. Fréquence-du-transfertàénergietransfertàtransfertàénergie-identique, pourétudierpourétudier l'effet de la quantité de mouvement de la gouttelette sur la surface de la macro-goutte. En effet, ` a chaque pulsation de courant, une gouttelette transfère vers le bain de fusion. La variation de la fréquence de pulsation influe alors sur le nombre de gouttelettes transférées. Aussi, pour une vitesse fil constante et une fréquence de pulsation croissante, la taille des gouttes diminue, La variation de de ce paramètre (F) agit alors sur celle de l'´ energie cinétique des gouttelettes en

. Température-initiale-de-la-cible-circulaire, pour modifier le gradient thermique entre métal en fusion et le substrat solide, donc indirectement les tensions superficiellesàsuperficiellesà l'interface liquide-solide de la ligne triple, mais aussi sur le passagè a l'´ etat liquide du substrat

. Dans-ladeuxì-eme-phase, le régime de transfert en mode pulsé est bienétablibienétabli et la macrogoutte se développerégulì erement jusqu'` a l'extinction de l'arc (` a t = 4 s). Les gouttelettes de métal d'apport contribuent essentiellementàessentiellementà l

. La-base-de-la, Audeì a de 1 s de soudage , l'accroissement du rayon de base est moins rapide et la macro-goutte grossitrégulì erement avec l'apport dematì ere, jusqu'` a l'extinction de l'arc. Le changement de dynamique peutêtrépeutêtrepeutêtré egalement attribuéattribuéà une modification de l'´ ecoulement dans la macro-goutte, duè a un effet de taille critique entre celles des gouttes et celles du bain (taille du bain de l'ordre de 2-3 mm durant lapremì ere phase de croissance du système) Hu et Tsai [67] observent aussi ce type de comportement lors de la simulation du dépôt de gouttellettes. Après l'extinction de l'arc, la base de la macro-goutte n'´ evolue plus et la phase de solidification peut démarrer. La figure 5.15 présente l'´ evolution des angles de mouillages apparents droit et gauche au cours du temps. Les tendances d'´ evolution sont les mêmes pour les deux angles, en accord avec la configuration axisymétrique de l'essai, Les variations [1] T. DebRoy : Physical processes in fusion welding. Reviews of modern physics, pp.85-112, 1995.

R. Blondeau, Métallurgie et mécanique du soudage, 2001.

Y. M. Zhang, R. Kovacevic, and L. Li, Characterization and real-time measurement of geometrical appearance of the weld pool, International Journal of Machine Tools and Manufacture, vol.36, issue.7, pp.799-816, 1995.
DOI : 10.1016/0890-6955(95)00083-6

Y. S. Kim, Metal transfer in Gas Metal Arc Welding, Thèse de doctorat, Massachusetts institute of technology, 1989.

E. J. Soderstrom and P. F. Mendez, Metal transfer during gmaw with thin electrodes and ar-co2 shielding gas mixtures, Welding Journal, pp.124-132, 2008.

M. S. Weglowski, Investigation on the arc light spectrum in gta welding, Journal of Achievements in Materials and Manufacturing Engineering, vol.20, pp.519-522, 2007.

L. Depradeux, Simulation numérique du soudage Acier 316L, Thèse de doctorat, 2004.

J. Chapuis, C. Bordreuil, F. Soulié, G. Fras, and Y. , El Ka¨?mKa¨?m : Forces measurement during gas tungsten arc welding

J. Chapuis, C. Bordreuil, F. Soulié, and G. Fras, Analyse expérimentale de distorsions induites en soudage, 19ème congrès Français de Mécanique, 2009.

J. Chapuis, E. Romero, C. Bordreuil, and F. Soulié, Fras : Dynamic behaviour of the weld pool in stationary gmaw, 63rd Annual Assembly & International Conference of the International Institute of Welding, 2010.

