋃

t0≤t≤tH

B(t)

t− t0
(2.4)

Similar to the original VO, NLVO cannot have an arbitrary large lookahead
time and only considers circular shaped obstacles. A recent extension Finite
Velocity Obstacle (FVO) [GCK+09] explicitly accounts for the lookahead
by defining a discrete time interval and truncated cone to impose additional
constraints that guarantee collision avoidance during a discrete time interval.

CHAPTER 2. MOTION SAFETY- STATE OF THE ART 37

Other extensions like Generalized Velocity Obstacles (GVO) [WvdBM09]
take into account the non-holonomic constraints of the robotic system which
is required to correctly reason about the future behaviour of the system.

A

B

NLV O(t)
NLV O

v1

v2

Figure 2.8: Non Linear Velocity Obstacles.

Trajectory Parameter Space Methods

Recently, other reactive navigation methods in the Trajectory Parameter
Space (TP-Space) have been proposed to decouple the problem of kinematic
restrictions and obstacle avoidance for an any-shape robot system [MM06,
BGF08]. A TP-Space is a two dimensional space where each polar coordinate
(α, d) maps to a robot configuration (x, y, θ) in a sampling surface of the C-
Space. The sampling surface can be visualized as the surface resulting of
joining the set of pose trajectories drawn by the system while applying a
generating function (a control function that when executed by the system
draws a family of path models). Examples of generating functions can
produce circular arcs, spiral segments, asymptotically heading trajectories,
etc. A valid generating function depends in one control parameter: α, which
paired with the distance value d along the generated trajectory should define
an unique point in the C-Space (note that the measurement of the distance
is done in the C-Space and thus combines linear and angular values). Figure
2.9 shows an example of one such C-Space sampling surface.

The sampling surface then, is simply a representation of what the robotic
system is capable of do given its kinematic constraints and a control function.
To “straighten out” the sampling surface into the two dimensional TP-Space

38 2.2. NAVIGATION METHODS

X0.2
0.4
0.6
0.8

Y -0.3-0.2-0.10.00.10.20.3

�
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Figure 2.9: C-Space sampling surface resulting from a generating function of
circular-arcs (shown in dashed-lines). Solid black trajectories in the surface
correspond to different values of α.

all that must be done is to consider tuples (α, d). The tuple still stands for a
C-Space point but the problem is now posed in a low dimensional space which
is easier to handle. Finally, a mechanism to incorporate obstacle information
in the TP-Space is also needed, that is, getting TP-Obstacles which involves
a transformation of the intersection points of the pose trajectories composing
the sampling surface and the C-Obstacles (the obstacles in the C-Space). As
this procedure is computationally expensive the use of pre-computed look-
up tables is commonly employed. The procedure to fill the look-up tables
starts by making a discretization of the physical space around the robot
in a rectangular grid where each cell in the grid store their associated TP-
Obstacle. If the shape of the robot (which can be anything) along a pose
trajectory generated by one pair (α, d) touches the cell, then that pair will
be stored as a TP-Obstacle in the cell. Different pairs of (α, d) can produce
pose trajectories where the shape of the system touch the same cell, so,
in general, each grid cell can contain several (α, d) pairs. The advantage
of the transformation to the TP-Space is three-fold: the transformation
allow to consider the robot as a free-flying point in the TP-Space (since its
shape and kinematic restrictions are already taken into account); second, any
previous “classic” obstacle-avoidance method constrained to holonomic point
or circular robots can be applied to an any-shape robot in the TP-Space;
and finally, a wider range of paths compatible with the system kinematic

CHAPTER 2. MOTION SAFETY- STATE OF THE ART 39

restrictions (a superset of the typical circular arcs) can be employed to avoid
obstacles, increasing the space of solutions to situations that were harder or
impossible to solve with other methods.

Although these methods have been shown to solve difficult problems
where other methods have failed (given that they can use a greater path
diversity) they make a big assumption that impacts the motion safety of
the robotic system. They assume that the surrounding environment is
static (at least during the decision timestep), they don’t reason about the
future behaviour of obstacles. As explain before, in dynamic environments
an occupancy grid is not enough to represent the environment (as it will
constantly change according to new observations) and the static mapping to
TP-Obstacles may very well become dangerous if the speed of the obstacle
is considerable.

2.2.3 Alternative Methods

Intermediate methods are all those that do not quite fit in the previous
classification on deliberative/reactive methods. As its name suggests, they
combine some features of both to address the problems that with a different
perspective.

Deformation Methods

Deformation methods can be traced back to the Elastic Band concept [QK93].
They operate in a first stage by using a motion planning algorithm to give to
the robotic system a collision-free path connecting the initial to the final
configuration. The path is based in whatever a priori knowledge of the
environment is available. Then, at the execution stage the path is deformed
as new information of the environment is discovered. Two types of forces
are exerted in the path. Those coming from obstacles that push it away
and those that comes from internal constraints aimed at maintaining the
connectivity of the path, that is to say, that following the path remains
feasible for the robotic system given its dynamic constraints. The first works
considered only holonomic systems but extensions like [KJCL97, LBL04]
extended the method to nonholonomic ones. However, one drawback of
these path deformation methods is that the deformation doesn’t consider
the time dimension. Things like deforming excessively the path when
an obstacle is cutting through can be avoided by simply stopping and
letting the obstacle pass by. Promising trajectory deformation methods that
operate in the C × T or S × T have been proposed to address this type of
issues for holonomic [KF07] and non-holonmic systems [DF08]. However,

40 2.2. NAVIGATION METHODS

maintaining the connectivity of the trajectory in the S × T requires the
use of relatively complex trajectory generation algorithms that are still an
open research problem. These algorithms need to be efficient to account for
the safety criteria such as the time decision constraint imposed by dynamic
environments. Furthermore, no upper time bounds in the computation of
the initial trajectory (or path) connecting the initial to the goal needed by
the deformation methods are imposed.

Partial Motion Planning

Partial Motion Planning (PMP) [PF05] is a motion planning scheme that
fits perfectly in the intermediate methods. It doesn’t compute a complete
sequence to the goal as deliberative methods do. Nor calculate the next
command at each time step. Instead it considers the time decision constraint
and compute as many steps as possible to the goal within the available time.
When the decision time is up, PMP returns the best partial motion to the
goal computed so far. In a sentence is an anytime motion planning method.
The method operates in stages that are performed at each time step. The
first is the execution of the plan from the previous step. In parallel the model
of the future is updated based on new observations. Then a motion planning
algorithm is executed to progress the plan towards the goal. If the goal is
not reached, the path closest to the goal is set as the current plan.

Replanning Methods

Replanning methods compute a new plan frequently to react to unexpected
events that appear in a dynamic environment. The use of replanning is
justified by the fact that in unknown environments and in environments with
moving obstacles the information known a priori in which an initial plan is
based is very likely to change during the execution of the plan. Algorithms
like the one presented in [BH95], Focused Dynamic A* (D*) [Ste93] and its
simpler version D*-Lite [KL02] are able to quickly replan based on the latest
observations. Every time a moving obstacle invalidate part of the plan, the
algorithm search an alternative path that repairs the solution towards the
goal. In this way the previous plan is discarded and a new one starting
from the current state is created. Although these planners respect the time
decision constraint during its execution they assume an initial plan is given,
however no upper bounds are set to the time it can take to come up with
this initial plan.

CHAPTER 2. MOTION SAFETY- STATE OF THE ART 41

2.3 Conclusion

When dealing with dynamic environments a navigation method must take
into consideration all the safety criteria presented in the first section of this
chapter. Failure to do so result in navigation strategies which are not safe for
the robotic system. Surprisingly, the description of the navigation methods
have shown that this is hardly the case. The design choices and assumption
made by the navigation methods put in evidence that safety guarantees
cannot be provided if they are confronted with dynamic environments.
However, these same methods may work perfectly fine in less challenging
environments where the assumptions made are valid. Unfortunately, the real
world is a dynamic environment and where human lives are at sake safety
guarantees must be given.

Résumé

Dans le Chapitre 2, nous avons présenté une analyse de l’état de art dans
le domaine de la navigation des robots. Nous avons identifié les aspects
essentiels qui doivent être considérés du point de vue de la sécurité de
mouvement. Avec ces critères nous avons évalué les différents algorithmes
présents dans la littérature et nous avons trouvé que tous ignorent un ou
plusieurs des dits critères de sécurité. En conséquence les méthodes existantes
de navigation ne sont pas appropriées pour garantir la sécurité de mouvement
d’un robot dans un environnements dynamique.

42 2.3. CONCLUSION

Chapter 3

Conceptual framework

This chapter lays down the foundations of the approach taken in this work.
Armed with the presentation of useful notation is possible to arrive to the
main axle around which this thesis revolves: Inevitable Collision States (ICS).
Following its formal definition it is shown in which measure ICS respect the
safety criteria presented in Section 2.1. Then a discussion of the level of
motion safety that can be achieved with ICS is done. Finally the set of
properties that render possible its characterisation is presented.

3.1 Notations

Let A denote a robotic system operating in a workspace W . The dynamics
of A is described by:

ṡ = f(s, u) (3.1)

where s ∈ S is the state of A, ṡ its time derivative and u ∈ U a control. S
and U respectively denote the state space and the control space of A. Let
A(s) denote the closed subset of the workspace W occupied by A when it is
in the state s. Let ũ : [0,∞(−→ U denote a control trajectory, i.e., a time-
sequence of controls. The set of all possible control trajectories over [0,∞(is
denoted Ũ . Starting from an initial state s(t0) at time t0, a state trajectory
is derived from a control trajectory ũ by integrating (3.1). A state trajectory
is a time-sequence of states, i.e., a curve in S × T where T denotes the time
dimension. Abusing notations, ũ(s(t0)) and ũ(s(t0), t) respectively denote
the corresponding state trajectory and the state reached at time t:

ũ(s(t0), t) = s(t0) +

∫ t

t0

f(s(τ), u(τ))dτ (3.2)

43

44 3.2. ICS DEFINITION

W contains a set of nb fixed and moving objects defined as closed subsets
of W . Let Bi denote such an object. Since Bi maybe moving, the notation
Bi(t) is used to denote the subset of W occupied by Bi at a particular time
t in the future. Let B denote the union of the workspace objects (both in
space and time):

B =

nb
⋃

i=1

⋃

t∈[0,∞(

Bi(t) (3.3)

Both A and the Bis are assumed to be rigid objects.

3.2 ICS definition

An ICS is informally defined as a state for which, no matter what the future
trajectory followed by A is, a collision eventually occurs. A simple example
may help to visualize the concept. Reconsider the “compactor scenario”
presented in Section 2.1. There the collision states CS are the rectangular
set of state-time (p, t) wherein A is in collision with Bm (the rectangle labeled
CS in Fig. 3.1a). They are the result of the moving plate Bm sweeping across
the position line of A from time tc (time to collision) for a duration that
depends upon the width of Bm and its velocity vm. Now, remember that
A is subject to dynamic constraints v ∈ [−vmax, vmax] and its dynamics is
given by ṡ = v. It is easy to visualize that there is an area that even though
no collision exists the robotic system do not have the time to escape and a
collision will occur in the future, no matter what action the system takes.
This area is the ICS set (Figure ??).

S

T

CS
tc

A

vmax−vmax

(a) Collision States

S

T

CS
tc

A

vmax−vmax

ICS

(b) Inevitable Collision States

Figure 3.1: CS vs ICS.

CHAPTER 3. CONCEPTUAL FRAMEWORK 45

The formal definition of Inevitable Collision States (ICS) is:

Definition 1 (Inevitable Collision State).

ICS(B) = {s ∈ S|∀ũ ∈ Ũ , ∃t,A(ũ(s, t)) ∩ B(t) 6= ∅} (3.4)

Consequently, it is possible to define the set of ICS yielding a collision
with a particular object Bi:

ICS(Bi) = {s ∈ S|∀ũ ∈ Ũ , ∃t,A(ũ(s, t)) ∩ Bi(t) 6= ∅} (3.5)

The ICS set yielding a collision with B for a given trajectory ũ (or a given
set of trajectories E ⊂ Ũ) is:

ICS(B, ũ) = {s∈S|∃t,A(ũ(s, t)) ∩ B(t) 6= ∅} (3.6)

ICS(B, E) = {s∈S|∀ũ∈E, ∃t,A(ũ(s, t))∩B(t) 6=∅} (3.7)

Similarly, considering a particular object Bi:

ICS(Bi, ũ) = {s∈S|∃t,A(ũ(s, t)) ∩ Bi(t) 6= ∅} (3.8)

ICS(Bi, E) = {s∈S|∀ũ∈E, ∃t,A(ũ(s, t))∩Bi(t) 6=∅} (3.9)

Finally, the ICS set yielding a collision with Bi for a given trajectory ũ
and time t is:

ICS(Bi, ũ, t) = {s ∈ S|A(ũ(s, t)) ∩ Bi(t) 6= ∅} (3.10)

3.3 ICS and Motion Safety Criteria

The definition of ICS allows to establish the measure with which the
ICS concept respect the motion safety criteria presented in Section 2.1.
The violation of any of them by a robotic system operating in dynamic
environments is likely to yield a collision.

The first safety criteria that appeared in the analysis is to reason about
the future . Two things must be considered:

1. The robot dynamics and

2. the environment objects’ future behaviour.

46 3.4. MOTION SAFETY DEFINITION

These two points are clearly considered in Definition.1 of ICS:

1. A(ũ(s, t)) denotes the closed subset of W occupied by the robotic
system A at the state reached at time t when it has executed a control
trajectory ũ by integrating the equation defining its dynamics (Eq.3.1).

2. B(t) and Bi(t) encodes respectively the future behaviour of all obstacles
or a single obstacle in the workspace.

Now, reasoning about the future is not enough. According to the safety
criteria it must be done with the appropriate lookahead time . Looking
again to Definition.1 we found that the time element is not upper bounded.
It simply states that a time exists (∃t) such that a collision will take
place between the system and an obstacle in the environment at that time
A(ũ(s, t)) ∩ B(t) 6= ∅. In fact, it can be deduced from this definition that
if an appropriate lookahead exists for a particular environment it can be
accommodated by this definition (because a collision will no occur after the
appropriate tla) and that in the limit the theoretical lookahead for ICS is
the infinity.

Finally we have the decision time constraint that must be respected
in dynamic environments. The definition of ICS doesn’t give a cut clear
answer for this point. Nonetheless, it give us a hint that this may be an
issue because to be able to characterize the ICS set is necessary to verify
all possible trajectories that the robotic system can follow from a particular
state. The quantity of trajectories can be considerable for complex systems.

3.4 Motion Safety Definition

Motion safety intuitively means to have a guarantee that under some
conditions, no collision will ever happen with an object in the environment.
Of course, the subtlety falls on the type of conditions that are stated. They
can be declared in an explicit manner when a formal statement is done or
implicitly when there is a lack of such statement. As seen before, many of
the navigation methods found in the robotics literature concentrate more
in the advantages of their approaches than in a proper evaluation of the
impact of their assumptions in the robotic system’s motion safety. Although
some navigation methods have shown their capacity to yield good results
in a large number of circumstances they seldom give any guarantee of their
performance. To change this state of affairs, a first step is to produce a
set of definitions of motion safety that exploit the safety criteria that has

CHAPTER 3. CONCEPTUAL FRAMEWORK 47

already been reviewed in Section 2.1.

The top level of safety can be produce if to decide its future motion a
robotic system takes all safety criteria into consideration (its reasons about
the future considering its own dynamics, the environment objects’ future
motion, reason over an appropriate lookahead and respect the time decision
constraint):

Definition 2 (Absolute Motion Safety). A robotic system is said to have
an absolute motion safety navigation method if no collision occur whatsoever.

When a complete model of the environment is available (complete to the
point that it doesn’t contain errors) then is possible to attain this level of
safety. A navigation method in this level will be able to steer the robotic
system through any type of environment, static or dynamic, with absolute
certainty that no collision will occur.

