C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods in Fluid Dynamics, 1988.
DOI : 10.1007/978-3-642-84108-8

P. Haldenwang, G. Labrosse, S. Abboudi, and M. Deville, Chebyshev 3D Spectral and 2D Pseudospectral Solvers for the Helmholtz Equation, J. Comput. Phys, pp.55-115, 1984.

R. Lynch, J. Rich, and D. Thomas, Direct solution of partial difference equations by tensor product methods, Numerische Mathematik, vol.11, issue.1, pp.185-199, 1964.
DOI : 10.1007/BF01386067

E. Leriche and S. Gavrilakis, Direct numerical simulation of the flow in a lid-driven cubical cavity, Physics of Fluids, vol.12, issue.6, pp.1363-1376, 2000.
DOI : 10.1063/1.870387

A. Batoul, H. Khallouf, and G. Labrosse, Une Méthode de Résolution Directe (Pseudo-Spectrale) du Probì eme de Stokes 2D/3D Instationnaire ApplicationàApplicationà la Cavité Entrainée Carrée, C.R. Acad. Sci. Paris, vol.319, pp.1455-1461, 1994.

E. Leriche and G. Labrosse, High-Order Direct Stokes Solvers with or Without Temporal Splitting: Numerical Investigations of Their Comparative Properties, SIAM Journal on Scientific Computing, vol.22, issue.4, pp.1386-1410, 2000.
DOI : 10.1137/S1064827598349641

S. Nguyen and C. Delcarte, A spectral collocation method to solve Helmholtz problems with boundary conditions involving mixed tangential and normal derivatives, Journal of Computational Physics, vol.200, issue.1, pp.34-49, 2004.
DOI : 10.1016/j.jcp.2004.03.004

J. Shen, Efficient Spectral-Galerkin Method II. Direct Solvers of Second- and Fourth-Order Equations Using Chebyshev Polynomials, SIAM Journal on Scientific Computing, vol.16, issue.1, pp.74-87, 1995.
DOI : 10.1137/0916006

H. Vandeven, On the eigenvalues of second-order spectral differentiation operators, Computer Methods in Applied Mechanics and Engineering, vol.80, issue.1-3, pp.80-313, 1990.
DOI : 10.1016/0045-7825(90)90035-K

D. Kosloff and H. , A Modified Chebyshev Pseudospectral Method with an O(N-1) Time Step Restriction, Journal of Computational Physics, vol.104, issue.2, pp.457-469, 1993.
DOI : 10.1006/jcph.1993.1044

J. Boyd, Chebyshev and Fourier spectral methods, 2001.
DOI : 10.1007/978-3-642-83876-7

J. Mead and R. Renaut, Accuracy, Resolution, and Stability Properties of a Modified Chebyshev Method, SIAM Journal on Scientific Computing, vol.24, issue.1, pp.143-160, 2002.
DOI : 10.1137/S1064827500381501

J. Hesthaven, P. Dinesen, and J. Lynov, Spectral Collocation Time-Domain Modeling of Diffractive Optical Elements, Journal of Computational Physics, vol.155, issue.2, pp.287-306, 1999.
DOI : 10.1006/jcph.1999.6333

E. Chénier, C. Delcarte, and G. Labrosse, Stability of the axisymmetric buoyant-capillary flows in a laterally heated liquid bridge, Physics of Fluids, vol.11, issue.3, pp.527-541, 1999.
DOI : 10.1063/1.869927

E. Chénier, C. Delcarte, G. Kasperski, and G. Labrosse, Sensitivity of the liquid bridge hydrodynamics to local capillary contributions, Physics of Fluids, vol.14, issue.9, pp.3109-3117, 2002.
DOI : 10.1063/1.1490350

G. Kasperski and G. Labrosse, On the numerical treatment of viscous singularities in wall-confined thermocapillary convection, Physics of Fluids, vol.12, issue.11, pp.2695-2697, 2000.
DOI : 10.1063/1.1287513

E. Chénier, C. Delcarte, G. Kasperski, and G. Labrosse, Thermocapillary flows and vorticity singularity, Interfacial Fluid Dynamics and Transport Process, Lecture Notes in Physics, vol.628, 2003.