J. Chapuis, F. Soulié, and C. Bordreuil, Fras : Comportement d'une macro-goutte stationnaire en gmaw pulsé, MATERIAUX 2010, 8eme Journées Nationales du Soudage, 2010.

T. W. Eagar, Welding and joining : moving from art to science. Welding journal, pp.49-55, 1995.

J. F. Lancaster, The physics of welding, Physics in Technology, vol.15, issue.2, pp.73-79, 1984.
DOI : 10.1088/0305-4624/15/2/I05

Y. Hirata, Pulsed arc welding Welding international, pp.98-115, 2003.

J. Chapuis, T. Opderbecke, and J. M. , Fortain : Compréhension etévaluationetévaluation d'un poste de soudage mig-mag " pinch effect, Mémoire de D.E.A., Polytech'Montpellier -Air Liquide Welding (CTAS), 2007.

. Acier, Aluminium par les procédés LASER et TIG, Thèse de doctorat, 2006.

P. Macquet, Soudage mag en construction métallique : fil plein ou fil fourré ? Revue construction métallique, pp.63-69, 1999.

T. C. Nguyen, D. C. Weckman, and D. A. Johnson, Predicting onset of high speed gas metal arc weld bead defects using dimensional analysis techniques, Science and Technology of Welding and Joining, vol.28, issue.4, pp.634-648, 2007.
DOI : 10.1179/174329307X236797

Y. S. Kim and T. W. , Eagar : Metal transfer in pulsed gas metal arc welding, Welding Journal, pp.279-287, 1993.

S. Subramaniam, D. R. White, J. E. Jones, and D. W. Lyons, Experimental approach to selection of pulsing parameters in pulsed gmaw, Welding Journal, pp.166-172, 1999.

J. Chapuis, E. Romero, C. Bordreuil, F. Soulié, and G. Fras, Bame library : Data structures and analysis of multi-physics data acquisitions for welding

J. Binard and A. Chabenat, Etude expérimentale des paramètres influençant le bain de fusion, Soudage et Techniques Connexes, pp.20-35, 1985.

D. M. Evans, D. Huang, J. C. Mcclure, and A. C. Nunes, Arc efficiency of plasma arc welding, Welding Journal, pp.53-58, 1998.

M. Brochard, Modèle couplé cathode-plasmapì ece en vue de la simulation du procédé de soudagè a l'arc TIG, Thèse de doctorat, 2009.

R. W. Niles and C. E. Jackson, Weld thermal efficiency of the gtaw process, Welding Journal, pp.25-32, 1975.

Y. Zhang, Real-Time weld process monitoring, 2008.
DOI : 10.1533/9781845694401

H. Fan, N. K. Ravala, H. C. Wikle, and B. A. , Low-cost infrared sensing system for monitoring the welding process in the presence of plate inclination angle, Journal of Materials Processing Technology, vol.140, issue.1-3, pp.668-675, 2003.
DOI : 10.1016/S0924-0136(03)00836-7

S. C. Alfaro, D. S. Mendonça, and M. S. Matos, Emission spectrometry evaluation in arc welding monitoring system, Journal of Materials Processing Technology, vol.179, issue.1-3, pp.219-224, 2006.
DOI : 10.1016/j.jmatprotec.2006.03.088

S. C. Alfaro and P. Drews, Intelligent systems for welding process automation, Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol.28, issue.1, pp.25-29, 2006.
DOI : 10.1590/S1678-58782006000100002

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.125.7699

B. Karp, Health monitoring of joints using dynamic end effects, Journal of Sound and Vibration, vol.312, issue.1-2, pp.257-272, 2007.
DOI : 10.1016/j.jsv.2007.10.043

T. C. Choo, Mathematical Modelling of Heat and Fluid Flow Phenomena in A Mutually Coupled Welding Arc and Weld Pool, Thèse de doctorat, Massachusetts Institute of Technology, 1991.

