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And the mome raths outgrabe.

– Charles L. Dogson

Colorless green ideas sleep furiously
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CGCCGTTATCAGAAGTCGACTGAGCTGCTCATCCGCAAA

CTGCCATTTCAGCGCCTGGTGCGAGAAATCGCGCAGGAT

TTCAAAACCGACCTTCGTTTCCAGAGCTCGGCGGTGATG

GCGCTGCAAGAGGCGTGCGAGGCCTATCTGGTGGGTCTC

TTTGAAGACACCAACCTCTGTGCTATTCACGCCAAGCGT

GTCACTATTATGCCTAAGGACATCCAGCTTGCGCGTCGT

ATCCGTGGCGAGCGAGCATAATCCCCTGCTCTATCTTGG

GTTTCTTAATTGCTTCCAAGCTTCCAAAGGCTCTTTTCA

GAGCCACTTA

– You (HIST1H3J, chromosome 6)
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Abstract

Motivated by the goal of discovering hierarchical structures inside DNA se-
quences, we address the Smallest Grammar Problem, the problem of finding a
smallest context-free grammar that generates exactly one sequence. This NP-
Hard problem has been widely studied for applications like Data Compression,
Structure Discovery and Algorithmic Information Theory.

From the theoretical point of view, our contributions to this problem is a new
formalisation of the Smallest Grammar Problem based on two complementary
optimisation problems: the choice of constituents of the final grammar and
the choice of how to parse the sequence with these constituents. We give a
polynomial time solution for this last problem, which me named the “Minimal
Grammar Parsing" problem. This decomposition allows us to define a new
complete and correct search space for the Smallest Grammar Problem. Based
on this search space, we propose new algorithms able to return grammars 10%
smaller than the state of the art on complete genomes.

Regarding efficiency, we study different equivalence classes of repeats and
introduce an efficient in-place schema to update the suffix array data structure
used to compute these words.

We conclude this thesis analysing the applications. For Structure Discovery,
we consider the impact of the non-uniqueness of smallest grammars. We prove
that the number of smallest grammars can be exponential in the size of the
sequence and then analyse the stability of the discovered structures between
minimal grammars for real-life examples. With respect to Data Compression,
we extend our algorithms to use rigid patterns as words and achieve compression
rate up to 25% better compared to the previous best DNA grammar-based coder.

vi



CONTENTS

Résumé

Motivé par la découverte automatique de la structure hiérarchique de séquences
d’ADN, nous nous intéressons au problème classique de la recherche de la plus
petite grammaire algébrique générant exactement une séquence donnée. Ce
problème NP-dur a été largement étudié pour des applications comme la com-
pression de données, la découverte de structure et la théorie algorithmique de
l’information.

Nous proposons de décomposer ce problème en deux problèmes d’optimisation
complémentaires. Le premier consiste à choisir les chaînes de la séquence qui
seront les constituants de la grammaire finale alors que le second, que nous ap-
pelons “analyse grammaticale minimale”, consiste à trouver une grammaire de
taille minimale permettant l’analyse syntaxique de ces constituants. Nous don-
nons une solution polynomiale au problème d’ “analyse grammaticale minimale”
et montrons que cette décomposition permet de définir un espace de recherche
complet pour le problème de la plus petite grammaire algébrique.

Nous nous intéressons aux algorithmes praticables permettant de retourner
une approximation du problème en un temps suffisamment raisonnable pour
être appliqués à de grandes séquences telles que les séquences génomiques. Nous
analysons l’impact de l’utilisation de classes différentes de maximalité de répéti-
tions pour le choix des constituants et le compromis entre l’efficacité et la taille
de la grammaire finale. Nous présentons des avancées algorithmiques pour une
meilleure efficacité des algorithmes hors-ligne existants, dont notamment la mise
à jour incrémentale de tableaux de suffixes en cours de recodage. Enfin, la nou-
velle décomposition du problème nous permet de proposer de nouveaux algo-
rithmes génériques permettant de trouver des grammaires 10% plus petites que
l’état de l’art.

Enfin, nous nous intéressons à l’impact de ces idées sur les applications.
En ce qui concerne la découverte de structures, nous étudions le nombre de
grammaires minimales et montrons que ce nombre peut être exponentiel dans le
pire cas. Nos expérimentations sur des jeux de séquences permettent cependant
de montrer une certaine stabilité de structure au sein des grammaires mini-
males obtenues à partir d’un ensemble de constituants. En ce qui concerne la
compression des données, nous contribuons dans chacune des trois étapes de
la compression à base de grammaires. Nous définissons alors un nouvel algo-
rithme qui optimise la taille de la chaine de bits finale au lieu de la taille de
la grammaire. En l’appliquant sur les séquences d’ADN, nos expérimentations
montrent que cet algorithme surpasse tout autre compresseur spécifique d’ADN
à base de grammaire. Nous améliorons ce résultat en utilisant des répétitions in-
exactes et arrivons à améliorer les taux de compression de 25% par rapport aux
meilleurs compresseurs d’ADN à base de grammaire. Outre l’obtention de taux
de compression plus performants, cette approche permet également envisager
des généralisations intéressantes de ces grammaires.

vii



CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The exponential growth of available DNA sequences in recent years is having a
fruitful clash with the deep questions underlying information science. Brooks
identified in 2003 recent development in biology as the necessary pressure to
finally develop a long-time needed quantification of structural information [39].

This thesis is motivated by automatically learning structural models of DNA
sequences. As models, we chose formal grammars. They have since long been
used to model the underlying structure of natural language [59] and genetic [219]
sequences. Their easy interpretation and rigourous definition make them an ap-
pealing formalism. Moreover, in the Symbiose team, good results have been
obtained on modelling families of proteins with non-deterministic finite au-
tomata [125]. Regular grammars however are of limited expression power and
notably fail at capturing long-range dependencies. Our goal was to improve
expression power, climbing to context-freeness, this time to structure DNA se-
quences. Confronted with the definition of what to consider a good grammar,
in this first phase we followed William de Ockam’s advice to seek for the sim-
plest model. This permits us to avoid to introduce any other learning-bias or
domain-knowledge and therefore to keep our approach as general as possible.

Instead of considering the generative power of context-free grammars, we
focus on the structure they provide over a single sequence. These choices have
led us to the formal problem of finding the smallest context-free grammar that
generates exactly one given sequence. This decade-old problem [211, 225] has
been theoretically studied [51] and has applications in several communities.
Traditionally, these applications have been in the fields of data compression and
approximation to Kolmogorov complexity. Much more scarcely studied, though
promising is the use of this problem in structure discovery and grammatical
inference. In recent years, there has been also a trend to use them as a backbone
for compressed self-indexes. This thesis is the result of our work of using this
Smallest Grammar Problem to find small, hierarchical structures over DNA
sequences.

In the remainder of this introduction we expose the rationale behind, and
the context of this thesis. First, we introduce the use of the linguistic metaphor
for genetic sequences and review linguistic approaches in biology, focusing on
the use of formal grammars. We then review ways of inferring these models.
Finally we shortly state the intuition and formalisation behind the well known
Occam’s Razor, which lead us to the Smallest Grammar Problem.

1



1.1 Linguistics of DNA

1.1.1 The Linguistic Metaphor

The metaphor of language applied to genetic sequences is old, diffused and
recurrent. It is particularly persistent in the media. One of the first books on
molecular biology for a broad audience, in 1966, was titled “The Language of
Life”1. Former US-president William Clinton claimed at the announcement of
the completion of the draft sequence of the human genome, on June, 26th 2000,
“Today we are learning the language in which God created life”2. Linguistic
terms refering to genetic sequences can be found by searching for expressions
like “book of life” or “code of life”. They are used for arguments ranging from
the existence of God to tools to identify extraterrestial non-standard form of
lifes [240]. A Los Angeles Time article from 1993 [212] reports:

“DNA-as-language is one of modern science’s most powerful metaphors
[...] But maybe language is more than just a metaphor. Maybe – just
like Sanskrit, Chinese and English – DNA really is a language, with
a grammar and syntax that determines how meaning is created.”

and a New York Times article said in 1991 [10]:

“The scientists are approaching genetic sequences as though they
were lengthy passages written in an archaic and largely unfamiliar
tongue, borrowing methods from the linguist’s tool kit to find a bit
of order amid apparent biochemical babble.

[...]

The new theories are a subset of a larger science, computational
molecular biology, which is fast becoming one of the trendiest dis-
ciplines in biological research. Scientists said they were starting to
amass so much information about genes and genetic sequences that
it was only through the use of a framework like linguistics that they
could interpret the incoming rush of data.”

The DNA linguistics metaphor is as old as the discovery of DNA itself.
Actually, maybe even older. Horace Judson reports [121] a letter from Friedrich
Miescher, a contemporary of Gregor Mendel and the discoverer of nucleic acids
— “nuclein” as he named it — although their hereditary functions remained
unknown to him. In this letter in 1892 he expressed his intuition that some
large molecules that are composed of repeated similar (but different) chemical
atoms could be able to transmit the hereditary message, “just as the words and
concepts of all languages can find expression in twenty-four to thirty letters of
the alphabet”.

Similar analogies have captured not only the imagination of the general pub-
lic, but also that of scientists. This may be partly due to a historical coincidence:
the same period that saw the discovery of the DNA double-helix structure and

1George and Muriel Beadle. “The language of life: an introduction to the science of genet-
ics” Doubleday Publishing Group

2see http://clinton3.nara.gov/WH/New/html/genome-20000626.html for the complete
speech
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CHAPTER 1. INTRODUCTION

advances in the understanding of how hereditary information is transmitted,
also witnessed the development of modern linguistics. But considering genetic
sequences as a message may be just natural. The interpretation of DNA as a
universal language that is read and interpreted by living beings produced terms
such as “transcription” and “translation” to refer to the two main mechanisms of
transfer of sequential information in the Central Dogma [74]. Apparently it was
one of the discoverers of the transcription process — French biologist François
Jacob — who coined the expression “the linguistic model in biology”3. However,
the question remains as to whether referring to DNA or proteins with linguistic
expressions is only an image. Before applying techniques used in natural lan-
guages we have to know whether genetic sequences can be suitably modelled
by linguistic formalisms or whether we should only “understand this continued
appeal to DNA as language or text as a simple simplification — as an attempt
to convey a complex process in familiar terms” [198].

1.1.2 Identifying Words

If DNA is not just any language, but a language similar to natural languages,
it has to share characteristic features with natural languages. One of the most
fundamental concepts is the definition of a word. In beginning of 1980, E.
N. Trifonov took interest in identifying which were the words for DNA. He
characterised recurring substrings and linked them to their biological function.
Browsing through publications (more than 400), he and V. Brendel compiled
800 of such oligonucleotides, and published them — together with several in-
dexes, descriptions and tables — in a “gnomic” dictionary [231]. Inspired by
Kolmogorov Complexity, Trifonov and his co-authors define a measure of com-
plexity of a sequence (called linguistic complexity) and use this to compare
protein sequences to natural language text, concluding that protein sequences
are more complex [189]. He reviews [230] techniques for identifying such words,
using for example the frequency of their substrings and pays special attention to
the possibility that the same DNA sequence can be interpreted in several ways.
Phrases such as “togethernowhere” that can be decomposed into four different
semantically correct phrases4 seems to be much more common in the genetic
language than in natural language. Trifonov remarks that this multiplicity and
overlapping of genetic codes has to be taken into account. Because of this multi-
plicity of meanings, Argos characterises the language of protein folding as “many
forked tongues” [21] and Gribskov warns not to carry the language metaphor
too far [104], noticing some characteristics that make genetic sequences different
from natural language one. He particularly refers to long-range interactions in
the secondary structure of proteins, to evolutionary constraints that should be
three-dimensional in proteins rather than linear, and to the misleading concept
of consensus as the optimal sequence that carries a message, to name some
examples.

Some years later, a small controversy rose when Mantegna and co-workers
showed that two typical characteristics of human language were present in non-
coding DNA. These were Shannon’s information measure and Zipf’s law [155].
It was the latter that was mainly analysed and that generated most criticisms.

3“The linguistic model in biology”. In Roman Jakobson: Echoes of His Scholarship, eds.
D. Armstrong and C.H. Van Schooneveld, pp. 185-192

4“together nowhere”, “together now here”, “to get her nowhere” and “to get her now here”
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George Zipf formulated his famous law in 1949, relating the frequency of a word
to its rank in the frequency table of all words. It is a law in the empirical
sense, and it is considered more as an observation that holds for a vast variety
of data. Mantegna et al. assume that in the coding part of a DNA sequence,
a 3-gram corresponds to a word (which is called a codon, and codes for one
amino-acid). They analyse therefore different n-grams (for 3 ≤ n ≤ 5) for
the non-coding part. Plotting their relative frequency against rank in a double
logarithmic scale they deduce that they satisfie Zipf’s law, concluding with the
“possible existence of one (or more than one) structured biological language
— present in non-coding DNA sequences”. Their article was advertised by a
letter in the Science Magazine [91] and heavily attacked in the same section [34]
and elsewhere [33, 52, 117, 232]. Tsonis et al. [232] is particularly determined,
concluding that “The inescapable conclusion is clear: DNA sequences show no
linguistic properties”. The original Mantegna article is however still widely
cited (positively). Similar experiments with the same conclusion, but targeting
coding regions, were performed by another set of authors at the same time [226]
and more recently [239] using repeats instead of n-grams (for uses of Zipf’s
law in other applications of molecular biology see Searls [219]). Most of the
time a word in DNA is interpreted as a codon, at least in the coding sequences.
Wang et al. [239] propose an original definition of a word as a maximal repeat (a
substring that does appear at least twice in a different context, see also Sect. 3.2)
and analyse words frequency in a wide range of coding and non-coding DNA
sequences.

Trifonov’s emphasis that a DNA sequence can contain different and over-
lapping meanings was used in another attempt to link linguistics and DNA. Ji
[118] goes as far as postulating a biological isomorphism between biological lan-
guage and natural language in terms of alphabet, lexicon, sentence, grammar,
phonetic and semantic. He also assigns the non-coding part of DNA a semantic
function, as opposed to the lexical function of the coding part. He uses the term
“cell languages” and links this with the interpretation of the cell as a computer
and the possibility of DNA computing. The second of his five “(putative) laws
of molecular semiotics” states [119]: “Cell language is isomorphic with human
language”.

1.1.3 Modeling with Grammars

There seems to be little discussion about the fact of interpreting DNA as a formal
language in the most general interpretation. It clearly transmits a message and
is generated by a yet unknown machinery. Until now we have analysed two
approaches of using the term “linguistics of genetic sequences”. The first group
uses this term more as a metaphor to obtain inspiration, or as an analogy to
describe their discoveries. The second one goes a step further and searches for
similarities between DNA sequences and human languages. We have seen that
such an approach was not always exempt of controversy.

A third approach consists in analysing the expression capacity of genetic
sequences through the lenses of formal grammars and connecting it to available
tools and understanding. Such an approach is particularly advocated by David
Searls. He has published some excellent overviews in 1997 [217] , 2002 [219] and
2006 [57] (this last one with Chiang and Joshi). We refer to these reviews for
references to applications of linguistic-inspired tools to a wide range of biological
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CHAPTER 1. INTRODUCTION

problems. Conceptually, he argues that the main levels in which linguistics work
have their counterpart in molecular biology. This is illustrated by the hierarchy
used in language, consisting of the lexical, syntactic, semantic and pragmatic
levels. This hierarchy can be mapped respectively to the sequence, structure,
function and role purpose of macromolecules (see Searls [218] for further de-
tails). Without making profound philosophical claims about the interpretation
of DNA as a language, he also shows biological examples of RNA sequences
that demonstrate the context-sensitive characteristic of interleaved dependency.
His formalisation of String Variable Grammars [215, 216] – inspired from in-
dexed grammars and designed to model DNA – is of practical interest. A recent
implementation uses modern algorithmic tools to provide an efficient implemen-
tation of a subset of the functionalities of these grammars [182]. Computational
linguistics are concerned with formalising representations that are learnable (ef-
ficiently) [65]. For the same reasons, Searls “seeks formalisms that are just
sufficiently elaborate and powerful to encompass the range of phenomena under
study, but not more so” [57].

Showing a genetic structure that cannot be captured by a context-free lan-
guage [70], Collado-Vides gives in [71] a transformational grammar that gener-
ates regulatory regions of E. Coli and S. typhimurium and analyses the predic-
tions that this grammar reveals. The approach of defining a grammar that is
biologically meaningful and which permits efficient parsing is also taken by Le-
ung et al. [144] in their definition of Basic Gene Grammars and applied to model
the promotors of Escherichia Coli.

Work about “language of proteins” is much more scarce. However, a review
from 2006 [99] uses the term “protein linguistics”, reviews historical attempts
and analyses some of the difficulties and the importance of such an approach.

Different linguistics tools that can be directly applied on protein sequences
can be found on the website of the Center for Biological Language Modeling5.

Loose et al. [151] use regular grammars to describe a language for Antimi-
crobial peptides (AmPs), small proteins used by the immune system of eu-
karyotes against bacterial infections. From a database of previously identified
AmPs, they automatically generated about 700 regular grammars describing
them. They also generated new, unnatural AmPs which were then designed
and successfully inhibited the growth of a bacteria. A similar strategy was fol-
lowed much earlier in 1984 [37] to model a RNA phage group, but the automata
were obtained manually.

A careful overview of different uses of formal grammars in molecular biology,
with explanations and pointers to other references can be found in Simon [223,
Chapter 4–6].

We point out that linguistics of DNA should not be confused with biolin-
guistics, the study of the evolution of languages (see Searls [220] or the Journal
Biolinguistics6).

We have seen that the use of linguistics on genetic sequences goes well beyond
that of a simple metaphor. Using a mathematical model permits to uncover
meaningful features of these sequences. The pertinence of formal grammars has
been studied and they have been applied with success.

5http://www.cs.cmu.edu/~blmt/
6http://www.biolinguistics.eu
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The question remains, however, as to how to find a correct grammar given
only sequences generated by this correct grammar. This is exactly the problem
that the grammatical inference community studies.

1.2 Grammatical Inference

The field of grammatical inference treats the problem of learning a grammar
that generates a given language. We refer to the recent book of C. de la Higuera
that reviews the area of grammatical inference, its goals, its tools and its algo-
rithms [75] and detail here only the points relevant to this thesis.

The roots of Grammatical Inference can be traced to the work of Noam
Chomsky [59, 60]: his treatment of natural language with formal mathemati-
cal models opened the door to attempts to infer these models and to approach
language acquisition by children from a computational perspective. Several con-
cepts of learnability — how to decide whether a target language can be learnt —
exist, but here we will mostly use the definition of identification in the limit or
Gold-learning [102]. It is a known result that super-finite classes of languages7

(which include regular and context-free languages) are not identifiable in the
limit if the learner is presented with positive data only [102]. But if negative
examples are also available then regular languages can be identified in the limit
in polynomial time [103]. Another positive result concerning regular languages
was obtained by Angluin [11], who defines a model that allows queries dur-
ing the learning process and proves that regular languages can be inferred if
(deterministic finite) automaton equivalency queries are allowed.

For what concerns us, we are interested in learning the more expressive
context-free grammars from positive data only. There exists various algorithms
that use heuristics to infer such a grammar. If more informative data is available,
there exists one positive result, due to Sakakibara [202]. We will first consider
the heuristics, and then focus on Sakakibara’s result.

1.2.1 Learning CFG from Positive Data Only

Despite the negative result concerning learnability of context-free grammars
from positive data only, a rich range of algorithms have been designed and
applied with success in practice on natural language.

Frequency of words is an important variable in learning, and Wolff [243]
uses an algorithm that takes into account frequency of digrams (similar to Re-

Pair presented in Sect. 2.6.7) to learn syntax and meaning over data. Another
widely-used idea is Z. Harris’ concept of substitutability. The intuition behind
this concept is that strings that appear in the same context are likely to be sub-
stitutable, which is translated for formal grammars by saying that they should
be constituents of the same non-terminal. Among the algorithms that imple-
ment Harris substitutability as their main feature are ABL from van Zaanen
[235], EMILE from from Adriaans et al. [5]8 and ADIOS from Solan et al. [224].
A formalisation of this concept, together with other arguments (such as fre-
quency of words or mutual information of the context) also appears in Clark
[64], Clark et al. [66] to learn subclasses of context-free grammars.

7These are classes that contain all finite languages and at least one infinite language.
8For a comparison between both see van Zaanen and Adriaans [237]
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These algorithms have to resolve two complementary problems: which are
the words that are going to be the constituents of the final grammar, and how
will these constituents be used to parse the sentences. Consider for instance the
ABL algorithm. It consists of two phases: Alignment learning and Selection
learning. The goal of the first part is to extract possible constituents, called
hypotheses. ABL does so by aligning the sequences and clustering the unequal
parts of the sequences. The selection learning phase takes all these hypotheses
and resolves conflicts between contradictory ones. A contradiction here means
constituents that overlap. In the prospective part of his thesis [236], van Zaanen
considers the possibility of using the equal parts of the Alignment phase as
constituents. A similar division is proposed by EMILE, which consists in a
clustering phase finding basic rules, and a induction phase generating rules from
them. In ADIOS, the MEX procedure distills statistical significant patterns
which are put into equivalence classes in a second generalisation phase. Of
course, below this high-level view, all algorithms differ significantly. But as
we will see, this division reflects well the separation we propose in this thesis:
first choosing the constituents, and then deciding which occurrences of each
constituent to replace.

Another approach is proposed by Nevill-Manning: in his thesis [171] he
proposes different ways of generalising the output of his Sequitur algorithm
(see Sect. 2.6.3), an algorithm that generates a context-free grammar whose
language is exactly the sequence given as input. In his first generalisation non-
terminals are merged according to a MDL principle. There are two kinds of
merging. The first type consists in merging non-terminals that appear at the
same positions at the right-hand side of a rule. The second kind consists in
merging the rule bodies if the left-hand side is identical. He then considers how
to include recursion into the Sequitur algorithm. The last approach detects
symbols of the final grammar that predicts another symbol in the future, with
a possible gap between both occurrences. This can be interpreted as detecting
repeats (over the final grammar) with possible variable gap lengths. Each of
these possible generalisations is targeted to one example of a specific application.

1.2.2 Learning CFG from Structural Descriptions

We mentioned before that positive results concerning the learnability of the
whole class of context-free languages are scarce. In his thesis, Rémi Eyraud [85]
enumerates seven properties that make context-free grammars difficult to learn
in polynomial time. For example, a direct extension to context-free of Angluin’s
algorithm [11] (that learns regular languages) seems improbable because the
equivalence problem for context-free grammars is undecidable (property two).
The last of these properties is the “structural property”, the fact that the struc-
ture given by a context-free parse seems much more complicated than the struc-
ture of a regular parse. Y. Sakakibara proved in 1992 a remarkable result, which
may imply that this last property captures all the difficulty of the learnability
of context-free languages:

Theorem 1 (Sakakibara [202]). The class of context-free languages can be learnt
in polynomial time from positive samples of structural descriptions.

A structural description is a unlabelled parse tree of the grammar. A learn-
ing algorithm could then be designed that would take as input only positive
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data, infer a parse tree for each sequence and then apply Sakakibara’s learning
algorithm. In his thesis Eyraud considered this approach, using the Sequitur

algorithm (see Sect. 2.6.3) to infer the parse trees. Eyraud concludes his study
with a negative note, but it is not clear whether the problem lies in the gen-
eral approach (as the author supposes), in the use of Sequitur (which poses
problem because it greedily selects the first appearances from the left), in the
(only) example used (learning of the language {anbn : n > 0}, a classical toy
example), or a combination of them (using a left-biased algorithm to learn a
centred-bracket grammar).

Our choice of modelling genetic sequences by formal grammars poses the
challenge of inferring a correct grammar. We have seen two attempts for the
case of context-free grammars, the class we focus on. The first one tackles the
general problem and infers a context-free grammar from the given positive data
through the formalisation of linguistics concepts such as substitutability. The
second approach focuses on finding the correct context-free structure for each
sequence, and resolves the generalisation step with Sakakibara’s algorithm. In
both cases, a solution to the subproblem of learning the context-free structure
of a single sequence would imply major advances. In the first case, we have
reviewed attempts of generalising a priori such a structure. For the second case,
similar approaches to the one of Sakakibara could be developed. To be able to
apply an algorithm inferring a context-free structure on any kind of sequence,
we would like to remain as general as possible. Therefore, we follow the ancient
intuition of aiming at conciseness and focus on learning a smallest context-free
grammar generating a given sequence.

1.3 Occam’s Razor and MDL principle

Learning and compressing are deeply connected: when we learn, we are able
to express some (possibly infinite) set of data with an explanation which is
(generally) shorter than the enumeration of the items. Conversely, compression
techniques try to figure out redundancies in the text and a way of doing so is
by finding a small explanation for it. For a more detailed but still easy to read
tutorial on the relationship between compression and learning, we refer to [4].
For a criticism of this intuition, see Domingos [77].

This intuition has been used for centuries. Attributed to Franciscan friar
William of Ockham9 (c. 1288 – c. 1348), the Occam’s Razor states in his
most famous version that “entities must not be multiplied beyond necessity” and
its use in practice can be translated as “if an event is explained equally well by
two theories, the simpler one is likely to be the correct one”. Or like the medical
adage “when you hear the sound of hoofbeats, think horses, not zebras”. In
molecular biology, it justifies the use of the minimal edit distance in sequence
comparison, and the use of parsimony for the construction of phylogenetic trees.

Occam’s Razor is neither a theorem, nor a formally defined concept. It
is much more a guide, a rule of thumb, that is used intuitively and underlies
several formalisations of learning and inference paradigms. The Minimum

9Who probably was inspired by Aristoteltes who says in Posterior Analytics: “We may
assume the superiority ceteris paribus [other things remaining equal] of the demonstration
which derives from fewer postulates or hypotheses – in short, from fewer premises”
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Description Length (see Grünwald [108] for a comprehensive recent overview)
advocates an inference process resulting in a model such that both the sum of
the description length of the model plus the description length of the original
data with the model is minimised. It states that the best hypothesis H for some
given data D is the one that minimises

|encoding(H)|+ |encoding(D|H)|

the length of the encoding of H plus the length of the encoding of D knowing H.
The main feature of MDL is that it permits model selection, without falling in
the pitfall of over-fitting this model to the available data. In a similar direction,
the Occam’s Razor Theorem [31] gives a formal proof of learnability10 of a class
if there exists a procedure for inferring a smallest hypothesis for this class.

One of the main advantages of an approach inspired by Occam’s Razor is
that it does not use any other learning bias than simplicity. This seems partic-
ularly useful if no (or few) background knowledge is available over the chosen
domain. For example, while in the last decades biology has advanced a lot in
its understanding of coding DNA, the function and purpose of non-coding se-
quences, initially called Junk DNA, is much less understood and new knowledge
has to be discovered from scratch [194]. However, in the human genome the
non-coding part of the sequence represents as much as 98% of the total DNA of
an individual. In 1997, Rivals et al. [196] used Occam’s Razor as a justification
to use a specifically designed DNA compressor to detect approximate tandem
repeats in yeast chromosomes.

To summarise, inferring a context-free structure over DNA sequences poses
major challenges, and several options have been analysed in the literature. Like
in Sequitur, we use Occam’s Razor to focus on a minimal model. We restrict
this thesis to the search of a smallest grammar of a single sequence as a first
step towards a more general inference algorithm. This general algorithm can
be achieved by generalising the final grammar, or by using it as a structural
description of the given data. In an attempt to be as generic as possible and to
be able to apply it on sequences like the non-coding regions of DNA, we search
for a smallest grammar. The main subject of this thesis is therefore formalised in
the Smallest Grammar Problem, the problem of finding a grammar of smallest
size generating only the given sequence.

1.4 Overview of this Thesis

This thesis presents our work on the Smallest Grammar Problem. We arrived
to this problem after formalising our motivation to discover new interesting
structures on DNA sequences, especially on the non-coding segments. But the
Smallest Grammar Problem is of independent interest and has been studied
in different areas. Most of the results we will describe here are general and
apply to any kind of sequence, but even so we put special emphasis on possible
applications to genetic sequences.

Our main theoretical result is a new formalisation of this problem in form
of a complete and correct search space (Theorem 5 on page 75). This search

10with a definition of learnability called Probability Approximate Correct
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space is based on the decomposition of the problem into two complementary
optimisation problems. The first one consists in choosing which substrings of
the sequence will become the constituents of the final grammar. The second one
is concerned with how to combine these substrings in an optimal way. Thanks
to this decomposition, we are able to define new algorithms that outperform
the state of the art one by 10% regarding the final grammar size. We also
present algorithmic improvements on existing off-line algorithms, which include
a careful in-place update of an enhanced suffix array. Finally, we consider dif-
ferent applications to which the Smallest Grammar Problem can be applied. In
particular, we analyse the different steps of a grammar-based data compression
algorithm and present a DNA compressor that outperforms any other grammar-
based compressor. The outline of this thesis is as follows.

In Chapter 2 we state the Smallest Grammar Problem and review the
work done on it. We identify three areas of application (Data Compression,
Kolmogorov Complexity and Structure Discovery) and present the different ap-
proaches to the Smallest Grammar Problem in each of these areas. A special
emphasis is given to the algorithms used to obtain a small grammar representing
one sequence, and we compare their performance regarding the final grammar
size.

In Chapter 3 we study the choice of constituents with a special emphasis
on the trade-off between the quality of the set of constituents and the total
time consumed by the algorithm. First, we consider the impact of reducing the
universe of possible constituents using different notions of maximality of repeats.
Second, we consider the implications of overlapping occurrences. Combining
these improvements allows us to reduce the computational complexity of existent
algorithms. Finally, we present a data structure (the double-linked enhanced
suffix array) which we use to compute the set of constituents at each step of the
main algorithm, and which can be updated efficiently after each iteration.

Chapter 4 is concerned with the second sub-problem into which we decom-
posed the Smallest Grammar Problem. Namely, once the set of constituents
is given, how to parse in an optimal way the sequence and the constituents.
We formally define this Minimal Grammar Problem and give a polynomial al-
gorithm to solve it. We then use this algorithm to define new approximation
algorithms for the Smallest Grammar Problem that improve over the current
state of the art.

In Chapter 5 we come back to the applications we identified. Regarding
Structure Discovery, our new formalisation of the Smallest Grammar Problem
allows us to analyse the impact of the non-uniqueness of the smallest grammar
in this application. We evaluate our algorithms for approximating Kolmogorov
complexity through the use of the Normalised Compression Distance to cluster
biological sequences. We put special attention to the third application, Data
Compression. Analysing different ideas to use grammars for compressing, we
present a DNA-focused compressor that outperforms present grammar-based
DNA compressors. The use of a special kind of inexact repeats, called maximal
rigid patterns, enables us to improve even more our compression capacity.

In the final Chapter 6 we summarise our contributions, discuss our ap-
proach and analyse future directions.