R. 1. Pearson, On convection cells induced by surface tension, Journal of Fluid Mechanics, vol.2, issue.05, p.489, 1958.
DOI : 10.1017/S0022112058000616

D. Goussis and R. Kelly, On the thermocapillary Instabilities in a liquid layer heated from below, International Journal of Heat and Mass Transfer, vol.33, issue.10, p.2237, 1990.
DOI : 10.1016/0017-9310(90)90123-C

P. Colinet, J. C. Legros, and M. G. Velarde, Nonlinear Dynamics of Surface-Tension-Driven Instabilities, 2001.
DOI : 10.1002/3527603115

P. Colinet, L. Joannes, C. S. Iorio, B. Haute, M. Bestehorn et al., Interfacial turbulence in evaporating liquids: Theory and preliminary results of the ITEL-master 9 sounding rocket experiment, Advances in Space Research, vol.32, issue.2, p.119, 2003.
DOI : 10.1016/S0273-1177(03)90241-9

O. Ozen and R. Narayanan, The physics of evaporative and convective instabilities in bilayer systems: Linear theory, Physics of Fluids, vol.16, issue.12, p.4644, 2004.
DOI : 10.1063/1.1812671

C. Moussy, G. Lebon, and J. Margerit, Influence of evaporation on B??nard-Marangoni instability in a liquid-gas bilayer with a deformable interface, The European Physical Journal B, vol.21, issue.3, p.327, 2004.
DOI : 10.1140/epjb/e2004-00270-2

G. Toussaint, H. Bodiguel, F. Doumenc, B. Guerrier, and C. Allain, Experimental characterization of buoyancy- and surface tension-driven convection during the drying of a polymer solution, International Journal of Heat and Mass Transfer, vol.51, issue.17-18, p.4228, 2008.
DOI : 10.1016/j.ijheatmasstransfer.2008.02.006

E. Chénier, C. Desceliers, C. Delcarte, B. Trouette, F. Doumenc et al., Sensitivity of diffusive-convective transition to the initial conditions in a transient Bénard-Marangoni problem, International Heat Transfer Conference, p.14, 2010.

M. Médale and P. Cerisier, Numerical Heat Transfer, Part A 42 1.12 Motifs obtenus dans différentes configurations Comparaison avec l'analyse de stabilité lineaire Champ de températurè a mi-hauteur, Pr = 1. (a) A = 1.5, Ra = 1900, p.31, 2002.

. Champs-de-température-en-surface-libre, De gauchè a droite, cas 1, 2 et 3. De haut en bas : Configuration expérimentale (Koschmieder et Prahl [40]), simulation numérique (Médale et Cerisier [48]) et notre simulation numérique, p.33

?. De, courbe pointillée) et superposition avec le cas diffusif (courbe pleine) ; (b) Evolution temporelle des maxima locaux de température en surface libre. (e = 1 mm, µ = 3 mPa.s, A = 10 et a = 10 ?3 .), p.44

?. De, courbe pointillée) et superposition avec le cas diffusif (courbe pleine) ; (b) Evolution temporelle des extréma locaux de température en surface libre. (e = 30 mm, µ = 3500 mPa.s, A = 10 et a = 10 ?3 .), p.47

.. Longueur-d-'onde-estimée-avec-la-décomposition-de-vorono¨?vorono¨?, e = 1 mm, µ = 3 mPa.s, A = 10 et a = 10 ?3 ., p.62

.. Passage-de-la-structureirrégulì-erè-arégulì-ere, Les aires des polygones sont les mêmes Le triangle hachuré de la structureirrégulì ere est comparé au triangle régulier, p.63

B. Convection and . Viscosité-variable, A gauche : champs de viscosité auquel sont superposées les lignes de courants pour différents temps. A droite : valeur du champ de concentration en surface libre pour différents temps. (Paramètres : A i = 10, Sc = 10, viscosité variable et a = 10 ?6 .) . . . . . . . . . . . . . . . . . . . . 102

R. Convection and . Viscosité-variable, A gauche : champs de concentration auquel sont superposées les lignes de courants pour différents temps. A droite : valeur du champ de concentration en surface libre pour différents temps. (Paramètres : A i = 10, Sc = 10, viscosité variable et a = 10 ?6 .) . . . . . . . . . . . . . 103

B. Convection and . Viscosité-variable, (a) Evolution temporelle de la vitesse moyenne ||v|| 2 etécartetécart type, la courbe droite représente le critère convectif ; (b) Evolution temporelle de ?? s etécartetécart type, la courbe pleine représente la solution diffusive. (Paramètres : A i = 10, p.105, 4950.

