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UNIVERSITÉ PARIS-EST

ECOLE DOCTORALE MSTIC
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Title:

Applications of Digital Topology

For Real-Time Markerless Motion Capture

Abstract

This manuscript deals with the problem of markerless motion capture. An approach to this

problem is model-based and is divided into two steps: an initialization step in which the initial

pose is estimated, and a tracking which computes the current pose of the subject using infor-

mation of previous ones. Classically, the initialization step is done manually, forbidding the

possibility to be used online, or requires constraining actions of the subject.

We propose an automatic real-time markerless initialization step, that relies on topological

information provided by skeletonization of a 3D reconstruction of the subject. This topological

information is then represented as a tree, which is matched with another tree used as model

description, in order to identify the different parts of the subject. In order to provide such

a method, we propose some contributions in both digital topology and graph theory research

fields.

As our method requires real-time computation, we first focus on the speed optimization of

skeletonization methods, and on the design of new fast skeletonization schemes providing good

results.

In order to efficiently match the tree representing the topological information with the tree

describing the model, we propose new matching definitions and associated algorithms.

Finally, we study how to improve the robustness of our method by the use of innovative con-

straints in the model.

This manuscript ends by a study of the application of our method on several data sets, demon-

strating its interesting properties: fast computation, robustness, and adaptability to any kind

of subjects.

Keywords

markerless; motion capture; digital topology; thinning; alignment; homeomorphism;

betweenness.



Titre:

Applications de la topologie discrète pour

la captation de mouvement en temps réel et sans marqueurs.

Résumé

Durant cette thèse, nous nous sommes intéressés à la problématique de la captation de mouve-

ment sans marqueurs. Une approche classique est basée sur l’utilisation d’un modèle prédéfini

du sujet, et est divisée en deux phases: celle d’initialisation, où la pose initiale du sujet est

estimée, et celle de suivi, où la pose actuelle du sujet est estimée à partir des précédentes. Sou-

vent, la phase d’initialisation est faite manuellement, rendant impossible l’utilisation en direct,

ou nécessite des actions spécifiques du sujet.

Nous proposons une phase d’initialisation automatique et temps-réel, utilisant l’information

topologique extraite par squelettisation d’une reconstruction 3D du sujet. Cette information est

représentée sous forme d’arbre (arbre de données), qui est mis en correspondance avec un arbre

utilisé comme modèle, afin d’identifier les différentes parties du sujet. Pour obtenir une telle

méthode, nous apportons des contributions dans les domaines de la topologie discrète et de la

théorie des graphes.

Comme notre méthode requiert le temps réel, nous nous intéressons d’abord à l’optimisation du

temps de calcul des méthodes de squelettisation, ainsi qu’à l’élaboration de nouveaux algorithmes

rapides fournissant de bons résultats.

Nous nous intéressons ensuite à la définition d’une mise en correspondance efficace entre l’arbre

de données et celui décrivant le modèle.

Enfin, nous améliorons la robustesse de notre méthode en ajoutant des contraintes novatrices

au modèle.

Nous terminons par l’application de notre méthode sur différents jeux de données, démontrant

ses propriétés: rapidité, robustesse et adaptabilité à différents types de sujet.

Mots Clés

captation de mouvement sans marqueurs; topologie discrète; squelettisation; aligne-

ment; homeomorphisme; interposition.
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Chapter 1

Global Introduction

“Notre nature est dans le mouvement, le repos entier est la mort.”

(“Our nature consists in motion; complete rest is death.”)

Blaise Pascal.

1.1 Background

Motion capture consists in automatic estimation of the pose (i.e. relative position and orientation

of each part of the subject), motion and actions of a subject, usually a full human being. It

is an highly active research field since more than twenty years, notably due to its industrial

applications in computer-animated feature films and Human-Computer Interfaces (HCI). For

the latest, some specific properties are required:

• Real-time computation, in order to provide good interaction.

• The subject must not need to wear specific equipment (markers).

Usual markerless motion capture systems are composed by a set of cameras, providing the input

information of the subject. Numerous markerless methods of motion capture use an a priori

model describing the structure and shape of the subject whom motion has to be captured. Such

methods are composed of at least two steps: the initialization step, where the initial pose and

the parameters of the model are detected, and the tracking step, consisting of finding the current

pose in function of the previous ones.

In many of such methods, the initialization step is done manually by the user, forbidding the

possibility to be used for HCI purpose, or requires constraining actions or poses of the subject.

3



4 Chapter 1 Global Introduction

1.2 Contribution

In this thesis, we propose an automatic real-time markerless initialization step using a very

simple a priori model, described by a tree (called model tree), which can be easily designed in

order to use the method for any kind of subject, e.g. full human being, hand, or dog.

Our method uses topological information (the skeleton) extracted from a 3D reconstruction of

the subject, obtained by using a multi-camera system. This topological information is then

represented by a tree (called data tree), which will be matched with the model, in order to find

the position of specific parts, e.g. head, torso, crotch, arms and legs in the case of full human

being.

In order to reach our goal, we have done some contributions in different fields of research:

Digital Topology. As our method requires real-time computation, we have worked on opti-

mizations of the speed of skeletonization algorithms and on design of new fast and efficient

skeletonization schemes.

Graph Theory. The matching between the model tree and the data tree has to take into

consideration some specific noises on the data tree, due to its acquisition. We have proposed

a definition of matching that is adapted to our needs, and associated computationally

efficient algorithms.

Motion Capture. Merging the results of our previous works, we provided an efficient auto-

matic real-time markerless initialization step. We also introduced novel intuitive constraint

definitions, which can be optionally added to the model definition, in order to improve the

robustness of the method.

The structure of this manuscript is in four parts: the first one introduces the background and

the backbone of our method, and the three others deal with our contributions and results in the

three fields of research enumerated above, respectively.



Chapter 2

Motion Capture Overview

Automatic capture and analysis of articulated 3D subjects (e.g. humans, hands or animals)

motion is an highly active research area since more than twenty years.

Motion capture presents issues in several kinds of applications:

3D models animation: motion capture is widely used for movies and video games characters

animation. Usage of real actors movements to animate virtual avatars is faster, more

accurate and realistic than doing it manually.

Human-computer interfaces (HCI): several usages can be done of motion capture in the

field of HCIs, including domotic (control of TV or HIFI by hand moves), sign language

understanding, or virtual reality system interactions.

Surveillance: motion capture can be used in surveillance field in order to detect suspect be-

haviors, e.g. fights or theft, or crowd analysis.

Medical analysis: motion capture can be used for medical purpose, in order to analyze gait

problems or high level sportsmen performances.

Of course, all these applications do not require the same properties for motion capture. Ani-

mation and medical analysis request a very accurate motion capture and analysis in order to

be usable, but it can be done offline (i.e. after the performance of the subject). On the other

hand, HCI and surveillance applications need a real-time motion capture, in order to allow an

immediate response for some given situations but the accuracy is less essential, and only requires

to allow the understanding of the action or the approximate location of the subject parts.

There exists numerous different methods to perform motion capture. In the sequel of this

chapter, we propose a non exhaustive state of the art on motion capture, focusing on the class

of methods used in the thesis, and on their specificities. For exhaustive studies, the reader can

refer to [116, 117, 140].

5
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2.1 Overview of Motion Captures Systems

2.1.1 Acquisition Systems Using Markers

Several acquisition systems estimate motion of a subject by measuring the position and/or the

orientation of physical objects (called markers), which are fixed on the subject at specific loca-

tions. Acquisition systems with markers are widely proposed as commercial solutions. Different

classes of such system can be defined, in regard of the method used to measure marker positions:

• Mechanical systems (e.g. GypsyTM system, see Figure 2.1a) estimate the motion by direct

measurement of articulation angles, via potentiometers fixed on an exoskeleton. The main

problem of such systems is the fragility of the skeleton, which can be easily broken.

• Magnetic systems (e.g. MotionStarTM and FastrakTM systems) consist in generating an

electromagnetic field then finding the position and orientation of markers (coils of electric

wire) by their perturbation of the field. The main problem of such system is the sensitivity

to interferences from metal objects of the environment.

• Inertial systems (e.g. ColibriTM and XsensTM systems, see Figure 2.1b) use markers com-

posed by accelerometers and gyroscopes. These sensors provide motion informations, as

speed and rotation of the marker. Then, softwares are used in order to find the pose of

the subject from these informations. A very famous inertial motion capture system is the

WiimoteTM. The main problem of such system is the lack of accuracy, in regard of other

methods.

• Optical Systems can be classified in two categories:

– Passive optical systems (e.g. OptiTrackTM, see Figure 2.1c, and QualisysTM systems)

use cameras in order to track markers coated with a retroreflective material reflecting

light generated near the cameras lens.

– Active optical systems (e.g. PhaseSpaceTM system) use markers powered to emit their

own light (via a LED).

The main problem of such systems is the sensibility to self occlusions: all the markers are

not detected by all cameras, some of them being hidden by parts of the body.

These acquisition systems using markers have in common to be very expensive, due to the

requested specific hardware.

2.1.2 Marker Free Optical Acquisition Systems

Contrary to other acquisition systems, marker free optical acquisition systems only require cam-

eras. We can classify marker free methods in regard of the requested number of cameras:
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Figure 2.1: Examples of systems using markers. (a) exoskeleton of GypsyTM mechanical
system. (b) markers of XsensTM inertial system. (c) markers of OptiTrackTM passive optical

system.

Monocular Methods. Pose estimation from only one video stream is a very complex problem,

notably due to self occlusions of subject parts. This kind of method is mainly used for

surveillance purpose, crowd study and hand gesture recognition.

Multi-view Methods. During the last twenty years, the increase of computer power has al-

lowed the management of multiple synchronized cameras and fast computation of 3D

representation of the subject. It led to the development of numerous multi-view methods,

freed from the problem of self occlusions. A majority of these methods requires a static

background and a prior camera calibration.

According to Menier et al. [111], most of the markerless methods fall into three categories:

• Learning-based methods [1, 6, 9, 58, 119, 156, 163, 171, 174] store a set of training examples

whose poses are known and estimate pose by searching for training images similar to the

input images. This category of methods requires larger storage memory space than others.

• Model-free methods [27, 36, 42, 43, 48, 104, 105, 161, 176] do not require any a priori

knowledge and automatically recover articulated structures.

• Model-based methods use an a priori model which is tracked using image information.

Moeslund et al. [116, 117] defined a general structure of such methods in four steps:

1. Initialization. Ensuring that the system starts motion capture with a correct inter-

pretation of the scene: initial subject pose, background images, model parameters are

some of the possible informations acquired during this step.
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2. Tracking. Using temporal information in order to find the current parameters of the

model (e.g. position and orientation of the different parts) from the previous ones.

3. Pose estimation. Estimating the pose of the subject in function of the model param-

eters.

4. Recognition. Recognizing the actions, activities and behaviors of the subject.

Classically, tracking and pose estimation steps are merged in one step. Here, we consider

that recognition step is a problem distinct from motion capture.

Since in this thesis, we exclusively deal with markerless multi-view model-based methods, we

will focus on the main characteristics of this kind of method.

2.2 A priori Model Definitions

Numerous model definitions have been proposed in the literature. A wide majority of them

includes a kinematic structure (also called kinematic skeleton) defined by:

• a set of segments with specified lengths, representing limbs,

• a set of joints linking segments, with specified degrees-of-freedom, representing articula-

tions.

Although some methods only require a kinematic structure [35, 111], most of them require to

link it with shape information.

A usual way to provide shape information is the use of geometric primitives, like ellipsoids [31],

truncated elliptical cones [79–81], super-quadric [166, 167], or combinations of several kinds [45,

112–115].

Another usual way to provide shape information is to use a surface, which can be generated

from geometric primitives [66, 139] (implicit surface), or an accurate mesh acquired in a prior

step by a specific device [51, 76]. Notice that in some cases [3, 50], such meshes are used without

kinematic skeletons.

In addition to kinematic and shape information, color information can be used, by texturing the

mesh [11], or giving some additional color priors [112] (e.g. noticing that hands and head are

the only parts to have the same color).

Figure 2.2 shows examples of the different model definitions.
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Figure 2.2: Examples of model definitions. (a) Kinematic model used by Menier et al. [111];
(b) Super-quadratic representation used by Sundaresan and Chellappa [166]; (c) Ellipsoid rep-
resentation used by Horaud et al. [66] and (c’) its associated implicit surface; (d) A surface scan
of an actress and (d’) corresponding mesh used by De Aguiar et al. [3]; (e) Textured mesh and

(e’) its underlying skeleton used by Ballan and Cortelazzo [11].

2.2.1 Adaptability of the Models

The adaptability of the method, i.e. the simplicity to modify the method in order to use it for

another subject than the one initially targeted, obviously depends on the model definition. We

define two levels of adaptability:

• inner-class adaptability is the simplicity to modify the model in order to use it for another

subject of the same kind (e.g. two different human beings)

• trans-class adaptability is the simplicity to modify the model in order to use it for a subject

of different kind (e.g. from full human body to hand motion capture)

Models using only kinematic structure, geometric primitives and implicit surfaces have a high

inner-classes adaptability, model parameters being adjusted during initialization step, contrary

to meshes, which have to be rebuild in a prior step, using specific devices and methods.

Concerning the trans-classes adaptability, almost all the methods can be used for any kind of

subject, if an adapted model is provided (such methods are called generic). The exception is

the case of color priors [112] and methods requesting a specific detection for each part of the
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subject [112, 114, 115]. For all the others, the trans-classes adaptability is inversely proportional

to the complexity of the model.

2.3 On the Use of Multi Camera Systems

Motion capture methods use information provided by multi-camera systems in many different

ways, and can be classified into two categories: methods using 3D reconstruction of the subject

and methods performing projection of the model in the images.

2.3.1 Projection in Images

Projection of the model in images can be performed by several methods, in order to use specific

information which is easier and faster to extract in 2D than in 3D. Examples of information are:

• silhouette [50] and contours of the subject [45, 79–81], methods searching for a optimal

fitting of the model in each of them.

• connected components of a same color [2], methods using them to facilitate the fitting.

• optical flow of contours [167], specific projected points [11] or shape descriptors [3, 51]

(e.g.SIFT [47]) can be performed in order to track the motion in all the images indepen-

dently, then reconstruct the 3D motion by triangulation.

2.3.2 3D Reconstruction of the Subject

Another approach consists of directly using 3D clues, considering 3D data resulting from multi-

view modeling methods.

2.3.2.1 Stereo-Correlation

A famous binocular modeling method is the stereo-correlation, used in some methods [45, 139]:

when cameras have a small baseline and are pointing in about the same direction, a part of the

surface of the subject is visible in both images. It is thus possible to estimate the depth of this

surface part by studying the disparity between corresponding points in the two images.
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2.3.2.2 Visual Hulls

The most used multi-view modeling method is the visual hull, introduced by Laurentini [89]:

intuitively, an object lies inside the volume generated by back-projecting its silhouette through

the camera center (called silhouette cone). The intersection of the silhouette cones of all the

cameras results in a volume called the visual hull (see Figure 2.3 for some illustrations), which

is guaranteed to contain the object. Two kind of visual hulls can be distinguished:

• surface visual hull, used in [111], consists in only representing the surface of the visual

hull by a mesh. Some methods, e.g. [66], use in addition the information from normals to

surface elements.

• volumetric visual hull, used in [114, 115], consists in representing the visual hull volume

by a subset of a voxel grid positioned at the intersection of all images cones: a voxel

belongs to the visual hull if and only if the projection of it center in each image belong

the corresponding silhouette. The voxels can be colorized [31, 35, 76, 112, 113] using ray

tracing from the cameras, providing additional information. Volumetric visual hull can be

computed in real-time, using GPU [63], or hierarchical carving [31].

Notice that some methods [166] use both visual hull and projection in images.

Figure 2.3: (a) Illustration of silhouette cones, reprinted from Matusick et al. paper [109].
(b) Example of input camera image and associated silhouette. (c) and (d) Illustrations of
surface and volumetric visual hulls reconstructions, respectively: object is represented in blue,
its silhouettes in green, silhouette cones by dashed lines, and result by bold lines. (e) and (f)
surface and volumetric visual hulls of a same object, respectively. Figures (b), (e) and (f) are

reprinted from Menier thesis [110].
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2.4 Initialization Step of Model-Based Methods

A wide part of model-based motion capture methods found in the literature focus on the tracking

and pose estimation step, and often omit the initialization step.

The initialization step is though essential, as providing the parameters of the model (limb lengths,

dimensions of geometric primitives, color information, initial position and orientation of the

different parts) which are primordial for an efficient tracking.

Different solutions have been proposed in the literature:

1. manual initialization [111] consists of manually setting the initial values of the model.

2. limb by limb identification [35] consists of asking to the subject to successively move only

each of its limbs, in a specific order, in order to easily identify which part of subject

information (in the case of Cheung et al. [35], a visual hull) is associated to each part of

the model.

3. some methods require a specific initial pose [31, 35, 76], most often an “X”-pose, where the

subject have spread legs and arms. It allows a fast identification of the model parameters,

as the limb positions are already approximately set.

4. the initialization can be automatically done, using a hierarchic fitting [112–114]: due to

its unique shape and size, the head is the easiest part to find and is identified first. Then,

the torso is located using head position information, and finally limbs are detected using

torso position and orientation information.

The method 1 is difficult to use online, for HCI purpose for example. It is even more a shame,

as some methods using it (e.g [111]) are able to perform real-time tracking.

On the other hand, methods 2 and 3 can be used online, but such methods involve some con-

straints for the subject, which have to perform special actions in order to be tracked.

Finally, method 4 can be used online and does not require any specific action or pose from the

subject, but is not generic: if the subject does not contain a part which is easy to detect, the

initialization cannot be performed.

For our best knowledge, no real-time generic initialization step method has been proposed in

the literature.
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Motivation

As seen in the previous chapter, numerous methods of marker-free 3D motion capture require

a manual initialization of the subject pose or a constraining one, e.g. needing a special pose of

the subject.

The aim of our work is to provide a pose initialization method (i.e. resulting only in the positions

of specific parts of the subject) with several properties. First, our method has to be generic,

in the sense it must be adaptable for a large set of subjects (full human body, hands, upper

part of the human body, animals...) only by creating a very simple a priori model. Our method

has to be real-time, in order to be usable with real-time tracking for online applications.

Furthermore, we request our method to be robust, i.e. to work for a large set of subject poses,

avoiding constraints for the subject. Finally, we consider that the input of the method is only a

volumetric visual hull of the subject.

This chapter is composed of two sections. In the first one, we discuss the definition of the a

priori model required by our method. Then, in the second section, we propose a brief overview

of the pipeline of our method.

3.1 Model Definition

3.1.1 Constraints of Descriptors

The choice of the descriptors used for our a priori model definition is linked to different obser-

vations, according to the nature of the application and to our philosophy.

As we consider only the visual hull in input, we do not use any color information, contained

in the camera images. No color prior is used in our method. Furthermore, some models have

homogeneous color, e.g. hands, thus such information is not enough generic.

13
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The quality of the 3D shape depends of the number of views for the visual hull reconstruction,

and the respective positions of the cameras. In a multi-view system without enough cameras,

or not well positioned ones, the visual hull can present important variations of limbs thickness

in regard of the subject. Due to this fact, we do not use accurate shape representations, like

geometric features.

As we want to create a method that should be usable with any kind of subject, we have to

propose a representation allowing to easily describe the subject. We thus avoid the use of shape

primitive description and laser scanned models.

Our method has to be able to find the pose of the subject in a maximum number of situations,

in order to be able to perform the initialization step as often as possible. By this way, we can use

our method even when the subject does not perform a specific action or pose (like it is usually

the case), and we can check the tracking at closer intervals, increasing the accuracy.

The weakest constraint we found is that the topology of the shape and its salient geometric

features have to be the same as for the model.

3.1.2 Model Description

Taking into consideration all the constraints enumerated in the previous section, we propose

an a priori model providing a description of the topology and of the geometric features of the

subject, using a tree representation.

The model is built as follows:

• Each vertex represents a characteristic part of the model. For example:

– for the full human body: hands, feet, head, torso and crotch.

– for the hand: the arm, the palm (in two parts), the end of the fingers.

• Two vertices are linked if the associated parts are adjacent in the model.

• To each edge is associated a weight, corresponding to the approximative distance (for a

given distance unit used for all the weights in the graph) between the two linked parts.

Two kinds of models can be considered (see Figure 3.1 for examples):

• the complete models, for subjects fully contained in the 3D acquisition space, as in the case

of full human body motion capture, for example.
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• the incomplete models, which are part of a biggest shape, as in the case of hand pose

estimation. In this case, a part of the shape intersects the border of the 3D acquisition

space (e.g. the arm, in case of hand motion capture), and we represent this part in the

model as an infinite limb, as we do not know it length.
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Figure 3.1: Description of two different models. On the Left, the hand model (incomplete
model): notice that the edge between the arm and the palm is weighted by “infinity”, as we do

not know its length. On the right, the full human body model (complete model).

Notice that the use of a tree, instead of a graph, for the model description, forbid the represen-

tation of models containing holes (represented by a loop in a graph), but allow faster algorithms

for the matching with data.

3.2 Initialization Method Overview

Now we have defined the inputs of our method: a visual hull representation of the subject and

the a priori model.

Our method consists in extracting a descriptor from the visual hull (called the data descriptor)

which is similar to the one used in the a priori model (called the model descriptor). The main

difference is that the data descriptor has to contain some spatial information, where as that the

model descriptor contains informations about the nature of the parts of the model.

Finding a matching between the two descriptors results in finding spatial information for each

part of the model and by this way, the pose of the subject.

3.2.1 Extraction of Data Tree

First we have to find a way to extract topological and geometrical information from the visual

hull, and to represent it by a tree. We solve this problem in two steps: first, we consider

the skeleton of the visual hull. The skeleton is an efficient shape descriptor, representing in a

compact form the topology and the main geometric features of a shape. It can be obtained by

iteratively removing voxels without changing the topology (see Figure 3.2 for an example).

Then, we “translate” the skeleton into a tree:
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Figure 3.2: Example of skeletonization process. Left: a visual hull. Middle: different steps of
skeletonization process. Right: resulting skeleton (in red).

• Each vertex represents a characteristic point of the skeleton: ending point or intersection

point.

• Two vertices are linked if the associated points are adjacent to a same curve in the skeleton.

• To each edge is associated a weight, which is the number of voxels in the corresponding

curve.

In the case of incomplete model, we have to consider that a branch ended by a point touching

the border of acquisition space have an infinite length. See Figure 3.3 for some examples of data

tree extractions.

More details about data tree extraction are given in Chapter 7.
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Figure 3.3: Examples of data tree extraction. Left: for a full human body subject. Right: for
a hand subject. The black disk represents a point of the skeleton touching the border of the

acquisition space.

3.2.2 Matching Data Tree with Model Tree

Once we have a tree description of the subject, we have to find a way to match it with the

model tree. In the literature, numerous methods are proposed to find a matching between two

trees. However, in our case we have to take into consideration several kind of noises in the data

tree. Furthermore, in the literature, proposed methods are designed for special kind of trees,

usually rooted, oriented, and with information on vertices instead of on edges, as in our case.
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We have to define a new way to match our data tree with our model tree, corresponding to our

constraints.

3.2.3 Pipeline and Main Difficulties of Our Method

The pipeline of our method is summarized in Figure 3.4.

Visual Hull
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Data Tree
Extraction

Matching with

Model Tree

Model Tree

Infinite Border Points
Detection

Input

Output

Input

Subject Pose
Limbs in
Model

?

YES

Figure 3.4: Pipeline of our method. Rounded rectangles represent input and output data.
Other rectangles represent steps of the method.

We have now defined the different steps of our method, however, two main difficulties remain.

First, the skeletonization process has to be both speed efficient and robust to visual hull surface

noise. To our best knowledge, no skeletonization algorithm satisfies these two properties. In the

second part of this manuscript, we propose some solutions to speed up existent algorithms and

a new algorithm providing good skeletons in real time.

The second problem is the matching with the model tree. As explained in Section 3.2.2, no

method found in the literature is adapted to our special case of unrooted edge weighted trees,

with special noises on the data tree. In the third part of this manuscript, we propose new kind

of matching specially designed for our problem, and efficient algorithms for their computation.

Finally, after solving these two main difficulties, we propose in the last part of the manuscript

to improve the robustness of the result by addition of intuitive constraints, and we study the

results and the speed of our method.





Part II

Skeletonization Optimizations
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Chapter 4

State of the Art of Skeletonization

The skeleton was originally defined by Blum [22] based on a “ grass fire” analogy. Imagine

a shape as a field covered by dry grass; if you set on fire the contour of the field, then the

meeting points of the flame fronts would constitute the skeleton of the shape. In the continuous

framework, this definition is equivalent to saying that the skeleton is the set of points which are

centers of maximal balls (balls included in the object, and not strictly included in any other

such ball) ([32]). Figure 4.1 shows an example of skeleton in continuous framework.

Figure 4.1: Example of skeleton in continuous framework. The shape (a rectangle) is repre-
sented in grey. The skeleton is represented by bold lines. Some maximal balls are represented

by dashed lines, with their center represented by black points.

In 1969, Hilditch gave four properties that a skeleton in a bi-dimensional space should pos-

sess [64]. Adapted to the general case of n-dimensional skeletons, these properties are:

1. a skeleton should be homotopic to the original object,

2. a skeleton should be thin (should have lower dimension than the object),

3. a skeleton should be centered in the original object,

4. skeletonizing a skeleton should not change anything.

In the continuous framework, the set of centers of maximal balls, called the medial axis, satisfies

these properties [91, 106]. In the discrete framework Zn, the discrete medial axis does not satisfy

21
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two of these properties: it is not always homotopic to the original object, and it is not always

thin (See Figure 4.2 for an example).

Figure 4.2: Example of medial axis in discrete framework. The shape is represented in grey.
The medial axis is represented by crosses. Some maximal balls are represented by dashed lines,

with their centers represented by bold crosses.

Various methods have now been developed for performing skeletonization of a discrete object.

According to Palágyi [129], discrete skeletons can be computed using four types of methods:

Voronoi-based transformations [26, 122], distance-based transformations [23, 172], general-field

methods [5, 149] and thinning. In this thesis, we will focus only on thinning methods, as they

are the most studied and well defined.

4.1 Thinning Theory

Thinning consists of iteratively removing points of the object without changing its topology.

These points have specific characteristics and are called simple points. In this section, we will

first provide usual definitions and notations of digital topology. Using these definitions, we will

in a second time describe the characteristics of simple points.

4.1.1 Definitions and Notations

First we have to introduce some fundamental definitions and notations of digital topology.

In digital topology, the framework is the discrete grid Zn. In our case, we will only consider the

cases n = 2 (bi-dimensional) and n = 3 (tri-dimensional). The object is represented by X ⊂ Zn,

and its complementary Zn \X is denoted by X̄.

A point p ∈ Zn is defined by (p1, ..., pn), with pi ∈ Z.

4.1.1.1 Neighborhood

The notion of neighborhood is central for digital topology. In the 2D case, two neighborhoods

(see Figure 4.3) are considered:
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• the 4-neighborhood of p is the set N4(p) = {q ∈ Z
2; |q1 − p1|+ |q2 − p2| ≤ 1}.

• the 8-neighborhood of p is the set N8(p) = {q ∈ Z
2;max(|q1 − p1|, |q2 − p2|) ≤ 1}.

p4

4

4

4 p8

8 8 8

8

888

Figure 4.3: Left: 4-neighborhood of p represented by boxes labeled by 4 or p. Right: 8-
neighborhood of p represented by boxes labeled by 8 or p.

In 3D case, three neighborhoods (see Figure 4.4) are considered:

• the 6-neighborhood of p is the set N6(p) = {q ∈ Z3; |q1 − p1|+ |q2 − p2|+ |q3 − p3| ≤ 1}.

• the 26-neighborhood of p is the set N26(p) = {q ∈ Z3;max(|q1−p1|, |q2−p2|, |q3−p3|) ≤ 1}.

• the 18-neighborhood of p is the set N18(p) = {q ∈ N26(p); |q1−p1|+ |q2−p2|+ |q3−p3| ≤ 2}.

p p p

Figure 4.4: From the left to the right: 6-neighborhood, 18-neighborhood and 26-neighborhood
of point p, represented by black disks and p.

