J. Hecht, City of Light: The Story of Fiber Optics, 1999.

C. Decusatis, Fiber optic data communication: Technological trends and advances, 2002.

V. Ronchi, Optics: The science of vision, 1957.

J. N. Downing, Fiber-Optic communications, 2005.

B. Chomycz, Planning fiber optic networks, 2009.

G. Lifante, Integrated photonics: Fundamentals, 2003.
DOI : 10.1002/0470861401

F. J. Duarte, Tunable laser applications, 2009.
DOI : 10.1201/9781420060584

R. W. Boyd, Nonlinear optics, 2008.

B. E. Saleh and M. C. Teich, Fundamentals of photonics, 1991.

D. S. Wiersma and S. Cavalierit, Light emission: A temperature-tunable random laser, Nature, pp.414-708, 2001.

J. Y. Allain, M. Monerie, and H. Poignant, Tunable green upconversion erbium fibre laser, Electronics Letters, vol.28, issue.2, p.111, 1992.
DOI : 10.1049/el:19920068

M. Ozaki, M. Kasano, T. Kitasho, D. Ganzke, W. Haase et al., Electro-Tunable Liquid-Crystal Laser, Advanced Materials, vol.15, issue.12, p.974, 2003.
DOI : 10.1002/adma.200304448

K. J. Kim, J. W. Kim, M. C. Oh, Y. O. Noh, and H. J. Lee, Flexible polymer waveguide tunable lasers, Optics Express, vol.18, issue.8, p.8392, 2010.
DOI : 10.1364/OE.18.008392

D. K. Hunter, M. C. Chia, and I. Andonovic, Buffering in optical packet switches, Journal of Lightwave Technology, vol.16, issue.12, p.2081, 1998.
DOI : 10.1109/50.736577

M. C. Chia, D. K. Hunter, I. Andonovic, P. Ball, I. Wright et al., Packet loss and delay performance of feedback and feed-forward arrayed-waveguide gratings-based optical packet switches with WDM inputs-outputs, Journal of Lightwave Technology, vol.19, issue.9, p.1241, 2001.
DOI : 10.1109/50.948271

R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno et al., New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8 ?? 8 optical matrix switch, Journal of Lightwave Technology, vol.20, issue.6, p.993, 2002.
DOI : 10.1109/JLT.2002.1018811

. Niland, Wavelength-and polarization-independent large angle InP/InGaAsP digital optical switches with extinction ratios exceeding 20 dB, IEEE, Photon. Tech. Lett, vol.6, p.1332, 1994.

O. Ishida, H. Takahashi, and Y. Inoue, Digitally tunable optical filters using arrayed-waveguide grating (AWG) multiplexers and optical switches, Journal of Lightwave Technology, vol.15, issue.2
DOI : 10.1109/50.554384

S. Sudo, K. Mizutani, J. Merlier, T. Okamoto, K. Tsuruoka et al., External cavity wavelength tunable laser with on-chip VOA using etched mirror based integration technology, Electronics Letters, vol.42, issue.6, p.347, 2006.
DOI : 10.1049/el:20060056

X. M. Zhang, Q. W. Zhao, A. Q. Liu, J. Zhang, J. H. Lau et al., Asymmetric Tuning Schemes of MEMS Dual-Shutter VOA, Journal of Lightwave Technology, vol.26, issue.5, p.569, 2008.
DOI : 10.1109/JLT.2007.912524

A. Q. Liu, A. B. Yu, M. F. Karim, and M. Tang, RF MEMS switches and integrated switching circuit, J. Semicon. Techn. and Sci., Special issue on NANO/Microsystems Technology, vol.7, issue.3, 2007.
DOI : 10.1007/978-0-387-46262-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.512.4686

Q. X. Zhang, A. B. Yu, L. H. Guo, R. Kumar, K. W. Teoh et al., RF MEMS switch integrated on printed circuit board with metallic membrane first sequence and transferring, IEEE Electron Device Letters, vol.27, issue.7, p.552, 2006.
DOI : 10.1109/LED.2006.877282

X. M. Zhang, A. Q. Liu, C. Lu, D. Y. Tang, G. D. Valle et al., MEMS variable optical attenuator using low driving voltage for DWDM systems, Electronics Letters, vol.38, issue.8, pp.382-98, 2002.
DOI : 10.1049/el:20020262

J. J. Carey, J. Zawadzka, and D. A. , Noncausal Time Response in Frustrated Total Internal Reflection?, Physical Review Letters, vol.84, issue.7, p.1431, 2000.
DOI : 10.1103/PhysRevLett.84.1431