B. Convection, Seuils et temps de transitions en fonction de l'amplitude de la perturbation initiale Ronds : viscosité constante ; Triangles : viscosité variable. (a ? [10 ?8

R. Convection, Seuils de transitions et temps critiques en fonction de l'amplitude de la perturbation initiale Ronds : viscosité constante ; Triangles : viscosité variable. (a ? [10 ?8, p.109

B. Convection, Nombre de Marangoni critique Ma c en fonction du nombre de Schmidt (Ra = 0, Pe int = 1, ? si = 0.953 et a = 10 ?6, p.110

R. Convection, Nombre de Rayleigh critique Ra c en fonction du nombre de Schmidt (Ma = 0, Pe int = 1, ? si = 0.953 et a = 10 ?6, p.111

B. Convection and . Viscosité-constante, Seuils de transition ; (b) temps critique t c (ronds) et limite t lim (triangles) pour différentes fractions initiales de solvant. (A i = 10, Sc = 10, p.111

R. Convection and . Viscosité-constante, Seuils de transition ; (b) temps critique t c (ronds) et limite t lim (triangles) pour différentes fractions initiales de solvant. (A i = 10, Sc = 10, p.112

B. Convection and . Viscosité-variable, Ma c = f (Pe int ) pour différentes fraction initiales de solvant. (A i = 10, Ra = 0, Sc = 10 et a = 10 ?6, p.113

R. Convection and . Viscosité-variable, Ra c = f (Pe int ) pour différentes fraction initiales de solvant. (A i = 10, Ma = 0, Sc = 10 et a = 10 ?6, p.113

S. Carte-de, Les seuils de transition solutaux sont pour une viscosité variable, p.115

+. Encadrement-de-la-viscosité-critique and D. , dans le cadre d'une configuration RBM. (e en mm, µ en mPa.s, A = 10 et a = 10 ?3 .), p.56

M. R. Abril-raymundo and B. García-archilla, Approximation properties of a mapped Chebyshev method, Applied Numerical Mathematics, vol.32, issue.2, 2000.
DOI : 10.1016/S0168-9274(99)00017-3

N. Bassou and Y. Rharbi, Role of Be??nard???Marangoni Instabilities during Solvent Evaporation in Polymer Surface Corrugations, Langmuir, vol.25, issue.1, pp.624-632, 2009.
DOI : 10.1021/la802979a

A. Batoul, H. Khallouf, and G. Labrosse, Une Méthode de Résolution Directe (Pseudo-Spectrale) duProbì eme de Stokes 2D/3D Instationnaire. ApplicationàApplication`Applicationà la Cavité Entrainée Carrée, C.R. Acad. Sci. Paris, issue.I, pp.3191455-1461, 1994.

A. Bejan, Convection Heat Transfert, 1984.

H. Bénard, Les tourbillons cellulaires dans une nappe liquide transportant la chaleur par convection en régime permanent, Ann. Chim. Phys, vol.23, pp.62-144, 1901.

J. C. Berg, M. Boudart, and A. Acrivos, Natural convection in pools of evaporating liquids, Journal of Fluid Mechanics, vol.118, issue.04, pp.721-735, 1966.
DOI : 10.1063/1.1706392

A. Bergeon, D. Henry, and E. Knobloch, Three-dimensional Marangoni???B??nard flows in square and nearly square containers, Physics of Fluids, vol.13, issue.1, pp.92-98, 2001.
DOI : 10.1063/1.1329905

A. Bergeon and E. Knobloch, Oscillatory Marangoni convection in binary mixtures in square and nearly square containers, Physics of Fluids, vol.16, issue.2, pp.360-372, 2004.
DOI : 10.1063/1.1629692

K. Boro´nskaboro´nska, Three-dimensional patterns in cylindrical Rayleigh-Bénard convection, 2005.

K. Boro´nskaboro´nska and L. Tuckerman, Standing and travelling waves in cylindrical Rayleigh-Bénard convection, J. Fluid Mech, pp.279-298, 2006.