Appendix A gives an overview of the corpora used to validate and compare
the algorithms.
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CHAPTER 2. THE SMALLEST GRAMMAR PROBLEM

Chapter 2

The Smallest Grammar

Problem

Formal grammars originated with the purpose of describing a language, a possi-
ble infinite set of strings. At the same time, this description by the grammar acts
not only as a generator, but permits also to describe an underlying structure of
the language. The Smallest Grammar Problem puts its focus on structuring a
single sequence, and consists in finding the smallest context-free grammar that
generates exactly this sequence. This chapter is devoted to the analysis and
review of approaches tackling this problem. Before starting, we introduce our
notations and give some definitions. In Sect. 2.2 we give an overview of the
origins of the Smallest Grammar Problem and of the motivations behind the re-
search communities that studied it. The next three sections focus on the work on
the Smallest Grammar Problem motivated by applications in Data Compres-
sion (Sect. 2.3), Kolmogorov Complexity (Sect. 2.4) and Structure Discovery
(Sect. 2.5). In all these sections we will make references to different algorithms,
all of which are detailed afterwards, in Sect. 2.6. Finally, in Sect. 2.7 we define
a framework that generalises most of these algorithms. This framework enables
us to compare the different algorithms in a uniform setting. We perform an
exhaustive comparison, evaluating their ability to return small grammars on
different types of sequences. In a second comparison we review grammar-based
algorithms that have been used for DNA compression and compare their per-
formances.

2.1 Definitions

We introduce the notation and definitions used in this thesis. Most of it is stan-
dard, except maybe our notation for (non-overlapping) occurrences (page 12)
and the definition of straight-line grammars (Sect. 2.1.3).

2.1.1 Sequences

A sequence s is a concatenation of zero or more characters from an alphabet Σ:
s ∈ Σ∗. Σ(s) denotes the alphabet set over which s is drawn. The number of
characters in alphabet Σ is denoted by |Σ|. We will denote single characters or
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strings by single letters, so concatenation is denoted by simply concatenating
symbols. (w)k denotes the sequence of length k|w| which is w concatenated k
times. We will also use

∏n
i=1 wi to refer to the sequence w1 . . . wn. For example,

ak =
∏k

i=1 a.
We start indexing sequences from 0. So, a sequence s of length n over the

alphabet Σ is represented by s[0]s[1] . . . s[n − 1], where s[i] ∈ Σ ∀ 0 ≤ i < n.
We denote by s[i, j] (i ≤ j) the sequence s[i]s[i + 1] . . . s[j] of length j − i + 1.
If j < i then s[i, j] = ǫ, the empty string. Furthermore, the sequence s[0, j]
(0 ≤ j < n), also denoted by s[..j], is called a prefix of s, and symmetrically,
s[i, n − 1] (0 ≤ i < n), also denoted by s[i..], is called a suffix of s. We say
that sequence s[i, j] occurs at position i in s and that it is a substring of s.
In general we will use letters s, t for general strings and v, w for substrings.

Given a sequence s, poss(w) denotes all the positions where string w occurs
in s (the occurrences of w). Two different occurrences of w (let say, i and j,
with i < j) overlap if i+ |w|−1 ≤ j. An important role in this thesis are played
by non-overlapping occurrences of substrings. There are several ways of selecting
occurrences such that the selection does not contain overlapping ones. We will
call the normalised non-overlapping occurrence list (denoted Ls(w)) the
list of occurrences defined in a greedy left to right way as follows. First, choose
the leftmost occurrence. Next, select the following leftmost occurrence that does
not overlap with the previous one. Continuing until the last occurrence, the
resulting selection will contain a maximal possible number of non-overlapping
occurrences.

A repeat of s is a substring of s that occurs more than once. R(s) denotes
the set of all repeats of s, while R̂(s) reduces this to the set of all non-overlapping
repeats of length at least two: R̂(s) = {w : |Ls(w)| > 1 ∧ |w| > 1}.

In some cases it will be useful to specify a separator symbols, over which no
repeat can span. Therefore, we suppose that the symbol | denotes a new symbol
every time it appears. For example, ab|cb|cd = ab|1cb|2cd.

2.1.2 Grammars

Our exposition here follows loosely the classical work of Hopcroft and Ull-
man [115].

Formal grammars are rewriting systems that permit to generate a set of
strings starting from a single symbol. In their most general form, a grammar
G is a 4-tuple 〈N ,Σ,P, S〉. Σ and N are disjoint, non-empty sets of symbols
called respectively terminals and non-terminals. To refer to a non-specified
member of any of these sets we use the term symbol. S is a special non-terminal
called the starting symbol or axiom. P is a subset of (V ∪ Σ)+ × (V ∪ Σ)∗.
A member of P is a rule (or production) and denoted by α → β. α is the
left-hand side and β the right-hand side. In general we will denote with
greek letters strings from (Σ∪N )∗, with lower-case latin letters strings from Σ∗

and with upper-case latin letters symbols from N .
We say γαδ ⇒ γβδ whenever α → β is a production and denote by ∗

⇒
the reflexive and transitive closure of relation ⇒. The language of a non-
terminal is defined by the set of terminal strings that can be produced from it:
L(N) = {w ∈ Σ∗ : N

∗
⇒ w} (the constituents). The language of a grammar

is the language of the start symbol: L(〈N ,Σ,P, S〉) = L(S).
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Different classes of grammars are defined by restricting the allowed rules.
If there is no additional restriction on the set of production rules, the class of
grammar is called the class of unrestricted grammar which are equivalent
to Turing Machines [115]. A context-sensitive grammar requires each right-
hand side to be at least as long as its left-hand side. Each such grammar has
a normal form where each rule is of the form γNδ → γαδ, with N a single
non-terminal and α 6= ǫ. γ and δ act as “context” for this production. Some
definitions permits a special rule S → ǫ to enable context-sensitive languages1

to contain the empty word. The main class we will consider here are context-
free grammars whose production rules have to be of the form N → α, with
N a single non-terminal. A context-free grammar is in Chomsky Normal
Form (CNF) if every production is of the form N → AB, N → a or N → ǫ.
Traditionally, the most restrictive class are regular grammars with rules of the
form N → N ′a or N → a, with N, N ′ non-terminals and a terminal. Regular
languages are exactly recognised by the class of finite-state automata.

The language generated by each of this classes is strictly contained in the
previous. This hierarchy is called the Chomsky (or Chomsky-Schützenberger)
hierarchy.

2.1.3 Straight-Line Grammars

The Smallest Grammar Problem focuses on grammars that generate exactly one
sequence. We define here a class of grammars with this characteristic.

There should be only one production rule per non-terminal2. Also, focusing
on context-free grammars, this means that no recursion should be possible. If
not, this would result in an infinite production as no choice is possible in a
context-free grammar with one rule per non-terminal.

We define therefore straight-line grammars:

Definition 1 (Straight-Line grammar (SLG)). A straight-line grammar is a
grammar such that:

1. every non-terminal appears at the left-hand side of at most one production
rule

2. Given the graph G = 〈N , E〉, with (N, N ′) ∈ E if N ′ appears in the right-
hand side of the rule of N , G has to be acyclic.

The term straight-line comes from the fact that the parses of such grammars
do neither branch (this would violate Condition 1) nor loop (Condition 2).

A grammar without branches that loops permits only one infinite derivation
and has therefore an empty language. This motivate the following alternative
characterisation:

Proposition 1. Suppose a grammar G that satisfies Condition 1 of Def. 1. G
is straight-line if and only if |L(G)| > 0

1A language is context-sensitive if it can be generated by a context-sensitive grammar.
2It is possible to violate this condition and still generate a single sequence. This could be

interesting to permit alternative parses of the same substring, but as we are going to focus
on the final size of the grammar, these rules could be replaced by a single rule obtaining a
smaller grammar.
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A straight-line grammar in Chomsky Normal Form is equivalent to a straight-
line program. Because in this thesis we are mostly interested in the structure
given by the grammar, we will in general not consider our grammars to be in
CNF.

Proposition 2. Let G be a SLG. Then |L(G)| = 1 and moreover, |L(N)| = 1
for all non-terminal N .

We will denote by constituent of N (cons(N)) the only string of L(N).
Except otherwise stated, throughout this thesis, the term grammar will al-

ways stand for a context-free and straight-line grammar.
In general, the non-terminals of our grammars are anonymous, which means

that their only meaning is to differentiate them from other non-terminals. They
can then be re-defined if sufficient care is taken to modify equally non-terminals
in the same way. In particular, we will suppose that the production rules can
be enumerated N1 → α1, . . . , N|P| → α|P| like follows. N1 = S, N2 is the first
non-terminal that appears at the right hand side of the S rule and in general
Ni+1 is the i-th different non-terminal that appears in

∏i
j=1 αi. We discard

non-terminals that are not used in any production rule (the only exception is
for the definition of straight-line grammars with don’t cares in Sect. 5.4.2).

If G is a SLG, then r(G) will denote its canonical sequential represen-

tation as:
∏|P|

i=1(αi$), where $ is a special end-of-rule symbol that does not
appear in G. G can be recovered unambiguously from r(G) and it seems to be
the most intuitive way of representing a SLG linearly. Therefore we define the
size of a grammar to be the size of its canonical sequential representation:

Definition 2 (Size of a SLG). If G is a SLG, then |G| = |r(G)|.

Therefore, |G| =
∑

N→α∈P

(|α|+ 1) =
∑

N→α∈P

(|α|) + |P|

Finally, note that from the set of production rules P alone, the whole gram-
mar can be recovered: N is the set of left-hand sides, Σ is composed of the
remaining symbols, and S is the non-terminal that derives the longest terminal
string. So, we can use as indistinguishable P = P(G) and G = G(P).

Now we are able to state our main problem:

Definition 3 (Smallest Grammar). Given sequence s, a straight-line grammar
G∗ is a smallest grammar if L(G∗) = {s} and |G∗| ≤ |G| for any other
straight-line grammar G such that L(G) = {s}

The Smallest Grammar Problem (SGP) is the problem of finding a small-
est grammar for a sequence s.

2.2 Origins of the Smallest Grammar Problem

We could trace two independent origins for the idea of representing only one
sequence by a grammar. The first appearance of this concept we could find was
in a seminar hold by the Psychological Society of the former GDR in 1973 [211].
The idea to describe objects by a minimal set of rules was used in the 1960s
by Emanuel Leeuwenberg to define Structural Information theory, a similar the-
ory to Algorithmic Information theory. Coming from the cognitive psychology
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he focuses on how human perception identifies and uses this minimal descrip-
tion of visual objects. The seminar of 1973 contains several contributions that
use context-free grammars as models to describe visual objects and that study
the relationship of a minimal grammar to human learnability with that object.
Such a minimal context-free grammar was then used as a computable approxi-
mation of Kolmogorov complexity. Ebeling and Jiménez-Montaño [80] use this
in 1980 to define the grammar complexity of a string and to study the inherent
complexity of genetic sequences.

The second source originates in the data compression community, inside the
bigger schema called macro or dictionary-based. Storer and Szymanski define
in 1982 [225] several such compression techniques, including one that maps to a
context-free grammar and prove that the the problem of finding a smallest such
grammar generating exactly one sequence is NP-Hard.

Later, Nevill-Manning and Witten [172] introduce their Sequitur algorithm
and praise its capacity of generating a small context-free grammar that describes
well the underlying structure of the given sequence. Shortly after, Kieffer and
Yang [127] analyse the compression capacity of what they called Grammar-Based
Codes from an information theory point of view.

More recently, in 2002, Charikar et al. [50] state again the relationship of a
minimal grammar to Kolmogorov Complexity. The thesis of Lehman [141] and
the complete paper of Charikar et al. [51] builds upon Storer and Szymanski
result and analyses approximations to a smallest grammar. With respect to
hardness, two more insights are given: in first place they show that — supposing
P 6= NP — there is no polynomial algorithm that can ensure an approximation
better than 8569

8568 in the worst case. Moreover, they unveil a relationship to
addition chains, a decade-long studied algebraic problem. Any algorithm that
would ensure an approximation ratio of o(log n/ log log n) would be a progress
into the problem of finding the shortest addition chain that contains a given set
of integers.

In what follows we present three applications to which the Smallest Gram-
mar Problem has been applied. The first is Data Compression and is based
on the insight that it may be cheaper (in terms of number of bits) to send a
small straight-line grammar instead of the original sequence. We pay special
attention to the use of such grammars inside the general topic of compressed
data structures. The second application is the approximation to Kolmogorov
Complexity and reflects well the original motivation of the problem. Finally,
we consider Structure Discovery. In all cases, we introduce the general research
field and show how the Smallest Grammar Problem has been tackled in this
field.

2.3 Data Compression

In general terms, Data Compression is concerned with finding an encoding of
data that requires less bits than just spelling out the original data. The existence
of a decoder is essential to recover the original data from the encoded bit string.
If the decoded object does not correspond exactly to the original one we talk
of lossy compression. Lossy compressors are widely used in fields like image
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and audio treatment, where the final decoded object can be degraded without
concern for a human user. Here, we will focus on lossless data compression.

Traditionally, lossless data compression algorithms are divided into two cat-
egories: macro-based and statistical. The first group seeks redundancies in
the text by detecting repeated patterns, and compresses the sequences by re-
placing an occurrence of such a pattern with pointers to a previous occurrence.
They achieve good compression by replacing subwords with (shorter) references.
Statistical-based compression algorithms are based on information theory and
assign codewords to single symbols. They are based upon the insight that it is
better — for compression purpose — to assign shorter codewords to frequent
symbols. This relation between codeword length and frequency is formalised
in Shannon’s noiseless coding theorem that says that, given a source i.i.d with
probability p that produces an infinite stream of symbols ω1 . . . ωn, an optimal
code would have codewords c1 . . . cn such that |ci| = − log p(ωi). We refer to
the classical work of McKay [163] for further reference.

2.3.1 Dictionary based

A good overview of different possible frameworks of macro schemes is given in the
work of Storer and Szymanski from 1982 [225]. There, the authors differentiate
between external and internal macro schemes. External macro schemes contain
pointers to an external dictionary, while the pointers of internal macro schemes
point to positions of the sequence itself. Our definition of LZ78 (see Sect. 2.6.2)
defines it as an external macro scheme, while LZ77 (Sect. 2.6.1) is internal.

From the external macro schemes, we will pay special attention to a class of
compression algorithms called fixed size dictionary. In this framework, the
dictionary consists in a set of words {ω1, . . . ωn}. Each dictionary word has an
associated codeword C = {c1, . . . , cn}. The set C must be uniquely decodable
(prefix-free or fixed-length for example), and it is linked to the dictionary by
the function f defined as f(ci) = ωi. The goal is to find d1 . . . dm such that di ∈
C, f(d1) . . . f(dm) = s and

∑m
i=1 |di| is minimal. This problem was proposed

in 1973 by Wagner [238] together with a dynamic algorithm that solves this
problem in an optimal way. The problem was called “optimal parsing” by Bell
et al. [26] and “Minimal Space” by Schuegraf and Heaps [213] where it is solved
by a shortest-path algorithm. There also exists faster approximate algorithms:
see Katajainen and Raita [124] and Bell et al. [26, Chapter 8.1]

Interestingly, in his seminal work, R. Wagner interprets the fixed size dictio-
nary in a grammatical way [238]:

“The set of phrases given initially acts like a partial grammar for
a context-free language. The language consists of a finite set of
sentences (the phrase and message strings themselves). The right-
hand sides of its grammar rules contain no non-terminal symbols.”

Storer and Szymanski [225] characterise a richer schema and give NP-hardness
proofs for several variants. This include variants where the pointers may be re-
cursive (this is, enabling phrases itself to be parsed with pointer to other phrases)
or the phrases may overlap. They show that any of the four alternatives that
combines this restrictions results in an optimisation problem which is NP-Hard.
This includes the problem of finding a context-free grammar of smallest size.
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Figure 2.1: Arithmetic coding of sequence ATCAG, supposing p(A) =
0.6, p(C) = 0.2, p(G) = 0.15, p(T ) = 0.05.

2.3.2 Statistical methods

Statistical compression algorithms do not replace subsequences with pointers
but encode one symbol at a time. They have the advantage that they permit to
divide the coding process into two. On one hand the actual encoding, that takes
as input a probability distribution p and encodes the current symbol c with a
codeword corresponding to p(c). On the other hand there is the modelling of the
sequence and inferring of the distribution p, which does not need to consider the
mapping from probability to codewords. This proves to be particularly useful
for implementations, where a good encoder needs to be implemented only once,
and then different probability models can be tested.

Though Huffman Coding is probably the easiest to understand statistical
encoder, we will review here Arithmetic Coding, which we will use in this
thesis. An arithmetic coder encodes a string with one real number (between
0 and 1). Suppose a probability distribution over the DNA alphabet p such
that p(A) = 0.6, p(C) = 0.2, p(G) = 0.15, p(T ) = 0.05. The interval [0, 1] is then
divided accordingly (see Fig 2.1). Any real number between 0 and 0.6 represents
the sequence s = A, while 0.73 for instance represents s = C. Suppose the first
symbol of s is A. In this case, the interval [0, 0.6] is again divided according to
p. Now, 0.4 stands for s = AC and 0.58 for s = AT . See the rest of Fig. 2.1 for
a bigger example. The final real number is then encoded in binary. Two issues
differentiate arithmetic coding algorithms. In first place in the example we just
presented there is no way of knowing how long the sequence is. 0.5 may stand
for s = A, s = AG, s = AGA, etc. Two main solutions exist: a special sentinel
symbol can be added (with very low probability) that occurs only once, at the
end. Or, the real length of the sequence is sent at the beginning. The second
issue is the choice of which of the infinite real numbers in the final interval will
be used to represent the sequence. There may exist more than one number with
minimal binary representation. Finally, for real implementations special care
has to be taken with precision and overflow limitations.

An adaptive arithmetic coder (AAC) changes the probability distribution
while encoding the text. For example, a 0-order arithmetic encoder starts with
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some fixed distribution (p(ωi) = 1/|Σ| for example). It keeps a frequency table
that counts the number of occurrences of each symbol, and after encoding each
symbol, the probability distribution is updated with the empirical distribution
of the symbols seen so far. While all the information that is used in this update
is contained in the data that was already sent, the decoder can mimic the
behaviour of the encoder and decode without error the bit stream. An adaptive
encoder has the advantage that no probability distribution has to be sent at the
beginning, and that it can adapt to local changes of the input text. We will
often use an n-context arithmetic code (n-AAC), which models the sequence
with a n-gram model.

2.3.3 DNA Compression

Standard compression tools do not compress well DNA sequence. The term
“not compress” has to be clarified: as DNA can be considered — without loss of
information — as a sequence over an alphabet of four letters, a trivial baseline
for encoding such a sequence would take two bits per symbol. If general-purpose
compressors are applied to them they result generally in a bitstream longer than
2n, for a sequence of n nucleotides.

Since this was stated, several different research groups have tried to develop
specific algorithms that take into account the peculiarities of DNA sequences.
We have counted no less than 20 different algorithms designed for this purpose.
Recently, two excellent papers review most of these. Giancarlo et al. [98] make
an overview of biological problems where compression techniques have been ap-
plied. In a complementary view, glu et al. [101] take the side of the compression
community and analyse how concepts developed there have been applied in bi-
ology. Arguably, the main motivation of such an effort is not so much the gain
in storage space or bandwidth (until the popularisation of High Throughput
Sequencing in recent years it was not sure if this was even a problem), but the
desire to find some redundancy in the “code of life” that may give insights in
the evolutionary pressure or the function of non-coding DNA, to cite just some
examples.

The first3 specific DNA compressor was presented with the algorithm Bio-
compress [106] and shortly after extended with an arithmetic coder of order
2 [107]. Only exact repeats are considered. It consists of a LZ77-style parse
over the sequence, where biological palindromes are also considered. A window
size is considered for efficiency purposes. Two years later, Cfact by Rivals et al.
[195] takes an offline approach, consisting of two phases: in the first, a suffix-tree
is used to select interesting exact repeats, and in the second the occurrences of
selected repeats are evaluated: if their estimation of compression gain is posi-
tive, they are replaced by pointers. The authors use this algorithm to detect
tandem repeats in the chromosomes of yeast [196]. Another algorithm that con-
siders only exact repeats is presented by Manzini and Rastero [157]. According
to the authors its major virtues are its speed and low requirements of space.
To achieve this, repeats are identified by using a technique called fingerprint
of patterns. Special care is used to encode the resulting pointers efficiently.
Inexact repeats enter the scene with GenCompress [54]. Again, a LZ77-like

3Though it does not produce a bit stream which can unambiguously be decompressed,
the method for discovering significant DNA by their minimal-length encoding as described
in Milosavljević and Jurka [164] dates of the same time.
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phase is performed, but supporting edit operations replace, insert and delete.
It is applied to reconstruct evolutionary phylogeny tree, as a clear precedent to
the definition of the similarity metric (see Sect. 2.4.2). Algorithm DNACom-
press [55], performs similar, but interesting inexact repeats are computed with
the aid of the algorithm Pattern Hunter [152]. The problem of using non-exact
repeats is that the amount of them is much higher then those of exact repeat,
and special care has to be taken in selecting which choice of non-overlapping
occurrences will be replaced. Chang [49] considers its DNAC algorithm to be
a mix of GenCompress and Cfact and compress DNA sequences in four phases:
first, it selects a (in our notation, see Sect. 3.2) super-maximal repeats using a
suffix tree, then extends it to approximate repeats (edit operations), calculates
an optimal combination of non-overlapping occurrences and encodes the final
result with Fibonacci code. A similar approach is used in DNAPack [25] where
dynamic programming techniques are used to ensure that the correct choice of
occurrences is made. The good performance of this algorithm can be explained
also by the fact that different coding schemas are used and special attention
is given to the right choice between them. The Burrows-Wheeler Transform is
used by Adjeroh et al. [3] to analyse the nature of the repeats in DNA sequences,
interleaving it in different phases of a dictionary-based compression pipeline.

Good statistical encoders arrived later on the scenario of DNA compres-
sion, but performed often better. In this setting, the quest is to identify the
best probability model for the target sequence. CDNA [150] does so by using
a variable-length context that takes account of inexact matches, and combines
different models. Their final model needs several parameters, which are esti-
mated with Expectation-Maximisation on a pre-established corpus. A simpler
schema was used in ARM by Allison et al. [8] who re-implement and improve
over the model of Milosavljević and Jurka [164]. Some of the authors of ARM
present XM [42], another pure-statistical DNA specific compressor which intro-
duce some new ideas. The probability distribution that predicts the next symbol
is given by a combination of different expert models. Four different classes of
expert models are used: a classical Markov model of order k (the authors use
k = 2 for DNA and k = 1 for protein), a context Markov expert which is a
classical context-model restricted to the local history (previous 512 symbols in
this case) and two kind of repeat experts, which consider the next symbol to
be part of a copied region from a particular offset. The normal copy expert
consider standard copies, while the reverse expert consider reverse complement
repeats.

A final class are hybrid algorithms, which combine both dictionary and sta-
tistical schemes. CTW+LZ [161] encodes repeats by one of two methods: with
LZ77-like pointers (long repeats) or statistically with a context-tree weight-
ing (CTW) model (shorter repeats). MNL [227] and its improved successor
GeMNL [135] perform a block-parse of the sequence and encode each block with
one of three variants: or a direct 2-bit-per-symbol encoding, an order-1 context
model or a normalised maximum likelihood (NML) model. The NML model
tries to find for each block an appropriate similar block in the already encoded
data. Recently, S. Deusdado takes in his thesis [76, in portuguese] the best of
previous algorithms and joins them into an algorithm called DNALight. Like
DNACompress it first selects a dictionary of useful repeats (using an algorithm
also explained in his thesis), which is itself parsed with the same dictionary.
The resulting sequence (the part over which no selected repeat spans, plus the
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index over the dictionary) is encoded with a statistical encoder using a model
similar to XM. Global models (of order 10 over codons) are combined with two
local models to predict the next symbol.

In Table 2.1 we compare the result of these algorithms on the standard DNA
compression corpus. Results are given in bits per original symbol. Absences
and less precision than four digits are due to how they were presented in their
respective paper (or material available on the web). DNALight achieves the best
compression on all but two sequences, but as it can be appreciated the difference
with others is mostly less than 10−2.

Finally, we should note that there have been a recent trend (even if some
work dates already of 2001 [210]) of DNA compression algorithm to emphasise
the compression aspect over the learning one. The focus is less on extracting all
possible redundancy of the sequences, but to be able to process fast and without
much memory requirements, complete databases [137, 241] or genomes [61].

2.3.4 The SGP in Data Compression

One of the striking forces in the development of the work in the Smallest Gram-
mar Problem is their applications to data compression. Straight-line grammars
have the attractive characteristic that they provide a neat way of combining
the two groups of text compression, dictionary-based and statistical. In a first
step, a grammar is inferred from the sequence, based on the repeats inside the
sequence. This non-sequential structure can then be transformed into a sequen-
tial one, which itself can be compressed with a statistical encoder. The fact
that non-terminals are anonymous, that their frequency of appearance vary a
lot and that rules can be presented in any order provide opportunities to take
advantage of the statistical compressors. Moreover, the hierarchical nature of
grammars allows richer models than a mere dictionary of words.

In this sense, a compressor that uses a SLG can be divided into three steps
(as we pictured in Fig. 2.2). First, a context-free grammar Gs is generated from
the input sequence s. Second, this grammar is transformed into a sequential
representation Rs which then is encoded by a compressor into the bit stream
Bs which can be transmitted. Note that other applications of SLG — besides
compression — generally only consider the first step and the traditional presen-
tation of grammar-based code [127] unifies Step 2 and 3. Of course, as pointed
out by Charikar et al. [51], if the size of Gs is n, then the size of Bs can easily
be bounded by n log n, assuming a fixed-length code of size log n. A theoretical
study that only considers asymptotic behaviour can dismiss hidden constants
and this logarithmic factor, but for real data compression algorithms that are
suppose to work on finite strings, that may make a big difference.

Some work has been done targeting Step 2. Nevill-Manning et al. [178]
introduce a method that sends the right-hand side of a rule the first time a non-
terminal is found. The second time it sends a pointer to the first occurrence
and from there on it uses a unique identificator. For rules that only appears
twice, this method never names the corresponding non-terminal with an abso-
lute identifier, reducing the size of the final alphabet. In the presentation of
DNASequitur [56] much care is taken in this second step, and the final result
varies accordingly. In the next paragraphs we will see other methods used by
Kieffer and Yang that take advantage of properties of a special kind of SLG.

The compression capacity of SLG was studied deeply by a group led by
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BioCompress-2 GenCompress CTW-LZ DNACompress DNAPack CDNA GeNML XM DNALight

[107] [54] [161] [55] [25] [150] [135] [42] [76]
chmpxx 1.6848 1.6730 1.6690 1.6716 1.6602 – 1.6617 1.6577 1.6415
chntxx 1.6172 1.6146 1.6120 1.6127 1.6103 1.65 1.6101 1.6068 1.5971
hehcmv 1.8480 1.8470 1.8414 1.8492 1.8346 – 1.8420 1.8426 1.8317
humdyst 1.9262 1.9231 1.9175 1.9116 1.9088 1.93 1.9085 1.9031 1.8905
humghcs 1.3074 1.0969 1.0972 1.0272 1.0390 0.95 1.0089 0.9828 0.9724
humhbb 1.8800 1.8204 1.8082 1.7897 1.7771 1.77 – 1.7513 1.7416
humhdab 1.8770 1.8192 1.8218 1.7951 1.7394 1.67 1.7059 1.6671 1.6571
humprtb 1.9066 1.8466 1.8433 1.8165 1.7886 1.72 1.7639 1.7361 1.7278
mpomtcg 1.9378 1.9058 1.9000 1.8920 1.8932 1.87 1.8822 1.8768 1.8646
mtpacga 1.8752 1.8624 1.8555 1.8556 1.8535 1.85 1.8440 1.8447 1.8442
vaccg 1.7614 1.7614 1.7616 1.7580 1.7583 1.81 1.7644 1.7649 1.7542

Table 2.1: Comparison of DNA compressors on DNA Corpus. Best for each sequence is boldfaced.
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Figure 2.2: Schematic process of a encoder that uses a straight-line grammar:
first the grammar Gs is inferred from sequence s. It is then transformed into a
sequential representation over the alphabet Σ ∪ N (plus eventually some extra
symbols) and finally encoded into bitstream Bs

Kieffer and Yang, who named this codes Grammar-Based Codes (GBC).
They introduce the definition of irreducible grammars:

Definition 4 (Irreducible Grammar [127]). A straight-line grammar G = 〈N ,Σ,P, S〉
is irreducible if:

1. G is admissible: it does not generate ǫ and it is pruned from any non-
terminal that is not used in its only derivation

2. cons(N) 6= cons(N ′) for all N, N ′ ∈ N and N 6= N ′

3. Each non-terminal appears at least twice: |posr(G)(N)| > 1 for all N ∈ N

4. No substring appears more than twice in non-overlapping positions (ex-
cepting single symbols): |Lr(G)(α)| ≤ 1 for any α ∈ (N ∪ Σ) s.t. |α| = 2

Kieffer, Yang and co-authors define several algorithms that generate Irre-
ducible Grammars (notably, Sequential, Bisection, Multilevel Pattern

Matching and a variable of LongestFirst, see Sect. 2.6). But their main fo-
cus is on their final compression capacity, and they pay special attention to Step
2 and 3 of Fig. 2.2. For the algorithm that generates the grammar itself (Step
1), they define a set of transformation rule such that successive applications of
them transform any grammar into an irreducible one.

Yang and Kieffer [244] define algorithms that read the sequence symbol by
symbol, maintaining a grammar that generate the prefix read until there. The
grammar is updated after reading each symbol with the set of transformation
rule. They then define three different possibilities of encoding this grammar
(Step 2 and 3):

1. In the first — called hierarchical — Step 2 consists in inserting special
symbols b and e at the end and beginning of any rule with right-hand
side longer than two. Arranging the rules in the correct order permits an
unambiguous decoding of the grammar. As most rules have length two,
this produces a smaller representation than r(G). Step 3 consists in a
standard 0-order adaptive arithmetic coder.

2. Another encoding is named sequential. Here, Step 2 and 3 are interleaved:
after reading every symbol not only the grammar is updated, but it is
also directly encoded. Simulation results on artificial examples shows that
this sequential encoding procedure performs better than the hierarchical
procedure.
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3. Finally, they use properties of irreducible grammars to improve over this.
After each symbol one bit is sent that indicates if the updated grammar
is simply the old grammar plus the new symbol concatenated at the end
of the axiom rule, or if one of the transformation rules was applied. This
bit is then used as context information by the arithmetic coder.

In a second part of this series of papers [245], Yang and Kieffer consider
“context models”. They use the term “context” in the sense of data compression,
and not in the formal-language sense of “context-sensitive”. It is however similar
in that production rules now may vary according to the context in which they
are. The context is determined by a context function, which only depends on
the previous context and on terminal symbols. The authors suppose that in
most applications, contexts are substrings seen in the past (on the left), so
that context-dependent grammar permits overlapping parsing, with overlapped
portions treated as contexts. Reflecting the first paper of the series, they define
a set of grammar transformation, one algorithm and three coding schemas.

Unfortunately, an announced third part with complete results of imple-
mented versions of these algorithms seems to have never been published and
our attempts to contact the authors remained fruitless.

