I. Herman and H. , Plasma-Sprayed Coatings, Scientific American, vol.259, issue.3, pp.112-117, 1988.
DOI : 10.1038/scientificamerican0988-112

J. T. Brown, Solid oxide fuel cell technology, IEEE Transactions on Energy Conversion, vol.3, issue.2, pp.193-198, 1988.
DOI : 10.1109/60.4717

E. Kendrick, M. S. Peter, and R. Slater, Developing apatites for solid oxide fuel cells: insight into structrural, transport and doping properties Vapor Phase Deposition Using Plasma Spray-PVD?, Jouranl of Materials chemistry Journal of Thermal Spray Technology, vol.17, issue.191, pp.3104-3111, 2007.

J. R. Tolchard and M. S. , Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26, Journal of Materials Chemistry, vol.13, issue.8, pp.1956-1961, 2003.
DOI : 10.1039/b302748c

S. Sodeoka, M. Suzuki, and K. Ueno, Effects of high-pressure plasma spraying for yttria-stabilized zirconia coating, Journal of Thermal Spray Technology, vol.7, issue.2, pp.277-282, 1996.
DOI : 10.1007/BF02645878

S. Nakayama and M. Sakamoto, Electrical properties of new type high oxide ionic conductor RE 10 Si 6 O 27, Journal of the European Ceramic Society, issue.10, pp.18-1413, 1998.

S. M. Haile, Fuel cell materials and components, Acta Materialia, pp.51-5981, 2003.

H. Yahiro, Electrical properties and microstructure in the system ceria-alkaline earth oxide, Journal of Materials Science, vol.69, issue.3, pp.1036-1041, 1988.
DOI : 10.1007/BF01154008

C. Zhang, Study on gas permeation behaviour through atmospheric plasma-sprayed yttria stabilized zirconia coating, Surface and Coatings Technology, vol.202, issue.20, pp.5055-5061, 1937.
DOI : 10.1016/j.surfcoat.2008.05.021

M. Lang, A. D. , T. Franco, Z. Ilhan, A. Nestle et al., Electrochemical Characterization of Vacuum Plasma Sprayed Planar Solid Oxide Fuel Cells and Short Stacks for Mobile Application, Ceramic Engineering and Science Proceedings, vol.10, issue.4, pp.67-74, 2005.
DOI : 10.1002/9780470291245.ch8

C. Verdy, C. Z. , D. Sokolov, ;. H. Liao, D. Klein et al., Coddet Gas-Tight Coatings Produced by Very Low Pressure Plasma Spraying. in International Thermal Spray Conference & Exposition, 2008.

T. Ohtani, Electrical resistivity and thermopower of (La 1-x Sr x )MnO 3 and (La 1-x Sr x )CoO 3 at elevated temperatures, Journal of the European Ceramic Society, issue.16, pp.20-2721, 2000.

Y. Liu, C. Compson, and M. Liu, Nanostructured and functionally graded cathodes for intermediate-temperature SOFCs, Fuel Cells Bulletin, vol.2004, issue.10, pp.12-15, 2004.
DOI : 10.1016/S1464-2859(04)00367-0

T. Suzuki, MnO 3 -YSZ cathode for SOFC. Solid State Ionics Gd and Dy), 21. S. Nakayama, H.A.a.Y.S., Ionic Conductivity of Ln 10, pp.19-25, 1995.

H. Yoshioka, Y. N. , and S. Tanase, Inoic conductivity and fuel cell properities of appatite-type ;anthanum silicates dopted with Mg and containing excess oxide ions. Solid State Ionics Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions, Solid State Ionics, issue.38, pp.179-2165, 2008.

A. Mineshige, Electrical properties of La 10 Si 6 O 27 -based oxides. Solid State Ionics 179(21-26): p. 1009-1012. 27. Yoshioka, H. and S. Tanase, Magnesium doped lanthanum silicate with apatite-type structure as an electrolyte for intermediate temperature solid oxide fuel cells, Solid State Ionics, pp.17631-17665, 2005.

E. Kendrick, M. S. Islam, and P. R. Slater, Investigation of the structural changes on Zn doping in the apatite-type oxide ion conductor La 9.33 Si 6 O 26 : A combined neutron diffraction and atomistic simulation study. Solid State Ionics, pp.39-40, 2007.