O. Bouizi, Instabilités 3D de convection thermocapillaire en zone-flottante, 2004.

J. Boussinesq, Théorie Analytique de la Chaleur, mise en harmonie avec la Thermodynamique et avec la Théorie Mécanique de lalumì ere, 1903.

J. P. Boyd, Chebyshev and Fourier Spectral Methods, 2001.
DOI : 10.1007/978-3-642-83876-7

C. Canuto, Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, 1988.
DOI : 10.1007/978-3-642-84108-8

S. Chandrashekhar, Hydrodynamic and Hydromagnetic Stability. International Series of Monographs on Physics, 1961.

E. Chénier, C. Delcarte, G. Kasperski, and G. Labrosse, Sensitivity of the liquid bridge hydrodynamics to local capillary contributions, Physics of Fluids, vol.14, issue.9, pp.3109-3117, 2002.
DOI : 10.1063/1.1490350

E. Chénier, C. Delcarte, G. Kasperski, and G. Labrosse, Thermocapillary flows and vorticity singularity, Interfacial Fluid Dynamics and Transport Process, Lecture Notes in Physics, vol.628, 2003.

E. Chénier, C. Delcarte, and G. Labrosse, Stability of the axisymmetric buoyantcapillary flows in a laterally heated liquid bridge, Phys. Fluids, vol.11, issue.3, pp.524-541, 1999.

E. Chénier, C. Desceliers, C. Delcarte, B. Trouette, F. Doumenc et al., Sensitivity of diffusive-convective transition to the initial condition in a transient Bénard-Marangoni problem, International Heat Transfert Conference, 2010.

A. J. Chorin, Numerical Simulation of the Navier-Stokes equations, Math. Comp, vol.22, pp.754-762, 1968.

P. Colinet, J. C. Legros, and M. G. Verlade, Nonlinear Dynamics of Surface-Tension- Driven Instabilities, 2001.
DOI : 10.1002/3527603115

E. L. Cussler, Diffusion. Mass Transfer in Fluid Systems, 1986.

M. Dondlinger, J. Margerit, and P. C. Dauby, Weakly nonlinear study of Marangoni instabilities in an evaporating liquid layer, Journal of Colloid and Interface Science, vol.283, issue.2, pp.522-532, 2005.
DOI : 10.1016/j.jcis.2004.09.005

J. Donea, A. Huerta, J. Ph, A. Ponthot, and . Rodíguez-ferran, Arbitrary Lagrangian-Eulerian Methods, Encyclopedia of Computational Mechanics, 2004.
DOI : 10.1002/0470091355.ecm009

F. Doumenc, T. Boeck, B. Guerrier, and M. Rossi, Transient Rayleigh???B??nard???Marangoni convection due to evaporation: a linear non-normal stability analysis, Journal of Fluid Mechanics, vol.32, 2010.
DOI : 10.1016/j.ijheatmasstransfer.2009.10.029

F. Doumenc, B. Guerrier, and C. Allain, Mutual Diffusion Coefficient and Vapor???Liquid Equilibrium Data for the System Polyisobutylene + Toluene, Journal of Chemical & Engineering Data, vol.50, issue.3, pp.983-988, 2005.
DOI : 10.1021/je049541k

K. Eckert, M. Bestehorn, and A. Thess, Square cells in surface-tension-driven B??nard convection: experiment and theory, Journal of Fluid Mechanics, vol.356, pp.155-197, 1998.
DOI : 10.1017/S0022112097007842

T. Foster, Stability of a Homogeneous Fluid Cooled Uniformly from Above, Physics of Fluids, vol.8, issue.7, pp.1249-1257, 1965.
DOI : 10.1063/1.1761393

P. G. De-gennes, Instabilities during the evaporation of a film. Non-glassy polymer + volatile solvent, The European Physical Journal E, vol.6, issue.5, pp.421-424, 2001.
DOI : 10.1007/s10189-001-8055-3

Y. Gorand, F. Doumenc, B. Guerrier, and C. Allain, Instabilités de plissement lors du séchage de films polymères plans, Rhéologie, vol.3, pp.22-29, 2003.