2.3.5 RNA compression with SLG

We will review and compare attempts of compressing DNA sequences with SLG
below (Sect. 2.7.3). Here we will only consider compression of RNA sequences.

Liu et al. [149] present RNACompress, an algorithm that uses SLG to
compress RNA sequences and the information that defines its secondary struc-
ture. It takes as input two sequences: sRNA over alphabet {a, u, c, g} contains
the RNA nucleotides sequence and sSS over {(, ), ·}, with balanced brackets and
|sSS | = |sRNA|.

It is different from the other algorithms we consider, because it does not
make any inference of the grammar over the sequence. In fact, it uses the
generic grammar GRNA:

S → NS|ǫ
N → aSu|uSa|cSg|gSc|

uSg|gSu|a|u|c|g
Sequence sRNA is compressed by indexing this rules from 1 to 12 and sending

the indices of the rule that has to be applied in a derivation that generates the
input sequence. However, the cleverness of the algorithm is that it uses the
derivation that is specified by the left-most derivation of sequence sSS with
grammar GSS :

S → NS|ǫ
N → (S)|·

It is able to send both sequence inside one grammar by mapping the deriva-
tion tree of the left-most derivation of grammar GSS of sSS on sRNA.

The decoder uses the structure of the received grammar to decode sSS and
the yield of the axiom to decode sRNA. The indices for rules of GRNA are
encoded with a Huffman Code where the probability of each index is fixed
and obtained by counting frequency of paired and unpaired bases in an RNA
database.
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2.3.6 XML Compression with SLG

Extensible Markup Language (XML) is the de-facto standard for representation
of structured data on the World Wide Web. It is an extension of HTML,
and permits to create semi-structured documents, interleaving the content with
structural information. Because of its wide diffusion and its verbosity, the need
of compressing this data emerged, and resulted in a large number of papers4.
We refer to the survey of Bordese [36] and Sakr [207] for recent overviews of
characteristics and classifications of them.

The structure of a XML document can be represented as a tree. The similar-
ity to a SLG is close, and several XML-specific compressor have been presented
that uses context-free grammar. Exalt [228] combines a XML parser with the
grammar transform operation reported in the work of Kieffer and Yang to pro-
duce an irreducible grammar which is encoded with an adaptive arithmetic
coder. AXECHOP [142, 143] uses a standard strategy in XML compressors
by treating differently the structural and data part of the document. While it
encodes the data with a BWT algorithm, it uses MPM (see Sect 2.6.6) with an
adaptive arithmetic coder to compress the structure. XSeq [147] takes a similar
approach, but compresses both data and structure with Sequitur (applying
it on each of the stream separately). An interesting feature is its possibility of
processing queries directly over the compressed file.

2.3.7 Compressed Data Structures

In our current information oriented society, generated data are generally stored
in databases which are accessed frequently to answer queries. Because of the
exponential growth of collection of data, the idea in this line of research is to
compress the data for storage perennially and be able to access if without need of
decompressing. Traditionally, data compression was used when a sender wanted
to compress its message so that it can reach its receiver faster. Clearly, this is
detrimental when the time spent to decompress the whole data set plus the time
required by the query outbalances the storage space that can be saved.

The challenge is therefore to compress the database in a way that still permits
to access it efficiently. In general, the two queries that are required are access
and pattern matching or find. The access operation refers to random access over
the string, or decompression of substrings, while the find operation returns the
set of positions where a given pattern occurs. Here we will review briefly the
main techniques that uses SLG. The literature in this subject is growing rapidly
in the last years. For a recent review of advances in general of compressed data
structures, see Hon, et al.’s keynote at CPM 2010 [114], the invited talk by
Ferragina at ESA 2010 [87] or the classical review of Navarro and Mäkinen [169]
(or Chiu, et al. [58] for an experimental comparison).

SLG seems to be a natural framework to achieve this task. Its correspon-
dence between non-terminals and substrings, plus the possibility of “zooming”
should make them suitable. The seminal paper of Kida et al. [126] gives a gen-
eral framework (that includes SLG) and show how to perform pattern matching
queries on it. Maruyama et al. [159] improve upon this with a approximation al-
gorithm related to RePair, but that does not replace all occurrence of a selected

4see http://webdocs.cs.ualberta.ca/~gleighto/research/xml-comp.html for a list of re-
lated publications.
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pair. Maruyama et al. [160] takes this a step further analyzing pattern matching
for context-sensitive grammars. With respect to random access, first steps were
made in Gąsieniec et al. [100] by showing how to visit consecutive symbols in
constant time. Recently, Bille et al. [30] present a SLG that permit O(log n)
random access time. Claude and Navarro [68] show a self-index SLG that sup-
port both operations efficiently (in O(h log m) and O(m(m + h) + h o) log n),
where h is the height of the parse tree, m the length of the pattern and o the
number of times it appears). Claude et al. [69] present two compressed indexes
based again on the RePair algorithm.

There has been a particular focus by some groups to study the edit distance
problem of strings that are represented by straight-line grammars. See Hermelin
et al. [112] for an overview and references.

2.4 Kolmogorov Complexity

The roots of Kolmogorov Complexity range over different fields and similar con-
cepts have been discovered independently in different places5. In an informal
way it can be defined as the amount of information — expressed in bits — con-
tained in a single object. Standard probability theory, and therefore Shannon’s
notion of information, is useful when considering a set of events or sequences to
which probability or information content has to be applied. Supposing a uni-
form source over an alphabet of size two, the probability of sequence 1011001001
and of sequence 0000000000 is the same, but intuitively the second one seems
to contain less information, or be less random. One of the advantages of Kol-
mogorov Complexity is that it permits to express what a random sequence is:
a sequence where the bits of information it contains is exactly the size of the
sequence. A random sequence is a sequence from where no redundancy can be
extracted.

For the definition, fix a Turing machine M

Definition 5 (Kolmogorov Complexity). The Kolmogorov Complexity of a
string x is KM (x) = min

p:p is a program
{|p| : M(p) = x}

For a complete formal treatment of Kolmogorov Complexity see the classical
reference of Li and Vitányi [145]. One of the main results that opens door to
further work in Kolmogorov Complexity is the Invariance Theorem which says
that for a universal Turing Machine M∗, KM∗(x) ≤ KM (x) + cM for any M
and cM depends only on M . For as far as it concerns this thesis, it means
that we can drop the subscript M , and talk of the information inside an object
independently of the specific Turing Machine we use to express it. Another
fundamental result is the following undecidability theorem. It can be proved
with a self-referencing argument, similar to the Halting problem.

Theorem 2 (K is non-computable). There is no program p such that p(x) =
K(x), for any string x.

A useful related definition is Conditional Kolmogorov Complexity K(x|y)
which is the size of the shortest program that outputs x on a universal Turing

5As mostly used in the literature we will talk of Kolmogorov Complexity, even if historically
it would also be valid to talk of Solomonoff or Chaitin Complexity
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machine if y is presented on a auxiliary tape. The relationship to conditional
probability is evident. If K(x|y) = K(x), then y does not add any information
concerning x.

2.4.1 The SGP in Kolmogorov Complexity

A possibility of getting a computable approximation of Kolmogorov Complexity
is to reduce the expressive power of the model from unrestricted grammars
(recall from Sect. 2.1.2 that they are equivalent to Turing machines) to context-
free.

In 1973, Klix [132] proposes, from a psychological point of view, a model that
captures regularities (repetition of single elements, of pairs and mirroring) of a
structured object. This model has a sequential representation and he proposes
a measure of the content of the information of this model. He also presents
results that show that the time that a human needs to learn by heart the object
is linearly proportional to this measure. In the same proceedings, Scheidereiter
[211] proposes to generate the sequence with a context-free grammar. He states
the optimisation problem of finding the smallest grammar that generates the
sequence (defining the size as the sum of the right-hand sides of the rules used
in the derivation of the sequence). Scheidereiter states that “As, under relatively
simple condition, there exists only a finite number of such grammars, one could
find an optimal one by exhaustive search”6, but proposes then an algorithm that
selects long and frequent repeats (or reverse of a repeat), and uses this “local
minimum” to “segment hierarchically” the sequence.

Ebeling and Jiménez-Montaño [80] propose in 1980 to apply this idea of us-
ing the size of a smallest context-free grammar that generates s as complexity
measure of s on genetic sequence. The authors give small grammars for differ-
ent protein, DNA and RNA sequences and compare this grammar complexity to
other information measures. In this first paper, no algorithm for finding these
grammars is presented and it seems that the resulting grammars are found one
by one7. In a non-published paper from 1984 (see Ángel Jiménez-Montaño
[9]) Jiménez-Montaño and Martinez seems to have defined the Non-sequential
Recursive Pair Substitution algorithm, similar to RePair (see Sect. 2.6.7). In-
dependently, the same definition of grammar complexity was analysed also by
Charikar et al. [50] in 2002, where besides presenting an approximation algo-
rithm, other related models are considered.

2.4.2 The Similarity Metric

Li et al. [146] proposes a practical application of Kolmogorov complexity for
classification and clustering. They define a similarity between two sequences as:

Definition 6 (The Similarity Metric).

d(x, y) =
max{K(x|y), K(y|x)}

max{K(x), K(y)}

6“Da es unter relativ einfach Bedingungen nur endlich viele solcher Grammatiken gibt,
könnte man durch Probieren eine optimale finden”.

7For instance, for sequence (14) of length 126, a grammar of size 85 is given. Interestingly,
one of the algorithms we are going to present (IRRMGP*, Sect. 4.3) finds a grammar of size
81.
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The authors demonstrate that d is a “universal” metric (justifying the use
of the definite article). Of course, as K is non-computable, for practical ap-
plications approximations are used. Any compression algorithm can be used
as an approximation of Kolmogorov complexity and this is studied by Cilibrasi
and Vitany [62, 63]. Given a compressor C, they define a distance between two
sequences:

Definition 7 (Normalised Compression Distance).

NCDC(x, y) =
|C(xy)| −min(|C(x)|, |C(y)|)

max(|C(x)|, |C(y)|)

By reducing the power of a universal Turing machine to a normal compressor
the nice theoretical properties of universality and proper metric are lost, but the
results they report, together with the freedom of parameter in such an approach,
popularised this method. Other approximation of the Universal Metric are CD
(Compression Dissimilarity) and UCD (Universal Compression Dissimilarity).
See the general review by Ferragina, et al. [89].

Because of the hierarchical expression power of straight-line grammars, and
the fact that they have been — since their re-discovery ten years ago — be
connected to Kolmogorov complexity and structure discovery, it seems natu-
ral to use one of the straight-line grammar algorithms as a compressor in the
NCDC metric. Useful equations, like |C(xy)| = |C(yx)|, |C(xx)| = |C(x)| and
|C(x|y)| = |C(x)| if y does not share any substring with x, hold (approximately)
for the case that C(x) is a smallest grammar of x. However, to our knowledge,
only very recently such an approach was proposed by Cerra and Datcu [47]. For
this, the authors use the grammars returned by RePair (see Sect 2.6.7), and
define a complexity approximation of the sequence based on the number of rules
of this grammar (each rule of a RePair has a right-hand size length of two).
This is then successfully applied to cluster hierarchically mitochondrial DNA of
different mammals and satellite images of different surfaces and vegetation.

2.5 Structure Discovery

Besides their compression capacity, the ability to infer a structure over the
sequence has been traditionally the main motivation for work in SLG. The
objective here is not to identify a target language, but to identify how the
sequence is structured into segments, and how this segments are related to each
other in an hierarchical manner.

To achieve this, we have to analyse the unique parse tree given by the re-
sulting grammar. Because the non-terminals are anonymous and do not have
any other meaning than to identify equal subsegments, the original grammar
can be completely recovered from the parse tree or from the associated bracket
set. Compared to a simple segmentation of the sequence, a parse tree has the
advantage that it permits to zoom in and out, considering different level of
segmentation, and that it reveals how bigger bricks are composed of smaller
ones.
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For a generic algorithm, Occam’s Razor justifies the search for small gram-
mars. If two grammars produce the same string, then this principle suggest
that the smaller of both is more likely to be the correct one. In particular, a
smallest grammar is one that achieves to extract all possible redundancy that
can be expressed with a context-free parse tree.

One of the first to use a grammatical approach to segment hierarchically a
sequence was Wolff [242], who in 1975 analysed the result of a computer program
that replaces iteratively the most frequent pair of symbols by a new symbol.

Applications of Sequitur (see Fig. 2.3) are between the most known exam-
ples of examples of how the final grammar expose some of the real structure
underlying the input sequence. Even if in almost all cases the examples are
more anecdotic than quantitative, they present some interesting possible appli-
cations, ranging from natural language and musical structure identification to
improving rendering performance and using it to easy keyword retrieval from a
large data set.

In the same line, Evans [82] develops MDLCompress through the computa-
tion of the Symbol Compression Ratio (SCR), an heuristic to evaluate a symbols
contribution to the overall sequence complexity. His OSCR algorithm — a pre-
vious version of MDLCompress — selects iteratively words that reduce best
this amount. This is then applied to detect intruders in a framework of informa-
tion system security. In Evans et al. [84] the constituents of the final grammar
are used to detect binding sites of miRNAs which lead to tumorigenesis.

As we have seen before, most of the intuitive idea behind Kolmogorov Com-
plexity is that, the smaller the description, the better it captures the real struc-
ture of the string. The idea of measuring the complexity of life became closer
with the discovery that all the information transmitted to an offspring is en-
coded in a sequence, the DNA. Therefore, there have been many interesting
attempts to define a measure of complexity of sequence, without complete suc-
cess until now [39]. One of these attempts using SLG was performed by Lanctot
et al. [138] who took as complexity of a DNA sequence an entropy estimator of
the resulting grammar of their GTAC algorithm (see Sect. 2.6.8). In their re-
sults they were able to distinguish between coding (slightly higher entropy) and
non-coding regions and observe that highly expressed genes have lower entropy
then normal ones.

In Structure Discovery, the results are difficult to evaluate. Most of the
work, like Wolff [242] or Nevill-Manning [171] show examples of the potential,
but without a rigorous quantitative analysis of the quality of the structure found.
Evans et al. [84] show interesting results but, at least on the validation on genetic
sequences, the evaluation is performed on the constituents of the grammar. Not
much is said about the hierarchical structure that is found.

2.6 Algorithms

In this section we will review existing algorithms that take a sequence as input
and output a straight-line grammar that generates this sequence. We start
with the LZ77 algorithm. While its output cannot be mapped directly to a
context-free grammar, it holds strong links to the Smallest Grammar Problem
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2.6.1 LZ77

LZ77 is maybe the most influential compression algorithm because of its sim-
plicity, theoretical analysis and widespread use in commercial algorithms like
Deflate used in Phil Katz’ famous PKZIP tool and afterwards in gzip and the
png file format.

The first work that described what would be known as the LZ77 algorithm
by Ziv and Lempel [248] was rather theoretical, and several different implemen-
tations were given in the next years, usually adding the initial of the inventor
after the traditional LZ. What we will describe here is not a real compression
algorithm but a factorisation of the sequence [53].

LZ77 outputs a list that contains in each position a single character or a
tuple off two integers. It processes the sequence online from left to right. At
each position i, it looks for the longest prefix of s[i..] that appears in s[..i−1]. If
it is of length ℓ and appears at position m then LZ77 outputs the tuple 〈m, ℓ〉. If
none such substring exists, it outputs the character s[i]. It is important to note
that the output cannot be trivially interpreted as a context-free grammar. This
is because a pair 〈m, ℓ〉 can refer to a substring that starts inside one pair, but
ends after it. Even more, it is known result that the size of an LZ77 factorisation
is a lower bound on the size of a smallest grammar. This is used by some of the
approximation algorithms that ensure a worst-case approximation [51, 200].

2.6.2 LZ78

Defined by Lempel and Ziv in 1978 [249] as a successor of LZ77, its output can
be mapped to a context-free grammar in Chomsky Normal Form. A variant
named LZW is still used in the GIF image format and in the compress utility.

As in the description of LZ77, we will focus here on the most general abstract
description, without entering the small but important details that make this
algorithms run fast and efficiently in practice. In particular we will ignore any
issues related to the size of the window and the size of the dictionary.

LZ78 reads the sequence symbol by symbol in an online way from left to
right. It keeps a dictionary of words that is initialised with the empty string.
At each position i it takes the index j of the longest word w in the dictionary
such that s[i : i + |w|] = w, outputs the tuple 〈j, s[i + |w|]〉 and adds the word
s[i : i + |w|+ 1] to the dictionary.

If interpreted as a context-free grammar, the final grammar is always in CNF.
Each right-hand side consists of a non-terminal (an index from the dictionary)
and the terminal character that did not permit a longer match.

2.6.3 Sequitur

Sequitur is probably the most popular of existing algorithms that infer a
straight-line grammar. His popularity is due to its efficiency (linear in the size
of the sequence), its timely appearance and successful application to model
sequences of diverse origin.

Sequitur also processes the sequences from left to right reading one charac-
ter at a time. It maintains two invariants: every digram appears only once in the
grammar (“digram uniqueness”) and every rule is used at least once (“rule util-
ity”). After reading each symbol c, it is appended to the axiom rule (initialised
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The bibliography over Sequitur is scattered over several publications,
so what follows is a short summary in chronological order. The algo-
rithm is first mentioned in Nevill-Manning et al. [178], where general
characteristics of straight-line grammars are exploited for compression.
This is then applied for compressing structured data in form of a ge-
nealogical database [179]. The generated grammar is generalised man-
ually and automatically, looking at patterns on the final grammar (see
Sect. 1.2.1). The thesis of Nevill-Manning [171] dates from 1997 and
is probably the most exhaustive description of Sequitur. In Nevill-
Manning and Witten [174] the authors extend the conclusion of the
thesis and analyses further its compression capacity. [173] analyses the
time complexity of Sequitur and the size of the grammars it gener-
ates with respect to the size of the original sequence. Nevill-Manning
and Witten [175] discuss the possibility of complementing a straight-line
learning process with a more traditional inference process that supports
branching and looping. The probably most compact reference for Se-

quitur is [172]. The linear memory usage is further analysed in [176]
and various methods are presented to permit the algorithm to run in
bounded space. Nevill-Manning et al. [180, 181] present a software that
permits to browse a huge collection of library items. These papers also
present some drawbacks of the way Sequitur defines lexical significant
constituents. Finally, Nevill-Manning and Witten [177] compare the size
of the resulting grammar of Sequitur with other offline algorithms.

Figure 2.3: A bibliographic overview of Sequitur

with the empty string). If the digram formed with its predecessor symbol C and
c appears exactly as a right-hand side of another rule (N → Cc), the digram is
replaced by N . If instead Cc already appeared before, a new rule N → Cc is
created and both occurrences of Cc replaced by N . Such a replacement has as
consequence a reduction in the number of occurrences of C which can produce
that it does now appear only once. If C is a non-terminal, this violate the second
constraint and therefore the rule C → α is eliminated and the only occurrence
of C replaced by α.

Thanks to a neat algorithmic design, and supposing constant-time look-up in
a hash-table, the run time of Sequitur is linear. See Figure 2.3 for an overview
of the existent literature presenting Sequitur.

2.6.4 DNASequitur

Trying to compress DNA through a context-free grammar, DNASequitur [56]
modifies Sequitur and analyses different transformations from a SLG to a
symbol stream. The modifications to Sequitur consist in considering also
reverse complements. Beside this, the main features of the algorithm (the online
behavior and the two constraints) remain unchanged.
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2.6.5 Sequential

An undesirable property of Sequitur is that two non-terminals may produce
the same constituent. An algorithm presented by Kieffer and Yang [127] and
later called Sequential by Charikar et al. [51] addresses this issue and modifies
Sequitur by adding a third constraint that ensures that this will not happen.
While producing smaller grammars in the general case, this results in a non-
linear algorithm.

2.6.6 Bisection / MPM

Suppose that n, the size of the sequence, is a power of 2. The Bisection

algorithm, outlined in Kieffer and Yang [127], splits the sequence iteratively in
two and assigns the same non-terminal if the substring is the same. For the case
that n is not a power of 2, the axiom right-hand side consists in two or more non-
terminals of decreasing powers of two. This was then generalised in Kieffer et al.
[128] with the Multilevel Pattern Matching (MPM) algorithm, permitting
to split the sequence into more than two parts.

2.6.7 RePair

Instead of an online treatment of the sequence like the LZ family or Sequitur,
RePair by Larsson and Moffat [139] takes an off-line approach and considers all
digrams of the original sequence. Each iteration consists in replacing the most
frequent digram of the current sequence by a new symbol. The fact of focusing
only on digrams permits a linear implementation which is given in the same pa-
per. A theoretical analysis of its compression capacity can be found in Navarro
and Russo [170]. It should be noted that RePair was not the first to implement
this idea. Wolff [242] used it for pattern discovery in natural language and Ángel
Jiménez-Montaño [9] for an approximation of his grammar complexity on ge-
netic sequences. In pure data compression, the Byte-pair encoding compression
algorithm implements this idea [92]. See also Bell et al. [26, Chapter 8.2.1] and
corresponding bibliographical references.

2.6.8 Longest First

A similar — but somehow opposite — idea of RePair is to select the longest
repeat in each iteration. The core idea was introduced in 1999 [27] (in the same
conference and the same session as RePair) as a general purpose compressor.
It is also an off-line algorithm and looks for interesting repeats of the original
sequence. The algorithm iteratively selects the longest repeat in the sequence,
extracts it and replaces all the occurrences of this repeat with a pointer. Later
this idea was extended in order to also take into account the right-hand side of
previous introduced rules. In Lanctot et al. [138] this heuristic is used to define
the algorithm GTAC which is an entropy estimator of DNA sequences. For a
long time, claims of a linear implementation for this algorithm were made [116,
138, 167, 177] and finally such an algorithm was given by Nakamura et al. [168],
based on sparse lazy suffix trees.
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2.6.9 Greedy

Similar to LongestFirst and RePair, Greedy [13] is another off-line algo-
rithm that selects in each iteration a repeat to be replaced by a new symbol. In
this case, the repeat that would yield the best contraction of the final grammar
is chosen. Apostolico and Lonardi [13] define a compression schema and the
contraction caused by a word is defined accordingly. This is applied particu-
larly to biological sequences [14]. Nevill-Manning and Witten [177] use the final
size of the grammar as size measure, and their algorithm Compressive selects
a repeat whose replacement reduces the most the size of the grammar.

2.6.10 MDLCompress

MDLCompress [82, 84] is similar to the strategy of Greedy and Compres-

sive. It selects in each iteration a repeat that reduces the most the description
length of the grammar. The motivation however, consists in finding a correct
model rather than compression. The authors interpret a SLG as a model (the
axiom rule) plus data (the rest of the rules) and derives from there a more sophis-
ticated score function. The resulting grammar is used less for its compression
capacity than for its potential to detect intruders and discover MicroRNA tar-
gets (see Sect. 2.5). The original algorithm [83], only considered occurrences in
the axiom rule, but MDLCompress also considers the “model” and changes the
score function used to select a repeat. This score (“symbol compression ration”)
of word s is defined as:

|poss(w)|
(

log2

(

R̂
)

− log2 (|poss (w) |)
)

+ |w|

|poss(w)| ∗ |w|

with R̂ “constant for a given partition of sybmols”. Evans et al. [84] also make
references to some post-processing particular to DNA sequences, but no details
are given.

2.6.11 Bounding the Worst Case

Since the re-discovery of smallest grammars as approximation for Kolmogorov
complexity by the work of Lehman, Charikar and co-workers [51, 141] several
papers define algorithms that ensure that the ratio of the size of a smallest
grammar g∗ and the size of the resulting grammar g is bounded in the worst
case.

Charikar et al. [51] themselves conclude giving two algorithms that achieve
better worst case approximations than the bounds they found for other al-
gorithms. The first is based on an approximation algorithm for the shortest
superstring problem with an approximation ratio of O(log3 n). The second al-
gorithm achieves an approximation ratio of O(log n/g∗), and is based on the
LZ77 factorisation of the original sequence and involves a rather complicated
maintenance of a balanced binary tree. This is simplified in a simultaneous work
by Rytter [200] that achieves the same ratio using also the LZ77 factorisation
and an AVL-tree.

After this initial approximation, Sakamoto continued the work. Based on
the RePair algorithm, he presents in [204] a linear algorithm that achieves a
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O(log2(n)) approximation ratio, which was improved in a journal version [205]
to O(log n/g∗). The next challenge he and his co-workers focused on was to
reduce the space requirements and they present [206] a linear algorithm that
only needs O(g∗ log g∗) space with an approximation ration of O(log g∗ log n).
Recently they presented yet another algorithm that performs well on all three
fronts: it consumes O(g∗ log g) space, needs O(n log∗ n)8 time and achieves an
O((log∗ n) log n) approximation ration. Another variant is proposed by Gagie
and Gawrychowski [93], where they consider a streaming model and prove that
with constant memory and a logarithmic number of passes over a constant num-
ber of streams, a O(min(g log g,

√

n/ log n)) approximation algorithm is possi-
ble.

It should be noted that the definition of size of a grammar in these papers
differs from ours (Def. 2), because there |G| is defined as being the sum of the
symbols in the right-hand side only (we will denote by m this amount). This
is practical for an asymptotic behaviour because it eases the calculations and
because the number of non-terminals is bounded by m/2. A similar argument
can be used to justify the use of grammars in Chomsky Normal Form in most
of these algorithms: as they are no unitarian nor ǫ-rules, the ratio of the size of
the canonical CNF and the size of the original one is constant. However, these
constants can make a huge difference in practical applications (see Sect. 2.7).

2.7 Comparison

In the presentation of the algorithms in the previous section, we observe an
evolution from on-line algorithms (LZ78, Sequitur and its descendants) to
linear off-line (RePair, LongestFirst) to reach finally more complex off-line
algorithms (Greedy, MDLCompress). In this section we analyse the conse-
quences that this increasing complexity of these algorithms has on the size of
the final grammar.

Previous studies performed similar comparisons, but considered the asymp-
totic lower and upper bound for a worst case. As we have seen, the standard
measure is the ratio between the size of the output grammar, and the size of a
smallest grammar. In particular, Charikar et al. [51] analyse and compare the
approximation ratio of existing algorithms, including LZ78, Bisection, Se-

quential, LongestFirst, Greedy and RePair. Of these, the one with best
upper bound is Bisection with O((n/ log n)

1
2 ). However, it is not resolved if

these bounds are tight. Considering the difference with respect to the known
lower bound this does not seem to be the case. LongestFirst, Greedy and
RePair are upper-bounded in general and the best known lower bound for the
worst case for Greedy is a constant (5 log 3/(3 log 5) ≈ 1.138).

Also, the use of the Big-O notation in this analysis can be misleading in
practical applications. It is known [51] that the size of the LZ77 factorisation of
a sequence is a lower bound on the size of a smallest grammar for this sequence,
which is the reason that the best approximation algorithms are based on this
decomposition. We computed the LZ77 factorisation on the Canterbury corpus
(see Table 2.2(a)). For all but one file (namely, ptt5) the size of the LZ77
decomposition is bigger than n/ loge(n), which means that the trivial grammar

8log∗ n is the iterated logarithm of n, the maximal number of logarithms in the expression
log log ... log n, such that it is greater than 1.
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〈Σ,Σ∪{S}, {S → s}, S〉 of size n+1 is already within an log n factor of a smallest
grammar for all but one sequences of the Canterbury corpus. As often, the
constant factor hidden in the Big-O notation can have dramatic consequences
in practice.

Regarding practical application, a similar — but much more reduced in scope
— comparison was performed by Nevill-Manning and Witten [177].

2.7.1 IRR: a general offline framework

As we have seen, most offline algorithms follow the same general scheme. First,
the grammar is initialised with a unique initial rule S → s where s is the in-
put sequence and then they proceed iteratively. At each iteration, a word ω
occurring more than once in s is chosen according to a score function f , all the
(non-overlapping) occurrences of ω in the grammar are replaced by a new non-
terminal N and a new rewriting rule N → ω is added to the grammar. We give
pseudo-code for this general scheme that we name Iterative Repeat Replace-
ment (IRR) in Algorithm 1. Recall that R̂(s) is the set of non-overlapping
repeats of size at least two and Lω(s) the normalised non-overlapping list of
occurrences of ω in s. Gω 7→N is the result of replacing each occurrence of ω
in Lω(r(G)) by a new symbol N and adding the rule N → ω to the set of
productions.

Algorithm 1 Iterative Repeat Replacement (IRR)
IRR(s, f)
Input: s is a sequence, and f is a score function
1: G ←[ G({N0 → s})
2: while ∃ω : ω ← [ arg max

α∈R̂(r(G))

f(α,G) ∧ |Gα7→N | < |G| do

3: G← [ Gω 7→N

4: end while
5: return G

The IRR scheme enables us to compare in a uniform framework the be-
haviour of different score functions f that are used in the classical algorithms
for choosing the words to replace. LongestFirst correspond to f(ω,G) =
fML(ω,G) = |ω|. Choosing the most frequent repeat, like in RePair, corre-
sponds to use f(ω,G) = fMF (ω, G) = |Lr(G)(ω)|. Note however the difference
that IRR is more general than RePair and may select a word which is not a
digram.

In order to derive a score function corresponding to Compressive, note that
replacing a word ω by a non-terminal results in a contraction of the grammar of
(|ω|−1)∗|Lr(G)(ω)| and its inclusion in the grammar adds |ω|+1 to the grammar
size. This defines f(ω, G) = fMC(ω, G) = (|ω| − 1) ∗ (|Lr(G)(ω)| − 1) − 2. We
call these three algorithms IRR-ML (maximal length), IRR-MF (most frequent)
and IRR-MC (maximal compression), respectively.

The complexity of IRR when it uses one of these scores is O(n3): for a
sequence of size n, the computation of the scores involving only |Lr(G)(ω)| and
|ω| of the O(n2) possible repeats can be done in O(n2) using a suffix-tree–
like structure. The number of iterations is bounded by n since the size of the
grammar decreases at each step.
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2.7.2 Final grammar size

We performed a comparison of the final grammar size obtained by the algorithms
presented in Sect. 2.6 on the Canterbury and DNA corpora (see Appendix A).
We exclude MDLCompress and Greedy whose goal is to compress the final
bitstream (also, no public version of MDLCompress is available, only source
code for the older OSCR algorithm [82]). We could not found any available
implementation of DNASequitur9 and it is not clear how to weight reverse-
complement non-terminals when comparing the grammar size. For Bisection

and Sequential we used Yann Ponty’s implementation10. It presented prob-
lems with the files containing non-printable symbols of the Canterbury cor-
pus, so we excluded these files for these two algorithms. José Rondo from the
University of Chile implemented the approximation algorithm of Rytter [200]
(personal communication). As the final grammars is completely in Chomsky
Normal Form, we only report the sum of the right-hand side (not the number of
productions). Again, the implementation presents some problems with the file
containing non-printable symbols which we thus excluded. For LongestFirst,
RePair and Compressive we used our own IRR implementation For LZ78

we post-processed the output factorisations to transform them into context-free
grammars, where every non-terminal appears at least twice (if not, it is elim-
inated and replaced with its right-hand side). Finally, the reader should bear
in mind that a tuple 〈m, ℓ〉 counts as one for the computation of the size of the
LZ77 factorisation.