J. Hu, H. Guo, and H. L. Tsai, Weld pool dynamics and the formation of ripples in 3D gas metal arc welding, International Journal of Heat and Mass Transfer, vol.51, issue.9-10, pp.2537-2552, 2008.
DOI : 10.1016/j.ijheatmasstransfer.2007.07.042

M. Tanaka, H. Terasaki, M. Ushio, and J. J. , A unified numerical modeling of stationary tungsten-inert-gas welding process, Metallurgical and Materials Transactions A, vol.32, issue.7, pp.2043-2052, 2002.
DOI : 10.1007/s11661-002-0036-2

J. M. Bauchire and J. J. Gonzalez, Gleizes : Modeling of a dc plasma torch in laminar and turbulent flow, Plasma Chemistry and Plasma Processing, vol.17, issue.4, pp.409-432, 1997.
DOI : 10.1023/A:1021847113956

J. Hu and H. L. Tsai, Heat and mass transfer in gas metal arc welding. Part I: The arc, International Journal of Heat and Mass Transfer, vol.50, issue.5-6, pp.833-846, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2006.08.025

J. Mirapeix, A. Cobo, O. M. Conde, and C. Jaúregui, Real-time arc welding defect detection technique by means of plasma spectrum optical analysis, NDT & E International, vol.39, issue.5, p.356360, 2005.
DOI : 10.1016/j.ndteint.2005.10.004

M. L. Lin and T. W. Eagar, Influence of surface depression and convection on arc weld pool geometry. The American society of mechanical engineers, pp.63-69, 1984.

M. L. Lin and T. W. , Eagar : Influence of arc pressure on weld pool geometry, Welding Journal, pp.163-169, 1985.

M. L. Lin and T. W. , Eagar : Effects of surface depression and convection in gta welding Advances in Welding Science and Technology, pp.47-51, 1986.

P. F. Mendez and T. W. , Eagar : Magnitude scaling of free surface depression during high current arc welding, J. M. Vitek et al, ´ editeur : 5th International Conference Trends in Welding Research, pp.13-18, 1998.

M. L. Lin and T. W. , Pressures produced by gas tungsten arcs, Metallurgical Transactions B, vol.16, issue.no. 5, pp.601-607, 1986.
DOI : 10.1007/BF02670227

C. D. Sorensen and T. W. Eagar, Digital signal processing as a diagnostic tool for gas tungsten arc welding Advances in Welding Science and Technology, pp.467-472, 1986.

R. J. Renwick and R. W. Richardson, Experimental investigation of gta weld pool oscillations : A stationary molten gta weld pool is observed to oscillate at a natural frequency which is dependent on pool geometry, Welding Journal, pp.29-35, 1983.

K. C. Hsu and K. Etemadi, Study of the free???burning high???intensity argon arc, Journal of Applied Physics, vol.54, issue.3, pp.1293-1301, 1982.
DOI : 10.1063/1.332195

J. J. Lowke, Simple theory of free-burning arcs, Journal of Physics D: Applied Physics, vol.12, issue.11, pp.1873-1886, 1979.
DOI : 10.1088/0022-3727/12/11/016

M. Tanaka and J. J. Lowke, Predictions of weld pool profiles using plasma physics, Journal of Physics D: Applied Physics, vol.40, issue.1, pp.1-23, 2007.
DOI : 10.1088/0022-3727/40/1/R01

Y. C. Lim, D. F. Farson, M. H. Cho, and J. H. Cho, Stationary GMAW-P weld metal deposit spreading, Science and Technology of Welding and Joining, vol.80, issue.7, pp.626-635, 2009.
DOI : 10.1179/136217103225005642

E. Fu, P. Conway, and K. Williams, Droplet weld wp6 welding physics : Model : droplet formation and impact, 2001.

M. H. Cho, Y. C. Lim, and D. F. Farson, Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape, Welding Journal, pp.271-283, 2006.