P. Haldenwang, G. Labrosse, S. A. Abboudi, and M. O. Deville, Chebyshev 3-D spectral and 2-D pseudospectral solvers for the Helmholtz equation, Journal of Computational Physics, vol.55, issue.1, pp.115-128, 1984.
DOI : 10.1016/0021-9991(84)90018-4

F. H. Harlow and J. E. Welch, Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface, Physics of Fluids, vol.8, issue.12, pp.2182-2189, 1965.
DOI : 10.1063/1.1761178

J. Hesteaven, P. Dinsen, and J. Lynov, Spectral Collocation Time-Domain Modeling of Diffractive Optical Elements, Journal of Computational Physics, vol.155, issue.2, pp.287-306, 1999.
DOI : 10.1006/jcph.1999.6333

F. J. Higuera, The hydrodynamic stability of an evaporating liquid, Physics of Fluids, vol.30, issue.3, pp.679-686, 1987.
DOI : 10.1063/1.866372

K. H. Kang and C. K. Choi, A theoretical analysis of the onset of surface???tension???driven convection in a horizontal liquid layer cooled suddenly from above, Physics of Fluids, vol.9, issue.1, pp.7-15, 1997.
DOI : 10.1063/1.869171

G. Kasperski and G. Labrosse, On the numerical treatment of viscous singularities in wall-confined thermocapillary convection, Physics of Fluids, vol.12, issue.11, pp.2695-2697, 2000.
DOI : 10.1063/1.1287513

J. Kim and P. Poin, Application of a fractional-step method to incompressible Navier-Stokes equations, Journal of Computational Physics, vol.59, issue.2, pp.308-323, 1985.
DOI : 10.1016/0021-9991(85)90148-2

E. L. Koschmieder and S. A. , Surface-tension-driven B??nard convection in small containers, Journal of Fluid Mechanics, vol.16, issue.-1, pp.571-583, 1989.
DOI : 10.1017/S0022112067001545

D. Kosloff and H. Tal-ezer, A Modified Chebyshev Pseudospectral Method with an O(N-1) Time Step Restriction, Journal of Computational Physics, vol.104, issue.2, pp.457-469, 1993.
DOI : 10.1006/jcph.1993.1044

P. Lascaux and R. Théodor, Analyse numérique matricielle appliquéè a l, 1986.

D. Leriche and G. Labrosse, Hight-order direct stokes solvers with or without temporal splitting : numerical investigation of their comparative properties

R. Lynch, J. Rich, and D. Thomas, Direct solution of partial difference equations by tensor product methods, Numerische Mathematik, vol.11, issue.1, pp.185-199, 1964.
DOI : 10.1007/BF01386067

H. Machrafi, A. Rednikov, P. Colinet, and P. C. Dauby, Bénard instabilities in a binary-liquid layer evaporating into an iner gas, Journal of Colloid and Interface Science, 2010.

H. Mancini and D. Maza, Pattern formation without heating in an evaporative convection experiment, Europhysics Letters (EPL), vol.66, issue.6, pp.812-818, 2004.
DOI : 10.1209/epl/i2003-10266-0

J. L. Mead and R. A. Renaut, Accuracy, Resolution, and Stability Properties of a Modified Chebyshev Method, SIAM Journal on Scientific Computing, vol.24, issue.1, pp.143-160, 2002.
DOI : 10.1137/S1064827500381501

M. Médale and P. Cerisier, NUMERICAL SIMULATION OF BE??NARD-MARANGONI CONVECTION IN SMALL ASPECT RATIO CONTAINERS, Numerical Heat Transfer, Part A: Applications, vol.42, issue.1-2, pp.55-72, 2002.
DOI : 10.1017/S002211209500228X

D. Merkt and M. Bestehorn, B??nard???Marangoni convection in a strongly evaporating fluid, Physica D: Nonlinear Phenomena, vol.185, issue.3-4, pp.196-208, 2003.
DOI : 10.1016/S0167-2789(03)00234-3