The results in Table 2.2 reveal the preeminence of the greedy strategy of
IRR-MC. IRR-MF comes close (obtaining a smaller grammar in one case) and
could be interesting because of the linear RePair and the additional useful in-
formation that every rule length is of size two. But the huge difference in the
case of sequence humghcs — a sequence with high number of repeats (see Ta-
ble A.3) —, where the grammar obtained by IRR-MF is a 25% bigger than the
one of IRR-MC illustrate that there are cases where the final size can vary dras-
tically. Bisection and LZ78 perform poorly, but this seems obvious because
it is not their goal to optimise the size of the final grammar.

2.7.3 DNA Compression

Thanks to the easily interpreted structure they generate and the failure of other
general purpose algorithms, it seemed natural to apply SLG to compress DNA
sequences. To our knowledge, there have been four different attempts:

1. Greedy (2000, see Sect. 2.6.9) [14],

2. GTAC (2000, see Sect. 2.6.8) [138],

3. DNASequitur (2004, see Sect. 2.6.4) [56],

4. MDLCompress (2007, see Sect. 2.6.10) [84].

We summarised the resulting compression in Table 2.3. The results for
the Greedy algorithm [14] were obtained with the software the authors pub-
lished11. GTAC [138] only reports a theoretical entropy measure, not the real

9The original code of N. Cherniavsky got lost (personal communication)
10http://yann.ponty.free.fr/approximations.html
11http://www.cs.ucr.edu/~stelo/Offline/
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Table 2.2: Final grammar size for straight-line grammar algorithms on Canterbury (a) and DNA corpus (b). Absolute numbers are given
for LZ77 and IRR-MC only, the others are given as percentage with respect to IRR-MC. For Rytter only the sum of the length of the
right-hand sides is given, as the final grammar is in CNF. The best for each row is boldfaced.

(a) Canterbury Corpus

sequence LZ77 Rytter
Sequen Sequi Bisect

LZ78
IRR- IRR- IRR-

tial tur tion ML MF MC

alice29.txt 22,906 250.54 14.08 19.87 236.89 105.71 36.72 3.54 41,000

asyoulik.txt 21,643 249.41 14.60 17.74 229.34 95.23 37.35 2.76 37,474

cp.html 4,587 178.88 28.73 22.20 248.46 102.40 19.43 5.36 8,048

fields.c 1,871 171.55 41.54 20.26 297.01 136.39 16.51 10.22 3,416

grammar.lsp 855 160.56 41.68 20.16 255.67 102.04 17.45 9.64 1,473

kennedy.xls 152,224 – – 4.40 – 28.67 7.69 0.09 166,924

lcet10.txt 52,611 303.28 18.97 24.54 273.66 169.90 44.74 3.12 90,099

plrabn12.txt 72,628 284.51 7.15 14.86 219.96 70.35 45.09 0.94 124,198

ptt5 25,467 – – 23.39 – 66.98 25.07 1.12 45,135

sum 7,914 – – 25.31 – 99.24 13.59 6.21 12,207

xargs.1 1,172 147.01 25.62 16.10 230.71 82.75 12.36 6.53 2,006

average – 218.22 24.05 18.98 248.96 96.33 25.09 4.50 –

(b) DNA Corpus

sequence LZ77 Rytter
Sequen Sequi Bisect

LZ78
IRR- IRR- IRR-

tial tur tion ML MF MC

chmpxx 16,458 302.58 3.62 5.61 167.94 42.4 59.35 0.01 28,706

chntxx 21,604 306.63 2.83 5.93 174.29 41.25 58.88 0.03 37,885

hehcmv 31,085 291.36 3.63 4.67 178.94 43.25 61.09 0.09 53,696

humdyst 6,143 271.77 3.46 5.92 160.28 37.48 53.29 0.02 11,066

humghcs 9,945 264.93 46.36 20.3 250.92 91.86 36.32 25.46 12,933

humhbb 10,894 279.61 7.99 7.16 176.20 44.38 54.72 2.27 18,705

humhdab 8,928 273.46 6.42 9.77 169.64 44.99 51.74 0.27 15,327

humprtb 8,622 272.68 5.47 7.74 169.96 43.98 52.94 0.35 14,890

mpomtcg 25,774 310.05 5.08 5.62 182.07 44.12 59.01 0.90 44,178

mtpacga 14,060 300.70 4.51 6.05 169.52 42.46 57.00 0.29 24,555

vaccg 25,718 303.81 3.17 5.37 177.56 46.13 61.62 -0.05 43,701

average – 288.87 8.41 7.65 179.76 47.48 55.09 2.69 –
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sequence
DNA IRRc-

Greedy
MDL

AAC-2
IRRc-

Sequitur ML Compress ML-5
chmpxx 2.12 3.1635 1.9022 - 1.8364 1.6929
chntxx 2.12 3.0684 1.9986 1.95 1.9333 1.6306
hehcmv 2.12 3.8455 2.0158 - 1.9647 1.8765
humdyst 2.16 4.3197 2.3747 1.95 1.9235 2.2396
humghcs 1.75 2.2845 1.5994 1.49 1.9377 1.9626
humhbb 2.05 3.4902 1.9698 1.92 1.9176 1.9278
humhdab 2.12 3.4585 1.9742 1.92 1.9422 1.9913
humpr 2.14 3.5302 1.9840 1.92 1.9283 1.9682
mpomtcg 2.12 3.7140 1.9867 - 1.9654 1.9737
mtpacga - 3.4955 1.9155 - 1.8723 1.8767
vaccg 2.01 3.4782 1.9073 - 1.9040 1.7861

Table 2.3: Results of existing SLG compressors that have been applied to DNA
sequences. IRRc refers to the IRR algorithm where the complimentary strand
is also taken into account. All numbers refer to bits per symbol.

bit string12. We used our own implementation of LongestFirst (IRR-ML),
adding an option of searching also for complimentary repeats (like in the original
GTAC algorithm). We encoded r(G) with a 0-order adaptive arithmetic coder,
adding one bit per non-terminal to differentiate normal repeats from reverse-
complement ones. Unfortunately, copyright issues prevent a public available
version of MDLCompress. Our results including the published score function
in our IRR schema yielded slightly different results which may be due to the
post-processing steps applied by the authors or just on how ties were resolved.
We preferred therefore to report in Table 2.3 only published results for this
algorithm [84].

For the sake of comparison, we completed this with the results using an
higher-order adaptive arithmetic coder with a context of 2 (which is reported
by Grumbach and Tahi [107] to be the value that achieves best compression).
The results of IRR-ML are surprisingly bad. We suppose that is due to the big
number of rules this algorithm generates, and to compare we run IRR-ML for
only five iterations. The result can be appreciated in the last column and should
be compared with the result of state-of-the-art DNA compressor (Table 2.1). It
performs well in general, but some exceptions (humdyst and humghcs) reveal
that a more elaborated schema is necessary to yield a competitive DNA com-
pressor. The only algorithm that outperforms (even if only slightly) AAC-2 is
MDLCompress, excepting one case.

We conclude this comparative study remarking that the additional complex-
ity of off-line algorithms pays out in the final size. For DNA Compression, the
best results are obtained with MDLCompress, even if none of them seems to
be able to compete against standard DNA compressors. The difference is even
more acute if the comparison is performed regarding the (somehow more direct
measure of) size of the final grammar. The off-line algorithms perform much
better than any of the on-line ones. Inside those, IRR-MC itself differentiates

12Also, Nakamura et al. [168] report an error in this algorithm, which leads (in the best
case) to a non-linear algorithm or to an erroneous output
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clearly from the others and represents the current state of the art.
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Chapter 3

Efficiency

We have seen a wide range of algorithms that infer a straight-line grammar from
a given sequence. Some of them are on-line and strive for speed and reduced
space use. They are adapted to work efficiently in on-line applications, streaming
pipelines or in general for use where time or memory are very reduced. However,
when compared with respect to the size of the final grammar, the metric we use
to measure the quality of the final structure, they perform poorly compared to
off-line algorithms. Moreover, when the final goal is to learn something about
the structure, time is less constraining. Of course, the final algorithm still has
to be feasible.

Therefore, in this section we consider the general IRR framework. We ex-
perimented with different score functions to choose the right constituents, and
the MC strategy proved to obtain the best results. Here, we will focus on how
to implement efficiently the off-line IRR framework in a way that permits it to
scale easily.

There has been considerable work to improve the efficiency of individual IRR
algorithms. In particular, we already mentioned that RePair [139] – which is
similar to IRR-MF – runs in provable linear time in the size of the input. The
same is true for LongestFirst – equivalent to IRR-ML – based on a careful
update of a sparse lazy suffix-tree [168]. These solutions however are ad-hoc
and depend strongly on special characteristics of this strategy. For example,
any repeat selected by IRR-MF will never appear inside a right-hand side of a
non-axiom rule. Conversely, any selected repeat by IRR-ML will never contain
a previously introduced non-terminal. Other choices for the function score vio-
lated these invariants and it is not clear how to adapt the given solutions to the
general case.

The bottleneck (both asymptotically and in practical instances) in these
offline algorithms lies in computing all repeats and calculating the score function
for every such substring. This presents a real problem when these algorithms
are being applied on DNA sequences: not only can the sequences be longer by
orders of magnitude, but the presence of long repeats means that the number
of repeats can grow very fast (see Fig. 3.1(a)). Most of these repeats may
not be interesting, in the sense that their score is known to be smaller than
that of another. This reasoning leads to a definition of equivalence classes and
maximality of a repeat. In Sect. 3.2 we consider different classes of repeats
and analyse how the IRR algorithms behave if the repeats they consider are
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limited to these classes. For one of these classes we present a linear algorithm
to compute all repeats of this class.

In Sect. 3.3 we consider the effects on the final grammar size and execution
time of not filtering out overlapping repeats, and estimate the number of non-
overlapping occurrences with the total number of occurrences.

Finally, we consider how to reduce the time spent in computing all repeats by
using the information that was computed in the previous iterations. Most of the
repeats are not modified from one iteration to the next, and at an intuitive level
it seems that much computation cycles are wasted calculating the same result
over and over again. A similar approach was considered by Markham et al. [158]
in order to improve the efficiency of their MDLCompress algorithm. They
store in a table the information necessary to compute the score for all repeats,
together with pointers that permit to update this information. Though the
authors report that the number of repeats apparently is linear in the sequence
they tried, a theoretical upper bound is O(n2). Our solution differs from this,
and is inspired by the fact that most of the time is spent in computing the
possible repeats, and not in the computation of the score once the repeats are
given. We present therefore in Sect. 3.4 a data structure almost equivalent to
an enhanced suffix array, that permits to be updated efficiently while a repeat
in the index sequence is replaced by a new symbol.

A preliminary version of Sect. 3.2.3 and Sect. 3.3 was realised in collab-
oration with the Natural Language Processing Group from the University of
Córdoba, Argentina through a joined INRIA/MINCyT project and accepted
for publication in 2010 [46]. Sect. 3.4 was realised in collaboration with Pierre
Peterlongo, from the Symbiose team at the INRIA research center of Rennes,
and was published in 2009 [96], based on a preliminary version presented at the
Prague Stringoloy Club conference in 2008 [95].

For all these algorithmic improvements, we will use an index data structure
called enhanced suffix array which is defined in the following section.

3.1 The Suffix Array

A suffix array is part of the suffix-tree data structure family. It consists in a
lexicographically ordered array of all suffixes of the input sequence. The suffixes
themselves are not stored but instead their starting positions.

Definition 8 (Suffix Array). Consider a sequence s of length n over an alphabet
Σ with an order ≺. The lexicographical extension to Σ∗ will also be denoted by ≺.
Let s̃ = s$, with a special character $ not contained in Σ, smaller than every
element of Σ.

The suffix array, denoted by sa, is a permutation of [0..n] such that:

∀ i, 0 < i ≤ n : s̃[sa[i− 1]..] ≺ s̃[sa[i]..]

Recall that s[i..] denotes the suffix of s starting at position i.

Usually, the suffix array is used conjointly with an array called lcp, that
gives the length of the longest common prefix between two suffixes whose starting
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(a)

(b)

Figure 3.1: Number of repeats (a) and maximal repeats (b) over prefixes of
the Large Corpus. Largest maximal and super-maximal repeats follow a similar
trend to maximal repeats
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positions are adjacent in sa. Formally,

lcp[0] = 0,

∀ i ∈ [1, n] : lcp[i] = k such that

s̃[sa[i− 1]..][..k − 1] = s̃[sa[i]..][..k − 1] and s̃[sa[i− 1]..][k] 6= s̃[sa[i]..][k].

Eventually, a third array called isa (for inverse suffix array) may be used
conjointly with sa and lcp. This array gives, for a position p in s, the index i
in sa such that sa[i] = p. Thus sa[isa[p]] = p.

Suffix arrays can be constructed in linear time [123, 129, 133] but non-linear
algorithms [140, 156] are usually more efficient for practical applications [192].

The union of sa, lcp and isa arrays is called an Enhanced Suffix Array
(ESA). Enhanced suffix arrays are known to be equivalent to suffix trees [2] in
the sense that they can easily be used to mimic a suffix tree. There are however
more space efficient than suffix trees. This space improvement is compensated in
general by an extra log n time factor when some kind of exact pattern matching
has to be done: while this can be done straightforward on a suffix-tree by reading
the word down the tree (in time O(m), with m the length of the pattern), on
a suffix array a binary search is needed (thus O(m log n)). Alternatively, but
using more extra arrays, this can be done in O(m+log n) [153] or even O(m) [2].

To avoid confusion, we will use the term position when referring to the index
over a sequence and index when referring to any of the arrays of an ESA.

3.2 A Taxonomy of Repeats

Maximal repeats appear in the literature (see notably the classical book of Gus-
field [110]) as a compact representation of all repeats. Differently from normal
repeats, the number of maximal repeats inside a sequence is linear and it is
trivial to recover all repeats from the set of maximal repeats.

A maximal repeat is a repeat such that if it would be extended to its left
or right it would lose some of its occurrences. For the definition, we will prefer
the use of a set notation to refer to occurrences of repeat. Poss(w) = {{j ∈
N : i ≤ j < i + |w|} : i ∈ poss(w)}, the set of intervals of occurrences (where
each interval is expressed as the set of positions). If w has length three, and
appears in position 4 and 6 on sequence s (they overlap), then Poss(w) =
{{4, 5, 6}, {6, 7, 8}}.

Formally:

Definition 9 (Maximal Repeats). The set of maximal repeats (MR) is the
set of repeats such that:

MR(s) = {w ∈ R(s) :6 ∃w′ ∈ R(s) : ∀o ∈ Poss(w) : ∀o′ ∈ Poss(w
′) : o 6⊆ o′}

The property of maximality is strongly related to the context of a repeat. If
the symbol to the left (right) of any occurrence of w is always the same, then w
is not a maximal repeat because it could be extended to its left (right) without
losing any occurrence.

A stronger property is super-maximality. A repeat is super-maximal if it is
not a substring of any other repeat. They can then be defined by looking at
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the set of repeats alone, without need of referring to their occurrences. Our1

definition is equivalent, but uses the notion of occurrences to mirror Def. 9.

Definition 10 (Super-maximal Repeats). The set of super-maximal repeats
(SMR) is the set of repeats such that :
SMR(s) = {w ∈ R(s) :6 ∃w′ ∈ R(s) : ∃o ∈ Poss(w) : ∀o′ ∈ Poss(w

′) : o 6⊆ o′}
= {w ∈ R(s) : ∀w′ ∈ R(s) :6 ∃o ∈ Poss(w) : ∀o′ ∈ Poss(w

′) : o 6⊆ o′}

Frequent repeats are more probable (supposing an i.i.d. source) to be maxi-
mal repeat than longer one, because only one different context suffices to define
them as maximal. This implies that small repeats are likely to be maximal
repeats. For super-maximality the opposite is true: small repeats are less likely
to be super-maximal, and only long repeat have a chance of not being contained
in another repeat.

Largest-maximal repeats lie in between. These are those repeats that have
at least one occurrence not covered by another repeat.

Definition 11 (Largest-maximal Repeats). The set of largest-maximal re-
peats (LMR) is the set of repeats such that :
LMR(s) = {w ∈ R(s) : ∃w′ ∈ R :6 ∃o ∈ Poss(w) : ∀o′ ∈ Poss(w

′) : o 6⊆ o′}

Largest maximal repeats cover the whole sequence, which is not necessarily
true for super-maximal repeats. But they do it in a less redundant way than
maximal repeats. Gusfield names this set near-supermaximal repeats and uses
them to facilitate the explanation of super-maximal repeats. The character-
isation of the largest maximal repeat of Gusfield [110, Theorem 7.12.4, page
147] is given in terms of the leaves of the suffix tree associated to a sequence.
Recently, this class of repeats were re-discovered [183] and successfully applied
to the automatic detection of CRISPRs, a genomic structured found in archaea
and bacteria that are expected to have a role in their adaptive immunity [199].
We will see in Sect. 5.4.1 that Definition 11 corresponds naturally to irreducible
motifs when referring to rigid patterns.

In Fig. 3.1 the difference between the number of simple and maximal repeats
can be observed. Largest and super-maximal repeats follow a similar trend to
Fig. 3.1(b).

3.2.1 Bounds

One of the key features of maximal repeats is that their total number can be
bounded by the size of the sequence [110]. However, the total number of oc-
currences of maximal repeats can still be quadratic (see Lemma 3). Largest-
maximal repeat could fill the space between the quadratic number of total occur-
rences of maximal repeats and the linear number of total occurrences of super-
maximal repeats, but a tight upper bound is still unknown. Table 3.1 resumes
what is known about the bounds of the class of repeats we presented. We proved
all non-trivial bounds. nX(k) denotes maxs:|s|=k{|X(s)|} where X stands for
one ofR,MR,LMR or SMR and OccsX(k) = maxs:|s|=k{

∑

w∈X(s) |poss(w)|}.

Lemma 1. nX (k) ∈ Θ(k) for X =MR,LMR,SMR.

1This definition is due to Jacques Nicolas.
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(a) bible

(b) E.coli

(c) world192

Figure 3.2: Number of all four classes of repeats for successive prefixes of
bible.txt (a), Ecoli (b) and world192.txt (c)44
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X nX(k) Proof OccsX(k) Proof
R Θ(k2) Lemma 2 Θ(k2) Lemma 2
MR Θ(k) Lemma 1 Θ(k2) Lemma 3

LMR Θ(k) Lemma 1 Ω(k
3
2 ) Lemma 4

SMR Θ(k) Lemma 1 Θ(k) Lemma 5

Table 3.1: Upper and lower bounds for the number of normal, maximal, largest-
maximal and super-maximal repeats; and for the total number of occurrences
of these classes.

Proof. It is a known fact that the number of maximal repeats is O(n). The
upper bound is therefore trivial

For the lower bound, we will prove that it holds for super-maximal repeat,
and therefore also for maximal and largest-maximal. Consider the family of
sequences sk = a1a2 . . . ak|a1a2|a2a3| . . . |ak−1ak, over an alphabet of size 2k
(Σ(sk) = a1, . . . , ak, |1, . . . , |k−1). Note that n = |sk| = 3∗ (k−1)+k = 4∗k−1.
There is no repeat of size bigger than two. Moreover, every pair aiai+1 is a
super-maximal repeat: every such pair appears two times and because they are
all different and there are no longer repeats, no other repeat is a superstring of
them. So there are k−1 such repeats, which gives the lower bound Ω(k) for the
number of super-maximal repeats.

Lemma 2. OccsR(k) ∈ Θ(k2)

Proof. The upper bound follows trivially from the number of possible substrings.
For the lower bound, consider sk = a1 . . . aka1 . . . ak of size 2k over an al-

phabet of size k. Every substring of a1 . . . ak is a repeat and they are O(k2)
such substrings.

Lemma 3. OccsMR(k) ∈ Θ(k2)

Proof. Again, the upper bound follows trivially from the number of possible
substrings.

For the lower bound consider sk = axkb of size k + 2. Every xi is a repeat
and each such repeat has an occurrence with left context a and right context x
and another occurrence with left context x and right context b. Thus, they are
maximal. xi appears k − i + 1 times and

∑k−1
i=1 k − i + 1 ∈ O(k2).

Lemma 4. OccsLMR(k) ∈ Ω(k
3
2 ).

Proof. Consider the family of sequences sk = x|xx|xxx| . . . |xk, over an alphabet
of size k. The size n of sk is k +

∑k
i=1 i = k + k∗(k+1)

2 .
Every xi for i < k is a largest maximal repeat: it is repeated and there

is one occurrence which no other repeat covers. This occurrence is always the
first appearance of this repeat. Repeat xk−1 appears three times, xk−2 appears
six times (its first occurrence thanks to which it is largest, two times in xk−1,
three times in xk), and in general xk−i appears

∑i+1
j=1 j. The total number of

occurrences of all largest maximal repeats is then:
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1

2

k
∑

i=1

i2 +O(k2) = O(k3)

As |sk| ∈ O(k2), this gives the claimed lower bound.

Lemma 5. OccsSMR(k) ∈ Θ(k)

Proof. The lower bound is a direct corollary from Lemma 1 which bounds the
number of different super-maximal repeats.

For the upper bound, note that no occurrence can completely be contained
in another occurrence. Therefore, each occurrence has at least one position that
makes it super-maximal and there exists then an injective function from the set
of occurrences to the set of positions.

In Fig. 3.2 we computed the number of these repeats on successive prefixes
of the Large corpus. A clear difference emerges between the DNA sequence
and the others: not only is the absolute number of the different number of
repeats higher, but one can see an escalated behavior of the normal repeats
when entering a repeat-rich zone. The other type of repeats however, seem
to behave more uniformly. Finally, an expected difference can be appreciated
between the semi-structured text (world192.txt) and the natural language one
(bible.txt): the total number of repeat of the former is almost doubled but
the difference between the higher classes of repeat is less noticeable.

3.2.2 Computation

An ESA enables computation in O(n) of maximal repeats [110, 134] and super-
maximal repeats [2, 110]. Gusfield also states that near-supermaximal repeats
can be computed in linear time using a suffix tree, though without giving much
detail.

We present here a linear algorithm that computes directly largest-maximal
repeats using an ESA. Our emphasis on “directly” is because an easier linear
algorithm to compute them consist in filtering maximal repeats. This algorithm
is due to Jacques Nicolas and we outline it here shortly. We start marking
all maximal repeat occurrences that are not covered to the right by another
repeat. These correspond to internal nodes with at least one leaf-daughter in
suffix trees and suffix array indexes i such that lcp[i] = |w| with w the maximal
repeat. There are only a linear number of such occurrences. Like usual with
suffix data structures, the treatment for the right context — which normally is
straightforward — differs from the one for the left context. To see that there
is no other repeat that covers each one of them on the left, we perform the
following algorithm: we save all these positions in an array of size n. Then, we
read this array from left to right, computing for each occurrence o of maximal
repeat w its end position (o + |w|). If another occurrence o′ > o of w′ 6= w is
contained in this coverage (|w′| + o′ < |w| + o), then we eliminated occurrence
o′. At the end, only occurrences of largest maximal repeats remain.

Our algorithm avoids to compute all maximal repeats, thus reducing memory
storage. As we have already seen, a not-so-easy-computable characteristic for
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an occurrence is to be left-context unique. This is that the symbol to the left of
this occurrence differs from all the left context of all others occurrences. On a
suffix-tree, the left context of leaf v (which we denote by lc(v)) is the (i− 1)-th
symbol of the sequence, where i is the position defined by leaf v.

We traverse the lcp-interval tree [2] and for each index we calculate if this
leaf is left-context unique. If it is, we mark the corresponding father node as a
largest-maximal repeat. We based the notation of the algorithm on the one of
Puglisi et al. [193] to calculate maximal repeats.

A standard way of reasoning with repeats over the suffix array is to regard
the decreasing or increasing of the values in the lcp array. A decreasing value
correspond to the end of one or more trees. In this case, the leaf correspond to
the first of those trees that ends. If the lcp value remains equals, then the leaf is
the one of the current tree. Finally, if it is increasing, then a new tree started,
and the leaf corresponds to this new one. Pseudo-code for our algorithm is given
in Algorithm 2.

Algorithm 2 Calculation of largest-maximal repeats with an enhanced suffix
array
LMR-SuffixArray(lcp[ ])
Input: the LCP array
Output: all the largest maximal repeat in the form 〈length : start, end〉 where

start and end defines the interval of occurrences over the suffix array
1: lb, lcp, islmr = 0,0,false
2: stack.push(〈lb, lcp, islmr〉)
3: for i from 1 to n do
4: lb ← [i
5: if lcp[i + 1] < stack.top().lcp then
6: stack.top().islmr ← [ stack.top().islmr ∨ isLCUnique(i)
7: while lcp[i + 1] < stack.top().lcp do
8: lb← [ stack.top().lb
9: 〈p, lcp, islmr〉 ←[ stack.pop()

10: if islmr then
11: print 〈lcp : p, i〉
12: end if
13: end while
14: end if
15: if lcp[i + 1] > stack.top().lcp then
16: stack.push(〈lb, lcp[i + 1], false〉)
17: end if
18: if i = lb then
19: stack.top().islmr ← [ stack.top().islmr ∨ isLCUnique(i)
20: end if
21: end for

The test i = lb (line 18) takes care of the case where the current leaf was
already tested because it belongs to a tree that was popped from the stack

Because the number of times the while loop is executed is linear (one for
each right largest-maximal repeat), the execution time is Θ(n), supposing that
isLCUnique is constant. This function returns true if lc(i) does not occur as left
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Figure 3.3: Execution time (in seconds) of four different classes of repeat for
the Large corpus. Time is given in seconds, represents user time on a Intel(R)
Xeon(R) 2.93GHz CPU with 6GB of memory running Fedora 12 (Constantine)
and is averaged over 20 executions. See the text for details on the algorithms
used.

context of any other leaf of the immediate super-tree of i. To achieve constant
computation of this function, we extend the idea used by Puglisi et al. [193] to
obtain a linear time for the computation of supermaximal repeats. Auxiliary
arrays next and prev are used that keep the next (previous) occurrence of lc(i) as
a left context. That is, for a position i, prev[i] = j (next[i] = j) if lc(j) = lc(i)
and for all k such that j < k < i (j > k > i), lc(k) 6= lc(i). This computation can
be done in linear time (linear in max(|Σ|, n)). Finally, for each tree we need to
know where it does finish. We store this information in another array (endTree)
where in each position the end of the current tree of this position is stored. This
also can be computed in linear time, by a previous traversal of the lcp-interval
tree. Finally, isLCUnique correspond to prev[i] < stack.top().lb ∧ next[i] >
endTree[i].

Algorithm 2 permits also to calculate in linear time what Gusfields [110]
called the degree of super-maximality of a largest-maximal repeat: the percent-
age of occurrences that are left-context unique.

We implemented algorithms to recover all four classes of repeats, based on
an enhanced suffix array. For the maximal repeat, we used the algorithm
from Abouelhoda et al. [2], Puglisi et al. [193], for super-maximal repeats
again [193], Algorithm 2 for largest-maximal repeat and the trivial one2 for
computing normal repeats. In Fig. 3.3 we compare the execution time of these
algorithms on the Large corpus. We notice a huge difference between the time
required to compute simple repeats and the time required for all others repeat.
A second difference is between maximal repeats and the two other classes, whose
time is comparable (though super-maximal repeats require consistently less in
all three cases).

2Every time the lcp value increases, add a repeat to the stack, and output it if the lcp

values decreases
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Figure 3.4: Size of the final grammar obtained with IRR-MC of the four different
classes of repeats for the Large Corpus.

3.2.3 Use in IRR

In the IRR schema however, the computation of the repeats has to be done in
every iteration, so the results from Fig. 3.3 cannot be extrapolated to the total
execution time of IRR. Here we analyse briefly this execution time, and compare
the size of the grammars obtained at the end. We focus only on IRR-MC, the
algorithm we identified as generating the smallest grammars (see Sect. 2.7.2) .
Instead of searching over all repeats, we replaced R̂(s) in Algorithm 1 (p. 34)
with the other classes of repeats. On Fig. 3.4 we report the length of the final
grammars obtained with IRR-MC. Except for E.coli, the final grammar ob-
tained with normal repeats and with maximal repeats are exactly the same. The
final size of the grammars obtained with largest-maximal repeats are slightly
bigger while the difference of the grammars obtained with super-maximal re-
peats is considerable.

Regarding the gain in execution time, using super-maximal repeats not only
results in bigger grammars, but also takes much more time to compute as can be
appreciated in Fig. 3.5(a). This is probably due to the much higher number of
iterations that are executed because of the use of large repeats. The difference
between the use of largest-maximal repeats and maximal repeats is less than
the difference in the one-time execution that we measured in Fig. 3.3 (compare
with Fig. 3.5(a)). This holds also with respect to simple repeats: we suppose
that in the last iterations, the difference between these three classes of repeats
become less noticeable.

Of course, the improvement considering only maximal repeat varies depend-
ing of the sequence. On the 557 Knt (kilo-nucleotides) sequence of the maize
(zhea mays) mitochondrion, known for having a large number of repeats, we
reached a speed-up of 6.6 times compared to the use of IRR-MC using normal
repeats.

Comparing the speed-up with the final grammar size, we choose to focus on
the use of maximal repeats instead of considering all simple repeats. For the
IRR algorithms, this produces little change. For IRR-ML, the chosen word is
always a maximal repeat and for IRR-MF, there is always a maximal repeat
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(a)

(b)

Figure 3.5: User time (in seconds, averaged over 10 executions) for computation
of IRR-MC considering four different classes of repeat for the Large Corpus. Run
on a Intel(R) Xeon(R) 2.80GHz CPU with 32GB of memory running Red Hat
4.1. Fig. (b) is a detail of Fig. (a).
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that has maximal score3:

Proposition 3.

1. If fML(ω,G) = max
α∈R(r(G))

fML(α,G) then ω is a maximal repeat.

2. There is always a maximal repeat ω s.t. fMF (ω,G) = max
α∈R(r(G))

fMF (α,G)

For the case of IRR-MC, we do not have an equivalent property. It could
happen that a repeat that maximises fMC is not maximal. Consider for instance
the case of a non-maximal repeat ω with two occurrences, both of them with
context 〈a, a〉. If both occurrences of aωa overlap (because they occur at position
i and i + |ω| + 1 for some i), then aωa would not be considered and the best
repeat becomes ω. Here we will characterise the condition when a non-maximal
repeat maximizes fMC .

