E. De, T. Ol, R. Et, F. De, and D. , 50 FIGURE 3 51 FIGURE 3, p.59

S. Du, M. De, R. De, and D. , 67 FIGURE 4, pp.80-85

S. De, L. De-base, L. Can, L. Cna, . En et al., 92 FIGURE 5 93 FIGURE 5 93 ix FIGURE 5 94 FIGURE 5 94 FIGURE 5 95 FIGURE 5 96 FIGURE 5 98 FIGURE 5 113 FIGURE A 139 FIGURE C, 132 FIGURE B.8 : POINT DE COMPRESSION A 1.. 136 FIGURE C.. 138 FIGURE C.4 : GAIN DE TRANSIMPEDANCE (V/I) 138 FIGURE C.5 : POINT DE COMPRESSION A 1 139 FIGURE C, p.141

C. Entre and L. , 52 TABLEAU 3, TABLEAU 2.1, pp.79-84

J. Henaut, D. Dragomirescu, F. Perget, and R. Plana, Validation of the MB-OFDM Modulation for High Data Rate WSN for Satellite Ground Testing, 2010 Fifth International Conference on Systems, pp.41-46, 2010.
DOI : 10.1109/ICONS.2010.15

URL : https://hal.archives-ouvertes.fr/hal-00475631

J. Henaut, D. Dragomirescu, and R. Plana, FPGA Based High Date Rate Radio Interfaces for Aerospace Wireless Sensor Systems, 2009 Fourth International Conference on Systems, pp.173-178, 2009.
DOI : 10.1109/ICONS.2009.28

B. Razavi, A UWB CMOS transceiver, IEEE Journal of Solid-State Circuits, vol.40, issue.12, pp.2555-2562, 2005.
DOI : 10.1109/JSSC.2005.857430

A. Kara-omar, D. Dragomirescu, A. Coustou, and R. Plana, Low Power Ultra Wideband Up-Conversion Mixer in CMOS 0.13 µm Technology, pp.1050-1055, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00591003

L. Chalard, D. Helal, L. Verbaere, A. Wellig, and J. Zory, Wireless sensor networks devices: Overview, issues, state of the art and promising technologies, ST Journal Of Research, vol.4, pp.4-18, 2007.

P. Mcdermott-wells, What is Bluetooth?, IEEE Potentials, vol.23, issue.5, pp.33-35, 2005.
DOI : 10.1109/MP.2005.1368913

K. Sairam, N. Gunasekaran, and S. Redd, Bluetooth in wireless communication, IEEE Communications Magazine, vol.40, issue.6, pp.90-96, 2002.
DOI : 10.1109/MCOM.2002.1007414

J. Norair, Introduction to DASH7 Technologies

D. Schneider, Wireless networking dashes in a new direction, IEEE Spectrum, vol.47, issue.2, pp.9-10, 2010.
DOI : 10.1109/MSPEC.2010.5397768

E. Gueguen, Etude et optimisation des techniques UWB haut débit multibandes OFDM, Institut National des Sciences Appliquées de Rennes, 2009.

S. Dubouloz and L. Ouvry, Régulation et Normalisation pour les Communications Ultra Large Bande (UWB)Vers des radiocommunications reconfigurables et cognitives, Journées Scientifiques Du CNFRS, pp.28-29

D. Cabric, M. S. Chen, D. A. Sobel, J. Stanleywang, R. W. Yang et al., Novel Radio Architectures for UWB, 60 GHz, and Cognitive Wireless Systems, EURASIP Journal on Wireless Communications and Networking, vol.36, issue.8, pp.1-18, 2006.
DOI : 10.1155/WCN/2006/17957

H. Ahn and D. J. Allstot, A 0.5-8.5 GHz fully differential CMOS distributed amplifier, IEEE Journal of Solid-State Circuits, vol.37, pp.985-993, 2002.
URL : https://hal.archives-ouvertes.fr/in2p3-00179901

J. Park, Design of an RF CMOS Ultra-Wideband Amplifier Using Parasitic- Aware Synthesis and Optimization, 2003.

J. Rogers and C. Plett, Radio Frequency Integrated Circuit Design, 2003.

P. Butterworth, Méthode de conception des mélangeurs millimétriques

A. Maalik and Z. Mahmood, A Novel C-Band Single Diode Mixer with Ultra High LO/RF and LO/IF Isolation, 2007 International Conference on Electrical Engineering, pp.1-6, 2007.
DOI : 10.1109/ICEE.2007.4287326

R. Circa, D. Pienkowski, S. Jahn, G. Boeck, M. Muller-]-b et al., Resistive MOSFET mixer for mobile direct conversion receiversA precise four-quadrant multiplier with subnanosecond response, Proceedings of the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference 2003. IMOC 2003, pp.365-373, 1968.