R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg, Analogies between electron and photon tunneling, Physica B: Condensed Matter, vol.175, issue.1-3, p.257, 1991.
DOI : 10.1016/0921-4526(91)90724-S

L. L. Chang, L. Esaki, and R. Tsu, Resonant tunneling in semiconductor double barriers, Applied Physics Letters, vol.24, issue.12, p.593, 1974.
DOI : 10.1063/1.1655067

H. Cai, B. Liu, X. M. Zhang, A. Q. Liu, T. Bourouina et al., A micromachined tunable coupled-cavity laser for wide tuning range and high spectral purity, Optics Express, vol.16, issue.21, p.16670, 2008.
DOI : 10.1364/OE.16.016670

H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, D. Y. Tang et al., Tunable dual-wavelength laser constructed by silicon micromachining, Applied Physics Letters, vol.92, issue.5
DOI : 10.1063/1.2840152

H. Cai, A. Q. Liu, X. M. Zhang, J. Tamil, Q. X. Zhang et al., A miniature tunable coupled-cavity laser constructed by micromachining technology, Applied Physics Letters, vol.92, issue.3, p.31105, 2008.
DOI : 10.1063/1.2831912

A. Q. Liu and X. M. Zhang, A review of MEMS external-cavity tunable lasers, Journal of Micromechanics and Microengineering, vol.17, issue.1, p.1, 2007.
DOI : 10.1088/0960-1317/17/1/R01

N. C. Lindquist, A. Lesuffleur, and S. H. Oh, Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors, Physical Review B, vol.76, issue.15, p.165415, 2007.
DOI : 10.1103/PhysRevB.76.155109

O. Glushko, R. Meisels, and F. Kuchar, Simulations of wave propagation and disorder in 3D non-close-packed colloidal photonic crystals with low refractive index contrast, Optics Express, vol.18, issue.7, p.7101, 2010.
DOI : 10.1364/OE.18.007101

T. Ding, K. Song, K. Clays, and C. H. Tung, Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self-Assembly in Magnetic Field, Advanced Materials, vol.11, issue.19, 1936.
DOI : 10.1002/adma.200803564

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata et al., Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure, Applied Physics Letters, vol.75, issue.3, p.316, 1999.
DOI : 10.1063/1.124361

H. G. Selin, A. Q. Teo, M. B. Liu, J. Yu, and . Singh, Synthesized processing techniques for monolithic iIntegration of nanometers-scale hole type photonic bandgap crystal with micrometers-scale microelectromechanical structures, J

H. G. Selin, A. Q. Teo, J. B. Liu, M. H. Zhang, and . Hong, Induced free carriers modulation of photonic crystal optical intersection via localized optical absorption effect, Appl. Phys. Lett, vol.89, p.91910, 2006.

E. H. Khoo, T. H. Cheng, A. Q. Liu, J. Li, and D. Pinjala, Transmitting light efficiently on photonic crystal surface waveguide bend, Applied Physics Letters, vol.91, issue.17, p.171109, 2007.
DOI : 10.1063/1.2793175

E. H. Khoo, A. Q. Liu, X. M. Zhang, E. P. Li, J. Li et al., Exact step-coupling theory for mode-coupling behavior in geometrical variation photonic crystal waveguides, Physical Review B, vol.80, issue.3, p.35101, 2009.
DOI : 10.1103/PhysRevB.80.035101

Y. F. Yu, V. Kanna, T. Bourouina, S. H. Ng, P. H. Yap et al., An on-chip glass sphere resonator for label-free detection, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), 2010.
DOI : 10.1109/MEMSYS.2010.5442277

Y. F. Yu, T. Bourouina, and A. Q. Liu, On-chip droplet enhanced fluorescence emission for low concentration protein measurement, TRANSDUCERS 2009, 2009 International Solid-State Sensors, Actuators and Microsystems Conference
DOI : 10.1109/SENSOR.2009.5285885

B. Mcnamara, K. Wiesenfeld, and R. Roy, Observation of Stochastic Resonance in a Ring Laser, Physical Review Letters, vol.60, issue.25, p.2626, 1998.
DOI : 10.1103/PhysRevLett.60.2626

M. Tang, A. Q. Liu, and J. Oberhammer, A silicon-on-glass single-pole-double- throw (SPDT) switching circuit integrated with a silicon-core metal-coated transmission line, Journal of Micromechanics and Microengineering, vol.18, issue.9, 2008.
DOI : 10.1088/0960-1317/18/9/095024

J. Oberhammer, M. Tang, A. Q. Liu, and G. Stemme, Mechanically tri-stable, true single-pole-double-throw (SPDT) switches, Journal of Micromechanics and Microengineering, vol.16, issue.11, 2006.
DOI : 10.1088/0960-1317/16/11/001

J. Li, A. Q. Liu, W. D. Zhong, Q. X. Zhang, and C. Lu, MEMS switch based serial reconfigurable OADM, Optics Communications, vol.230, issue.1-3, p.81, 2004.
DOI : 10.1016/j.optcom.2003.10.060

. Uppili, An optical switch using drawbridge micromirror for large array crossconnects, Sensors & Actuators Physics A, vol.97, p.227, 2002.