This definition will not hold if the model of the future behaviour of
obstacles contain errors. A guarantee of motion safety no matter what cannot
be provided. Even if the navigation method is capable of detecting that
the information provided is incorrect it may be impossible for it at that
moment to find a way to avoid a collision, in other words, it may be too late.
Now, saying that a model of the future is correct doesn’t necessary means
it has to be precise. A worst-case approximation of the future behaviour of
the obstacles can be enough. As long as the provided information contains
the true future obstacle’s behaviour then an absolute motion safety may be
attainable. In any other case, all it can be said is that the guarantee of
motion safety will be as good as the model of the future is. This type of
motion safety can be defined as:

Definition 3 (Strong Motion Safety). A robotic system is said to have a
strong motion safety navigation method if the no occurrence of a collision is
guaranteed with respect to the model of the future which is used.

When relaxing some of the elements of the safety criteria lower levels of
safety are obtained. One example is passive motion safety.

Definition 4 (Passive motion safety). A robotic system is said to have a
passive motion safety navigation method if a collision happen only when the
robotic system is at a complete stop.

In the passive motion safety the safety criteria which is relaxed is the
second one: no appropriate lookahead is considered. Instead the lookahead

48 3.5. MOTION SAFETY LEVEL ACHIEVABLE BY ICS

is set to a value equal to the time it takes the system to stop from its
current state. After that point in time it doesn’t matter any more what
happen next, the system has already reached its desired “safe” state. This
type of safety may be acceptable under certain conditions. For example, if
all moving participants in the environment operate under the same passive
motion safety principle, then stopping is safe because all moving objects will
behave exactly as the system (they will stop whenever a collision may take
place). By doing so, the system will not suffer a collision when standing
still. However, if not all the participants exhibit the same passive motion
behaviour then a risk of a collision occurring in a future time exists and that
may be unacceptable for some applications.

If further relaxations are done in the safety criteria, then we arrive at
safety levels which are not longer reasonable for dynamic environments
or complex system with dynamic constraints. For instance, lifting the
safety criteria about reasoning over the future behaviour of the objects
in the environment will result in implicitly assuming that the obstacles
don’t move. As explained in the motion safety analysis, assuming that
the environment doesn’t move can result catastrophic for the safety of the
system. If the safety criteria about the robotic system considering its own
dynamics is lifted, then actions that are impossible for the robotic system
to perform may be taken as achievable. For example, making the decision of
accelerating or decelerating faster than the robotic system constraints allow
will only derive in dangerous situations.

To summarize, only when all safety criteria are taken into consideration,
a complete definition of motion safety is obtained. In all other cases, only
a weaker level of motion safety can exist or at the extreme case no motion
safety guarantee can exist at all.

3.5 Motion Safety Level Achievable by ICS

Now, with respect to the ICS concept we have already verified that it
respect most of the safety criteria (Section3.3). The only one that has been
questioned is the one related to the time decision constraint. Lets assume
for the moment that a navigation method is capable of efficiently using the
ICS concept so it can respect also the time decision constraint. The question
that should be posed now is which level of safety does ICS can achieve in
that case? The answer comes from the ICS definition. As ICS needs a model
of the future behaviour of the objects in the environment (B(t)) the level of

CHAPTER 3. CONCEPTUAL FRAMEWORK 49

motion safety that is achievable is the Strong Motion Safety (Def.3). That
means that the guarantee of motion safety that ICS can provide will be as
good as the model of the future is. Three types of model of the future can
be identified:

• The first one is a deterministic model in which the outcome is precisely
known. All objects in the environment will draw trajectories which
follow strict relationships between inputs and outputs with no margin
for error.

• A second type of representation called worst-case model is when the
obstacle motion is assumed to be unpredictable. Instead of considering
how the obstacle moves, it models how much it could have moved
given its physical limits (e.g., maximum speed). The boundary of
these constraints is modeled in a geometric fashion which consequently
encloses all possible future trajectories.

• Finally, the third representation reasons about the future trajectories of
the obstacle as more or less probable. The probabilistic model assigns
a probability measure to each of the trajectories to express the degree
of belief that they will occur. Uncertainty is explicitly represented and
can be properly handled with probability theory.

The focus of this work is in the first model of the future (deterministic).
This choice is made because with the worst-case model the obstacles occupy
the entire workspace at some point in the future (possibly infinite). Clearly
this contradicts reality: obstacles can only have taken one trajectory and
thus they can’t occupy multiple positions at the same time. The probabilistic
model requires an appropiate representation which is out of the scope of this
work.

The next section will present the set of properties that render possible
the ICS characterisation. They constitute the support in which any efficient
method to determine the ICS-ness of a given state must be constructed.
These type of methods will make possible to address the only safety criteria
which still remains an issue for employing ICS in a navigation method: the
time decision constraint.

3.6 ICS properties

Thanks to the definitions presented above (Section 3.2), it is possible to derive
a property for the ICS characterisation through combining two properties:

50 3.6. ICS PROPERTIES

Property 1 (Control Input Intersection [FA04]).

ICS(B) =
⋂

ũ∈Ũ

ICS(B, ũ) (3.11)

Proof.

s ∈ ICS(B) ⇔ ∀ũ ∈ Ũ , ∃t,A(ũ(s, t)) ∩ B(t) 6= ∅

⇔ s ∈ ICS(B, ũ)

⇔ s ∈
⋂

ũ∈Ũ

ICS(B, ũ)

This first property shows that ICS(B) can be derived from ICS(B, ũ) for
every possible future trajectory ũ.

Property 2 (Obstacles Union [FA04]).

ICS(B, ũ) =

nb
⋃

i=1

ICS(Bi, ũ) (3.12)

Proof.

s ∈ ICS(B, ũ) ⇔ ∃t,A(ũ(s, t)) ∩ B(t) 6= ∅

⇔ ∃t,A(ũ(s, t)) ∩

nb
⋃

i=1

Bi(t) 6= ∅

⇔ ∃Bi, ∃t,A(ũ(s, t)) ∩ Bi(t) 6= ∅

⇔ ∃Bi, s ∈ ICS(Bi, ũ)

⇔ s ∈

nb
⋃

i=1

ICS(Bi, ũ)

This second property shows that ICS(B, ũ) can be derived from ICS(Bi, ũ)
for every object Bi. The formal characterisation of the inevitable collision
states is then:

Property 3 (ICS Characterisation [FA04]).

ICS(B) =
⋂

ũ∈Ũ

nb
⋃

i=1

ICS(Bi, ũ) (3.13)

CHAPTER 3. CONCEPTUAL FRAMEWORK 51

Proof.

ICS(B)
1
=

⋂

ũ∈Ũ

ICS(B, ũ)

2
=

⋂

ũ∈Ũ

nb
⋃

i=1

ICS(Bi, ũ)

Complex systems having an infinite number of control inputs, the
following property permits to compute a conservative approximation of
ICS(B) by using a subset only of the whole set of possible future trajectories.

Property 4 (ICS Approximation [FA04]).

ICS(B) ⊆ ICS(B, E)

with E ⊆ Ũ , a subset of the whole set of possible future control trajectories.

Proof.

ICS(B)
1
=

⋂

ũ∈(E∪EC)

ICS(B, ũ)

=
⋂

ũ∈E

ICS(B, ũ) ∩
⋂

ũ∈EC

ICS(B, ũ)

⊆
⋂

ũ∈E

ICS(B, ũ)

The following corollary establishes that the larger the subset of control
trajectories, the smaller the ICS set, i.e., the better the ICS approximation.

Corollary 1. Let E1 and E2 denote two subsets of Ũ ,

E1 ⊂ E2 ⇒ ICS(B, E2) ⊆ ICS(B, E1)

Proof.

ICS(B, E2) = ICS(B, E1 ∪ E2\E1)

=
⋂

ũ∈E1∪E2\E1

ICS(B, ũ)

=
⋂

ũ∈E1

ICS(B, ũ) ∩
⋂

ũ∈E2\E1

ICS(B, ũ)

= ICS(B, E1) ∩ ICS(B, E2\E1)

⊆ ICS(B, E1)

52 3.7. CONCLUSION

3.7 Conclusion

The Inevitable Collision States concept address properly the problem of
motion safety. They take into consideration most of the safety criteria which
is required for any navigation method to operate in dynamic environments.
They reason with an appropriate lookahead about the future by considering
the dynamics of the system and the future motion of obstacles. However, an
efficient method for their characterisation is needed to be able to cope with
the decision time constraint. This is the subject of the next chapter.

Résumé

Dans le Chapitre 3, nous avons introduit le concept clé des Etats de Collisions
Inévitables (ICS). Cette notion a été introduite dans le but de fournir un
cadre formel de raisonnement sur les risques de collision pour un robot en
mouvement.

ICS permet de considérer deux de trois critères de sécurité présentés
dans le chapitre antérieur. Le dernier critère relatif au temps qui a un
robot pour prendre une décision dépend de l’efficacité avec laquelle on peut
caractériser les états qui appartiennent à ICS. Les définitions et les propriétés
présentées dans ce chapitre nous permettent de voir que la tâche de la
dite caractérisation n’est pas simple, cependant, il est possible de définir
un algorithme générique qui permettrait la classification. La tâche pour
résoudre est de transformer cet algorithme inefficace dans une algorithme
qui est capable d’agir en temps réel.

Chapter 4

Determining Safe States

As seen in the previous chapter, Inevitable Collision States are the proper
answer to address the motion safety of a robotic system operating in dynamic
environments because they take into consideration the robotic system’s
dynamics, the future behaviour of obstacles and reason with an appropriate
lookahead. However a drawback is that the characterization of ICS is not
a simple task. This chapter presents an ICS-Checker algorithm, i.e., an
algorithm that determines whether a given state is an ICS or not, which is
suited for the time decision constraint imposed by dynamic environments. It
is generic and efficient. The efficiency is obtained by applying the following
principles: (a) reasoning on 2D slices of the state space of the robotic system,
(b) exploiting graphics hardware performances, and (c) precomputing off-line
as many things as possible.

4.1 Preliminaries

4.1.1 Evasive Manoeuvres

The ICS approximation property (Property 4) and its corollary raise the
question of the choice of the control trajectories that should be considered
for the subset E in order to compute a good approximation of the true ICS
set. This question is important because the quality of the approximation
largely depends on the subset considered. If the approximation is too coarse,
one might end up with most states being labeled as ICS (when in fact they
are not).

The primary answer to that question derives from Property 3: selecting
control trajectories that tend to minimize the subsets ICS(Bi, ũ) helps
in minimizing ICS(B). There is however an intuitive and perhaps more

53

54 4.1. PRELIMINARIES

practical answer to that question: as per Def. 1, it appears that what
characterize a state that is not an ICS is the existence of at least one control
trajectory yielding a collision-free state trajectory. In this respect, the control
trajectories that are important should correspond to evasive manoeuvres, i.e.,
trajectories seeking to avoid collisions with the objects of the workspace. An
evasive manoeuvre is formally defined as:

Definition 5 (Evasive Manoeuvre). A control trajectory ũe is an evasive
manoeuvre iff ∃s ∈ S, ũe(s) is collision-free.

The converse of an evasive manoeuvre is a collision manoeuvre which is
formally defined as:

Definition 6 (Collision Manoeuvre). A control trajectory ũc is a collision
manoeuvre iff ∀s ∈ S, ũc(s) yields a collision.

The following property establishes that adding an evasive manoeuvre to
an arbitrary subset E ⊆ Ũ is preferable to adding a collision manoeuvre since
it always yields a better ICS approximation.

Property 5 (Evasive vs Collision Manoeuvres).

ICS(B, E ∪ ũe) ⊆ ICS(B, E ∪ ũc)

with E ⊆ Ũ , ũe ∈ Ũ an evasive manoeuvre, and ũc ∈ Ũ a collision manoeuvre.

Proof. First, it is shown that ICS(B, E ∪ ũc) = ICS(B, E):

ICS(B, E ∪ ũc) =
⋂

ũ∈E∪ũc

ICS(B, ũ)

=
⋂

ũ∈E

ICS(B, ũ) ∩ ICS(B, ũc)

= ICS(B, E) ∩ ICS(B, ũc)

= ICS(B, E) ∩ S

= ICS(B, E)

Then, according to Corollary 1:

E ⊂ (E ∪ ũe) ⇒ ICS(B, E ∪ ũe) ⊆ ICS(B, E) = ICS(B, E ∪ ũc)

CHAPTER 4. DETERMINING SAFE STATES 55

4.1.2 Braking and Imitating Manoeuvres

Having said that the ICS set could be approximated using evasive
manoeuvres (as per Property 5), the question of actually determining the
subset E remains. The answer to this question is not straightforward. It
largely depends on the current situation, i.e., the number, disposition and
future behaviour of the objects present in W . It is possible however to
propose two general types of evasive manoeuvres (they will turn out to be
equivalent) that can serve in most situations.

In a static environment, braking manoeuvres, i.e., control trajectories
driving A to a stop, are good evasive manoeuvres since, in many cases,
they yield collision-free trajectories. Besides, if A can perform a braking
manoeuvre without any collision, its safety is guaranteed forever.

Now, in the presence of moving objects, what is a good evasive
manoeuvre? The answer to this question rests upon the following
observation: two objects that maintain zero-relative velocity with each other
will never collide in the future unless they are already in collision. In other
words, the system A can avoid collision with a moving object Bi forever if
it can achieve and maintain a zero relative velocity wrt Bi. This observation
leads to the definition of imitating manoeuvres, i.e., control trajectories
driving A to imitate the behaviour of a moving object Bi.

Like braking manoeuvres that exists iff A is without drift, imitating
manoeuvres exists iff the dynamic capabilities of A and Bi are similar. Let
us consider a moving object Bi whose dynamics is equal to that of A and
whose future behaviour is determined by the control trajectory ũi.

Let us assume first that A is in a state with zero-relative velocity wrt Bi.
In this case, it can start imitating the future motion of Bi right away (Fig.4.1-
left). The imitating manoeuvre is exactly ũi and the following property can
be established:

Property 6. ICS(Bi, ũi) = B+
i (0) where B+

i (0) denotes the image in the
state space S of Bi at time 0.

Proof. Note first that ICS(Bi, ũi) =
⋃

t∈[0,∞(ICS(Bi(t), ũi). It can then be

deduced from (3.8) that:

ICS(Bi(t), ũi) = {s ∈ S|A(ũi(s, t)) ∩ Bi(t) 6= ∅}

or equivalently that:

ICS(Bi(t), ũi) = {s ∈ S|ũi(s, t) ∩ B+
i (t) 6= ∅}

56 4.1. PRELIMINARIES

Assuming that B+
i (t) =

⋃

b+j ∈B+
i
b+j (t):

ICS(Bi(t), ũi) =
⋃

b+j ∈B+
i

{s ∈ S|ũi(s, t) = b+j (t)}

By definition, the state s such that ũi(s, t) = b+j (t) is simply b+j (0),
therefore:

ICS(Bi(t), ũi) =
⋃

b+j ∈B+
i

b+j (0) = B+
i (0)

and finally:

ICS(Bi, ũi) =
⋃

t∈[0,∞(

B+
i (0) = B+

i (0)

This property establishes the fact that the ICS set yielding a collision
with Bi for the imitating manoeuvre ũi optimally reduces to B+

i (0), i.e., the
set of collision states between A and Bi at time 0. In other words, unless A
and Bi are already in collision at time 0, A can avoid collision with Bi forever
by executing ũi.

In general, A will not be in a state with zero-relative velocity wrt Bi.
Accordingly, A cannot start imitating B right away (for instance, it does not
have the proper orientation or the proper velocity). In such a situation, the
imitating manoeuvre comprises two parts (Fig.4.1-right):

• The “catch-up” part at the end of which A achieves a zero-relative
velocity with Bi.

• The “follow” part during which A duplicates Bi’s control trajectory.

As per property 6, if A can perform the catch-up trajectory without any
collision, its safety wrt Bi is guaranteed forever. In this respect, imitating
manoeuvres are good evasive manoeuvres.

Finally, it can be noticed that a braking manoeuvre is just a special
imitating manoeuvre: by braking down and stopping, A is simply imitating
the behaviour of a fixed object (which is standing still). Unlike imitating
manoeuvres that are each defined wrt to a given moving object, braking
manoeuvres are object-independent.

CHAPTER 4. DETERMINING SAFE STATES 57

A

Bi

W

A

Bi

W

Figure 4.1: A imitates Bi’s behaviour: A can imitate right away (left); A
must first “catch-up” (up to the cross) before imitating (right).