A. L. Shaula, Oxygen ionic and electronic transport in apatite ceramics, Journal of the European Ceramic Society, vol.25, issue.12, pp.2583-2586, 2005.
DOI : 10.1016/j.jeurceramsoc.2005.03.106

P. R. Slater, J. E. Sansom, and J. R. Tolchard, Development of apatite-type oxide ion conductors, The Chemical Record, vol.4, issue.91, pp.373-384, 2004.
DOI : 10.1002/tcr.20028

J. P. Huijsmans, Ceramics in solid oxide fuel cells, Current Opinion in Solid State and Materials Science, vol.5, issue.4, pp.317-323, 2001.
DOI : 10.1016/S1359-0286(00)00034-6

N. Q. Minh, Solid oxide fuel cell technology--features and applications. Solid State Ionics, pp.271-277, 2004.

B. C. Steele, Material science and engineering: The enabling technology for the commercialisation of fuel cell systems, Journal of Materials Science, vol.36, issue.5, pp.1053-1068, 2001.
DOI : 10.1023/A:1004853019349

O. Yamamoto and T. Iida, Solid oxide fuel cells: fundamental aspects and prospects, Electrochimica Acta, vol.45, issue.15-16, pp.45-60, 2000.
DOI : 10.1016/S0013-4686(00)00330-3

G. Jung, K. Lo, and S. Chan, Effect of pretreatments on the anode structure of solid oxide fuel cells, Journal of Solid State Electrochemistry, vol.149, issue.10, pp.11-1435, 2007.
DOI : 10.1007/s10008-007-0312-6

S. Li, A direct-methane solid oxide fuel cell with a double-layer anode, Journal of Solid State Electrochemistry, vol.400, issue.1, pp.59-64, 2007.
DOI : 10.1007/s10008-005-0067-x

T. H. Etsell and S. N. Flengas, Electrical properties of solid oxide electrolytes, Chemical Reviews, vol.70, issue.3, pp.339-376, 1970.
DOI : 10.1021/cr60265a003

V. V. Kharton, E. N. Naumovich, and A. A. Vecher, Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. I. ZrO 2 -based ceramic materials, Journal of Solid State Electrochemistry, vol.3, issue.2, pp.61-81, 1999.
DOI : 10.1007/s100080050131

W. Huang and S. Gopalan, Bi-layer structures as solid oxide fuel cell interconnections. Solid State Ionics, pp.3-4, 2006.

P. Duran, Formation, sintering and thermal expansion behaviour of Sr- and Mg-doped LaCrO3 as SOFC interconnector prepared by the ethylene glycol polymerized complex solution synthesis method, Journal of the European Ceramic Society, vol.24, issue.9, pp.2619-2629, 2004.
DOI : 10.1016/j.jeurceramsoc.2003.09.016

P. Piccardo, Interconnect materials for next-generation solid oxide fuel cells, Journal of Applied Electrochemistry, vol.348, issue.4, pp.545-551, 2005.
DOI : 10.1007/s10800-008-9743-8

URL : https://hal.archives-ouvertes.fr/hal-00493200

Z. Yang, G. Xia, and J. W. Stevenson, Evaluation of Ni???Cr-base alloys for SOFC interconnect applications, Journal of Power Sources, vol.160, issue.2, pp.1104-1110, 2006.
DOI : 10.1016/j.jpowsour.2006.02.099

J. Molenda, K. S. , W. Zajac-naray-szabo, S. Zeitsch-krist, and P. , Functional materials for the IT-SOFC, Synthese et caracterisation de conducteurs ioniques a structure apatitique, pp.657-670, 1930.
DOI : 10.1016/j.jpowsour.2007.05.085

T. Iwata, K. F. , and E. Bechade, Structural change of oxide-ion-conducting lanthanum silicate on heating from 295 to 1073 K. Solid State Ionics, pp.1523-1529, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00207957

E. Béchade, Synthesis of lanthanum silicate oxyapatite materials as a solid oxide fuel cell electrolyte, Journal of the European Ceramic Society, vol.28, issue.14, pp.28-2717, 2008.
DOI : 10.1016/j.jeurceramsoc.2008.03.045

T. Nakao, Chemical stability of La 10 Si 6 O 27 and its application to electrolytes for solid oxide fuel cells. Solid State Ionics, 53. Nakayama, S. and M. Sakamoto, Ionic conductivities of apatite-type La x (GeO 4 ) 6 O 1.5X?12 (X=8?9.33) polycrystals, pp.27-32, 2001.

L. Leon-reina, M. C. , and E. R. Losilla, Crystalchemistry and Oxide Ion Conductivity in the Lanthanum Oxygermanate Apatite Series, Chemistry of Materials, vol.15, issue.10, pp.2099-2108, 2001.
DOI : 10.1021/cm031017u

D. Sttöer, Plasma_sprayed components for SOFC applications, Surface and Coatings Technology, vol.201, issue.5, pp.2002-2005, 2006.