J. Huang, K. M. Liew, C. H. Wong, S. Rajendran, M. J. Tan et al., Mechanical design and optimization of capacitive micromachined switch, Sensors and Actuators A: Physical, vol.93, issue.3, p.273, 2001.
DOI : 10.1016/S0924-4247(01)00662-8

S. Hrbar, D. Bonefacic, and D. Muha, ENZ-based shortened horn antenna - an experimental study, 2008 IEEE Antennas and Propagation Society International Symposium, 2008.
DOI : 10.1109/APS.2008.4619853

M. G. Silveirinha, A. Alu, and N. Engheta, Parallel-plate metamaterials for cloaking structures, Physical Review E, vol.75, issue.3, pp.75-036603, 2007.
DOI : 10.1103/PhysRevE.75.036603

URL : http://repository.upenn.edu/cgi/viewcontent.cgi?article=1259&context=ese_papers

A. Alu and N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Physical Review E, vol.72, issue.1, p.16623, 2005.
DOI : 10.1103/PhysRevE.72.016623

E. O. Liznev, A. V. Dorofeenko, L. Huizhe, A. P. Vinogradov, and S. Zouhdi, Epsilon-near-zero material as a unique solution to three different approaches to cloaking, Applied Physics A, vol.77, issue.5, pp.1-5, 2010.
DOI : 10.1007/s00339-010-5859-x

URL : https://hal.archives-ouvertes.fr/hal-01259031

D. A. Powell, A. Alu, B. Edwards, A. Vakil, Y. S. Kivshar et al., Nonlinear control of tunneling through an epsilon-near-zero channel, Physical Review B, vol.79, issue.24, p.245135, 2009.
DOI : 10.1103/PhysRevB.79.245135

. Pralong, Demonstration of microwave generation by a ferroelectric-cathode tube, Appl. Phys. Lett, vol.74, p.335, 1999.

L. W. Li, Y. N. Li, T. S. Yeo, J. R. Mosig, and O. J. Martin, A broadband and high-gain metamaterial microstrip antenna, Applied Physics Letters, vol.96, issue.16, p.164101, 2010.
DOI : 10.1063/1.3396984

P. Jin and R. W. Ziolkowski, Broadband, efficient, electrically small metamaterial-inspired antennas facilitated by active near-field resonant parasitic elements, IEEE Transactions on Antennas and Propagation, vol.58, issue.2, pp.318-327, 2010.

J. Zhu and G. V. Eleftheriades, Dual-band metamaterial-inspired small monopole antenna for WiFi applications, Electronics Letters, vol.45, issue.22, p.1104, 2009.
DOI : 10.1049/el.2009.2107

N. Lopez, C. J. Lee, A. Gummalla, and M. Achour, Compact metamaterial antenna array for long term evolution (LTE) handset application, 2009 IEEE International Workshop on Antenna Technology, 2009.
DOI : 10.1109/IWAT.2009.4906933

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles, Optics Letters, vol.23, issue.17, p.1331, 1998.
DOI : 10.1364/OL.23.001331

M. L. Brongersma, J. W. Hartman, and A. Atwater, Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit, Physical Review B, vol.62, issue.24, p.16356, 2000.
DOI : 10.1103/PhysRevB.62.R16356

T. Zhong, X. M. Zhang, A. Q. Liu, J. Li, C. Lu et al., Thermal-Optic Switch by Total Internal Reflection of Micromachined Silicon Prism, IEEE Journal of Selected Topics in Quantum Electronics, vol.13, issue.2, p.348, 2007.
DOI : 10.1109/JSTQE.2007.893111

J. Li, A. Q. Liu, X. M. Zhang, and T. Zhong, Light switching via thermo-optic effect of micromachined silicon prism, Applied Physics Letters, vol.88, issue.24, p.243501, 2006.
DOI : 10.1063/1.2212278

G. T. Reed, Silicon photonics: An introduction, 2004.
DOI : 10.1002/0470014180

A. Q. Liu, X. M. Zhang, H. Cai, A. B. Yu, and C. Lu, Retro-axial VOA using parabolic mirror pair, IEEE Photonics Technology Letters, vol.19, issue.9, pp.692-694, 2007.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, Metamaterials and Negative Refractive Index, Science, vol.305, issue.5685, pp.305-788, 2004.
DOI : 10.1126/science.1096796