If ω is a repeat, then there is exactly one maximal repeat that contains ω and
appears the same number of times. We call this maximal repeat mr(ω). We are
interested in non-maximal repeats ω such that fMC(ω,P) > fMC(mr(ω),P).
Note that |posr(G)(ω)| = |posr(G)(mr(ω))|+ k1 and |mr(ω)| = |ω|+ k2 for some
positive k1, k2, this is, mr(ω) is k2 symbols longer the ω and have k1 occurrences
that must be eliminated to have a maximal non-overlapping list. Replacing in
the definition of fMC :

(oP(ω)− 1) ∗ (|ω| − 1) > (oP(ω)− k1 − 1) ∗ (|ω|+ k2 − 1)

≡ k1

k2
> oP(ω)−1

|ω|+k2−1|

Supposing that k2 = 1, this gives

|ω| ∗ k1 > oP(ω)− 1 (3.1)

At the same time, supposing that the distribution over the sequence is i.i.d.,

the probability that a word w is a non-maximal repeat is 2 ∗
(

1
|Σ∪N|

)(oP(w)−1)

(it must have all its left-context equal, and all its right-context equal). Let
us remind that |N | increases by one in each iteration of IRR. Both equations
indicate that in order to find a case where fMC is maximal for a non-maximal
repeat, this repeat must have a low number of occurrences. However, in this
case fMC would assign it a lower score. So, in practice, such cases should not
appear too frequently.

Our experiments confirmed this: in all instances but one of the DNA corpus,
IRR-MC behaves as the version of IRR-MC that only looks at maximal repeats.
In each iteration, both algorithms chose the same repeat and consequently at
the end of the execution, both algorithms return the same grammar. File vaccg,
where the two algorithms produce different grammars, presents an instance of
the situation we described above, but the grammar returned by the algorithm
that looks only at maximal repeat is only four symbols bigger than the one
returned by IRR-MC. See Table 3.2.

On top of yielding almost equivalent results in faster time, the use of maximal
repeats has the nice property that the grammar (a slightly modified version of)
IRR returns are irreducible, independently of the score function being used.

3The original RePair (see Sect. 2.6.7) algorithm considers only digrams. In this case, a
non-maximal repeat could be selected.
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Theorem 3. If IRR only considers maximal non-overlapping repeats (two non-
overlapping occurrences must have different contexts), then the resulting gram-
mar is irreducible.

Proof. Recall the definition of an irreducible grammar (Def. 4, page 22). Con-
dition 1 (the grammar is admissible) is trivially true for IRR algorithms, but
Condition 4 (no repeat in the final grammar) may be violated by the IRR schema
if it stops when no further improvement can be made. Nevertheless, it is enough
to change the condition of the while loop in order to continue until G contains
no repeats.

Condition 2 (all constituents are different) is harder to see. A clean demon-
stration is given in Charikar et al. [51, Lemma 6 and 7]. While their notion of
global algorithm is different from IRR, the demonstration in these lemmas can
be applied without modification to IRR.

Finally, an IRR algorithm may still violate Condition 3 (every non-terminal
must appear more than once). Suppose for example that a non-maximal repeat
α is chosen and replaced by N , and that every occurrence of α has as right
context of a. If in a future iteration the repeat Na is chosen, then N would
occur only once in the grammar. In Charikar et al. [51] a special kind of repeat
is defined to avoid these cases. Instead of this, the use of maximal repeat gives
a more general solution: if it is ensured that the selected word has at least
two occurrences in his normalised list with different context, then the resulting
grammar is irreducible.

So, any of the results of Kieffer and Yang [127] that applies for irreducible
grammars applies to grammars obtained inside the IRR framework. This means
in particular, that IRR grammars are universal codes.

3.3 Non-overlapping Occurrences

The total number of times a word occurs in a sequence can be easily computed
in constant time using a suffix tree structure. But the exact computation of the
number of non-overlapping occurrences (|Lr(G)(w)|), is more complicated. The
problem of computing this number is known as the String Statistics Problem.
A solution is based on the construction of the Minimal Augmented Suffix
Tree (MAST) [16] which permits to compute |Lr(G)(w)| in time |w|. The best
known algorithm for the construction of a MAST is in O(n log n) [38] and it
builds in a first phase a suffix tree. So, even reducing the set of candidates to a
linear number using maximal repeats, the total running time for a general IRR
schema is still O(n2 log n) (the MAST must be created in every iteration), and
requires the rather elaborate construction algorithm for a MAST.

We propose a much simpler approach: we ignore overlapping occurrences
and instead of |Lr(G)(w)| we estimate it by the total number of occurrences of
w in G (|posr(G)(w)|). While this score could be very different from the real
contraction that could be achieved by replacing this repeat, our experiments (see
Table 3.2) indicate, that over the DNA Corpus there is only a small difference
between both grammars, and most of the times the version ignoring overlapping
occurrences is actually smaller.
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sequence
Size Time

IRR-MC Accel. ∆ IRR-MC Accel. ∆
chmpxx 28,706 28,754 -0.17 20.61 10.02 205
chntxx 37,885 38,089 -0.54 33.92 16.8 201
hehcmv 53,696 53,545 0.28 65.48 32.21 203
humdyst 11,066 11,201 -1.22 3.99 1.73 230
humghcs 12,933 12,944 -0.09 49.34 5.5 897
humhbb 18,705 18,712 -0.04 19.62 5.01 391
humhdab 15,327 15,311 0.1 9.55 3.77 253
humprtb 14,890 14,907 -0.12 8.45 3.42 247
mpomtcg 44,178 44,178 0.0 55.44 24.6 225
mtpacga 24,555 24,604 -0.2 17.64 8.46 208

vaccg 43,701 43,491 0.48 54.95 23.12 237
average -0.13 299

Table 3.2: Comparison between IRCC-MC and its accelerated version (using
maximal repeats and not considering overlapping for score computation). Time
is given in seconds and differences are given in percentage.

An advantage of only computing the non-overlapping occurrences list for
the selected repeat is that the resulting IRR schema, using maximal repeats,
decreases the complexity from O(n3) to O(n2), for any score whose computa-
tion time is constant. This requires only standard techniques (computation of
maximal repeats). Special care should be taken that the chosen repeat do have
more than one non-overlapping occurrence, in which case adding this produc-
tion rule would actually increase grammar size. In such cases we take the next
best maximal repeat.

Combining the improvements from this section (ignore overlapping occur-
rences) and the one of Sect. 3.2 (use of maximal repeats instead of normal)
gives an accelerated version of IRR-MC. In Table 3.2 we indicate the time that
it took IRR-MC to run on each of the sequence of the DNA Corpus, and the ratio
of the accelerated version and the original. Speed-up varies from two (chntxx)
to nine (humghcs). Except otherwise stated, from now on we will suppose both
of these improvements are included in the algorithm.

3.4 In-place Update of Suffix Array

3.4.1 Motivation

In this section we propose an algorithm to efficiently update a suffix array,
after substituting a word by a new character in the indexed text. This is the
main task in the IRR schema, and differently from what we saw before, we are
not concerned with the detection of an interesting word, but with maintaining
the associated index structure that will permit to find the words in the next
iteration.

Efficient implementation of an elaborate choice of repeat often requires the
use of data structures from the suffix-tree family. These index structures are
well suited for efficient computations on repeats but they have to be built at
initialisation, and then updated at each step of the algorithm with respect to
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sequence modifications. Yet, as pointed out by Apostolico and Lonardi [13],
most of the published work on dynamic indexing problem [201], by updating
a suffix tree [48, 88, 90, 109, 162] or a suffix array [208], focuses on localised
modifications of the string. They do not seem appropriate for efficiently replac-
ing more than one occurrence of a given substring, as they would require one
update operation for each occurrence.

Thus, index structures have usually to be built from scratch at each step of
the algorithm. To our knowledge, only some implementations of LongestFirst

[138, 168], updates a suffix tree data structure after the deletion of all occur-
rences of a word. However, their updating scheme are specific to the longest
matching substrings and seems difficult to adapt to other strategies.

We propose here a solution to the problem of updating efficiently an index
structure while replacing some non-overlapping occurrences of a word of the
indexed text by a new symbol. The first originality of our approach relies
on the use of enhanced suffix arrays instead of suffix trees. A simple way of
updating suffix array (instead of enhanced suffix array, thus without the same
efficiency objective) by lazy bubble sort has been used in Nevill-Manning and
Witten [177]. We propose here, to take advantage of the internal order offered
by enhanced suffix arrays, to simultaneously handle groups of indices.

3.4.2 Double-linked Enhanced Suffix Array

The algorithm presented below consists mostly of moving and deleting lines of
the ESA and keeping lcp consistent. In order to avoid shifting sets of indices,
we link consecutive indices using two additional arrays called next and prev.
Thus, next[i] (resp. prev[i]) gives the index of the next (resp. previous) valid
entry in the ESA. Initially, next[i] = i+1 and prev[i+1] = i. So, if for example
the index i must be deleted, that can be easily done by setting next[prev[i]] to
next[i] and prev[next[i]] to prev[i]. We call the set ESA plus next and prev
arrays the ESADL for Double-Linked Enhanced Suffix Array.

It is worth noticing that an ESADL does not have the exact same properties
as an ESA. Indeed, going from an index i to index i+j may be done in constant
time on an ESA, while this operation in an ESADL requires O(j) time, as
the next array has to be used j times. Moreover, because of ESADL lines
moving, the result of indices comparison may not coincide with the order of
the associated suffixes. For instance, index i may correspond to a suffix with
a lexicographically order greater than a suffix corresponding to index j, even
if i < j. Anyway, an ESADL still allows the detection of repeats (general
repeats, maximal, largest-maximal or super-maximal repeats) in linear time,
because the involved algorithms advance one by one over the arrays like most
of the algorithm over ESA (a notable exception is the algorithm searching for
a substring proposed in Sim [222]). Finally, we remark that the standard ESA
can directly be recovered in one simple pass from ESADL.

We propose an in-place solution, where we always work with the same arrays
and only update the values of their fields. Moreover, during the whole process,
we modify only the prev, next and lcp arrays. Arrays sa and isa remain un-
changed. This approach forces to extend the in-place behavior to the sequence:
we also add two arrays to imitate a double-linked list over the sequence: the
jth position after position i, is denoted by i⊕ j. We compute i⊕ j using links
between sequence positions, indicating for each position its successor. Similarly
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i ⊖ j points to the jth position before i. We define that, if i ⊕ j (respectively
i⊖ j) is out of range, then i⊕ j = n + 1 (respectively i⊖ j = −1).

As we have seen, an IRR-like algorithm proceeds by steps. At each step,
the alphabet grows because of the introduction of a new character: Σk will
denote the alphabet at step k. At each step k the algorithm i) finds a repeat
wk in a sequence s̃(k) defined on the alphabet Σk and returns a list ok of non-
overlapping occurrences of wk ii) updates the sequence s̃(k) and its associated
ESADL replacing the given occurrences of wk by a single new character ck, thus
defining a new alphabet Σk+1 = Σk∪{ck}. The modified sequence is then called
s̃(k+1). Until now, we supposed ok = pos(wk) or ok = L(wk) but the solution
we present here works for any non-overlapping list of occurrences. The whole
iterative process stops either if no more repeats are found in the sequence or
after a fixed number of iterations.

Our contribution focuses on updating the ESADL, at each step k of this
algorithm (part ii).

In the next sections, we describe how to perform the three tasks needed for
updating an ESADL at each step k: 1) delete indices of suffixes starting inside
a wk occurrence; 2) move indices with respect to the alphabetic order of ck;
and 3) update lcp array with respect to recoded occurrences of wk by one single
character. Note that a few values of the lcp array are also modified during step
1 and 2, but only as a consequence of deletions and moves.

Note the difference with the IRR algorithm (Algorithm 1 (p. 34)) that the
wk is only replaced inside the original sequence, not in the right-hand side of
previous introduce rules. To adapt the algorithm here to this general case, a
fourth step would be necessary, that inserts in the enhanced suffix array the
just replaced word.

To better understand the different steps of the algorithms and the modifi-
cations they perform over the suffix array, we will define the concept of left-
context tree. It is worth noticing that we present this structure in order to
help the understanding of our approach and that it is not actually implemented.

The left-context tree

One of the most useful characteristics of a suffix array is that all indices cor-
responding to suffixes starting with the same word (substring) correspond to
an adjacent block. We define here the corresponding concept of word interval.
Based on this, we will define the left context tree of a word ω where the nodes
correspond to a left-context of ω.

An ω-interval is the set {k : ∃ℓ, k = isa[ℓ]∧ s̃[ℓ..ℓ + |ω| − 1] = ω}. This can
also be denoted as an [i..j]-interval, where i and j are respectively the lowest
and highest indices of an ω-interval. Let us note that different words can share
the same interval. More precisely, any pair of words ω and ωα share the same
interval if each occurrence of ω is followed by α.

This definition is thus slightly more general than the definition of ω-interval
given by Abouelhoda, Kurtz and Ohlebusch [2], since in our approach ω-interval
are defined also for words leading to implicit nodes of a compact suffix tree, and
not only to internal nodes.

The left-context tree of ω (ω ∈ Σ∗) for a sequence s̃ is an implicit tree whose
nodes are v-intervals (v ∈ Σ∗) such that:
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• the root is the ω-interval

• for each v-interval node corresponding to a non-empty interval, its children
are all the av-intervals, for all a ∈ Σ

• the leaves are empty intervals

Given the isa array, it is easy to obtain the parent of a node. Let [i..j] be
an av-interval node. Given k ∈ [i..j], isa[sa[k] + 1] is an index belonging to
the v-interval. Inversely, isa[sa[k]− 1] belongs to one of the child interval. The
exact child depends on the symbol at s̃[sa[k] − 1]. We introduce the successor
and predecessor notations:

successor(i) =

{

isa[sa[i]⊕ 1] if sa[i]⊕ 1 6= n + 1
n + 1 otherwise,

and

predecessor(i) =

{

isa[sa[i]⊖ 1] if sa[i] 6= 0
−1 otherwise.

One may remark that predecessor is the equivalent of the “suffix link” in a
suffix tree [233].

The problem that an ESA update algorithm must face is that the changes
over the occurrences of a word ω not only affect the ω-interval, but also some
of the vω-intervals (v ∈ Σ∗). The core of our algorithm is based on moving a
vω-interval in constant time, using the two following properties implied by the
internal order of suffix arrays:

Proposition 4. Let [i..j] be an v-interval (v ∈ Σ∗), and k1, k2 ∈ [i..j] with
k1 > k2 and such that predecessor(k1) and predecessor(k2) belong to the same
av-interval (a ∈ Σ). Then predecessor(k1) > predecessor(k2).

Proposition 5. With i < j, the longest common prefix between s̃[sa[i]..] and
s̃[sa[j]..] is min

k∈[next[i],j]
lcp[k].

3.4.3 Algorithm

We now detail the three tasks for updating an ESADL while replacing a set of
occurrences ok of a word wk by a simple character ck.

Delete indices of suffixes occurring inside wk substituted occurrences

By replacing the word wk by a single letter, the sequence is compressed and so
is its ESADL: consequently, any suffix of sequence s̃(k) starting inside an wk

substituted occurrence must be deleted. Thus for i in ok and for ℓ in [1, |wk|−1],
suffix s̃(k)[i⊕ ℓ..] and the associated index in the suffix array j = isa[i⊕ ℓ] have
to be removed. We simulated this deletion by jumping over it by setting next
and prev arrays to their previous and next index: next[prev[j]] ← [ next[j] and
prev[next[j]] ← [ prev[j]. Furthermore, the lcp value of the index following j
(lcp[next[j]]) has to be modified according to the deletion of index j. As a
consequence of Proposition 5, after the deletion of index j, the longest common
prefix of index next[j] is equal to the minimal longest common prefix value of
indices j and next[j].

An example is shown in Fig. 3.6 where the deletion of index j affects lcp[next[j]]
that now should contain the length of the longest common prefix between ATGT
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index prev next lcp suffix
j − 1 j − 2 //j j + 1 4 ATAC . . .
/j ///////j − 1 ///////j + 1 /2 ///////////////ATGA . . .
j + 1 //j j − 1 j + 2 //3 2 ATGT . . .

Figure 3.6: Deletion of index j

and ATAC which is 2, equal to the longest common prefix of ATGT, ATGA
and ATAC.

Algorithm 3 presents the procedure for deleting indices. The notation END
refers to the last index of the suffix array (prev[n + 1]).

Algorithm 3 ]

delete_indices(ESA
(k)
DL, wk, ok) Delete indices at step k, replacing wk by ck

for i ∈ ok do
for ℓ ∈ [1, |wk| − 1] do

j ← [ isa[i⊕ ℓ]
if next[j] 6= END then

lcp[next[j]]← [ min(lcp[j], lcp[next[j]])
end if
next[prev[j]] = next[j]
prev[next[j]] = prev[j]

end for
end for

Move indices, with respect to the alphabetic order of ck

After replacing the word wk by the new character ck, some ESADL lines may
be misplaced with respect to the chosen order of ck in Σk+1. Indices in the
wk-interval are potentially misplaced. In fact, for v ∈ Σ∗

k, indices inside an
vwk-interval are misplaced if the substitution of wk into ck affects their lexi-
cographical order with respect to the previous and next index over the suffix
array. Thus, lines belonging to node-intervals of the left-context tree of wk may
have to be moved.

In our approach, we decided to give to ck the largest rank in the lexicographic
order of the alphabet Σk, i.e. ∀ a ∈ Σk : a ≺ ck.

With respect to this arbitrary choice, the wk-interval is moved to the end of
the suffix array. Furthermore, for any v ∈ Σ∗

k, the vwk-interval is moved after
the last index of the v-interval.

If a vwk-interval is already at the end of the v-interval (it is already well
ordered), for any v′ ∈ Σ∗

k, the v′vwk-interval is also at the end of the v′vwk-
interval and does not have to be moved.

Based on this property, our algorithm uses a recursive approach in order to
move groups. The recursion starts on the initial wk-interval. During recursion,
if the group of a vwk-interval is moved, the recursion continues on groups of
avwk-intervals, with a ∈ Σk.
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Figure 3.7: Moves induced by substituting GA by c1. lcp[3] was 0 after the
delete step and lcp[7] will be updated during the third step.

From a theoretical point of view, the algorithm starts on the root of the left-
context tree of wk and if the group corresponding to the interval of the node is
moved, it recursively treats its children in a breadth first traversal (a FIFO is
used).

In practice, the recursion on a vwk-interval works as follows:

1. detects the end position of the vwk-interval,

2. detects the end position of the v-interval,

3. if necessary:

3.a. moves the group to the end position of the v-interval,

3.b. calls the recursion on predecessors of indices of the group.

During a call on predecessor of an index of the group, either this is the first
time the matched group is called and by construction the call is done on its first
element, or the group was already treated, and the recursion stops.

The algorithm for this step is shown in Algorithm 4. This recursive function
receives three parameters besides the data structures: the starting position of
the group, the current depth over the left-context and a boolean flag (see below).

In first place, the end of the vwk-interval is found (lines 5, 6 and 8).
This is done from the first element of the interval, following the next array

while the visited index corresponds to a suffix starting with vwk (lcp[i] ≥ |v|+
|wk|). After finding the extremes of the group, the destination index of this
group according to the chosen order for the new character is found (lines 11,
12 and 15). This is done by finding the end of the v-interval in the same way
(lcp[i] ≥ |v|).

Moving the group to its new position is now simple and is done in constant
time. Thanks to the well-ordered property of the suffix array, the whole interval
is moved by changing only the delimiting positions. Let istart, iend, idest be
respectively the starting and ending positions of the vwk-interval, and the last
position of the v-interval. Moving the group [istart, iend] to the position after
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Algorithm 4 In-place update of a suffix array: update order]Restore consis-
tency of suffix array order

update_order(ESA
(k)
DL, wk, ok, istart, depth,move)

if Couple (istart, depth) already treated during another recursion call then
End procedure

end if
i← [ istart

while i 6= END ∧ lcp[next[i]] ≥ depth + |wk| do
i← [ next[i]

end while
iend ←[ i
minLCP ←[ minj∈[istart,iend]lcp[j]
if move then

while i 6= END ∧ lcp[next[i]] ≥ depth do
i←[ next[i]

end while
end if
idest ←[ i
if iend 6= idest then

lcp[next[iend]]← [ min(lcp[next[iend]], minLCP )
lcp[istart]← [ depth
if istart = ifirst ∧ depth 6= 0 then

ifirst ←[ next[iend]
end if
move_group(istart, iend, idest)

else
lcp[istart]← [ min(lcp[istart, depth)
move← [ false

end if
i← [ istart

while i 6= next[iend] do
newdepth← [ depth+ (if predecessor(i) ∈ ok then len else 1)
if move∨(sa[prev[predecessor(i)]] > newdepth∧sa[prev[predecessor(i)]]⊕
newdepth ∈ ok) then

update_order(ESA
(k)
DL, wk, ok, predecessor(i), newdepth, idest 6= iend)

end if
i←[ next[i]

end while
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idest is easily done by jumping over the group and inserting it into idest and
next[idest]. See Algorithm 5 for details.

Two longest common prefix values are modified as a consequence of the
deletion of the group and its insertion:

1. lcp[next[iend]]: contains the value of the length of the longest common pre-
fix between prev[istart] and next[iend], which according to Proposition 5,
is the minimum of the lcp values of the group and itself

2. lcp[istart]: we assign to it the value of depth, that is the correct value over
s̃k+1. This serves also to set a stop-point for future recursions calls (see
below).

Algorithm 5 Move the group [istart, iend] after the position idest

move_group(ESA
(k)
DL, wk, ok, istart, iend, idest)

next[prev[istart]] = next[iend]
prev[next[iend]] = prev[istart]
next[iend] = next[idest]
prev[next[idest]] = iend

next[idest] = start
prev[istart] = idest

As ifirst points to the first line over the suffix array that contains a selected
repetition, we also update ifirst (line 19) if this line is moved.

Fig. 3.7 shows the ESADL of sequence GAAGAAGC, where w1 = GA is
substituted by c1. One remarks that the initial interval of suffixes starting with
GA (indices 6 and 7) is moved as well as suffix starting with AGA (index 3).
Note also that suffix starting with GAAGA has to be moved with respect to
suffix GAAGC.

A special case

Once an interval is treated, the recursion continues either if the current group
was moved, or in the special case described in what follows.

Consider for instance the following situation, where the substituted repeat
is TA.

i CTATTTAC. . .
i+1 CTATTTAG. . .
i+2 CTATTA. . . ,

and suppose that the TTA-interval containing the index isa[sa[i+2]⊕3] (the un-
derlined suffix in the figure) was already at its right position and therefore does
not have to be moved. So, its children in the left-context tree are not considered
for future moves, and as a consequence, neither is index i + 2. Supposing that
we cut the recursion here, that means that when treating the CTATT-interval,
lcp[i + 2] = 5. This interval ends at the index i + 1, but because we use the lcp
array to detect it, we also consider index i + 2 as part of the CTATT -interval.

To resolve this special case, the recursion continues even when the current
interval was not moved. In this case, it will never be necessary to move an

60



CHAPTER 3. EFFICIENCY

interval, but maybe update some lcp values to set stop-points for future recursion
calls.

This is the reason for introducing the last parameter in algorithm 4 (the
boolean flag move). It differentiates the normal case (when it is necessary to
detect the destination index and move the interval) from the case in which the
current interval is considered only to set a stop-point at the first index of the
interval. The recursion continues in both cases.

Filtering non substituted wk occurrences Among each vwk-interval, suf-
fixes starting with vwk where wk is not substituted (whose position does not
belong to ok) may occur. The associated indices in the ESADL should not
be moved with the vwk-interval. Thus, before applying the recursive procedure
previously exposed, a straightforward filtering step is applied. During the recur-
sion, each line i of each group is first checked in order to detect if it corresponds
to an index of a selected occurrence (sa[i] ⊕ depth ∈ ok). Once a non-selected
occurrence is detected, we move it to the beginning of the group (before istart).
As previously mentioned, this also involves modifications of the lcp array for
maintaining its consistency. This step is basically a simplified version of Algo-
rithm 4. It adds an extra auxiliary array of size n to keep track, for each index,
of the last depth with which it was analysed.

Update lcp values after the substitution of wk occurrences to a single
character

The substitution of any occurrence of wk of length |wk| ≥ 2 by ck of length 1
involves the modification of the length of all common prefixes involving such an
occurrence.

In the previous step, it was trivial to update the lcp values of the border
lines. However, in this step, we update the lcp values of the internal position
of the intervals. Straightforwardly subtracting |wk| − 1 from each internal lcp
value misses the cases where the common prefix between two successive suffixes
include more than one occurrence of wk, or even worse, a part of a occurrence
(consider for instance the example shown in Sect. 3.4.3).

So we traverse again the left-context tree of wk. Contrary to the moving step,
where it was possible to move one line several times, in this step we update each
lcp index only once. To do this, we recalculate all the lcp values for the root
(wk-interval) and use this information to update the lcp of the other intervals.

As a consequence of Propositions 4 and 5, the lcp between two indices of the
same interval-node is simply one plus the lcp between their successor indices
belonging to the parent interval-node:

Let i, j belong to the same aw-interval and let us assume that i > j.
Then lcp(s̃[sa[i]..], s̃[sa[j]..]) = min

ℓ∈[next[successor(i)],successor(j)]
lcp[ℓ]

With this inductive approach, it is sufficient to re-calculate the lcp of only
the first interval (the root of the left-context tree) as shown in Algorithm 6.

During the iterative call, if an index that is already treated appears, it is
skipped. Indeed, its lcp value is then up-to-date. The pseudo-code for this step
is exposed in Algorithm 7.

Because in each iteration we use the value of all the lines of the previous
group, we traverse once again the left-context tree in a breadth-first order.
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Algorithm 6 Calculate the value of the lcp for index i

recalculate_lcp(ESADL, i)
lcp[i]← [ 0
if prev[i] ≥ 0 then

i←[ sa[i]
j ←[ sa[prev[i]]
while i < n ∧ j < n ∧ s[i] = s[j] do

i← [ i⊕ 1
j ←[ j ⊕ 1
lcp[i]← [ lcp[i] + 1

end while
end if

Algorithm 7 Update lcp of step k

update_lcp(ESA
(k)
DL, wk, ok)

q ← [ queue()
for i ∈ ok do

recalculate_lcp(ESA
(k)
DL, isa[i])

q.push((predecessor(isa[i]), 1))
end for
while not q.empty() do

(i, depth)←[ q.top
q.pop
if i ≥ 0 ∧ lcp[i] not already updated ∧ lcp[i] ≥ depth then

lcp[i]← [

(

min
j∈[next[successor(prev[i])],successor(i)]

lcp[j]

)

+ 1

q.push((predecessor(i), depth + 1))
end if

end while
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3.4.4 Efficiency

Time efficiency

The worst case time complexity of the update algorithm is loosely bounded by
O(n2). A better bound on time complexity could be obtained by considering
amortised complexity over the overall IRR schema, but it will still be unlikely
to be better than the O(n) complexity required for building the suffix array
from scratch. Nevertheless, the algorithms building suffix arrays that currently
perform best in practical cases, are not the linear ones (see Schürmann and Stoye
[214] for a description of the different suffix array construction algorithms and
their strengths). We propose in this section to evaluate the practical efficiency
of our update algorithm, comparing it to the standard approach that builds the
suffix array from scratch

A prototype implementing the proposed algorithm has been developed using
the C++ language4. It has been tested on different types of text. For the sake
of brevity, here we only report the results on the Canterbury and Large Corpus
(see Sect. A). Results on other corpora can be found on our internet site.

To compare the execution time with a building from scratch approach, we
used three different suffix array creation algorithms: the linear time one pro-
posed Kärkkäinen and Sanders [123], the non-linear algorithm of Larsson and
Sadakane [140] and the Induced Sorting algorithm of Zhang et al. [247] (again
a linear one). The source code of the first two were retrieved from the web sites
specified in the associated articles. Note that Kärkkäinen and Sanders’ code
“strives for conciseness rather than for speed” [123]. For the Induced Sorting
algorithm, we used the optimised implementation of Mori [166].

In the last years, suffix array creation algorithms has proven to be a rich field
of research. New strategies and improvements are proposed each year, and for
a complete taxonomy of the state of art we refer to [192]. But some of them do
assumptions over the alphabet that could no be fulfilled by our grammar based
application and that is because we could not compare them with our algorithm.
The two assumption that excluded some of them were:

1. the size of the alphabet. Manzini and Ferragina’s algorithm [156] and
Yuta Mori’s libdivsufsort [165] suppose a size of alphabet less than 256. In
our approach, in each iteration we introduce a new non-terminal, so this
bound is too tight.

2. it is possible that, after a replacement, a letter does not occur any more
in the sequence because all its occurrences were inside the selected repeat.
That is why we discarded algorithms that suppose a contiguous alphabet
(like [154]).

The tests were executed on a 1GHz AMD Opteron processor with 4Gb of
memory.

First, to have an idea of the complexity of the algorithm, we studied how the
length of the sequence influences the execution time of the algorithm. From the
large Calgary corpus, we extracted sequences of different lengths by considering
successively bigger (by steps of 100 kilobytes) prefixes of the sequences. On
each extracted sequence, we performed 250 iterations of selecting a random

4available at http://www.irisa.fr/symbiose/projects/suffix_array_update
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repeat, replacing it over the sequence by a new character and updating the
associated suffix array. Time (user + system time) required for updating the
suffix array was reported, averaged over 5 different runs corresponding to 5
different random seeds. The same experiments, replacing the update algorithm
by the from scratch construction algorithms of the suffix array by Kärkkäinen
and Sanders (K & S), Larsson and Sadakane (L & S) and Zhang, Nong and
Chan (ZNC) have been performed. The plots, shown in Fig. 3.8, confirm that
the execution time of our updating algorithm is not directly correlated to the
length of the sequence, and is significantly smaller than the execution time
required by construction from scratch algorithms, especially when the length of
the sequence increases.

We present a more exhaustive evaluation and comparison on all the corpora
using different strategies for the selection of the repeated word. In each test
we performed 500 iterations of selecting a repeat, replacing it over the sequence
and updating (or building from scratch) the associated enhanced suffix array.
The different strategies for the selection of the repeat were:

• take a random one (using the same seed for the pseudo-random number
generator),

• take the longest (ML strategy),

• take the one that covers the maximal number of positions (MC strategy).

Results are given in Fig. 3.3 (page 67). For each selection strategy, we mea-
sured time (user + system time) spent in updating ESADL with our algorithm
(column update), and time spent in building ESA from scratch at each itera-
tion with the three creation algorithms. For easier comparison, we only report
the times given by the update algorithm and the ratios of the time spent by
each of the three “from scratch” algorithms over the update algorithm. A ratio
lower than 1 means that the from scratch algorithm was faster than the update.
Time spent by a from scratch algorithm can be obtained by multiplying the
time reported in the “update” column by the respective ratio.

Some of the files (notably fields.c, grammar.lsp and xargs.1) are too
small to draw significant conclusions, but results are shown here for the sake
of completeness. On the other files, results show that a significant speedup is
usually achieved by using our algorithm. The main exception is the ptt5 file
from the Canterbury corpus (a fax image with very long zones of the same
byte), probably because the rewriting of the selected repeats change a major
part of the sequence. One can also remark that the ratio is less favorable when
the repeat to replace is chosen according to the maximal compression strategy.
On the one hand, in each iteration the resulting sequence is smaller and the
suffix array creation from scratch for this sequence faster. On the other hand,
there are more positions affected by the substitution and this affects the update
algorithm.