4.1.3 General ICS Checking Algorithm

Properties 3 and 4 along with the principles guiding the choice of the evasive
manoeuvres provide the basis for a general ICS checking scheme. The steps
involved in checking whether a given state sc is an ICS or not are given in
Algorithm 1. Besides the state to be checked, the algorithm takes as input
the model of the environment, i.e., the list of the objects (fixed and moving)
and their future behaviour (a priori known or predicted).

Algorithm 1: General ICS Checking Algorithm.

Input: sc, the state to be checked and Bi, i = 1 . . . nb

Output: Boolean value

Select E;1

Compute ICS(Bi, ũj) for every Bi and every ũj ∈ E;2

Compute ICS(B, ũj) =
⋃nb

i=1 ICS(Bi, ũj) for every ũj ∈ E;3

Compute ICS(B, E) =
⋂

ũj∈E
ICS(B, ũj);4

Check whether sc ∈ ICS(B, E), return True or False accordingly;5

The purpose of the first step of the algorithm is to select E, i.e., the
set of Evasive Manoeuvres (EM) that are used to compute the conservative
approximation of the ICS set. As discussed in §4.1.2, braking and imitating
manoeuvres are good candidates for E. Imitating manoeuvres do not always
exist though (they require the dynamic capabilities ofA and Bi to be similar).
This is not a problem since arbitrary manoeuvres can be considered for E
(as per Property 5, unless a collision manoeuvre is selected, it improves the

58 4.2. ICS-CHECK: A 2D ICS CHECKING ALGORITHM

quality of the approximation).

Even with a limited subset E of EM, a naive implementation of the
Algorithm 1 yields an algorithm which is computationally expensive mainly
because of the cost of computing each set ICS(Bi, ũj) individually (step
2 of the algorithm) and then their union and intersection (step 3 and
4). Furthermore, the algorithmic complexity grows exponentially with the
dimensionality of S, the state space of A. For a 2D workspace W , it is
possible however to design a generic and efficient ICS Checking algorithm.
This algorithm is presented in the next section.

4.2 Ics-Check: a 2D ICS Checking Algorithm

As noted earlier, the ICS Checking algorithm outlined in §4.1.3 yields an
algorithm which is computationally expensive. For a 2D workspace W , it is
possible however to design an ICS Checking algorithm which is both generic,
i.e., it can handle a planar robotic system A with arbitrary dynamics, and
efficient. The efficiency of this algorithm, henceforth called Ics-Check, is
primarily obtained by reasoning on 2D slices of the state space of A (see
§4.2.1), and by determining a valid lookahead (see §4.2.2). Ics-Check is
outlined in §4.2.3 and its complexity is analysed in §4.2.4.

4.2.1 2D Reasoning

The state s of A is a n-tuple of arbitrary dimensionality. When A is planar,
s can be rewritten s = (x, y, ẑ) with (x, y) the workspace coordinates of
A’s reference point, and ẑ the rest of the state parameters. The primary
design principle behind Ics-Check is to compute the ICS set corresponding
to a 2D slice of the state space S of A (instead of attempting to perform
computation in the fully-dimensioned state space), and then to check if sc
belongs to this set. Assuming the state to be checked is sc = (xc, yc, ẑc), the
2D slice considered is the ẑc-slice. Such a ẑc-slice is diffeomorphic to W and
Ics-Check exploits this property to compute in a straightforward manner
the image of the workspace objects in the ẑc-slice and then the corresponding
ICS set. The details of this computation are given now starting with the heart
of Ics-Check, namely how to compute ICS(Bi, ũj), i.e., the ICS set for a
given object Bi and a given control trajectory ũj (step 2 of Algorithm 1).

From (3.8), it is possible to define the ICS set of the ẑc-slice considered
that yields a collision with Bi at a particular time t for the control trajectory

CHAPTER 4. DETERMINING SAFE STATES 59

ũj :

ICSẑc(Bi, ũj , t) = {s ∈ ẑc-slice| (4.1)

A(ũj(s, t)) ∩ Bi(t) 6= ∅}

Fig. 4.2 illustrates how (4.1) can actually be computed by exploiting the
diffeomorphism between W and the ẑc-slice. Starting from s = (x, y, ẑc), an
arbitrary state from the ẑc-slice, the state reached at time t when A follows
the control trajectory ũj is ũj(s, t). Let st = (xt, yt, ẑt) denote ũj(s, t). st
belongs to its own ẑt-slice which, in general, is different from the ẑc-slice.
It is straightforward to show that the set of states in the ẑt-slice yielding a
collision with Bi is Bi(t)⊖A(st) where ⊖ denotes the Minkowski difference.
This is the standard way to compute a C-obstacle in the 2D case (see [Lat91,
Chap. 3]).

W/ẑc-slice/ẑt-slice
(a) (b) (c)

ICS
ẑc

(Bi, ũj , t)

sA(s)

st = ũj(s, t)

A(st)

ũj
Tũj

(t)

Bi(t)

Bi(t)⊖A(st)

T−1

ũj
(t)

Figure 4.2: Computing ICSẑc(Bi, ũj , t) (see text).

Now, since A is a rigid body moving on a plane, there is a unique
geometric transformation featuring both a translation and a rotation that
describes its motion in W from s to st. Let Tũj

(t) denote this transformation
(it is a function of both ũj and t): A(st) = Tũj

(t)A(s) and conversely A(s) =
T−1
ũj

(t)A(st). Accordingly, ICSẑc(Bi, ũj , t), i.e., the image of Bi(t)⊖A(st) in

the ẑc-slice is readily obtained by applying T−1
ũj

(t) to the set Bi(t)⊖A(st):

ICSẑc(Bi, ũj , t) = {s = (x, y, ẑc)| (4.2)

(x, y) ∈ T−1
ũj

(t)[Bi(t)⊖A(st)]}

Using property 3, it is then possible to characterize the ICS set of the
ẑc-slice that yields a collision with Bi for ũj:

ICSẑc(Bi, ũj) =
⋃

t∈[0,∞(

ICSẑc(Bi, ũj , t) (4.3)

60 4.2. ICS-CHECK: A 2D ICS CHECKING ALGORITHM

This is the region swept by ICSẑc(Bi, ũj , t) for all time instants. As depicted

in Fig. 4.3, the general shape of ICSẑc(Bi, ũj) is a semi-infinite stripe starting

with ICSẑc(Bi, ũj , 0) = Bi(0)⊖A(s).

W/ẑc-slice

Bi(0)

Bi(t)

ICS
ẑc

(Bi, ũj , t)

ICS
ẑc

(Bi, ũj)

ICS
ẑc

(Bi, ũj , 0)

Figure 4.3: General shape of ICSẑc(Bi, ũj) in the case where both A and Bi

are points.

4.2.2 Valid Lookahead

One distinctive feature of the ICS concept is that it considers trajectories
ũj of infinite duration (see Def. 1). Accordingly it has an infinite lookahead
and it is this infinite lookahead that guarantees motion safety. This infinite
lookahead explicitly appears in the union over an infinite time interval of the
right-hand side of (4.3). Now, the question is: how can (4.3) be computed?
It turns out that this union can be restricted to a finite time interval provided
that (i) W is bounded and (ii) each moving object Bi eventually leaves W .
If these two (reasonable) assumptions are met then it can be shown that,
at some point into the future, ICSẑc(Bi, ũj , t) becomes and remains either
empty or constant. At that point, the union can stop.

Property 7 (Lookahead). If W is bounded and each moving object Bi

exits W at time ti
exit

then ∀ũj, ∃tmax such that ∀t ≥ tmax, ICSẑc(Bi, ũj , t) =

ICSẑc(Bi, ũj, tmax).

Proof. Four cases are considered depending on the type of Bj (fixed vs
moving) and the type of ũj (braking vs imitating):

1. Fixed Bi, braking manoeuvre ũj:

CHAPTER 4. DETERMINING SAFE STATES 61

If Bi is fixed then Bi(t) is constant, ∀t. If ũj is a braking manoeuvre
then ∃tb such that ∀t ≥ tb, ũj(s,t) = ũj(s,tb). tb is the time it takes A
to come to a stop. Then, the terms in the right-hand side of (4.1) all
become constant at time tb and so does ICSẑc(Bi, ũj, t). In this case,
tmax = tb.

2. Moving Bi, braking manoeuvre ũj:

If Bi is moving then Bi(t) becomes empty at time tiexit and, as per (4.1),
so does ICSẑc(Bi, ũj , t). In this case, tmax = tiexit.

3. Fixed Bi, imitating manoeuvre ũj:

If ũj is an imitating manoeuvre (see §4.1.2) then it eventually drives A
outside of W . Let tjexit denotes the time when A exits W , A(ũj(s, t))
becomes empty at time tjexit and, as per (4.1), so does ICSẑc(Bi, ũj , t).

In this case, tmax = tjexit.

4. Moving Bi, imitating manoeuvre ũj:

Similar to the cases 2 and 3 above. In this case, tmax = min(tiexit, t
j
exit).

Thanks to Property 7, (4.3) can finally be rewritten:

ICSẑc(Bi, ũj) =
⋃

t∈[0,tmax]

ICSẑc(Bi, ũj , t) (4.4)

4.2.3 Ics-Check Algorithm

Applying the 2D reasoning principle, Ics-Check is similar to the general
ICS Checking Algorithm detailed in Algorithm 1 except that, in all steps of
the algorithm, ICSẑc is computed instead of ICS (see Algorithm 2). It is by

keeping all computations in 2D (notwithstanding the actual dimensionality
of S) that it is possible to efficiently compute the ICS set corresponding to
a given ẑc-slice.

4.2.4 Complexity Analysis

Assuming a discrete time model and that A and the objects Bi are modeled
as convex polygons, the complexity of Ics-Check is O(nbnetmaxm) where nb

is the number of objects, ne the number of evasive manoeuvres, tmax the valid
lookahead derived from Property 7, and m = ma +mb with ma the number

62 4.3. ICS-CHECK: AN EFFICIENT IMPLEMENTATION

Algorithm 2: Ics-Check.

Input: sc, the state to be checked and Bi, i = 1 . . . nb

Output: Boolean value

Select E;1

Use (4.4) to compute ICSẑc(Bi, ũj) for every Bi and every ũj ∈ E ;2

Compute ICSẑc(B, ũj) =
⋃nb

i=1 ICSẑc(Bi, ũj) for every ũj ∈ E;3

Compute ICSẑc(B, E) =
⋂

ũj∈E
ICSẑc(B, ũj);4

Check whether sc ∈ ICSẑc(B, E), return True or False accordingly;5

of vertices of A and mb the number of vertices of the most complex object Bi.
The next section describes a numerical implementation of Ics-Check whose
complexity is further reduced to O(nbnetmax) thanks to the use of standard
graphics rendering techniques that can be hardware accelerated.

4.3 Ics-Check: an Efficient Implementation

The implementation of Ics-Check presented in this section primarily derives
its efficiency from the use of standard graphics rendering techniques that can
be hardware accelerated (see §4.3.1) and, to a lesser extent, to the possibility
of pre-computing off-line a number of things (see §4.3.2).

4.3.1 Exploiting Graphics Rendering Techniques

Focusing on the computation of the steps 2, 3 and 4 of Ics-Check (see
Algorithm 2), it can be seen that it is necessary to perform the union and
the intersection of regions. For arbitrary regions, such operations are costly
to implement however, because the regions considered are planar, it turns
out that it is possible to do such unions and intersections with OpenGL1

primitives and thus to benefit from the processing power of standard Graphics
Processing Unit (GPU).

All the steps of Ics-Check that involves computing unions and
intersections of arbitrary 2D shapes are performed very efficiently by drawing
in the OpenGL buffer the regions corresponding to the different 2D sets and
by taking advantage of the Red-Green-Blue (RGB) colour coding scheme.
The key idea is to assign a RGB colour to each Evasive Manoeuvre (EM)
ũj ∈ E and to draw the different ICSẑc(Bi, ũj) by performing a bitwise logical

1http://www/opengl.org.

CHAPTER 4. DETERMINING SAFE STATES 63

And (
∨

) at the pixel level between the EM colour and the current OpenGL
buffer colour (initialized to White, i.e., #FFFFFF). Let colj denote the
colour assigned to ũj, the colour assignment is done so as to satisfy the
following property:

∨

ũj∈E

colj = #000000 and
∨

ũj∈E ′⊂E

colj 6= #000000 (4.5)

where #000000 is the Black colour and E ′ is an arbitrary subset of E.
With such a colour assignment, drawing a region over a region of the same
colour (or White) yields the same colour (thus performing a union), whereas
drawing a region over a region of a different colour yields another colour
(thus performing an intersection). If a particular pixel of the OpenGL buffer
is Black, it means that all the EM of E have contributed to its colour. In
other words, it is an ICS.

ICS
ẑc

(B1, ũy)

ICS
ẑc

(B2, ũy)

ICS
ẑc

(B, ũc)

ICS
ẑc

(B, ũm)
a b

c

de

ẑc-slice / OpenGL buffer

Figure 4.4: Using graphics rendering techniques to compute ICSẑc(B, E) (see

text).

This mechanism is illustrated in Fig. 4.4 with an example featuring three
EM, i.e., E = {ũy, ũc, ũm}, and two obstacles, i.e., B = {B1,B2}. The
respective colours of ũy, ũc and ũm are Yellow (#FFFF00), Cyan (#00FFFF)
and Magenta (#FF00FF). Note that such a colour assignment satisfies (4.5).
Fig. 4.4 depicts the OpenGl buffer (equivalent to the ẑc-slice). Assuming
ICSẑc(B1, ũy) and ICSẑc(B2, ũy) are drawn first (they are represented by

rectangular regions). By virtue of the logicalAnd operator, their overlapping
region indicated by “a” remains Yellow. ICSẑc(B, ũy), i.e., the union between

ICSẑc(B1, ũy) and ICSẑc(B2, ũy), is therefore achieved. When ICSẑc(B, ũc) is

drawn, its region of overlap with ICSẑc(B, ũy) turns green (#00FF00). This

64 4.4. ICS-CHECK AT WORK

green region indicated by “b” is the intersection between ICSẑc(B, ũc) and

ICSẑc(B, ũy). A similar thing happens when ICSẑc(B, ũm) is drawn. Three

new regions appear: (i) a Blue (#0000FF) one indicated by “c” which is the
intersection between ICSẑc(B, ũm) and ICSẑc(B, ũc), (ii) a Red (#FF0000)

one indicated by “d” which is the intersection between ICSẑc(B, ũm) and

ICSẑc(B, ũy) and (iii) a Black one indicated by “e” which is the intersection

between ICSẑc(B, ũc), ICSẑc(B, ũy) and ICSẑc(B, ũy). This black region is

in fact ICSẑc(B, E).

4.3.2 Precomputing As Much As Possible

In addition to the above principle, it is possible to further improve the
algorithm efficiency by precomputing off-line as many things as possible.
Two items are candidates for precomputation, namely the subset E of Evasive
Manoeuvres (step 1 of the algorithm) and the set ICS(Bi, ũj), i.e., the set of
ICS for a given object Bi and a given manoeuvre ũj (step 2 of the algorithm).
Note that it is not always possible to precompute these two items since they
depend on the problem at hand and the particulars of the future behaviour
of the moving objects.

4.4 Ics-Check At Work

To illustrate how the algorithm works it has been applied to four different
robotic systems. They were selected to exemplify how Ics-Check can handle
in a graceful manner the increasing dimensionality of the state space by
keeping the reasoning in 2D slices. In the next sections we introduce first
the models that describe the motion of the robotic systems employed in the
remaining of the document. Then, we present the environment where the
systems were placed among static and moving obstacles. Next, we focus
in one specific system where we detail the technique employed to compute
the evasive manoeuvres and the steps of Ics-Check to verify a given state.
Finally, we show similar results for the rest of the systems.

4.4.1 Robotic Systems

The systems under consideration are (1) a point-mass system, (2) a
differential-drive system, (3) a car-like vehicle and (4) a spaceship with
translational momentum. They all have a circular shape with radius R and
their motion is modeled as follows:

CHAPTER 4. DETERMINING SAFE STATES 65

Point-Mass System

Let A be modeled with point mass non-dissipative dynamics. A state of A
is defined as s = (x, y, vx, vy) where (x, y) are the coordinates of the center
of the disk and vx, vy are the axial components of the velocity. A control
of A is defined by the pair (ux, uy) which denote the force exerted by the
actuators along the x- and y-axis respectively. The motion of A is governed
by the following differential equations:









ẋ
ẏ
v̇x
v̇y









=









vx
vy
0
0









+









0
0
1
0









ux +









0
0
0
1









uy (4.6)

with a bound in the control given by the maximum acceleration:
u2
x+u2

y

m2 ≤ a2max where m is the robot mass.