A. Al and N. Engheta, Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and???or double-positive metamaterial layers, Journal of Applied Physics, vol.97, issue.9, p.94310, 2005.
DOI : 10.1063/1.1884757

R. A. Shelby, D. R. Smith, S. C. Nematnasser, and S. Schultz, Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial, Applied Physics Letters, vol.78, issue.4, p.489, 2001.
DOI : 10.1063/1.1343489

R. W. Ziolkowski, Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs, Optics Express, vol.11, issue.7, p.662, 2003.
DOI : 10.1364/OE.11.000662.m009

. Kong, Experimental confirmation of negative refractive index of a metamaterial composed of -like metallic patterns, Appl. Phys. Lett, vol.84, p.1537, 2004.

H. O. Moser, B. D. Casse, O. Wilhelmi, and B. T. Saw, Terahertz Response of a Microfabricated Rod???Split-Ring-Resonator Electromagnetic Metamaterial, Physical Review Letters, vol.94, issue.6, p.63901, 2005.
DOI : 10.1103/PhysRevLett.94.063901

R. W. Ziolkowski, Propagation in and scattering from a matched metamaterial having a zero index of refraction, Physical Review E, vol.70, issue.4, p.46608, 2004.
DOI : 10.1103/PhysRevE.70.046608

A. K. Iyer, P. C. Kremer, and G. V. Eleftheriades, Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial, Optics Express, vol.11, issue.7, p.696, 2003.
DOI : 10.1364/OE.11.000696.m002

A. Alu and N. Engheta, Cloaking and transparency for collections of particles with metamaterial and plasmonic covers, Optics Express, vol.15, issue.12, p.7578, 2007.
DOI : 10.1364/OE.15.007578.m006

M. C. Wiltshire, J. V. Hajnal, J. B. Pendry, D. J. Edwards, and C. J. Stevens, Metamaterial endoscope for magnetic field transfer: near field imaging with magnetic wires, Optics Express, vol.11, issue.7, p.709, 2003.
DOI : 10.1364/OE.11.000709

M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring, Journal of Applied Physics, vol.95, issue.7, p.3778, 2004.
DOI : 10.1063/1.1652251

K. Guven, M. D. Caliskan, and E. Ozbay, Experimental observation of left-handed transmission in a bilayer metamaterial under normal-to-plane propagation, Optics Express, vol.14, issue.19, p.8685, 2006.
DOI : 10.1364/OE.14.008685

J. D. Baena, L. Jelinek, R. Marques, and F. Medina, Near-perfect tunneling and amplification of evanescent electromagnetic waves in a waveguide filled by a metamaterial: Theory and experiments, Physical Review B, vol.72, issue.7, p.75116, 2005.
DOI : 10.1103/PhysRevB.72.075116

R. W. Ziokowski and A. D. Kipple, Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells, Phys. Rev. E, pp.72-036602, 2005.

C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, Design of an Artificial Three-Dimensional Composite Metamaterial with Magnetic Resonances in the Visible Range of the Electromagnetic Spectrum, Physical Review Letters, vol.99, issue.1, p.17401, 2007.
DOI : 10.1103/PhysRevLett.99.017401

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand et al., Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide, Phys. Rev. Lett, vol.100, p.33903, 2008.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques, vol.47, issue.11, p.2075, 1999.
DOI : 10.1109/22.798002

J. D. Baena, L. Jelinek, R. Marquas, and J. Zehentner, Electrically small isotropic three-dimensional magnetic resonators for metamaterial design, Applied Physics Letters, vol.88, issue.13, p.134108, 2006.
DOI : 10.1063/1.2190442

A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm et al., Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial, Optics Express, vol.17, issue.5, 2009.
DOI : 10.1364/OE.17.003826.m004

R. Liu, Q. Cheng, T. Hand, J. J. Mock, J. T. Cui et al., Experimental Demonstration of Electromagnetic Tunneling Through an Epsilon-Near-Zero Metamaterial at Microwave Frequencies, Physical Review Letters, vol.100, issue.2, p.23903, 2008.
DOI : 10.1103/PhysRevLett.100.023903

D. Korobkin, Y. A. Urzhumov, B. N. Iii, C. Zorman, Z. Zhang et al., Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons, Applied Physics A, vol.72, issue.4, p.605, 2007.
DOI : 10.1007/s00339-007-4084-8

R. W. Ziolkowski, Propagation in and scattering from a matched metamaterial having a zero index of refraction, Physical Review E, vol.70, issue.4, p.46608, 2004.
DOI : 10.1103/PhysRevE.70.046608