A. Bergsma and B. Syrett, A comprehensive design method for dual-gate MOSFET mixers, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, pp.1443-1451, 2000.
DOI : 10.1109/82.899638

B. Razavi, RF Microelectronics, 1998.

W. Cotter and . Sayre, Complete Wireless Design: chapter 7, 2008.

M. Deen, R. Murji, A. Fakhr, N. Jafferali, and W. Ngan, Low-power CMOS integrated circuits for radio frequency applications, IEE Proceedings- Devices and Systems, pp.509-522, 2005.
DOI : 10.1049/ip-cds:20045069

V. Vidojkovic, J. Van-der-tang, A. Leeuwenburgh, and A. H. Van-roermund, A low-voltage folded-switching mixer in 0.18-/spl mu/m CMOS, IEEE Journal of Solid-State Circuits, vol.40, issue.6, pp.1259-1264, 2005.
DOI : 10.1109/JSSC.2005.848034

. Europractice, UMC 0.13 µm Technology Overview (MPW)

B. Razavi, Design of Analog CMOS Integrated Circuits, 2001.

L. A. Maceachern and T. Manku, A charge-injection method for Gilbert cell biasing, IEEE Canadian Conference on Electrical and Computer Engineering, pp.365-368, 1998.

E. Phillp, D. R. Allen, and . Holberg, CMOS Analog Circuit Design Second Edition, 2002.

H. Liao, C. Tseng, and H. Chiou, Lossy LC ladder matching network for ultra-wideband CMOS Gilbert cell mixer design, Microwave and Optical Technology Letters, vol.13, issue.1, 2008.
DOI : 10.1002/mop.23050

P. Huang, F. Chang, S. Chao, and H. Wang, A Miniature, Folded-Switching, Up-conversion Mixer for UWB Applications Using 0.18-µm CMOS Process, IEEE Radio Frequency Integrated Circuits Symposium, pp.501-504, 2007.

M. A. Arasu, Y. Zheng, and W. Gan-yeoh, A 3 to 9-GHz Dual-band Up-Converter for a DS-UWB Transmitter in 0.18-?m CMOS, IEEE Radio Frequency Integrated Circuits Symposium, pp.497-500, 2007.

W. Hxiao and Z. Lin, A 1-V 11.6-dBm IIP3 up-conversion mixer for UWB wireless system, 2009 52nd IEEE International Midwest Symposium on Circuits and Systems, pp.1042-1046, 2009.
DOI : 10.1109/MWSCAS.2009.5235980

A. Verma, K. K. , and J. Lin, A low-power up-conversion CMOS mixer for 22-29-GHz ultra-wideband applications, IEEE Transactions on Microwave Theory and Techniques, vol.54, issue.8, pp.3295-3300, 2006.
DOI : 10.1109/TMTT.2006.879173

W. Wang, C. Liao, Y. Lo, Z. Huang, R. Fadi et al., The Design of Integrated 3-GHz to 11-GHz CMOS Transmitter for Full-Band Ultra-Wideband (UWB) Applications, IEEE International Symposium on Circuits and Systems, pp.2709-2712, 2008.

P. Paliwoda and M. Hella, An Optimized CMOS Gilbert Mixer Using Inter-Stage Inductance for Ultra Wideband Receivers, 2006 49th IEEE International Midwest Symposium on Circuits and Systems, pp.362-365, 2006.
DOI : 10.1109/MWSCAS.2006.382072

M. David and . Pozar, Microwave Engineering, 2005.

S. Hampel, O. Schmitz, M. Tiebout, and I. Rolfes, Low-voltage, inductorless folded down-conversion mixer in 65nm CMOS for UWB applications", Radio Frequency Integrated Circuits Symposium, IEEE RFIC, pp.119-122, 2009.

D. Fu, L. Huang, H. Du, H. Yuan-hsiung, H. Wu et al., 18 µm CMOS high linearity flat conversion gain down-conversion mixer for UWB receiverA Folded Current-Reused Down-Converter Mixer for Ultra Wide-Band Applications, 9th International Conference on Solid-State and Integrated-Circuit Technology Asia-Pacific Microwave Conference, pp.1492-1495, 2007.

F. C. Chang, P. C. Huang, S. F. Chao, and H. Wang, A Low Power Folded Mixer for UWB System Applications in 0.18-<formula formulatype="inline"><tex>$\mu$</tex></formula>m CMOS Technology, IEEE Microwave and Wireless Components Letters, vol.17, issue.5, pp.367-369, 2007.
DOI : 10.1109/LMWC.2007.895715

H. Wang, K. Wei, J. Lin, and H. Chuang, A 1.2-V low LO-power 3&#x2013;5 GHz broadband CMOS folded-switching mixer for UWB receiver, 2008 IEEE Radio Frequency Integrated Circuits Symposium, pp.621-624, 2008.
DOI : 10.1109/RFIC.2008.4561514

URL : https://hal.archives-ouvertes.fr/in2p3-00420482

A. Safarian, A. Yazdi, and P. Heydari, Design and analysis of an ultrawide-band distributed CMOS mixer, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp.618-629, 2005.
DOI : 10.1109/TVLSI.2005.844288

M. Golio, The RF and Microwave Handbook, 2001.
DOI : 10.1201/9781420036763

A. Bevilacqua and A. M. Niknejad, An Ultra-Wideband CMOS LNA for 3.1 to 10.6GHz Wireless Receivers, IEEE International Solid-State Circuits Conference, pp.382-533, 2004.