Differential-Drive System

Is composed of two active fixed wheels with a common axle. The system
A is characterized by a 5 dimensional state s = (x, y, θ, vl, vr) where (x, y)
are the coordinates of the system reference point (placed equidistantly from
the wheels on the axle), θ is the angle between the x-axis of the W and the
robot longitudinal axis, and vl, vr denote the left and right wheel velocities
respectively. A control of A is defined by the pair (ul, ur), where ul (resp.
ul) is the acceleration of the left (resp. right) wheel. Let 2b be the distance
between the system wheels. The motion of the system is governed then by:













ẋ
ẏ

θ̇
v̇l
v̇r













=
1

2













(vr + vl) cos θ
(vr + vl) sin θ

(vr−vl)
b

0
0













+













0
0
0
1
0













ul +













0
0
0
0
1













ur (4.7)

with a bound in the wheel velocities and control inputs:

|vl|, |vr| ≤ vmax and |ul|, |ur| ≤ umax

Car-like System

The system A moves like a car-like vehicle. It has a state defined as a 5-
tuple s = (x, y, θ, v, ξ) where (x, y) are the coordinates of the center of its rear
wheels axle, θ is the heading angle between the body axis and W ’s x-axis,

66 4.4. ICS-CHECK AT WORK

v is the linear velocity and ξ is the orientation of the front wheels (steering
angle). A’s control is denoted by the couple (uα, uξ) where uα is the linear
acceleration of the rear wheels and uξ is the steering angle velocity. If L is the
distance between the location of (x, y) and the middle point of the driving
wheels axle then the system moves accordingly to the following equations:













ẋ
ẏ

θ̇
v̇

ξ̇













=













v cos θ
v sin θ

v tan ξ/L
0
0













+













0
0
0
1
0













uα +













0
0
0
0
1













uξ (4.8)

with constraints:

v ∈ [0, vmax], |ξ| ≤ ξmax, |uv| ≤ uαmax
and |uxi| ≤ uξmax

Spaceship System

The spaceship system A is capable of thrusting forward or rotating in either
direction. The rotation has no effect on its translation which is subject to
momentum. A state of A is defined as the 6-tuple s = (x, y, θ, vx, vy, ω) where
(x, y) is the spaceship reference point coordinates, θ is the main orientation,
vx is the speed of the spaceship along the x-axis, vy the speed along the y-
axis, and ω is the angular speed. A control of A is the couple (uα, uτ) where
uα denotes the linear acceleration along the ship main orientation and uτ

denotes the angular acceleration. The motion of A is described by:

















ẋ
ẏ

θ̇
v̇x
v̇y
ω̇

















=

















vx
vy
ω
0
0
0

















+

















0
0
0

cos θ
sin θ
0

















uα +

















0
0
0
0
0
1

















uτ (4.9)

where

|vx|, |vy| ≤ vmax, |ω| ≤ ωmax, uα ∈ [0, uαmax
] and |uτ | ≤ uτmax

4.4.2 Workspace Model

The environment features one system A moving in a simulated 2D workspace
W cluttered up with an initial number of obstacles nb, static and dynamic.
The number of obstacles in the environment will decrease as obstacles exit

CHAPTER 4. DETERMINING SAFE STATES 67

the workspace when crossing its boundary (dotted line in Fig. 4.5). Neither
a new obstacle nor one that has already exit W is allowed to traverse
the boundary to get inside. All obstacles are disk or polygonal-shaped.
Knowledge about their future behaviour is available up to an infinite time
t ∈ [t0,∞]. A maximum valid lookahead time tmax can be derived using
Property 7. Their trajectories are described by cubic B-Spline functions with
maximum curvature constraint. Thus, an object’s reference point coordinate
(x, y) at time t is obtained by evaluating its trajectory B-Spline function
x(t). The object’s velocity vector has constant magnitude and is defined as
the derivative v(t) = dx

dt
which is tangent to the curve at the position x(t).

The obstacle orientation is therefore set as the angle between v(t) and W ’s x-
axis. Figure 4.5 illustrates the type of scenario considered and the obstacle’s
trajectories.

W

Figure 4.5: Sample scenario with moving obstacle’s trajectories in blue lines.

4.4.3 Car-Like System Case Study

Control Law for Evasive Manoeuvres

To compute the set of Evasive Manoeuvres for the Car-like vehicle we use the
results of the trajectory tracking problem in the extensive literature in control
theory. An exhaustive explanation of the control law is out of the scope of
this work (interested readers are referred to [MS08]). Nonetheless the general
formulation of the problem is as follows. Given a reference trajectory τ : t −→
(xr(t), yr(t), θr(t)) and a reference robot configuration (x(t), y(t), θ(t)), the
objective is to stabilize the error vector (xr(t)−x(t), yr(t)−y(t), θr(t)−θ(t))
at zero. The control technique employed reformulates the problem in terms of

68 4.4. ICS-CHECK AT WORK

a Serret-Frenet frame of reference, i.e., the origin of the rectilinear coordinate
system is determined by the curve abscissa s(t) and the orthonormal basis
are tangent and normal to the curve. In this “moving” frame, a more suitable
non-linear tracking error model can be obtained which allows to locally
linearize the system. The linearisation is done through a transformation of
the system into its chained form. Once linearised a feedback can be applied
that renders the system globally asymptotically stable to the origin, that is,
to the equilibrium (when the errors are equal to zero).

We chose to include in our set of EM a fixed set of Braking Manoeuvres
and one Imitating Manoeuvre per moving obstacle in the environment. The
reference trajectory τ that serve as input for the control law is Bi’s trajectory
function translated to the workspace coordinates of the state to be checked
sc.

Scenario #1

In the scenario considered here for the car-like model, the workspace features
6 disk-shaped moving objects and 6 polygon-shaped static ones. Let sc =
(5,−1,−1.0, 10, 0) denote the state to be checked for ICS-ness. Ics-Check

first computes the ICS set for the corresponding ẑc-slice, ẑc = (−1.0, 10, 0),
and then checks whether sc is an ICS by finding out the color of the (5,−1)
pixel in the ẑc-slice. Fig. 4.6 depicts the corresponding ẑc-slice. It features the
12 isotropically grown objects plus a red circle which center point corresponds
to sc. The line at that point is the orientation θ = −1.0 of sc. The blue lines
attached to each moving object represents their trajectory in the ẑc-slice.

ẑc-slice

Figure 4.6: Scenario #1 (car-like vehicle).

Fig. 4.7 illustrates how Ics-Check computes ICS(Bi, ũj), i.e., the set

CHAPTER 4. DETERMINING SAFE STATES 69

of ICS corresponding to a given EM ũj and a given object Bi. Fig. 4.7a
depicts ũj in pink. It is the imitating manoeuvre corresponding to the object
Bj in the upper-right corner which is moving along its trajectory shown in
blue. Fig. 4.7b is the equivalent of Fig. 4.3: it shows how ICSẑc(bi, ũj, t) is
computed where bi is the center of the disk object Bi located on the lower-
right corner and moving along its trajectory shown in blue. Fig. 4.7c depicts
ICSẑc(bi, ũj) for all t ∈ [t0, tmax] where tmax is the lookahead time. Fig. 4.7d

depicts the set ICSẑc(Bi, ũj) (step 2 of Ics-Check).

Bi

ũj

Bj

(a) ũj

Bi

(b) ICS
ẑc

(bi, ũj , t)

Bi

(c) ICS
ẑc

(bi, ũj)

Bi

(d) ICS
ẑc

(Bi, ũj)

Figure 4.7: Computing ICS(Bi, ũj) (see text).

This procedure is repeated for every object yielding ICSẑc(B, ũj)

70 4.4. ICS-CHECK AT WORK

(Fig. 4.8a) (step 3 of Ics-Check). Then, it is repeated for every EM.
Fig. 4.8b depicts the set ICSẑc(B, ũk) corresponding to another EM ũk. At

the end of the day, the drawing of the different ICSẑc(B, ũj), ũj ∈ E on the

same buffer yield the final ICS set ICSẑc(B, E) (step 4 of Ics-Check). The
final step of Ics-Check simply consists in checking the colour of sc. If it is
black, sc is an ICS otherwise it is not (step 5 of Ics-Check). In the present
case, sc is not an ICS.

(a) ICS
ẑc

(B, ũj) (b) ICS
ẑc

(Bi, ũk)

(c) Final set ICS
ẑc

(B, E) (in black) (d) ICS
ẑc

(B, E)

Figure 4.8: Computing ICSẑc(B, E) (see text).

CHAPTER 4. DETERMINING SAFE STATES 71

4.4.4 Other Examples

Scenario #2 - point-mass system

In this scenario the workspace features 7 disk-shaped dynamic objects and 6
polygon-shaped static ones. The state of the point-mass system to check is
sc = (−5, 30, 0, 0). Figure 4.9a shows the corresponding ẑc-slice:ẑc = (0, 0)
and Figure 4.9b the final ICS set ICSẑc(B, E). In this case the state is not
an ICS.

(a) ẑc-slice point-mass system (b) ICS
ẑc

(B, E)

Figure 4.9: Scenario #2

Scenario #3 - differential-drive system

The workspace contains 10 disk-shaped dynamic and 6 square-shaped static
objects. The differential-drive system has a state to be checked sc =
(70, 35,−1.2, 4, 4). Note how the dimensionality of the state space has been
increased to 5D but the reasoning remains in 2D. For sc its ẑc-slice is equal
to ẑc = (−1.2, 4, 4) (Fig. 4.10a). The final ICS set ICSẑc(B, E) is shown in
Fig. 4.10b. Again the state is not an ICS.

Scenario #4 - spaceship system

Our workspace contains only 3 static objects and 6 dynamic ones. The
spaceship system is in a difficult situation, trying to exit from a “corridor”
created by the static obstacles, unfortunately the exit is blocked by an

72 4.5. CONCLUSION

(a) ẑc-slice differential-drive system (b) ICS
ẑc

(B, E)

Figure 4.10: Scenario #3

incoming obstacle. The system state is sc = (0, 0,−1, 0.2,−1, 0). Note we
have a 6D state space. The ẑc-slice that corresponds to the situation is
ẑc = (−1, 0.2,−1, 0) (Fig. 4.11a). The final ICS set ICSẑc(B, E) is shown in
Fig. 4.11b. This state is an ICS.

4.4.5 Ics-Check Performances

The running time complexity of Ics-Check is that of Section 4.2.4. It
depends on the number of objects nb, number of evasive manoeuvres ne and
the lookahead time tmax. The running times of the current implementation
of Ics-Check2 has been measured using Scenario #1. Table 4.1 reports the
results obtained. They are satisfactory especially since there is still room for
improvement.

4.5 Conclusion

This chapter has presented an Inevitable Collision States checking algorithm,
i.e., an algorithm that determines whether a given state for a robotic system
is an ICS or not. The algorithm presented is generic and efficient. It can be
used for planar robotic systems with arbitrary dynamics moving in dynamic

2C++ implementation on an average PC computer: Intel Core2 Duo CPU 2.66GHz, 3
GB RAM, and Nvidia GeForce 8800 GTX GPU.

CHAPTER 4. DETERMINING SAFE STATES 73

(a) ẑc-slice differential-drive system (b) ICS
ẑc

(B, E)

Figure 4.11: Scenario #4

Table 4.1: Ics-Check Performance evaluation.

tmax = 25(s),∆t = 160(ms),ne = 11 nb Time (ms)
13 28.4
14 30.9

OBJECTS 15 32.4
16 35.7
17 39.10

tmax = 25(s),∆t = 160(ms),nb = 17 ne Time (ms)
7 22.5
8 25.3

EM 9 30.4
10 36.5
11 39.1

tmax = 25(s),ne = 11,nb = 17 ∆t(ms) Time (ms)
10 453.5
20 237.6

∆t 40 126.9
80 72.8
160 39.10

74 4.5. CONCLUSION

environments. The efficiency is obtained by applying the following principles:
(a) reasoning on 2D slices of the state space of the robotic system, (b)
exploiting graphics hardware performances, and (c) precomputing off-line
as many things as possible.

Once the ICS-ness of a state can be easily verified the next step is to
employ this information within a collision avoidance scheme. That will be
the subject of the next chapter.

Résumé

Ce chapitre a présenté une algorithme de vérification des ICS, i.e., un
algorithme qui détermine si un état donné pour un système robotisé est
un ICS ou non. L’algorithme présenté est générique et efficace. Il peut être
utilisé pour des systèmes robotisés plats avec une dynamique arbitraire en se
déplaçant dans des environnements dynamiques. L’efficacité est obtenue en
appliquant les principes suivants : (a) raisonnement sur des tranches 2D de
l’espace d’état du système robotisé, (b) exploitation de fonctionnement de la
carte graphique et (c) pre-calculant autant de choses que possible.

Une fois que un état peut être facilement vérifié l’étape suivant doit
employer ces informations dans un système d’évitement de collision. Ce sera
le sujet du chapitre suivant.

Chapter 5

Navigation

In general a navigation method intends to fulfill two key objectives: progress
towards a given goal and avoid collision with the objects of the environment.
Regardless of the navigation method employed, the success of the collision
avoidance objective is conditioned by the fact that the robotic system at hand
can not be in an ICS state. In other words, if the system’s state is an ICS it
means that it does not matter anymore what it does it will inevitable collide
with an object of its environment. In contrast, the objective of reaching a
given goal is not conditioned to the ICS-ness of the state. As strange as this
may appear at first, it simply means that the system which current state is
an ICS may still be able to momentarily reach its goal to only then continue
to an inevitable collision with an obstacle of its environment. Depending
on the application requirements this may be acceptable or not. From a
motion safety point of view is clear that reaching a goal to later collide with
something else is not acceptable. Consequently, a successful safe navigation
method must operate in a way that takes the robotic system from one non-
ICS state to the other. To do it, such navigation method would need first to
have the capability of determining if a chosen state belongs to the ICS set.
The Ics-Check presented in the previous chapter is exactly the kind of tool
needed for that characterization. Once a state has been characterized as not
being an ICS, is easy to show from the definition of ICS that at least one
collision-free trajectory exists. This trajectory can be used as an emergency
evasive manoeuvre in case no other collision-free solution is found by the
navigation method. This chapter describe an algorithm called Ics-Avoid

that precisely operates in that way. It is designed to alternate its operation
with Ics-Check and in doing so, it can build a set of controls that guarantee
that the robot will be able to find a safe transition between non-ICS states.
In consequence it guarantees the motion safety of the system with respect to
the model of the future which is employed.

75

76 5.1. ICS-AVOID

5.1 ICS-Avoid

5.1.1 Overview

The navigation methods reviewed in Chapter 2 operate in different ways
to avoid collisions with the objects of the environment. Despite their
remarkable differences, they all share a same operating principle. They
define a set of rules or a procedure to characterize forbidden regions in
the control space of the robotic system at hand. These regions must be
avoided by the navigation method when selecting a control among the set
of admissible ones that the robotic system can execute. The selection of
the control may be conditioned to additional rules to consider other type of
objectives like progressing towards a goal, smoothness in path, optimality,
etc., but in general, any allowed control must provide at least the capacity
to avoid collisions. Additionally the methods must operate in the shortest
possible time to respond to the changing nature of the dynamic environments
(remember the time decision constraint). Thus, it become impractical with
the available time to perform a complete characterization of the forbidden
regions if the whole control space is considered. A common alternative
employed by the methods to circumvent this difficulty is to resort to some
sort of sampling strategy. Is widespread practice to either discretize the
control space or to rely in a randomized search of the control space. The
flaw in this kind of strategy is that a valid control may not be found at all
in the selected subset of the control space (e.g., if the discretization is too
coarse). If the navigation method fails to find a control is not clear what it
should be done. It is simply assumed that no solution exists. In contrast
to these navigation methods, Ics-Avoid provides explicitly a mechanism to
fall back in case the sampling strategy fails to find a valid control. This fall-
back mechanism is henceforth called the Safe Control Kernel. This kernel
guarantee that if a state has been determined by the Ics-Check as not
being an ICS then an admissible control (one that takes the system from the
current state to another non-ICS state) will be an element of it. With the
safe control kernel it doesn’t matter if the sampling strategy fails because
a valid control will be readily available to be used. Now, for the kernel to
work two condition must be met. The first is that the current state is not an
ICS, and the second is that a transition between non-ICS states should be
possible. This transition constitute the core of Ics-Avoid, i.e., navigate the
environment by transitioning from one non-ICS state to the next one until
the goal is reached. The transition between non-ICS states is always possible
as shown with the following property:

CHAPTER 5. NAVIGATION 77

Property 8 (Safe Transition between non-ICS states).