S. Nordbruch, P. Tschirner, and A. Gräser, Visual online monitoring of pgmaw without a lighting unit, 2001.

K. Yamazaki, E. Yamamoto, K. Suzuki, F. Kochiichi, K. Hono et al., Nakata : In-situ measurement of metal droplet temperature in gas metal arc welding by two-color pyrometry, IIW Doc, pp.212-1103, 2007.

Y. S. Kim and T. W. Eagar, Analysis of metal transfer in gas metal arc welding, Welding Journal, pp.269-277, 1993.

L. A. Jones, T. W. Eagar, and J. H. Lang, Magnetic forces acting on molten drops in gas metal arc welding, Journal of Physics D: Applied Physics, vol.31, issue.1, pp.93-106, 1998.
DOI : 10.1088/0022-3727/31/1/013

J. Hu and H. L. Tsai, Heat and mass transfer in gas metal arc welding. Part II: The metal, International Journal of Heat and Mass Transfer, vol.50, issue.5-6, pp.808-820, 2007.
DOI : 10.1016/j.ijheatmasstransfer.2006.08.026

L. A. Jones, T. W. Eagar, and J. H. Lang, Metal transfer control in gas metal arc welding, Tenth Symposium on energy engineering sciences, Argonne (IL), 1992.

K. C. Mills, B. J. Keene, R. F. Brooks, and A. Shirali, Marangoni effects in welding, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.356, issue.1739, pp.911-925, 1998.
DOI : 10.1098/rsta.1998.0196

S. Kou, Welding Metallurgy, 2003.
DOI : 10.1002/0471434027

S. Katayama, Y. Kawahito, and M. Mizutani, Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects, Physics Procedia, vol.5, p.917, 2010.
DOI : 10.1016/j.phpro.2010.08.024

C. R. Heiple and J. R. Roper, Mechanism for minor element effect on gta fusion zone geometry, Welding Journal, pp.99-102, 1982.

A. Matsunawa, S. Yokoya, T. Okada, and Y. , Asako : Model experiments of weld pool convection and penetration shape in tig arc welding, IIW Doc, pp.212-707, 1988.

P. Burgardt and C. R. , Heiple : Interaction between impurities and welding variables in determining gta weld shape, Welding Journal, vol.65, pp.150-155, 1986.

R. Kovacevic and Y. M. Zhang, Real-Time Image Processing for Monitoring of Free Weld Pool Surface, Journal of Manufacturing Science and Engineering, vol.119, issue.2, pp.161-169, 1997.
DOI : 10.1115/1.2831091

G. Saeed and Y. M. Zhang, Weld pool surface depth measurement using a calibrated camera and structured light, Measurement Science and Technology, vol.18, issue.8, p.25702578, 2007.
DOI : 10.1088/0957-0233/18/8/033

H. Song and Y. Zhang, Image processing for measurement of three-dimensional gta weld pool surface, Welding Journal, pp.1-17, 2007.

N. M. Carlson and J. A. Johnson, Ultrasonic sensing of weld pool penetration, NDT & E International, vol.25, issue.1, pp.239-246, 1988.
DOI : 10.1016/0963-8695(92)90129-5

D. E. Hardt, D. A. Garlow, and J. B. , A Model of Full Penetration Arc-Welding for Control System Design, Journal of Dynamic Systems, Measurement, and Control, vol.107, issue.1, pp.40-46, 1985.
DOI : 10.1115/1.3140705

D. E. Hardt and J. M. Katz, Ultrasonic measurement of weld penetration, Welding Journal, pp.273-281, 1984.

W. F. Savage, C. D. Lundin, and A. H. , Aronson : Weld metal solidifciation mechanics, Welding Journal, vol.44, pp.175-181, 1965.