F. Zhang, G. Houzet, E. Lheurette, D. Lippens, M. Chaubet et al., Negative-zero-positive metamaterial with omega-type metal inclusions, Journal of Applied Physics, vol.103, issue.8, p.84321, 2008.
DOI : 10.1063/1.2910831

A. Alu, A. Salandrino, and N. Engheta, Parallel, series, and intermediate interconnections of optical nanocircuit elements 2 Nanocircuit and physical interpretation, Journal of the Optical Society of America B, vol.24, issue.12, p.3014, 2007.
DOI : 10.1364/JOSAB.24.003014

J. J. Li and N. Engheta, Subwavelength plasmonic cavity resonator on a nanowire with periodic permittivity variation, Physical Review B, vol.74, issue.11, p.115125, 2006.
DOI : 10.1103/PhysRevB.74.115125

W. H. Weber and G. W. Ford, Propagation of optical excitations by dipolar interactions in metal nanoparticle chains, Physical Review B, vol.70, issue.12, p.125429, 2004.
DOI : 10.1103/PhysRevB.70.125429

M. Shamonin, E. Shamonina, V. Kalinin, and L. Solymar, Properties of a metamaterial element: Analytical solutions and numerical simulations for a singly split double ring, Journal of Applied Physics, vol.95, issue.7, 2004.
DOI : 10.1063/1.1652251

G. Stevens, D. J. Faulkner, L. Edwards, and . Solymar, Tailoring the near-field guiding properties of magnetic metamaterials with two resonant elements per unit cell, Phys. Rev. B, vol.73, p.224406, 2006.

E. Shamonina, V. A. Kalinin, K. H. Ringhofer, and L. Solymar, Magneto-inductive waveguide, Electronics Letters, vol.38, issue.8, p.371, 2002.
DOI : 10.1049/el:20020258

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, Dynamical electric and magnetic metamaterial response at terahertz frequencies, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference
DOI : 10.1109/CLEO.2006.4627768

J. F. Wang, B. S. Qu, Z. Xu, J. Q. Zhang, Y. M. Yang et al., A candidate three-dimensional GHz left-handed metamaterial composed of coplanar magnetic and electric resonators, Photonics and Nanostructures -Fundamentals and Applications, pp.183-187, 2008.
DOI : 10.1016/j.photonics.2008.08.001

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, Electric and Magnetic Dipole Coupling in Near-Infrared Split-Ring Metamaterial Arrays, Physical Review Letters, vol.103, issue.21
DOI : 10.1103/PhysRevLett.103.213902

L. Jelinek, R. Marqus, and M. J. Freire, Accurate modeling of split ring metamaterial lenses for magnetic resonance imaging applications, Journal of Applied Physics, vol.105, issue.2, p.24907, 2009.
DOI : 10.1063/1.3067788

Y. Minowa, T. Fujii, M. Nagai, T. Ochiai, K. Sakoda et al., Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy, Optics Express, vol.16, issue.7, p.4785, 2008.
DOI : 10.1364/OE.16.004785

C. Navau, D. X. Chen, A. Sanchez, and N. D. Valle, Magnetic properties of a dc metamaterial consisting of parallel square superconducting thin plates, Applied Physics Letters, vol.94, issue.24, p.242501, 2009.
DOI : 10.1063/1.3154555

Z. G. Dong, X. M. Xu, H. Liu, T. Li, and S. N. Zhu, Omnidirectional magneticresonance transmission and its elimination in a metallic metamaterial comprising rings and plates, Phys. Rev. E, pp.78-066612, 2008.

L. Kang, Q. Zhao, H. Zhao, and J. Zhou, Magnetic tuning of electrically resonant metamaterial with inclusion of ferrite, Applied Physics Letters, vol.93, issue.17, p.171909, 2008.
DOI : 10.1063/1.3006429

D. L. Sounas, N. V. Kantartzis, and T. D. Tsiboukis, Temporal characteristics of resonant surface polaritons in superlensing planar double-negative slabs: Development of analytical schemes and numerical models, Physical Review E, vol.76, issue.4, p.2572, 2003.
DOI : 10.1103/PhysRevE.76.046606

S. O. Brien and J. B. Pendry, Photonic band-gap effects and magnetic activity in dielectric composites, Phys. Condens. Matter, vol.14, p.6383, 2002.