∀s /∈ ICS(B, E), ∃si = ũj(s, ti) | ũj ∈ E, si /∈ ICS(B) (5.1)

Proof.

s /∈ ICS(B, E) ⇔ ∃ũj ∈ E | ∀t > t0,A(ũj(s, t)) ∩ B(t) = ∅

⇒ ∃ũj ∈ E | ∀t ∈ [t0, ti],A(ũj(s, t)) ∩ B(t) = ∅

∧ ∀t > ti,A(ũj(ũj(s, ti), t)) ∩ B(t) = ∅

⇒ ∃ũj ∈ E | ∀t > ti,A(ũj(si, t)) ∩ B(t) = ∅

⇒ si /∈ ICS(B, E)

⇒ si /∈ ICS(B)

⇒ ∃si = ũj(s, ti) /∈ ICS(B)

This property simply states that from a non-ICS state is always possible
to make a transition to another non-ICS state. Furthermore it implies that
a control trajectory ũj in the subset of control trajectories E contains the
sequence of controls to make this transition possible. This information can
be actively exploited to reduce the number of controls which must be searched
to find the one that allows a safe transition. This reduced set of controls is
what will constitute the Safe Control Kernel.

5.1.2 Safe Control Kernel

From a conceptual point of view a Safe Control Kernel is a small set
of commands which contains at least one control that allows a transition
between the current state of the robotic system to a non-ICS state. Formally
the Safe Control Kernel is defined as follows:

Definition 7 (Safe Control Kernel).

K(s) = {K ⊂ U | ∃u ∈ K, si /∈ ICS(B), si = s +

∫ ti

t

f(s, u)dt } (5.2)

where f(s, u) is the function that describe the dynamics of the robotic
system (Eq.3.1).

Logically the safe control kernel is empty if the current state is an ICS,
i.e., no control exists which can take the robotic system from an ICS state
to a non-ICS state.

78 5.1. ICS-AVOID

Property 9 (Empty Safe Control Kernel).

s ∈ ICS(B) ⇒ K(s) = ∅ (5.3)

Proof.

s ∈ ICS(B) ⇔ ∀ũj ∈ Ũ , ∃t,A(ũj(s, t)) ∩ B(t) 6= ∅

⇒ ∀ũj ∈ Ũ , si ∈ ICS(B), si = ũj(s, ti)

⇒ ¬∃u ∈ U | si /∈ ICS(B), si = s +

∫ ti

t

f(s, u)dt

Property 8 have already showed that when the contrary is true, i.e., when
the state does not belong to the ICS set, the control kernel can not be empty:
from a non-ICS state is always possible to arrive to another non-ICS state.
Two important conclusions can be obtained from these properties. The first
one is that a navigation method can only be successful if the current state of
the system is not an ICS. The second conclusion is that the information
provided by Ics-Check is vital to determine if a solution exists to the
navigation problem. In addition, actively checking if a state is an ICS can
probe to be useful in determining the set of controls that can be included
in the safe control kernel. The intuition of this assertion is that the evasive
manoeuvres used in the Ics-Check contains a set of controls which have
already been tested for collision. Now, with this in mind what remains to
be explained is how this alternation process between verifying the ICS-ness
of a state and the filling mechanism of the safe control kernel can work to
produce the desired results.

5.1.3 Augmenting Ics-Check

Algorithm 2 must be modified to allow an external method to retrieve
the set of control trajectories that were selected internally to compute the
ICS approximation that makes possible to characterize a given state as
ICS or not. The modification is quite simple. In particular the output
of the algorithm is augmented to include the information of the control
trajectories. It must be noted that the selection of the control trajectories
that form the subset E is not modified in anyway by Ics-Avoid. The choice
is done within Ics-Check. As was shown in Section 4.1.2 the type of
evasive manoeuvres that serve in most situations are braking manoeuvres
and imitating manoeuvres. The braking manoeuvres are only a special case
of the imitating ones but conceptually it makes sense to do a distinction
between the static and dynamic elements of the environment. The modified
version of Algorithm 2 is as follows:

CHAPTER 5. NAVIGATION 79

Algorithm 3: Augmented Ics-Check.

Input: sc, the state to be checked and Bi, i = 1 . . . nb

Output: Boolean value, E

Select E;1

Use (4.4) to compute ICSẑc(Bi, ũj) for every Bi and every ũj ∈ E ;2

Compute ICSẑc(B, ũj) =
⋃nb

i=1 ICSẑc(Bi, ũj) for every ũj ∈ E;3

Compute ICSẑc(B, E) =
⋂

ũj∈E
ICSẑc(B, ũj);4

Check whether sc ∈ ICSẑc(B, E), return True or False accordingly5

and E;

5.1.4 Ics-Avoid Algorithm

The modified version of the general Ics-Check algorithm is employed to
verify the ICS-ness of the current state of the system. The output of this
verification constitute the input of Ics-Avoid. If the state is characterized
as not an ICS then Ics-Avoid can be used. The procedure starts with the
computation of the set of controls to be included in the safe control kernel.
The safe control kernel will include only the first entries of each control
trajectory that was returned by the augmented Ics-Check. This choice of
including only the first elements, i.e., for a time ti ũ(ti)∀ũ ∈ E, is to have
a minimum number of elements in the subset. Once the kernel has been
built in this way is ready to be included in the control space sampling set J
that is used by Ics-Avoid. The sampling strategy can be anything but the
important thing to keep in mind is that this sampling set includes already
the elements of the safe control kernel. The next step is simply to select
a control of the sampling set and integrate the equations that describe the
dynamics of the robotic system to obtain the state that will be reached when
applying the control. This state is verified for ICS-ness with Algorithm 2
which will in turn determine if the control is safe or not (if it belongs or
not to the ICS set). If the state reached is not ICS the procedure can finish
successfully. Otherwise a new control of the sampling set must be picked up
and the checking procedure must be done one more time. As the sampling
set includes the controls of the kernel eventually the procedure will end in a
successful manner. Thus a control that allows a transition between non-ICS
states is guaranteed to be found. The Ics-Avoid algorithm is recapitulated
in a concise form as follows:

80 5.1. ICS-AVOID

Algorithm 4: Ics-Avoid.

Input: si (the current state of A) and E
Output: Control u

Compute Safe Control Kernel Ki =
⋃

j ũj(ti), ũj ∈ E;1

Build control space sampling set: J ⊂ U and include Ki into it;2

Select control u ∈ J ;3

Compute si+1 = si +
∫ ti+1

ti
f(si, u)dt;4

if Ics-Check(si+1)= True then5

Go to 36

else7

SUCCESS. Return u8

end9

5.1.5 Sampling strategies

Ics-Avoid is not restricted to a particular sampling strategy for the selection
of a control (Steps 2 and 3 of the Algorithm 4). However, the choice of this
sampling strategy influence directly the result of the navigation process. To
illustrate the type of strategies that can be used two examples will be used.
The first one is the most basic behaviour. Survive in the environment. The
second illustrate how strategies of other navigation methods can be employed
directly with Ics-Avoid. Specifically the strategy presented in the Dynamic
Window Approach[FBT97] will be employed.

Surviving in the environment

This strategy illustrate the most basic behaviour that can be obtained with
Ics-Avoid. Survive in the environment means that the only objective of
the robotic system is to avoid collision with the objects of its environment.
No interest to reach a goal, follow a path, respond to specific events, etc.
To achieve this kind of behaviour it suffice to equal the sampling set to the
safe control kernel (J = K) and to sequentially pick the elements of the
safe control kernel in step 3. In the worst-case scenario all the elements
of the control kernel will need to be checked to find a valid control. Once
a control is found it is selected immediately and applied by the system.
This basic strategy can be used in conjunction with more complex ones to
account directly for constraints like the time decision constraint. The time
of execution of this strategy can be easily computed as it depends on the
cardinality of the safe control kernel.

CHAPTER 5. NAVIGATION 81

Target Heading, clearance and velocity

The Dynamic Window Approach(DWA) presented in [FBT97] is popular in
the robotics community given its relatively simplicity and the acceptable
results obtained with it. One of its features is the objective function σ
which is maximized in order to select the control employed among the not
forbidden set of velocities. The objective function takes into consideration
three factors. The target heading (measure of progress towards the goal),
the clearance (distance to the closest obstacle on the trajectory) and the
velocity (it supports faster movements). By combining these three factors
the result is that the robotic system circumvent as fast as it can the objects
in the environment while still progressing towards the goal. It should be
noticed that to obtain the value that maximize this function a discretization
of the resulting search space (Vr) is made (the intersection between the
admissible velocities and the velocities inside the dynamic window). This
kind of successful strategy to select a control can be seamlessly integrated
into Ics-Avoid. Step 2 of the algorithm allows the flexibility to define
the sampling set J as it may be desired by the user. Following the DWA
example, J can be equaled to the discretized Vr and the objective function
σ computed to each of the elements of J . Once their resulting value is
obtained from the function, the elements can be put in a list in descending
order. Step 3 then would simply select the elements of the mentioned
ordered list is a sequentially manner.

In a similar manner other type of sampling strategies can be used. All
that is need to be done is to identify two things:

1. the underlying sampling set used in the navigation method, and

2. the function or mechanism used to select the element to apply.

Once this two features are identify, Ics-Avoid can integrate them into
steps 2 and 3. This flexibility makes of Ics-Avoid a versatile method which
can be integrated in existing applications.

Now, to evaluates and compare the performance of Ics-Avoid a
benchmark was performed with two state-of-the-art navigation methods
designed to operate in dynamic environments and presented in Section
2.2.2. The first one is Time-Varying Dynamic Window (TVDW) [SP07]),
the second one is Non Linear Velocity Obstacle (NLVO) [LLS05]. To be
just, Ics-Avoid was employed in its basic version, i.e., the survive in the
environment strategy. The scenario employed and the results obtained are
shown in the next section.

82

5.2. BENCHMARKING ICS-AVOID WITH OTHER NAVIGATION

METHODS

5.2 Benchmarking Ics-Avoid with Other

Navigation Methods

As explained previously, the benchmarking concerns TVDW, NLVO and
Ics-Avoid. The first two are extensions to popular navigation methods
used in real-world applications: Dynamic Window (DW) and Velocity
Obstacles (VO). DW has been demonstrated at relatively high speeds (up to
1 m/s) in complex environments with Minerva [TBB+99], Rhino [BCF+00]
and Robox [PS03], robotic tour-guides that have operated for different time
periods in different places in the United States, Germany and Switzerland.
VO has been tested with MAid [PSF01], an automated wheelchair that
navigated in the concourse of the central station in Ulm (DE) and during
the German exhibition Hanover Fair’98. TVDW and NLVO were detailed
in Section 2.2.2. Nonetheless, a brief description of their operation mode is
done here for completeness.

TVDW (p.33) is an approach where the search for admissible controls is
carried out directly in the linear and angular velocity space. As in DWA,
the search space is reduced by the robotic system’s kinematic and dynamic
constraints to a set of reachable velocities (Vr) in a short time interval (∆t)
around the current velocity vector. A velocity is admissible (Va) if it allows
the system to stop before hitting an object. The main difference with respect
to DWA is that instead of considering the environment as static TVDW
calculates at each instant a set of immediate future obstacles trajectories
(see Figure.2.6). This trajectories are used to check for collision in the short
term, i.e., the lookahead time is set to the time it takes to robotic system
to come to a full stop.

NLVO (p.36) is an approach that operates in the Cartesian velocity
space of the robotic system. Each object in the environment yields a set
of forbidden velocities that would yield a collision between it and the robotic
system A. Should the robotic system select a forbidden velocity, it would
collide with the moving object at a later time. As opposed to VO that only
consider constant linear velocities profiles, NLVO considers known arbitrary
velocity profiles for the moving objects. NLVO consist of all velocities of
A at t0 that would result in collision with B at any time t0 ≤ t ≤ tla.
Geometrically NLV O(t) is a scaled down B, bounded by the cone formed
between A and B(t). In consequence, NLVO is a warped cone with apex at
A (see Figure.2.8).

CHAPTER 5. NAVIGATION 83

5.2.1 Simulation Setup

A simulation environment capable of reproducing the same conditions and
providing the same information for all the navigation methods was chosen
to conduce the benchmarking. The robotic system selected, the workspace
model setup and the implementation details are discussed in the next
sections.

Robotic System: Point Mass Model

Let A be modeled as a disk with point mass non-dissipative dynamics. A
state of A is defined as s = (x, y, vx, vy) where (x, y) are the coordinates of
the center of the disk and vx, vy are the axial components of the velocity. A
control of A is defined by the pair (ux, uy) which denote the force exerted
by the actuators along the x- and y-axis respectively. The radius of A is rA
and its motion is governed by the following differential equations:









ẋ
ẏ
v̇x
v̇y









=









vx
vy
0
0









+









0
0
1
0









ux +









0
0
0
1









uy (5.4)

with a bound in the control given by the maximum acceleration:
u2
x+u2

y

m2 ≤ a2max where m is the robot mass.

Workspace Model

A moves in a closed 2D workspace W (100 by 100 meters), cluttered up
with disk-shaped moving objects (grown by the radius of A). A total of
twenty three objects move in complex cyclic trajectories (trajectories defined
by closed B-splines with 10 random control knots). The objects move with
random constant speeds (between 1 to 10 m/s) along their trajectories.
Figure 5.1a shows the trajectories of the objects to illustrate the complexity
of the environment. This setup can theoretically provide future information
about the behaviour of the moving objects up to infinity. In practice,
knowledge about the future behaviour of the moving objects is provided until
a fixed time in the future tF after which constant linear motion is assumed
(Fig. 5.1b). This is done to resemble realistic scenarios where the prediction
quality degrades as time pass moves farther in the future.

84

5.2. BENCHMARKING ICS-AVOID WITH OTHER NAVIGATION

METHODS

(a) Workspace example, 23 obstacles
(represented by circles) along their trajectories
defined by 10 random control knots B-Splines.

W

t

tF

B(t)

(b) World Model of the Future.

Figure 5.1: Benchmark Workspace.

Implementation

The simulation environment and navigation methods were programmed
entirely in C++ using OpenGL as rendering engine. The ICS-Checker
presented in Chapter 4 was integrated to perform efficient state checking for
Ics-Avoid. To achieve an identical reproduction of simulation conditions for
each of the collision avoidance schemes in the benchmark, the random number
generator was seeded with a set of identical numbers. Each seed identified
a run of the simulation. The information about the future behaviour of the
objects in the environment was made available to all the schemes with a
values of 1, 3 and 5 seconds into the future.

Benchmark Results

The navigation methods were tested on a set of five runs. Each run had a
duration of two minutes. The amount of available information about the
future behaviour of the obstacles in the environment was varied with values
tF =1, 3 and 5 seconds. For each run and each value of tF the number
of collisions between the system A and the objects Bi are summarized in
Table 5.1.

CHAPTER 5. NAVIGATION 85

Scheme Run Collisions Collisions Collisions
tF=1(s) tF=3(s) tF=5(s)

1 5 6 3
2 12 4 4

TVDW 3 5 7 3
4 12 2 4
5 12 2 4

Average: 9.2 4.2 3.6

1 10 2 0
2 8 2 0

NLVO 3 12 2 0
4 3 3 2
5 7 2 2

Average: 8.0 2.2 0.8

1 7 0 0
2 0 0 0

Ics-Avoid 3 1 0 0
4 1 0 0
5 1 0 0

Average: 2.0 0.0 0.0

Table 5.1: Benchmarking of navigation methods.