W. Zhang, C. Kim, and T. Debroy, Heat and fluid flow in complex joints during gas metal arc welding???Part I: Numerical model of fillet welding, Journal of Applied Physics, vol.95, issue.9, pp.5210-5219, 2004.
DOI : 10.1063/1.1699485

M. Médale and M. Jaeger, Mod??lisation par ??l??ments finis d'??coulements ?? surface libre avec changement de phase solide-liquide, International Journal of Thermal Sciences, vol.38, issue.3, pp.267-276, 1999.
DOI : 10.1016/S1290-0729(99)80090-8

R. Kovacevic, Y. M. Zhang, and S. Ruan, Sensing and Control of Weld Pool Geometry for Automated GTA Welding, Journal of Engineering for Industry, vol.117, issue.2, pp.210-220, 1995.
DOI : 10.1115/1.2803297

G. M. Roux and R. Billardon, Identification of thermal boundary conditions and thermometallurgical behaviour of x10crmovnb9-1 steel during simple tig welding tests, Mathematical modelling of weld phenomena 8, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00437218

O. H. Nestor, Heat Intensity and Current Density Distributions at the Anode of High Current, Inert Gas Arcs, Journal of Applied Physics, vol.33, issue.5, pp.1638-1648, 1962.
DOI : 10.1063/1.1728803

N. S. Tsai and T. W. , Distribution of the heat and current fluxes in gas tungsten arcs, Metallurgical Transactions B, vol.54, issue.4, pp.841-846, 1985.
DOI : 10.1007/BF02667521

H. W. Ghent, D. W. Roberts, C. E. Hermaance, H. W. Kerr, and A. B. Strong, Arc efficiencies in tig welds, Arc physics and weld pool behaviour ; proceedings of the International Conference, 1989.

N. S. Tsai, Heat distribution and weld bead geometry in arc welding, Thèse de doctorat, Massachusetts Institute of Technology, 1983.

M. Goodarzi, R. Choo, and J. Toguri, The effect of the cathode tip angle on the GTAW arc and weld pool: I. Mathematical model of the arc, Journal of Physics D: Applied Physics, vol.30, issue.19, pp.2744-2756, 1997.
DOI : 10.1088/0022-3727/30/19/013

C. R. Heiple and J. R. Roper, Welding : Theory and practice, 1990.

P. W. Fuerschbach and G. A. Knorovsky, A study of melting efficiency in plasma arc and gas tungsten arc welding, Welding Journal, pp.287-297, 1991.

W. H. Giedt, L. N. Tallerico, and P. W. Fuerschbach, Gta welding efficiency : calorimetric and temperature field measurement, Welding Journal, pp.28-32, 1989.

J. N. Dupont and A. R. , Marder : Thermal efficiency of arc welding processes, Welding Journal, pp.406-416, 1995.

H. B. Smartt, J. A. Stewart, and C. J. , Einerson : Heat transfer in gas tungsten arc welding, Proceedings of the ASM International Conference, 1986.

M. Vural, H. F. Muzafferoglu, and U. C. Tapici, The effect of welding fixtures on welding distortions, Journal of Achievements in Materials and Manufacturing Engineering, vol.20, pp.511-514, 2007.

R. A. Chihoski, Understanding weld cracking in aluminium sheet, Welding Journal, pp.24-30, 1972.

C. L. Tsai, M. D. Han, and G. H. Jung, Investigating the bifurcation phenomenon in plate welding, Welding Journal, vol.85, pp.151-162, 2006.

L. Depradeux and J. F. Jullien, Experimental and numerical simulation of thermomechanical phenomena during a tig welding process, Journal de Physique IV, vol.120, pp.697-704, 2004.

L. Johnson, Moir?? techniques for measuring strains during welding, Experimental Mechanics, vol.14, issue.4, pp.145-151, 1974.
DOI : 10.1007/BF02322837

A. Matsunawa and T. Ohji, Role of surface tension in fusion welding (part 1), Transactions of JWRI, vol.11, issue.2, pp.145-154, 1982.

