S. Ma, Y. Maréchal, and J. Coulomb, Evaluation of the STEP Standard in modeling electromagnetic phenomena, proceedings of the IGTE'98 conference, 1998.

S. I\1a, Y. Maréchal, and J. Coulomb, STEP standard's evaluation for modeling in electromagnetism, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol.18, issue.3, 1999.

S. Ma, Y. Coulomb, J. , S. Maréchal, Y. Coulomb et al., Finite Element Analysis in the STEP Standardl\!Iethodology for an implémentation of the STEP Standard: a Java PrototypeAdvances in Engineering Software, proceedings of the CEFC2K conference published in the International Journal, pp.15-19, 2000.

S. Ma, Y. Maréchal, and J. Coulomb, A Finite Element 3D l\1agnetostatic Solver using STEP data, 2001.

R. Anderl and A. Wasmer, Integration of product life cycle views on the basis of a shared conceptual information model, pp.47-58, 1997.
DOI : 10.1007/978-0-387-35063-9_5

S. Arbouy, STEP concepts fondamentaux, 1994.

G. Booch, Object-oriented Design with i\pplications, 1991.

J. Brun, rvIodèle produit: les conditions de cohérence et leur évolution au cours des processus de conception, pp.513-529, 1997.

J. Coulomb, Analyse tridimensionnelle des champs électriques et magnétiques par la méthode des éléments finis, Thèse de doctorat, 1981.

G. Dhatt and G. Touzot, Une présentation de la méthode des éléments finis, Maloine, 1984.

P. Dular, W. Legros, and A. Nicolet, Coupling of Local and Global Quantities in Various Finite Element Formulations and its Application to Electrostatics, NIagnetostatics and Magnetodynamics, IEEE Transaction on Magnetics, vol.34, issue.5, 1998.

P. Ghodous and D. Vandorpe, A Systematic Approach for Product and Process Data Modeling Based on the Step Standard, Computer-Aided Civil and Infrastructure Engineering, vol.13, issue.3, pp.189-205, 1998.
DOI : 10.1111/0885-9507.00098

F. Henrotte, B. Meys, H. Hedia, P. Dular, and W. Legros, Finite element modelling with transformation techniques, IEEE Transactions on Magnetics, vol.35, issue.3, 1999.
DOI : 10.1109/20.767235

C. Hérault, Vers une simulation sans maillage des phénomènes électromagnétique, Thèse de doctorat, 2000.

I. Jacobson, Génie Logiciel Orienté Objet, 1993.

L. Krahenbühl, La méthode des équations intégrales de frontière pour la résolution des problèmes de potentiel en électrotechnique et sa formulation axisymétrique, Thèse de doctorat, 1983.

T. Huu and . Luong, Amélioration de la formulation en potentiel scalaire magnétique et généralisation au couplage entre équations de champ et de circuit électrique, Thèse de doctorat, 1997.

N. Lai, UML, La notation unifiée de modélisation objet, Dunod, 1998.

J. Liang, J. J. Shah, D. Souza, R. Urban, S. D. et al., Synthesis of consolidated data schema for engineering analysis from multiple STEP application protocols, Computer-Aided Design, vol.31, issue.7, pp.429-447, 1999.
DOI : 10.1016/S0010-4485(99)00041-X

T. Mannist6, H. Peltonen, A. Martio, and R. Sulonen, Modelling generic product structures in STEP, Computer-Aided Design, vol.30, issue.14, pp.1111-1118, 1998.
DOI : 10.1016/S0010-4485(98)00067-0

Y. I\·1aréchal, I\1odélisation des Phénomènes Magnétostatiques avec Terme de Transport. Application aux Ralentisseurs Electromagnétiques, Thèse de doctorat, 1991.

I. Hafedh, F. Iili, and . Pachet, Exchanging I\!Iodels Between Toois Supporting A Different Number of Modeling Layers, p.98, 1998.

B. Nayroles, G. Touzot, and P. Villon, Generalizing the finite element method: Diffuse approximation and diffuse elements, Computational Mechanics, vol.313, issue.5, pp.307-318, 1992.
DOI : 10.1007/BF00364252

J. Rumbaugh, Modélisation et Conception orientées objet, 1995.

D. Schenk and &. , Wilson Information Modeling the EXPRESS Way, 1994.

G. C. Zienkiewicz, The Finite Element I\!Iethod, NIc Graw hill, 1989.

. ". <#octal_literal, Industrial automation systems and integration Product data representation and ~A.nnexe F. Analyse lexicale et syntaxiqueSUBTYPE"> <SUPERTYPE: tlSUPERTYPE"> <TAN, RDLES OF " > <RULE: "RULE"> <SCHEMA: "SCHEMA" > <SELECT: "SELECT"> <SELF: "SELF"> <SET: "SET"> <SIN: "SIN"> <SIZEOF: "SIZEOF"> <SKIP _E: "SKIP"> <SQRT: "SQRT"> <STRINGWH ILE" > <XOR: "XOR"> <CONST_E: "CONST_E"> <END_ALIAS: "END_ALIAS"> <END_CASE: "END_CASE'I> <END_CONSTANT: "END_CONSTANT"> <END_CONTEXT: "END_CONTEXT"> <END_ENTITY: "END_ENTITY"> <END _FUNCTION: "END _FUNCTION" > <END_IF: "END_IF"> <END_LOCAL: "END_LOCAL"> <END_MaDEL «EXPONENT»? > <#EXPONENT: [tl a ", tlE"J ([tI+tI, "_tlJ)? ([ tl Otl_"9 t1 J )+> <SIMPLE_STRING_LITERAL: tI\, tI «DIGIT> 1 <LETTER> 1 <ESCAPED_CHAR> 1 <PRINT_CHAR> l " Il ) * tI\," > <#ESCAPED_CHAR: "\\" ([tln

*. , <. Entity, and S. Of, 1 II-II 1"&" 1 "*'1 l "(" 1 <RPAREN> l, pp.1-1

E. Formulations, S. Formulation, and . Of, ONEOF(magnetostatic_formulation)) name : label; description: text; state_variable : variable; validity_domain : maths_space; allowed_constraints : SET [O:?J OF constraint; accessible_variables : SET [O:?J OF variable; needed_material_properties : SET [O:?J OF material_property