C. Moussy, G. Lebon, and J. Margerit, Influence of evaporation on B??nard-Marangoni instability in a liquid-gas bilayer with a deformable interface, The European Physical Journal B, vol.21, issue.3, pp.327-335, 2004.
DOI : 10.1140/epjb/e2004-00270-2

S. Nguyen and C. Delcarte, A spectral collocation method to solve Helmholtz problems with boundary conditions involving mixed tangential and normal derivatives, Journal of Computational Physics, vol.200, issue.1
DOI : 10.1016/j.jcp.2004.03.004

D. Nield, Surface tension and buoyancy effects in cellular convection, Journal of Fluid Mechanics, vol.33, issue.03, pp.341-352, 1964.
DOI : 10.1063/1.1705871

O. Ozen and R. Narayanan, The physics of evaporative and convective instabilities in bilayer systems: Linear theory, Physics of Fluids, vol.16, issue.12, pp.4644-4652, 2004.
DOI : 10.1063/1.1812671

R. Pasquetti, P. Cerisier, and C. L. Nillot, Laboratory and numerical investigations on B??nard???Marangoni convection in circular vessels, Physics of Fluids, vol.14, issue.1, pp.277-288, 2002.
DOI : 10.1063/1.1424307

S. V. Patankar, Numerical heat transfer and fluid flow, Series in Computation Methods in Mechanics and Thermal Sciences, Minkowycz ans Sparrow Eds, 1980.

D. W. Peaceman and H. H. Jr, The Numerical Solution of Parabolic and Elliptic Differential Equations, Journal of the Society for Industrial and Applied Mathematics, vol.3, issue.1, pp.28-41, 1959.
DOI : 10.1137/0103003

J. Pearson, On convection cells induced by surface tension, Journal of Fluid Mechanics, vol.2, issue.05, pp.489-500, 1958.
DOI : 10.1017/S0022112058000616

C. Pérez-garcía, B. Echebarria, and M. Bestehorn, Thermal properties in surface-tension-driven convection, Physical Review E, vol.57, issue.1, pp.475-481, 1998.
DOI : 10.1103/PhysRevE.57.475

R. Peyret, Spectral Methods for Incompressible Viscous Flow. Applied Mathematical Sciences, Vol 148, Applied Mechanics Reviews, vol.56, issue.1, 2002.
DOI : 10.1115/1.1523368

S. C. Reddy, A. A. Weideman, and G. F. Norris, On a Modified Chebyshev Pseudospectral Method, J. Comput. Phys, vol.104, pp.457-469, 1993.

V. C. Regnier, P. C. Dauby, and G. Lebon, Linear and nonlinear Rayleigh???Be??nard???Marangoni instability with surface deformations, Physics of Fluids, vol.12, issue.11, pp.2787-2799, 2000.
DOI : 10.1063/1.1313564

J. Shen, Hopf bifurcation of the unsteady regularized driven cavity flow, Journal of Computational Physics, vol.95, issue.1, pp.228-245, 1991.
DOI : 10.1016/0021-9991(91)90261-I

O. Touazi, E. Chenier, F. Doumenc, and B. Guerrier, Simulation of transient Rayleigh???B??nard???Marangoni convection induced by evaporation, International Journal of Heat and Mass Transfer, vol.53, issue.4, 2009.
DOI : 10.1016/j.ijheatmasstransfer.2009.10.029

G. Toussaint, H. Bodiguel, F. Doumenc, B. Guerrier, and C. Allain, Experimental characterization of buoyancy- and surface tension-driven convection during the drying of a polymer solution, International Journal of Heat and Mass Transfer, vol.51, issue.17-18, pp.4228-4237, 2008.
DOI : 10.1016/j.ijheatmasstransfer.2008.02.006

C. Wagner, R. Friedrich, and R. Narayanan, Comments on the numerical investigation of Rayleigh and Marangoni convection in a vertical circular cylinder, Physics of Fluids, vol.6, issue.4, pp.1425-1433, 1994.
DOI : 10.1063/1.868257

J. V. Wehausen and E. V. Laitone, Surface Waves, Handbuch der Physiks, pp.446-778, 1960.
DOI : 10.1007/978-3-642-45944-3_6