M. H. Cho, Numerical simulation of arc welding process and its application, Thèse de doctorat, 2006.

T. D. Burleigh and T. W. , Measurement of the force exerted by a welding arc, Metallurgical Transactions A, vol.61, issue.6, pp.1223-1224, 1983.
DOI : 10.1007/BF02670460

S. Subramaniam and D. R. White, Effect of shield gas composition on surface tension of steel droplets in a gas-metal-arc welding arc, Metallurgical and Materials Transactions B, vol.30, issue.6, pp.313-318, 2001.
DOI : 10.1007/s11663-001-0054-2

G. Asch and . Collaborateurs, Acquisition de données, du capteuràcapteurà l'ordinateur, 2003.

F. E. Rousselin and I. Lyon, Réalisation d'un banc de soudage instrumenté et asservi, 2006.

E. W. Kim, C. Allemand, and T. W. Eagar, Visible light emissions during gas tungsten arc welding and its application to weld image improvement, Welding Journal, pp.369-377, 1987.

P. J. Li and Y. M. Zhang, Analysis of an arc light mechanism and its application in sensing of the gtaw process, Welding Journal, pp.252-260, 2000.

M. S. Weglowski, Measurement of arc light spectrum in the mag welding method. Metrology and Measurement Systems, pp.143-159, 2009.

Y. Rotrou, Thermographie courtes longueurs d'onde avec des caméras silicium : contributionàbutionà la modélisation radiométrique, Thèse de doctorat, L'´ ecole nationale supérieure de l'aéronautique et de l'espace, 2006.

J. J. Orteu, Y. Rotrou, T. Sentenac, and L. Robert, An Innovative Method for 3-D Shape, Strain and Temperature Full-Field Measurement Using a Single Type of Camera: Principle and Preliminary Results, Experimental Mechanics, vol.36, issue.1, pp.163-179, 2008.
DOI : 10.1007/s11340-007-9071-7

URL : https://hal.archives-ouvertes.fr/hal-01170373

C. D. Allemand, R. Schoeder, D. E. Ries, and T. W. , Eagar : A method of filming metal transfer in welding arcs, Welding Journal, pp.45-47, 1985.

G. Saeed, M. Lou, and Y. M. Zhang, Computation of 3D weld pool surface from the slope field and point tracking of laser beams, Measurement Science and Technology, vol.15, issue.2, pp.389-403, 2004.
DOI : 10.1088/0957-0233/15/2/012

G. Saeed, Vision-based sensing of the welding process: a survey, International Journal of Modelling, Identification and Control, vol.1, issue.2, pp.84-93, 2006.
DOI : 10.1504/IJMIC.2006.010103

O. Vignal, Conception et instrumentation d'une plateforme d'´ essai de soudagè a l'arcélectrique arcélectrique, Conservatoire National des Arts et Métiers, 2007.

E. Romero, J. Chapuis, C. Bordreuil, and F. Soulié, Fras : Edge detection of weld pool, macro drop and metal transfer drop in a gtaw and gmaw process, by a new weld image processing library : ercv*, 63rd Annual Assembly & International Conference of the International Institute of Welding, 2010.

J. Kerkhoff and T. W. Eagar, Utterback : A systematic strategy for optimizing manufacturing operations, pp.67-85, 1998.

V. Villaret, F. Deschaux-beaume, F. Januard, J. Fortain, G. Fras et al., Développement de nouveaux fils fourrés pour le soudagè a l'arc d'aciers inoxydables ferritiques destinésdestinésà la fabrication des parties chaudes de ligne d'´ echappement automobile, MATERIAUX 2010, 8eme Journées Nationales du Soudage, 2010.

P. Praveen, M. J. Kang, and P. K. Yarlagadda, Arc voltage behavior of one drop per pulse mode in gmaw-p, Journal of Achievements in Materials and Manufacturing Engineering, vol.17, pp.389-392, 2006.

P. Praveen, M. J. Kang, and P. K. Yarlagadda, Arc voltage behavior in gmaw-p under different drop transfer modes, Journal of Achievements in Materials and Manufacturing Engineering, vol.32, pp.196-202, 2009.

