Skip to Main content Skip to Navigation
Theses

Real-Parameter Black-Box Optimisation: Benchmarking and Designing Algorithms

Raymond Ros 1
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Résumé : En optimisation continue, un problème donné consiste à trouver l'optimum d'une fonction objectif f définie dans R^n à valeur dans R. Dans ce contexte, le scénario boîte noire fait l'hypothèse que seule l'évaluation de f nous fournit de l'information. Dans une première partie, nous étudions l'algorithme CMA-ES, stratégie d'évolution avec adaptation de la matrice de covariance ; une approche reconnue pour résoudre les problèmes d'optimisation boîte noire. Nous démontrons les limites de cet algorithme en terme de complexités spatiale et temporelle pour faire face à des problèmes à grande dimensionalité. Pour dépasser ces limites, nous proposons des variantes de CMA-ES qui ne mettent à jour que les éléments diagonaux par bloc de la matrice de covariance, qui exploitent donc la séparabilité. Nous montrons que ces variantes peuvent avoir de meilleures performances que CMA-ES sur des fonctions non-séparables à condition que le problème considéré ait une dimension assez grande. Dans une seconde partie, nous définissons et exploitons un cadre expérimental pour la comparaison systématique de résultats en optimisation boîte noire, où les pratiquants du domaine peuvent ainsi tester et comparer des algorithmes sur des fonctions artificielles. Nos résultats montrent la dépendance des performances des algorithmes en fonction du budget alloué à l'optimisation. Des méthodes classiques telles que NEWUOA ou BFGS sont ainsi appropriées à des petits budgets. L'approche CMA-ES avec redémarrage et contrôle de la taille de population obtient de bons résultats pour des budgets plus larges. Le logiciel COCO pour COmparing Continuous Optimisers, utilisé pour faire ces comparaisons systématiques est décrit techniquement dans une troisième partie. COCO sert d'implémentation de notre cadre expérimental et permet en plus de fournir des résultats tels que ceux que nous exploitons dans ce document.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-00595922
Contributor : Raymond Ros <>
Submitted on : Wednesday, May 25, 2011 - 11:15:03 PM
Last modification on : Monday, December 9, 2019 - 5:24:06 PM
Document(s) archivé(s) le : Friday, November 9, 2012 - 12:11:14 PM

Identifiers

  • HAL Id : tel-00595922, version 1

Citation

Raymond Ros. Real-Parameter Black-Box Optimisation: Benchmarking and Designing Algorithms. Modeling and Simulation. Université Paris Sud - Paris XI, 2009. English. ⟨tel-00595922v1⟩

Share

Metrics

Record views

40

Files downloads

457