S. Rambert, A. J. Mcevoy, and K. Barthel, Composite ceramic fuel cell fabricated by vacuum plasma spraying, Journal of the European Ceramic Society, vol.19, issue.6-7, pp.6-7, 1999.
DOI : 10.1016/S0955-2219(98)00345-8

C. Monterrubio-badillo, Preparation of LaMnO3 perovskite thin films by suspension plasma spraying for SOFC cathodes, Surface and Coatings Technology, vol.200, issue.12-13, pp.12-13, 2006.
DOI : 10.1016/j.surfcoat.2005.01.002

URL : https://hal.archives-ouvertes.fr/hal-00091419

C. Li, C. Li, and G. Yang, Development of a Ni/Al2O3 Cermet-Supported Tubular Solid Oxide Fuel Cell Assembled with Different Functional Layers by Atmospheric Plasma-Spraying, Journal of Thermal Spray Technology, vol.156, issue.3, pp.83-89, 2009.
DOI : 10.1007/s11666-008-9287-9

C. Li, C. Li, and L. Guo, Effect of composition of NiO/YSZ anode on the polarization characteristics of SOFC fabricated by atmospheric plasma spraying, International Journal of Hydrogen Energy, vol.35, issue.7, pp.35-2964, 2010.
DOI : 10.1016/j.ijhydene.2009.05.041

L. Jia and F. Gitzhofer, Induction Plasma Synthesis of Nano-Structured SOFCs Electrolyte Using Solution and Suspension Plasma Spraying: A Comparative Study, Journal of Thermal Spray Technology, vol.19, issue.12, pp.566-574
DOI : 10.1007/s11666-009-9423-1

C. Hwang and C. Yu, Formation of nanostructured YSZ/Ni anode with pore channels by plasma spraying, Surface and Coatings Technology, vol.201, issue.12, pp.201-5954, 2007.
DOI : 10.1016/j.surfcoat.2006.11.002

R. Hui, Thermal plasma spraying for SOFCs: Applications, potential advantages, and challenges, Modeling of the residual stresses in plasma-spraying functionally graded ZrO 2 /NiCoCrAlY coatings using finite element method. Materials & Design, pp.308-323, 1995.
DOI : 10.1016/j.jpowsour.2007.03.075

V. Jr and D. J. , Titanium carbide coatings fabricated by the vacuum plasma spraying process, Surface and Coatings Technology, pp.86-87, 1996.

V. Guipont, High-pressure plasma spraying of hydroxyapatite powders, Materials Science and Engineering: A, vol.325, issue.1-2, pp.9-18, 2002.
DOI : 10.1016/S0921-5093(01)01414-9

E. Georgiopoulos, A. Tsetsekou-chwa, S. O. , A. Ohmori-fauchais, and P. , Development of YBCO coatings by atmospheric plasma spraying, Developments in direct current plasma spraying. Surface and Coatings Technology, pp.2779-2787, 2000.
DOI : 10.1016/S0955-2219(00)00227-2

E. M. Levine, C. R. , and H. F. Mcmurdie, Phase Diagram for Ceramists, II.5. Références bibliographiques 1, 1985.

H. Yoshioka and S. T. , Magnesium doped lanthanum silicate with apatite-type structure as an electrolyte for intermediate temperature solide oxide fuel cells, Solid State Ionics, issue.176, pp.2395-2398, 2005.

J. E. Sansom, E. K. , and J. R. Toichard, A comparison of the effect of rare earth vs Si site doping on the conductivities of apatite-type rare earth silicates, Journal of Solid State Electrochemistry, vol.176, issue.91, pp.562-568, 2006.
DOI : 10.1007/s10008-006-0129-8

P. J. Panteix, Influence of cationic vacancies on the ionic conductivity of oxyapatites, Journal of the European Ceramic Society, vol.28, issue.4, pp.821-828, 2008.
DOI : 10.1016/j.jeurceramsoc.2007.07.019

URL : https://hal.archives-ouvertes.fr/emse-00508430

A. Mineshige, Electrical properties of La 10 Si 6 O 27 -based oxides. Solid State Ionics, pp.21-26, 2008.

S. Tao and J. T. Irvine, Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process, Materials Research Bulletin, vol.36, issue.7-8, pp.1245-1258
DOI : 10.1016/S0025-5408(01)00625-0

A. Teterskii, S. Stefanovich, and N. Turova, Sol-gel synthesis of oxygen-ion conductors based on apatite-structure silicates and silicophosphates, Inorganic Materials, vol.42, issue.3, pp.42-294, 2006.
DOI : 10.1134/S0020168506030150

S. P. Jiang, Synthesis and characterization of lanthanum silicate apatite by gel-casting route as electrolytes for solid oxide fuel cells, Journal of Power Sources, vol.189, issue.2, pp.972-981, 2009.
DOI : 10.1016/j.jpowsour.2008.12.064

T. Kharlamova, Low-temperature synthesis and characterization of apatite-type lanthanum silicates Solid State Ionics Room-temperature synthesis of apatite-type lanthanum silicates by mechanically milling constituent oxides, Solid State Ionics, vol.11, issue.177, pp.179-200, 2006.