A. Niel, C. Bordreuil, F. Deschaux-beaume, and G. , Fras : Etude et modélisation de la fissurationàfissurationà chaud en soudage, Doctiss, 2009.

T. N. Nguyen and M. A. Wahab, A theoretical study of the effect of weld geometry parameters on fatigue crack propogation life. Engineering Fracture Mechanic, pp.1-18, 1995.

S. Roeren, C. Schwenk, and M. , Rethmeier : Different approach to model clamping conditions within a welding conditions, Mathematical modelling of weld phenomena 8, pp.1093-1106, 2006.

P. Michaleris and A. Debiccari, Prediction of welding distorsions, Welding Journal, pp.172-181, 1997.

J. A. Goldak, Akhlaghi : Computational welding mechanics, 2005.

X. K. Zhu and Y. J. Chao, Effects of temperature-dependent material properties on welding simulation, Computers & Structures, vol.80, issue.11, pp.967-976, 2002.
DOI : 10.1016/S0045-7949(02)00040-8

Y. Arata, K. Inoue, M. Futamata, and T. Toh, Investigation on welding arc sound (report 1) -effect of welding method and welding condition of welding arc sound -. Transactions of JWRI, pp.25-31, 1979.

M. D. Drouet and F. Nadeau, Acoustic measurement of the arc voltage applicable to arc welding and arc furnaces, Journal of Physics E: Scientific Instruments, vol.15, issue.3, pp.268-269, 1982.
DOI : 10.1088/0022-3735/15/3/002

H. R. Castner and R. Singh, Pulsed vs. steady current gmaw : Which is louder ? Welding Journal, pp.47-51, 1997.

L. Grad, J. Grum, I. Polajnar, and J. M. , Feasibility study of acoustic signals for on-line monitoring in short circuit gas metal arc welding, International Journal of Machine Tools and Manufacture, vol.44, issue.5, pp.555-561, 2004.
DOI : 10.1016/j.ijmachtools.2003.10.016

E. , H. Cayo, and S. C. Absi-alfaro, Gmaw process stability evaluation through acoustic emission by time and frequency domain analysis, Journal of Achievements in Materials and Manufacturing Engineering, vol.34, pp.157-164, 2009.

K. Pal, S. Bhattacharya, K. Surjya, and . Pal, Investigation on arc sound and metal transfer modes for on-line monitoring in pulsed gas metal arc welding, Journal of Materials Processing Technology, vol.210, issue.10, pp.2101397-1410, 2010.
DOI : 10.1016/j.jmatprotec.2010.03.029

K. Mills, E. Hondros, and Z. Li, Interfacial phenomena in high temperature processes, Journal of Materials Science, vol.21, issue.9-10, pp.2403-2409, 2005.
DOI : 10.1007/s10853-005-1966-z

R. Fabbro, S. Slimani, F. Coste, and F. Briand, Analysis of the various melt pool hydrodynamic regimes observed during cw nd-yag deep penetration laser, ICALEO 07 international congress, 2007.

H. G. Fan and R. Kovacevic, Droplet formation, detachment, and impingement on the molten pool in gas metal arc welding, Metallurgical and Materials Transactions B, vol.61, issue.4, pp.791-801, 1999.
DOI : 10.1007/s11663-999-0041-6

M. H. Cho and D. F. Farson, Understanding Bead Hump Formation in Gas Metal Arc Welding Using a Numerical Simulation, Metallurgical and materials transactions, pp.305-319, 2007.
DOI : 10.1007/s11663-007-9034-5

S. Schiaffino, The fundamentals of molten microdrop deposition and solidification

S. Schiaffino and A. A. , Formation and stability of liquid and molten beads on a solid surface, Journal of Fluid Mechanics, vol.343, pp.95-110, 1997.
DOI : 10.1017/S0022112097005831

F. Gao and A. A. , Sonin : Precise deposition of molten microdrops : the physics of digital microfabrication, Proc. R. Soc. Lond. A, pp.533-554, 1994.