TVDW (Fig. 5.2a) performs poorly in comparison with the other two
schemes. One of the main causes of failure is the limited extent in which
the scheme use the information available about the future trajectories of the
objects: as explained before it limits itself to a small fraction of the time at
hand (its lookahead times is limited to the time it takes the system to stop).
In contrast, NLVO (Fig. 5.2b) exploits better the given information. In these
runs tla was set equal to tF so all the available information could be taken into
account. NLVO averages less of one collision per run in the 5 second setup,
nonetheless, it fails to guarantee the safety of the system when provided with
less information. Ics-Avoid (Fig. 5.2c) has the best performance in all the
time setups. Ics-Avoid is designed to reason in terms of infinite duration
but even when dealing with minimal information about the future (1 second)
it outperformed the other two schemes. When given more information (3 and
5 seconds) not a single collision occurred. The results show the importance
of the lookahead time, when a collision avoidance scheme disregard available
information its performance is lower compared to those that use more.

86

5.2. BENCHMARKING ICS-AVOID WITH OTHER NAVIGATION

METHODS

(a) TVDW. Admissible velocities (Va)
are represented in black, velocities in red
are forbidden.

(b) NLVO. Black warped cones are
forbidden velocities for the robotic
system.

(c) ICS-Avoid. Black regions are
forbidden states (ICS).

Figure 5.2: Benchmark Navigation Methods.

5.2.2 Conclusion Benchmarking

To demonstrate the efficiency of Ics-Avoid, it has been extensively compared
with two state-of-the-art navigation methods, both of which have been
explicitly designed to handle dynamic environments. Like Ics-Avoid,
TVDW and NLVO make assumptions of the way the environment unfold
in the future and therefore they are also susceptible to uncertainty. But
if Ics-Avoid was provided with full knowledge about the future, it would
guarantee motion safety no matter what. Of course, given the elusive nature

CHAPTER 5. NAVIGATION 87

of the future, this assumption is somewhat unrealistic. In practice, knowledge
about the future is limited. However, the results obtained show that, when
provided with the same amount of information about the future evolution of
the environment, Ics-Avoid performs significantly better than the other two
schemes. The first reason for this has to do with the respective lookahead
of each collision avoidance scheme thus emphasizing the fact that, reasoning
about the future is not nearly enough, it must be done with an appropriate
lookahead. The second reason has to do with the decision part of each
collision avoidance scheme. In all cases, their operating principle is to first
characterize forbidden regions in a given control space and then select an
admissible control, i.e., one which is not forbidden. Accordingly motion
safety also depends on the ability of the collision avoidance scheme at hand
to find such admissible control. In the absence of a formal characterization
of the forbidden regions, all schemes resort to sampling (with the inherent
risk of missing the admissible regions). In contrast, Ics-Avoid through the
concept of Safe Control Kernel is the only one for which it is guaranteed
that, if the current state is not an ICS an admissible control will be part of
the sampling set.

5.3 Conclusion

This chapter had presented Ics-Avoid, an ICS-based navigation method
designed to handle complex dynamic environments. Ics-Avoid takes into
account the behaviour of the moving objects to reason about the future
and thanks to the Safe Control Kernel provides a mechanism to find an
admissible control to move safely from one non-ICS state to the other.
The results obtained in a comparative evaluation with two state-of-the-art
collision avoidance schemes show that, when provided with the same amount
of information about the future evolution of the environment, Ics-Avoid
outperforms them. The first reason for this has to do with the extent to
which each collision avoidance scheme reasons about the future. The second
reason has to do with the ability of Ics-Avoid to find a safe control in the
Safe Control Kernel by alternating its operation with Ics-Check.

Résumé

Ce chapitre avait présenté Ics-Avoid, une méthode de navigation basée en
ICS conçue pour être utilisé dans des environnements dynamiques complexes.
Ics-Avoid prend en compte le comportement des objets mobiles pour

88 5.3. CONCLUSION

raisonner sur le futur. Ics-Avoid fournit un mécanisme (Safe Control
Kernel) qui permet constater qui existe un contrôle admissible pour se
déplace sans risque d’un état de non-ICS à l’autre. Les résultats obtenus
dans une évaluation comparative avec deux systèmes d’évitement de collision
montrent que, quand fourni avec la même quantité d’informations sur
l’évolution future de l’environnement, Ics-Avoid les surpasse. La première
raison pour cela a un rapport avec la mesure à laquelle chaque système
d’évitement de collision raisonne sur l’avenir. La deuxième raison a un
rapport avec la capacité de Ics-Avoidpour trouver un contrôle sûr dans
le Safe Control Kernel.

Chapter 6

Experimental Results

This chapter presents results in addition to those already described in
previous chapters. The reason is that until now all the results included
only simulations and not experiments with a real platform. The main reason
for having it done that way is that the conditions in simulated environments
are easily controlled and that situations that can not be tested in the real
world can be done in the simulated one. This advantage allows to show
the limits of the capacity of what is proposed. However, experiments with
a real platform provide elements to understand the proposed methods that
would otherwise not be discovered if only simulation tests were done. The
reality is much more complex than any simulation could reach to imagine
or reproduce. This chapter then is the description of the efforts done to
produce a practical implementation of Ics-Check. As with any experiment
involving navigation in a real platform, the presented methods need a cloud
of components that provide the functionality that was assumed previously to
be easily obtainable. All the assumptions made earlier clash with the need
to translate them into software and hardware entities.

The next sections began with a description of the experimental platform
that was used in the tests. The general structure in its hardware and software
architectures is developed. Then, the specific software components that fill
the void made by the assumptions previously done in the navigation process
are detailed. Afterwards, the actual experiment and its result is shown.
Finally an analysis of the obtained result and the conclusion reached close
the chapter.

89

90 6.1. EXPERIMENTAL PLATFORM

6.1 Experimental Platform

The description of the experimental platform is divided into two parts. The
first refers to the hardware components of the robotic system: an autonomous
wheelchair. The second describes the middleware that serves to coordinate
all the software components required for the navigation task of a robotic
system.

6.1.1 Hardware

The robotic platform employed for the experiments is an autonomous
wheelchair manufactured and marketed by BlueBotics (Figure 6.1a). The
platform is a modular system issue from the European funded project
MOVEMENT (Modular Versatile Mobility Enhancement Technology). The
core of the device consists of a mobile base (Figure 6.1b) with all the on-
board electronics. To this base different assistive devices can be attached,
being the simplest one a seat to transport persons.

The mobile base has a rectangular footprint with dimensions of 0.56 m
long by 0.67 m wide. The total height of the robotic platform (including
the attached seat) is of 1.30 m. The autonomous wheelchair can carry a
maximum payload of 150 kg with a maximum nominal linear velocity of
1.39 m/s and a maximum rated angular velocity of 1.5 rad/s. Its maximum
acceleration is rated at 1.35 m/s2.

Sensors aboard the wheelchair consist of a LIDAR (Light Detection
and Ranging) model SICK LMS-200, wheel based quadrature encoders for
odometry measurements and emergency bumpers sensors (contact switchs).
The odometry is updated at a rate of 100 Hz while the laser scanner works
at 37Hz with a field of view of 180 ◦, resolution of 0.5 ◦ (361 beams) and a
range set to 16 m.

The motion of the wheelchair can be controlled in two ways. Manually via
a joystick mounted on the seat armrest or automatically through commands
sent by a embedded computer mounted in the mobile base. The embedded
computer hardware is based in the CompactPCI industrial system. The on-
board electronics provide as devices for communication a 4-port Ethernet
switch and a WI-FI 802.11b/g board. Using these network devices the
wheelchair can transmit to external computers its sensor information and
receive motion commands to execute. In the setup used a laptop with a
Corei7 processor at 2.2GHz with 4GB RAM and running as OS an Ubuntu
10.04 64-bits served as the hardware to execute the navigation software
described in the following section.

CHAPTER 6. EXPERIMENTAL RESULTS 91

(a) Autonomous Wheelchair (b) Mobile base

Figure 6.1: Robotic Platform.

6.1.2 Software Architecture

The software architecture is based in ROS [QGC+09]. ROS stands for two
things, Robot Operating System and Robot Open Source. The first makes
reference to the analogy in the type of functionality it provides like hardware
abstraction, low-level device control, message-passing between processes
and package management. However ROS is not an operating system in
the traditional sense of process management and scheduling. In fact is
a layer above the hosts operating systems of an heterogeneous computer
cluster. Although is intended to be cross-platform its only well supported
in Unix-like system such as Ubuntu Linux (other OS like Mac OS X and
Windows have “experimental” status). The latter acronym describe the open
source nature of ROS. All in it is completely open source (BSD license) and
free for others to use. The idea is to enable code reuse across the research
community for breaking the time-consuming cycle of writing code from
scratch. To that end, reusable components that implement various levels
of functionality are available. Examples include mapping, visual odometry,
data visualization, object recognition, etc. All this components come from
contributions from a growing number of institutions (currently around 30)
that collaborate in a federated development model. ROS is not constrained
to be used in a particular robot. Many research and commercial robots are
already supported. Robots which are not supported like the BlueBotics
Autonomous Wheelchair used in the experiments need only to implement

92 6.1. EXPERIMENTAL PLATFORM

relatively easy communication nodes to expose sensor readings and receive
commands. In summary ROS is a well-supported robotic application
development environment and a repository of community contributions that
provide components with robotics related functionality.
the A ROS based system consists of several processes (potentially distributed
in several computers) connected at runtime in a P2P (peer-to-peer) topology.
In this P2P network or computation graph there are nodes (that perform
the computation) and messages or links between nodes (to exchange data).

Each node is responsible of providing a particular functionality.
Examples are data sources (like nodes retrieving sensor information:
LaserScan, Odometry, Camera, GPS, etc), data processors (nodes that
receive data, process it and produce other kind of information, e.g., sensor
fusion from multiple laser scans) and data consumers (nodes that eat data,
typically actuators, logging and visualization, e.g., motor control and data
graph display). There are a last type of nodes which role consists in the
organization, coordination and controlling of the computation graph. They
provide the information about which nodes exist in the system and what
type of data they consume/produce, they provide a way to share common
parameters and configuration options and they maintain information of the
current topology of the graph and computer network in distributed systems.

The messages or links are responsible for the exchange of data between
nodes. A message is simply a data structure comprising typed fields.
Primitive types, arrays or nested structures are supported. Messages are
routed via two types of transport systems paradigms. The topics which use
a publish/subscribe model and the services which implement a request/reply
type of communication. Topics are useful when the same type of data
is share among many nodes. For example, laser scans may be used by
several nodes (obstacle detection, mapping, tracking, etc) so the laser driver
node can publish a topic to the graph which all nodes interested in this
type of information can subscribe. A single node, may publish and/or
subscribe to multiple topics. Services are designed to respond to a different
kind of need. Frequently the data is needed only once or at very low
rates. The request/reply paradigm is ideal for this. When a node needs
certain information it simply request the service and a node that have the
information can reply to call with the information.

The software architecture provided by ROS allows a decoupled operation
of the different components needed by a navigation method. Each component
will be responsible of providing a certain functionality and thus it can be

CHAPTER 6. EXPERIMENTAL RESULTS 93

wrapped in a node. To exchange data with other nodes all it needs to do is
publish/subscribe to topics or request/reply services. The solution to provide
navigation capabilities to a robot consist then in the choice of the components
that respond to the particular needs of the problem at hand. The approach
taken in this thesis is described in the next section.

6.2 Navigation Components

The navigation system was designed for the robotic wheelchair presented
in the Section 6.1.1. The environment considered is an indoor environment
featuring static and dynamic objects. The navigation system is composed of
the following components:

• A robotic platform component that talks directly to the hardware.

• Mapping functionality components that provides the information about
the static elements of the environment.

• A localization component that estimates the pose of the robot with
respect to the map reference frame.

• Components to detect and estimate the trajectory of moving objects
to account for the dynamic entities of the environment.

• The ICS components: Ics-Check and Ics-Avoid to address the
motion safety of the robotic system.

6.2.1 Organization of Components

The navigation components are organized in a ROS computation graph
where the information is exchanged by publishing and subscribing to
topics. Figure 6.2 summarize the topology of the graph. The topology
shows how the nodes interact with each other. Conceptually the graph
is quite simple. The node that corresponds to the robotic platform is
providing all the information from the sensors. This information is processed
in different stages. The first is the modeling of the environment. This
modeling consists of the construction of a static map, the detection of
moving objects and the estimation of its future motion. The second is
the estimation of the current state of the robotic system. This requires
locating the system within the environment and estimate its velocity with
the odometry readings. Once the information of the environment and
state of the system is available the decisional process can begin. The

94 6.2. NAVIGATION COMPONENTS

decisional process is done through the ICS perspective taken in this work.
Ics-Avoid will take the current state of the system and determine the
appropriate control to take the robotic system to the next non-ICS state.
In order to do that it will need to interact with Ics-Check. Once a safe
control is found Ics-Avoid can send it to the robotic platform which will
execute it. The process then can start all over again until the goal is reached.

A description of the inner functionality of each node in the graph is done
in the following paragraphs.

robot

map_servergmapping

ics_avoid ics_check amcl datmo model_future

odometry

laser_scan

cmd_vel

map

pose

dyn_objs

dyn_objs_est

ics_check_state

ics_check_result

ics_check_em

goal

Figure 6.2: ROS Computation Graph Navigation System.

6.2.2 Robot System

The robot node extracts the sensor information (laser scan and odometry)
from the robotic platform and receives the command (linear and angular
velocity) to be sent to the platform. As the BlueBotics wheelchair was
not originally supported by ROS it was necessary to implement the node
from scratch. The data transmission with the wheelchair is through a
TCP/IP socket over the Ethernet link. The communication protocol is a
BlueBotics proprietary API called RPC-LOS (Remote Procedure Calls over

CHAPTER 6. EXPERIMENTAL RESULTS 95

a Lightweight Object Streaming). This node is all its needed for the robotic
platform to operate with ROS. The relevant topics are published (laser scan

and odometry) and a subscription is made to (cmd vel) for receiving
motion commands.

6.2.3 Mapping

The gmapping node provides the SLAM (Simultaneous Localization and
Mapping) functionality. The algorithm is an implementation of a highly
efficient Rao-Blackwellized particle filer to learn grid maps from laser scan
data [GSB06]. The efficiency comes from the techniques employed to
reduce the number of particles, the way of computing an accurate proposal
distribution that considers not only the current movement of the robot
but also the most recent observation and finally the approach taken to
selectively perform the re-sampling operations. The node subscribes to the
(laser scan and odometry) topics and publishes in the (map and pose)
topics which represents respectively a 2D occupancy grid of the environment
and a configuration of the robot.

An utility node called map server subscribe itself to the map topic to
allow the generated maps to be saved to a file. In this way is possible to
reuse maps of previously visited areas. The map server offers the map

data as a service to the interested nodes (in normal operation the map data
is only needed once to construct a representation of the static elements of
the environment).

6.2.4 Localization

Although the gmapping node provides an on-line estimation of the pose
of the robot in the environment it was decided to use a more robust
localization method. The localization is performed through the amcl node
that implements the Adaptive Monte-Carlo Localization (AMCL) algorithm
[KFM03]. This algorithm requires a pre-built static map of the environment
against which to compare observed sensor values. The map is provided as
a service (a request/reply transport type) by the map server node. The
AMCL algorithm works by maintaining a probability distribution over the
set of all possible robot poses, and updates this distribution using data
from odometry and the laser scans. The implementation of the algorithm
represents the probability distribution using a particle filter. The filter is
“adaptive” because it dynamically adjusts the number of particles in the
filter: when the robot’s pose is highly uncertain, the number of particles is

96 6.2. NAVIGATION COMPONENTS

increased; when the robot’s pose is well determined, the number of particles
is decreased. The algorithm is therefore able to make a trade-off between
processing speed and localization accuracy. The amcl node is subscribed
then to the map, laser scan and odometry service/topics and publishes
in the pose topic.