For a k-neighborhood, we define N∗
k (p) = Nk(p) \ {p}.

4.1.1.2 Connectivity

From the definition of neighborhood we can propose the definition of connectivity.

Let p be an element of X, we define the k-connected component of X containing p, denoted by

Ck(p,X), as the maximal subset of X containing p, such that for all points a ∈ Ck(p,X), there

exists a sequence of points of 〈p0, ..., pn〉 such:

• p0 = p and pn = a,

• ∀i ∈ {0, ..., n}, pi ∈ Ck(p,X),
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• ∀i ∈ {1, ..., n}, pi−1 is in the k-neighborhood of pi.

The set of all k-connected components of X is denoted by Ck(X). We can notice that the union

of all the elements of Ck(X) is equal to X, and the intersection of two different elements of

Ck(X) is always the empty set.

A subset Y of Zn is k-adjacent to a point p ∈ Z
n if Y ∩N∗

k (p) 6= ∅. The set of all k-connected

components of X which are k-adjacent to a point p is denoted by Cp
k(X).

When we consider the k-connectivity of X, it is mandatory to consider a different k̄-connectivity

for X̄ [82]. In bi-dimensional space, if k = 4, then k̄ = 8, and inversely. In tri-dimensional space,

if k = 6, then k̄ = 26 and inversely. This rule is necessary in order to retrieve some important

topological properties such as the Jordan theorem.

4.1.1.3 Connectivity Numbers

In order to provide local description of simple points and other characteristic points, we have to

introduce the notion of connectivity numbers.

In the 2D case, let X ⊆ Z2 and p ∈ Z2. For k ∈ {4, 8} the connectivity number Tk(p,X) is

defined by:

Tk(p,X) = |Cp
k(N

∗
8 (p) ∩X)|

In the 3D case, the definition of connectivity numbers lies on the notion of geodesic neighborhood.

Let X ⊆ Z3 and p ∈ Z3. The t-order k-geodesic neighborhood of p in X is the set N t
k(p,X)

recursively defined by:

• N1
k (p,X) = N∗

k (p) ∩X

• N t
k(p,X) =

⋃{Nk(q) ∩N∗
26(p) ∩X, q ∈ N t−1

k (p,X)}

The geodesic neighborhoods Gk(p,X) are defined by: G6(p,X) = N2
6 (p,X) and G26(p,X) =

N1
26(p,X).

We can now define the connectivity numbers in 3D, for k ∈ {6, 26} as:

Tk(p,X) = |Ck(Gk(p,X))|

.
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4.1.2 Simple points

4.1.2.1 Simple Points in 2D

Intuitively, a point is simple if it can be removed from an object without changing its topology.

In the digital topology framework, the topology of an object depends on the chosen connectivity;

for this reason, when considering a k-connected object, we will talk about k-simple points. The

notion of simple point is central for homotopic thinning in the digital framework: a skeleton is

obtained by iteratively removing simple points from an object.

According to [88], in the 60s, 2D simple points were characterized based on connectivity: a point

p is k-simple for an object X if the removal of p does not change the number of k-connected

components of X nor the number of k-connected components of X [25, 56]. This definition does

not lead to efficient algorithms : indeed, in order to test if a single point is simple, it requires

to scan the whole object in order to enumerate its connected components. Fortunately, local

characterization of deletable points in 2D began to appear in the mid 60s [64, 147, 150, 184].

All these works established that, in order to decide whether a point is deletable or not, it is

only necessary to look at the configuration of the point’s neighbourhood (no need to count the

number of connected components of the whole object). Consequently, in 2D, deciding if a point

is simple can be done in constant time.

Proposition 1. Let X ⊂ Z2, and p ∈ X. If Tk(x,X) = 1 and Tk̄(x,X) = 1, then p is k-simple

for X.

4.1.2.2 Simple Points in 3D

In 3D, the removal of a point may not only change the number of connected components of the

object, but may also change the tunnels of the object (see Figure 4.5 for an example). As in

the 2D case, 3D simple points can be locally characterized [118]. Further work on 3D simple

points have established that only connectivity of X and X is sufficient in order to characterize

3D simple points [15, 19, 102, 151, 152]. As in 2D, deciding if a point is simple can be done in

constant time in 3D. Bertrand and Malandain propose a local definition of simple points using

connectivity numbers T6 and T26:

Proposition 2. [19] Let X ⊆ Z3 and x ∈ X. The point x is k-simple for X iff Tk(x,X) = 1

and Tk̄(x,X) = 1.
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(a) (b) (c)

Figure 4.5: (a) A shape with a tunnel. (b) Deletion of the red point. (c) The shape has no
tunnel.

4.1.2.3 Simple Points in Higher Dimensions

Studies of simple points in 4-dimensions have also been achieved, leading once more to a local

characterization of such points [40, 85]. Thanks to these works, characterization of simple points

in 4D can be done again in constant time.

4.2 Different Kind of Skeletons

In this section, we will review the different kinds of results which can be expected from a thinning

process. The design and the constraints of the thinning algorithm will obviously depend on the

desired result.

4.2.1 Ultimate Skeleton

Let X ∈ Zn and Y ∈ Zn be two objects. We say that X and Y are homotopic if we can transform

X in Y by iteratively adding and removing simple points. We say that Y is lower homotopic to

X if Y can be obtained from X by iteratively removing simple points.

Let X ∈ Zn be an object. A subset Y ⊆ X is an ultimate skeleton of X if:

• Y is lower homotopic to X

• for any point p of Y , p is not simple for Y .

Ultimate skeleton can be used to study the topology of the object, but possibly important

geometric features informations are lost (see Fig. 4.6,(a) and (c)).
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Figure 4.6: Examples of the different kinds of skeleton. Top, 2D skeletons: (a) ultimate
skeleton, (b) curvilinear skeleton. Bottom, 3D skeletons: (c) ultimate skeleton, (d) curvilinear

skeleton, (e) surface skeleton.

4.2.2 Curvilinear and Surface Skeletons

Ultimate skeleton, providing only topological information about the shape, is not efficient as a

shape descriptor. Some geometric information, like salient parts, have to be kept in the result

of the thinning algorithm.

In 2D case, the skeleton has to be 1D or 0D, according to the Hilditch’s criteria. A 1-dimensional

skeleton, regardless of the dimension of the original object, is called a curvilinear skeleton (see

Fig. 4.6,(b) and (d)).

In the 3D case, always according to the Hilditch’s criteria, the skeleton can be 0D, 1D or 2D. A

2-dimensional skeleton is called a surface skeleton(see Fig. 4.6(e)).

These skeletons provide both topological and geometrical information about the initial shape,

which summarize the general form of the object.

The choice of the skeleton dimension depends on the application. We can notice that a surface

skeleton corresponds to the analogy of grass fire in 3D, and provides a more accurate descriptor

of the initial object. On the other hand, the curvilinear skeleton is smaller than the surface

skeleton, and the provided geometric information can be enough for some applications.
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In order to obtain curvilinear or surface skeletons instead of ultimate skeleton, several approaches

exist: a first one consists of forcing the preservation of medial axis points, another one consists

of preserving some locally characterized points, as extremity points or isthmuses.

4.2.2.1 Extremity Points

Extremity points are simple points which have to be kept in the skeleton in order to preserve

elongated geometric features.

In the case of curvilinear skeletons, the considered points are those which end a curve, and are

called curve extremities. These points can be locally described:

• Let X ⊆ Zn, p ∈ X, p is a k-curve extremity iff |N∗
k ∩X| = 1.

In the case of surface skeletons, the considered points are those that can be found on “surface

borders”. To our knowledge, there is no consensus on the definition of surface border in digital

topology.

In addition to this problem, the other one is the sensitivity of this approach to small variations.

It results in skeletons containing more branches than needed to represent the geometric features.

These additional uninteresting branches are called spurious branches.

4.2.2.2 Isthmus

In order to solve the problems mentioned above, another strategy has been recently developed by

Bertrand and Couprie [18]. Instead of searching for simple points which have to be kept in order

to preserve geometric features, we can search for non simple points having certain topological

characteristics. These points are called isthmuses.

For a curvilinear skeleton, the considered isthmuses are the 1D − isthmuses (see Figure 4.7 for

some examples). In the case of surface skeleton, the considered isthmuses are the 2D−isthmuses.

The main advantage in regard of surface borders is that 2D-isthmus are locally well defined.

In 2D, let X ⊆ Z2, p ∈ X, p is 1D-isthmus iff Tk(p,X) ≥ 2.

In 3D, let X ⊆ Z3, p ∈ X, p is 1D-isthmus iff Tk(p,X) ≥ 2. The point p is 2D-isthmus iff

Tk̄(p, X̄) ≥ 2.
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Figure 4.7: Examples of 1D isthmuses.

4.2.2.3 Symmetric versus Asymmetric Skeletons

Another distinction has to be done between the different kind of skeletons: symmetric and

asymmetric ones. This notion of symmetry is due to interpretation in the digital framework of

two of the four properties of the skeleton proposed by Blum: the centering and the thinness

properties.

Assume that we have an efficient thinning process which thins an object layer by layer. It can

lead to sets of simple points which cannot be all removed together without breaking the topology.

We have then two choices: we can keep all these points or we can arbitrarily remove a subset of

them in order to have a thin skeleton.

The first choice leads to a symmetric skeleton: it is well centered but it is not thin. A symmetric

skeleton is closer to the medial axis as it preserves more maximal ball centers.

The second choice leads to an asymmetric skeleton: it is thin but not well centered, due to

arbitrary choices.

4.3 Thinning Algorithms

Homotopic thinning in the digital framework consists of removing simple points from an ob-

ject, until either no more simple point can be found (resulting in an ultimate skeleton), or a

satisfactory subset of voxels has been reached (resulting in a surface or curvilinear skeleton).

Two main strategies are possible for removing simple points: sequential removal and parallel

removal.

4.3.1 Sequential algorithms

Sequential removal of simple points can be achieved by detecting simple points in an object, and

removing them one after the other, until no more simple point can be found. After removing a

simple point, the new set of simple points of the object must be computed. Such basic strategy

does not guarantee the result, which is an ultimate skeleton, to be centered in the original object.
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It is important, when designing a sequential thinning algorithm, to decide of a removal order

of simple points, and of a strategy for preserving interesting visual features of the object (as

explained in Section 4.2).

In order to obtain a centered skeleton, one must define a precise order of removal of simple

points. Usually, in order to get a centered skeleton, it is necessary to delete simple points ”layer

by layer”, from the outer layer to the inner one. Many strategies have been proposed in 2D for

choosing of a removal order (a very exhaustive survey of thinning methods in 2D before 1992

can be found in [88]) : for example, in the 80s, it was proposed to follow an object’s contour in

order to find and remove simple points ”layer by layer” [8, 134]. However, this thinning scheme

(as many others) hardly generalizes to 3D.

A widely used strategy to obtain a centered skeleton with a sequential thinning process consists

of computing a priority function on the object and removing the simple points of X according

to the value of this function [44] : at each step, the simple point that is removed is one with the

lowest possible value. The Euclidean distance map (storing distances to the complementary) is

widely used as priority function [41, 103, 169]. Other works use discrete distances, such as the

chamfer distance [141], to decide of a removal order.

Algorithm 1: Basic Thinning(X, W , D, k)

Data: A k-connected shape X, a priority function D and a subset W ⊆ X
Result: A skeleton of X
while there exists a k-simple point in X\W do1

A = {y ∈ X\W |y is k-simple for X}2

B = {x ∈ A| for all y ∈ A,D(x) ≤ D(y)}3

Let z ∈ B4

X = X\{z}5

return X6

Algorithm 1 shows the basic thinning scheme based on a priority function. The set W , called

inhibitor set, is a set of points of the input object which must be in the resulting skeleton, and

D is the priority function used to decide an order of points removal (here, the lower priority

means faster removal, so it is possible to use a distance map as priority function).

An inhibitor set allows to choose ”anchor points” for the skeleton, and therefore preserve the

visual aspect of the original object in the skeleton. However, when performing a thinning guided

by an Euclidean distance map, the points of the inhibitor set and the directions of thinning

followed by the algorithm are not always ”compatible”. In [169], the authors use a thinning

algorithm where the slope of the priority function is used to dynamically add points to the

constraint set. In [41], the authors propose to merge the slope calculation into the priority

function, leading to a new priority function and a new thinning algorithm which works in 2D

and 3D.
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4.3.2 Parallel algorithms

Whereas iterative algorithms remove only one simple point at a time, parallel algorithms consist

of removing a set of simple points simultaneously. Algorithm 2 illustrate this concept. In

Algorithm 2: Parallel Thinning(X)

Data: A connected shape X
Result: A skeleton of X
repeat1

S = {x ∈ X|x satisfies deletion conditions}2

X = X\S3

until stability ;4

return X5

general, an object possesses more than one simple point. When a simple point is removed from

an object, three events can take place: non simple points can become simple, simple points can

become non-simple, or nothing changes. It can be easily seen that removing two or more simple

points simultaneously from an object may lead to obtaining a set that is not homotopic to the

original object. Parallel thinning (simultaneously removing several simple points) is possible but

must be performed under certain conditions.

The main problem of parallel thinning is that removing simple points simultaneously from an

object usually ”breaks” the topology. Thus, additional conditions must be introduced in order

to solve this problem. In order to describe the different strategies, we introduce some vocabulary

found in [129].

A thinning operator transforms an object X only by removing some points, without changing

the topology of the shape. A parallel thinning operator simultaneously deletes all points of the

object X satisfying some conditions (called the deletion conditions). The support of a thinning

operator is the minimal set of points whose values must be examined to verify the deletion

conditions for a point p ∈ X.

According to Hall [62], parallel thinning algorithms can be divided into three categories:

• In directional algorithms, the main loop is divided into sub-iterations, and the deletion

conditions are changed from one sub-iteration to another.

• In subfield-based algorithms, the points of the object are decomposed into subsets, and at

a given iteration of the algorithm, only points in a given subset are studied.

• In fully parallel algorithms, no sub-iteration takes place : the same thinning operator is

used at each iteration of the main loop. However, if for the other strategies the usual

support is a 3× 3× 3 neighborhood (i.e. N26), fully parallel operators require an extended

support (usually, 5× 5× 5).
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4.3.2.1 Directional Algorithms

A directional algorithm is a parallel algorithm where each iteration is divided in sub-iterations

using different thinning operators. Each thinning operator can only delete points belonging to

a specific border orientation. This border orientation classification is performed regarding the

belonging to complementary of points in a given neighborhood.

The first directional thinning algorithm has been proposed in 1971 by Stefanelli and Rosen-

feld [162] in the Z
2 framework. The authors used the 4-neighborhood to classify the borders

points (see Figure 4.8), leading to a 4 sub-iteration algorithm.

p

0
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2 3

Figure 4.8: Each number i represents a pixel which has to be out of the object to allow the
deletion of p in the ith sub-iteration.
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Figure 4.9: From the left to the right: Directions used for directional thinning algorithms
with 6, 8 and 12 sub-iterations. Each number i represents a voxel which have to be out of the

object to allow the deletion of p in the ith sub iteration.

In the Z3 framework, the most usual kind of directional algorithms use a classification in regard of

the 6-neighborhood, leading to algorithms with 6 sub-iterations [13, 57, 90, 93, 96, 120, 130, 182]

or 3 sub-iterations [126–128], considering in one sub-iteration a class and its opposite.

Directional algorithms with 8 sub-iterations [132] (classification in regard of N26 \N18 neighbor-

hood) and 12 sub-iterations [92, 131] (classification in regard of N18 \ N6 neighborhood) have

also been proposed.

Generally, a directional algorithm is designed on the model of Algorithm 3, using classification

of the directions in the order proposed in Figure 4.9 for 3D, or Figure 4.8 for 2D.
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Algorithm 3: Directional Thinning(X)

Data: A connected shape X
Result: A skeleton of X
repeat1

foreach direction i do2

S = {x ∈ X|x satisfies deletion conditions of the ith thinning operator}3

X = X\S4

until stability ;5

return X6

4.3.2.2 Subfield-Based Algorithms

In subfield-based algorithms, Z
n is divided in m ≥ 2 disjoint subfields Z

n
0 , ...,Z

n
m−1, such

m−1
⋃

i=0

Z
n
i = Z

n.

An iteration of subfield-based algorithm is divided in sub iterations corresponding to the acti-

vation of each subfield. A point can be deleted only when the subfield it belongs to is activated.

The first subfield-based algorithm, at our knowledge, has been proposed in 1984 by Groen and

Foster [60] in the Z2 framework.

In the Z3, algorithms using 2 subfields [72, 97, 98], 4 subfields [99, 123] and 8 subfields [123]

have been proposed.

The subfields are designed in sort that if 2 points p, q belong to the same subfield, q is not in a

given neighborhood of p (see Figure 4.10):

• for m = 2, ∀0 ≤ i < m, ∀(p, q) ∈ Z
3
i × Z

3
i , q /∈ N6(p)

• for m = 4, ∀0 ≤ i < m, ∀(p, q) ∈ Z3
i × Z3

i , q /∈ N18(p)

• for m = 8, ∀0 ≤ i < m, ∀(p, q) ∈ Z3
i × Z3

i , q /∈ N26(p)

It is this property which allow the preservation of the topology, the deletion of a point having a

controlled impact on its neighborhood.

Generally, a subfield-based algorithm is designed on the model of Algorithm 4, using subfields

proposed in Figure 4.10.

Notice that this strategy is known to usually provide bad quality skeletons.



34 Chapter 4 State of the Art of Skeletonization

1

0

0
0 1 0

1
0 1

1

0

0 1

1

01

0
0

1

0 1 0

1

01

0

1

030

2

3 3

1

1

3

3

2

0

0

3

1 2

0

0

2

0

2

1

0

0

21 1

0

2

0

1

0

2

4 0

0

1

4

6

5

7

4

5

6

0

2

0

3

1

2

0

3

1
4

Figure 4.10: Top, from the left to the right: Divisions of Z3 into 2, 4 and 8 subfields. For
an algorithm using k subfields, in a ith sub iteration, only points marked i will be considered.
Bottom, from the left to the right: black points represent considered points in the first iteration

of a k-subfield based algorithm, for k = 2, 4, 8.

Algorithm 4: Subfield Based Thinning(X)

Data: A connected shape X
Result: A skeleton of X
repeat1

foreach subfield Fi do2

S = {x ∈ X ∩ Fi|x satisfies deletion conditions }3

X = X\S4

until stability ;5

return X6

4.3.2.3 Fully Parallel Algorithms

Fully parallel algorithms use only one thinning operator in the full space of the same iteration.

In order to do it without breaking the topology, the support has to be bigger than for other

classes of thinning algorithms.

Rutovitz was the first to propose a (fully) parallel thinning algorithm, in 1966 ([150]). However,

it has been proved that Rutovitz’s algorithm does not always preserve topology and ”patches”

exist in order to correct it ([38]). It is in 1981 that Pavlidis published the first fully parallel

homotopic thinning algorithm ([135]), in 2D for 8-connected objects, that was later proved to

preserve topology ([38]).

In the 3D digital topology framework, the problem is very complex, and several theories have

been developed in order to help to design correct fully parallel thinning algorithms.
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Minimal non-deletable sets Minimal non-deletable sets were introduced by C. Ronse ([146])

in order to characterize under which conditions simple points could not be removed simultane-

ously from a 2D object without ”breaking” the topology.

Minimal non-deletable sets define ”forbidden features” that should not appear in a set of pixels

in order for it to be simple. Minimal non-deletable sets were designed in order to prove that

2D parallel thinning algorithms were topology preserving (and therefore valid) by testing only a

small number of configurations of points. A computer-based implementation of these tests was

later proposed in [61], a 3D implementation of these sets was proposed in [83], [95] and [84], and

a 4D implementation was proposed in [53] and [86].

P -simple points In 1995, Bertrand introduced the P -simple points in order to characterize,

in 3D, which simple points could be removed simultaneously ([13]).

As with the minimal non-deletable sets, the P -simple points allow to check if existing parallel

3D thinning algorithms work: indeed, in [14], the author gives a method for checking, based

on the P -simple points framework, the topological validity of thinning algorithms. Moreover,

P -simple points were widely used in order to propose new parallel 3D thinning algorithms (an

example of a new algorithm is given in [14]).

Critical kernels The recent critical kernels, introduced in [16], present a new framework for

performing parallel thinning in 2D, 3D and 4D (see [17] and [11]). In relation to critical kernels,

a new definition and new characterizations of simple points in 2D, 3D and 4D (see [40]) have

been proposed, and links between this framework, P -simple points and minimal non-deletable

sets were established in [39]. More precisely, critical kernel theory is a generalization of the two

other theories. Critical kernels were also used to prove that some thinning algorithms were valid,

while others were not correct ([38]).





Chapter 5

Faster Implementation of Thinning

Schemes

In our context of real time motion capture, the considered 3d objects contain between 50 000

and 1 000 000 voxels, and have to be skeletonized in less than 40 milliseconds (remember that

skeletonization is only a part of the process which has to be “real time”). No direct implementa-

tion of existing thinning algorithms running on an average computer (with CPU frequency lower

than 4GHz) can reach this time for these sizes of object. In this chapter we will first discuss

speed optimizations schemes found in the literature, then propose some new ones.

5.1 Classical Optimizations

In the literature, the thinning algorithms are most usually described using pseudo code, only

describing the main lines of the real implementation, and skipping details about, e.g. how to

reach low execution time. However, thinning algorithms used in full applications (like medical

imaging or material studies) are implemented using some common optimizations which can be

called ”classical”. In this section, we will review the most usual of them.

5.1.1 Restriction of Points to Check

The first and the most common optimization method consists of a restriction of points to test

for deletion conditions at each iteration. If we implement directly the algorithms described in

pseudo code in the majority of the literature, we have to check all the points in the image grid at

each iteration, leading to a time complexity in O(|G|× I), with I being the number of iterations

and |G| being the size of the image grid.

37
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First, as it is a deletion condition test, we can test only the points which can be deleted (i.e. the

points belonging to the object). Furthermore, in order to be deletable in a thinning process, a

point has to be simple. Considering this fact, we can test only the points at the border of the

object at each iteration.

This is naturally done by sequential thinning using distance transform as a priority function [41,

103, 141, 169], by sorting the points in regard of their distance to the border.

In the case of parallel algorithms, a list can be used in order to store the border points [129, 133].

Before the iterative part of the algorithm, the list is initialized by adding all the border points

of the image. During the iterative process, only points of the list are tested: if a point has to be

deleted, we remove it from the list and we add its neighbors belonging to the object which are

not already in the list.

Using this optimization, the time complexity is linear with regard to the size of the image.

5.1.2 Optimization of Deletion Conditions Tests

Depending on the considered algorithm, the tests of deletion conditions can be very lengthy.

Assuming that deletion tests take into consideration only a determined finite set of neighbors

(the support of the thinning operator), pre-computation methods can be used in order to obtain

quicker and constant time.

5.1.2.1 Usage of Look-Up Tables

In thinning algorithms, a widely used tool(explicitly in [126–129], for example) to reduce com-

putation time is the look-up table (usually shortened in LUT ).

A look-up table is an array containing the precomputed results of some time-consuming problem

P for a given set of input values V . In order to find the index in the look-up table storing the

result P (v), v ∈ V , we have to define a bijective function K : V → {0, ..., S − 1}, with S being

the size of the look-up table.

In the case of thinning algorithms, the problem P is the deletion condition test returning a

boolean (true if the point can be deleted, false otherwise) and the set of input values is the set

of all possible configurations of points in the support.

For a 3× 3× 3 support, we have to consider that each point in the 26 neighborhood may or may

not belong to the object, leading to a look-up table size of 226 = 67 108 864 values. Since each

result is a boolean, the look-up table uses 4 megabytes in memory.
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The bijective function K is defined using some properties of the possible configurations of points

in the support. Assuming that each point in the support has a binary status (1 if the point

belongs to the object, 0 otherwise), each configuration can be represented by a vector v =

(v0, ..., v25) ∈ {0, 1}26, were each vi represents the status of the ith point for a given navigation

order of the support. We define the bijective function providing an index to each configuration

by:

K(v) =
26
∑

i=0

2i ∗ vi

The navigation order of the support depends on the algorithm: if the algorithm needs only one

look-up table, the order will be the same as the order of the image representation in memory, in

order to minimize transfer between RAM and CPU cache. If the algorithm needs several look-

up tables based on different supports for the same point, the order will place first the points

of the 6-neighborhood, then those of the 18-neighborhood and finally those of 26-neighborhood.

Figure 5.1 shows two examples of these orders.
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Figure 5.1: Left: an order optimized for reducing amount of cache miss. Right: an order
useful for algorithms using several look-up tables for different neighborhoods.

5.1.2.2 Usage of Binary Decision Diagrams

Look up tables are not the only way to store and access pre-computed results of a function. For

functions taking as input a vector of booleans, as in the case of deletion condition tests, specific

data structures have been designed: the binary decision trees, and their compact representa-

tion, the binary decision diagrams [29] (usually shortened in BDD). The use of binary decision

diagrams is proposed in some thinning literature papers [92, 93].

A binary decision tree is a binary tree with several specificities:

• each leaf represents a result;

• if the input vector contains n values, the tree has n levels of interior nodes;

• all the interior nodes of the ith level of the tree represent the ith value of the input vector;
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• the leaves of the left (respectively, right) subtree of an interior node at level i contains

results obtained if the ith value equals 0 (respectively 1).

Finding the result for a given boolean vector is done using Algorithm 5.

Algorithm 5: Result Retrieval in Binary Decision Tree

Data: Binary Decision Tree T , input vector v = (b0, ..., bn)
Result: Value of function for v in input
Node cur = root of T1

while cur is not a leaf do2

if value represented by cur equals 0 then3

cur = left child of cur4

else5

cur = right child of cur6

return value contained in cur7

Example Let consider the function f : {0, 1}4 → {0, 1} such f(b0, b1, b2, b3) = (b0 AND b1)OR (b2 AND b3).

The results of f are represented by the binary decision tree in Figure 5.2. If we are searching for

the value of f(0, 0, 1, 0), from the root, we go down twice in the left child (b0 = 0 and b1 = 0),

then in the right child (b2 = 1) and finally in the left child again (b3 = 1): the result (0) is

contained in the leaf where we are.

b0

b1 b1

b2 b2 b2 b2

b3 b3 b3 b3 b3 b3 b3 b3

1 1 1 11110 0 0 0 0 0 0 0 0

level0

level1

level2

level3

Figure 5.2: A binary decision tree containing the results of the function f .

A binary decision diagram is obtained from a binary decision tree by applying two operations:

1. all subtrees which are equal are merged;

2. remove nodes with two subtrees which are equal.

Figure 5.3 shows an example of transformation of a binary decision tree into a binary decision

diagram.

Notice that the size of the binary decision diagram depends on both the considered function and

the order in which are considered the values.
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b0

b1 b1

b2 b2 b2 b2

b3 b3 b3 b3 b3 b3 b3 b3

1 1 1 11110 0 0 0 0 0 0 0 0

b0

b1 b1

b2 b2

b3 b3 b3

1 110 0 0

b0

b1

b2

b3 b3
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1 1

10 0 0

b0

b1

b2

b3 b3

b3

10

b0

b1

b2

b3

10

Merge similar trees

Remove useless nodes Remove useless nodesMerge similar trees

Figure 5.3: Transformation of a binary decision tree into a binary decision diagram.

5.1.2.3 Look Up Tables versus Binary Decision Diagrams

A good point for the binary decision diagram is the potentially lower space needed to store the

results. Concerning the speed-up, contrary to the LUT which provides an access in constant

time, access with BDD depends both on the considered deletion conditions and the order in

which the values of the configuration are considered. Furthermore, even if the number of points

to consider is reduced, navigation in the binary decision diagram can be more time consuming

than the direct access to an array as required by LUT methods.

5.2 Look Up Tables for Critical Kernel Based Algorithms

Look up tables can not be directly used for algorithms using extended 5 × 5 × 5 support: it

implies more than 2 × 1037 values, and storing a such look-up table is not possible, even using

all the hard drives existing in the world. Furthermore, the computation of values of the whole

look-up table with the fastest super-computer would take more time than the age of the universe.