S. Bernal, Thermal evolution of a sample of La2O3 exposed to the atmosphere, Thermochimica Acta, vol.66, issue.1-3, pp.139-145, 1993.
DOI : 10.1016/0040-6031(93)85026-6

W. T. Gao, Synthèse et caractérisation de revêtements de silicates delanthane de structure apatite élaborés par projection plasma dédiés aux piles à combustibles IT-SOFCs Chemical stability of La 10 Si 6 O 27 and its application to electrolytes for solid oxide fuel cells, Solid State Ionics, pp.17927-17959, 2008.

T. Iwata, K. F. Emilie-bechade-yoshioka, H. , Y. Nojiri, and S. Tanase, Structural change of oxide-ion-conducting lanthanum silicate on heating from 295 to 1073 K. Solid State Ionics Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions. Solid State Ionics, pp.1523-1529, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00207957

N. Claussen, G. Lindemann, and G. Petzow, Rapid solidification in the Al2O3???ZrO2 system, Ceramics International, vol.9, issue.3, pp.83-86
DOI : 10.1016/0272-8842(83)90037-8

T. P. Mukhina, Formation behaviour of new amorphous and composite materials in detonation gun and plasma spraying, Thermal Spray Industrial Applications. 1994. Materials Park

G. Tremouilles, J. L. , and R. Portier, Plasma-coated metal-zirconia interface. in in Advances in Thermal Spraying, 1986.

J. A. Thompson and T. W. Clyne, The effect of heat treatment on the stiffness of zirconia top coats in plasma-sprayed TBCs, Acta Materialia, vol.49, issue.9, pp.49-1565, 2001.
DOI : 10.1016/S1359-6454(01)00065-9

R. W. Trice, Effect of heat treatment on phase stability, microstructure, and thermal conductivity of plasma-sprayed YSZ, Journal of Materials Science, issue.11, pp.37-2359, 2002.

M. Chu, Crack-healing in reaction-bonded silicon carbide, Materials Letters, vol.58, issue.7-8, pp.1313-1316, 2004.
DOI : 10.1016/j.matlet.2003.09.023

O. Sarikaya, Effect of the substrate temperature on properties of plasma sprayed Al2O3 coatings, Materials & Design, vol.26, issue.1, pp.53-57, 2005.
DOI : 10.1016/j.matdes.2004.04.005

S. Sampath, Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings Part I: Case study for partially stabilized zirconia, Materials Science and Engineering: A, vol.272, issue.1, pp.181-188, 1999.
DOI : 10.1016/S0921-5093(99)00459-1

X. Jiang, J. Matejicek, and S. Sampath, Substrate temperature effects on the splat formation, microstructure development and properties of plasma sprayed coatings, Materials Science and Engineering: A, vol.272, issue.1, pp.189-198, 1999.
DOI : 10.1016/S0921-5093(99)00461-X

M. Mellali, P. Fauchais, and A. Grimaud, Influence of substrate roughness and temperature on the adhesion/cohesion of alumina coatings, Surface and Coatings Technology, vol.81, issue.2-3, pp.275-286, 1996.
DOI : 10.1016/0257-8972(95)02540-5

Y. Chen, Ionic conductivity of plasma-sprayed nanocrystalline yttria-stabilized zirconia electrolyte for solid oxide fuel cells, Scripta Materialia, vol.60, issue.11, pp.60-1023, 2009.
DOI : 10.1016/j.scriptamat.2009.02.036

Y. Xing, Microstructure development of plasma-sprayed yttria-stabilized zirconia and its effect on electrical conductivity. Solid State Ionics, pp.27-32, 2008.

X. Ning, Effect of powder structure on microstructure and electrical properties of plasma-sprayed 4.5vol% YSZ coating, Vacuum, vol.80, pp.11-12, 2006.

I. O. Golosnoy, S. Paul, and T. W. Clyne, Modelling of gas permeation through ceramic coatings produced by thermal spraying, Acta Materialia, vol.56, issue.4, pp.874-883, 2008.
DOI : 10.1016/j.actamat.2007.09.045

X. Ning, Study on the fabrication of zirconia based electrolyte for SOFC by atmospheric plasma spraying, IV.5. Références bibliographiques 1, 2005.

H. Yoshioka, Y. Nojiri, and S. Tanase, Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions, Solid State Ionics, vol.179, issue.38, pp.179-2165, 2008.
DOI : 10.1016/j.ssi.2008.07.022