J. Gaubert, M. Egels, P. Pannier, S. Bourdel, and C. Lna, Design method for broadband CMOS RF LNA, Electronics Letters, vol.41, issue.7, pp.382-384, 2005.
DOI : 10.1049/el:20050171

T. Taris, Y. Deval, and J. B. Begueret, Current reuse CMOS LNA for UWB applications, ESSCIRC 2008, 34th European Solid-State Circuits Conference, pp.294-297, 2008.
DOI : 10.1109/ESSCIRC.2008.4681850

URL : https://hal.archives-ouvertes.fr/hal-00323426

A. Bevilacqua, C. Sandner, M. Tiebout, A. Gerosa, and A. Neviani, A 6&#x2013;9-GHz programmable gain LNA with integrated balun in 90-nm CMOS, 2008 IEEE International Conference on Ultra-Wideband, pp.25-28, 2008.
DOI : 10.1109/ICUWB.2008.4653277

A. Bevilacqua, C. Sandner, A. Gerosa, and A. Neviani, A fully integrated differential CMOS LNA for 3-5-GHz ultrawideband wireless receivers, IEEE Microwave and Wireless Components Letters, vol.16, issue.3, pp.134-136, 2006.
DOI : 10.1109/LMWC.2006.869855

M. D. Wei and S. F. Chang, Low-power fully-differential 3.5-GHz wideband CMOS LNA, Microwave and Optical Technology Letters, vol.54, issue.5, pp.1196-1198, 2008.
DOI : 10.1002/mop.23321

H. Zhang-hong and C. Gui-can, Design of a fully differential CMOS LNA for 3.1???10.6 GHz UWB communication systems, The Journal of China Universities of Posts and Telecommunications, vol.15, issue.4, pp.107-111, 2008.
DOI : 10.1016/S1005-8885(08)60413-6

C. Garuda, X. Cui, P. Lin, S. Doo, P. Zhang et al., A 3-5 GHz fully differential CMOS LNA with dual-gain mode for wireless UWB applications, 48th Midwest Symposium on Circuits and Systems, 2005., pp.790-793, 2005.
DOI : 10.1109/MWSCAS.2005.1594219

C. Chang, C. Yen, and H. Chuang, A 2.4~6GHz CMOS Broadband High-Gain Differential LNA for UWB and WLAN Receiver, 2005 IEEE Asian Solid-State Circuits Conference, pp.469-472, 2005.
DOI : 10.1109/ASSCC.2005.251767

URL : https://hal.archives-ouvertes.fr/in2p3-00002529

I. Ghz-band, 15.4 Standard in 0.18-CMOS Technology, IEEE Transactions on Microwave Theory and Techniques, vol.54, pp.4062-4071, 2006.

. Pui-in, . Mak, U. Seng-pan, and R. P. Martins, Transceiver Architecture Selection: Review, State-of-the-Art Survey and Case Study, IEEE Circuits and Systems Magazine, vol.7, pp.6-25, 2007.

M. Tiebout, Low Power VCO Design in CMOS, 2006.

V. Lagareste, Contribution à l'étude de nouvelles architectures de synthétiseur de fréquence, 2006.

S. Withitsoonthorn, Photodiode UTC et oscillateur différentiel commande en tension à base de TBdH InP pour récupération d'horloge dans un réseau de transmission optique à très haut débit, Université Paris, vol.6, 2004.

M. Ercoli, D. Dragomirescu, and R. Plana, Small size high isolation Wilkinson power splitter for 60 GHz wireless sensor network applications, 2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2011.
DOI : 10.1109/SIRF.2011.5719332

URL : https://hal.archives-ouvertes.fr/hal-00591037

B. Razavi, RF transmitter architectures and circuits, Proceedings of the IEEE 1999 Custom Integrated Circuits Conference (Cat. No.99CH36327), pp.197-204, 1999.
DOI : 10.1109/CICC.1999.777273

J. Wu, D. Coller, M. J. Anderson, and G. Guth, RF SiP technology: integration and innovation, International Conference on Compound Semiconductor Manufacturing, 2004.

A. Boyer, Méthode de Prédiction de la Compatibilité Electromagnétique des Systèmes en Boîtier, Institut National Des Sciences Appliquées de Toulouse, 2007.

. Europractice, UMC 0.18 µm Technology Overview (MPW)

T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2001.
DOI : 10.1017/CBO9780511817281

J. Weiner, A. Leven, V. Houtsma, Y. Baeyens, Y. Chen et al., SiGe differential transimpedance amplifier with 50-GHz bandwidth, IEEE Journal of Solid-State Circuits, vol.38, issue.9, pp.1512-1517, 2003.
DOI : 10.1109/JSSC.2003.815969