These cases allow us to illustrate an intrinsic limit of the update approach
when the length of the sequence is highly reduced by recoding: when the number
of positions to update is larger than the number of positions in the resulting
sequence, it may be worth adopting the from scratch construction algorithm
(let us remark that the best algorithm to use can vary along the iterations). A
solution to handle these extreme cases, would be to design a criterion on the
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Figure 3.8: Large corpus: bible.txt, world192.txt and E.coli. Times are
given in hundredth of seconds and the size in kilobytes (1 byte = 1 character).
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repeat and its coverage to automatically choose the best algorithm to use (even
at each iteration).

Space efficiency

The overall space complexity is O(n). In this section we analyse this bound
more precisely.

Storing the ESA requires three arrays of integer, and the sequence is also
stored in an integer array (recall that our approach is supposed to work with
integer alphabets). On a 32-bit architecture, this equals 10n bytes (where n is
the amount of symbols of the input). The ESADL structure needs to extend
the ESA with two arrays of length n (next and prev). To implement the ⊕ and
⊖ operators, two extra arrays of size n were used. The recursion in Alg. 4 was
implement with a queue. Like the queue of Alg. 7, it is bounded by n. An
array of length n is used to check in constant time whether a couple (i, depth)
was already used and a last auxiliary array of size n is used as specified in
section 3.4.3. To sum up, the memory needed by the algorithm is 40n, plus at
most 4n for the queues.

To see the practical memory usage, we measured it during the execution of
the first type of test (Sect. 3.4.4) on E. Coli. In Fig. 3.9 we plotted the results
for the update and the three from scratch algorithms. Note that in this case we
measured the memory used by the whole process, while in Sect. 3.4.4 the time
spent in searching the repeats was not taken into account.

differently from the results reported for the time efficiency analysis (were only
the time spent for the update / build from scratch suffix array was measured),
the memory usage here correspond to the memory used for the totality of the
program (including the search of repeats).

It is worth noticing that in the from scratch approach, the memory usage has
a peak in the first iteration and then decreases, while in the update approach the
memory occupied by the ESADL remains the same. This cannot be observed
in figure 3.9 because we only measured the maximal memory usage.

Each of the four curves shows a linear behavior. In general, both L&S and
ZNC algorithm use 26n memory. This is consistent with the three arrays used
for the ESA and the sequence, plus one to store the new sequence. The other
6n can be attributed to the algorithm that recovers the repeats. The fact that
there is no apparent difference between both algorithms can be explained again
by the fact that we measured only the maximal memory used. K&S uses much
more memory, what is consistent with other reported results [165]. We can also
observe that the the memory usage of our update algorithm reaches in this test
the predicted 44n upper bound.

3.5 Summary

We presented in this chapter three ways of accelerating general IRR algorithms.
The first consists in reducing the space of words to be considered for replacement
to some subclass of all possible repeats. This is motivated also by the eventual
possibility that these more restricted classes — especially for largest-maximal
repeats — contain particularly meaningful constituents. Comparing the execu-
tion time with final grammar, we conclude that using maximal-repeat produces

66



C
H

A
P

T
E

R
3
.

E
F
F
IC

IE
N

C
Y

random maximal length maximal compression

update speedup factor update speedup factor update speedup factor

time K & S L & S ZNC time K & S L & S ZNC time K & S L & S ZNC

CANTERBURY

alice29.txt 163 17.25 9.18 9.47 192 12.28 7.14 7.45 269 4.06 1.9 2.61

asyoulik.txt 131 16.11 8.47 8.78 127 13.6 8.34 8.69 182 4.76 2.23 2.88

cp.html 15 8.8 6.33 6.6 15 6.4 4.27 5 18 3.06 2.22 2.83

fields.c 6 6.33 5.17 6.17 8 2.38 2.63 3.88 3 6 2 5

grammar.lsp 3 1.67 1.67 3 0 div 0 div 0 div 0 0 div 0 div 0 div 0

kennedy.xls 1323 26.38 9.7 9.73 1230 29.24 11.22 10.87 1541 3.16 1.08 1.5

lcet10.txt 1248 5.92 3.7 6.07 522 31.51 12.35 14.01 749 7.76 3.02 3.97

plrabn12.txt 516 33.24 13.32 19.42 606 31.84 15.35 16.26 887 8.84 3.28 4.49

ptt5 588 38.53 15.06 4.8 696 7.65 5.32 3.41 1900 0.44 0.19 0.28

sum 42 5.57 3.6 3.9 34 5.5 2.91 4 28 2.93 1.71 2.18

xargs.1 6 4.17 1.5 4.83 2 3 1 4 2 2 1 7

LARGE

bible.txt 5055 66.81 22.84 22.8 5168 64.39 22.5 21.96 10285 15.37 3.7 5.41

E.coli 5534 69.14 27.36 26.59 6307 53.46 24.03 21.8 14808 9.51 2.11 3.4

world192.txt 3084 65.06 21.75 22.12 3089 60.7 21.11 21.2 5573 16.28 4.54 5.8

Table 3.3: Update time and speedup factor with respect to each of the from scratch algorithm. Times are given in hundredth of seconds. A
speedup factor lower than 1 means that the from scratch algorithm was faster than the update algorithm (all these cases are underlined).
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Figure 3.9: Memory consumption for E. Coli. Memory and size are given in
kilobytes.

almost always grammars of the same size as the original IRR algorithm, while
being faster.

A second improvement consists in approximating the real number of non-
overlapping occurrences with the number of total occurrences. This improves
considerably the execution time, and surprisingly also produces (slightly) smaller
grammars. Combining this second improvement with the use of maximal re-
peats permits a generic O(n2) implementation of the generic IRR framework,
compared to the original O(n3).

The third technique is different because it is an algorithmic improvement that
does not change the output. We give a solution to a special kind of update of
an enhanced suffix array. Our approach uses the specific internal order of suffix
arrays to simultaneously update groups of adjacent indices and ensures that
only indices to be modified are visited. This specific property of the suffix arrays
allows to design an efficient update procedure which has been implemented and
tested on classical corpora. The experimentation confirms that, in regard to the
direct method reconstructing the suffix array, our approach enables significant
speedup of the execution time of a factor up to 70 when choosing randomly a
repeat to replace. The time improvement varies, and seems to depend mainly
on the size of the left-context tree. This grows with both the average lcp value
of the sequence, and the number of positions the chosen repeat covers. The
results encourage to use such an approach in a greedy schema like IRR schema,
where also be considered the occurrences on the right-hand side of previous
introduced rules. Our discoveries in the next chapter however, made us realise
the importance of being flexible with which occurrences to replace.

We focused here only on the final size of the grammar. Regarding the first
two improvements, where different choices of words produces different final
grammars, it could be interesting in future to analyse these changes not on
the size of the final grammar, but on the structure obtained.
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Chapter 4

Smaller Grammars

We concluded in Sect. 2.7 that the current state-of-the-art algorithm to find
small grammars is IRR-MC. It belongs to the general IRR algorithm family
and selects in each iteration a repeat that greedily reduces at most the size of
the current grammar. Using different notions of size of a grammar, the same
greedy approach has successfully been used in grammar-based algorithms like
Greedy [13, 14] and MDLCompress [84].

Our empirical results are completed by the theoretical ones in Charikar et al.
[51]. The O(n/ log n)

2
3 upper bound for IRR-MC given there may not look im-

pressive, compared to algorithms specifically designed to achieve a good worst-
case upper bound, but it should be kept in mind that this a loose bound, used
to limit the behaviour of a much more general class of algorithms. Until now,
no family of sequences could be exhibited on which IRR-MC achieves a non-
constant approximation (the worst case being 5 log 3/(3 log 5) ≈ 1.138).

In this chapter we will present several algorithms that outperform IRR-
MC. The main idea behind these algorithms is to separate the choice of which
words will become constituents of the final grammar from the choice of which
occurrences of these words will actually be replaced by non-terminals. The IRR
permits flexibility in the first choice, but handles the second choice always in a
greedy way (all occurrences in the normalised non-overlapping list are replaced),
and preference is given to the first selected word. This is best exemplified in the
following example:

Consider the sequence

xaxbxcx|xbxcxax|xcxaxbx|xaxcxbx|xbxaxcx|xcxbxax|xax|xbx|xcx,

This sequence exploits the fact that IRR algorithms replace all possible occur-
rences of the selected word. Let us define G∗ as the following grammar:

S → AbC|BcA|CaB|AcB|BaC|CbA|A|B|C
A→ xax B → xbx C → xcx

|G∗| = 42. Note that no IRR algorithm could generate G∗ and, moreover, by
brute-force search we can show that the smallest possible grammar that can be
obtained with an IRR algorithm has size 46, resulting in an approximation ratio
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of 1.095. This is a global lower bound for any IRR algorithm1.
We conclude therefore with the following theorem:

Theorem 4. An algorithm that solves the Smallest Grammar Problem for all
sequences does not belong to the IRR framework.

Proof. We have seen that there exists a sequence s, such that |IRR(s, f)| is
greater than the size of a smallest grammar for s, for all possible choices of f .
This proves our claim.

Our approaches not only try to optimise the selection of constituents, but
also the parsing of the sequence with these constituents.

This idea is not completely new. We have been able to find two references
for this idea. At the end of a. shelat’s master thesis [221, Sect. 5.3] he sketches
the notion of re-writing (a similar notion to our minimal parsing) and stable
grammars. Even before, Nevill-Manning et al. [178] noted that Sequitur “will
not necessarily produce the smallest grammar possible. To do this would re-
quire finding two things: the best set of productions, and the best order in
which they should be applied. The latter is called ‘optimal parsing’, and can
be implemented by a dynamic programming algorithm.” But to our knowledge,
we are the first to formalise it and to study its importance and consequences.

First, we will formally define the problem of finding a minimal grammar
given a fixed set of constituents (Sect. 4.1.1), similar to a recursive optimal
parsing. In Sect. 4.2.1 we then define a search space for the Smallest Grammar
Problem based on the MGP . We will introduce these two concepts along with
the algorithms that use them. Part of this chapter is fruit of an INRIA/MINCyT
collaboration and published/submitted previously [45, 46].

4.1 The Minimal Grammar Parsing Problem

4.1.1 Grammar Parsings and Minimal Grammar Parsings

Once an IRR algorithm has chosen a repeated word ω, it replaces all non-
overlapping occurrences of that word in the current grammar by a new non-
terminal N and then adds N → ω to the set of production rules. In this
section, we propose to perform a global optimisation of the replacement of oc-
currences, considering not only the last non-terminal but also all the previously
introduced non-terminals. The idea is to allow occurrences of words to be kept
(instead of being replaced by non-terminals) if replacing other occurrences of
words overlapping them results in a smaller grammar.

Recall that the constituents of a grammar are the terminal strings that can
be derived from the non-terminals of the grammar. We propose to separate the
choice of which terminal strings will be constituents of the final grammar from
the choice of how to parse the grammar with these constituents. First, let us
assume that a finite set of constituents C is given and we want to find a minimal
grammar that generates the language L and whose constituent set is C. In our
case the language will be a singleton, but we will define first the general case.

1Note that this lower bound uses our definition of size, and can therefore not be compared
with the lower bound given in Charikar et al. [51].
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Assume that C = {ω1, . . . , ωm}, and L = {s1 . . . sℓ} ⊆ C. We need to be able
to generate all constituents and for each constituent ωi the grammar must thus
have a non-terminal Ni such that ωi = cons(Ni).

Therefore, we define a new problem, called Minimal Grammar Parsing
(MGP) Problem. An instance of this problem is a tuple of sets of strings 〈C, L〉
with L ⊆ C. A Grammar Parsing of 〈C, L〉 is a context-free grammar G =
〈Σ,N ,P, S〉 such that:

1. all symbols of all strings of L are in Σ: Σ =

ℓ
⋃

i=1

Σ(si)

2. L(S) = L

3. for every other string t ∈ (C \ L) there is one different non-terminal N
that derives only t.

As we said, in the case we will consider from now on L will consist of only
one string, s. The resulting grammar is therefore straight-line. A minimal
grammar given 〈C, L〉 (or 〈C, s〉) is a grammar parsing G of smallest size |G|.

Note that the MGP problem is similar to the Smallest Grammar Problem,
except that all constituents for the non-terminals of the grammar are given too.
The MGP problem is related to the problem of static dictionary parsing [213] or
optimal parsing (see Sect. 2.3) with the difference that the dictionary also has to
be parsed. This recursive approach is partly what makes grammars interesting
to both compression and structure discovery. For clarity, every time we use
the term minimal grammar we will refer to a smallest grammar given a set of
constituents, and we save the term smallest grammar to talk about globally
smallest grammars.

As an example consider the sequence s = ababbababbabaabbabaa and sup-
pose the constituents are {s, abbaba, bab} This defines the set of non-terminals
{N0, N1, N2}, such that cons(N0) = s, cons(N1) = abbaba and cons(N2) = bab.
A minimal grammar parsing is N0 → aN2N2N1N1a, and N1 → abN2a, N2 →
bab.

The MGP can be solved in a classical way in polynomial time by searching
for a shortest path in |C| graphs as follows. Let the set of constituents be
{s, ω1, . . . , ωm} and the language sequence s.

1. Let N = {N0, N1, . . . , Nm} be the set of non-terminals. Each Nℓ will be
the non-terminal whose constituent is ωℓ.

2. Define m directed acyclic graphs Γ0,Γ1 . . .Γm, where Γℓ = 〈Mℓ, Eℓ〉. If
|ωℓ| = k then the graph Γℓ will have k + 1 nodes: Mℓ = {1 . . . |ωℓ| + 1}.
The edges are of two types:

(a) for every node i there is an edge to node i + 1 labeled with ωℓ[i].

(b) there will be an edge from node i to j + 1 labeled by Nm if there
exists a non-terminal Nm different from Nℓ such that ωℓ[i : j] = ωm.

3. For each Γℓ, find a shortest path from 1 to |ωℓ|+ 1.

4. The right-hand side for non-terminal Nℓ is the concatenation of the labels
of a shortest path of Γℓ.
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Intuitively, an edge from node i to node j + 1 with label Nm represents a
possible replacement of the occurrence ωℓ[i : j] by Nm.

There may be more than one grammar parsing with minimal size. We sup-
pose therefore any total order over grammars, and denote by mgp(C, s) the
lowest minimal grammar parsing of 〈C, s〉.

In the case we consider, each constituent will be a substring of s. Note
that in practice the graph Γ0 contains therefore all the information for all other
graphs because any Γℓ is a subgraph of Γ0. Therefore, we call Γ0 the Grammar
Parsing graph (GP-graph). See Fig. 4.1 for an example.

The list of occurrences of each constituent over the original sequence can be
added to the graph at the moment it is chosen. The length of each constituent is
bounded by n = |s|, so the complexity of finding a shortest path for one graph
with a classical dynamic programming algorithm lies in O(n × m). Because
there are m + 1 graphs, computing mgp(C, s) is in O(n×m2).

4.1.2 IRR with Occurrence Optimisation

We can now define a variant of IRR, called Iterative Repeat Replacement with
Choice of Occurrence Optimisation (IRRCOO) whose pseudo-code given in Al-
gorithm 8. Different from IRR, what is maintained is a set of terminal strings,
and the current grammar at each step is a Minimal Grammar Parsing over this
set of strings. Recall that constituentcons(ω) gives the only terminal string
that can be derived from ω (the “constituent”).

The computation of the argmax depends only on the number of repeats,
assuming that f is constant, so that its complexity lies in O(n2). Like for IRR,
the total number of times the while loop is executed is bounded by n. The
complexity of this generic scheme is thus O(n× (n2 + n×m2)), where m + 1 is
the number of constituents.

Algorithm 8 Iterative Repeat Choice with Occurrences Optimisation (IR-
RCOO)
IRRCOO(s, f)
Input: s is a sequence, and f is a score function on words
1: C ←[ {s}
2: G←[ G({S → s})
3: while (∃ω : ω ← [ arg max

α∈R̂(r(G))

f(α,G)) ∧ |mgp(C ∪ {cons(α)})| < |G| do

4: C ←[ C ∪ {cons(ω)}
5: G←[ mgp(C, s)
6: end while
7: return G(P)

As an example, consider again the sequence used in the proof of Theorem 4.
After three iterations of IRRCOO-MC the words xax, xbx and xcx are chosen,
and a MGP of these words plus the original sequence results in G∗.
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Figure 4.1: GP-Graph for s = ababbababbabaabbabaa and additional constituents α1 = abbaba, α2 = bab.

73



4.1.3 Removing Costly Rules

The fact of re-arranging the non-terminals, optimising the size of the resulting
parsing, may produce as side-effect that the use of some rules cost more than
the gain they provide. Every rule that appears once or never is then costly and
a rule that appears twice must have length at least 3.

Definition 12 (Costly Rule). Given a set of production rules P, a rule N → ω
is a costly rule if (|Lr(G)(N)| − 1) ∗ (|ω| − 1) < 2.

So, given G, we denote by clean(G) the grammar where each costly rule
N → ω is eliminated and the occurrences of N replaced by ω.

Algorithm 9 presents the algorithm IRRCOOC (for IRR with Choice of
Occurrence Optimisation and Cleanup): it is based on IRR, where a minimal
grammar parsing and a cleanup is performed after each iteration. Recall that
computing mgp(C, s) is in O(n ∗m2) and every execution of line 7 reduces the
size of the grammar by at least one. So, the worst-case complexity of IRRCOOC
is again bounded by O(n4) (m is bounded by n).

Algorithm 9 Iterative Repeat Replacement with Occurrence Optimisation and
Cleanup (IRRCOOC)
IRRCOOC(s, f)
Input: s is a sequence, and f is a score function on words
1: C ←[ {s}
2: G←[ G(C)
3: while ∃ω : ω ← [ arg max

α∈R̂(r(G))

f(α,G) ∧ |Gω 7→N | < |G| do

4: C ← [ C ∪ {ω}
5: repeat
6: C ← [ {cons(N) : N non-terminal of G}
7: G← [ clean(mgp(C, s))
8: until G contains no costly rules
9: end while

10: return G

4.2 A Search Space for the Smallest Grammar

Problem

The mgp procedure permits us to resolve the problem of finding a smallest
grammar given a fixed set of constituents. With the IRCCOOC algorithm we
introduced the idea of maintaining during its execution a set of constituents (C)
from which a minimal grammar can be recovered. Here we go one step further
with this idea and having resolved the problem of finding a minimal grammar
given one set of constituents, we focus on finding a good set of constituents.

4.2.1 The Search Space

Consider the lattice
〈

2R(s),⊆
〉

, where every node corresponds to a set of repeats
of s. We then define a score function over the nodes of the lattice as score(C) =
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|mgp({s}∪C, s)|. A global minimum C will be a node whose score is smallest:
score(C) ≤ score(θ) for all nodes θ.

For a given search space, we say that it is correct with respect to an optimi-
sation problem P if each item of the search space that is a global minimum (with
respect to a fixed score function) can be mapped to a solution of P . Conversely,
the search space will be called complete if any solution of P can be mapped to
a global minimum of the search space.

Theorem 5. The lattice
〈

2R(s),⊆
〉

is a correct and complete search space for
the Smallest Grammar Problem.

Proof. Let SG(s) be the set of all smallest grammars for the sequence s. Sim-
ilarly, we define MGP(C, s) the set of minimal grammars for 〈C, s〉. We will
prove that:

SG(s) =
⋃

C:C is global minimum of 〈2R(s),⊆〉

MGP({s} ∪ C, s)

To see the first inclusion (⊆), take a smallest grammar G∗. All strings in
cons(G∗) have to be repeats of s, so cons(G∗) \ {s} corresponds to a node C in
the lattice and G∗ has to be in MGP({s} ∪ C). Conversely (⊇), all grammars
of the right expression have the same size, which is minimal, so they are all
smallest grammars.

Because of the NP-hardness of the problem, it is fruitless (supposing P 6=
NP ) to search for an efficient algorithm to find a global minimum. We will
present therefore an algorithm that looks for a local minimum on this search
space. To define the algorithm, we first need some notation:

Definition 13. Given a lattice 〈L,�〉, define:

1. ancestors(η) = {θ 6= η : η � θ ∧ (6 ∃κ 6= η, θ : η � κ � θ)}

2. descendants(η) = {θ 6= η : θ � η ∧ (6 ∃κ 6= η, θ : θ � κ � η)}

The ancestors of node η are the nodes exactly “over” η, while the descendants
of node η are the nodes exactly “under” η. A node η is a local minimum if
score(η) ≤ score(θ) for all nodes θ ∈ ancestors(η) ∪ descendants(η).

4.2.2 The ZZ Algorithm

The ZZ algorithm, introduced by Carrascosa [43], looks for a local minimum,
traversing the lattice in a hill-climbing way. In each step it selects the neighbour
with the best score. But instead of inspecting all neighbours, it alternates two
phases in which it inspects only the ancestors or descendants of the current
node. This defines a path in form of zig-zag, therefore we name the algorithm
ZZ. The two phases are bottom-up and top-down. The bottom-up can be started
at any node, it moves upwards in the lattice and at each step it looks among
its ascendants for the one with the lowest score. In order to determine which is
the one with the lowest score, it inspects them all. It stops when no ascendants
has a better score than the current one. As in bottom-up, top-down starts at
any given node but it moves downwards looking for the node with the smallest
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score among its descendants. Going up or going down from the current node is
equivalent to adding or removing a substring to or from the set of substrings in
the current node respectively.

ZZ starts at the bottom node, that is, the node that corresponds to the gram-
mar S → s and it finishes when no improvements are made in the score between
two bottom-up–top-down iterations. Pseudo-code is given in Algorithm 10.

Algorithm 10 Zig-Zag algorithm
ZZ(s)
Input: s is a sequence
1: L ←[

〈

2R(s),⊆
〉

2: C ←[ ∅
3: while score(C) decreases do

4: while ∃C ′ ∈ L :

(

C ′ ←[ arg min
C′∈ancestors(C)

score(C ′) ∧ score(C ′) ≤ score(C)

)

do
5: C ← [ C ′

6: end while

7: while ∃C ′ :

(

C ′ ← [ arg min
C′∈descendants(C)

score(C ′) ∧ score(C ′) ≤ score(C)

)

do
8: C ← [ C ′

9: end while
10: end while
11: return mgp(C, s)

Computational Complexity

In the previous section we showed that the computational complexity of com-
puting the score function for each node is O(n × m2), where n is the length
of the target string and m is the number of substrings in the node. At each
iteration of top-down or bottom-up ZZ inspects up to O(n2) neighbours, so each
step upwards or downwards is made in O(n3 ×m2). No bottom-up (top-down)
step can do more than n steps without increasing the score (a grammar with
n/2 constituents has a size of at least n). Each of the bottom-up–top-down
iterations decreases the size by at least one, so the final complexity o ZZ is in
O(n5 ×m2).

4.2.3 Non-monotonicity of the search space

We finish this section with a remark on the search space. In order to ease the
understanding of the proof, we will asume that the size of the grammar is defined
as |G| =

∑

A→α∈P(|α|). The proof extends easily if we consider our definition
of size, but is more cumbersome (basically, instead of taking blocks of size two
in the proof, take them of size three).

We have presented an algorithm that finds a local minimum on the search
space. Locality is defined in terms of its direct neighbourhood, but we will see
that the local minimality of a node does not necessarily extend further:

76



CHAPTER 4. SMALLER GRAMMARS

Proposition 6. The lattice
〈

2R(s),⊆
〉

is not monotonic for function score(η) =
|mgp({s} ∪C, s)|. That is, suppose η is a local minimum. There may be a node
θ ⊇ η such that score(θ) < score(η).

Proof. Consider the following sequence:

abcd|cdef|efab|cdab|efcd|abef|bc|bc|de|de|fa|fa|da|da|fc|fc|be|be|ab|cd|ef.

The set of possible constituents is {ab, bc, cd, de, ef, fa, da, fc, be}, none of which
has size longer than 2. Note that the digrams that appear in the middle of the
first blocks (of size four) appear repeated twice, while the others only once.
Also, the six four-size blocks are all compositions of constituents {ab, cd, ef}
(each of which is only repeated once at the end). Consider now the following
grammar:

S → aBCd|cDEf |eF Ab|cDAb|eF Cd|aBEf |BC |BC |DE

|DE |F A|F A|DA|DA|F C |F C |BE |BE |ab|cd|ef
BC → bc

DE → de

F A → fa

DA → da

F C → fc

BE → be

of size 68, which is a smallest grammar given this set of constituents. Moreover,
adding any of the three remaining constituents would increase the size of the
grammar by one. But, adding all three of them would permit to parse the blocks
of size 4 with only two symbols each, plus parsing the three trailing blocks with
only one symbol. This means gaining 9 symbols and losing only 6 (because of
the introduction of the new right-hand sides).

4.3 A Practical Algorithm

In Table 4.1 we summarise the size of the final grammars obtained with IRRCOO-
MC, IRRCOOC-MC and ZZ on the Canterbury and DNA corpus, and compare
them to the size of the grammars obtained with IRR-MC. In [44] we reported
results using strategies other than MC with IRRCOO. As can be appreciated,
each algorithm outperforms its previous version.

While ZZ proves to be very powerful, its big complexity (O(n7))), makes it
unfeasible even on the rather small corpora we use as benchmark. The efficiency
and scalability concerns we analysed in Chapter 3 appear again. The IRRCOO
and IRRCOOC frameworks are suitable to include the first two modifications
we proposed to speed-up execution time. These are to consider only maximal
repeats and to use the total number of occurrences instead of the size of a the
normalised non-overlapping occurrence list. Because of the mgp algorithm, the
last modification (in-place update of the underlying suffix array) seems more
difficult to adapt and we did not include it here. Because the ZZ algorithms
works different in the sense that it does not compute in each iteration the set of
current repeats, we did not improve it with any of the proposed changes from
Chapter 3.

We compared therefore the execution time of IRRCOOC-MC compared to
the time spent by IRR-MC. Results over the DNA corpus can be appreciated in

77



Table 4.1: Result of the algorithms presented in this chapter on the DNA Corpus
(a) and the Calgary Corpus (b). The size of the algorithms are given in per-
centage with respect to the size of the state of the art, IRR-MC (see Sect. 2.7).
Cells marked with † refer to partial executions.

(a) DNA Corpus

sequence
IRR IRRCOO IRRCOOC

ZZ IRRMGP*
-MC -MC -MC

chmpxx 28,706 -2.86 -2.87 -9.35 -4.40
chntxx 37,885 -2.74 -2.75 -10.41 -4.85
hehcmv 53,696 -2.63 -2.69 -10.07† -5.28
humdyst 11,066 -3.61 -3.62 -8.93 -3.86
humghcs 12,933 -0.50 -0.61 -6.97 -2.34
humhbb 18,705 -2.42 -2.43 -8.99 -4.07
humhdab 15,327 -2.11 -2.10 -8.70 -3.34
humprtb 14,890 -1.35 -1.36 -8.27 -3.45
mpomtcg 44,178 -1.90 -1.99 -9.66 -4.02
mtpacga 24,555 -2.37 -2.37 -9.64 -4.47
vaccg 43,701 -1.93 -1.95 -10.08† -5.20
average – -2.22 -2.25 -9.19 -4.12

(b) Calgary Corpus

sequence
IRR IRRCOO IRRCOOC

ZZ IRRMGP*
-MC -MC -MC

alice29.txt 41,000 -3.05 -3.24 -8.05 -2.56
asyoulik.txt 37,474 -2.34 -2.38 -6.60 -1.80
cp.html 8,048 -1.33 -1.40 -3.49 -1.12
fields.c 3,416 -1.20 -1.41 -3.07 -1.11
grammar.lsp 1,473 -0.14 -0.14 -0.54 -0.14
kennedy.xls 166,924 -0.10 -0.11 -0.13 -0.09
lcet10.txt 90,099 -1.79 -1.85 – -1.88
plrabn12.txt 124,198 -4.65 -4.72 – -3.44
ptt5 45,135 -0.60 -0.84 – -2.65
sum 12,207 -0.56 -0.57 -1.47 -0.82
xargs.1 2,006 -0.75 -0.75 -1.69 -0.45
average – -1.50 -1.58 -3.13 -1.46
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Figure 4.2: User time for consecutive prefixes of Eschericha Coli for the accel-
erated versions of IRR-MC and IRRCOOC-MC. Time is given in seconds and
size in bytes

Table 4.2 IRRCOOC-MC finds grammar 1.96% smaller in average over the DNA
corpus, needing five times more time, compared to the accelerated version of
IRR-MC. (see Table 4.2). Unfortunately, it does not seem to scale up very well
on bigger sequences. In Figure 4.2 we plot the user time required to execute IRR-
MC and IRRCOOC-MC on successive prefixes of the Escherichia Coli genome.
Both seems to grow as the square of the time (for the case of IRR-MC this can
be better appreciated in Figure 4.3). The constant hidden in the complexity
of IRRCOOC-MC however is much bigger than the one of IRR-MC, becoming
unfeasible when applied to sequences bigger than the test corpus. Therefore, we
present here a last algorithm, that is able to be executed on bigger sequences.

Analysing the time used by IRRCOOC in each instruction reveals that the
bottleneck lies in the computation of mgp(C, s). The way IRR choses its con-
stituents is fast and quite direct, while optimising the occurrences of the con-
stituents is much more expensive. Several choices of compromise are possible
in order to reduce the number of times this optimisation step is performed.
Here we propose to do it only at the end of an IRR execution and not at each
iteration. Pseudo-code for this can be found in Algorithm 11. It consists of:
run IRR, find a minimal parsing, throw away costly rules, and repeat this until
no further improvement is made. By alternating IRR with a clean-up phase it
reflects somehow the bottom-up–top-down phases of ZZ. We call this algorithm
IRRMGP∗ because it can be seen as several applications of IRR-MC completed
by a minimal parsing and cleanup.

Both the execution of IRR and the occurrence optimisation step reduces the
size of the grammar by at least one. So, IRRMGP∗ is in O(n4) too. However, we
measured again the time needed on successive bigger prefixes of the Escherichia
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Algorithm 11 IRR plus MGP (IRRMGP∗)
IRRMGP∗(s)

Input: s is a sequence
1: G←[ G({S → s})
2: while |G| 6= IRR(r(G), fMC) do
3: G← [ IRR(r(G), f)
4: repeat
5: C ← [ {cons(N) : N non-terminal of G}
6: G← [ clean(mgp(C, s))
7: until G contains no costly rules
8: end while
9: return G

sequence
IRRCOOC-MC IRRMGP*
size time size time

chmpxx -2.53 5.62 -4.64 1.17
chntxx -2.47 5.41 -4.74 1.14
hehcmv -2.08 5.31 -5.16 1.09
humdyst -2.61 3.58 -4.00 1.19
humghcs -0.81 6.07 -2.34 1.15
humhbb -1.66 4.59 -4.43 1.34
humhdab -2.07 4.07 -3.41 1.12
humprtb -1.16 4.39 -3.06 2.22
mpomtcg -1.93 5.53 -3.85 1.13
mtpacga -2.41 4.60 -4.36 1.20
vaccg -1.78 6.36 -5.77 1.23
average -1.96 5.05 -4.16 1.27

Table 4.2: Final grammar size and execution time of accelerated versions of
IRRCOOC-MC and IRRGMP∗. Grammar size are given as percentage with
respect to the final grammar size obtained by the accelerated version of IRR-
MC and time as ration with respect to the execution time of the same algorithm
(see Table 3.2).