In 2009, Palágyi and Németh [133] proposed fully parallel algorithms using a thinning operator

with 5× 5× 5 support, the deletion conditions taking into account not only the configuration of

the 26-neighborhood, but also the simplicity of the points in this neighborhood. However, the

authors proposed algorithms using tests only in the 3×3×3 neighborhoods, using a decomposition

of the tests, and allowing for the usage of look-up tables.

In 2006, Bertrand and Couprie [17] proposed a new fully parallel thinning scheme based on

critical kernels, allowing to easily design thinning algorithms for any kind of skeletons (homotopic

kernel, curvilinear or surfacic, asymmetric as well as symmetric). Even if the support of the

thinning operator is 5 × 5 × 5, we will propose in this section a way to decompose the tests as
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evoked above and to use look-up tables for critical kernel based algorithms, in order to improve

their speed.

5.2.1 Critical Kernel Based Algorithms

First we briefly recall the scheme of critical kernel based algorithms. These algorithms use the

notion of crucial cliques, which are set of points which can not be all removed in order to preserve

topology. The crucial points are classified in several subtypes : 3-crucial, 2-crucial, 1-crucial and

0-crucial. An iteration of the algorithm consist in keeping only points of the shape which are

crucial.

The belonging to a crucial clique is detected using a set of templates (see Figure 5.4).
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C1C2C3

C4

C5 C6 C7
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Q5 Q6 Q7
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B
C

D
E

F
G
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J
K

L
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B
C

D
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F
G

H

M ′

2
mask M1 mask M0 mask

Figure 5.4: Masks used for crucial cliques detection.

Definition 3. [17] Let X ⊆ Z3 the object, and let M be a set of voxels of X.

1) The set M matches the mask M2 if the three following conditions hold:

i) the voxels in M are simple for X.

ii) M = {A,B}.

iii) the 2D configuration M ′
2 obtained by setting R ∈ M ′

2 and setting Qi ∈ M ′
2 if {Ci, Di} ∩

X 6= ∅, with i ∈ [0, ..., 7], is such that R is non-simple in the 2D sense.

2) The set M matches the mask M1 if the four following conditions hold:

i) the voxels in M are simple and not 2-crucial for X.

ii) M = {E,F,G,H} ∩X.

iii) the set {E,G} or the set {F,H} (or both) is included in M .

iv) we have either [U ∩ X 6= ∅ and V ∩ X 6= ∅] or [U ∩ X = ∅ and V ∩ X = ∅], with

U = {A,B,C,D} and V = {I, J,K,L}.

3) The set M matches the mask M0 if the three following conditions hold:

i) the voxels in M are simple and neither 2-crucial nor 1-crucial for X.
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ii) M = {A,B,C,D,E, F,G,H}.

iii) at least one of the sets {A,G}, {B,H}, {C,E}, {D,F} is a subset of M .

Definition 4. [17] Let X ⊆ Z3 and let M be a set of voxels of X.

i) M is a 2-crucial clique for X if and only if M matches the mask M2 or a mask obtained

from it by
π

2
rotations.

ii) M is a 1-crucial clique for X if and only if M matches the mask M1 or a mask obtained

from it by
π

2
rotations.

iii) M is a 0-crucial clique for X if and only if M matches the mask M0.

Using these definitions, Bertrand and Couprie proposed several generic fully parallel thinning

algorithms, like Algorithm 6 for symmetric skeletons and Algorithm 7 for asymmetric ones.

Note that these algorithms ensure the preservation of some points defined by the set K and the

use of any kind of extremity point or isthmus, defined by the function Ψ.

Function Ψ will return the subset of the input set S ∈ Z3 which has to be preserved in the

skeleton (for an homotopic kernel, Ψ always returns ∅).

Algorithm 6: CK Thinning

Data: X ⊆ Z3, K ⊆ X, Ψ : X → Ψ(X)
Result: A skeleton of X
repeat1

K = K ∪Ψ(X)2

R = set of non-simple points for X or which are in K3

foreach possible position of mask M2 (and any of its
π

2
rotations) do

4

if M2 matches then R = R ∪ {A,B}5

foreach possible position of mask M1 (and any of its
π

2
rotations) do

6

if M1 matches then R = R ∪ [{E,F,G,H} ∩X]7

foreach possible position of mask M0 do8

if M0 matches then R = R ∪ [{A,B,C,D,E, F,G,H} ∩X]9

X = R10

until stability ;11

return X12
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Algorithm 7: ACK Thinning

Data: X ⊆ Z
3, K ⊆ X, Ψ : X → Ψ(X)

Result: A skeleton of X
repeat1

K = K ∪Ψ(X)2

R = set of non-simple points for X or which are in K3

foreach possible position of mask M2 (and any of its
π

2
rotations) do

4

if M2 matches and {A,B} ∩R = ∅ then5

R = R ∪ {A}6

foreach possible position of mask M1 (and any of its
π

2
rotations) do

7

if M1 matches and {E,F,G,H} ∩R = ∅ then8

P = first voxel in {E,F,G,H} ∩X9

R = R ∪ {P}10

foreach possible position of mask M0 do11

if M0 matches and {A,B,C,D,E, F,G,H} ∩R = ∅ then12

P = first voxel in {A,B,C,D,E, F,G,H} ∩X13

R = R ∪ {P}14

X = R15

until stability ;16

return X17

5.2.2 Reformulation of templates

In order to be compatible with LUT usage, a mask has to take into consideration configurations

of points with binary state.

Some observations can be done on the used templates:

• In all cases two different informations are taken into consideration:

1. The configuration of the points belonging to the object (we denote this configuration

by CX).

2. The configuration of the points belonging to the object and holding the same set of

additional properties, e.g. being non-simple (we denote this configuration by CS).

Notice that these two configurations are contained in a 3× 3× 3 support.

• Due to both symmetries of the templates and their use in the scheme, it is possible to

consider only deletion conditions on one voxel, instead of a set, the other voxels of the set

being tested for the same neighborhood at a different step of the same iteration.

Using these two observations, we can redefine the masks Mi, i ∈ {0, 1, 2}, using for each of them

two templates: one providing conditions for CX and the other one for CS . This separation in

two masks allows for the use of look-up tables.
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In the sequel of this section we say that the configuration CS is compatible with the mask MiS ,

i ∈ {0, 1, 2}, if and only if the points represented by black disks in the mask belong to the set S

and the points represented by white disks in the mask do not belong to the set S.

5.2.2.1 Reformulation of M2

P

C1C2C3

C4

C5 C6 C7

C0

D1

D0

D2D3

D4

D5 D6 D7

M2X mask

R Q0

Q1Q2Q3

Q4

Q5 Q6 Q7

M ′

2
mask

P

M2S mask Associated orientation

Orientation 0 Orientation 5Orientation 1 Orientation 2 Orientation 3 Orientation 4

Figure 5.5: New masks for 2-crucial points detection, and all possible orientations of these
masks.

A detection of 2-crucial points can be done using masks shown in Figure 5.5.

Definition 5. Let X ⊆ Z3.

A) A point P matches the mask M2X if the 2D configuration M ′
2 obtained by setting R ∈ M ′

2

and setting Qi ∈ M ′
2 if {Ci, Di} 6= ∅, with i ∈ [0, ..., 7], is such that R is non-simple in the

2D sense (condition on CX).

B) A point P matches the mask M2S if the configuration of the set of simple points is compatible

with M2S.

C) A simple point P is 2-crucial if and only if it matches the masks M2X and M2S, or the

masks obtained by a same π or
π

2
rotation of these two masks.

5.2.2.2 Reformulation of M1

A detection of 1-crucial points can be done using masks shown in Figure 5.6.

Definition 6. Let X ⊆ Z3.

A) A point P matches the mask M1X if the two following conditions hold:

i) the set {E,G} or the set {F} (or both) is included in X.
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Figure 5.6: New masks for 1-crucial points detection, and all possible orientations of these
masks.

ii) we have either [U ∩ X 6= ∅ and V ∩ X 6= ∅] or [U ∩ X = ∅ and V ∩ X = ∅], with

U = {A,B,C,D} and V = {I, J,K,L}.

B) A point P matches the mask M1S if the configuration of the set of 2-crucial or not simple

points belonging to X is compatible with M1S.

C) A simple and non 2-crucial point P is 1-crucial if and only if it matches the masks M1X and

M1S, or the masks obtained by the same combination of
π

2
rotations of these two masks.

5.2.2.3 Reformulation of M0

A detection of 0-crucial points can be done using masks shown in Figure 5.7.

Definition 7. Let X ⊆ Z3.

A) A point P matches the mask M0X if at least one of the sets {A,G}, {B}, {C,E}, {D,F} is
a subset of X.

B) A point P matches the mask M0S if the configuration of the set of 2-crucial or 1-crucial or

non simple points belonging to X is compatible with M0S.

C) A simple and neither 2-crucial nor 1-crucial point P is 0-crucial if and only if it matches

the masks M0X and M0S, or the masks obtained by the same combination of
π

2
rotations of

these two masks.
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Figure 5.7: New masks for 0-crucial points detection, and all possible orientations of these
masks.

5.2.3 Look Up Tables for New Masks

Now we have masks taking into consideration the configuration of points sharing the same

properties, so we can use look-up tables.

We can first observe that masks M2S and M1S do not take into consideration all the points in

N26, but only points in N6 and N18, respectively. For these masks we can use look-up tables

with size reduced to 26 and 218, respectively.

As each couple of masks has several orientations and as the properties checking requires the

matching of the two masks for a same orientation, we have to store separately the result of the

matching of each mask for each orientation.

Due to this fact, in each of the six look-up tables (one per mask) the result for a configuration

C will be a vector of bits v = v0, ..., vD−1, such vi, i ∈ [0, ...D− 1] indicate if C matches (vi = 1)

or not (vi = 0) the mask in its ith orientation.

The properties checking is then obtained as follows. Let LUTiS and LUTiX , i ∈ {0, 1, 2}, the
look-up tables storing the results of matching masks MiS and MiX , respectively. Let index of C

be the index of the configuration C computed as explained in Section 5.1.2.1. For a point p with

configurations CX(p) and CS(p), p will matchMiS andMiX if and only if LUTiS(index of CS(p))

and LUTiX(index of CX(p)) have a common bit to 1 in their vector.

This verification can be done using the bitwise AND operator: p will match MiS and MiX if

and only if LUTiS(index of CS(p)) AND LUTiX(index of CX(p)) 6= 0.



48 Chapter 5 Faster Implementation of Thinning Schemes

To sum up, we use six look-up tables for checking of crucial points, as summarized in the

Table 5.1.

Table 5.1: Look Up Tables for Crucial Point Detection

related mask number of values value length Total size
in bits in bytes

LUT2X M2X 226 6 1 64 Mb

LUT2S M2S 26 6 1 64 b

LUT1X M1X 226 12 2 128 Mb

LUT1S M1S 218 12 2 512 Kb

LUT0X M0X 226 8 1 64 Mb

LUT0S M0S 226 8 1 64 Mb

Notice that even if the masks proposed in the Figures 5.5, 5.6 and 5.7 do not require the

consideration of more than 17 neighbors, the number of values of the LUT corresponds to full

26-neighborhood. It is due to the fact that LUT stores the results for each orientation of the

masks, thus we have to consider not only the points considered for one orientation, but for all

orientations at the same time.

5.2.4 Reformulation of the Thinning Schemes

Using the look-up tables described above, we can now reformulate the thinning schemes.

Algorithm 8: Optimized ACK Thinning

Data: X ⊆ Z3, K ⊆ X, Ψ : X → Ψ(X)
Result: A skeleton of X
repeat1

K = K ∪Ψ(X)2

S = set of simple points for X which are not in K3

foreach point p ∈ S do4

if LUT2X(index26(p,X)) AND LUT2S(index6(p, S)) 6= 0 then5

S = S \ {p}6

foreach point p ∈ S do7

if LUT1X(index26(p,X)) AND LUT1S(index18(p,X \ S)) 6= 0 then8

S = S \ {p}9

foreach possible position of mask M0 do10

if LUT0X(index26(p,X)) AND LUT0S(index26(p,X \ S)) 6= 0 then11

S = S \ {p}12

X = X \ S13

until stability ;14

return X15
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We denote by indexn(p, S) the index in the look-up table of the configuration of the set S in

the n-neighborhood of a point p. Algorithms 9 and 8 are the LUT-optimized reformulations of

the thinning Algorithms 6 and 7, respectively.

Algorithm 9: Optimized CK Thinning

Data: X ⊆ Z
3, K ⊆ X, Ψ : X → Ψ(X)

Result: A skeleton of X
repeat1

K = K ∪Ψ(X)2

S = set of simple points for X which are not in K3

R = ∅4

foreach point p ∈ S do5

if LUT2X(index26(p,X)) AND LUT2S(index6(p, S)) 6= 0 then6

R = R ∪ {p}7

S = S \R8

R = ∅9

foreach point p ∈ S do10

if LUT1X(index26(p,X)) AND LUT1S(index18(p,X \ S)) 6= 0 then11

R = R ∪ {p}12

S = S \R13

R = ∅14

foreach possible position of mask M0 do15

if LUT0X(index26(p,X)) AND LUT0S(index26(p,X \ S)) 6= 0 then16

R = R ∪ {p}17

S = S \R18

X = X \ S19

until stability ;20

return X21

5.2.4.1 Speed up

The use of look-up tables on critical kernel based thinning (already using border list defined

in Section 5.1.1) proposed in this section allows a speed-up yielding a division by ten of the

computation time for the thinning on some objects. Please refer to the Section 5.4 for more

details.

5.3 Configurations Computation Speed-Up

As explained in Section 5.1.2.1, in order to access to the results stored in a look-up table, we

have first to compute the index corresponding to the configuration of the point. Computing

this index is time consuming, due to the fact that values of the neighborhood are spaced in
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the memory, whatever the used representation of the image, involving cache misses (transfers

between CPU cache and main memory).

Furthermore, for the same point, several conditions must be checked, depending on the thinning

method: in directional thinning, the same point must be checked for all directions; in critical

kernel based thinning, points are checked for simplicity, then for the different crucial properties.

As each check is done in a different step of the iteration, the configuration index is recomputed

for each one, involving a waste of time.

We can notice that in a thinning algorithm, the configuration of a point changes only when one

of its neighbors is deleted, thus the configuration changes a limited number of times. In this

section, we propose a method for avoiding multiple useless computations of the configuration

index of the same point.

At the beginning of the algorithm, we build a map M with the same dimensions as the image

I, such that for each point p ∈ I, M(p) contains the index of the configuration of p in I.

During the iterative process, when a point p is deleted, we update the configuration index of its

neighbors in M , by putting to 0 the bit representing p in their configuration.

Using this method, the configurations are computed only when a point is deleted, instead of

each time a point is checked.

We call this optimization the Configuration Computation Speed-Up, abbreviated as CCSU.

5.3.0.2 Speed up

The use of this configuration computation speed-up divides by two (in average) the computation

time of a thinning. Please refer to Section 5.4 for more details.

5.4 Benchmarks

In this section, we study the speed gain of the proposed optimizations.

5.4.1 Methodology

For this purpose, we implemented several versions of the same algorithm with different levels of

optimization: a first version without the use of LUT, a second version using LUT, and a third

one using both LUT and CCSU. All the versions are optimized using border lists, as explained

in Section 5.1.1. Then, we applied the different algorithms on a set of various images, and we

compared their computation speed.
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5.4.1.1 Implemented Algorithms

For the evaluation of LUT usage on critical kernel based methods, we implemented the asym-

metric scheme (see Algorithm 7), using a constraint function Ψ returning the set of 1D isthmus

of the shape. We denote this algorithm by ACK3.

In order to observe the impact of CCSU (in addition to LUT) on different thinning strategies,

we also implemented the 6-directional thinning algorithm proposed by Palágyi and Kuba in

1998 [130]. We denote this algorithm by PKD6.

5.4.1.2 Tested Images

The algorithms are tested on a set of images of different sizes, containing various objects. Our

image set is represented in Figure 5.8.

1: Dragon

2 044 097

14 437 500

2: Raptor

179 274

5 206 250

3: Buddah

67 573

363 000

4: Buddah

2 514 206

12 960 000

5: Hand

2 281 776

14 245 000

6: Bunny

181 546

1 000 000

7: Bunny

4 643 983

27 000 000

8: Pelvis

857 227

27 000 000

9: Neptune

304 194

27 000 000

10: Rocker

123 766

3 375 000

11: Gargo

2 878 535

27 000 000

12: Helix

138 570

2 097 152

13: Dancer

153 569

27 000 000

14: Turbin

772 071

11 200 000

15: Fertil

138 570

8 280 000

16: Fish

1 213 254

27 000 000

17: Gear

606 409

8 000 000

18: Chair

907 601

13 867 500

19: Eleph

1 079 413

27 000 000

20: Cylind

1 077 425

8 000 000

21: Pegas

655 360

15 625 000

22: StarT

380 181

15 625 000

23: Pipe

663 586

27 000 000

24: Walker

1 075 396

9 384 976

Figure 5.8: Images used for the benchmark. Above each image, the id number, the name, the
size of the object and the size of the image.
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5.4.2 Results

The results are obtained by averaging times of ten thinnings for each image. All the experiments

have been done on a computer with a processor Intel(R) Q8200 at 2.33 GHz and 3 gigabytes of

RAM.

Figures 5.9 and 5.10 show the computation speed results of ACK3 and PKD6, respectively.
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Figure 5.9: Computation speed results for ACK3 implemented with different levels of opti-
mization, for each image of our test set.
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Figure 5.10: Computation speed results for PKD6 implemented with different levels of opti-
mization, for each image of our test set.

In order to observe better the speed gain of each optimization, we display the ratio of computa-

tion time of each version versus the computation time of a more optimized version. Using this

method, we obtain three values:

LUT gain: time for basic version
time for LUT optimized version

CCSU gain: time for LUT version
time for LUT+CCSU optimized version

Full gain: time for basic version
time for LUT+CCSU optimized version

Figures 5.11 and 5.12 show these ratios for ACK3 and PKD6, respectively. Results are summa-

rized in Table 5.2.
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Figure 5.11: Speed gain obtained by different optimizations on ACK3.
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Figure 5.12: Speed gain obtained by different optimizations on PKD6.

Table 5.2: Summarize of Optimizations Speed Gain
(results expressed as ”average [min, max]”)

CCSU Speed Gain LUT Speed Gain CCSU+LUT Speed Gain

ACK3 1.46 [1.04, 2.06] 4.62 [0.69, 12.25] 7.44 [0.73, 22.56]

PKD6 1.71 [0.84, 2.93] 1.20 [0.68, 1.53] 2.04 [1.01, 3.86]

5.4.3 Discussion

5.4.3.1 CCSU Speed Gain

An observation of Figures 5.11 and 5.12 shows some interesting characteristics about CCSU.

First we can notice that the speed gain is higher for PKD6 than for ACK3: it is due to the

larger amount of deletion condition tests for the same point in this directional algorithm than

in the fully parallel algorithm ACK3.

We also observe the quasi inexistent impact of CCSU optimization on ACK3 for some shapes

(9, 13, 22, 23). We can see that the LUT optimization is inefficient too for these shapes. We
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can observe that these shapes are thinner than the other ones, and thus require less iterations

for the same image size.

In the case of shape 13, the dancer, we can notice that CCSU slows down PKD6. It is due

to the higher time consuming pre-iteration step, which cannot be offset by the gain during the

iterative process, due to the low amount of iterations.

To sum up, CCSU is an optimization that is easy to set up, and which provides a sensible

speed-up in a majority of cases. However, in the case of shapes close to their skeleton, it is

inefficient.

5.4.3.2 LUT Speed Gain for Critical Kernel Based Thinning

Observing Figure 5.11, we can notice pretty spectacular speed-up by using LUT on ACK3 (more

than 12 times faster in the case of shape 7). However, we can notice that the effect is inexistent

for some shapes (already mentioned in the previous section).

Combining both LUT and CCSU highly improve the speed of critical based algorithms, but the

speed gain highly depends to the shape in input.

5.5 Application in Motion Capture Framework

Now we have optimized the speed of thinning algorithms, we can try to use them in our context

of motion capture. In order to test their speed in a real context, we propose to use two data

sets: the dancer data set (height views) from 4Drepository from INRIA and a home made data

set with four views recording gesture of a hand.
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Figure 5.13: Thinning speed of fully optimized ACK3 and PKD6 on two data sets.
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For each frame of each data set, we compute the visual hull at different voxel grid resolutions

and we measure the time to skeletonize the obtained object using our two optimized algorithms.

The average computation time for each resolution on each data set are reported in Figure 5.13.

We can observe that despite of our efforts for speed-up critical kernel based thinning, ACK3 is

still five times slower than directional thinning, and is not fast enough for its use in real time

applications. However, we can notice that directional algorithms like PKD6 are very fast and

reach the real time even for high resolutions of the voxel grid.





Chapter 6

Isthmus Based Directional Thinning

In our context of motion capture, we have to consider both the speed of the thinning process

(see Chapter 5), and the quality of the produced skeletons. The amount of noise in the resulting

skeleton has an impact on the good matching with the model. Due to the use of 1D-isthmus,

ACK3 provides curvilinear skeleton with very low amount of spurious branches. However, as

seen in the end of the previous chapter, this algorithm is not the fastest one.

On the other hand, faster algorithms, like directional thinning or subfield based algorithms,

provide noisier skeletons. It is mainly due to the consideration of curve end points as constraint

points, which are more likely to appear during thinning than isthmuses.

In this chapter, we design a directional thinning algorithm considering isthmuses as constraints.

Furthermore, we propose a constraint check at the iteration level, instead of sub-iteration level,

in order to consider less constraint points than usually in this kind of strategy.

6.1 Background

Our method is based on two different works. We use constraints that were originally introduced

by Bertrand and Couprie [18] in the context of sequential thinning, and the design of the masks

used in our parallel directional algorithm is based on those defined by Palágyi and Kuba [130].

6.1.1 Bertrand and Couprie Isthmus Based Thinning

In 2007, Bertrand and Couprie [18] proposed a sequential thinning based on isthmuses (see

Section 4.2.2.2). Contrary to extremity points, isthmuses are not simple points. Due to this

fact, isthmuses cannot be used in classical strategy in which a point is removable if and only if

it is simple and does not match certain conditions.
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The strategy used by Bertrand and Couprie consists in dynamically detecting the considered

isthmuses (1D or 2D) and accumulating them in a constraint set. A point can be deleted if it

is simple and not in the constraint set. By this way, a point detected as an isthmus in a given

iteration cannot be removed later. Depending on the considered isthmuses, the method provides

curvilinear skeletons (in case of 1D isthmuses) or surface skeletons (in case of 2D isthmuses). In

both cases, this strategy provides skeletons with very few spurious elements.

The consideration of isthmuses instead of extremities points is interesting for two reasons: isth-

muses can be easily locally defined and detected (it is not the case of surface end points), and

appear less often than extremities during thinning process, leading to less noisy skeletons. How-

ever, the sequential approach proposed is less adapted than parallel ones for this purpose, and

provides skeletons of lower quality.

6.1.2 Palágyi and Kuba 6-directional Thinning

In 1998, Palágyi and Kuba [130] proposed a 6-directional thinning algorithm producing curvi-

linear skeletons, which we denote by PKD6.

Each iteration of PKD6 consists of 6 sub-iterations in which points are removed from the shape

if and only if the configuration of their 26-neighborhood matches at least one mask of the

mask set Md for the given orientation d. The mask set MU used for the UP direction is

presented in Figure 6.1. Mask sets MD,MN ,MS ,ME ,MW for the other directions (DOWN,

NORTH, SOUTH, EAST and WEST ) are obtained by appropriate rotations and reflections.

The algorithm is summarized in Algorithm 10.

Algorithm 10: PKD6 [130]

Data: X ⊆ Z3

Result: A skeleton of X
Y = X repeat1

Y = Y \ {p ∈ Y ; p matching one mask ofMU}2

Y = Y \ {p ∈ Y ; p matching one mask ofMD}3

Y = Y \ {p ∈ Y ; p matching one mask ofMN}4

Y = Y \ {p ∈ Y ; p matching one mask ofMS}5

Y = Y \ {p ∈ Y ; p matching one mask ofME}6

Y = Y \ {p ∈ Y ; p matching one mask ofMW }7

until stability ;8

return Y9

Palágyi and Kuba proved that their algorithm preserves topology, using the following theorem

proved by Ma in [95].

Definition 8. [95] Let X ⊂ Z3 be an object. The set D = {d1, ..., dk} ⊆ X is called a

simple set of X if D can be arranged in a sequence 〈di1 , ..., dik〉 in which each dij is simple for

X \ {di1 , ..., dij−1
} for j = 1, ..., k. (By definition, let the empty set be simple.)
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M1 M2 M3

M4 M5 M6

Figure 6.1: Base masks M1-M6 and their rotations around the vertical axis form the set of
masksMU for direction UP. Points marked by a black disk have to belong to the object, points
marked by a white disk have to be out of the object, and at least one point marked by a cross

in masks M1 and M5 has to belong to the object.

Theorem 9. [95] A 3D parallel reduction operation preserves topology if all of the following

conditions hold:

1. Only simple points are deleted.

2. If two corners belonging to the object, p and q, of a 2 × 2 square in Z3 are deleted, then

the set {p, q} is simple.

3. If three corners belonging to the object, p, q and r, of a 2×2 square in Z3 are deleted, then

the set {p, q, r} is simple.

4. If four corners belonging to the object, p,q,r and s, of a 2 × 2 square in Z3 are deleted,

then the set {p, q, r, s} is simple.

5. No component of the object contained in a 2× 2× 2 cube in Z3 can be deleted completely.

Theorem 10. [130] The thinning algorithm PKD6 preserves topology, in the sense of Theo-

rem 9.

6.2 New Method

We propose a 6-directional thinning algorithm based on isthmuses. Our algorithm is designed

in two steps, separating the thinning process (using a 6-directional approach) and the isthmuses

detection. Each iteration consists of:
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1. updating the constraint set, by adding points of the object detected as isthmuses,

2. removing deletable points of the object which are not in the constraint set (see Algo-

rithm 11).

Notice that this design is inspired by the one of critical kernel based methods (see Algorithms 6

and 7) reported in the previous chapter.

Algorithm 11: D6I1D

Data: X ⊆ Z
3, K ⊆ X

Result: A skeleton of X
repeat1

K = K ∪ΨI1D(X)2

foreach direction d in (U,D,N, S,E,W ) do3

X = τd(X,K)4

until stability ;5

return X6

This design allows for the preservation of some points defined a priori by the initial set K (which

may be empty).

The function ΨI1D(X) returns the set of all the 1D-isthmuses of X (see Section 4.2.2.2).

The function τd(X,K) returns the set X \S, S being the set of all points from X \K respecting

deletion conditions in X for direction d. This function is defined in the sequel of this section.

6.2.1 Design of Deletion Condition Masks

Contrary to deletion conditions used in directional algorithms found in the literature, those of

τd permit the deletion of curve end points, the constraint points being considered separately.

Deletion conditions can be represented using a set of masks: a point respects deletion conditions

if and only if it matches at least one of the masks. In this section, we present the masks used

by τd, obtained by modifying those used by PKD6.

In order to separate geometrical and topological conditions, we have to allow in τd the deletion

of ending points (i.e. points with only one neighbor in the object). For this purpose, we add

three masks to Md, representing ending points which have to be removed for the direction d.

These masks are shown in Figure 6.2 for the case d = U .

Proving that our algorithms preserve topology (Proposition 11 and Proposition 12) can be

done using the framework of critical kernels, introduced by Bertrand [16]. This framework is

indeed the most powerful one for both proving and designing n-dimensional homotopic thinning
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Mα Mβ Mγ

Figure 6.2: Masks Mα-Mγ and their rotations around the vertical axis are added to the set of
masksMU for direction UP in order to remove ending points.

algorithms. However, in this particular case it is simpler to build on the proof that was given

by Palágyi and Kuba for PKD6, as our algorithm only slightly differs from the latter.

Proposition 11. Algorithm PKD6 with mask setsMd extended by adding convenient rotations

of Mα, Mβ and Mγ preserves topology.

Proof. We prove that all conditions of Theorem 9 hold.

Let X ⊆ Z3 and p ∈ X. If p matches a mask in MU , then we know that it is simple from

Theorem 10. If p matches a mask in {Mα,Mβ,Mγ}, then p is obviously simple.