P. G. Balmaz and O. J. Martin, Electromagnetic resonances in individual and coupled split-ring resonators, Journal of Applied Physics, vol.92, issue.5, p.2929, 2002.
DOI : 10.1063/1.1497452

L. V. Panina, A. N. Grigorenko, and D. P. Makhnovskiy, Optomagnetic composite medium with conducting nanoelements, Physical Review B, vol.66, issue.15, p.155411, 2002.
DOI : 10.1103/PhysRevB.66.155411

URL : http://arxiv.org/abs/cond-mat/0205331

M. V. Kostin and V. V. Shevchenko, Theory of artificial magnetic sub-stances based on ring currents, J. Commun. Technol. Electron, vol.38, p.78, 1993.

A. Radkovskaya, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards et al., Resonant frequencies of a combination of split rings: Experimental, analytical and numerical study, Microwave and Optical Technology Letters, vol.51, issue.5, p.473, 2005.
DOI : 10.1002/mop.21021

A. Radkovskaya, M. Shamonin, C. J. Stevens, G. Faulkner, D. J. Edwards et al., An experimental study of the properties of magnetoinductive waves in the presence of retardation References, J. Magn. Magn. Mater

M. C. Wiltshire, E. Shamonina, I. R. Young, and L. Solymar, Dispersion characteristics of magneto-inductive waves: comparison between theory and experiment, Electronics Letters, vol.39, issue.2, p.215, 2003.
DOI : 10.1049/el:20030138

H. Mosallaei and K. Sarabandi, Antenna Miniaturization and Bandwidth Enhancement Using a Reactive Impedance Substrate, IEEE Transactions on Antennas and Propagation, vol.52, issue.9
DOI : 10.1109/TAP.2004.834135

M. V. Kostin and V. V. Shevchenko, Artificial magnetics based on double circular elements, Proc. of Bianisotropics'94, p.49, 1994.

M. C. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J. Gilderdale et al., Microstructured Magnetic Materials for RF Flux Guides in Magnetic Resonance Imaging, Science, vol.291, issue.5505, pp.291-849, 2001.
DOI : 10.1126/science.291.5505.849

J. D. Baena, R. Marques, F. Medina, and J. Martel, Artificial magnetic metamaterial design by using spiral resonators, Physical Review B, vol.69, issue.1, p.14402, 2002.
DOI : 10.1103/PhysRevB.69.014402

T. Hao, C. J. Stevens, and D. J. Edwards, Simulations and measurements for 1D metamaterial elements, Proc. of the SPIE-COO Conference, 2005.

I. Bulu, C. Humeyra, K. Aydin, and E. Ozbay, Study of the field emitted by a source placed inside a two-dimensional left-handed metamaterial, Optics Letters, vol.32, issue.7, pp.31-814, 2007.
DOI : 10.1364/OL.32.000850

P. M. Ikonen, K. N. Rozanov, A. V. Osipov, P. Alitalo, and S. A. Tretyakov, Magnetodielectric Substrates in Antenna Miniaturization: Potential and Limitations, IEEE Transactions on Antennas and Propagation, vol.54, issue.11, p.3391, 2006.
DOI : 10.1109/TAP.2006.884303

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny et al., Magnetic Response of Metamaterials at 100 Terahertz, Science, vol.306, issue.5700, pp.306-1351, 2004.
DOI : 10.1126/science.1105371

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood et al., Experimental Demonstration of Near-Infrared Negative-Index Metamaterials, Physical Review Letters, vol.95, issue.13, p.137404, 2005.
DOI : 10.1103/PhysRevLett.95.137404

V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev et al., Negative index of refraction in optical metamaterials

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, Negative-index metamaterial at 780 nm wavelength, Optics Letters, vol.32, issue.1, p.53, 2007.
DOI : 10.1364/OL.32.000053

URL : http://arxiv.org/abs/physics/0607135

Y. Svirko, N. Zheludev, and M. Osipov, Layered chiral metallic microstructures with inductive coupling, Applied Physics Letters, vol.78, issue.4, p.498, 2001.
DOI : 10.1063/1.1342210

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, PLASMON MODES IN METAL NANOWIRES AND LEFT-HANDED MATERIALS, Journal of Nonlinear Optical Physics & Materials, vol.11, issue.01, p.65, 2002.
DOI : 10.1142/S0218863502000833

V. S. Podolskiy, A. K. Sarychey, E. E. Narimanov, and V. M. Shalaev, Resonant light interaction with plasmonic nanowire systems, Journal of Optics A: Pure and Applied Optics, vol.7, issue.2, p.32, 2005.
DOI : 10.1088/1464-4258/7/2/004

T. Zhou, C. M. Koschny, and . Soukoulis, Magnetic metamaterials at telecommunication and Visible frequencies, Phys. Rev. Lett, vol.95, 2005.