Coli genome. From the result in Figure 4.3 it can be appreciated that it has the
same trend as IRR-MC and takes only slightly more time.

On the DNA corpus (Table 4.2) IRRMGP∗ obtains 4.35% smaller grammars
on the classical test corpus, taking 27% more time compared to IRR-MC.

Thanks to its reasonable complexity, we were able to execute IRRMGP*
on bigger sequences than those of the standard corpus. We chose model or-
ganisms from different kingdoms: Phage lambda (virus), Escherichia coli (bac-
teria), Thalassiosira pseudonana (chromista protist), Dictyostelium discoideum
(amoebozoa protist), Saccaromyces cerevisiae (fungi), Ostreococcus tauri (alga),
Arabidopsis Thaliana (plant) and Caenorhabditis elegans (nematoda). From the
two protists (T. pseudonana and D. discoideum) we only took chromosome 1,
for A. Thaliana we took chromosome 4 and chromosome 3 for C. Elegans. For
all other cases the sequence corresponds to the whole genome. In each case, the
analysed sequence was the flat DNA sequence, without annotations and where

80



CHAPTER 4. SMALLER GRAMMARS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  500000  1e+06  1.5e+06  2e+06  2.5e+06  3e+06  3.5e+06  4e+06  4.5e+06

tim
e

size

IRR-MC
IRRMGP*

Figure 4.3: User time for consecutive prefixes of Eschericha Coli for the accel-
erated versions of IRR-MC and IRRMGP*. Time is given in seconds and size
in bytes

any “N” was deleted. Table 4.3 shows the results. We report the size of the
grammar returned by IRRMGP* and the improvement over IRR-MC which is
close to 10%. In order to have a relative interpretation we also report the size of
the IRRMGP* grammar divided by the length of the sequence. In general, we
can see that this number becomes smaller (more redundancy is detected) when
the sequence is bigger, but that it is not necessary correlated with the different
kingdoms or classification of the analysed organisms. The average ratio on the
classical DNA corpus is 0.23, in the same order as the ratio achieved on the
rather small viral genome.

4.4 Summary

In this chapter we presented several algorithms that outperform state-of-the-
art algorithms in the task of finding small grammars in practice. All these
algorithms rely on the separation of two optimisations problem. The first is to
find a minimal grammar given a set of constituents and defines what we named
the Minimal Grammar Problem. We also presented an algorithm that solves this
problem in polynomial time, the mgp algorithm. Each of algorithms presented
in this chapter use this procedure. The other optimisation problem is to find
an optimal set of constituents. The algorithms differ in the way they perform
the search for this NP-Hard problem, ranging from the computational-intense
ZZ to the much faster IRRMGP∗.

In the next chapter we will analyse closer some of the possible applications
of the Smallest Grammar Problem. In particular, analysing the uniqueness of

81



classification sequence length IRRMGP* |G|/|s| gain
Virus P. lambda 48,502 13,061 0.27 -4.25
Bacterium E. coli 4,639,675 741,435 0.16 -8.82
Protist (Chromista) T. pseudonana chrI 3,031,229 509,203 0.17 -8.15
Protist (Amoebozoa) D. discoideum chrI 4,922,989 647,240 0.13 -8.49
Fungus S. cerevisiae 12,156,679 1,742,489 0.14 -9.68
Alga O. tauri 12,544,522 1,801,936 0.14 -8.78
Plant A. Thaliana chrIV 18,582,009 2,561,906 0.14 -9.94
Nematoda C. Elegans chrIII 13,783,317 1,897,290 0.14 -9.47

Table 4.3: Resulting grammar size for IRRMGP* on some model organisms. The last column shows the gain with respect to the size of
the grammar of the accelerated version of IRR-MC.
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the smallest straight-line context-free structure we will refer to the search space
〈

2R(s),⊆
〉

defined in this chapter.
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Chapter 5

Applications

In the previous chapter we have seen how to obtain smaller straight-line gram-
mars than the state of the art. Here, we revisit the three applications we de-
scribed in Chapter 2, with the insights we obtained so far.

The first such application we will consider is Structure Discovery. We analyse
a fundamental issue that concerns any use of the final parse tree of a smallest
grammar (or an approximation of it) to discover a hidden structure. What
happens if the smallest grammar is not unique? And if there are more than
one of them, how similar are they? The splitting of the Smallest Grammar
Problem we saw in the last chapter provides us with the tools to answer these
questions. In Sect. 5.1 we analyse, both theoretically and on real sequences,
the (non-)uniqueness of minimal grammars and their impact on the stability
of the final structure. To measure the similarity we use standard metrics, and
conclude this section proposing a new one that is more robust to minor changes.

Concerning Kolmogorov Complexity, we evaluate our IRRMGP∗ algorithm
through clustering using the Normalised Compression Distance. Such an ap-
proach is parameterised by several options. We repeat two standard experiments
from the literature, changing only the compressor function.

We worked mostly on applications for Data Compression. We mentioned al-
ready the importance of the data compression community in the field of smallest
grammar (or grammar-based codes). Most of the reported results combines in
some way the three steps we described in Fig. 2.2 (page 22). Nevill-Manning
and Witten [172] for instance combine the grammar output by Sequitur with
an implicit “marker” model and encode this afterwards with an 0-AAC. Results
are comparable to gzip (it performs better on 6 of 14 files of the Calgary Cor-
pus). We already saw the methods used by Yang and Kieffer [244, 245] (see
Sect. 2.3.4) and their claims to compare similarly to the PPM family (though it
is not clarified which version). In Sect 5.3, we analyse each of these steps sep-
arately. We pay special attention to the case of DNA compression, a field were
grammar-based codes traditionally performed poorly, and introduce a compres-
sor that outperforms any other grammar-based DNA compressors. In Sect. 5.4
we study the family of rigid patterns and how to include them in a straight-line
grammar DNA compressor. This compressors achieves compression rate up to
a 25% better than the previous best grammar-based compressor. The average
compression ratio of this prototype on the standard test corpus is only 5% worse
than the state of the art in DNA compression.
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5.1 Structure Discovery

Since its origins [211], the problem of finding the smallest context-free grammar
that generates a given sequence has been motivated by the desire of discovering
the hidden structure of the object it describes. The example of results shown
with Sequitur [171, 172, 173] where known structures over natural language,
structured text and musical scores were unveiled are indicators that a small
grammar may reveal interesting hierarchical patterns in real-life sequences.

In particular, a smallest grammar is the one that successfully extracts all
possible redundancy that can be captured with the expression power of context-
free straight-line grammars. Following Occam’s Razor (see Sect. 1.3) this is a
good candidate for the best explanation. However, it seems clear that some
sequences may present more than one grammar whose size is minimal. In this
section we first analyse the non-uniqueness of smallest grammars in theory,
using for this the search space in form of lattice we defined in Sect. 4.2.1. We
then study whether some stable structures are observed in practice among all
minimal grammars (given a set of constituents). We present the results of
experiments comparing the similarity of these grammars. Part of this section
was realised in collaboration through an INRIA/MINCyT project and submitted
for publication in 2010 [45].

5.1.1 Non-uniquenes of the Smallest Grammar: in Theory

Recall from Theorem 5 (page 75) that the lattice we defined is a complete search
space in the sense that each smallest grammar is a minimal grammar parsing of
a global minimal node. Here we will consider the number of such global minima.
This is, the number of nodes whose minimal grammar parsing has a smallest
size. The following lemma show that there may be an exponential number of
these:

As in the proof of Proposition 6 and only to ease the understanding of the
proof, we will use |G| =

∑

A→α∈P(|α|) as the definition of grammar size.

Proposition 7. Let n(k) = max
s:|s|=k

(

number of global minima for
〈

2R(s),⊆
〉)

.

Then, n(k) ∈ Ω(2k).

Proof. It is sufficient to find one family of sequences for which the number of
global minima is exponential. Consider the sequence

sk = a1a1|a1a1|a2a2|a2a2| . . . |akak|akak =

k
Y

i=1

(aiai|)
2

over an alphabet of size 3k. The ai are single symbols. Recall that | refers to
a different symbol every time it appears. The set of repeated substrings longer
than one is {aiai, 1 ≤ i ≤ k}. Take any subset, and compute the (there is
only one) smallest grammar with this constituent set. Adding any remaining
constituents to this grammar reduces the length of the axiom rule by two, but
does not reduce anything in the remaining rules, and adds two to the grammar
size. The same happens with eliminating a constituent. So, any node of the
lattice is a local minimum, and therefore a global one.
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Next, we will suppose that the set of constituents is fixed and consider the
number of minimal grammars that can be built with this set. This is, given a
node η, try to bound |MGP(η)|. As the following lemma shows, there are cases
where the number of different minimal grammars can grow exponentially for a
given set of constituents.

Proposition 8. Let n(k) = max
s:|s|=k,η⊆R(s)

(|MGP (η ∪ {s})|). Then n(k) ∈

Ω(2k).

Proof. Let sk be the following sequence (aba)k and let η be {ab, ba}. Each aba
can be parsed in only one of the two following ways: aA or Ba, where A and B
derives ab and ba respectively. Since each occurrence of aba can be replaced by
aA or Ba independently, there are 2k different ways of rewriting sk and all of
them have the same minimal size.

5.1.2 Non-uniqueness of the Smallest Grammar: in Prac-
tice

In this section we analyse the number of minimal grammar on some of the
sequence of our corpora, and we compare minimal grammar between them. As
finding the smallest grammar is NP-Hard, we concentrate here on the node our
best algorithm (ZZ, see Sect. 4.2.2) finds.

We would like to compute all the minimal grammar for a given node. Re-
call from Sect. 4.1.1 that, given a set of m constituents, the graphs Γi give a
representation of all possible parses of constituent αi. Here, we are interested
in computing m subgraphs ∆1 . . .∆m with the following two properties:

1. Let Γi = 〈Mi, Ei〉. Then ∆i = 〈Mi, E
′
i〉 such that and E′ is a subset of E.

2. Every path from node 0 to node |Mi| over ∆i is a shortest path for Γi.

∆i can be computed with a dynamic algorithm from Γi. At each node k,
every income edge that is not part of a smallest path from 0 to k is eliminated.
At the end, a filtering process is performed to eliminate every edge belonging
only to paths that do not lead to node |Mi| (see [45] for more details).

Using the ∆i’s, it is possible to compute all minimal grammars given a fixed
set of constituents. In Table 5.1 we report the number of minimal grammars at
the final node found by the ZZ algorithm. This number seems huge, and poses
questions about how similar all these different grammars are.

sequence humdyst asyoulik.txt alice29.txt

sequence length 38,770 125,179 152,089
grammar size 10,035 35,000 37,701
number of constituents 576 2,391 2,749
number of grammars 2× 10497 7× 10968 8× 10936

Table 5.1: Sequence length, grammar size, number of constituents, and number
of grammars for different sequences.
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Figure 5.1: Two different trees with the same yield.

Similarity of Parse Trees

A straight-line grammar corresponds to one parse tree over the sequence, and
comparison of parse trees is a recurrent task in fields like natural language
processing. One of the problems in this area is, given a sequence of letters, words
or part-of-speech tags, to automatically find the correct syntax tree. This is then
compared to a manually annotated, “correct” tree, the gold standard. Despite
of criticism [209], the Parseval metric [1], or an unlabelled variant of it [130,
Section 2.2], seems still to be the standard metric.

Before we define this metric, we give some notation. Given a tree, a node is
called internal if it has at least one daughter and leaf otherwise. The yield of
tree T is the sequence composed by its leaves, read from left to right. Any node
n defines a subtree Tn where n is the root. Clearly, yield(Tn) is a substring of
yield(T ). We define the interval of a node n to be the interval corresponding
to the positions of yield(Tn) in yield(T ). Finally the bracketing of a tree T is
the set of intervals given by the internal nodes (except the root) of T . With the
exception of the label of the nodes, the parse tree can be fully recovered from
this set of intervals.

Consider for example Fig. 5.1. The bracket set of tree T1 is {[0, 4], [0, 1], [2, 4],
[3, 4]} and the one of tree T2 is {[0, 4], [0, 3], [0, 1], [1, 2]}.

The unlabelled version of the Parseval metric used to evaluate syntax tree
is the Unlabelled F-Measure (the harmonic mean between the precision and
recall). It is equal to the Dice coefficient of the bracketing of the evaluated
trees:

Definition 14 (Dice coefficient). Given sets X, Y .

Dice(X, Y ) = 2 ∗
|X ∩ Y |

|X|+ |Y |

In Fig 5.1, Dice(T1, T2) = 0.5.
In our experiments, there is no gold standard, so talking about precision and

recall may be misleading. Instead of F1-measure, we prefer therefore to refer to
it as the Dice coefficient.

Dice-coefficient Similarity of Minimal Grammars

Seeing Table 5.1 it is clearly unfeasible to compute the exact similarity between
all minimal grammars. We therefore sample some of the grammars and in order
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to have a uniform sample we proceed as follows: starting at the end node of each
∆i, the sampling algorithm works its way back to the start node by repeatedly
choosing one of the incoming edges with a probability weighted proportionally
to the amount of shortest paths that go through that edge.

We computed the Dice-coefficient pairwise on a sample of 1,000 minimal
grammars given the final node returned by ZZ. Results are reported, as per-
centages, in Table 5.2.

Sequence humdyst asyoulik.txt alice29.txt

Dice mean 66.02 81.48 77.81
Dice standard deviation 1.19 1.32 1.52
Smallest value 62.26 77.94 73.44
Largest value 70.64 85.64 83.44

Table 5.2: Mean, standard deviation, smallest and largest values of similarity
(Dice coefficient) given a uniform sample of 1,000 minimal grammars. All values
are given in percentage.

Tracking the Difference

Until now we have seen that the number of different grammars given a local min-
imum over the lattice may be huge in real-life sequences. However, comparing
them with Dice coefficient reveals that all these grammars present a rather sta-
ble structure. In this last two experiments we present here, we aim to discover
where this difference lies.

In first place, we repeat the previous experiment, but filtering out those
brackets that have a total size smaller than a given k. Note that the standard
Dice coefficient gives the same weight to a bracket of size two than to longer
brackets. For structure discovery, longer brackets seems to be more relevant.
We denote this new measure as Dicek. When k = 1, Dicek is equal to Dice, but
for larger values of k more and more brackets are ignored in the calculation.

Table 5.3 reports the results for different values of k. For each sequence, the
table contains two columns: one for Dicek and one for the percentage of the
total brackets that were included in the calculation. As it can be seen, the Dice
coefficient increases along k. This indicates that bigger brackets are found in
most of the grammar, but it also shows that smaller brackets are much more
numerous.

The second experiment considers the differences between the grammars on
single positions. The objective of this experiment is to measure the amount
of different ways in which a single position of the original sequence s can be
parsed by a minimal grammar. For this we will consider the partial parse tree
where only the first level is retained. Doing this for each minimal grammar, we
compute for each position i the number of different subtrees it belongs to. This
is equivalent to the number of edges in ∆0 that starts at or before i and ends
after i. If the number for one position is one for instance, this means that in all
minimal grammars the same occurrence of the same non-terminal expands on
this position.

On alice29.txt, 89% of the positions are parsed exactly the same way. A
histogram for all values of different parses can be seen in Fig. 5.2. Note that the
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k
humdyst asyoulik.txt alice29.txt

Dicek Brackets Dicek Brackets Dicek Brackets
1 67.32 100.00 81.50 100.00 77.97 100.00
2 71.11 45.99 88.26 50.86 83.70 53.14
3 75.93 37.54 92.49 29.57 87.94 32.42
4 82.17 15.69 95.21 19.85 89.60 22.01
5 88.51 3.96 96.35 11.78 88.88 14.36
6 95.46 1.24 97.18 8.23 89.45 9.66
7 98.38 0.44 97.84 5.72 91.50 6.44
8 99.87 0.19 97.82 3.83 92.78 4.30
9 100.00 0.06 98.12 2.76 92.37 2.95
10 100.00 0.04 98.35 1.88 91.87 2.10

Table 5.3: Dicek for different values of k. Values are given in percentage.

y-axis is in logarithmic scale. The number of positions reduce drastically if the
number of parses is increased: only 10% of positions are parsed in two different
ways, 1% in three and all others in less than 0.2%.

There were two regions that presented peaks on the number of different
symbols. Both correspond to parts in the text with long runs of the same
character (white spaces): at the beginning, and in the middle to indent a poetry.

While this experiment is only restricted to the first level of the parse tree,
it seems to indicate that the huge number of different minimal parses is due to
a small number of positions where different parses have the same size. Most of
the positions however are always parsed the same way.

5.1.3 Structural Comparison of Sequences: a New Tree
Distance Metric

The work in this section appeared in the Dagstuhl proceedings of the Seminar
10231 “Structure Discovery in Biology: Motifs, Networks & Phylogenies” [94].

We propose here a similarity metric between trees that ignores the labels
of the nodes. It is inspired by the unlabelled version of the Parseval metric
but our measure turns out to be much more robust to small changes of the
brackets. The motivation itself is also different: while the goal of the Parseval
metric is to evaluate how close a proposed tree comes to a gold standard, the
objective of our measure is to compare different trees over possibly different
sequences. This could then be used to perform a comparison of sequences based
on their structure rather than on their sequential composition. The fact that
the resulting function is a proper distance metric is useful and often necessary
for applications that involve clustering for example.

It tries to extract all possible similarities, even if the matches of brackets
are not perfect. In cases were (almost) nothing is known on the sequences, Dice
coefficient may be too rigid and not be the right measure to rate similarity. It
is useful to provide an objective score if the goal is to find the correct linguistic
parse tree on small sentences and where small changes disturb completely the
original meaning. But two parses (α)(abc) and (αa)(bc) for example would be
judged as having a similarity of 0, regardless of the length of α. If α would be
very long, it seems intuitive to assume that both parses highlight α as significant,
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Figure 5.2: The X axis are the number of different symbols that expand to one
position, the Y axis the number of positions that have this number of expansions.
Note that Y is in logarithmic scale

but with an unsure right-border.
As a first step we focus on comparison between two brackets, which are

represented as intervals. In order to measure how similar they are, we use the
well-known Jaccard coefficient that gives a measure of similarity of two sets:

Definition 15 (Jaccard Coefficient). Given sets x,y,

J(x, y) =
|x ∩ y|

|x ∪ y|

Here, we suppose that the brackets are intervals over the integer line, so that
each bracket defines a finite set of integers.

This gives a similarity coefficient between 0 and 1, 0 being completely dif-
ferent (empty intersection) and 1 total equality (x = y). The corresponding
distance measure is d(x, y) = 1− J(x, y).

Proposition 9. d is a proper metric, that is, it satisfies: non-negativity
(d(x, y) ≥ 0), identity (d(x, x) = 0), symmetry (d(x, y) = d(y, x)) and tri-
angle inequality (d(x, y) + d(y, z) ≥ d(x, z))

The first three are trivially true. For the triangle inequality see Lipkus [148].
In order to be able to compare the brackets of two trees (set of brackets)

X and Y , we suppose an assignment function f : X → Y ∪ {∅}. Moreover, we
require this function to be injective, except possibly for ∅. This means, every
bracket y from Y has at most one x from X such that f(x) = y. Let R(f)
denote the range of function f . Note that R(f) may be only a subset of Y .
The role of the empty set in the image is to permit to assign brackets from
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X which otherwise would not be assigned. If f(x) = ∅ we refer to this as a
null-assignment. Note that d(x, ∅) = 1, the maximal value for d.

We compare two set of brackets as follows:

Definition 16. Df (X, Y ) = |Y \R(f)|+
∑

x∈X

d (x, f(x))

This gives a penalty of a maximal distance for every bracket of Y to which
no bracket of X was assigned. This is the symmetric part of assigning ∅ to a
bracket of X.

In order to find the shortest distance between two trees, we are interested
in finding the “best” possible assignment function. This is the function f∗ =
arg minf Df (X, Y ). Then, we define:

Definition 17 (Distance measure). D(X, Y ) = Df∗(X, Y )

Symmetry

In order to prove symmetry, we define f−1 the inverse of a function in a non-
standard way. Let f be as defined before. Then:

Definition 18 (Inverse function). f−1 : Y → X ∪ {∅}

f−1(y) =

{

x if y ∈ R(f) and f(x) = y
∅ if y 6∈ R(f)

So, each bracket from the image that was not assigned by f , receives a
null-assignment of f−1.

Proposition 10. Df (X, Y ) = Df−1(Y, X)

Proof.

Df−1(Y,X) =
∑

y∈Y

d
(

y, f−1(y)
)

+
∣

∣X \R
(

f−1
)∣

∣

= {Definition 18}
∑

x∈X∩R(f−1)

d(f(x), x) +
∑

y∈Y \R(f)

d(y, ∅) + |X \R(f−1)|

= {d(y, ∅) = 1}
∑

x∈X∩R(f−1)

d(f(x), x) + |Y \R(f)|+
∑

x∈X\R(f−1)

d(x, ∅)

= {symmetry of d}
∑

x∈X

d (x, f(x)) + |Y \R(f)|

Now, if f does not assign brackets y from Y , the y is null-assigned by f−1.
So, if f∗ minimises Df (X, Y ), then (f∗)−1 minimises Dg(Y,X). We have as
corollary:

Corollary 1 (Symmetry). D(X, Y ) = D(Y,X)
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Figure 5.3: In this case (g ◦ f)(x2) = z1, (g ◦ f)(x3) = z2 and the rest are
null-assignments.

Triangle Inequality

For the proof of the triangle inequality, we will proceed similarly as before, and
redefine the composition of function.

Definition 19 (Composition). If f : X → Y ∪ {∅} and g : Y → Z ∪ {∅}, then
g ◦ f denotes the function:

g ◦ f : X → Z ∪ {∅}

(g ◦ f)(x) =

{

g(f(x)) if f(x) 6= ∅
∅ otherwise

See Figure 5.3 for illustration. The intuition behind is that, if while going
from X to Z over Y an x gets a null-assignment, then the final assignment is
also null.

We will make use of the two following lemmas:

Lemma 6. |Z \R(g ◦ f)| ≤ |Z \R(g)|+ |Y \R(f)|

Proof. By Definition 19, |Z \R(g ◦ f)| ≤ |Z \R(g)|

Lemma 7.
∑

x∈X

d(x, (g ◦ f)(x)) ≤
∑

y∈Y

d(y, g(y))

Proof.
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∑

x∈X

d (x, (g ◦ f)(x))

=
∑

x∈X,f(x) 6=∅

d(x, (g ◦ f)(x)) +
∑

x∈X,f(x)=∅

d(x, ∅)

≤ {triangle inequality of d}

=
∑

x∈X,f(x) 6=∅

(d (x, f(x)) + d (f(x), (g ◦ f)(x))) +
∑

x∈X,f(x)=∅

d(x, f(x))

= {Definition 19}
=

∑

x∈X,f(x) 6=∅

d(x, f(x)) +
∑

x∈X,f(x)=∅

d(x, f(x)) +
∑

x∈X,f(x) 6=∅

d(f(x), g(f(x)))

∑

x∈X

d(x, f(x)) +
∑

y∈R(f)\{∅}

d(y, g(y))

≤
∑

x∈X

d(x, f(x)) +
∑

y∈R(f)\{∅}

d(y, g(y)) +
∑

y∈Y \R(f)

d(y, g(y))

=
∑

x∈X

d(x, f(x)) +
∑

y∈Y

d(y, f(y))

Theorem 6 (Triangle Inequality). D(X, Y ) + D(Y,Z) ≥ D(X, Z)

Proof. Suppose f, g, h are, respectively, the functions that minimise De(X, Y ),
De(Y, Z) and De(X, Z).
D(X,Z) = Dh(X, Z)

≤ {h minimises De(X, Z), so in particular Dh(X, Z) ≤ Dg◦f (X, Z)}
∑

x∈X

d(x, (g ◦ f)(x)) + |Z \R(g ◦ f)|

≤ {Lemma 7 and Lemma 6}
∑

x∈X

d(x, f(x)) +
∑

y∈Y

d(y, f(y)) + |Z \R(g)|+ |Y \R(f)|

= D(X, Y ) + D(Y, Z)

Computation

In this section we consider an algorithm to compute the measure D and analyse
its computational complexity.

The Jaccard coefficient can be computed in constant time because we re-
strict the sets to be intervals. Given the assignment function f , Df (X, Y ) is
computable in O(n), where n = max(|X|, |Y |). Note that we only consider trees
where every node has at least two daughters, so the size of the set of brackets
(|X|) is linear in the number of leaves (the length of the yield).

The computation of f∗ can be mapped to optimise an assignment problem
and can be solved, for example, by the Hungarian algorithm [136], which is in
O(|X|3). So, D(X, Y ) can be computed in O(n3), where n = max(|X|, |Y |).

Experimentations

In order to test our distance measure and compare it to existing metrics we want
to see if it is capable to distinguish groups of similar trees. For this, we start with

94



CHAPTER 5. APPLICATIONS

a small set of radically different trees. We then modify copies of these original
trees and use a clustering algorithm based on the distance metric to regroup
them. The nature of the change is always the same, but is parametrised by a
random distribution.

Starting from k sets of brackets, we copy each of them m times with some
modifications. We use k = 3: a left-branching tree ({(i, n) : 1 ≤ i < n − 1}), a
right-branching tree ({(0, i) : 1 < i < n}) and a centred tree ({(i, n − i) : 1 <
i < ⌊n/2⌋}). In our set-up, n = 30 and we generate m = 32 modified copies of
each one, resulting at the end in 99 bracket sets (we keep the 3 original trees).
The modifications are obtained by changing each bracket with probability p. A
change consists in a shift of the bracket to the left or to the right (choosing
randomly). Shifting a bracket [a, b] by ℓ consist in replacing it by [a + ℓ, b + ℓ].
The value ℓ is given by a geometric distribution with parameter q (plus one, to
ensure that the bracket is changed). After each change, all overlapping brackets
are shorten to avoid overlap. In order to not give preference to any bracket,
the order in which they are considered is determined randomly. Throughout
our experiments we use q = 0.5 and different values for p. For the clustering
algorithm, we compute the square distance matrix and use a k-medoid algorithm
(k = 3), taking the cluster with lowest total sum of distances to the centre after
20 runs (each run starts with a random selection of centres).

Note that the Dice dissimilarity metric (1 − D(X, Y ) does not satisfy the
triangle inequality and is inadequate to be used to compute a distance matrix. It
is however closely related to the Tanimoto distance (Dice(X, Y ) = 2∗J(X,Y )

1+J(X,Y ) ),
so we compared our distance metric to the Tanimoto distance, but this time
applied to set of brackets. In Fig. 5.4, we plot p (the probability that a bracket is
changed) against the number of hits of the final cluster. Each point is the average
over 250 runs, each run consisting in a copy-modify-cluster-count step. As it
can be appreciated, as the probability of modification increases, the Tanimoto
distance becomes less accurate to discriminate the correct clusters. This reveals
the binary nature of a match in the Tanimoto distance: or a bracket matches
or not. Our distance is more flexible: this reveals to be counterproductive if
there are only few changes, but if p increases, it reveals to be very well suited
to cluster the right groups. Both measures results in the same number of hits
for p = 0.5, but from there on the number of hits using the Tanimoto distance
decreases considerably. Our D distance continues to improve, getting more or
less stable at 92 correct hits.

We presented a new distance metric to compare trees and prove that it is
a proper metric. The aim of this metric is to compare sequences based on
their tree structure. The advantage over previous approaches is its flexibility to
compare trees that intuitively are highly similar, but where existing similarity
metrics fail.

Our experiments show that this metric permits to distinguish groups of sim-
ilar parse tree. Starting with a group of radical different trees, we modified each
bracket slightly. When the probability of changing a bracket is greater then 0.5,
our metric outperforms considerably a classical distance metric.

It would be interesting to analyse how this measures behave with respect
to a tree-edit distance. Differently from the Parseval measure and ours, they
are not based on the similarity between the yields of the nodes, but on the
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Figure 5.4: Number of true positives of the final cluster against probability of
change of a bracket.

number of operations that are necessary to go from one tree to another one.
The standard edit-distance [6, 29, 229] contemplates operations of insertion,
deletion and renaming of nodes. In order to have a meaningful measure, an
operation on edges that would permit to re-branch nodes (known as prune and
regraft [7]) should also be considered.

5.1.4 Summary

Structure Discovery is possibly one of the most appealing and promising applica-
tions of the smallest grammar problem. Previous studies — particular with the
Sequitur algorithm — has evidenced its potential with examples. However, a
qualitative study that certifies a (semi-)automatic approach is missing.

We have analysed in this section a fundamental step toward such an ap-
proach, namely, the non-uniqueness of the smallest grammar. We proved that
the number of smallest grammars can be exponential in the size of the original
sequence, both because there may be an exponential number of constituents set
that yields a smallest grammar or because there may be an exponential number
of parses with one given constituent set. Our definition of the problem that
decomposes it into a search for a set of constituents, and a parsing with this
constituents, provided us with the tools (the ∆i’s graphs) to analyse the num-
ber of and similarity between minimal grammars. While the total number of
different minimal grammars is huge they seem to be very similar between them.
Moreover, most of the differences are due to the smaller constituents (which
could be argued to be less interesting from a pattern-discovery point of view).
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Also, there seems to be zones which concentrate most of the differences while
other areas are much more stable. These stable constituents seems to be the
most promising to unveil an eventual hidden structure.

Finally, we remark that an exact comparison as performed by standard tree
similarity (or distance) measures may not be the right path for comparing parse
trees of such big sequences. This applies particularly to DNA sequences were
the boundaries of meaningful segments are not always stable. Therefore, we
proposed a new proper distance metric over bracket sets that is able to detect
similarity even if the trees are slightly modified. It would be interesting to define
a normalised variant of this metric, and to use it in an efficient implementation
that would reduce practical space and memory requirement of the Hungarian
algorithm. This could then be used to perform similar experiments to those
presented in the first part of this section.

5.2 Kolmogorov Complexity

The size of a smallest grammar provides an approximation to Kolmogorov Com-
plexity. However, any such approximation is impossible to evaluate directly be-
cause of the non-computability of Kolmogorov Complexity (Theorem 2). Classi-
cal evaluations use an approximation of the Universal Metric (Def. 6, page 27),
to perform classification or clustering tasks. Such an approach consists of
several parameters: in first place a distance metric (like Normalised Com-
pression Distance) and a compressor that approximates Kolmogorov Complex-
ity. All pairwise distances are computed and the resulting distance matrix is
used as input for a final algorithm that outputs, for example, a hierarchical
cluster. Ferragina et al. [89] compare all possible combinations for three ap-
proximations of the Universal Metric, two phylogenetic tree construction algo-
rithms (UPGMA and Neighbor Joining) and 25 compressors: gzip, bzip2, four
variants of PPMd, Huffman, Arithmetic, Range coding, BWT+(MTF)+Run-
length+[Huffman|Arithmetic|Range], BWT+Wavelet and Gencompress. For
Arithmetic and Range encoding up to three variants where used, depending
on how fast the model adapts to new statistics. These combinations were evalu-
ated by the similarity of the resulting tree with a gold one, on six different data
sets:

AA-15-DNA The Apostolico data set, consisting of 15 complete mitochondrial DNA
genomes.