Let Z be a set of object points contained in a 2× 2 square in Z
3, or being an object component

contained in a 2× 2× 2 cube in Z3, with |Z| ≥ 2.

If all points of Z match masks of MU , then we know that all conditions of Theorem 9 hold,

from Theorem 10.

Otherwise, if one point p of Z matches a mask in {Mα,Mβ,Mγ}, then clearly |Z| = 2. Let q

be the other point in Z. By examination of all configurations, it can be seen that any mask in

MU ∪ {Mα,Mβ ,Mγ} positioned on q does not match, thus Z cannot be deleted.

6.2.2 Mask Set Reduction

The set of masks MU ∪ {Mα,Mβ,Mγ} can be compacted as proposed in Figure 6.3. We can

observe that mask M ′
1 matches exactly the same configurations as those matched by masks M1

and Mα. In the same way, mask M ′
5 matches exactly the same configurations as those matched

by masksM5 andMβ . MasksM ′
2,M

′
3,M

′
4,M

′
6 andM ′

7 are respectively the same asM2,M3,M4,M6

and Mγ .

Using the sets M′
d with d ∈ {U,D,N, S,E,W}, we can now define τd, as proposed in Algo-

rithm 12.
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Algorithm 12: τd

Data: X ⊆ Z
3, K ⊆ X

Result: A subset of X
R = set of points matching a mask belonging toM′

d1

R = R \K2

return X \R3

M
′

1
M

′

2
M

′

3

M
′

4
M

′

5
M

′

6
M

′

7

Figure 6.3: Final set of masksM′

U for direction UP.

Proposition 12. Algorithm D6I1D preserves topology.

Proof. From Proposition 11, algorithm PKD6 with mask setsMd extended by adding convenient

rotations of Mα, Mβ and Mγ preserves topology. We observe that:

• D6I1D differs only from this algorithm by constraining some points to be preserved;

• if Theorem 9 holds for an operation A, then it also holds for an operation B that removes

only a subset of the points removed by A.

These observations lead to the conclusion that D6I1D preserves topology.

6.3 Comparative Results

We implemented D6I1D with all the optimizations proposed in the previous chapter: border list,

LUT and CCSU. We apply the same procedure as proposed in Section 5.5 to observe the usability

of our algorithm in a real context of motion capture. The results are shown in Figure 6.4.

We observe that the computation speed of D6I1D is very close to the one of PKD6, and can be

used in real time.
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Figure 6.4: Thinning speed of fully optimized ACK3, PKD6 and D6I1D on two data sets.

Concerning the quality of the resulting skeleton, as no general quality measurement exists (to

our knowledge), we propose to observe the results of the three studied thinning, presented in

Figures 6.5 and 6.6. It can be observed that our algorithm provides results with less spurious

branches than PKD6, and in certain cases less than ACK3 (see images 20 and 23, for example).

However, ACK3 provide better results for flat shape parts; like the chair (image 18) or the

turbine (image 14).

6.4 Other Kinds of Skeletons

In fact, our algorithm offers great flexibility, due to the fact that constraint set detection (function

Ψ) can be changed to implement other conditions. We provide two examples of such variations.

6.4.1 Ultimate Skeletons

In order to obtain ultimate skeletons instead of curvilinear ones, we propose a very simple

variation of D6I1D, consisting in replacing ΨI1D by the function returning empty set (K is

unchanged). We call this variation D6U. Figure 6.7 shows some results obtained by using this

algorithm.

6.4.2 Surface Skeletons

In order to obtain surface skeletons instead of curvilinear ones, we propose a very simple variation

of D6I1D, consisting in replacing ΨI1D by a function ΨI2D returning the set of 2D-isthmuses

(see Section 4.2.2.2), which can be locally detected. We call this variation D6I2D. Figure 6.8

shows some results obtained by using this algorithm.
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ACK3 D6I1D PKD6

Figure 6.5: Skeletons resulting of different algorithms for several shapes. From the left to the
right: algorithms ACK3, D6I1D, and PKD6. From the top to the bottom: shapes 4, 18, 23, 20

and 13.
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ACK3 D6I1D PKD6

Figure 6.6: Skeletons resulting of different algorithms for several shapes. From the left to the
right: algorithms ACK3, D6I1D, and PKD6. From the top to the bottom: shapes 15, 17, 5, 10

and 14.
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Figure 6.7: Examples of homotopic kernels obtained using D6U.

Figure 6.8: Surface skeletons obtained using D6I2D.



Part III

Matching to A Priori Model
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Chapter 7

Problematics and Usual Definitions

In our motion capture method, we propose to transpose the 3d shape of the subject in a graph.

Then, we will perform a matching between this graph and the model graph in order to identify

the 3d position of each part described in the model.

We have two problems to solve:

1. find a way to transpose the 3d shape to a usable graph

2. find an appropriate method to match this graph with the model graph

In this chapter, we first provide usual definitions and notations about graph theory which will

be used in the following. Then, we explain how we extract a data tree from the shape and what

are the possible noises occurring on the data tree which have to be taken into account during

the matching.

7.1 Representation of the Shape

In order to perform a fast and efficient matching between two shapes, it is very important to

describe them in a concise way. Numerous shape descriptors can be found in the literature. In

this section, we propose a quick overview of them.

69
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7.1.1 Global Descriptors

A common class of descriptors is the one of global descriptors. A global descriptor represents

the whole object, often by a vector of numbers. Global descriptors include:

• classical measurements: perimeter (in 2D), area, volume (in 3D), area and volume of the

convex hull

• ratios between measurements

• Fourrier transform

• moments

Global descriptors are very useful for a quick similarity measurement between two shapes, but

not suitable for matching.

7.1.1.1 Moments

Moments represent the shape by a numerical sequence (finite or not). The longer the sequence,

the more precise the description. If the Cartesian moments are not used as a shape descriptor

because non-orthogonal, it is not the case of orthogonal ones, like Legendre moments, used by

Mukundan and Ramakrishnan in [121] and Zernike moments used by Novotni and Klein in [124].

7.1.2 Features Distribution

An alternative to global descriptors is the consideration of the distribution of simple features

of a shape. Shape distributions have been introduced by Osada et al. in [125]. The authors

propose to compute the distribution of simple features of random surface points of the shape:

distance between two random points, angles and triangle area for three random points, etc.... The

similarity between two shapes is then obtained by computing an appropriate distance between

their feature distribution. According to the authors, the feature distribution based on distance

between two random points (called “D2 shape distribution”) is the one providing experimentally

the best results.

Ip et al. proposed in [69] to improve the D2 shape distribution, by separating the distributions of

distances for two points, depending on whether the segment between them is fully in the shape

(“IN shape distribution”), fully out of it (“OUT shape distribution”), or a mix (”MIXED shape

distribution”). The similarity between two shapes is here provided by a weighted combination

of the similarities of the four distributions (D2, IN, OUT et MIXED).
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7.1.3 Contours

Contours constitute a very intuitive way to describe a 2D shape. In the literature, we can

distinguish two different ways to use the contours as a descriptor. Describing the contours as a

curve (Bunke and Bühler [30], Gdalyahu and Weinshall [54], Kaygin and Bulut [74]), it is possible

to measure the similarity of two shapes by searching the minimal transformation changing one

curve to the other. Another way to use the contours is to code it by coefficients in an appropriate

base and the similarity is computed by comparing the coefficients (Brun and Pruvot [28], Shen

and Shen [159]). Notice that obviously contours description is only usable in 2D.

7.1.4 Spatial Maps

Spatial maps are a way to represent shapes by their spatial distribution. Ankerst et al. [7]

propose to segment the space containing the shape in sectors and to compute the histogram of

the distribution of the shape in these sectors (a bin representing the filling of the corresponding

sector by the shape). The similarity measure is obtained by similarity computation between

the histograms representing the shapes, taking into account the distance between the sectors

represented by the bins. Such a method is not affine invariant and requires a pose normaliza-

tion. Kazhdan et al. [75] propose a decomposition in spherical harmonics, providing a rotation

invariant descriptor.

7.1.5 Skeleton Based Approaches

Skeleton is an interesting descriptor for several reasons. First, it describes efficiently and con-

cisely the shape and preserves its topology. Secondly, it can be simplified, e.g. by direct graph

representation preserving only the shape structure information, or on the opposite can be en-

riched by adding information on branches, e.g. distance to the complementary. Finally, it yields

a lot of different approaches, providing similarity measurement, parts matching, or both.

7.1.5.1 Shock Graphs

From our best knowledge, shock graphs are the most famous skeleton-based approach for shape

matching. Siddiqi et Kimia introduced the shock graphs in [160] in 1996: considering the skeleton

of a 2D shape, the authors propose to segment its branches in regard to the evolution of radius

of the maximal balls along them and for this purpose define four types of evolution:

• type 1 : continuous and monotone evolution of the radius

• type 2 : radius is locally minimal
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• type 3 : radius is constant

• type 4 : radius is locally maximal

Then, a graph is built from these segments, considering types 1 and 3 segments as edges and

types 2 and 4 as vertices. Such a graph can be reduced to a tree. The matching and similarity

measurement between the shapes are computed from the trees representing them.

7.1.5.2 Skeleton Graph

In 2004, Di Ruberto [148] proposed another representation of the skeleton by a graph: the skele-

tal graph. Each vertex of a skeletal graph corresponds to an ending point (point with one and

only one neighbor) of the skeleton, or to an intersection of branches (point with more than two

neighbors). Each edge corresponds to the branch linking such points. Different informations

are linked to both vertices (radius of maximal ball) and edges (curvature variation of the cor-

responding branch, length, orientation, ratio between the size of the branch and the size of the

skeleton, etc...). Once again, the matching and the similarity measurement are done via the

graphs, using a gradual assignment.

7.1.5.3 Skeletal Shape-Measure

Torsello and Hancock propose in [173] to assign to each branch of the skeleton two segments of

the contours, bounded by the points common to the bi-tangents circles centered at the extrem-

ities of the branch. Several informations are extracted from these contour segments: curvature

evolution, area of the shape part associated to the branch. A measure is computed using these

informations, with interesting properties:

• a branch representing a small part of the contour will have a measure smaller than the one

of an “important” branch

• the measure homogeneously variates in function of the deformations of the object

• the measure is bending invariant, thus interesting for the matching of articulated shapes

The authors use this measure to improve shock graphs. Notice that, in reason of contours

consideration, such measure cannot be directly used for 3D shapes.

7.1.5.4 Skeletal Segments

In 2008, Goh [55] proposed a new way to consider the skeleton, by dividing it into “primary

skeletons” in regard of different criteria. These primary skeletons can then be merged depending
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to their visual continuity into “secondary skeletons”. Several measures (local and global) are

linked to these two kinds of skeletons and their combination provides them a weight. The

matching of the skeleton is then done by a variation of the Hungarian algorithm on the matrix

of these weights.

7.1.5.5 Skeleton Paths

Bai and Latecki propose in [10] a new way to find a matching between two skeletons, considering

all the skeleton paths between ending points. Each path is segmented in M equidistant points,

and for each point, the radius of the maximal ball centered in this point is considered. Each

path is thus represented by a sequence of M radii.

The authors provide a matching approach using this path representation. A distance is computed

for each couple of paths (one in each skeleton). For each couple of ending points (one in each

skeleton), a distance can be computed, using a new method (called “Optimal Subsequence

Bijection”) on the set of the distances between all the paths starting by one of the considered

points. Finally, the distance between the skeletons is computed using the Hungarian algorithm

on the matrix of the distances between each couple of ending points. The Hungarian algorithm

provides optimal correspondences for each point.

7.1.6 Choice of the Description

In the case of our application, the problem is slightly different: the matching and similarity

computation are not between two shapes, but between a manually described model and a shape.

Furthermore, the model has to be simple to express in order to allow for an easy use of our

method. Finally, the acquisition of the shape implies different kinds of noise which have to be

taken into consideration, and prevent the use of some informations.

Skeletons are interesting in our case, as they allow for both a similarity measurement and a

matching between two shapes. Considering the approaches previously described, the skeletal

graphs proposed by Di Ruberto [148] are the most adapted, as their definition is intuitive and

a similar model is easy to define by the user. Concerning the stored informations on the edges,

the length of the branches (and then, the ratio of their length to the size of the skeleton) is the

only information which is not noised by the acquisition. We propose to use such description for

our method, and explain in the sequel of this chapter how to define it and what are the possible

noises encountered which have to be taken into account.
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7.2 Usual Definitions on Graphs

As our method will be based on graphs, we propose in this section a brief recall on the basic

graph definitions and the notations we will use in this part.

7.2.1 Undirected graphs definitions

7.2.1.1 Undirected graphs

An undirected graph is a pair (V,E), where V is a finite set, and E a subset of {{x, y}, x ∈ V, y ∈
V, x 6= y}. An element of E is called an edge, an element of V is called a vertex.

If {x, y} ∈ E, then x and y are said to be adjacent or neighbours. The set of all neighbours of

x is denoted by N (x). The number of vertices adjacent to a vertex v is called the degree of v,

and is denoted by deg(v). For example, in Figure 7.1, N (c) = {a, d, e} and deg(c) = 3.

a
b

c
d

e

Figure 7.1: Example of undirected graph representation. The circles represent the ver-
tices, the letter in each circle is just used in a purpose of easily identify the associated ver-
tex, and the lines represent the edges. The represented graph is (V = {a, b, c, d, e}, E =

{{a, c}, {a, d}, {c, d}, {c, e}}).

7.2.1.2 Paths and cycles

Let G = (V,E) be an undirected graph, and let x, y be in V , a walk from x to y in G is a

sequence of vertices v0, ..., vk such that x = v0, y = vk and {vi−1, vi} ∈ E, 1 ≤ i ≤ k. The

number k is called the length of the walk. If k = 0 the walk is called a trivial walk. The walk

is closed if x = y. A path is a walk in which no vertex occurs more than once in the sequence

of vertices of the path (except possibly x = y). A non-trivial closed path in which all edges are

distinct is called a cycle.

7.2.1.3 Trees and forests

A graph is connected if for all {x, y} ⊂ V , a path from x to y exists in G. A tree is a connected

graph with no cycles. A simple path from x to y in a tree is unique and is denoted by π(x, y).

A graph with no cycles is called a forest, each of its connected components being a tree.
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Figure 7.2 illustrates the above definitions.
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Figure 7.2: From the left to the right, four undirected graphs: G1, G2, G3 and G4. G2 and G3

are connected, contrary to G1 and G4. G3 is a tree, contrary to the three others. G3 and G4

are forests, composed respectively by one and two trees.

7.2.2 Directed graphs definitions

7.2.2.1 Directed graphs

A directed graph is a pair (V,A), where V is a finite set, and A is a subset of V × V . An

element of A is called an arc, an element of V is called a vertex. Figure 7.3 shows a possible

representation of directed graphs.

a
b

c
d

e

Figure 7.3: Example of directed graph representation. The circles represent the ver-
tices, and the arrows represent the arcs. The represented graph is (V = {a, b, c, d, e}, E =

{(a, c), (d, a), (d, c), (c, e), (e, c)}).

Let G = (V,A) be a directed graph, and let x, y be in V , a path from x to y in G is a sequence

of vertices s0, ..., sk such that x = v0, y = vk and (vi−1, vi) ∈ A, 1 ≤ i ≤ k.

7.2.2.2 Associated undirected graphs

The undirected graph associated to G is the undirected graph G′ = (V,E), such that {x, y} ∈ E

if and only if (x, y) ∈ A or (y, x) ∈ A (see Figure 7.4 for an example).
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Figure 7.4: From the left to the right, a directed graph and its associated undirected graph.

7.2.2.3 Rooted trees and rooted forests

Let G be a directed graph. A vertex r ∈ V is a root of G if for all x ∈ V \ {r}, a path from r

to x in G exists. The directed graph G is antisymmetric if for all (x, y) ∈ A such that x 6= y,

(y, x) /∈ A.

The directed graph G is a rooted tree (with root r) if r is the unique root of G, G is antisymmetric

and if the undirected graph associated to G is a tree.

A directed graph, where each of its connected components is a rooted tree, is called a rooted

forest.

Remark 13. in order to avoid possible confusion, trees and forests for undirected case will be

respectively called unrooted trees and unrooted forest.

Let G = (V,A) be a rooted tree. If (y, x) ∈ A, we say that y is the parent of x (denoted by

par(x)), and that x is a child of y. The set of all children of y is denoted by C(y). A vertex with

no children is called a leaf.

A rooted forest is ordered if for all of its vertices, the children are ordered.

The length of a path between the root and a vertex v is called the depth of v. The maximum

depth of all the vertices is called the height of the tree.

The vertices on the path from the root to a vertex x are called the ancestors of x. We denote

the set of the ancestors of x by anc(x).

Figure 7.5 illustrates the above definitions.

7.2.3 Common definitions

Unless otherwise indicated, all the other definitions and notations are similar for both directed

and undirected graphs. We present these definitions for directed graphs, the versions for undi-

rected graphs can be obtained by replacing arcs by edges.
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Figure 7.5: From the left to the right, four directed graphs: G1, G2, G3 and G4. G1 have two
roots(b and e), G2 and G3 have only one root (e) and G4 have no root. G2, G3 and G4 are
antisymmetric, contrary to G1. G3 is a rooted tree, contrary to the three others. G3 and G4

are rooted forests, composed respectively by one and two rooted trees.

7.2.3.1 Isomorphism

Two graphs G = (VG, AG) and G′ = (VG′ , AG′) are said to be isomorphic if there exists a

bijection f : VG → VG′ , such as for any pair (x, y) ∈ VG × VG, (x, y) ∈ AG if and only if

(f(x), f(y)) ∈ AG′ (see Figure 7.6 for some examples).

Figure 7.6: From the top to the bottom: an example of isomorphism between undirected graphs
(dotted lines represent the bijection), an example of isomorphism between directed graphs, and
an example of non isomorphism between directed trees (bold vertex cannot find any correspon-

dence respecting the definition).

7.2.3.2 Attributed graphs

An attributed graph is a quadruplet (V,A, υV , υA), where V is a finite set, A a subset of V × V ,

and υV (respectively υA) a mapping which associate each element of V (respectively A) to an

attribute.
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An attribute can be a label (an element of a discrete finite set), a real value, or any other

information.

A vertex-attributed graph is a triplet (V,A, υV ) and an edge-attributed graph is a triplet (V,A, υA),

in regard of the above notations.

7.2.3.3 Labeled graphs

A labeled graph is a vertex-attributed graph where all attributes are labels (see Figure 7.7 for

an example).

a
[u]

b
[v] c

[c]

d
[λ]

[u] [v] [c]

[λ]

Figure 7.7: Example of labeled graph representation. In order to avoid confusion with vertex
identifier, the label associated to each vertex is write between brackets. In the case where the
identifier must be represented, we use the representation shown on the left graph: the identifier
with the label between brackets in exponent. In other case, we just write the label between

brackets, like in the right graph.

7.2.3.4 Weighted graphs

A weighted graph is an edge-attributed graph where all attributes are non negative reals (see

Figure 7.8 for an example).

In a weighted tree, the weight of the unique path from x to y, denoted by ω(x, y), is the sum of

the weights of all arcs traversed in the path.

a b c

d

4 2

1
8

Figure 7.8: Example of weighted graph representation. Each number represent the weight of
the closest edge.
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7.3 Data Tree Extraction

In this section, we will first present the required properties of the graph representation of the

shape (called data tree). Then, we propose a method to construct the data tree from the skeleton

of the shape. Finally we enumerate the different types of noise occurring in the data tree, which

have to be taken into consideration for an efficient matching.

7.3.1 Data Tree Specificities

From the definitions presented in the above parts, we can now define formally the graph used in

a priori model definition (called the model tree or pattern tree) as an attributed unrooted tree

M = (VM , EM ,ΣM , ωM ), with ΣM a mapping from vertices to labels representing parts of the

model and ωM a mapping from edges to non negative reals representing the distances between

the parts.

We can make two observations:

• To match the model tree, the data tree must have approximately the same topology than

the model tree, and edge or vertex similar information.

• As the final aim is to obtain spatial positions of the model parts, the data tree have to

store spatial informations in the same way that the parts are stored in the model.

The above observations involve that the data tree have to be an attributed unrooted tree D =

(VD, ED,ΞD, ωD), with ΞD a mapping from vertices to 3d positions of parts of the shape and ωD

a mapping from edges to non negative reals representing the distances between the 3d positions.

Then, the matching can be performed between the weighted unrooted tree (VM , EM , ωM ) asso-

ciated to the model tree and the weighted unrooted tree (VD, ED, ωD) associated to the data

tree.

The obtained matching give, for any parts represented by vertices in VM , a spatial position

represented by vertices in VD.

7.3.2 Data Tree Construction Design

Now we have defined the specificities of the data tree, we have to find a way to build it from the

shape. We consider two steps in the design of the building:

1. find a method which automatically provides relevant 3d positions in the shape.
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2. find a method which automatically provides both the links between these 3d positions and

their appropriate distance.

Figure 7.9 shows areas where we have to find usable 3d positions in the case of hand model (at

left) and full human body model (at right). We can observe there exists in all areas at least

one intersection or end of branches of curvilinear skeleton of the shape (represented in orange).

Furthermore, we can see that areas are linked in a similar way than in the model by branches

of the skeleton.

From these observations, we can deduce an efficient method to build the data tree, following the

two steps described above:

1. we use intersections and ending points of the skeleton as 3d positions, and represent each

of them by a vertex

2. we link two vertices if the associated points are linked by a branch of the skeleton, and the

associated weight is the length of the branch

Head

Hands

Torso

Feets

Crotch

Fingers

Fingers root

Palm

Thumb

Arm

Figure 7.9: Areas in the shape where we have to find usable spatial positions to represent in
the data tree.

7.3.3 From Skeleton to Data Tree

The skeleton points can be classified into three classes, in regard of their number of neighbors

included in the skeleton:

1. zero or one neighbor → E-points class (ending points)

2. exactly two neighbors → B-points class (branch points)

3. strictly more than two neighbors → I-points class (intersection points)
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Figure 7.10 shows the distribution of the tree classes in both symmetric and asymmetric skele-

tons. We can observe that for the asymmetric skeleton, the branches are composed by 2-points

and extremities are always E-points. Furthermore, I-points are present only at intersections of

branches.

(a) (b)

Figure 7.10: Classes of skeleton points in asymmetric skeleton (a) and symmetric skeleton (b):
E-points are in green, B-points in light grey, and I-points in orange.

In order to construct the data tree of the shape, we will use its asymmetric skeleton, in reason of

the above observation. The construction can be done using Algorithm 13, based on detection of

connected components of points of a same class (see Figure 7.11 for an example). Empirically,

we can considered that data trees obtained by this method have a maximal degree bounded by

6. It is interesting and important to notice it, as a bounded maximal degree allows a better

complexity for some matching algorithms.

Algorithm 13: Data tree construction

Data: skeleton S

Result: data tree D

begin1

data tree D ← ∅2

E-CCset ← set of connected components of E-points in S3

B-CCset ← set of connected components of B-points in S4

I-CCset ← set of connected components of I-points in S5

foreach c ∈ E-CCset do6

add a vertex in D with centroid of c for attribute7

foreach c ∈ I-CCset do8

add a vertex in D with centroid of c for attribute9

foreach c ∈ B-CCset do10

add an edge between associated vertices of CC touching c, weighted by the size of c11

end12
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Figure 7.11: Left: example of connected components, each rectangle representing a connected
component (CC). In this example, there is five E-points CC, seven B-points CC and two I-points
CC. Right: data tree constructed from the skeleton at left. Dot lines show the CC associate to

each vertex.

7.3.3.1 Incomplete Model Special Case

In the case of an incomplete model, the skeleton is tied to contain at least one border point

(point on the boundaries of the grid) by constraining the thinning algorithm. It implies that

at least one E-points connected component contains a border point. We consider that all the

edges having a bounding vertex associated with such connected component have infinite weight

(see Figure 7.12 for an example).
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Figure 7.12: Example of data tree construction for incomplete model. Left: hand skeleton,
with in orange, a border point. Right, the data tree constructed from the skeleton.

7.3.4 Data Tree Noises

Due to the acquisition method, several kinds of noise and deformities can appear in the data

tree.
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7.3.4.1 Ghost limbs and Spurious branches

Due to the reconstruction from silhouettes, parts of space cannot be carved, resulting in “limbs”

of the object which do not exist on the real model. Due to the skeletonization algorithm and

to the amount of noise of the shape surface, spurious branches without important topological

signification can appear on skeleton. These noises are illustrated in Figure 7.13.
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Figure 7.13: Examples of spurious branches and ghost limbs(in red) for a full human body
shape(left) and a hand shape(right).

7.3.4.2 Useless 2-degree vertices

Vertices with exactly two neighbors are not useful to describe the topology of a shape, and then

uselessly split an edge (and its weight) into two parts, making difficult a good matching. This

kind of vertices can appear when removing spurious branches or ghosts limbs. See Figure 7.14

for an example.
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Figure 7.14: (a): initial data tree (spurious branches in red). (b): data tree after spurious
branches removal (in blue, resulting useless 2-degree vertices). (c): data trees we want to take

into consideration during the matching.
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7.3.4.3 Splitted vertices

Vertices with more than three neighbors in the model tree can correspond to a cluster of vertices

linked by weakly weighted edges in the data tree, due to the skeletonization algorithm. See

Figure 7.15 for an example.
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Figure 7.15: (a): data tree with splitted vertices (in red). (b): model tree to match. Dotted
lines represent the expected matching.



Chapter 8

State of the Art of Edit-Based

Matching

Graphs are among the most common and well-studied combinatorial structures in computer

science. In particular, the problems of matching graphs and measure the similarity between

them occurs in several diverse areas such as compiler design [4], image processing [153], signal

processing [34], molecular biology [158], chemistry [164], and many others.

8.1 Similarity and Matching between Graphs

In the case of shape recognition, two graph problems are considered:

• measuring the similarity between two graphs

• matching two graphs

For our application, we request both matching (to find associated positions for each part of

the subject) and similarity measurement (to evaluate the significance of the matching). In

our context, the graphs to match are acyclic, it is interesting as specific solutions with better

complexities have been proposed for such problems on rooted and unrooted trees.

8.1.1 Graph Matching

Graph matching is a very difficult problem and the algorithms providing them are very time

consuming. In the field of shape matching, the representations are most often acyclic graphs or

rooted trees, which are easier to match.

85
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Tree matching problems can be separate in different classes of problems:

• exact matching problems consist in finding exact patterns in a tree, or finding common

subparts of two trees. Examples of exact matching problems are:

– subtree isomorphism problem [107, 108, 157]: given a pattern tree P and a data tree

D, find a subtree of D which is isomorphic to P or decide that there is no such tree.

– subtree homeomorphism problem [37, 154]: a variant of the subtree isomorphism

problem, where 2-degree vertices can be deleted from the data tree.

– maximal subtree isomorphism [138]: given a pattern tree P and a data tree D, find

the biggest subtree of D which is isomorphic to a subtree of P .

• inexact matching problems consist in finding the best approximation of a given pattern

in a data tree, or finding the mapping from a tree to another which is the closest to the

isomorphism. Different classes of inexact matching exist:

– one-to-one matching requires that for two trees, each vertex in both trees match with

at most one vertex of the other tree.

– one-to-many and many-to-one matchings allow multiple vertices of only one tree to

match with a same vertex of the other tree.

– many-to-many matching allow clusters of vertices in each tree to match together.

Inexact graph and trees matching are well suited for shape matching and several approaches

have been developed to compute them efficiently.

8.1.1.1 Association Graph

Association graphs [12, 136–138] are an interesting tool for both exact and inexact graphs match-

ing. Let consider two graphs G = (V,E) and G′ = (V ′, E′), an association graph of G and G′ is

a graph where the vertex set is V × V ′ and an edge link two vertices (v1, v
′
1) and (v2, v

′
2) if and

only if a same relation exists between v1 and v2 and between v′1 and v′2.

The matching between G and G′ is then computed by searching the maximal clique in their

association graph. The kind of matching will depend of the relation considered for the linking

in the association graph.