6.2.5 Detection and Tracking of Moving objects

The detection and tracking of moving objects node (datmo) is responsible
for providing the information about the dynamic entities around the
robotic system. The DATMO algorithm[VA09] use a Bayesian-DDMCMC
formulation. The Bayesian framework allows to include knowledge of various
aspects including object, laser scan measurements and motion models. The
Data-Driven Markov Chain Monte Carlo technique is used to sample the
solution space (a joint multiple object-trajectory space) effectively to find
the optimal solution. This formulation is general and can successfully
handle the ambiguities in the presence of persistent occlusions. The
datmo has subscription to the laser scan and odometry and publishes
a list of dynamic objects with information about their positions and their
instantaneous linear velocities in the dyn objs topic.

6.2.6 Model of the Future

Having access to the instantaneous velocities of the moving objects in the
environment the model future node builds an estimation of their future
behaviour. For the time being the implementation of this node considers a
very simple deterministic estimation. It is assumed that the objects in the
environment will maintain its current linear velocity. This node is subscribed
to the dyn objs topic and publishes its estimation in the dyn objs est.

6.2.7 ICS-Check

The ics check node computes the ICS-ness of a given state using the
provided information of the environment as explained in Chapter 4. The state
for the purposes of this experimental setup consists of the robot pose and the
linear and angular velocities of the robotic wheelchair sc = (x, y, θ, v, ω). The
world model is built using the information of the static objects present in the
previously built map and the dynamic objects are taken as estimated by the
model of the future. This node returns a boolean value indicating if the state
belongs to the ICS and the set of evasive manoeuvres employed internally to
perform the computations. In summary the node has a subscription to the

CHAPTER 6. EXPERIMENTAL RESULTS 97

map, dyn objs est and ics state check topics and publishes its results in
the ics check result and ics check em topics.

6.2.8 ICS-Avoid

The ics avoid implements the algorithm presented in Chapter 5. It
computes a control to take the robotic system from the current state
to another non-ICS state. In this implementation a simple goal seeking
behaviour is implemented using the sampling strategy “target heading,
clearance and velocity” introduced in Section 5.1.5. To that end, it subscribe
to the goal topic; the map, dyn objs est to obtain information about
the environment; to the pose and odometry to assemble the variables for
the state to be checked and; to the ics check result and ics check em to
obtain the result from Ics-Check. It publishes in the ics state check topic
to interact with Ics-Check and in cmd vel topic to send a command to
the robotic platform.

6.3 Evaluation

Having presented all the elements of the experimental platform is time now
to proceed to the description of the experiment employed to validate the
Ics-Check algorithm. The scenario serves to illustrate Ics-Check. The
test orders the robotic system to follow a path that will take it to a collision.
Ics-Check is applied to verify the ICS-ness of the current state.

6.3.1 Experimental Conditions

The chosen environment to carry out the experimentations was the entrance
hall of the INRIA Grenoble research center (Figure 6.3) host of the
laboratory where this thesis was conducted. The dimensions of the hall
are approximately 15 m by 12 m. The environment features several static
obstacles consisting of the furniture and elements typically found in building
receptions like this one. Being all this elements static, a map of the
environment was made with the functionality provided by the gmapping

node.
To make the map, the robotic wheelchair was driven around the entrance

hall for approximately 5 minutes. At the end of the SLAM process the result
was saved to a map file with themap server node. The reason for this is that
by saving the map it can be conveniently available for all the experiments
that were performed later and at the same time improve the localization

98 6.3. EVALUATION

Figure 6.3: INRIA Grenoble Entrance Hall.

of the robotic system inside the environment by using an specialized node.
Figures 6.4a and 6.4b shows a snapshot of the SLAM process taking the
information from the on-board sensors and the resulting map of the entrance
hall respectively.

(a) SLAM process. (b) Map of INRIA.

Figure 6.4: Mapping.

During the tests the localization was performed through the amcl node
that through a particle filter maintains the probability distribution over the
set of all possible robot poses. The particle with the highest probability is
taken as the wheelchair pose in the environment. Figure 6.5 shows a graphical
display of amcl particles associated with the different poses of the wheelchair.
The reference frame of the map and of the robotic system are also shown in
the figure.

CHAPTER 6. EXPERIMENTAL RESULTS 99

Figure 6.5: AMCL localization.

These were the conditions used in the performed experiment. The next
section detail the test that was performed and the obtained results.

6.3.2 Collision With an Object

This scenario was conceived with the objective of demonstrating how
Ics-Check can determine correctly when a state belongs to the ICS set.
The obvious thing to do, is to put the robotic system at hand in a situation
where a collision can not be avoided. To achieve this result it was decided
that colliding on purpose with an static object was the better way to illustrate
this. In order to do the experiment in the safest conditions the object to be
collided was a plastic trash bin. The speed of the wheelchair was kept to
a minimum to avoid any possible damage to the hardware elements of the
wheelchair. The linear velocity of the robotic system at collision time was a
moderate 0.18m/s.

100 6.3. EVALUATION

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.6: Robotic system in non-ICS states.

CHAPTER 6. EXPERIMENTAL RESULTS 101

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6.7: Robotic system in ICS states.

102 6.4. ANALYSIS

Figure 6.6 shows some snapshots during the trajectory followed by the
wheelchair before going into an Inevitable Collision State. Each column in
the figure is a different time in the trajectory. The first row in the figure
shows the real-world scene that correspond to the time of the snapshot.
The second row shows the information provided by the amcl node about
the localization of the system in the environment and the input of the laser
scan. The third row shows the 2D slice that correspond to the current state
of the robotic system. This is the Ics-Check result window for the entire
environment. The state of our robot is located near the lower right corner.
A zoom in that region is shown in the fourth row of the figure. In this test
there was no dynamic objects detected as the person that appears in the
pictures of the test is located behind the field of view of the laser scan of
the wheelchair. For this reason, the environment is taken as a static one
and thus all the evasive manoeuvres considered are braking maneuvers. In
total a set of nine braking manoeuvres were computed for this test. It can
be seen that as the robotic wheelchair approaches the obstacle the number
of maneuvers intersections that lead to collision increases. This is reflected
visually by the color that corresponds to the state of the robotic system in
the ICS 2D slice. The initial orange color moves towards the red. When
the state of the system enters the black region it means it has reached
an ICS. This situation is illustrated in Figure 6.7. The figure shows the
moment when the wheelchair goes into an inevitable collision state. From
that moment on the robotic system can not execute any action that will
allow it to avoid a collision with the object. The collision takes place in the
time corresponding to the third column of the figure.

6.4 Analysis

The running times of Ics-Check were logged during the execution of the
manoeuvre. Figure 6.8 shows the boxplot of the recorded data. This graph
helps to visualize the central value and variability of the running time. The
median value is of 58 ms. However outliers with a maximum of 77 ms
are registered. Although the time difference between the median and the
outliers may not seem much, it is important to analyze this variability on
the performance in order to determine whether or not the method can be
used effectively given the time-decision constraint imposed by the dynamic
environment. In this case 75% of the values are between 57 ms and 60
ms which signals a strong concentration around the median which in turns
means stability in the computation time. The outliers then may come from

CHAPTER 6. EXPERIMENTAL RESULTS 103

OS scheduling issues which may be solved with the use of a real-time OS that
provides consistency concerning the amount of time it takes to complete the
Ics-Check task.

1
ICS-Check

55

60

65

70

75

t

Running Time

Figure 6.8: Ics-Check Running time.

Résumé

Ce chapitre montre les efforts réalisés pour l’obtention de résultats
expérimentaux dans une plate-forme réelle. tout d’abord, la plate-forme est
présentée: une chaise roulante. Après, l’architecture du logiciel est détaillée.
L’architecture est présentée à travers de les modules qui permettent d’obtenir
des informations sur l’environnement, de prendre une décision et finalement
d’exécuter un ordre.

Les résultats obtenus, bien que limités, montrent la capacité de
l’algorithme d’agir en temps réel. La contribution prinicipal de ce chapitre
consiste dans las mis en ouvre des algorithmes conçue en chapitres antérieurs.

104 6.4. ANALYSIS

Chapter 7

Conclusions

This thesis proposes to use Inevitable Collision States (ICS) as an answer
to the problem of safe navigation of an autonomous vehicle in a dynamic
environment. An ICS for a given robotic system is a state for which, no
matter what the future trajectory followed by the system is, a collision with
an object in the environment eventually occurs. ICS are particularly well
suited to address the navigation problem since they take into account both
the dynamic constraints of the robotic system and the future behaviour of
the moving objects. These two elements are part of the key issues required
in guaranteeing the motion safety of a robotic system that operates in
dynamic environments.

The issues or safety criteria are associated with how time is handled
by a robotic system when deciding its future course of action. Specifically,
there is the need to reason about the future, doing it with an appropriate
lookahead time and, respect a decision-time constraint imposed by the
nature of the dynamic environments. Reasoning about the future allows
to account for the constraints coming from the robotic system’s dynamics
and the future behaviour of the moving objects. If these constraints are
not considered is likely that the decision taken will yield a collision in the
future. Now, reasoning about the future is not enough, it must be done with
an appropriate lookahead, that is, reasoning until the point in the future
where no more information is needed to make a correct decision. Finally,
the third safety criteria is that there is a real-time decision constraint that
must be respected. A robotic system cannot safely remain passive in a
dynamic environment as it risks to be collided by a moving object. The
system has only a limited amount of time to come up with a decision that
allows it to avoid a possible collision. Failure to do so will jeopardize its safety.

105

106 7.1. CONTRIBUTIONS

By reasoning with the ICS framework the first two safety criteria are
taken into account. Both of them are explicity considered in the definition
of ICS. In contrast, the third safety criteria, the time-decision constraint,
is not considered in the ICS definition. This constraint has to be solved
with an efficient way of working out the intrinsic complexity of the ICS
characterization. Such algorithm allows to determine if a state is an ICS or
not. Once a given state can be asserted or rejected as ICS is then possible to
employ that information for navigation purposes. The way of doing that is
through a collision avoidance strategy that keeps the robotic system at hand
safe from falling in an ICS. If a robotic system doesn’t wants to be involved
in a collision it should never ever end up in an ICS. By navigating through
non-ICS states the motion safety of the robotic system can be guaranteed
with respect to the employed model of the future.

7.1 Contributions

The contributions of this work range from the theoretical study of the
motion safety problem to the practical implementation of the algorithms
designed to address it. The first contribution of the work is an evaluation
of the navigation methods present in the literature with the help of the
aformentioned safety criteria. This evaluation showed that some of the
flaws of the navigation methods have their origin from not taking into
consideration one or several of the safety criteria. Given this state of
affairs, the concept of Inevitable Collision States was brought forward as
a solution to the motion safety problem. However, the ICS definition
and properties give only a theoretical answer to the safety problem. The
second contribution was the further theoretical development of the ICS
concept to obtain effiency principles that could be applied in the design
of an algorithm that allowed the characterization of the ICS set for a
given robotic system. The main theoretical results in that sense are the
principle of reasoning on 2D slices of the state space of the robotic system
(instead of attempting to perform computation in the fully-dimensioned state
space) and the determination of a valid lookahead. A third contribution
is the presentation of Ics-Check, a generic and efficient algorithm that
determines whether a given state is an ICS or not with respect to the
model of the future which is used. The algorithm is suited for the time-
decision constraint imposed by dynamic environments obtaining its efficiency
by applying the theoretical principles discussed earlier and by implementation
principles that allows a suplementary increase in the performance, notably,
the exploitation of graphics hardware performances that offer the possibility

CHAPTER 7. CONCLUSIONS 107

of parallelizing some computations. The fourth contribution of this work was
the introduction of Ics-Avoid, an algorithm that allows to find a control that
takes the system between non-ICS states. By preventing the system to fall
in an ICS is possible to guarantee its motion safety. The guarantee is derived
from the ICS definition. When the robotic system’s state is not an ICS it
means that at least one collision-free trajectory exists and in consequence
that is possible to follow it to avoid collision. Finally, the last contribution of
this work is the implementation of the two algorithms within an experimental
platform that allowed to validate the approaches in real experiments.

7.2 Discussion

From a global point of view the presented ICS perspective has allowed to
address the motion safety problem in a structured way following three safety
criteria principles. This structure allows to gradually move from the solid
base of motion safety concepts to a practical implementation. However, the
approach has some features that can be discussed and even contested. There
is of course the assumption of the model of the future. Given the uncertain
nature of the future this model will be at best an estimate of what will
actually happen. That is why many peole could argue that there is no need
to bother with such uncertain information when its validity can be easily
contested. Or that constant updates in the information make any decision
irrelevan in the long term. The point of view taken in this work is that not
reasoning about the future leads more easily to take bad decisions that to do
it even with the knowledge that the information may not be completely right.
Using this idealized model of the future allows to produce formalisms and
techniques that have relevance not only in the determinitic model but also
in more flexible models. In addition, as the estimates of the future motion
of dynamic objects become better when current prediction methods arrive
to maturity, the relevance of approaches such as ICS that reasons about the
future behavior of the objects will be greater.

7.3 Future Work

This work can not be complete without the outline of future lines of research
that are envisaged.

As in any approach there are points that can be improved to increase
the performance or the generality of the method. Among those who may

108 7.3. FUTURE WORK

have a greater impact lies the selection of the set of evasive manouevres.
The selected set of evasive manoeuvres determine the quality of the ICS
approximation. In general having more manoeuvres improves the quality of
the approximation. However more manoeuvres implies more processing time.
Until now only a category of maneouvers that have shown good performance
in the simulation and experiments done has been used. Braking manoeuvres
and more generally imitating manouevres work fine for most situations.
However, is possible that increasing the diversity of the manoeuvres can
improve the approximation of the ICS set. In addition, such set of diversified
evasive manoeuvres could also have a positive impact in Ics-Avoid. Careful
analysis should be done to evaluate if adding a category of manoeuvres (e.g.,
swerving manoeuvres) or increasing the number and diversity does actually
improvement the quality of the solution.

An important feature of the Inevitable Collision State concept that open
a future line of research is that it guarantee the safety of the robotic system
at hand with respect to the model of the future which is employed. So far the
characterization of the ICS has been based upon deterministic models of the
future where the outcome is precisely known. In other words, each moving
object was assumed to follow a given nominal trajectory (known a priori
or predicted). Such deterministic models provide a clear-cut answer to the
motion safety issue: a given state is an ICS or not (simple binary answer).
However, such models are not well suited to capture the uncertainty that
prevails in real world situations, in particular the uncertainty concerning the
future behaviour of the moving objects. A more suitable model of the future
is a probabilistic one. This type of model assigns a probability measure
to the obstacle’s future trajectories to express the degree of belief that
they will occur. Uncertainty is explicitly represented and can be properly
handled with probability theory. A probabilistic model can be built using
methods proposed in the literature. For example methods where the model
is obtained through an Extended Kalman Filter. Those methods forward
simulate the obstacle trajectories using the prediction step of the filter which
results in a distribution which is an estimate of the obstacle future position
and uncertainty as a function of time. Other methods based in a Bayesian
framework learn motion patterns from a set of observations which are later
used to perform the prediction of future motion of the obstacles. A future
line of research will have as objective precisely to address this type of models
and to study to what extent the ICS concept can be extended to handle the
uncertainty inherent to the future. To that end a probabilistic formulation of
the ICS concept should be provided. A probabilistic ICS would permit the
characterization of the motion safety likelihood of a given state, a likelihood

CHAPTER 7. CONCLUSIONS 109

that can later be used to design safe navigation strategies in real world
situations similar to what Ics-Avoid do now for the deterministic case. This
change of paradigm would be the next step towards the applicability of the
ICS framework to real robots operating in uncertain dynamics environments.

Résumé

La contribution de cet travail se situe a plusieurs niveaux. Tout d’abord,
le concept de ICS est utilisé comme le référant pour analyser de manière
rigoureuse les différentes contributions de les méthodes de navigation en
environnement dynamique présent dans la littérature. ICS devient pretinent
quand on prend en compte la dynamique de l’environnement, les obstacles
fixes et mobiles, l’evolution futur de ces derniers, ainsi que la dynamique du
robot lui même. Une deuxième contribution a été d’approfondir le concept
d’ICS dans le but de concevoir des algorithmes permettant de manière
effective de caractériser les états qui appartient a l’ensemble d’ICS pour
un robot mobile en environnement dynamique. Enfin, le système a été
effectivement mis en oeuvre dans une plate-forme réelle:

110 7.3. FUTURE WORK

Bibliography

[BATM93] P. Bessiere, J.-M. Ahuactzin, E.-G. Talbi, and E. Mazer. The
ariadne’s clew algorithm: global planning with local methods.
In Proceedings IEEE International Conference on Intelligent
Robots and Systems, pages 1373–1380, 1993.