J. S. Shumaker-parry, H. Rochholz, and M. Kreiter, Fabrication of Crescent-Shaped Optical Antennas, Advanced Materials, vol.5, issue.17, p.2131, 2005.
DOI : 10.1002/adma.200500063

J. Zhang, P. A. Ade, P. Mauskopf, L. Moncelsi, G. Savini et al., Light transmission properties of holey metal films in the metamaterial limit: Effective medium theory and subwavelength imaging, New Journal of Physics, vol.11, 2009.

B. Zhang and G. Barbastathis, Dielectric metamaterial magnifier creating a virtual color image with far-field subwavelength information, Optics Express, vol.18, issue.11, p.11552, 2010.
DOI : 10.1364/OE.18.011216

B. Zeng, X. Yang, C. Wang, Q. Feng, and X. Luo, Super-resolution imaging at different wavelengths by using a one-dimensional metamaterial structure, Journal of Optics, vol.12, issue.3
DOI : 10.1088/2040-8978/12/3/035104

A. Schneider, A. Shuvaev, S. Engelbrecht, and S. O. Demokritov, Electrically Excited Inverse Electron Spin Resonance in a Split-Ring Metamaterial Resonator, Physical Review Letters, vol.103, issue.10, p.103907, 2009.
DOI : 10.1103/PhysRevLett.103.103907

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai et al., Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency, Applied Physics Letters, vol.94, issue.21
DOI : 10.1063/1.3138868

P. Tassin, G. D. Sande, I. Veretennicoff, P. Kockaert, and M. Tlidi, Pattern formation without diffraction matching in optical parametric oscillators with a metamaterial, Optics Express, vol.17, issue.11, pp.17-9428, 2009.
DOI : 10.1364/OE.17.009428

S. Enoch and N. Bonod, Absorption of light by Extremely shallow metallic gratings: Metamaterial behavior evgeny popov, Opt. Express, vol.17, p.6770, 2009.

R. Yang, Y. Xie, X. Yang, R. Wang, and B. Chen, Fundamental modal properties of SRR metamaterials and metamaterial based waveguiding structures, Optics Express, vol.17, issue.8, p.6101, 2009.
DOI : 10.1364/OE.17.006101

C. Yan, Y. Cui, Q. Wang, and S. Zhuo, Superwide-band negative refraction of a symmetrical E-shaped metamaterial with two electromagnetic resonances, Physical Review E, vol.77, issue.5
DOI : 10.1103/PhysRevE.77.056604

C. W. Qiu, S. Zouhdi, and Y. L. Geng, Shifted resonances in coated metamaterial cylinders: Enhanced backscattering and near-field effects, Physical Review E, vol.77, issue.4, pp.77-046604, 2008.
DOI : 10.1103/PhysRevE.77.046604

L. L. Hou, J. Y. Chin, X. M. Yang, X. Q. Lin, R. Liu et al., Advanced parameter retrievals for metamaterial slabs using an inhomogeneous model, Journal of Applied Physics, vol.103, issue.6, p.64904, 2008.
DOI : 10.1063/1.2885351

F. Y. Meng, Q. Wu, and L. W. Li, Transmission characteristics of wave modes in a rectangular waveguide filled with anisotropic metamaterial, Applied Physics A, vol.91, issue.4, p.94
DOI : 10.1007/s00339-008-5057-2

J. S. Diaz, A. A. Melcon, S. Gupta, and C. Caloz, Spatiooral Talbot phenomenon using metamaterial composite right/left-handed leaky-wave antennas, J. Appl. Phys, vol.104, 2008.

J. W. Dong and H. Z. Wang, Slow electromagnetic propagation with low group velocity dispersion in an all-metamaterial-based waveguide, Applied Physics Letters, vol.91, issue.11, p.111909, 2007.
DOI : 10.1063/1.2784201

C. M. Krowne, Low loss guided wave propagation in a left-handed microstrip structure using dispersive split ring???rod combination metamaterial, IET Microwaves, Antennas & Propagation, vol.1, issue.4, p.887, 2007.
DOI : 10.1049/iet-map:20060297

M. A. Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale, and K. W. Lehnert, Amplification and squeezing of quantum noise with a tunable Josephson metamaterial, Nat. Phys, vol.4, p.928, 2008.