8.1.1.2 Graph Eigenspace

Another way to obtain an inexact graph matching is to use a graph eigenspace [87], where

each vertex of both graphs is represented by an eigenvector, which can be seen as a point in
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n-dimensions. Then, the computation of the clusters of eigenvectors in this eigenspace provide

the correspondences between the two sets of vertices.

8.1.2 Similarity Measurement

From our best knowledge, the only methods providing a similarity measurement without provid-

ing a matching are those based on graph kernels. Graphs kernels are very useful, as they provide

an easy way to classify and compare graphs. For two graphs, computing their kernel consists

in projecting them in a Hilbert space and to compute the scalar product of these projections.

Different projection functions have been proposed, based on random walks [52, 73, 100, 177],

tree patterns [101, 142], or bags of paths [24, 165]. Some kernels have also been proposed for

trees [178].

8.1.3 Methods Providing both Graph Similarity and Matching

In the trees context, an approach widely used for the matching and similarity measurement is the

one using edit-based distances. Edit-based distances are a very powerful and highly studied tool

to solve inexact matching problems. It consists in finding the cheapest sequence of operations

which transforms the pattern tree into the data tree. In order to solve our specific problem of

tree matching, we have developed a new edit-based distance and its associated matching.

In this chapter, we propose a state of art of edit-based distances, in order to position our method.

8.2 Edit-based Distance Basics

In this section, we introduce the important notions necessary to easily understand the following

state of art of edit-based distances.

8.2.1 Edit Operations

The most fundamental notion is obviously the notion of edit operation. An edit operation is an

atomic treatment which will modify the tree on which it is applied. Depending from both the

method and the kind of trees, the defined edit operations will differ. We propose to express only

the classical ones on labeled rooted trees, widely used in the literature, and those on weighted

trees, as our method has to use it.
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Labeled rooted tree edit operations For a labeled rooted tree G = (V,A,Σ), classical edit

operations are:

Relabel: Change the label of a vertex v ∈ V .

Delete: Delete a non-root vertex v ∈ V with parent v′, making the children of v become the

children of v′.

Insert: The dual of delete. Insert a new vertex v as a child of v′, making v the parent of a

subset of the children of v′.

Examples of these operations are shown in Figure 8.1.

[b]

[a]

[a] [b] [b]

[c]

[a] [b] [b]

[a]

[b]

[c][c]

[b]

[a]

[c][c]

Relabel Delete

Insert

Figure 8.1: Examples of edit operations for labeled rooted trees.

Weighted tree edit operations For a graph G = (V,A, ω), we can translate the edit oper-

ations for labelled trees as following:

Resize: Change the weight of an arc a = (u, v) ∈ A.

Delete: Delete an arc a = (u, v) ∈ A and merge u and v into one vertex.

Insert: Split a vertex in two vertices, and link them by a new arc.

Examples of these operations are shown in Figure 8.2.
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Resize
Delete

Insert

Figure 8.2: Examples of edit operations for weighted trees.
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8.2.2 Cost Function

A cost function is associated to the edit operations. In the literature about labeled trees, it is

usual to consider that a relabeling with a different label, the deletion and the insertion have a

cost of 1, and the relabeling with the same label have a cost of 0.

For our weighted graph purpose, we use a function γ : R+ × R
+ → R

+. For a given operation,

its cost is γ(w,w′), where w (respectively w′) is the total weight of the arcs involved in the

operation before (respectively, after) its application.

As a consequence, the cost of a resizement can be denoted by γ(w,w′), where w is the former

weight of the resized arc and w′ is the new weight, the cost of a deletion can be denoted by

γ(w, 0), where w is the weight of the deleted arc, and the cost of an insertion, γ(0, w), where w

is the weight of the created arc.

We choose γ to be a translation invariant metric, and is required to satisfy the following con-

straints:

• γ(w,w′) ≥ 0 (non-negativity constraint)

• γ(w,w′) = 0 if and only if w = w′ (identity of indiscernible constraint)

• γ(w,w′) = γ(w′, w) (symmetry constraint)

• γ(w,w′) ≤ γ(w, x) + γ(x,w′) (triangle inequality constraint)

• γ(w,w′) = γ(w + x,w′ + x) (translation invariance constraint)

Proposition 14. γ(a+ b, c) ≤ γ(a, 0) + γ(b, c)

Proof. Due to triangle inequality, we have γ(a+ b, c) ≤ γ(a+ b, b) + γ(b, c). Due to translation

invariance, we have γ(a, 0) = γ(a+ b, b). Thus, γ(a+ b, c) ≤ γ(a, 0) + γ(b, c).

8.2.3 Tree Edit Distance

An edit script S between two graphs G1 and G2 is a sequence of edit operations turning G1 into

G2. The cost of S is the sum of the costs of the operations in S. An optimal edit script between

G1 and G2 is an edit script between G1 and G2 of minimum cost and this cost is the tree edit

distance.
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8.2.4 Mapping

An edit distance mapping (also just called a mapping) between two graphs G1 and G2 is a

representation of the edit script.

Mapping for labeled rooted trees In the literature, a mapping between two labeled ordered

rooted trees T1 = (V1, A1,Σ1) and T2 = (V2, A2,Σ2) can be formally defined as the triplet

(M,T1, T2), with M ⊆ V1 × V2 and for any pair (v1, w1), (v2, w2) ∈M :

• v1 = v2 if and only if w1 = w2 (one-to-one condition)

• v1 ∈ anc(v2) if and only if w1 ∈ anc(w2) (ancestor condition)

• v1 is to the left of v2 if and only if w1 is to the left of w2 (sibling condition)

An element of M is called a mapping line.

The mapping for labeled unordered rooted tree is defined in the same way, but without the

sibling condition.

An example of mapping between labeled rooted trees is shown in Figure 8.3.

[a]

[b] [b]

[c]

[a]

[b] [b] [c]

G1 G′

1

[a]

[b] [b]

[c]

[a]

[b] [b] [c]

G2 G′

2

Figure 8.3: Left: A mapping from G1 to G′

1
. The dotted lines represent the mapping.

Vertices in G1 not touched by a mapping line have to be deleted. Vertices in G′

1
not touched by

a mapping line have to be inserted. The mapping shows a way to transform G1 to G′

1
. Right:

An invalidate mapping from G2 to G′

2
: the ancestor condition is not respected.

Remark 15. In the sequel, we will present some mappings with no mapping line between the

roots. As it is in contradiction with the definition of delete operation, which occurs only on

non-rooted vertices, we have to consider that the deletion of the root r1 of T1, which split T1 in

the forest of all subtrees rooted in a vertex ∈ C(r1), is possible in two cases:

1. the root r2 of T2 is deleted too, then the mapping occurs on the forests of both trees.

2. the root r2 of T2 is mapped to a vertex v in T1, such that v is an ancestor of all vertices

mapped with vertices of T2 (due to ancestor condition).
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Mapping for weighted trees In the case of weighted trees, we can adapt the above definitions

of mapping.

A mapping between two weighted rooted trees T1 = (V1, A1, ω1) and T2 = (V2, A2, ω2) can be

formally define as the triplet (M,T1, T2), with M ⊆ A1×A2 and for any pair (a1 = (v1, v
′
1), b1 =

(w1, w
′
1)), (a2 = (v2, v

′
2), b2 = (w2, w

′
2)) ∈M :

• a1 = a2 if and only if b1 = b2 (one-to-one condition)

• v′1 ∈ anc(v′2) if and only if w′
1 ∈ anc(w′

2) (ancestor condition)

An example of invalidate mapping between weighted trees is shown in Figure 8.4.

a

b c

d

e

f g h

2
1

4

1 1
2

Figure 8.4: An invalidate mapping: the ancestor condition is not respected (due to bold pair:
c is an ancestor of d, contrary to g which is not an ancestor of h).

Mapping Cost By definition, the cost of a mapping is equal to the cost of the associated edit

script.

8.2.5 Complexities notations

In the sequel of the chapter, we will give the complexity of algorithms computing edit distances

between two trees T1 and T2, mainly in function of their size, their number of leaves, their height

and their maximal degree. For i ∈ {1, 2}:

• the size of Ti is denoted by Si

• the number of leaves in Ti is denoted by Li

• the height of Ti is denoted by Hi

• the maximum degree of Ti is denoted by Di
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8.3 General Edit Distance

The edit distance problem between labeled ordered rooted trees was introduced by Tai in [168].

It consists in finding the optimal edit script and the associated mapping (called the optimal map-

ping) between labeled ordered rooted trees. Notice that the optimal mapping is not necessary

unique. In [187], Zhang and Shasha proposed an algorithm with anO(S1S2min(L1, H1)min(L2, H2))

time complexity. This algorithm was modified by Klein in [77] to get a better worst case time

complexity in O(S2
1S2logS2).

In 2001, Chen [33] proposed an algorithm with O(S1S2+L2
1S2+L2.5

1 L2), which improves previous

bounds for certain kinds of trees (for example, if Li <
√
Si, i = 1, 2). More recently, Demaine et

al. [46] proposed an algorithm in O((S1 + S2)
3) time complexity.

For the edit distance problem between labeled unordered rooted trees, Zhang et al. [188] shown

that the problem was NP-complete, and proposed an algorithm with an O(S1S2 + L1!2
L1(L3

1 +

H2
2 )S2) time complexity.

8.4 Other Edit Distances

Numerous other edit distances have been proposed in order to reduce the complexity of the

general edit distance problem or to provide special characteristics to the associated mapping.

These edit distances are derived from the general edit distance by adding constraints on the

mapping, on the edit operations or on the edit script. We will here propose a quick overview of

these edit distances.

8.4.1 Alignment Distance

Jiang et al. proposed in [71] the notion of alignment of trees. Let T1 = (V1, A1,Σ1) and

T2 = (V2, A2,Σ2) be two labeled rooted trees. We denote by λ a space, which is a label not

occurring in T1 and T2.

An alignment of T1 and T2 is obtained by first inserting vertices labeled by λ in T1 and T2 such

that the two resulting trees T ′
1 and T ′

2 are isomorphic, then drawing a mapping line from each

vertex in T ′
1 to its corresponding vertex in T ′

2. See left part of Figure 8.5 for an example.

An alignment mapping can be provided between T1 and T2 by drawing a mapping line between

each pair (v1, w1) ∈ V1×V2, if there is a mapping line between them in the alignment. See right

part of Figure 8.5 for an example.
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Jiang et al. provided an algorithm for the alignment between labeled ordered rooted trees

with O(S1S2(D1 +D2)
2) time complexity. In the unordered case, the problem is NP-complete,

excepted if D1 and D2 are bounded. In this case, the complexity is in O(S1S2).

In 2001, Jansson and Lingas [70] proposed an algorithm to compute the optimal alignment

between similar trees. Two trees are similar if there is an optimal alignment between them

using at most s spaces. Their algorithm had a O(S1 + S2)log(S1 + S2)(D1 + D2)
4s2) time

complexity.

Remark 16. In his thesis [65], Höchsmann shown that an alignment distance is not a distance,

due to non respect of triangle inequality constraint.

[a] [a]

[b] [b][c] [c]

[d] [d][e] [e][f ] [f ][g] [g]

[a] [a]

[b]

[b]

[c]

[c]

[d] [d][e] [e][f ] [f ]

[g]

[g]

[λ]

[λ] [λ]

[λ]

[λ]

[λ]

Figure 8.5: Left: an alignment mapping. Right: the associated alignment.

8.4.2 Constrained/Isolated Subtree Edit Distance

According to Wang and Zhang [179], the isolated subtree edit distance (also called the constrained

edit distance in the litterature [21]) was first proposed in 1988 by Tanaka and Tanaka [170] and

involves that disjoint subtrees are mapped with disjoint subtrees.

A constrained mapping can be obtained by adding a condition on mapping. In a rooted tree

T = (V,A), we denote by nca(x, y) the nearest common ancestor of x and y in T , which is

the vertex in anc(x) ∩ anc(y) with maximal height. The additional condition for the mapping

(M,T1, T2) is, for any triplet (v1, w1), (v2, w2), (v3, w3) ∈M :

• nca(v1, v2) ∈ anc(v3) \ {v3} if and only if nca(w1, w2) ∈ anc(w3) \ {w3}.

An example of constrained mapping is shown in Figure 8.6.

For the application between labeled ordered rooted trees, Zhang [185] gives an algorithm with

a time complexity in O(S1S2). In [186], he proposed an algorithm for the unordered case with

a O(S1S2(D1 +D2)log(D1 +D2)) time complexity.
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v1 v2

v3v4

v5

v1 v2

v3v4

v5 w5

w4 w3

w1 w2 w1 w2

w3

w4

Figure 8.6: Left: a mapping which is constrained. Right: a mapping which is not constrained.

In 2003, Ferraro and Godin [49] proposed an algorithm to compute the optimal constrained

edit mapping with a minimal number of connected components in both trees, with the same

complexity than Zhang.

Constrained Mapping for labeled unrooted trees In [189], Zhang et al. proposed a

definition of constrained mapping for labeled unrooted trees, using the definition of the center

of three vertices.

Let u, v, w be three vertices in a labeled unrooted tree T , the center of the three vertices u, v, w,

denoted by center(u, v, w), is the only vertex belonging to the three paths π(u, v), π(u,w) and

π(v, w) (see Figure 8.7 for an example).

u v w u

v

w

Figure 8.7: Illustrations of the center, represented by the bold circle.

A constrained mapping between two labeled unrooted trees T1 = (V1, E1,Σ1) and T2 = (V2, E2,Σ2)

can be formally defined as the triplet (M,T1, T2), with M ⊆ V1×V2 and for any triplet (v1, w1),

(v2, w2), (v3, w3) ∈M :

• v1 = v2 if and only if w1 = w2 (one-to-one condition)

• (c, c′) ∈ M , with c = center(v1, v2, v3) and c′ = center(w1, w2, w3) (center relationship

preservation condition)

An example of invalidate constrained mapping is shown in Figure 8.8.
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[a] [b] [a] [a]

[b]

[a] [a]

Figure 8.8: An invalidate constrained mapping: the center relationship preservation condition
is not respected.

8.4.3 Less Constrained Edit Distance

In 2001, Lu et al. [94] introduced the less-constrained edit distance, which relaxes the con-

strained mapping. Here, the additional condition for the mapping (M,T1, T2) is, for any triplet

(v1, w1), (v2, w2), (v3, w3) ∈M , such none of v1, v2 and v3 is an ancestor of the others:

• depth of nca(v1, v2) ≥ depth of nca(v1, v3) and also nca(v1, v3) = nca(v2, v3) if and only

if depth of nca(w1, w2) ≥ depth of nca(w1, w3) and also nca(w1, w3) = nca(w2, w3)

The authors proposed an algorithm for this edit distance between labeled ordered rooted trees

with a O(S1S2D
3
1D

3
2(D1 + D2)) time complexity. In the unordered case, the problem is NP-

complete. An example of less constrained mapping is shown in Figure 8.9.

v1 v2

v3v4

v5

v1 v2

v3v4

v5 w5

w4

w3

w1

w2
w1 w2

w3

w4

Figure 8.9: Left: a mapping which is not constrained but less constrained. Right: a mapping
which is not less constrained.

8.4.4 1-Degree/Top-Down Edit Distance

In [155], Selkow proposed an edit distance with for additional constraint that insertions and

deletions are restricted to leaves of the tree. This edit distance is called 1-degree edit distance

or top-down edit distance, due to the translation of this constraint in the mapping.

Let T1 = (V1, A1,Σ1) and T2 = (V2, A2,Σ2) be two labeled trees rooted respectively in r1 and r2.

A mapping (M,T1, T2) is a top-down mapping if for all couple (v1, w1) ∈ (V1 \{r1})× (V2 \{r2}):

• (v1, w1) ∈M if and only if (par(v1), par(w1)) ∈M
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An example of top-down mapping is shown in Figure 8.10.

Yang proposed in [183] an algorithm which computes the top-down edit distance between labeled

ordered rooted trees with a O(S1S2) time complexity. For our best knowledge, there does not

exist algorithm for the unordered case.

v1 v2

v3v4

v5

w1 w2

w4 w3

w5

v1 v2

v3v4

v5

w1 w2

w4 w3

w5

Figure 8.10: At left: a mapping which is top down. At right: a mapping which is not top
down.

8.4.5 2-Degree Edit Distance

Zhang et al. proposed in [189] a restricted form of the constraint edit mapping, with for addi-

tional constraint that insertions and deletions are restricted to vertices with no more than two

neighbors.

The authors provide algorithms for labeled unordered rooted trees with O(S1S2

√
d log d) time

complexity (with d = min(D1D2)), and for labeled unrooted trees with O(S1S2d
√
d log d) time

complexity.

8.4.6 Bottom-Up Edit Distance

Valiente proposed in [175] a bottom up mapping defined by adding the following constraint.

Let T1 = (V1, A1,Σ1) and T2 = (V2, A2,Σ2) be two labeled trees rooted respectively in r1 and

r2. A mapping (M,T1, T2) is a bottom up mapping if for all couple (v1, w1) ∈M :

• (v1, w1) ∈ M then ∀ci ∈ C(v1), ∃cj ∈ C(w1) such (ci, cj) ∈ M and ∀cj ∈ C(w1), ∃ci ∈ C(v1)
such (ci, cj) ∈M .

An example of bottom-up mapping is shown in Figure 8.11.

The algorithm provided by Valiente to compute the bottom up distance have a complexity in

O(S1 + S2) for both ordered and unordered cases.
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w4 w3

w5
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w1 w2

w4 w3

w5

Figure 8.11: At left: a mapping which is bottom up. At right: a mapping which is not bottom
up.

8.5 Inclusion of Mappings

Mappings based on general edit mapping can be hierarchically classified in regard to their con-

straints. For example, we can assume that all mappings derived from the general edit mapping

by adding restriction are general edit mappings. Some of these relations are directly derived

from the mappings definitions:

• all constrained (or isolated subtree) mappings are less constrained mappings.

• all 1-degree (or top down) mappings are 2-degree mappings.

• all 2-degree mappings are isolated subtree mappings.

• all bottom-up mappings are isolated subtree mappings.

In 2001, Wang and Zhang [179] demonstrated that all isolated subtree mappings are alignment

mappings. From all these relations, we can established a hierarchy on all the mappings described

above. This hierarchy is shown on Figure 8.12.

General Edit Mapping

Alignment MappingLess-Constrained Mapping

Top-Down Mapping

2-Degree Mapping

Isolated Subtree Mapping

Bottom-Up Mapping

Figure 8.12: Hierarchy of mappings.
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8.6 Edit Distances with Extended Set of Operations

Edit distances using additional operations have also been proposed, in order to treat specific

problems, as shape matching for example.

8.6.1 Edge Merging and Edge Pruning

Klein et al. [78] proposed a modified edit distance on edge-attributed ordered rooted trees using

two new operations:

edge merging Merges two edges sharing a 2-degree vertex. The resulting attribute is derived

from the attributes of involved edges.

edge pruning Removes an edge ended by a 1-degree vertex at one side and a 3-degree vertex

v at the other side. Then, the two edges sharing v are merged.

8.6.2 Cut Operation

In [180], Wang et al. proposed to add the cut operation, which consist in removing complete

subtrees in one of the two trees for free. It allows to use edit distance for inexact subtree

matching problem.

8.6.3 Horizontal/Vertical Merge and Split

In 2003, Bille [20] proposed to extend the general edit distance for labeled ordered rooted trees

using merge and split operations:

horizontal-merge Merges a consecutive subsequence of siblings v1, ..., vs into a single vertex

v. The children of v1, ..., vs become the children of v.

horizontal-split The complement of horizontal-merge. Splits a vertex v into a consecutive

sequence of siblings v1, ..., vs. The children of v become children of v1, ..., vs.

vertical-merge Merge a sequence of vertices v1, ..., vs , where par(vi+1) = vi, 1 ≤ i < s, into a

single vertex v. The children of v1, ..., vs not in the sequence become the children of v.

vertical-split The complement of vertical-merge. Split a vertex v into a sequence of vertices

v1, ..., vs, where par(vi+1) = vi, 1 ≤ i < s. The children of v become the children of the

sequence v1, ..., vs.
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Bille proposed two new edit distances using these operations. The k-way horizontal edit distance

consists in allowing horizontal merges and splits in the edit script, with the restriction to merge

less than k vertices together. The author provides an algorithm that reaches O(S2k+2) time

complexity.

The vertical edit distance consists in allowing vertical merges and splits in the edit script. An

algorithm is proposed with a O(S7) time complexity.

We can notice that the use of merge operations involve to break the one-to-one constraint of

edit mapping: this kind of mapping is many-to-many.

8.7 Discussion for our Purpose

In our purpose, none edit mapping is well adapted to take into consideration the noises, especially

the 2-degree useless vertex noises and the spurious branches. However, we can consider that these

two problems can be solved by adding respectively merge operation of Klein et al. [78] and the

cut operation of Wang et al. [180].

The last remaining problem, the splitted vertex problem, can be taken into consideration by

edit mappings, using the edge deletion. Among the edit mappings, we will use the one which

well preserves the topology and which has a good complexity. Isolated subtree mapping and

its sub cases (regarding the mapping hierarchy previously established in Figure 8.12) are too

restrictive. The alignment mapping seems a good compromise between topology preservation

and computation speed.

8.8 Alignment Distance for Weighted Trees

In [71], Jiang et al. proposed the alignment between vertex-labeled trees, that we transpose here

for edge-weighted graphs.

Let G1 = (V1, A1, ω1) and G2 = (V2, A2, ω2) be two weighted graphs. Let G′
1 = (V ′

1 , A
′
1, ω

′
1) and

G′
2 = (V ′

2 , A
′
2, ω

′
2) be weighted graphs obtained by inserting arcs weighted by 0 in G1 and G2,

such that there exists an isomorphism I between (V ′
1 , A

′
1) and (V ′

2 , A
′
2). The set of all couples

of arcs A = {(a1, a2); a1 ∈ A′
1, a2 ∈ A′

2, a2 = I(a1)} is called an alignment of G1 and G2. The

cost CA of A is given by

CA =
∑

(a1,a2)∈A

γ(ω′
1(a1), ω

′
2(a2)) . (8.1)
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The minimal cost of all alignments from G1 and G2, called the alignment distance, is denoted

by α(G1, G2).

An example of alignment and alignment mapping between weighted trees is shown in Figure 8.13.
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Figure 8.13: Example of alignment for weighted trees. Top left: initial trees G1 and G2. Top
right: trees after edge insertions G′

1
and G′

2
, dotted lines representing the alignment. Bottom:

associated alignment mapping of G1 and G2.



Chapter 9

Homeomorphic Alignment

As shown in the previous chapter, there is no matching method fitted for our need in the

literature, as far as we know. However, we have seen that solutions exist for the three kind of

noises, considered separately:

• alignment mapping seems a good compromise between time complexity and topology

preservation, and solve the problem of splitted vertices

• merging operations on edges can be a solution for useless 2-degree vertices

• cut operation is an interesting tool for spurious branches removing

In this chapter we propose a new kind of alignment, specially designed to take into account the

problem of useless 2-degree vertices, by extending the set of edit operations. First, we give a

formal definition of this alignment. Then, we show how to compute it efficiently for both rooted

trees and unrooted trees, using bottom-up based algorithms. Finally, we show how to integrate

the cut operation in this alignment, in order to solve the problem of spurious branches.

9.1 Preliminar Definitions

9.1.1 Merging Operation

The merging is an operation that can be applied only on arcs sharing a 2-degree vertex (for

directed graphs, the vertex have to be the end of one arc and the start of the other). The

merging of two arcs (u, v) and (v, w) (we say that we merge on vertex v) in a weighted graph

G = (V,A, ω) consists of removing v in V , replacing (u, v) and (v, w) by (u,w) in A, weighted

by ω((u,w)) = ω((u, v)) + ω((v, w)). Notice that the cost of a merging is equal to 0, as no

weight variation occurs. Examples of merging for directed and undirected graphs are shown in

Figures 9.1 and 9.2, respectively.

101
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Figure 9.1: Example of merging on directed graph.
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Figure 9.2: Examples of merging on undirected graph.

9.1.2 Homeomorphism

Two weighted graphs G = (VG, AG, ωG) and G′ = (VG′ , AG′ , ωG′) are homeomorphic [181] if and

only if there exists an isomorphism between a graph obtained by mergings on G and a graph

obtained by mergings on G′. Some examples of homeomorphism are shown in Figure 9.3.
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Figure 9.3: Examples of homeomorphism.
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9.1.3 Merging Kernel

Considering that a merging on a vertex v on the graph G = (V,A, ω) does not affect the degree

of any vertex in V \ {v} (by definition of merging operation) and therefore the possibility of

merging this vertex, the number of possible mergings decreases by one after each merging.

In consequence, the maximal size of a sequence of merging operations, transforming G into

another graph G′ = (V ′, A′, ω′) is equal to the initial number of possible mergings in G.

It can be remarked that any sequence of merging operations of maximal size yields the same

result. The graph resulting of such a sequence on G is called the merging kernel of G, and is

denoted byMK(G).

The following definition is straightforward:

Definition 17. Two graphs G1 = (V1, A1, ω1) and G2 = (V2, G2, ω2) are homeomorphic iff

MK(G1) andMK(G2) are isomorphic.

Examples of merging kernels of directed and undirected graphs are shown in Figures 9.5 and 9.4,

respectively.
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Figure 9.4: Example of merging kernel of an undirected graph.

a

b c d

e

f

1

1

1

1

1

2

1
4

2

8

g

h

G′

2

a

b c d

e

f

1

1

1

1

1

4

MK(G′

2
)

3

10

Figure 9.5: Example of merging kernel of a directed graph.
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9.2 Homeomorphic Alignment Definition

Let G1 = (V1, A1, ω1) and G2 = (V2, A2, ω2) be two weighted graphs. Let G′
1 = (V ′

1 , A
′
1, ω

′
1) and

G′
2 = (V ′

2 , A
′
2, ω

′
2) be weighted graphs obtained by deleting arcs in G1 and G2, such that there

exists an homeomorphism between G′
1 and G′

2 (not necessarily unique). Let G′′
1 = (V ′′

1 , A
′′
1, ω

′′
1)

and G′′
2 = (V ′′

2 , A
′′
2, ω

′′
2) be the merging kernel of G′

1 and G′
2, respectively. From definition 17,

there exists an isomorphism I between G′′
1 and G′′

2.

The set of all couples of arcs H = {(a, a′); a ∈ A′′
1, a

′ ∈ A′′
2, a

′ = I(a)} is called an homeomorphic

alignment of G1 with G2 (see Figure 9.6). The graph G′′
1 is called the left graph of H. The graph

G′′
2 is called the right graph of H.

The cost CH of H is the sum of the costs of all operations used to homeomorphically align G1

and G2: the deletion of arcs in G1 and G2, to obtain G′
1 and G′

2 respectively, and the resizement

for each arc a1 ∈ A′′
1 to the weight of H(a1). More formally :

CH =
∑

(a,a′)∈H

γ(ω′′
1(a), ω

′′
2(a

′)) +
∑

ad∈A1\A′

1

γ(ω1(ad), 0) +
∑

a′
d
∈A2\A′

2

γ(0, ω2(a
′
d)) .

This minimal cost of all homeomorphic alignments between G1 and G2, called the homeomorphic

alignment distance, is denoted by η(G1, G2).
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Figure 9.6: Example of homeomorphic alignment.

9.3 Algorithm for rooted trees

In order to compute homeomorphic alignment distance with good complexity, we will use a

bottom-up approach. This approach, widely used in the literature on edit-based distances, is

based on a reformulation of the distance between trees in terms of both the distance between
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their subtrees and the matching of their roots. Then, using this reformulation, the computation

starts by the distances between the simplest subtrees (i.e the leafs), and goes up to the root. The

distances between subtrees are kept in memory, avoiding redundancy of computation. However,

there are two main differences to take into account in the case of homeomorphic alignment

distance:

1. Information is on arcs, rather than on vertices. It involves to take into consideration several

arc weights in the reformulation (one for each arc between the root and its children), instead

of the unique value linked to the root, as in the literature.

2. An arc can be matched with a set of arcs merged together (due to merging kernel appli-

cation). It involves to take into account not only the subtrees of the tree, but also those

which can be generated by some merging.

