Skip to Main content Skip to Navigation
Theses

Learning during search

Résumé : La recherche autonome est un nouveau domaine d'intérêt de la programmation par contraintes, motivé par l'importance reconnue de l'utilisation de l'apprentissage automatique pour le problème de sélection de l'algorithme le plus approprié pour une instance donnée, avec une variété d'applications, par exemple: Planification, Configuration d'horaires, etc. En général, la recherche autonome a pour but le développement d'outils automatiques pour améliorer la performance d'algorithmes de recherche, e.g., trouver la meilleure configuration des paramètres pour un algorithme de résolution d'un problème combinatoire. Cette thèse présente l'étude de trois points de vue pour l'automatisation de la résolution de problèmes combinatoires; en particulier, les problèmes de satisfaction de contraintes, les problèmes d'optimisation de combinatoire, et les problèmes de satisfiabilité (SAT).Tout d'abord, nous présentons domFD, une nouvelle heuristique pour le choix de variable, dont l'objectif est de calculer une forme simplifiée de dépendance fonctionnelle, appelée dépendance-relaxée. Ces dépendances-relaxées sont utilisées pour guider l'algorithme de recherche à chaque point de décision.Ensuite, nous révisons la méthode traditionnelle pour construire un portefeuille d'algorithmes pour le problème de la prédiction de la structure des protéines. Nous proposons un nouveau paradigme de recherche-perpétuelle dont l'objectif est de permettre à l'utilisateur d'obtenir la meilleure performance de son moteur de résolution de contraintes. La recherche-perpétuelle utilise deux modes opératoires: le mode d'exploitation utilise le modèle en cours pour solutionner les instances de l'utilisateur; le mode d'exploration réutilise ces instances pour s'entraîner et améliorer la qualité d'un modèle d'heuristiques par le biais de l'apprentissage automatique. Cette deuxième phase est exécutée quand l'unit\'e de calcul est disponible (idle-time). Finalement, la dernière partie de cette thèse considère l'ajout de la coopération au cours d'exécution d'algorithmes de recherche locale parallèle. De cette façon, on montre que si on partage la meilleure configuration de chaque algorithme dans un portefeuille parallèle, la performance globale peut être considérablement amélioré.
Document type :
Theses
Complete list of metadatas

Cited literature [183 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00600523
Contributor : Abes Star :  Contact
Submitted on : Wednesday, June 15, 2011 - 9:53:31 AM
Last modification on : Friday, April 10, 2020 - 2:10:30 AM

File

VD2_ARBELAEZ_ALEJANDRO_3105201...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-00600523, version 1

Collections

Citation

Alejandro Arbelaez Rodriguez. Learning during search. Other [cs.OH]. Université Paris Sud - Paris XI, 2011. English. ⟨NNT : 2011PA112063⟩. ⟨tel-00600523⟩

Share

Metrics

Record views

1538

Files downloads

2473