X. Noblin, Mouillage et Démouillage Inertiels : Triplons, Flaques vibrées, Ondes de chocs, Thèse de doctorat, 2004.

R. A. Granger, Fluids Mechanics, chapitre 7.2. Dimensional Analysis, pp.363-377, 1995.

M. V. Elsen, F. Bender, and J. Kruth, Application of dimensional analysis to selective laser melting, Rapid Prototyping Journal, vol.14, issue.1, pp.15-22, 2008.
DOI : 10.1108/13552540810841526

R. L. Hoffman, A study of the advancing interface. I. Interface shape in liquid???gas systems, Journal of Colloid and Interface Science, vol.50, issue.2, pp.228-243, 1975.
DOI : 10.1016/0021-9797(75)90225-8

W. F. Savage and E. F. Nippes, Agusa : Effect of arc force on defect formation in gta welding, Welding Journal, pp.212-224, 1979.

P. F. Mendez, K. L. Niece, and T. W. Eagar, Humping formation in high current gta welding, International conference on joining of advanced and speciality materials II, 1999.

P. F. Mendez and T. W. , Eagar : Penetration and defect formation in high-current arc welding, Welding Journal, pp.296-306, 2003.

T. C. Nguyen, D. C. Weckman, and D. A. Johnson, The discontinuous weld bead defect in high-speed gas metal arc welds, Welding journal, vol.86, pp.360-372, 2007.

R. Fabbro, Melt pool and keyhole behaviour analysis for deep penetration laser welding, Journal of Physics D: Applied Physics, vol.43, issue.44, p.445501, 2010.
DOI : 10.1088/0022-3727/43/44/445501

URL : https://hal.archives-ouvertes.fr/hal-00569740

E. Guyon, J. Hulin, and L. Petit, Hydrodynamique physique, 2001.

H. W. Choi, D. F. Farson, and M. H. Cho, Using a hybrid laser plus gmaw process for controlling the bead humping defect, Welding Journal, pp.174-179, 2006.

. Diagrammes-tension and .. Intensité-pour-un-régime-de-soudage-alternatif, 16 1.4 Diagrammes tension et intensité pour un court-circuit du procédé MIG-MAG STT c (Lincoln Electric c ) [20], p.17

/. Diagramme-intensité and .. , Vitesse fil correspondant aux images présentéesprésentéesà la figure 1.13 [21], p.24

. Evans, Relation entre la hauteur d'arc (mm) et la tension (V ) obtenues par Binard et al, pp.31-56

G. Spectré-emis-avec-le-procédé and S. Sur-uné-eprouvette-en, ) Fe I 561, )Fe II 537.149, (3)Mn I 482.352 et (4)Mn II 403.306, p.31

G. Evolutions-en and P. De-la-puissance-totale, kW) et de la puissance reçue par l'anode P A (kW) en fonction de la hauteur d'arc (mm), (b) ´ evolutions du flux de chaleur (kW.cm ?2 ) en fonction du rayon de l'anode (cm) pour différentes hauteurs d'arc (mm), p.47

V. Essais-de-type, evolution de la hauteur de la macro-goutte en fonction de la base, (b) ´ evolution du volume de la macro-goutte en fonction du volume de métal d'apport dévidé, p.148

V. Essais-de-type, evolution de rayon de la macro-goutte en fonction du volume de métal d'apport, (b) ´ evolution du volume de métal d'apport en fonction de l'´ energie délivrée par la source, p.148

G. Essais-de-type, ´ evolution du rayon de base (a) et de la hauteur (b) de la macro-goutte en fonction du temps pour plusieurs taux de CO 2, p.153

D. Soudure-constituée, Hump " et de " Valley, p.168

D. Soudure-constituée, macrographies d'une valley (b) et d'un hump (c) [26], p.174