Our approach to solve these two problems is to use a special kind of tree, the root of which has

only one child. Then, we make a reformulation of the homeomorphic alignment distance between

this kind of trees, in function of subtrees with the same property. By this way, there is only one

new arc to take into consideration at each step, the one between the root and its child. Moreover,

we consider that this arc can be the result of a merging. In combination with the recursive nature

of the bottom-up approach, it will lead to consider subtrees with all possible mergings. Finally,

we also need a reformulation of the homeomorphic alignment distance between “classic” trees

in function of the homeomorphic alignment distances between such subtrees.

9.3.1 Definitions and notations

First, we need to define more formally the particular kind of tree described above. Let T =

(V,A, ω) be a weighted tree rooted in rT . We denote by T (v), v ∈ V , the subtree of T rooted in

v (see Figure 9.7). Let va be an ancestor of v, we denote by T (v, va) the subgraph of T obtained

from T (va) by removing all complete subtrees which do not contain vertices of T (v), and by

merging on each vertex n ∈ anc(v) \ {va, v}. We say that T (v, va) is the subtree of T rooted

in va pruned in v, and we call this kind of trees a pruned tree (see Figure 9.7 for an example).

We denote by F(T, v) the forest, the connected components of which are the trees T (p, v), for

all p ∈ C(v) (see Figure 9.7 for an example). By abuse of notation we also denote by F(T, v)
the set of all connected components of this forest.

9.3.2 Reformulations

In order to use a bottom-up approach, we have to express the homeomorphic alignment distance:

• between trees in function of the distances between their forests (Proposition 18).
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Figure 9.7: From the left to the right: a tree T , a subtree of T rooted in b, a subtree of T
rooted in a and pruned in e, and a forest of T with origin b.

• between pruned trees in function of the distances between their pruned subtrees (Propo-

sition 20).

• between forests in function of the distances between their subforests (Proposition 21).

In addition, we have to reformulate these distances in the special cases where at least one of the

trees is empty (Proposition 19).

In the sequel we consider two weighted trees P = (VP , AP , ωP ) and D = (VD, AD, ωD), rooted

respectively in rP and rD.

Proposition 18. We have :

η(P,D) = η(F(P, rP ),F(D, rD)).

Proof. Since the root of a tree cannot be eliminated by any operation (merging, deletion) involved

in the definition of η, it may be seen that any homeomorphic alignment H of P with D has a

corresponding alignment H′ of F(P, rP ) with F(D, rD) of same cost, and the converse also

holds.

Proposition 19. Let i ∈ VP \ {rP }, j ∈ VD \ {rD}, ia ∈ anc(i), ja ∈ anc(j),

η(∅, ∅) = 0

η(P (i, ia), ∅) = η(F(P, i), ∅) + γ(ωP (ia, i), 0)

η(F(P, i), ∅) =
∑

i′∈C(i)

η(P (i′, i), ∅)

η(∅, D(j, ja)) = η(∅,F(D, j)) + γ(0, ωD(ja, j))

η(∅,F(D, j)) =
∑

j′∈C(j)

η(∅, D(j′, j)).

Proof. Straightforward.
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Proposition 20. Let i ∈ VP \ {p}, j ∈ VD \ {d}, ia ∈ anc(i), ja ∈ anc(j).

η(P (i, ia), D(j, ja)) =

min



























η(P (i, ia), ∅) + η(∅, D(j, ja)),

γ(ωP (ia, i), ωD(ja, j)) + η(F(P, i),F(D, j)),

minjc∈C(j){η(P (i, ia), D(jc, ja)) + η(∅,F(D, j) \D(jc, j))},
minic∈C(i){η(P (ic, ia), D(j, ja)) + η(F(P, i) \ P (ic, i), ∅)}.

Proof. LetH be an homeomorphic alignment of P (i, ia) with D(j, ja), and letHL = (VL, AL, ωL)

and HR = (VR, AR, ωR) the left and right graphs of H, respectively.

There are seven possible cases:

1. H is an empty set (it is cheaper to remove both P (i, ia) and D(j, ja) than to align them).

2. {(ia, i), (ja, j)} ∈ H.

3. ∃f ∈ AR, f being obtained by merging (ja, j) with other arcs. In this case, there is one

and only one child jc of j, such (j, jc) is merged with (ja, j) in f , and then all D(j′c, j), j
′
c ∈

C(j) \ {jc} are deleted.

4. ∃f ∈ AL, f being obtained by merging (ia, i) with other arcs. In this case, there is one

and only one child ic of i, such (i, ic) is merged with (ia, i) in f , and then all P (i′c, i), i
′
c ∈

C(i) \ {ic} are deleted.

Cases 1,2,3,4 justify, respectively, the lines 1,2,3,4 of the expression of

η(P (i, ia), D(j, ja)) in the proposition.

The three last cases cannot lead to a better homeomorphic alignment:

5. The deletion of (ia, i) and (ja, j) cannot be preferred to the resizement (possible case 2),

because γ(ωP (ia, i), 0) + γ(0, ωD(ja, j)) ≥ γ(ωP (ia, i), ωD(ja, j)).

6. If (ia, i) was deleted, and not (ja, j), then only one P (ic, i), ic ∈ C(i) is aligned withD(j, ja),

the other being removed. It is less expensive to merge (ia, i) with (i, ic) (possible case 3),

because γ(ωP (ia, i), 0) + γ(ωP (i, ic), ωD(ja, j)) ≥ γ(ωP (ia, ic), ωD(ja, j)) (Prop. 14).

7. The deletion of (ja, j) is more expensive than the merging of (ja, j) (possible case 4), for

the same reasons as above.
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Proposition 21. ∀A ⊆ F(P, i), B ⊆ F(D, j),

η(A,B) =

min



































































minD(j′,j)∈B {η(A,B \ {D(j′, j)}) + η(∅, D(j′, j))},
minP (i′,i)∈A {η(A \ {P (i′, i)}, B) + η(P (i′, i), ∅)},
minP (i′,i)∈A,D(j′,j)∈B {η(A \ {P (i′, i)}, B \ {D(j′, j)})

+η(P (i′, i), D(j′, j))},
minP (i′,i)∈A,B′⊆B {η(A \ {P (i′, i)}, B \B′),

+η(F(P, i′), B′) + γ(ωP (i, i
′), 0)},

minA′⊆A,D(j′,j)∈B {η(A \A′, B \ {D(j′, j)})+
η(A′,F(D, j′)j) + γ(0, ωD(j, j

′))}.

Proof. Let H be an homeomorphic alignment of A ⊆ F(P, i) with B ⊆ F(D, j), and let P (i′, i) ∈
A and D(j′, j) ∈ B. There are five possible cases:

1. D(j′, j) is not aligned with element of A,

2. P (i′, i) is not aligned with element of B,

3. P (i′, i) is aligned with D(j′, j),

4. disjoint subparts of P (i′, i) are aligned with elements of B,

5. disjoint subparts of D(j′, j) are aligned with elements of A.

Cases 1, 2, 3, 4, 5 justify, respectively, the lines 1, 2, 3, 4, 5 of the expression of η(A,B) in the

proposition.
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9.3.3 Algorithm

Using the reformulations defined above, we can now design the Algorithm 14 following a bottom-

up approach.

Algorithm 14: Homeomorphic Alignment Distance for Rooted Trees

Data: pattern rooted tree P , data rooted tree D

Result: η(P,D) = η(F(P, rP ),F(D, rD)); // Prop.18

begin1

foreach p ∈ VP , in suffix order do2

foreach A ⊆ F(P, p) do3

Compute η(A, ∅); // Prop.194

foreach pa ∈ anc(p) \ {p} do5

Compute η(P (p, pa), ∅); // Prop.196

foreach d ∈ VD, in suffix order do7

foreach B ⊆ F(D, d) do8

Compute η(∅, B); // Prop.199

foreach da ∈ anc(d) \ {d} do10

Compute η(∅, D(d, da)); // Prop.1911

foreach p ∈ VP , in suffix order do12

foreach d ∈ VD, in suffix order do13

foreach A ⊆ F(P, p) do14

foreach B ⊆ F(D, d) do15

Compute η(A,B); // Prop.2116

foreach pa ∈ anc(p) \ {p} do17

foreach da ∈ anc(d) \ {d} do18

Compute η(P (p, pa), D(d, da)); // Prop.2019

end20

For a tree T = (V,A, ω), we define a suffix order for the vertices in V , such that for all v ∈ V ,

all the children of v are before v.

9.3.4 Complexity

We denote by N the maximum degree of a vertex in the pattern tree or in the data tree, H the

maximal height of both trees and S the maximal size (number of vertices) of both trees. We

recall that a set of size n has 2n subsets.
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The time complexity of computing each reformulation used in the algorithm is:

• η(P (i, ia), ∅) and η(∅, D(j, ja)) → O(1).

• η(A, ∅) and η(∅, B) → O(N).

• η(P (i, ia), D(j, ja)) → O(N).

• η(A,B) → O(N2N ).

Combining these complexities with the different loops of the algorithm, we obtain that the total

computation is in O(S2(N23N +H2N)) time complexity.

If the maximal degree is bounded, the total computation is in O(S2H2) time complexity.

9.4 Algorithm for unrooted trees

First, let us give an expression of the homeomorphic alignment distance between unrooted trees,

in function of the distances between all their possible rooted versions.

Let G = (V,E, ω) be a weighted tree, let r ∈ V , we denote by Gr, the directed weighted tree

rooted in r, such that G is the undirected graph associated to Gr (see Figure 9.8).

a

b f

c

d

e

g
a

c

b d

e

f g

a

c

b d e

fg

G Ga Ge

Figure 9.8: A tree G and the rooted trees Ga and Ge.

Proposition 22. Let P = (VP , EP , ωP ) and D = (VD, ED, ωD) be two weighted trees. We have:

η(P,D) = mini∈VP ,j∈VD
{η(P i, Dj)}.

Proof. Let G = (V,E, ω) be a graph, and r ∈ V a vertex of G. Notice that:

• a merging occurring on a vertex v ∈ V \ {r} in G can occur in Gr,

• deletion, insertion, resizement, and division occurring in G can occur in Gr.
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On the other hand, for each optimal homeomorphic alignment H of P in D, it is easy to see

that there exists p ∈ VP and d ∈ VD, such that p and d are not affected by a merging. For

example, if D′ = (V ′
D, E

′
D, ω

′
D) is a subgraph such as η(P,D) = η(P,D′), p and d can be chosen

as 1-degree vertices of VP and V ′
D, respectively. As a result, η(P,D) = η(P p, Dd). Since the

homeomorphic alignment is more constrained in the case of rooted trees than in the case of

unrooted trees, we can assure than η(P,D) ≤ η(P a, Db), a ∈ VP , b ∈ VD. To sum up, knowing

that η(P,D) ≤ η(P a, Db), a ∈ VP , b ∈ VD, and that there exists p ∈ VP and d ∈ VD, such that

η(P,D) = η(P p, Dd), we conclude that η(P,D) = mini∈VP ,j∈VD
η(P i, Dj).

9.4.1 Naive algorithm

Let P = (VP , EP , ωP ) and D = (VD, ED, ωD) be two weighted trees. From Proposition 22, we

propose a first, naive algorithm to compute η(P,D), consisting of computing the homeomorphic

alignment distance for all couples of weighted rooted trees we can obtain from P and D, and

keeping the minimum reached.

9.4.1.1 Complexity

Let P = (VP , EP , ωP ) and D = (VD, ED, ωD) be two weighted trees. As the number of rooted

trees we can obtain from an undirected tree is equal to the number of vertices of this graph, the

number of couples of weighted rooted trees we can obtain from P and D is equal to |VP | ∗ |VD|.

The total computation is then in O(S4(N23N + Ĥ2N)) time complexity, with Ĥ representing

the maximal height of a rooted tree obtained from P or D (N and S are already defined in

Section 9.3.4).

If the maximal degree is bounded, the total computation is in O(S4Ĥ2) time complexity.

9.4.2 Optimized algorithm

It is easy to see that the above algorithm computes the alignment of subparts of P and D more

than one time. Using dynamic programming and an adapted order of navigation in the tree, we

can avoid useless computation.

Let P = (VP , EP , ωP ) and D = (VD, ED, ωD) be two undirected weighted trees.

We denote by F(P, a, b), a, b ∈ VP the set of rooted trees P r, r ∈ VP , such that b is an ancestor

of a in P r.

We denote by anc(P, a, b), a, b ∈ VP the set of vertices x ∈ VP such that x is an ancestor of a in

at least one rooted tree in F(P, a, b).
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We denote by C(P, a, b), a, b ∈ VP the set of of vertices x ∈ VP such that x is a child of a in at

least one rooted tree in F(P, a, b).

For computing η(P p(i, ia), D
d(j, ja)) and η(F(P p, i),F(Dd, j)), we need to know η(P p(ic, i), D

d(jc, j))

for all ic ∈ C(P, i, p), jc ∈ C(D, j, d).

We can start by computing η(P p(i, ia), D
d(j, ja)) and η(F(P p, i),F(Dd, j)), for all i (respec-

tively, j) being a leaf of P p (respectively, Dd), which have no child, by definition, and continue

iteratively with all vertices which have all their children already computed.

9.4.2.1 Adapted order of navigation

An adapted order of navigation for a tree T = (V,E, ω) can be obtained by the Algorithm 15.

Algorithm 15: Order of navigation computation algorithm (computeOrder)

Data: unrooted tree T

Result: list of couples of vertices L

begin1

list of couples of vertices L← ∅2

FIFO queue of vertices Q← ∅3

foreach v ∈ V do4

if deg(v) = 1 then5

push v in Q6

while Q 6= ∅ do7

pop v of Q8

foreach w ∈ N (v) do9

if (v, w) /∈ L then10

if ∀x ∈ N (v) \ {w}, (x, v) ∈ L then11

push w in Q12

add (v, w) at the end of L13

end14
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9.4.2.2 Final algorithm

We can compute Homeomorphic Alignment for unrooted trees (see Algorithm 16) with improved

complexity, using this order of navigation.

Algorithm 16: Homeomorphic Alignment Distance for Unrooted Trees

Data: pattern rooted tree P ,

data rooted tree D

Result: η(P,D)

begin1

list of couples of vertices LP ← computeOrder(P )2

list of couples of vertices LD ← computeOrder(D)3

foreach (p, p′) ∈ LP do4

foreach A ⊆ F(P p′ , p) do5

Compute η(A, ∅); // Prop.196

foreach pa ∈ anc(P, p, p′) \ {p} do7

Compute η(P pa(p, pa), ∅); // Prop.198

foreach (d, d′) ∈ LD do9

foreach B ⊆ F(Dd′ , d) do10

Compute η(∅, B); // Prop.1911

foreach da ∈ anc(D, d, d′) \ {d} do12

Compute η(∅, Dda(d, da)); // Prop.1913

foreach (p, p′) ∈ LP do14

foreach (d, d′) ∈ LD do15

foreach A ⊆ F(P p′ , p) do16

foreach B ⊆ F(Dd′ , d) do17

Compute η(A,B); // Prop.2118

foreach pa ∈ anc(P, p, p′) \ {p} do19

foreach da ∈ anc(D, d, d′) \ {d} do20

Compute η(P pa(p, pa), D
da(d, da)); // Prop.2021

Compute η(P,D); // Prop.18 and Prop.2222

end23

Complexity Let T = (V,E, ω) be an unrooted tree. Each vertex of degree 1 (one) will be

put in the queue, then, for each edge, each of its vertices will be put twice in the queue. As

|V | = |E|+ 1, the complexity of computeOrder is in O(|V |).
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Let P = (VP , EP , ωP ) and D = (VD, ED, ωD) be two weighted trees. The initialization of LP

and LD is in O(|VP |+ |VD|) time complexity.

Observe that, for p ∈ VP ,

∑

p′∈N (p)

|anc(P, p, p′) \ {p}| = |VP | − 1 .

As a result,
∑

(p,p′)∈LP

|anc(P, p, p′) \ {p}| = (|VP | − 1)× |VP | .

Combining the time complexities of computing the reformulations (given in the Section 9.3.4)

with the loops of the algorithm, and taking into account the above observation, we obtain that

the total computation time of this algorithm is in O(S2N(23N +S2)) complexity, with N and S

defined as in Section 9.3.4.

If the maximal degree is bounded, the total computation is in O(S4) time complexity.

9.5 Algorithm for rooted tree with unrooted tree

As seen in the previous section, the optimal homeomorphic alignment between two unrooted

trees P and D is equal to the minimal optimal homeomorphic alignment between all possible

rooted versions of P and D.

From this fact, we can define the optimal homeomorphic alignment between a tree P r rooted in

r and an unrooted tree D as the minimal optimal homeomorphic alignment between P r and all

possible rooted versions of D.

From Proposition 22 we can propose Proposition 23, which is straightforward.

Proposition 23. Let P r = (VP , AP , ωP ) a weighted tree rooted in r ∈ VP and D = (VD, ED, ωD)

an unrooted weighted tree. We have:

η(P r, D) = minj∈VD
{η(P r, Dj)}.

The only difference between matching a rooted tree P r with an unrooted tree D and matching

two unrooted trees P and D is that no merging can occur on the root r of P r, by definition. It

is interesting if we want to be sure that a vertex of P is preserved by the matching.
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9.5.1 Algorithm

The algorithm to compute the homeomorphic alignment between rooted tree and unrooted tree

(see Algorithm 17) can be obtained by crossing Algorithm 14 and Algorithm 16.

Algorithm 17: Homeomorphic Alignment Distance between Rooted and Unrooted Trees

Data: pattern rooted tree P ,

data unrooted tree D

Result: η(P,D)

begin1

list of couples of vertices LD ← computeOrder(D)2

foreach p ∈ VP , in suffix order do3

foreach A ⊆ F(P, p) do4

Compute η(A, ∅); // Prop.195

foreach pa ∈ anc(p) \ {p} do6

Compute η(P (p, pa), ∅); // Prop.197

foreach (d, d′) ∈ LD do8

foreach B ⊆ F(Dd′ , d) do9

Compute η(∅, B); // Prop.1910

foreach da ∈ anc(D, d, d′) \ {d} do11

Compute η(∅, Dda(d, da)); // Prop.1912

foreach p ∈ VP , in suffix order do13

foreach (d, d′) ∈ LD do14

foreach A ⊆ F(P, p) do15

foreach B ⊆ F(Dd′ , d) do16

Compute η(A,B); // Prop.2117

foreach pa ∈ anc(p) \ {p} do18

foreach da ∈ anc(D, d, d′) \ {d} do19

Compute η(P (p, pa), D
da(d, da)); // Prop.2020

Compute η(P,D); // Prop.18 and Prop.2321

end22

9.5.1.1 Complexity

We denote by N the maximal degree of both trees, S their maximum size, and H the height

of the rooted tree. The total computation time of this algorithm is in O(S2N(23N + SH))
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complexity.

If the maximal degree is bounded, the total computation is in O(HS3) time complexity.

9.6 Usage of Cut Operation

For the purpose of removing spurious branches without any cost, we propose to integrate the

cut operation in our alignment.

In [180], Wang et al. propose a new operation allowing to consider only a part of a tree. Let

G = (V,A, ω) be a weighted tree. Cutting G at an arc a ∈ A, means removing a, thus dividing

G into two subtrees G1 and G2. The cut operation consists of cutting G at an arc a ∈ A, then

considering only one of the two subtrees. Let K a subset of A. We use Cut(G,K, v) to denote

the subtree of G containing v and resulting from cutting G at all arcs in K. In the case of a

rooted tree, we consider that the root rG of G cannot be removed by the cut operation, and

then we use the notation Cut(G,K) = Cut(G,K, rG). In the case of a rooted forest, we consider

that the root of each rooted tree composing the rooted forest cannot be removed by the cut

operation, and then we use the same notation than above: Cut(G,K).

See Figure 9.9 for some examples of cut operation.
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F Cut(F, {(l,m), (o, p)})

Figure 9.9: Examples of cut operations. Top row: on an unrooted tree. Bottom row: on a
rooted forest.
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Our main problem can be stated as follows: Given a weighted tree P = (VP , AP , ωP ) (the pattern

tree) and a weighted tree GD = (VD, AD, ωD) (the data tree), find

ηcut(P,D) = minK⊆AD,v∈VD
{η(P,Cut(D,K, v)}

and the associated homeomorphic alignment. In the case of rooted trees and rooted forests,

ηcut(P,D) = minK⊆AD
{η(P,Cut(D,K))}.

9.6.1 Integration of cut operation in our algorithm

It can be seen that the cut operation can be integrated in the homeomorphic alignment by

replacing the deletion of complete subtrees by their cut.

In order to obtain the algorithms for the computation of ηcut, we just need to replace:

• η by ηcut in the reformulations and algorithms of the Sections 9.3 and 9.4

• Proposition 19 by the following:

Proposition 24. Let i ∈ VP \ {p}, j ∈ VD \ {d}, ia ∈ anc(i), ja ∈ anc(j),

ηcut(∅, ∅) = 0

ηcut(P (i, ia), ∅) = ηcut(F(P, i), ∅) + γ(ωP (ia, i), 0)

ηcut(F(P, ia), ∅) =
∑

i′∈C(ia)

ηcut(P (i′, ia), ∅)

ηcut(∅, D(j, ja)) = 0

ηcut(∅,F(D, ja)) = 0.

It is interesting to remark that the complexity is not modified.

9.7 Limitations

The homeomorphic alignment is an efficient tool for our purpose of motion capture: it affords

to match our model tree with data tree, taking into account the possible noises occurring in our

context. However, we can observe some limitations.

The merging operation have to be more restricted. For our application, merging in the model tree

are useless, the problem of useless 2-degree vertices occurring only in the data tree. Furthermore,

merging operations in model tree can lead to bad matchings, as shown in Figure 9.10.

Restricting the merging operation on the data tree could lead to both optimize the computation

speed and increase the accuracy of results.
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Figure 9.10: Example of bad homeomorphic alignment matching due to merging on model
tree: the ”thumb” edge is removed for a cost of 6, as the merging of ”arm” edge and ”palm”

edge in both trees reduce the matching cost by 8.



Chapter 10

Asymmetric Homeomorphic

Alignment

In the previous chapter, we proposed a first solution to our problem of matching by the way

of homeomorphic alignment. We have closed this chapter by showing the limitations of this

method, due to non restrictions on merging operation.

The alignment and the homeomorphic alignment allow to find the best way to modify two trees in

order to reach a specific relation between them (isomorphism in the first case, homeomorphism

in the second). Isomorphism is a sub case of homeomorphism (i.e. two trees isomorphic are

homeomorphic) and by extension, an alignment between two trees is an homeomorphic alignment

as well.

In this chapter, we first define an asymmetric relation being sub case of homeomorphism and

for which isomorphism is a sub case. Then, we propose new alignment allowing to find the best

way to modify two trees in order to reach this relations. Finally, we design algorithms in order

to compute it efficiently.

10.1 Asymmetric Homeomorphism

10.1.1 Definition

Let G = (V,E, ω) and G′ = (V ′, E′, ω′) be two weighted graphs, G is homeomorphically greater

than or equal to G′ if and only if there exists an isomorphism between G′ and a graph obtained

by mergings on G. We denote this relation by G
H
≥ G′.

119
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10.1.2 Properties

In this section we denote by
H
= the homeomorphism relation, and by

I
= the isomorphism relation.

10.1.2.1 Usual definitions on binary relations

A binary relation R on a set S is a collection of ordered pairs of elements of S. Let a and b two

elements of S, the statement (a, b) ∈ R is denoted by aRb.

The binary relation R is an equivalence relation if and only if for all a, b and c in S:

• a R a (reflexivity)

• if a R b then b R a (symmetry)

• if a R b and b R c then a R b (transitivity)

The equivalence class of an element s of S by R is defined by R(s) = {x ∈ S|xRs}.

The binary relation R is an order relation if and only if for all a, b and c in S:

• a R a (reflexivity)

• if a R b and b R a then a = b (antisymmetry)

• if a R b and b R c then a R b (transitivity)

An order relation R is total if for all a and b in S, a R b or b R a. In the other case, R is a

partial order relation.

10.1.2.2 Properties of asymmetric homeomorphism

Contrary to isomorphism and homeomorphism which are equivalence relations on the set of

graphs G, the asymmetric homeomorphism is an partial order relation on G.

More precisely, as the asymmetric homeomorphism is a sub case of homeomorphism, there

is no asymmetric homeomorphism relations between elements of different equivalence class by

homeomorphism on G.

If we consider a graph G, the equivalence class
H
= (G) is partially ordered by

H
≥ (see Figure 10.1

for an example) and have a least element equal toMK(G): for all G′ ∈H
= (G), G′

H
≥MK(G).
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Figure 10.1: Example of asymmetric homeomorphic relations on a set of homeomorphic trees.

10.2 Asymmetric Homeomorphic Alignment

Let G1 = (V1, A1, ω1) and G2 = (V2, A2, ω2) be two weighted graphs. Let G′
1 = (V ′

1 , A
′
1, ω

′
1)

and G′
2 = (V ′

2 , A
′
2, ω

′
2) be weighted graphs obtained by deleting arcs in G1 and G2, such that

G′
2

H
≥ G′

1. Let G′′
2 = (V ′′

2 , A
′′
2, ω

′′
2) be a graph obtained from G′

2 by a sequence of merging, such

there exists an isomorphism I between G′
1 and G′′

2.

The set of all couples of arcs ~H = {(a, a′); a ∈ A′
1, a

′ ∈ A′′
2, a

′ = I(a)} is called an asymmetric

homeomorphic alignment of G1 with G2.

The cost C ~H of ~H is the sum of the costs of all operations used to asymmetric homeomorphically

align G1 and G2: the deletion of arcs in G1 and G2, to obtain G′
1 and G′

2 respectively, and the

resizement for each arc a1 ∈ A′
1 to the weight of ~H(a1). More formally :

C ~H =
∑

(a,a′)∈ ~H

γ(ω′
1(a), ω

′′
2(a

′)) +
∑

ad∈A1\A′

1

γ(ω1(ad), 0) +
∑

a′
d
∈A2\A′

2

γ(0, ω2(a
′
d)) .

This minimal cost of all homeomorphic alignments between G1 and G2, called the asymmetric

homeomorphic alignment distance, is denoted by ~η(G1, G2).

10.3 Algorithm for Rooted Trees

The algorithms for compute the asymmetric homeomorphic alignment distance is designed in a

similar way that those we described for compute the homeomorphic alignment distance: we use
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again a bottom-up approach, but here we consider only mergings on data tree. Due to this fact,

we consider pruned trees only on the data tree side.

10.3.1 Reformulations

In the sequel we consider two weighted trees P = (VP , AP , ωP ) and D = (VD, AD, ωD), rooted

respectively in rP and rD.

As merging is not used in the reformulations 25, 26 and 28, the proofs are the same as for

Propositions 18, 19 and 21, respectively.

Proposition 25. We have :

~η(P,D) = ~η(F(P, rP ),F(D, rD)).

Proposition 26. Let i ∈ VP \ {rP }, j ∈ VD \ {rD}, ia = par(i), ja ∈ anc(j),

~η(∅, ∅) = 0

~η(P (i, ia), ∅) = ~η(F(P, i), ∅) + γ(ωP (ia, i), 0)

~η(F(P, ia), ∅) =
∑

i′∈C(ia)

~η(P (i′, ia), ∅)

~η(∅, D(j, ja)) = ~η(∅,F(D, j)) + γ(0, ωD(ja, j))

~η(∅,F(D, ja)) =
∑

j′∈C(ja)

~η(∅, D(j′, ja)).

Proposition 27. Let i ∈ VP \ {rP }, j ∈ VD \ {rD}, ia = par(i), ja ∈ anc(j).

~η(P (i, ia), D(j, ja)) =

min



























~η(P (i, ia), ∅) + ~η(∅, D(j, ja)),

~η(γ(ωP (ia, i), ωD(ja, j)) + ~η(F(P, i),F(D, j)),

minjc∈C(j){~η(P (i, ia), D(jc, ja)) + ~η(∅,F(D, j) \D(jc, j))},
~η(γ(ωP (ia, i), 0) +minic∈C(i){~η(P (ic, i), D(j, ja)) + ~η(F(P, i) \ P (ic, i), ∅)}.

Proof. Let ~H be an asymmetric homeomorphic alignment of P (i, ia) with D(j, ja), and let ~HL =

(VL, AL, ωL) and ~HR = (VR, AR, ωR) the left and right graphs of ~H, respectively.