S. Ahmed and Q. A. Naqvi, Electromagnetic scattering from a perfect electromagnetic conductor circular cylinder coated with a metamaterial having negative permittivity and/or permeability, Optics Communications, vol.281, issue.23, pp.281-5664, 2008.
DOI : 10.1016/j.optcom.2008.09.011

H. T. Chen, J. F. Hara, A. K. Azad, A. J. Taylor, R. D. Averitt et al., Experimental demonstration of frequency-agile terahertz metamaterials, Nature Photonics, vol.7, issue.5, p.295, 2008.
DOI : 10.1038/nphoton.2008.52

H. T. Chen, J. F. Hara, A. J. Taylor, R. D. Averitt, C. Highstrete et al., Complementary planar terahertz metamaterials, Optics Express, vol.15, issue.3, pp.15-1084, 2007.
DOI : 10.1364/OE.15.001084

H. T. Chen, W. J. Padilla, J. O. Zide, S. R. Bank, A. C. Gossand et al., Active terahertz metamaterial devices, Nature, pp.444-597, 2006.
DOI : 10.1109/photwtm.2010.5421979

H. T. Chen, W. J. Padilla, J. O. Zide, S. R. Bank, A. C. Gossand et al., Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices, Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices, p.1620, 2007.
DOI : 10.1364/OL.32.001620

W. J. Padilla, Group theoretical description of artificial electromagnetic metamaterials, Optics Express, vol.15, issue.4, p.1639, 2007.
DOI : 10.1364/OE.15.001639

A. Fang, T. Koschny, and C. M. Soukoulis, Lasing in metamaterial nanostructures, Journal of Optics, vol.12, issue.2, p.24013, 2010.
DOI : 10.1088/2040-8978/12/2/024013

R. Yahiaoui, S. N. Burokur, and A. D. Lustrac, Enhanced directivity of ultra-thin metamaterial-based cavity antenna fed by multisource, Electronics Letters, vol.45, issue.16, p.814, 2009.
DOI : 10.1049/el.2009.0641

P. Ginzburg and M. Orenstein, Metal-free quantum-based metamaterial for surface plasmon polariton guiding with amplification, Journal of Applied Physics, vol.104, issue.6, p.63513, 2008.
DOI : 10.1063/1.2978208

D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, Observation of nonsequential double ionization of helium with optical tunneling, Physical Review Letters, vol.69, issue.18, p.2642, 1992.
DOI : 10.1103/PhysRevLett.69.2642

C. Spielmann, R. Szipocs, A. Stingl, and F. Krausz, Tunneling of Optical Pulses through Photonic Band Gaps, Physical Review Letters, vol.73, issue.17, p.2308, 1994.
DOI : 10.1103/PhysRevLett.73.2308

. Botet, Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters, Phys. Rev. Lett, vol.72, p.4149, 1994.

P. Balcou and L. Dutriaux, Dual Optical Tunneling Times in Frustrated Total Internal Reflection, Physical Review Letters, vol.78, issue.5, p.851, 1997.
DOI : 10.1103/PhysRevLett.78.851

Q. Niu, X. G. Zhao, G. A. Georgakis, and M. G. Raizen, Atomic Landau-Zener Tunneling and Wannier-Stark Ladders in Optical Potentials, Physical Review Letters, vol.76, issue.24, p.4504, 1996.
DOI : 10.1103/PhysRevLett.76.4504

L. J. Wang, A. Kuzmich, and A. Dogariu, correction: Gain-assisted superluminal light propagation, Nature, vol.63, issue.6840, pp.406-277, 2000.
DOI : 10.1038/35082117

I. F. Mirabel and L. F. Rodriguez, A superluminal source in the Galaxy, Nature, vol.371, issue.6492, p.46, 1994.
DOI : 10.1038/371046a0

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Superluminal and Slow Light Propagation in a Room-Temperature Solid, Science, vol.301, issue.5630, pp.301-200, 2003.
DOI : 10.1126/science.1084429

D. Mugnai, A. Ranfagni, and R. Ruggeri, Observation of Superluminal Behaviors in Wave Propagation, Physical Review Letters, vol.84, issue.21, p.4830, 2000.
DOI : 10.1103/PhysRevLett.84.4830

A. M. Steinberg and R. Y. Chiao, Dispersionless, highly superluminal propagation in a medium with a gain doublet, Physical Review A, vol.49, issue.3, p.2071, 1994.
DOI : 10.1103/PhysRevA.49.2071

E. Hecht, Optics, 2002.

W. M. Zhu, X. M. Zhang, A. Q. Liu, H. Cai, J. Tamil et al., A micromachined optical double well for thermo-optic switching via resonant tunneling effect, Applied Physics Letters, vol.92, issue.25, p.251101, 2008.
DOI : 10.1063/1.2951621

W. M. Zhu, X. M. Zhang, H. Cai, J. Tamil, W. Zhang et al., MEMS Laser with Tunable Wavelength and Polarization using Optical Tunneling Effect, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, 2009.
DOI : 10.1109/MEMSYS.2009.4805549