[BCF+00] W. Burgard, A.B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun. Experiences with an
interactive museum tour-guide robot. Artificial Intelligence,
114(1-2), 2000.

[BGF08] J.L. Blanco, J. González, and J.A. Fernández. Extending
obstacle avoidance methods through multiple parameter-space
transformations. Autonomous Robots, 24(1):29–48, 2008.

[BH95] M. Barbehenn and S. Hutchinson. Efficient search and
hierarchical motion planning by dinamically maintaining single-
source shortest path treees. IEEE Transactions on Robotics and
Automation, 11(2), 1995.

[BJ91] J. Barraquand and Latombe J.C. Robot motion planning: A
distributed representation approach. Int. Journal of Robotics
Research, 10(6), 1991.

[BK89] J. Borenstein and Y. Koren. Real-time obstacle avoidance for
fast mobile robots. IEEE Transactions on Systems, Man, and
Cybernetics, 19(5):1179–1187, sep/oct 1989.

[BK91] J. Borenstein and Y. Koren. The vector field histogram-fast
obstacle avoidance for mobile robots. In Proceedings IEEE
International Conference on Robotics and Automation, pages
278–288, 1991.

111

112 BIBLIOGRAPHY

[BK99] O. Brock and O. Khatib. High-speed navigation using the global
dynamic window approach. In Proceedings IEEE International
Conference on Robotics and Automation, pages 341–346, 1999.

[BK01] O. Brock and L.E. Kavraki. Decomposition-based motion
planning: a framework for real-time motion planning in
high-dimensional configuration spaces. In Proceedings IEEE
International Conference on Robotics and Automation, pages
1469–1474, 2001.

[BV03] J. Bruce and M. Veloso. Real-time randomized path planning
for robot navigation. In RoboCup 2002: Robot Soccer World
Cup VI, pages 288–295. Springer Berlin / Heidelberg, 2003.

[Can88] J. F. Canny. The Complexity of Robot Motion Planning. MIT
Press, Cambridge, MA, 1988.

[CB00] H. Choset and J. Burdick. Sensor-based exploration: The
hierarchical generalized voronoi graph. Int. Journal of Robotics
Research, 19(2), 2000.

[CD88] J.F. Canny and B. Donald. Simplified voronoi diagrams.
Discrete and Computational Geometry, 3(1), 1988.

[Cha87] B. Chazelle. Approximation and decomposition of shapes.
In J. T. Schwartz and C. K. Yap, editors, Algorithmic
and Geometric Aspects of Robotics, pages 145–185. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1987.

[CLH+05] H. Choset, K.M Lynch, S. Hutchinson, G.A. Kantor,
W. Burgard, L.E. Kavraki, and S. Thrun. Principles of Robot
Motion: Theory, Algorithms, and Implementations. MIT Press,
Cambridge, MA, 2005.

[DF08] V. Delsart and T. Fraichard. Navigating dynamic
environments using trajectory deformation. In Proceedings
IEEE International Conference on Intelligent Robots and
Systems, 2008.

[Dij59] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1), 1959.

[Dij68] E. W. Dijkstra. Hart, p.e. and nilsson, n.j. and raphael, b. IEEE
Transactions on Systems Science and Cybernetics, 4(2), 1968.

BIBLIOGRAPHY 113

[Elf89] A. Elfes. Using occupancy grids for mobile robot perception
and navigation. Computer, 22(5):46–57, 1989.

[ELP87] M. Erdmann and T. Lozano-Pérez. On multiple moving objects.
Algorithmica, 2(4):477–521, 1987.

[FA04] T. Fraichard and H. Asama. Inevitable collision states. a step
towards safer robots? Advanced Robotics, 18(10), 2004.

[FBT97] D. Fox, W. Burgard, and S. Thrun. The dynamic window
approach to collision avoidance. IEEE Robotics Automation
Magazine, 4(1):23–33, 1997.

[Fra98] T Fraichard. Trajectory planning in a dynamic workspace: a
’state-time space’ approach. Advanced Robotics, 13(1):75–94,
1998.

[Fra07] T. Fraichard. A short paper about motion safety. In Proceedings
IEEE International Conference on Robotics and Automation,
pages 1140–1145, 2007.

[FS98] P. Fiorini and Z. Shiller. Motion planning in dynamic
environments using velocity obstacles. Int. Journal of Robotics
Research, 17(7), 1998.

[FS06] D. Ferguson and A. Stentz. Anytime rrts. In Proceedings IEEE
International Conference on Intelligent Robots and Systems,
pages 5369–5375, 2006.

[GC02] S.S. Ge1 and Y.J. Cui. Dynamic motion planning for mobile
robots using potential field method. Autonomous Robots,
13(3):207–222, 2002.

[GCK+09] S.J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin,
D. Manocha, and P. Dubey. Clearpath: highly parallel
collision avoidance for multi-agent simulation. In Proceedings
ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pages 177–187, 2009.

[GSB06] G. Grisetti, C. Stachniss, andW. Burgard. Improved techniques
for grid mapping with rao-blackwellized particle filters. IEEE
Transactions on Robotics, 23(1):34–46, 2006.

114 BIBLIOGRAPHY

[HAK+08] R. Hoeger, A. Amditis, M. Kunert, A. Hoess, F. Flemish, H.-
P. Krueger, A. Bartels, A. Beutner, and K. Pagle. Highly
automated vehicles for intelligent transport: Haveit approach.
In Proceedings of the 15th World Congress on ITS, 2008.

[HBK+05] F. Holzmann, M. BeHino, S. Kolskit, A. Sulzmann,
G. Spiegelberg, and R. Siegwart. Robots go automotive -
the sparc approach. In Proceedings IEEE Intelligent Vehicles
Symposium, 2005.

[HKLR02] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized
kinodynamic motion planning with moving obstacles. Int.
Journal of Robotics Research, 21(3), 2002.

[Hua08] L Huang. Velocity planning for a mobile robot to track a moving
target — a potential field approach. Robotics and Autonomous
Systems, 57(1):55–63, 2008.

[KF07] H. Kurniawati and Th. Fraichard. From path to trajectory
deformation. In Proceedings IEEE International Conference on
Intelligent Robots and Systems, 2007.

[KFM03] C. Kwok, D. Fox, and M. Meila. Adaptive real-time particle
filters for robot localization. In Proceedings IEEE International
Conference on Robotics and Automation, 2003.

[Kha86] O. Khatib. Real-time obstacle avoidance for manipulators and
mobile robots. Int. Journal of Robotics Research, 5(1), 1986.

[KJCL97] M. Khatib, H. Jaouni, R. Chatila, and J.-P. Laumond. Dynamic
path modification for car-like nonholonomic mobile robots. In
Proceedings IEEE International Conference on Robotics and
Automation, pages 2920–2925, 1997.

[KK92] J.-O. Kim and P.K. Khosla. Real-time obstacle avoidance using
harmonic potential functions. IEEE Transactions on Robotics
and Automation, 8(3):338–349, 1992.

[KL02] S. Koenig and M. Likhachev. Improved fast replanning for
robot navigation in unknown terrain. In Proceedings IEEE
International Conference on Robotics and Automation, 2002.

[KSLO96] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars.
Probabilistic roadmaps for path planning in high-dimensional

BIBLIOGRAPHY 115

configuration spaces. IEEE Transactions on Robotics and
Automation, 12(4):566–580, 1996.

[Lat91] J.-C. Latombe. Robot Motion Planning. Kluwer, Boston, MA,
1991.

[LaV98] S. M. LaValle. Rapidly-exploring random trees: A new tool
for path planning. Technical Report 98-11, Computer Science
Dept., Iowa State University, October 1998.

[LaV06] S. M. LaValle. Planning Algorithms. Cambridge University
Press, Cambridge, U.K., 2006.

[LBL04] F. Lamiraux, D. Bonnafous, and O. Lefebvre. Reactive
path deformation for nonholonomic mobile robots. IEEE
Transactions on Robotics and Automation, 20(6), 2004.

[LFG+05] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and
S. Thrun. Anytime dynamic a*: An anytime replanning
algorithm. In Proceedings of the International Conference on
Automated Planning and Scheduling, 2005.

[LK01] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random
trees: Progress and prospects. In B. R. Donald, K. M. Lynch,
and D. Rus, editors, Algorithmic and Computational Robotics:
New Directions, pages 293–308. A K Peters, Wellesley, MA,
2001.

[LLS05] F. Large, C. Laugier, and Z. Shiller. Navigation among
moving obstacles using the NLVO: Principles and applications
to intelligent vehicles. Autonomous Robots, 19(2):159–171,
2005.

[LP83] T. Lozano-Pérez. Spatial planning: A configuration space
approach. IEEE Transactions on Computing, C-32(2):108–120,
1983.

[LPW79] T. Lozano-Pérez and M. A. Wesley. An algorithm for
planning collision-free paths among polyhedral obstacles.
Communications of the ACM, 22(10):560–570, 1979.

[MM06] J. Minguez and L. Montano. Abstracting vehicle shape
and kinematic constraints from obstacle avoidance methods.
Autonomous Robots, 20(1):43–59, 2006.

116 BIBLIOGRAPHY

[MS08] Pascal Morin and Claude Samson. Handbook of Robotics,
chapter Motion Control of Wheeled Mobile Robots, pages 799–
826. Springer Berlin Heidelberg, 2008.

[NS98] Y.K. Nak and R. Simmons. The lane-vurvature method for
local obstacle avoidance. In Proceedings IEEE International
Conference on Intelligent Robots and Systems, pages 1615–1621,
1998.

[OM05] E. Owen and L. Montano. Motion planning in dynamic
environments using the velocity space. In Proceedings IEEE
International Conference on Intelligent Robots and Systems,
pages 2833–2838, 2005.

[PF05] S. Petti and Th. Fraichard. Partial motion planning framework
for reactive planning within dynamic environments. In
Proceedings IEEE International Conference on Robotics and
Automation, 2005.

[PS03] R. Philippsen and R. Siegwart. Smooth and efficient obstacle
avoidance for a tour-guide robot. In Proceedings IEEE
International Conference on Robotics and Automation, 2003.

[PSF01] E. Prassler, J. Scholz, and P. Fiorini. A robotic wheelchair
for crowded public environments. IEEE Robotics Automation
Magazine, 8(1):38–45, 2001.

[QGC+09] M. Quigley, B. Gerkey, K. Conley, J. Fausty, T. Footey,
J. Leibsz, E. Bergery, R. Wheelery, and A. Ng. Ros: an
open-source robot operating system. In Proceedings IEEE
International Conference on Robotics and Automation, 2009.

[QK93] S. Quinlan and O. Khatib. Elastic bands: Connecting path
planning and control. In Proceedings IEEE International
Conference on Robotics and Automation, pages 802–807, 1993.

[RAH+09] Hoeger Reiner, Amditis Angelos, Zeng Holger, Hoess Alfred,
Flemish Frank, Bartels Arne, and Jakobsson Erika. Selective
automated driving as a pivotal element to solve safety and
environmental issues in personal mobility. In Proceedings of
the 16th World Congress on ITS, 2009.

BIBLIOGRAPHY 117

[Rei79] J. H. Reif. Complexity of the mover’s problem and
generalizations. In Proceedings IEEE Symposium on
Foundations of Computer Science, pages 421–427, 1979.

[RK92] E. Rimon and D.E. Koditschek. Exact robot navigation using
artificial potential functions. IEEE Transactions on Robotics
and Automation, 8(5):501–518, 1992.

[Sim96] R. Simmons. The curvature-velocity method for local obstacle
avoidance. In Proceedings IEEE International Conference on
Robotics and Automation, pages 3375–3382, 1996.

[SP07] M. Seder and I. Petrovic. Dynamic window based approach to
mobile robot motion control in the presence of moving obstacles.
In Proceedings IEEE International Conference on Robotics and
Automation, pages 1986 –1991, 2007.

[SS83a] J. T. Schwartz and M. Sharir. On the Piano Movers’ Problem:
I. The case of a two-dimensional rigid polygonal body moving
amidst polygonal barriers. Communications on Pure and
Applied Mathematics, 36:345–398, 1983.

[SS83b] J. T. Schwartz and M. Sharir. On the Piano Movers’ Problem:
II. General techniques for computing topological properties of
algebraic manifolds. Advances in Applied Mathematics, 12:298–
351, 1983.

[Ste93] Anthony Stentz. Optimal and efficient path planning for
unknown and dynamic environments. International Journal of
Robotics and Automation, 10:89–100, 1993.

[Ste95] A. Stentz. The focussed d* algorithm for real-time replanning.
In Proceedings of the International Joint Conference on
Artificial Intelligence, 1995.

[TBB+99] Sebastian Thrun, M. Bennewitz, W. Burgard, A.B. Cremers,
Frank Dellaert, Dieter Fox, D. Haehnel, Chuck Rosenberg,
Nicholas Roy, Jamieson Schulte, and D. Schulz. Minerva: A
second generation mobile tour-guide robot. In Proceedings
IEEE International Conference on Robotics and Automation,
1999.

[UB98] I. Ulrich and J. Borenstein. Vfh+: reliable obstacle avoidance
for fast mobile robots. In Proceedings IEEE International

118 BIBLIOGRAPHY

Conference on Robotics and Automation, pages 1572–1577,
1998.

[UB00] I. Ulrich and J. Borenstein. Vfh*: local obstacle avoidance
with look-ahead verification. In Proceedings IEEE International
Conference on Robotics and Automation, pages 2505–2511,
2000.

[VA09] Trung-Dung Vu and O. Aycard. Laser-based detection and
tracking moving objects using data-driven markov chain monte
carlo. In Proceedings IEEE International Conference on
Robotics and Automation, 2009.

[vdBO05] J.P. van den Berg and M.H. Overmars. Roadmap-based motion
planning in dynamic environments. IEEE Transactions on
Robotics, 21(5):885–897, 2005.

[VKA05] N. Vandapel, J. Kuffner, and O. Amidi. Planning 3-d path
networks in unstructured environments. In Proceedings IEEE
International Conference on Robotics and Automation, pages
4624–4629, 2005.

[WvdBM09] D. Wilkie, J. van den Berg, and D. Manocha. Generalized
velocity obstacles. In Proceedings IEEE International
Conference on Intelligent Robots and Systems, pages 5573–5578,
2009.

	cover2
	10-phd-martinez-gomez
	Introduction
	Solving motion safety difficulties with an ICS perspective
	Contribution
	Document organization

	Motion Safety- State of the Art
	Motion Safety Analysis
	Navigation Methods
	Deliberative Methods
	Reactive Methods
	Alternative Methods

	Conclusion

	Conceptual framework
	Notations
	ICS definition
	ICS and Motion Safety Criteria
	Motion Safety Definition
	Motion Safety Level Achievable by ICS
	ICS properties
	Conclusion

	Determining Safe States
	Preliminaries
	Evasive Manoeuvres
	Braking and Imitating Manoeuvres
	General ICS Checking Algorithm

	Ics-Check: a 2D ICS Checking Algorithm
	2D Reasoning
	Valid Lookahead
	Ics-Check Algorithm
	Complexity Analysis

	Ics-Check: an Efficient Implementation
	Exploiting Graphics Rendering Techniques
	Precomputing As Much As Possible

	Ics-Check At Work
	Robotic Systems
	Workspace Model
	Car-Like System Case Study
	Other Examples
	Ics-Check Performances

	Conclusion

	Navigation
	ICS-Avoid
	Overview
	Safe Control Kernel
	Augmenting Ics-Check
	Ics-Avoid Algorithm
	Sampling strategies

	Benchmarking Ics-Avoid with Other Navigation Methods
	Simulation Setup
	Conclusion Benchmarking

	Conclusion

	Experimental Results
	Experimental Platform
	Hardware
	Software Architecture

	Navigation Components
	Organization of Components
	Robot System
	Mapping
	Localization
	Detection and Tracking of Moving objects
	Model of the Future
	ICS-Check
	ICS-Avoid

	Evaluation
	Experimental Conditions
	Collision With an Object

	Analysis

	Conclusions
	Contributions
	Discussion
	Future Work