There are six possible cases:

1. ~H is an empty set (it is cheaper to remove both P (i, ia) and D(j, ja) than to align them).

2. {(ia, i), (ja, j)} ∈ ~H.
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3. ∃f ∈ AR, f being obtained by merging (ja, j) with other arcs. In this case, there is one

and only one child jc of j, such (j, jc) is merged with (ja, j) in f , and then all D(j′c, j), j
′
c ∈

C(j) \ {jc} are deleted.

4. (ia, i) is deleted, then only one P (ic, i), ic ∈ C(i) is aligned with D(j, ja), the other being

removed.

Cases 1,2,3,4 justify, respectively, the lines 1,2,3,4 of the expression of

~η(P (i, ia), D(j, ja)) in the proposition.

The two last cases cannot lead to a better homeomorphic alignment:

5. The deletion of (ia, i) and (ja, j) cannot be preferred to the resizement (possible case 2),

because γ(ωP (ia, i), 0) + γ(0, ωD(ja, j)) ≥ γ(ωP (ia, i), ωD(ja, j)).

6. If (ja, j) was deleted, and not (ia, i), then only one D(jc, j), jc ∈ C(j) is aligned with

P (i, ia), the other being removed. It is less expensive to merge (ja, j) with (j, jc) (possible

case 3), because γ(0, ωD(ja, j)) + γ(ωP (ia, i), ωD(j, jc)) ≥ γ(ωP (ia, i), ωD(ja, jc)).

Proposition 28. ∀A ⊆ F(P, i), B ⊆ F(D, j),

~η(A,B) =

min



































































minD(j′,j)∈B {~η(A,B \ {D(j′, j)}) + ~η(∅, D(j′, j))},
minP (i′,i)∈A {~η(A \ {P (i′, i)}, B) + ~η(P (i′, i), ∅)},
minP (i′,i)∈A,D(j′,j)∈B {~η(A \ {P (i′, i)}, B \ {D(j′, j)})

+~η(P (i′, i), D(j′, j))},
minP (i′,i)∈A,B′⊆B {~η(A \ {P (i′, i)}, B \B′),

+~η(F(P, i′), B′) + γ(ωP (i, i
′), 0)},

minA′⊆A,D(j′,j)∈B {~η(A \A′, B \ {D(j′, j)})+
~η(A′,F(D, j′)) + γ(0, ωD(j, j

′))}.
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10.3.2 Algorithm

Using the reformulations defined above, we can now design our algorithm following the bottom-

up approach (see Algorithm 18).

Algorithm 18: Asymmetric Homeomorphic Alignment Distance for Rooted Trees

Data: pattern rooted tree P , data rooted tree D

Result: ~η(P,D) = ~η(F(P, rP ),F(D, rD)); // Prop.25

begin1

foreach p ∈ VP , in suffix order do2

foreach A ⊆ F(P, p) do3

Compute ~η(A, ∅); // Prop.264

if p 6= rP then5

Compute ~η(P (p, par(p)), ∅); // Prop.266

foreach d ∈ VD, in suffix order do7

foreach B ⊆ F(D, d) do8

Compute ~η(∅, B); // Prop.269

foreach da ∈ anc(d) \ {d} do10

Compute ~η(∅, D(d, da)); // Prop.2611

foreach p ∈ VP , in suffix order do12

foreach d ∈ VD, in suffix order do13

foreach A ⊆ F(P, p) do14

foreach B ⊆ F(D, d) do15

Compute ~η(A,B); // Prop.2816

if p 6= rP then17

foreach da ∈ anc(d) \ {d} do18

Compute ~η(P (p, par(p)), D(d, da)); // Prop.2719

end20

10.3.3 Complexity

We denote by N the maximum degree of a vertex in the pattern tree or in the data tree, HP and

HD the maximal height of both trees and S the maximal size (number of vertices) of both trees.

We recall that a set of size n has 2n subsets. The computation is in O(S2 ∗ (N ∗23∗N +HD ∗N))

time complexity. If the maximal degree is bounded, the total computation is in O(S2 ∗HD) time

complexity.
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10.4 Algorithm for Unrooted Trees and for Rooted Tree with

Unrooted Tree

Algorithms for unrooted trees and for rooted tree with unrooted tree can be obtained using

the same method that for homeomorphic alignment. In case of asymmetric homeomorphic

alignment, the algorithm for unrooted trees is in O(S2 ∗ (N ∗ 23∗N + SD ∗N)) time complexity

(O(S3) if the maximal degree is bounded).

The algorithm for rooted tree with unrooted tree is in O(S2∗(N∗23∗N+HD∗N)) time complexity

(O(S2HD) if the maximal degree is bounded).





Chapter 11

Alignments Comparison

All the experiments in this section have been done on a computer with a processor Intel(R)

Q8200 at 2.33 GHz and 3 Gio of ram.

11.1 Complexities Comparison

In our method, we assume that both pattern tree and data tree have a bounded maximal degree.

Table 11.1 summarizes the complexities of classic Jiang et al. alignment(α), homeomorphic

alignment(η), and asymmetric homeomorphic alignment(~η) for trees with bounded degree.

We denote by SP and SD the size of the pattern tree and the size of the data tree, respectively.

We denote byHP andHD the height of the pattern tree and the size of the data tree, respectively.

11.2 Accuracy

In this section we propose to study the robustness of the different alignments in regard of the

noises occurring in our motion capture framework.

Table 11.1: Time complexities of the different alignments.

α η ~η

rooted trees O(SPSD) O(SPSDHPHD) O(SPSDHD)

unrooted trees O(SPSD) O(S2
PS

2
D) O(SPS

2
D)

rooted tree with unrooted tree O(SPSD) O(SPHPS
2
D) O(SPS

2
D)

127
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11.2.1 Protocol

Each experiment consists of the following:

1. We randomly generate a pattern tree P .

2. We generate a data tree D from P in two steps:

weight variation: we randomly alter the edge weights by a given amount of variation.

structural noise: we randomly add new vertices by three ways, corresponding to the

different types of noise: splitting an existing vertex, and linking the two parts by

a 0-weighted edge (splitted vertices), adding a new 2-degree vertex by the split of

an edge (useless 2-degree vertices), and adding a new 1-degree vertex, linked by an

randomly weighted edge (spurious branches and ghost limbs). Figure 11.1 illustrates

this process.

3. We compute the different alignments between P and D.

4. The precision is given by the percentage of good matchings, that is the percentage of

pattern tree vertices that match with their equivalent in the data tree (which is known,

according to the above protocol to generate the data tree).
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Figure 11.1: Illustration of structural noise generation.
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Figure 11.2: Illustration of precision measurement. Left: 0% of good matchings. Right: 100%
of good matchings.
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11.2.2 Results

The results, obtained by averaging precisions over 1000 experiments, are shown on Figures 11.3, 11.4

and 11.5.
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Figure 11.3: Precision without weight variation. Top: pattern tree with 10 vertices. Bottom:
pattern tree with 20 vertices. Left: without cut operation. Right: with cut operation.
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Figure 11.4: Precision with 10 percent of weight variation. Top: pattern tree with 10 vertices.
Bottom: pattern tree with 20 vertices. Left: without cut operation. Right: with cut operation.
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Figure 11.5: Precision with 50 percent of weight variation. Top: pattern tree with 10 vertices.
Bottom: pattern tree with 20 vertices. Left: without cut operation. Right: with cut operation.

11.2.3 Discussion

The first observation is that the homeomorphic alignment and asymmetric homeomorphic align-

ment provide a perfect matching if no weight variation occurs, even for large amount of structural

noise.

On the other side, for high weight variation and few structural noises, we can observe that

the percentage of good matchings for homeomorphic alignment is lower than those for classic

alignment. It is due to the use of mergings on both trees, as shown on Figure 11.6: as the vertex

d disappear by merging in case of homeomorphic alignment, the percentage of good matchings

decrease for this alignment. The asymmetric homeomorphic alignment allow the merging only

on data tree, this special case is treated in the same way than for classic alignment.

Concerning the cut operation, we can observe that using it for small weight variations increase

the percentage of good matching, but for large weight variations, the results are worst than

without cut operation. Then the choice of using cut operation or not will depend to the a priori

knowledge of amount of weight variation and structural noise in the data tree and to the presence

or not of others mechanisms increasing the robustness.
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Figure 11.6: Example where alignment provide better result than homeomorphic alignment.

Finally, it is interesting to remark than in all the cases, the asymmetric homeomorphic alignment

provide more good matchings than the other alignments, and then is the most adapted in our

context of motion capture.

11.3 Computation Speed

In this section we propose to study computation speed of the different alignments in a general

purpose.

11.3.1 Protocol

Each experiment consists of the following:

1. We randomly generate n trees T0, T1, ..., Tn−1

2. For each tested algorithm:

• we record the starting time ts

• we apply the algorithm on each possible couple (Ti, Tj)

• we record the ending time te

• the average speed of the tested algorithm is equal to
(te − ts)

n2

11.3.2 Results

The results, obtained for n = 32, are shown on Figure 11.7.

11.3.3 Discussion

The speed difference of the algorithms is well correlated with their complexities. However, we

can observe a variation of speed between the classic alignment for rooted trees and the classic
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Figure 11.7: Computation speed of different alignments for different sizes of trees. Top left:
between two rooted trees. Top right: between a rooted tree and an unrooted tree. Bottom left:

between two unrooted trees.

Table 11.2: Time complexities of the different alignments, taking into account the bounded
maximal degree.

α η ~η

rooted trees O(SPSDC) O(SPSD(C +HPHD)) O(SPSD(C +HD))

unrooted trees O(SPSDC) O(SPSD(C + SPSD)) O(SPSD(C + SD))

rooted tree with unrooted tree O(SPSDC) O(SPSD(C +HPSD)) O(SPSD(C + SD))

alignment for unrooted trees, even if they have the same complexity. This variation is due to

the maximal degree observed: in the rooted tree, the degree considered is in fact the number

of children. Assuming that the maximal number of children is equal to the maximal degree

decreased by one, the constant linked to the computation of forests alignments is divide per two

for the alignment between rooted trees.

The constant C linked to the computation of forests alignments (due to bounded maximal

degree) have to be take into consideration when we observe the computation speed. Table 11.2

summarizes the time complexities of the different alignments, taking into account the bounded

maximal degree.

If C >> HP +HD, the three alignments between rooted trees will have closed speed, as shown

in Figure 11.7.
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11.4 Frequencies in Motion Capture Context

In this section we propose to study frequencies (number of iterations per second) of the align-

ments applied in our motion capture context. We first give some statistics on trees for different

subjects and different sizes of grid, then, we show the frequencies results in regard of these

statistics.

11.4.1 Statistics on data trees

We propose to study two models: the full human body model and the hand model. Full human

body model tree have seven vertices and a maximal degree equal to four. Hand model tree have

heights vertices and a maximal degree equal to five.

For the data, we use here the dancer data set (height views) from 4Drepository from INRIA for

full human body application, and a home made data set with four views for hand application.

We use these sets on voxels grids with side 40,80,120. We show the results of distributions of

tree sizes in Figures 11.8,11.9,11.10 and 11.11.
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Figure 11.8: Distributions for a grid sided by 40. Left: dancer data set. Right: hand data set.
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Figure 11.9: Distributions for a grid sided by 80. Left: dancer data set. Right: hand data set.
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Figure 11.10: Distributions for a grid sided by 120. Left: dancer data set. Right: hand data
set.
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Figure 11.11: Average distributions. Left: dancer data set. Right: hand data set.

11.4.2 Choice of algorithm

First, we have to determine which alignment is the most adapted: as we want preserve all vertices

in the model tree, and take into consideration useless 2-degree vertices in the data tree, we can

use the asymmetric homeomorphic alignment in our application.

In a second time, we have to specify if both the model tree and the data tree can be rooted or

not. If the both trees are rooted, it involves that the roots will be matched together. If only one

tree is rooted, it involves that no merging can occurs on the root, then the root will already be

matched.

In the case of full human body, and for all complete models, the only assumption we can do is

that all vertices have to be matched in the model, but their is no particular vertex in the data

tree. We can use a rooted version of the model tree, with an unrooted version of the data tree.

The choice of the root have consequences on the speed results: if the root of full human body

model tree is the torso, the rooted tree have a max number of children equals to four, and only

three if the root is an other vertex.

In the case of hand, and for all incomplete models, we can consider that the 1-degree vertex

which is an extremity of the infinite weighted edge in the model tree will always match with the

vertex associated with the grid border point (supposed unique) in the data tree. Considering

this fact, both trees can be rooted on the vertices described above.
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11.4.3 Protocol

Each experiment consists of the following:

1. We randomly generate n data trees

2. we record the starting time ts

3. we compute the asymmetric homeomorphic alignment between the model tree and each

data tree

4. we record the ending time te

5. the frequency is equal to
n

(te − ts)

11.4.4 Results

The results, obtained for n = 10000, are shown on Figure 11.12 for hand application, and on

Figure 11.13 for full human body application.
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Figure 11.12: Frequencies of asymmetric homeomorphic alignment of hand rooted model tree
with different rooted data trees.

11.4.5 Discussion

The average frequency can be done by crossing the graphs statistics and the frequencies using

the following formula:
7

∑

d=3

25
∑

s=1

dist(d, s) ∗ freq(d, s)

with dist(d, s) representing the percentage of graphs with s vertices and a max degree equal to

d, and freq(d, s) representing the average frequency of the matching between the model and a
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Figure 11.13: Frequencies of asymmetric homeomorphic alignment of full human body rooted
model tree with different unrooted data trees.

data tree with s vertices and a max degree equal to d. The frequencies for different sizes of grid

are shown in Figure 11.14.
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Figure 11.14: Average frequencies of asymmetric homeomorphic alignment for different sizes
of grid. Left: in full human body context. Right: in hand context.

Then, in the average case:

• for the dancer data set, we can perform more than 708 alignments per second

• for the hand data set, we can perform more than 548 alignments per second

We can consider that the matching step of our method will be performed very fast.

In the worst case:

• for the dancer data set (data tree with 17 vertices and a degree max equal to 5), we can

perform more than 89 alignments per second

• for the hand data set (data tree with 24 vertices and a degree max equal to 5), we can

perform more than 46 alignments per second
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It involve that even if the worst case occurs all the time, the matching with model tree can be

performed in real time.

Of course, as the size and the maximal degree of data trees is correlated with the size of the grid,

we can choose this size in order to obtain a good compromise between accuracy of positions and

computation speed.
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Chapter 12

Generic Pose Initialization Step

In the two previous parts of this manuscript, we proposed solutions for both fast skeletonization

and adapted matching.

In this chapter, we first describe in details the pipeline of our method, using the works described

in the previous parts. Then, in order to improve the robustness of our method, we propose the

optional addition of intuitive constraints in the model definition.

12.1 Summary of our Method

Now, as we have found efficient solutions for skeletonization and thinning, we can integrate them

in our pipeline. For the skeletonization, the use of our D6I1D thinning algorithm (described in

Chapter 6) is interesting, in regard of its speed and it resulting skeleton, which has few spurious

branches. In the case of incomplete model, we constrain the thinning process to preserve the

centroid of the set of points on the boundaries of the grid, belonging to the shape. For the data

tree extraction from the skeleton, we use the Algorithm 13 (defined in Section 7.3).

12.1.1 Use of Asymmetric Homeomorphic Alignment

The matching of the model tree with the data tree is done by asymmetric homeomorphic align-

ment (described in Chapter 10), specially designed for this purpose. Three different algorithms

have been proposed for the computation of asymmetric homeomorphic alignment, depending on

the kind of trees to align:

a) two unrooted trees: this algorithm can be used for matching model tree and data tree without

constraints.
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b) one rooted tree and one unrooted tree: applying this algorithm involves that the root of the

rooted tree matches with a vertex of the unrooted tree, and cannot be removed by a merging.

c) two rooted trees: applying this algorithm involves that the two roots match together.

When applied to the same data, algorithm c) is faster than algorithm b), which is itself faster

than algorithm a). In order to use the full potential of the proposed algorithms, we have to

consider different cases, in regard of the class of model.

In case of incomplete model, it is easy to see that infinity weighted edges in both model tree and

data tree have to match. Rooting the trees in the two unique 1-degree vertices bounding these

edges involves matching them together, and by this way, to match together the unique edges

linked to them.

In case of complete model, as we are mostly interested in matchings that preserve a large part of

the model tree vertices, we can root the model in one of the vertices which have less chances to

be removed, a high degree vertex for example. As we have no information about the importance

of data tree vertices, this tree is considered as unrooted.

For the purpose of scale invariance, we start by normalizing the weights of the two trees, so that

the sum of all non-infinite weights in a tree is equal to 1. Then, we compute the asymmetric

homeomorphic alignment (and the associated distance) between the trees. If the distance is

greater than a given threshold Td, which is defined by the user, we assume that the data tree is

not enough similar to the model tree to provide a good matching, and we stop the pipeline for

this frame. Otherwise, we use the optimal asymmetric homeomorphic alignment to match the

labels associated with the model vertices, with the 3D positions associated to the data vertices.

The number of non-aborted matchings, and their quality, obviously depend on the choice of

the threshold value Td : as both trees are normalized, Td = 2 means that no matching will be

aborted (both trees can be deleted), but the resulting matching can be poor. On the other hand,

a lower value yields a greater amount of aborted matchings, but with better probability of good

matching.

12.1.2 Pipeline

A detailed view of the pipeline of our method is shown in Figure 12.1.
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Figure 12.1: Detailed pipeline of our method. Rounded rectangles represent input and output
data. Other rectangles represent steps of the method.

12.2 Optional Constraints

The method proposed in the previous section already provides some good results. However

there are still some special cases which can not be solved by our method, even with sufficient

topological information.

The first special case occurs when the different limbs of the subject are represented with wrong

lengths in the skeleton. It can be due to the clothes of the subject. For example, if the subject

wears a dress, the legs seem small in the visual hull, and the lengths of the branches representing

them in the skeleton can be smaller than those representing the arms. The alignment algorithm

will then propose a matching of the arms of the model with the legs of the subject, and inversely.

Figure 12.2 illustrates this kind of cases.

Figure 12.2: On the left, a visual hull of full human body where the skeleton legs branches
are shorter than arms branches. On the right, the incorrect pose found by the method, due to

the length variations.
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The second special case occurs when different limbs of a model are represented by edges with

similar lengths in data tree. In the case of the hand for example, we can consider the case of

four fingers: index, middle finger, ring finger and little finger.

In the reality, little finger is always (or at most in a wide majority of case) smaller than the three

others, and the middle finger is longer than the other fingers. It seems natural to represent them

in this way in the model, by giving a higher value to the edge representing the middle finger,

and a smaller to the little finger, in order to differentiate them.

However, the branches of the skeleton representing these fingers can have very variating lengths,

due to the visual hull reconstruction, for example. The branch representing little finger can

be longer than the one representing the middle finger, as shown in Figure 12.3. To solve this

problem, we have to represent the four fingers by edges with same length, and to find an other

way to differentiate them.

Figure 12.3: A visual hull of hand where the skeleton finger branches are not proportional to
the real lengths of the fingers.

In order to solve this kind of problem, we propose to add optional constraints in our method.

These constraints have to be intuitive and easy to describe, in order to preserve the philosophy

of our method (“keep it simple”). We propose two different kinds of constraints, both requesting

a specific positioning of a subject part relative to others.

A coordinate constraint corresponds to constraining the position of a subject part in regard

of another linked part, for a given axis (for example, constrain the head to be above the

torso).

A betweenness constraint corresponds to constraining the position of a subject part in re-

gard of two others, requesting to be between them (for example, constrain the middle

finger to be between the index and the ring finger).
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In the sequel of this section, we propose a way to integrate these optional constraints in the

model definition and in the pipeline of the method.

12.2.1 Coordinate Constraints

A coordinate constraint consists of forcing a part of the model to be positioned in a subspace

defined by one of its linked parts. For example, in the case of full human body model, we can

constrain the head to be above the torso: let PH = (xH , yH , zH) be the 3d position of the head

and PT = (xT , yT , zT ) the one of the torso, the constraint is PH ∈ {P = (x, y, z) ∈ R
3; y > yT }.

Considering any rooted version of both the model tree and the data tree, and using the property

that coordinate constraint is defined on linked parts only, we can translate coordinate constraint

into a constraint on the tree matching.

Let vm and wm be the two vertices associated to the constraint in the model tree. For example,

for the head-torso constraint, vm (respectively, wm) represents the torso (respectively, the head).

By definition of the constraint (the two parts have to be linked), there exists an arc am =

(vm, wm) belonging to the model tree. Let v be any vertex of the data tree, we denote by

P (v) = (Px(v), Py(v), Pz(v)) the 3d point associated to this vertex.

The coordinate constraint on am can be expressed as follows: let ad = (vd, wd) be an arc of

the data tree (possibly obtained by some merging), ad can match with am if and only if P (vd)

and P (wd) have relative positions satisfying the constraint. For example, for the head-torso

constraint, ad can match with am if and only if Py(wd) > Py(vd).

We propose to integrate coordinate constraints in the alignment computation, by modifying

the resizement cost formulation for constrained edges. We consider the case of asymmetric

homeomorphic alignment for rooted trees (AHA between unrooted trees just consists in searching

the best AHA for all rooted versions of the trees, please refer to Chapter 10 for more details).

The cost of the resizement of a model arc am = (vm, wm), weighted by Wm, to the weight Wd of

a data arc ad = (vd, wd) is equal to +∞ if there is a coordinate constraint C associated to am

and the relative positions of P (vd) and P (wd) are not compatible with C. Otherwise, the cost

is still γ(Wm,Wd).

12.2.2 Betweenness Constraints

In case of similar limbs, the matching with the model tree can generate multiple solutions. In

the case of our model of hand, as the descriptions of index, middle finger, ring finger and little

finger are identical, the matching will give a set of four possible positions for each finger. To
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solve this problem, we introduce the betweenness constraints. It consists of constraining the

position of some limb to lie between two other ones.

An usual definition of a betweenness ternary relation is based on collinearity [59] : a point P3 is

said to be between two other points P1 and P2 (denoted by Rc(P1, P2, P3)) if it belongs to the

segment P1P2. However, this definition is too restrictive.

On the other hand, we could say that a point P3 is between P1 and P2 (denoted by Rp(P1, P2, P3))

if its orthogonal projection on the line (P1P2) is between P1 and P2. In this case, the problem

is that there exist triplets (P1, P2, P3) such that each point is between the two other ones (for

example, the three vertices of an equilateral triangle).

These two relations are illustrated in Figure 12.4.

Figure 12.4: All points in the grey area are between the two points represented by black
crosses: at left, in the sense of Rc, at right, in the sense of Rp.

12.2.2.1 Design of Intuitive Betweenness Relation

We propose a definition which is not too restrictive, and which gives at most one possibility

of “betweenness” for three points P1, P2, P3 : consider B the unique ball with diameter P1P2

minus the unique sphere with diameter P1P2. The point P3 is between P1 and P2 (denoted by

Rb(P1, P2, P3)) iff P3 ∈ B (see Figure 12.5 for an illustration).

An other formulation is that P3 is between two points P1 and P2 iff the angle between
−−−→
P3P1

and
−−−→
P3P2 is greater than

π

2
. This definition is easy to use in our context, and provides a unique

result for a wide set of configurations (all the configurations where the 3 points are the vertices

of obtuse or right triangles). However, in order to cover all possible configurations, we have to

consider other definitions.
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Figure 12.5: All points in the grey area are between the two points represented by black
crosses, in the sense of Rb.

12.2.2.2 Design of Mathematically Efficient Betweenness Relation

In order to design a betweenness relation on 3D points adapted to our purpose, we first need

to define its required properties. A well adapted set of properties in our case can be based on

the postulates of betweenness proposed by Huntington and Kline in 1917 [68] and refined by

Huntington [67].

Definition 29. [67, 68] Let S be a set and R a ternary relation on S. The notation abc

indicates that three given elements a,b and c of S, in the order stated, satisfy the relation R.

The notation abc indicates that a,b and c do not satisfy the relation R. The couple (S,R) is a

betweenness system if:

Postulate A: abc⇒ cba.

Postulate B: a 6= b and a 6= c and b 6= c⇒ bac or cab or abc or cba or acb or bca.

Postulate C: a 6= b and a 6= c and b 6= c and abc ⇒ acb.

Postulate D: abc ⇒ a 6= b and a 6= c and b 6= c.

Postulate 9: a 6= b and a 6= c and b 6= c and x 6= a and abc ⇒ abx or xbc.

Definition 30. [67] A system is a near-betweenness system if it possess all but one of the five

properties of a betweenness system.

In our case, S = R3. Postulate A involves a symmetry in the relation. Postulate B involves that

among all configurations of three distinct points, at least one satisfy R. Postulate C involves

that for three distinct points, only one is between the two others. Postulate D involves that the
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relation is only satisfied on distinct points. Finally, Postulate 9 is required to derive an order

on S from the ternary relation. In our case, it is not necessary.

These postulates have been proposed in a framework considering only 1D sets, like numbers or

points of a line. In higher dimensions, some configurations are unsolvable: if three points are

equidistant, it is impossible to find a relation such that one and only one of the points is between

the others. We propose to modify the postulates to take this into consideration.

Postulate B’: a 6= b and a 6= c and b 6= c and a, b, c not equidistant ⇒ bac or cab or abc or cba

or acb or bca.

Postulate D’: abc ⇒ a 6= b and a 6= c and b 6= c and a, b, c not equidistant.

To sum up, we have to design a ternary relation B such the system (R3, B) is a near-betweenness

system satisfying the postulates A,B’,C and D’.

However, we have to notice that these postulates are necessary but not sufficient for our context.

In order to show it, we propose a betweenness relation satisfying the four postulates but which

is unusable in our case.

Unusable Betweenness Relation By definition, in any non-equilateral triangle, there is at

least one edge with a length different from those of the other edges. We denote by d(a, b) the

Euclidian distance between two points a and b. We denote by δ : R3×R3×R3 → R the function:

δ(a, b, c) = |d(a, b)− d(b, c)|

An interesting property is that if a,b and c are the three distinct vertices of a non-equilateral

triangle, one and only one of the three values δ(a, b, c), δ(a, c, b) and δ(c, a, b) is strictly less than

the two others. This can easily be proved by showing that the only case where two of the three

values are equal is for isosceles triangle, and in that case, these values are strictly greater than

the last one, which is equal to zero.

Using this property, we can define a betweenness relation Ru satisfying the four postulates. Let

a, b and c be three distinct and non-equidistant points, b is between a and c (Ru(a, b, c) is true)

if and only if δ(a, b, c) ≤ δ(b, c, a) and δ(a, b, c) ≤ δ(b, a, c).

However, even if this relation satisfies the four postulates, it is not usable in our case, due to

the fact that it is not intuitive for the common conception of betweenness (see Figure 12.6 for

some examples). Due to this fact, it is very difficult to propose betweenness constraints using

this relation.

As our model description has to be simple, we have to find a betweenness relation which satisfies

the four postulates and which is intuitive enough for an easy usage.
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Figure 12.6: All points in the grey area are between the two points represented by black
crosses(in the sense of Ru). We can notice that the green cross is between the black ones, in
the common conception of betweenness, but is not in the sense of Ru. In the same way, the red
cross is not between the black ones, in the common conception of betweenness, but is so in the

sense of Ru.

More Intuitive Betweenness Relation First we have to introduce a new postulate provid-

ing concept of intuition for the common conception of betweenness.

Definition 31. Let R a ternary relation on S. The couple (R3, R) is an intuitive betweenness

system if:

• it satisfies the postulates A,B’,C and D’.

• Postulate I: abc ⇒ orthogonal projection a′ of a on the line (bc) is between b and c (in

the sense, d(a′, b) + d(a′, c) = d(b, c)).

We propose now a definition of intuitive betweenness relation, in the sense of the above definition.

The non-equilateral triangles can be classified in two categories: isosceles triangles and non-

isosceles triangles.

In the case of isosceles triangles, one of the three edges has a length different to those of the two

others, by definition. The vertex at the opposite of this edge can be distinguished from the two

others by this way. It is interesting to notice that the orthogonal projection of this vertex on its

opposite edge is always between its boundaries.

