A. Corollary, . 6abrr-]-d, E. Arnaudon, E. Buffenoir, P. Ragoucy et al., The above representation of B e n is equivalent to the representation (g) ?n ) × given by ? e ?? (T n,? ) e ? ?? T n,? (1, 2)R 1,2 (T n,? ) ?1 ? i ?? (i, i + 1)R i,i+1 Bibliography Universal solutions of quantum dynamical Yang-Baxter equations, Lett. Math. Phys, issue.3, pp.44201-214, 1998.

]. E. Ar and . Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg, vol.4, pp.47-72, 1925.

]. O. Ba and . Babelon, Universal exchange algebra for Bloch waves and Liouville theory, Comm. Math. Phys, vol.139, issue.3, pp.619-643, 1991.

M. [. Bayen, C. Flato, A. Fronsdal, D. Lichnerowicz, and . Sternheimer, Deformation theory and quantization. I. Deformations of symplectic structures, Annals of Physics, vol.111, issue.1, pp.61-110, 1978.
DOI : 10.1016/0003-4916(78)90224-5

. M. Bmr, G. Broué, R. Malle, and . Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math, vol.500, pp.127-190, 1998.

]. E. Bri and . Brieskorn, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, Invent. Math, vol.12, pp.57-61, 1971.

]. A. Bro and . Brochier, A Kohno-Drinfeld theorem for the monodromy of cyclotomic KZ connections ArXiv e-prints 1011.4285. [Cal] D. Calaque. Quantization of formal classical dynamical r-matrices: the reductive case [Car] P. Cartier. Cohomologie des coalgèbres, Séminaire " Sophus Lie " de la Faculté des Sciences de Paris Hyperalgèbres et groupes de Lie formels, pp.84-100, 1957.

. V. Cp, A. Chari, and . Pressley, A guide to quantum groups, 1994.

V. [. De-concini and . Kac, Representations of quantum groups at roots of 1. In Operator algebras, unitary representations, enveloping algebras, and invariant theory, pp.471-506, 1989.

C. [. De-concini and . Procesi, Hyperplane arrangements and holonomy equations, Selecta Mathematica, vol.247, issue.3, pp.495-535, 1995.
DOI : 10.1007/BF01589497

]. V. Dr1 and . Drinfeld, Quantum groups, Proc. Int Drinfeld. Almost cocommutative Hopf algebras. Algebra i Analiz, pp.798-82030, 1986.

]. V. Dr3 and . Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal, Leningrad Math. J. Drinfeld. Quasi-Hopf algebras. Leningrad Math. J, vol.2, issue.16, pp.829-8601419, 1990.

A. Complex, . Groups, . Monodromy-[-ee1-]-b, P. Enriquez, and . Etingof, Quantization of Alekseev-Meinrenken dynamical r-matrices, Lie groups and symmetric spaces, pp.81-98, 2003.

P. [. Enriquez and . Etingof, Quantization of Classical Dynamical r-Matrices with Nonabelian Base, Communications in Mathematical Physics, vol.23, issue.3, pp.603-650, 2005.
DOI : 10.1007/s00220-004-1243-z

. B. Eem, P. Enriquez, I. Etingof, and . Marshall, Quantization of some Poisson-Lie dynamical r-matrices and Poisson homogeneous spaces, Quantum groups, pp.135-175, 2007.

P. Etingof and N. Geer, Monodromy of Trigonometric KZ Equations, International Mathematics Research Notices, issue.24, p.15, 2007.
DOI : 10.1093/imrn/rnm123

P. Etingof and D. Kazhdan, Quantization of Lie bialgebras, pp.1-41, 1996.

]. B. En1 and . Enriquez, A cohomological construction of quantization functors of Lie bialgebras, Adv. Math, vol.197, issue.2, pp.430-479, 2005.

]. B. En2 and . Enriquez, Quasi-reflection algebras and cyclotomic associators, Selecta Mathematica, New Series O. Schiffmann. Lectures on quantum groups. Lectures in Mathematical Physics, vol.13, pp.391-463, 1998.

O. [. Etingof, . [. Schiffmann, O. Etingof, and . Schiffmann, of London Math. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge On the moduli space of classical dynamical r-matrices, Quantum groups and Lie theory Papers from the LMS Symposium on Quantum Groups, pp.89-129157, 1999.

T. [. Etingof, O. Schedler, and . Schiffmann, Explicit quantization of dynamical r-matrices for finite dimensional semisimple Lie algebras, Journal of the American Mathematical Society, vol.13, issue.03, pp.595-609, 2000.
DOI : 10.1090/S0894-0347-00-00333-7

[. Etingof and A. Varchenko, Geometry and Classificatin of Solutions of the Classical Dynamical Yang-Baxter Equation, Communications in Mathematical Physics, vol.192, issue.1, pp.77-120, 1998.
DOI : 10.1007/s002200050292

G. Felder, Conformal Field Theory and Integrable Systems Associated to Elliptic Curves, Proceedings of the International Congress of Mathematicians, pp.1247-1255, 1994.
DOI : 10.1007/978-3-0348-9078-6_55

]. F. Ga and . Gavarini, The quantum duality principle, Ann. Inst. Fourier (Grenoble), vol.52, issue.3, pp.809-834, 2002.

. A. Gl-]-v, V. P. Golubeva, and . Leksin, On two types of representations of the braid group associated with the Knizhnik-Zamolodchikov equation of the Bn type, J. Dynam. Control Systems, vol.5, issue.4, pp.565-596, 1999.

M. Jimbo, and the Yang???Baxter Equation, Lett. Math. Phys, vol.10, issue.1, pp.63-69, 1985.
DOI : 10.1142/9789812798336_0015

]. M. Kap and . Kapranov, The permutoassociahedron, Mac Lane's coherence theorem and asymptotic zones for the KZ equation, J. Pure Appl. Algebra, vol.85, issue.2, pp.119-142, 1993.

]. C. Kas and . Kassel, Quantum groups, Graduate Texts in Mathematics, vol.155, 1995.

]. T. Ko and . Kohno, Monodromy representations of braid groups and Yang-Baxter equations, Ann. Inst. Fourier (Grenoble), vol.37, issue.4, pp.139-160, 1987.

. G. Kz-]-v, A. B. Knizhnik, and . Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions, Nuclear Phys. B, vol.247, issue.1, pp.83-103, 1984.

]. I. Ma and . Marin, Monodromie algébrique des groupes d'Artin diédraux, J. Algebra, vol.303, issue.1, pp.97-132, 2006.

S. S. Shnider and S. Sternberg, Quantum groups, from coalgebras to Drinfeld algebras From coalgebras to Drinfeld algebras, A guided tour, THE MONODROMY MORPHISM Graduate Texts in Mathematical Physics, vol.63, issue.2, 1993.

G. C. Shephard, J. A. Toddxu-]-p, and . Xu, Finite unitary reflection groups [To] V. Toledano Laredo. Quasi-Coxeter algebras, Dynkin diagram cohomology, and quantum Weyl groups Quantum dynamical Yang-Baxter equation over a nonabelian base, Canadian J. Math. Int. Math. Res. Pap. IMRP Comm. Math. Phys, vol.6, issue.2263, pp.274-304475, 1954.
DOI : 10.4153/cjm-1954-028-3