In the case of non isosceles triangles, one of the three edges is greater than the two others. This

way, the vertex at the opposite of this edge can be distinguished from the two others. It is

interesting to notice that the orthogonal projection of this vertex on its opposite edge is always

between its boundaries.
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Using these properties, we can define a betweenness relation Ri satisfying the four postulates

and which is intuitive. Let a, b and c be three distinct and non-equidistant points, b is between

a and c (Ri(a, b, c) is true) if and only if one of the following conditions holds:

1. d(a, c) > d(b, c) and d(a, c) > d(b, a).

2. d(b, c) = d(b, a) and d(a, c) 6= d(b, c).

This relation is illustrated in Figure 12.7.

Figure 12.7: All points in the grey area are between the two points represented by black
crosses(in the sense of Ri).

12.2.2.3 Application in our Method

In our model, a betweenness constraint is represented by a sequence of at least three model tree

vertices. For the example of hand fingers, the constraint is formulated as “betweenness: thumb,

index, middleFinger, ringFinger, littleFinger”.

The application of this constraint is done on the output of the tree matching step, which provides

multiple matching possibilities for some vertices. Then, if there exists a betweenness constraint

on model vertices, defined by a sequence m0, ...,mn, the corresponding data vertices d0, ..., dn,

with associated positions P0, ..., Pn must be chosen such as, for a given betweenness relation R,

for each i ∈ [1, n− 1], R(Pi−1, Pi, Pi+1).

The choice of the best betweenness relation will be empirically discussed in the next chapter.

12.3 Complete Method and Model Definition

Now we have solutions for problematic cases, thanks to the new optional constraints. The final

pipeline of our method, including the management of these constraints, is shown in Figure 12.8.
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The new constraints can be integrated in our a priori models in order to solve the problematic

cases, as shown in Figure 12.9.
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Figure 12.9: Full description of two different subjects. On the left, the hand model description
(incomplete model). On the right, the full human body model description (complete model).

For the hand model, a betweenness constraint is set on the five fingers, in order to allow the

pose estimation for a natural initial pose of the hand, for example when the hand is wide open.

For the full human body model, coordinate constraints are set on couples head-torso, and torso-

crotch, allowing a high variety of initial poses, the only requirement being that the subject stands

up and that the different parts of the body are not too close to each other.





Chapter 13

Results and Discussion

In this chapter, we present the results obtained with our pose initialization method, by consid-

ering the speed of our method in different situations (voxel grid size, subject), and by showing

some samples of output poses.

Then, using empirical data, we discuss the choice of the good threshold to use for the acyclic

homeomorphic alignment distance, and of the most adapted betweenness relation to use for

betweenness constraints.

Finally, we propose some ways to use our method, in combination with other works found in the

literature.

13.1 Implementation and Data Sets

13.1.1 Implementation

Our method has been tested on a computer with a processor Intel(R) Core(TM) 2 Quad Q8200

at 2.33 GHz, a GPU Nvidia(R) Geforce(TM) 9800 GT and 3 Go of RAM. Our program is

implemented in C++, and the visual hull is computed on GPU, using GLSL.

The program has two modes:

• In online mode, input images are acquired from calibrated cameras (calibration can be

done in a prior step, or can be loaded using previously saved data), and silhouettes are

extracted using background extraction.

• In offline mode, input images are loaded from a data set directory, containing input images,

silhouette images (or background images used to extract them), and all required parameter

files (e.g. for camera calibration).
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In both cases, the program computes our pose initialization method in the following loop that

consists of four steps:

1. loading of images and silhouette extraction (or direct silhouette loading when available)

2. visual hull computation

3. pose initialization step application

4. display of results

Several options can be set using command line arguments, e.g. allowing to only perform the two

or three first steps.

13.1.2 Used Data Sets

For our tests, we used several data sets provided by INRIA Perception Group 1:

• for the application to full human body, we used the dancer data set (see Figure 13.1a),

showing a professional dancer wearing a dress doing some moves. This data set is composed

of the synchronized images from 8 calibrated cameras and also provides the white on black

silhouette of the subject for each image. This data set is interesting for several reasons:

– as the subject wears a dress, it allows us to observe the impact of length variation of

observed limbs;

– the subject does different poses, not conventional for usual initialization steps, but

with all limbs separated from the others, allowing the study of the robustness of our

method;

– the dress is attached to a floating piece of fabric, which is difficult to differentiate

from a limb in visual hull. It is interesting to observe the robustness of our method

in regard of this additional “noise”.

• also for the application to full human body, we used the children data set (see Figure 13.1b),

showing a young boy performing some cartwheels. This data set is composed of the

synchronized images (and their silhouettes) from 16 calibrated cameras (only 8 are used

in our program). This data set is interesting as it forbids the use of coordinate constraints

(the torso is above the head in a large amount of frames).

• for the application to animals, we used the dog data set (see Figure 13.1c), showing a dog

trying to catch a ball held by a man. This data set is composed of synchronized images

from 16 calibrated cameras (only 8 are used in our program). This data set is interesting for

1http://4drepository.inrialpes.fr/
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showing the trans classes adaptability of our method. However, the automatic silhouette

extraction is very difficult on this data set, due to the fact that dog legs have the same

color as the shadows. For our needs, we did manually extract silhouettes for a small set of

frames.

In addition, we used a home made hand data set (see Figure 13.1d) for hand pose estimation.

This data set is composed of the synchronized images from 4 calibrated cameras. As camera

positions and silhouette extractions are not performed with a good quality, the visual hull is

very noisy: fingers are sometimes cut. However, this data set is interesting for the observation

of the robustness in case of bad quality 3D reconstruction.

Figure 13.1: Samples of the different used data sets: (a) dancer, (b) children, (c) dog and (d)
hand.

The visual hull is computed for a cubic voxel grid with parameterizable resolution positioned

in such a way that the whole set of actions performed by the subject is covered as tightly as

possible.

13.2 Results

13.2.1 Speed

In order to measure the computation speed of our method, we use the following methodology:

for each data set (dancer, hand and children) and for each resolution of voxel grid, we measure

the computation times of the application performing only its two first steps (image loading and

visual hull computation) and its three first steps (the third being initialization step application).

We call these two computation times CT2 and CT3, respectively. Let Nbframes be the number
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of frames of the current data set. The computation time of our method is thus obtained using

the following formula:
CT3− CT2

Nbframes
. The average frame rate of our method can be obtained by

inversing the previous formula.

Figure 13.2 shows computation time and frame rate for different data sets and different voxel

grid resolutions. It can be observed that for each data set, real-time (40 milliseconds or 25

iterations per second) is reached for voxel grid resolutions lower than 100 × 100 × 100. It is
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Figure 13.2: Speed results for three different data sets: children, dancer and hand. On top,
average speed computation for one frame, for different sizes of voxel grid: on the left, in regard
of the number of voxels per side of the voxel grid; on the right, in regard of the number of voxels
of voxel grid. On bottom: average frame rate in regard of the number of voxels per side of the

voxel grid.

interesting to remark that method has a linear time complexity in regard of the voxel grid size

(see Figure 13.2 top right plot).

13.2.2 Proportion of False Positives

A critical point in initialization step methods is the proportion of false positives, i.e. the pro-

portion of invalid output poses. In order to appreciate the quality of an output pose for our

method, as no ground truth data is available, we propose to classify them in regard of their

usability, which can be visually measured:
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1. an output pose is a good matching (see Figure 13.3a for an example) if all parts are

positioned at appropriate locations;

2. an output pose is a missing limb matching (see Figure 13.3b for an example) if one part

has no position, other parts being positioned at appropriate locations;

3. an output pose is a partial matching (see Figure 13.3c for an example) if several parts have

no position, other parts being positioned at appropriate locations;

4. an output pose is a misplaced limb matching (see Figure 13.3d for an example) if at least

one part is positioned at inappropriate location;

5. an output pose is a bad matching (see Figure 13.3e for an example) if almost all parts are

positioned at inappropriate locations;

6. an output pose is not a matching if at most one part is matched.

Classes 3 and 6 can be easily detected and rejected by our method, due to the lack of part

positions. Classes 1 and 2 (good matchings and missing limb matchings) are considered as

usable for initialization (we call them True Positive, shorted in TP), and classes 4 and 5 are

considered as unusable for initialization (we call them False Positive, shorted in FP).

Figure 13.3: Examples for the different classes of matchings: (a) good matching, (b) missing
limb matching, (c) partial matching, (d) misplaced limb matching, (e) bad matching.

We propose to study the quality of the output pose in regard of the Asymmetric Homeomorphic

Alignment (AHA) distance from the model tree to the data tree, in order to highlight the

correlation between them.

For this purpose, we measure both the AHA distance and the quality of output pose (manually

estimated) for each frame of different data sets, and for different grid resolutions. From these

measures, we compute, for each AHA distance threshold, three values:

• the ratio of the number of true positives over the number of frames of the data set;
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• the ratio of the number of false positives over the number of frames of the data set;

• the ratio of the number of false positives over the number of matchings (true positives plus

false positives) .

The study of these data provides a lot of interesting information, as the detection of an efficient

AHA distance threshold, the impact of grid resolution on the validity of the results, or the choice

of the most adapted betweenness relation.

13.2.2.1 Study of Full Human Body Matchings

Results for dancer data set and children data set are shown in Figure 13.4 and Figure 13.5,

respectively. We remind that the main difference between these data sets is that no coordinate

constraint can be set in the case of children data set, due to the performed action (cartwheel).

Due to this fact, we obviously expect better results for the dancer data set.
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top to bottom: for resolutions 503, 1003 and 1503.
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Figure 13.5: Study of correlations between AHA distance and matching quality for children
data set with different grid resolutions. Left: historic of AHA distances and matching qualities
all along the sequence. Right: different ratios in regard of given AHA distance threshold. From

top to bottom: for resolutions 503, 1003 and 1503.

First, we observe from measures for both data sets that a higher grid resolution provides better

quality (more true positives, missing limbs matching being replaced by good matchings). How-

ever, this improvement of the quality is more sensible from 503 resolution to 1003 resolution

than from 1003 resolution to 1503 resolution. Thus, we can assume that for all grid resolutions

precise enough for a good visual hull definition, where each limb is clearly separated from others,

and allowing a good thinning, the output quality will be about the same. In the same way, we

can observe that false positives are fewer for higher grid resolutions.

Concerning the dancer data set, the study of ratios shows that very few false positives are

associated to AHA distance lower than 0.4. The use of our method with AHA distance threshold

set at this value provides a good matching for between 70 and 90 percent of the frames, with a

fail rate lower than five percent.

Concerning the children data set, the study of ratios shows that for 503 grid resolution, no AHA

distance threshold can be found in order to provide acceptable amount of matching with low
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rate of false positives. However, for higher resolutions, setting threshold to 0.2 provides a good

matching for between 15 and 20 percent of the frames, with a fail rate lower than five percent.

The impossibility to use our method for 503 grid resolution for children data set is partially

due to the fact that grid volume is higher for children data set than for dancer data set, as the

subject is more mobile. A solution should be to refocus the grid on the subject at each frame.

13.2.2.2 Study of Hand Matchings

The main goal of our study of false positive for hand pose estimation is to find the most adapted

betweenness relation to use for the betweenness constraints solving. For this purpose, we propose

to compare the results for the hand data set, using on one hand the “ball-based” intuitive

betweenness relation Rb defined in Section 12.2.2.1, and on the other hand the “mathematically

efficient” intuitive betweenness relation Ri defined in Section 12.2.2.2. The measures are shown

in Figure 13.6 and Figure 13.7, respectively.
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Figure 13.6: Study of correlations between AHA distance and matching quality for hand data
set with different grid resolutions, using betweenness relation Rb. Left: historic of AHA distances
and matching qualities all along the sequence. Right: different ratios in regard of given AHA

distance threshold. From top to bottom: for resolutions 503, 1003 and 1503.
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We can observe that the rate of true positives for a given AHA distance threshold is nearly

invariant in regard of the chosen betweenness relation. However, the rate of false positives is

sensibly higher when the Ri betweenness is used. A quick observation of the measures allows us

to see that the use of Rb provides a larger amount of partial matchings than the use of Ri, and

a fewer amount of bad matchings, especially in case of low grid resolutions.

This fact can be easily explained by analyzing the differences between these two relations: for

three distinct and non-equidistant points, there is always one point which is between the two

others, in the sense of Ri, even if the points are close to be equidistant. It is not the case for

Rb: when three points are close to be equidistant, none is between the others.

For low grid resolutions, positions of fingers are more approximative, leading to ambiguous cases

(where three fingers are equidistant). Using Ri, the method will always provide an order, even

for these ambiguous cases, possibly leading to a bad matching. Using Rb the method will provide

an order only for non-ambiguous cases, the other leading to partial matchings, which can be

detected and rejected.

The most adapted betweenness relation for our purpose is thus the ”ball-based” betweenness

relation Rb, which is also the fastest to compute.

Concerning the AHA distance threshold, a good value seems to be 3.5, providing a good matching

for between 10 and 20 percent of the frames, with a fail rate lower than five percent. Please

remember that this data set is of very bad quality, with only four non-optimally placed cameras,

and basic silhouette extraction. Considering this fact, the results are rather good.

13.2.3 Output Pose Samples

In order to show the quality of the output poses, the large amount of poses supported by our

method and its adaptability, we recorded several outputs of our application for the different data

sets, and present them in Figure 13.8.

13.2.4 Discussion

The choice of the grid resolution will depend on the application: a low grid resolution like 503

is suited for a fast computation, but less accurate pose estimations (see Figure 13.9) and higher

rate of false positives. On the other hand, high resolution like 1503 provides accurate good

matchings and few false positives, but does not always allow a real-time use.

In our opinion, a 1003 grid resolution is a good compromise (at least for the studied data sets),

the accuracy being sufficient and the matching rates being close to those obtained with higher

resolutions. Furthermore, this resolution allows a real-time use, even in the worst observed case.
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Figure 13.7: Study of correlations between AHA distance and matching quality for hand data
set with different grid resolutions, using betweenness relation Ri. Left: historic of AHA distances
and matching qualities all along the sequence. Right: different ratios in regard of given AHA

distance threshold. From top to bottom: for resolutions 503, 1003 and 1503.

Concerning the model definition, we encourage the use of constraints whenever possible, in order

to obtain higher rate of true positives.

13.3 Possible Usages of our Method

Our method can be used in many different ways. In this section, we propose some of the most

natural of them.

13.3.1 Combination with Tracking

The more natural usage is obviously to associate it with a tracking method, in order to obtain

a full motion capture application.
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Figure 13.8: Samples of output poses for different models. Model parts positions are repre-
sented in blue, with the associated label in red. Approximations of skeleton branches between

the parts are drawn green.
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Figure 13.9: Sample of accuracy difference of pose estimation for different grid resolutions:
(a) 50× 50× 50 resolution, (b) 150× 150× 150 resolution.

13.3.1.1 Combination with Model Free Tracking

An easy way to use our method with tracking method is to associate it with model-free tracking,

using for example set of points matching, like those proposed by Mateus et al. [104, 105]. As

those methods do not require any kind of a priori model, the goal of our method will be to

perform a body part segmentation of the visual hull.

A simple method to obtain an efficient part labeling of each voxel from our method outputs (i.e.

skeleton with matched specific points) consists of two steps:

• color labeling each part of the skeleton bounded by matched points (e.g. voxels of the

skeleton branch linking head and torso are colored in red, those of the branch linking the

torso and the crotch are colored in cyan, etc).

• flooding the visual hull simultaneously with all the color labeled voxels.

Results obtained with this method are shown in Figure 13.10.

13.3.1.2 Combination with Model-Based Tracking

Model-based tracking methods found in literature requires specific models, e.g. kinematic models

or geometric shapes, more complex than ours. However, we can use information provided by

our method, in order to initialize them easily.

In the case of kinematic model, our method’s output can be used as a guide to provide both

position and scale for the kinematic model. A way to do it is to set positions of kinematic model

extremities to those of our output, then to perform a minimization step in order to find the pose

as close as possible to the skeleton.
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Figure 13.10: Examples of visual hull segmentations based on our method.

In the case of geometric shape-based model, we can use the above method, then use a fitting

process in order to find parameters for each geometric shape, being the most adapted to the

subject.

We can also use our method in order to provide color information on the different parts of the

subject, e.g. using the segmentation method proposed in previous section, and looking for the

color associated to these parts by projecting them in the input images. This color information

can be used to easily track the motion of the subject, as proposed in [31, 35, 76].

13.3.2 Specific Pose Detection and Pose Clustering

Another possible way to use our method is to detect some specific poses, or to cluster similar

poses.

13.3.2.1 Specific Pose Detection

For a pose detection purpose, we can describe some poses combining the syntax used to describe

constraints and boolean operators, e.g.:

• for a “hands up” pose, it will consist in searching if both hands are above the head, and

the description is ”(z − greatest A1 −H) AND (z − greatest A2 −H)”.

• for an “ask a question” pose, it will consist in searching if one and only one hand is above

the head, and the description is ”(z − greatest A1 −H) XOR (z − greatest A2 −H)”.
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• for a “wide spread arms” pose, it will consist in searching if head, torso and crotch are

between the two arms, and the description is ”(order A1 − H − A2) AND (order A1 −
T −A2) AND (order A1 − C −A2)”.

• for an “acrobatic” pose, it will consist in searching if at least one of the feet is above the

head, and the description is ”(z − greatest F1 −H) OR (z − greatest F2 −H)”.

Thus, the current pose is detected as correct if the positions of the parts fit with the description.

The good point of this method is the description syntax, which allow the detection of very

specific poses, as well as pose of only some parts of the subject.

13.3.2.2 Pose Clustering

For a pose clustering purpose, consisting in regrouping frames where subject is in similar poses,

our method can be used as follows: for each frame where an output pose is provided, we compute

the set of all betweenness relations between three parts of the subject. Two poses are considered

similar if their betweenness relation sets are similar enough (it can be measured using the

cardinality of their intersection over the the cardinality of their union).

The two applications described above are interesting as they propose a high level description of

the required pose, via understandable syntax (in case of specific pose detection) or an example

(in case of pose clustering).
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Chapter 14

Conclusion

In this thesis, we have provided an efficient real-time generic pose estimation step for multi-view

marker-free motion capture, with multiple possible applications.

14.1 Contributions

Our contributions have been done in different fields of research:

Digital Topology. In this field, our contributions are:

• An efficient method to optimize the speed of critical kernel-based thinning algorithms,

by providing a reformulation of the detection of crucial points, allowing the use of

look-up tables.

• An easy-to-implement method to optimize the speed of any thinning algorithm using

look-up tables, by reducing the time requested to compute the configuration of the

neighborhood of a point.

• A new 6-directional thinning scheme based on isthmuses, speed efficient and providing

good quality results.

We submitted a paper about this method at the 16th IAPR International Conference

on Discrete Geometry for Computer Imagery.

Graph Theory. In this field, our contributions are:

• The Homeomorphic Alignment, a new alignment between weighted graphs, based

on homeomorphism notion, instead of isomorphism one. We also proposed efficient

algorithms computing it for weighted trees, rooted as well as unrooted.

We presented a paper about Homeomorphic Alignment at the 7th IAPR Workshop on

Graph-based Representations in Pattern Recognition [143], and an extended version

has been published in Pattern Recognition [144].
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• The Asymmetric Homeomorphism, a new binary relation on homeomorphic graph

sets.

• The Asymmetric Homeomorphic Alignment, a new alignment between weighted graphs,

based on our new binary relation. We also proposed efficient algorithms computing

it for weighted trees, rooted as well as unrooted.

Motion Capture. In this field, our contributions are:

• The introduction of new constraints in a priori model definitions, increasing the ro-

bustness of motion capture methods.

• The formalization of betweenness for 3D points, and the proposition and evaluation

of several definitions of betweenness relations.

• The definition of a new method for pose estimation step for multi-view marker-free

motion capture, usable in real-time context, adaptable to different kinds of subject,

and not constraining for the user.

We presented a paper about this method at the International Conference on Image

Analysis and Recognition 2010 [145].

Papers about our unpublished contributions are in redaction.

14.2 Future Works

The contributions of this thesis can be extended in different ways.

First, concerning motion capture applications, we want now focus on tracking methods, by

providing new solutions using our knowledge in digital topology and mathematical morphology.

It can also be interesting to develop new methods for pose detection and pose clustering using

our method.

Concerning the digital topology field of research, our aim is now to provide new thinning schemes

adapted to CPU-parallelization, and to search for new parameterizable constraints more powerful

than isthmuses.

Finally, concerning our graph theory contributions, we will try to design efficient algorithms for

the computation of both Homeomorphic Alignment and Asymmetric Homeomorphic Alignment

between any kinds of graph.
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“The hardest thing is to go to sleep at night, when there are so many urgent things needing to

be done. A huge gap exists between what we know is possible with today’s machines and what

we have so far been able to finish.”

Donald Knuth.
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[65] M. Höchsmann. The tree alignment model: algorithms, implementations and applications

for the analysis of RNA secondary structures. 2005.

[66] R. Horaud, M. Niskanen, G. Dewaele, and E. Boyer. Human motion tracking by registering

an articulated surface to 3D points and normals. IEEE transactions on pattern analysis

and machine intelligence, 31(1):158–163, 2009.

[67] E.V. Huntington. A new set of postulates for betweenness, with proof of complete inde-

pendence. Transactions, 18:301–325, 1917.



Bibliography BIBLIOGRAPHY

[68] E.V. Huntington and J.R. Kline. Sets of independent postulates for betweenness. Trans-

actions of the American Mathematical Society, 18:301–325, 1917.

[69] C.Y. Ip, D. Lapadat, L. Sieger, and W.C. Regli. Using shape distributions to compare solid

models. In Proceedings of the seventh ACM symposium on Solid modeling and applications,

pages 273–280. ACM, 2002.

[70] J. Jansson and A. Lingas. A Fast Algorithm for Optimal Alignment between Similar

Ordered Trees. In Combinatorial Pattern Matching, pages 232–240. Springer, 2001.

[71] T. Jiang, L. Wang, and K. Zhang. Alignment of trees - an alternative to tree edit. In

CPM ’94: Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching,

pages 75–86, London, UK, 1994. Springer-Verlag.

[72] P. Kardos, G. Németh, and K. Palágyi. Topology preserving 2-subfield 3d thinning al-

gorithms. In Proceedings of the IASTED International Conference on Signal Processing,

Pattern Recognition and Applications, pages 310–316, Innsbruck, Austria, February 2010.

IASTED.

[73] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In

Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003),

volume 20, pages 321–328, 2003.

[74] S. Kaygin and M.M. Bulut. Shape recognition using attributed string matching with

polygon vertices as the primitives. Pattern Recognition Letters, 23(1-3):287–294, 2002.

[75] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical harmonic

representation of 3D shape descriptors. In Proceedings of the 2003 Eurographics/ACM

SIGGRAPH symposium on Geometry processing, pages 156–164. Eurographics Associa-

tion, 2003.

[76] R. Kehl, M. Bray, and L. Van Gool. Full body tracking from multiple views using stochastic

sampling. In Proceedings of theIEEE Computer Society Conference on Computer Vision

and Pattern Recognition, pages 129–136, 2005.

[77] P. Klein. Computing the edit-distance between unrooted ordered trees. AlgorithmsESA98,

pages 1–1.

[78] P. Klein, S. Tirthapura, D. Sharvit, and B. Kimia. A tree-edit-distance algorithm for com-

paring simple, closed shapes. In Proceedings of the eleventh annual ACM-SIAM symposium

on Discrete algorithms, pages 696–704. Society for Industrial and Applied Mathematics,

2000.

[79] D. Knossow, R. Ronfard, and R. Horaud. Human motion tracking with a kinematic param-

eterization of extremal contours. International Journal of Computer Vision, 79(3):247–269,

2008.



Bibliography 179

[80] D. Knossow, R. Ronfard, R. Horaud, and F. Devernay. Tracking with the kinematics

of extremal contours. Proceedings of the Asian Conference on Computer Vision, pages

664–673, 2006.

[81] D. Knossow, J. Van De Weijer, R. Horaud, and R. Ronfard. Articulated-Body Tracking

Through Anisotropic Edge Detection. Dynamical Vision, pages 86–99, 2007.

[82] T. Y. Kong and A. Rosenfeld. Digital topology: introduction and survey. Comp. Vision,

Graphics and Image Proc., 48:357–393, 1989.

[83] T.Y. Kong. Problem of determining whether a parallel reduction operator for n-

dimensional binary images always preserves topology. In R. A. Melter & A. Y. Wu, editor,

Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume

2060 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,

pages 69–77, December 1993.

[84] T.Y. Kong. On topology preservation in 2-d and 3-d thinning. International journal of

pattern recognition and artificial intelligence, 9:813–844, 1995.

[85] T.Y. Kong. Topology-preserving deletion of 1’s from 2-, 3- and 4-dimensional binary

images. In DGCI ’97: Proceedings of the 7th International Workshop on Discrete Geometry

for Computer Imagery, pages 3–18, London, UK, 1997. Springer-Verlag.

[86] T.Y. Kong and C.J. Gau. Minimal non-simple sets in 4-dimensional binary images with

(8,80)-adjacency. In Lecture notes in computer science, pages 318–333, 2004.

[87] S. Kosinov and T. Caelli. Inexact Multisubgraph matching using Graph Eigenspace and

Clustering Models. In Proceedings of SSPR/SPR, pages 133–142. Citeseer, 2002.

[88] L. Lam, S.W. Lee, and C.Y. Suen. Thinning methodologies-a comprehensive survey. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14:869–885, 1992.

[89] A. Laurentini. The visual hull concept for silhouette-based image understanding. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pages 150–162, 1994.

[90] T.C. Lee, R.L. Kashyap, and C.N. Chu. Building skeleton models via 3-D medial sur-

face/axis thinning algorithms. Graphical Models and Image Processing, 56(6):462–478,

1994.

[91] A. Lieutier. Any open bounded subset of rn has the same homotopy type as its medial

axis. In Proc. 8th ACM Symposium on Solid Modeling Applications, pages 65–75. Academic

Press, 2003.

[92] C. Lohou and G. Bertrand. A 3d 12-subiteration thinning algorithm based on p-simple

points. Discrete Appl. Math., 139(1-3):171–195, 2004.



Bibliography BIBLIOGRAPHY

[93] C. Lohou and G. Bertrand. A 3d 6-subiteration curve thinning algorithm based on p-simple

points. Discrete Appl. Math., 151(1-3):198–228, 2005.

[94] C. Lu, Z.Y. Su, and C. Tang. A new measure of edit distance between labeled trees.

Computing and Combinatorics, pages 338–348.

[95] C.M. Ma. On topology preservation in 3d thinning. CVGIP: Image Understanding,

59(3):328 – 339, 1994.

[96] C.M. Ma and S.Y. Wan. Parallel thinning algorithms on 3D (18, 6) binary images. Com-

puter Vision and Image Understanding, 80(3):364–378, 2000.

[97] C.M. Ma and S.Y. Wan. A medial-surface oriented 3-d two-subfield thinning algorithm.

Pattern Recognition Letters, 22(13):1439–1446, 2001.

[98] C.M. Ma, S.Y. Wan, and H.K. Chang. Extracting medial curves on 3D images. Pattern

Recognition Letters, 23(8):895–904, 2002.

[99] C.M. Ma, S.Y. Wan, et al. Three-dimensional topology preserving reduction on the 4-

subfields. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1594–

1605, 2002.
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[110] C. Menier. Système de vision temps-réel pour les interactions. PhD thesis, Institut National

Polytechnique de Grenoble, 2007.

[111] C. Menier, E. Boyer, and B. Raffin. 3d skeleton-based body pose recovery. In Proceedings of

the 3rd International Symposium on 3D Data Processing, Visualization and Transmission.

Citeseer, 2006.

[112] B. Michoud, E. Guillou, H. Briceño, and S. Bouakaz. Real-time and marker-free 3D

motion capture for home entertainment oriented applications. In Proceedings of the 8th

Asian Conference on Computer vision, pages 678–687. Springer-Verlag, 2007.

[113] B. Michoud, E. Guillou, H. Briceno, and S. Bouakaz. Real-Time Marker-free Motion

Capture from multiple cameras. In Proceedings of the IEEE 11th International Conference

on Computer Vision, pages 1–7, 2007.
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