CK-36-PDB The Chew-Keden data set, consisting of 36 protein domains, in FASTA
format (amino acid sequence).

CK-36-REL The same data set, but this time using their complete topological descrip-
tion (TOPS strings with contact map).

CK-36-SEQ The same data set, but this time in TOPS strings of secondary structure
with contact map.

SP-86-PDB The Sierk-Pearson data set, consisting in 86 protein domains, in FASTA
format (amino acid sequence).

SP-86-ATOM The same data set, but this time in ATOM lines from PDB entries.
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The authors conclude with a recommendation of using NCD (or UCD, whose
result is indistinguishable), UPGMA and PPMd, even if the performance of the
different compressors varies largely with the type of data.

Cilibrasi and Vitanyi [63] use a tree construction algorithm designed by
themselves, called the quartet method and implement it in their CompLearn

tool1. In this same paper they present results of very wide range of experiments,
with a particular emphasis on a phylogenetic tree reconstruction of mammals
using their mitochondrial DNA. We repeat here this last experiment.

In both test, we used exactly the same conditions, but using our algorithms
as compressors.

5.2.1 Biological Classification

We resume in Table 5.4 the results of using C(x) = IRRMGP∗(s) in Def. 7
(page 27) and comparing against the gold tree given by the authors on their
public website. In Table 5.4 we report exactly the same measures as Ferragina
et al. [89]: F1 measure (Dice’s coefficient) for the CK-36 and SP-86 corpora,
and the partition distance2 for the AA-15 corpus. This should be compared
with the corresponding Tables given by Ferragina et al. [89]. In general, our
measure of compression works rather good, beating (or equaling) every other
compressor for the CK-36-REL corpus. For the other two corpora of the CK-36
set, the result are in the upper third, loosing mostly against the PPMd family
and performing mostly better than all the others. The overall result for the SP-
86 set is rather poorly, with no combination scoring more than 0.6. The result of
using IRRMGP∗ varies a lot: while it scores as bad as the worst on the ATOM
corpus using the NJ algorithm, it is only outperformed by two compressors on
the PDB+NJ combination. With respect to AA-15, our algorithm performs as
good as the best compressor (PPMd-16).

In general, using the size of the grammar obtained by the IRRMGP∗ algo-
rithm performs as good as the most advanced compression compressors analysed
in Ferragina et al. [89]. A notable exception is on the SP-86 corpus, but this
seems a general hard task where all of the compressors fail to achieve satisfac-
tory results. In particular, as the SP-86-ATOM consists of tables with mainly
numerical values, a general purpose-compressor may not be able to use all the
available information.

5.2.2 Mammalian Phylogeny

Cilibrasi and Vitanyi [63] report a phylogeny tree using general compressors
(zip, PPMZ, bzip2) and the CompLearn toolkit. They also compute all pair-
wise distance, but for the final binary-tree construction a new method, the
quartet method, is used. This methods tries to optimise a score S(T ), where
S(T ) = 1 indicates that the tree T represents perfectly the distance matrix. We
refer to their paper for details.

Using |IRRMGP∗(s)| as approximation to Kolmogorov Complexity, and us-
ing the CompLearn toolkit (command maketree) we obtain the unrooted binary

1http://complearn.org/
2“takes in input the tree topologies of two alternative classifications of n species and returns

a value ranging from 0 to 4n−10. It is the number of clades in the two rooted trees that do not
match and it is increasing with dissimilarity. When zero, it indicates isomorphic trees.”[89]
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CK-36-PDB
UPGMA 0.8676
NJ 0.8824

CK-36-REL
UPGMA 0.9031
NJ 0.8881

CK-36-SEQ
UPGMA 0.8849
NJ 0.7418

SP-86-ATOM
UPGMA 0.5473
NJ 0.5265

SP-86-PDB
UPGMA 0.5381
NJ 0.5363

AA-15
UPGMA 4
NJ 3

Table 5.4: Biological Classification on data-set used by Ferragina et al. [89] with
IRRMGP∗ to compute the distances. The reported measures are F-Measure (for
CK-36 and SP-86) and partition distance for AA-15.

of Fig. 5.5. The tree is very similar as the one reported by Cilibrasi and Vi-
tanyi, with the notable exception of the wrong position of Cyprinus Carpio, the
common carp (which is not a mammal).

5.3 Compression with IRR

With respect to compression, recall our schematic representation of grammar-
based codes in Fig. 2.2 (page 22) The inference process is completed with a
transformation of the grammar into a linear sequence, and finally with an en-
coding into a bit stream. We have seen in Sect. 2.3 that, with respect to Step
2, Nevill-Manning et al.’s Marker method [56, 178] takes advantage of the num-
ber of non-terminals that appear only twice. Yang and Kieffer [244] use the
knowledge that any rule will have right-hand side at least two and then con-
centrate on additional information to find a good model that performs the final
Step 3 through an arithmetic coder. On another hand, RNACompress [149]
(see Sect. 2.3.5) uses the parse tree of the secondary structure to encode the
grammar.

The cases we mentioned are examples of three possible ways we studied of
encoding a small grammar. Because the number of symbols in the grammar is
likely to be very big, a dynamic alphabet could permit the same identificator
to refer to different symbols, depending of the moment it appeared. A second
strategy is to use the extra knowledge that the sequence that is encoded repre-
sents a parse tree. In this way, a more adequate probabilistic model could be
defined that would produce a smaller bitstream. Finally, a step forward with
this idea would send on one hand the topology of the parse tree, and then the
single symbols. We will see these approaches in more detail in Sect. 5.3.1. The
results presented there were obtained, partly, in collaboration with Matthieu
Perrin from the ENS Cachan and we will refer to his final report [186, in french]
for more details.

A completely different approach is to define an inference process that from
the beginning is guided to obtain good compression (Step 1 of Fig. 2.2). The
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Figure 5.5: The unrooted binary tree after applying the maketree command of
the CompLearn toolkit on a distance matrix obtained with IRRMGP∗.
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grammar obtained this way may be very different from a grammar obtained
searching for a smallest one [51, 158]. In Sect. 5.3.2 we do this and design
an algorithm that generates a straight-line grammar which is optimised for
compression. We include into this algorithm the possibility of considering also
the complimentary strand of DNA and obtain a compressor that outperforms
any other grammar-based DNA Compressor. We improve over this in Sect. 5.4
using inexact repeats and present a DNA compressor comparable to current
state-of-the-art compressors.

5.3.1 Compressing Small Grammars

Given a small grammar, the alphabet size may be very big, but the actual
number of symbols that are used at every right-hand side is much more reduced.
So, our main concern in this section is to reduce the impact of this big alphabet.

Dynamic Alphabet

Because of the high number of symbols, we considered using a dynamic alphabet,
so that the same identifier in the symbol stream could stand for different symbols
from the grammar, depending when and where it appears. Our first approach
was to maintain a dynamic set of active alphabet A. A is initialised empty and
then r(G) is read from left to right. At the first occurrence of a symbol s, it is
assigned the identifier |A|+1, and added to A. Exactly after the last occurrence
of a symbol s, a special symbol † is sent and s is removed from A. The right-
hand sides of the remaining rules have to be sent in order of appearance of the
first occurrence of the left-hand side. On our tests, the maximum size of A is
about half the size of the original alphabet (Σ ∪N ∪ {|})

M. Perrin proposes a similar approach [186, Sect. 4.2], but using Move To
Front (MTF). The symbols are ordered on an array — called order — and
r(G) is again sent from left to right. Each time symbol s appears, the index
i such that order[i] = s is sent. The s is moved to the front of the array so
that order[0] = s and the remaining symbols between position 1 and i − 1 are
shifted one position to the right. The hope here is that the lower indices appear
frequently, and that a adaptive arithmetic coder would concentrate probability
on them.

None of the two approaches is particular to the grammar-based code frame-
work, and the final size of the bit stream (coding them with a 0-order adaptive
arithmetic coder) yield worse results then encoding directly r(G). The second
approach however, can be optimised because the order in which the right-hand
sides can be sent can be altered in order to minimise the use of higher indices.
The best approximation of this optimal solution [186, Section 6.2] are slightly
better then the direct compression of r(G), which is done with a 0−AAC.

Specific Context Model for an Adaptive Arithmetic Coder

A possible reason for the failure of the most basic schema of the approaches
presented above is that they were not designed to harmonise with Step 3, the
final statistical encoding. Small grammars however, present several properties
that may be exploited in order to define an ad-hoc probabilistic model. In ir-
reducible grammars (see Def. 4, page 22) for example no substring is repeated.
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Figure 5.6: The directed acyclic graph corresponding to G0.

M. Perrin uses a so-called anti-dictionary for a model that assigns null prob-
ability to symbol s if it has a left context of α and αs is a constituent of the
grammar. Also, the power of an adaptive model can be exploited by presenting
the right-hand sides by level of parse trees. First all rules consisting only of
terminal symbols are sent, then those rules that also contains non-terminals of
rules sent in the first group, and so on. On the DNA corpus, our tests report
an improvement of up to 5% with respect to directly encoding r(G) [186].

The Used-By Graph

Until now, the knowledge that r(G) is not any sequence, but represents a parse
tree over a sequence has not been used explicitly. It appears in the idea of
ordering the rules by levels of this parse tree. However, the parse tree is a much
richer structure than this. Suppose the following grammar G0:
S → FAFaEBDgGCCG
A → ac
B → gt
C → ag
D → AB
E → BC
F → BDE
G → CC

We define the directed acyclic graph of a straight-line grammar G as
DAG(G) = 〈N , E〉, with (N, N ′) ∈ E if N ′ appears in the right-hand side of
the rule of N . DAG(G0) is shown in Fig. 5.6.

If the decoder would have knowledge of DAG(G), then transmitting G could
be done cheaply following a fixed order (breadth-first for example). Of course,
it is not clear how to send the structure of the graph without spending more
bits than are saved by limiting the alphabet in each node.

A similar approach is to consider the complete graph with nodes N and
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where each edge (Ni, Nj) is weighted with the cost of changing the alphabet of
αi to αi (this could be, for example |Σ(αi) \ Σ(αj)|+ |Σ(αj) \ Σ(αj)|. Finding
a Hamiltonian path with lowest total weight on this graph would give the best
order in which the rules should be sent.

Besides the interesting formalisation, all our preliminaries test showed that
no gain (or a very small one) could be achieved, comparing to the straightforward
encoding of r(G).

5.3.2 An IRR Algorithm for Compression Purpose

Instead of trying to compress a given small grammar, we focus here on generating
a grammar which is suitable to be compressed. This is similar to the objective
of Greedy [13], an IRR-like algorithm that defines a compression schema and
selects in each iteration the repeat that reduces the most this schema.

Instead of this, we propose here to minimise the empirical entropy of the
grammar.

Definition 20 (Empirical Entropy). Given a sequence s of size n, the empirical
entropy of s is:

Ĥ(s) =
∑

x∈Σ(s)

−|poss(x)| log
|poss(x)|

n

Then, in each iteration the algorithm IRR-S will select the repeat such that
replacing all its normalised non-overlapping occurrence by a new symbol will
result in a grammar G such that Ĥ(r(G)) is minimal. As with IRR-MC the
length and number of occurrences of the repeat plays a fundamental role, but
the score function for IRR-S also takes into account the composition of the
repeat.

With respect to the execution time, this means that in every iteration, for
every repeat ω each symbol of the repeat has to be accessed (time |ω|) and Ĥ
be re-computed (time |Σ ∪ N|). This adds an extra O(n2) to the execution of
IRR, giving a O(n4) factor. It seems to be possible to compute the content
of each repeat in asymptotic time O(n), thus reducing the time complexity to
O(|Σ∪N|× n2), but we did not optimise the algorithm for this. Our goal here
was to find a straight-line grammar that represents a good compressor, and not
optimising execution time.

We compare the result of the size of the final compressed stream (we com-
press r(G) with 0-AAC) with the standard unix tools zip and PPMd. The alpha-
bet Σ(s) and order (we use the first |Σ(s)|+1 symbols for representing terminals
and the sentinel) is supposed to be known by the decoder and therefore not sent.
zip uses compress behind, which is an implementation of LZ78 (see Sect. 2.6.2).
We use version 2.32 (June 19th 2006). The standard zip cannot be considered
anymore as a state-of-the-art compressor, so we also compare to PPMd, an im-
plementation (written by D. Shkarin and D. Subbotin) of a dynamic Markov
encoding, a process that is similar to a variable context adaptive arithmetic
coder. In Table 5.5 we report the bit per byte ratio of the three compressors on
all sequences of the Cantebury corpus. IRR-S outperforms zip (except on se-
quence sum). We also report the number of rules found by IRR-S: a low number
would indicate that most of the compression is done by the 0-AAC. It should be
noted that the execution time of this non-optimised version of IRR-S is much
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sequence
IRR-S zip PPMd

bpb |N | bpb bpb
alice29.txt 2.57 2,340 2.87 2.10
asyoulik.txt 2.86 1,892 3.14 2.34
cp.html 2.64 453 2.67 2.18
fields.c 2.36 293 2.41 1.98
grammar.lsp 2.77 109 3.15 2.35
kennedy.xls 1.40 1,444 1.61 0.96
lcet10.txt 2.25 5,083 2.72 1.90
plrabn12.txt 2.73 5,259 3.24 2.24
ptt5 0.82 1184 0.88 0.78
sum 2.86 683 2.75 2.51
xargs.1 3.34 135 3.73 2.89
average 2.42 – 2.65 2.02

Table 5.5: Result of IRR-S, zip and PPMd on the Canterbury corpus. bpb
stands for bits (of the final compressed stream) per byte (of the original se-
quence).

longer (up to some hours) than zip. As expected, the compression ratio is well
below PPMd.

Interestingly, the number of rules that IRR-S compute before stopping is
much lower than the number of rules of IRR-MC. This is an argument for
the observation that smaller grammars not necessarily compress better. Also,
the kind of repeats identified by IRR-S differs from those identified by IRR-MC.
While the repeats selected by this last one are mostly short strings which appears
very frequent, IRR-S seems to prefer longer repeats. This joins the argument
sketched in Bookstein and Klein [35] where different “measures of worth” for
including a string in a dictionary are considered:

“[...] a string may occur often simply because its components are
expected to occur frequently. If the string occurs frequently only
because its components do, no earnings accrue from reducing the
string to a single object”

The authors then continue with an example that shows how, in a string
generated by an i.i.d. source, to replace a substring with a new symbol will not
achieve compression.

For the DNA corpus, we also take into account the reverse complement and
call the resulting algorithm IRRc-S. Instead of choosing different symbols for
the non-terminal that represent a normal strand and the one that represent
the complement strand, we use the same and disambiguate with a separate bit.
Thus, each occurrence of a non-terminal adds one bit to the size of the grammar.
The function that IRRc-S then minimises is Ĥ(r(G))+

∑

N∈N |posr(G)(N)|. At
the end, we encode r(G) with a 2-AAC (as recommend by Grumbach and Tahi
[107]), hoping that the context could capture some more redundancy that es-
caped the grammar. Final relative compressed size and number of non-termianls
are reported in Table 5.6. IRRc-S produces in general less rules, and the final
size is better than the grammar of IRR-S. This is particularly true for the two
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sequence
IRR-S IRRc-S

bpb |N | bpb |N |
chmpxx 1.8545 15 1.6780 17
chntxx 1.9539 17 1.6200 12
hehcmv 1.9747 31 1.8568 25
humdyst 1.9491 2 1.9326 3
humghcs 1.4721 641 1.4808 429
humhbb 1.9136 62 1.8723 46
humhdab 1.9272 101 1.8801 78
humprtb 1.9271 83 1.8890 68
mpomtcg 1.9631 129 1.9347 111
mtpacga 1.8690 45 1.8643 26
vaccg 1.8662 27 1.7744 13

Table 5.6: Compression results of IRR-S and IRRc-S on the DNA corpus. r(G)
is compressed with 2-AAC

chloroplasts (chmpxx and chntxx) and the only exception to this is humghcs a
highly-repetitive sequence. For humdyst, IRR-S finds only one additional rule
(two in the case of IRRc-S). Note however, that this is also the sequence with
worst compression ratio for any of the present DNA compressors. Compar-
ing with the state of the art and SLG DNA compressors (Table 2.1 and 2.3)
gives some interesting insights. First, this rather simple algorithm outperforms
any other grammar-based DNA compressor. Furthermore, to our knowledge
this is the first time a compressor using a straight-line grammar outperforms a
general-purpose compressor (like 2-AAC) on the whole DNA corpus. Second,
the sequences where the difference between IRRc-S and the best known DNA
compressors is largest are exactly those sequences where the biggest number of
rules are found (namely, humghcs, humhbb, humhdab, humprtb and mpomtcg).
Therefore, a coding schema that would not be penalised so much by the ex-
tra number of symbols (the issue we addressed in Sect. 5.3.1) could cover this
difference.

In the next section we will consider a different approach. By considering in-
exact repeats, we will try to reduce even more the final length of r(G) without
need of introducing more rules. We aim to mitigate the cost of introducing an-
other symbol by permitting this symbol to cover more occurrences. Of course,
the other side of the coin is that the decompressor has to have enough informa-
tion to be able to decode in a lossless way each of these inexact occurrences.

5.4 Lossless DNA compression with Rigid Motifs

Besides the frequent occurrence of complementary repeats, another exploited
property of DNA is the existence of inexact repeats. Non-exclusively statistical
state-of-the-art DNA compressors like DNACompress [55] look for interesting
inexact repeats and replace them before encoding the resulting sequence. The
most used definition of similar makes use of the Hamming Distance or Edit
Distance. Both distances require to specify the position where the edit (or
deletion/insertion) occurs. This could easily became very large to be specified
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in bits. Therefore, we took a different focus and looked for rigid patterns. In
this thesis, we will not consider any other kind of pattern, so we will use as
interchangeable the terms rigid patterns and motifs.

Reflecting Sect. 3.2, we will first give a review of motifs, maximal motifs and
irredundant motifs (Sect. 5.4.1). We give a new formalisation of irredundant
motifs, which permits to implement easily an algorithm to compute them. In
Sect. 5.4.2 we comment on the use of rigid motifs in a straight-line grammar
and define a new algorithm that compresses well DNA sequences.

5.4.1 A Taxonomy of Rigid Motifs

The discovery of patterns from a given sequences is a major area of data mining,
and has important applications in a wide range of domains like bioinformatics,
musical analysis and natural language processing. In order to find those that are
considered interesting it is sometimes necessary to consider all patterns. So, for
such a search to be computationally feasible, the definition of what is a pattern
must be a balance between its expression power and the total number of them
that may exist in the sequence.

We already have seen (Sect. 3.2) how this leads to the definition of maximal
repeat in the case of exact repeats. For several applications however, specially
those related to genetic sequences, exact repeats are not enough to capture
meaningful patterns. A possibility is to include a joker or “don’t care” symbol
in the pattern. This don’t care symbol matches any other symbol, and permits
to capture patterns that escape the universe of exact repeats. Unfortunately,
the number of motifs can be exponential with respect to the size of the sequence.
Even extending the notion of maximality does not improve this upper bound.
But in 2000, Parida et al. [184] introduced the concept of basis, as a set of motifs
such that all other motifs can be generated mechanically from them. Different
basis have been proposed (see [187] for an overview), but in the last years a
consensus seems to have been reached. The basis of irredundant or tiling motifs
have the attractive property that their total number and the total number of
their occurrences is bounded by n.

Very recently, several paper addressed possible applications of this type of
motifs over genetic sequences. So, the use of irredundant motifs is used to
classify proteins [72]. Other successful application combine the definition of
maximal motif with statistical measures [20] or a ratio that bounds the number
of don’t cares [105].

Definitions

We present the definitions for motifs and recall a known lemma for reference.
We extend the alphabet Σ with an additional “don’t care” symbol, denoted

by • not contained in Σ and that matches any symbol. A symbol that is not •
is called a stable symbol.

Definition 21 (motif). A motif is an element of Σ ∪ Σ(Σ ∪ {•})Σ. Note that
a motif cannot start or end with a don’t care.

If x is a motif, inf(x) is x concatenated with infinite don’t care symbols.
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Definition 22 (�). For a, b ∈ Σ ∪ {•}, a � b holds if a = • or a = b. This
relation extends to strings: Let x, y ∈ (Σ ∪ {•})∗. x � y if inf(x)[i] � inf(y)[i]
for any i ≥ 0.

Definition 23 (Occurrence of a motif). x occurs in y at position d, if x �
y[d..]. In this case, we say that y implies x. As for the case of exact repeats, we
define, for the sequence s, poss(x) (or just pos(x) if s is clear from the context)
as the set {i1, . . . , ik} such that m occurs in s at all ij. If i ∈ pos(m), then the
tuple 〈m, i〉 is called an occurrence (of m).

By pos(x) + d, we denote the set pos(x) shifted by d positions: {i + d : i ∈
posx}.

Definition 24 (Maximal Motif). A motif x is a maximal motif, if for all motifs
y that implies x, there is no d such that pos(y) = pos(x) + d.

Finally, a maximal motif is said to be redundant if its occurrences can be
obtained by the union of occurrences of other maximal motifs.

Definition 25 (Irredundant). Let x be a maximal motif. x is irredundant if,
for every maximal motifs y1, . . . , yk and positive integers d1, . . . , dk such that

pos(x) =

k
⋃

i=1

pos(yi) + di then x = yj for some j.

An important concept in algorithms that retrieve irredundant motifs is the
one of autocorrelation. We denote as sk the k-th (for 1 ≤ k < |s|) autocorre-
lation of s, defined by:

ŝk[i] =

{

s[i] if s[i] = s[k + i]
• otherwise

for all i ∈ [0, |s| − k − 1]. sk is ŝk after the removal of all leading and trailing
don’t cares. Note that sk may be empty. Every non-empty autocorrelation
defines two occurrences of this motif: ℓ and ℓ + k, where ℓ is the position of
the first solid symbol of ŝk. We denote by M the set {〈sk, ℓ〉, 〈sk, ℓ + k〉 :
sk is not empty and ℓ is the position of the first solid symbol of ŝk}.

Pisanti, et al. [188] prove the following about autocorrelations:

Proposition 11 (Autocorrelations).

1. if sk is not empty, it is a maximal motif

2. every irredundant motifs of s is an autocorrelation of s

3. 〈x, i〉 ∈ M for all irredundant motif x and i ∈ pos(x)

As they are n − 1 autocorrelations, the linear bound of the irredundant
motifs and of the total number of their occurrences is a direct consequence of
Proposition 11.
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Alternative Characterisation

The definitions of maximal and irredundant motifs are given with respect to their
set of occurrences. Here we propose an alternative characterisation, which will
provide the basis for our algorithm afterwards. Our characterisation is based on
the motif itself, instead of the position where it occurs. This avoids to compute
the positions of the tiling motifs (the yi’s in Def. 25). The new characterisation
permits also to make an intuitive parallel of maximal and irredundant motifs
with their exact repeat (motifs without a don’t care) counterparts.

As pointed out by Apostolico and Parida [15] maximal motif is intuitively a
motif that cannot be made more specific without loosing one of its occurrences.
By “made more specific”, we mean expanding it to the right or to the left, or
by changing a don’t care into a solid symbol. Note that this is equivalent to
Def. 23.

Theorem 7 (Characterisation of a Maximal Motif). A motif x is maximal iff
for all motifs y that implies x, |pos(y)| < |pos(x)|.

Proof. If y implies x, then each time y occurs, x does too; so |pos(y)| ≤ |pos(x)|.
The only-if part is then trivially true. For the if part, note that if x occurs in
y, then it does so always with the same offset (the d from Def. 23), no matter
the occurrence of y. So if y implies x, then pos(y) ⊆ pos(x)+ d. This proofs the
lemma.

A similar approach has been taken by Ukkonen [234] to define maximal
motifs: there two motifs are in the same equivalence class if they have the same
set of occurrences (with an eventual offset). Maximal motifs are then those who
have the maximal number of stable symbols in their equivalence class.

The characterisation of Theorem 7 is the intuitive counterpart of exact max-
imal repeats in the case of motifs. A maximal repeat x is an exact repeat such
that any other exact repeat y that contains x appears less times. Note that in
the case of exact repeats, a repeat can be made more specific only in expanding
its length.

In order to give a characterisation of irredundant motifs in terms of impli-
cations, an intermediate step is necessary:

Definition 26 (Coverage). Let m and m′ be motifs. m′ covers m if pos(m′)+
d ⊆ pos(m) for some d ≥ 0. Occurrences 〈m, i〉 for i ∈ pos(m′) + d are said to
be covered by m′.

This leaves directly to

Lemma 8 (Characterisation 1 [185]). A motif m is irredundant iff there is at
least one occurrence 〈m, i〉 not covered by any other motif.

Lemma 9 ([22, 185]). Let m and m′ be maximal motifs. m′ covers m iff m′

implies m.

Note that the if part holds only for maximal motifs. If m′ implies m, we say
that the occurrence 〈m, i〉 is implied by 〈m′, i′〉 if 〈m, i〉 is covered by m′ and
i′ ∈ pos(m′).

Now it is easy to show that:
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Theorem 8 (Characterisation 2). Maximal motif m is irredundant iff there is
at least one occurrence 〈m, i〉 that is not implied by any other maximal motif.

Proof. Directly from Lemmas 8 and 9.

We call 〈m, i〉 a redundant occurrence if there is an occurrence 〈m′, i′〉 that
implies it. Note that all occurrences of redundant maximal motifs are redundant,
and even some of the occurrences of an irredundant motif may be redundant.

It is worth to underline the similarity of this characterisation with the def-
inition of largest-maximal repeats (see Def. 11).While the number of maximal
repeats is linear, those of maximal motifs can be exponential. In the oppo-
site, the number of occurrences of irredundant motifs are known to be linear
while the number of occurrences of largest maximal repeats in the worst case is
lower-bounded by Ω(n

3
2 ) (see Proposition 4).

A Simple Algorithm to Compute Irredundant Motifs

Before introducing our algorithm, we give a short review of existing algorithms
to compute the irredundant motifs:

Pisanti et al. [188] propose an algorithm, based on a filtering step of the
autocorrelations (see Theorem 11). This filtering step consist in discard those
motifs for which the yi’s from Def. 25 could be found. But for this, it is necessary
to compute the occurrence set for all autocorrelations. To achieve this, the
authors use the Fisher-Peterson algorithm based on a Fast Fourier Transform
to compute boolean products. This defines the complexity of the algorithm (n
applications of this algorithm), O(log |Σ|n2 log n).

Pelfrêne et al. [185] propose another approach which also works for quorums
different then two (the quorum of a motif is the size of its occurrence set). For
the case of a quorum of 2 (the case we are considering), they also compute all au-
tocorrelations and all their occurrences with the Fisher-Peterson algorithm. The
filtering step is done using an alternative characterisation (Lemma 8). Again,
it is the Fisher-Paterson algorithm who defines the complexity: O(|Σ|n2 log n)

Apostolico and Tagliacollo [17] improve this bound to O(|Σ|n2). The gen-
eral schema is very similar to the two previous, but they are able to find all
occurrences of all autocorrelation in time O(n2) if the alphabet is binary.

Here we propose an algorithm that is not based on the occurrence list of the
autocorrelations. Instead, it is based on the motifs itself and finds occurrences
that fulfils Theorem 8. The main advantage of this algorithm does not lie in his
complexity, which can be bounded by O(n3), but its simplicity.

Our Algorithm As in the previous approaches, we first compute the au-
tocorrelations of s. This can be done in O(n2), and results in the set M =
{〈x1, o1〉, . . . , 〈xm, om〉} of occurrences, where m is bounded by n (see Propos-
tion 11). All occurrences of irredundant motifs are inM (Propostion 11), so we
must filter the occurrences of those motifs that are redundant. By Theorem 8
this means to filter occurrences 〈x, i〉 such that there exists 〈y, j〉 that implies
〈x, i〉. But because the relation implies is transitive, for each redundant occur-
rence 〈x, i〉, there must be at least one irredundant occurrence that implies it.
So, if 〈x, i〉 is redundant, then there exists 〈y, j〉 in M that implies it.

Recall that if 〈x, i〉 implies 〈y, j〉, then there exists d such that y[k] � x[d+k]
for all k. This means that for all positions of s where x is stable, y must be
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stable too. Thereafter, we define the set of stable positions of an occurrence:
stable(〈x, o〉) = {i1, . . . , im : s.t. exists ℓ, ij = o + ℓ and x[ℓ] 6= •}. Then 〈x, i〉
implies 〈y, j〉 iff stable(〈x, i〉) ⊇ stable(〈y, j〉).

Until now we have reduced the problem of filtering the irredundant occur-
rences of M to the following problem: Given sets p1, . . . , pm ⊆ {1, . . . , n}, find
those pi such that pi * pj for any j 6= i. T his problem is called the Maximal

Set [246] problem and has received much attention in the past. A more general
problem is to find the graph of partial order (called subset graph) over a collec-
tion of sets. The size of this problem is generally measured by N =

∑m
i=1 |pi|.

Note that in our case m ∈ O(n) and so N ∈ O(n2). The size of the subset graph
is then O(N2/ log2 N) [191], giving a natural lower bound for any algorithm that
computes it. There exists at least one O(n ∗m2/ log m) algorithm for this [81].
Several direct optimisation can be made by pre-calculating an inverse index
that gives, for each position the index of sets that contain this position [190].
The case of intersecting two sorted sequences (which is our case), also received
attention because of its application to web search engines [24].

We implemented a much simpler algorithm for resolving the special instance
of Maximal Set problem, taking advantage that each occurrence has to be
compared only to occurrences of motifs that are longer (if not, it cannot be
implied), and that the stable position sets can be retrieved already sorted. The
total number of code lines for computing the autocorrelation, and filtering the
redundant motifs takes approximately just 150 lines, in C++. We were able
to compute the autocorrelations of DNA sequences of 50,000 base pair on an
Intel 2.66 GhZ with 2GB RAM in 5 minutes. For longer sequences, the explicit
representation of the autocorrelations (which takes quadratic space) did not fit
in the main memory.

On the Use of Irredundant Motifs and Autocorrelations for Compres-
sion

As we have seen, the computation of autocorrelations of a sequence is straight-
forward, while filtering those that are redundant is much more difficult. A
natural question is which is the nature of the redundant autocorrelations. In
Fig. 5.7 we computed all autocorrelations of the prefix of size 10,000 of vaccg

(our conclusions holds for any other sequences we analysed) and plotted their
lengths against their percentage of don’t cares (the opposite of density: a 0
indicates a fully dense motif). Redundant autocorrelations are very few and are
mostly between the short ones. On the other hand, irredundant motifs are not
very dense: 96% are composed of more than 70% of don’t care symbols. For a
lossless compressor, this means that special care should be taken when encoding
the symbols that disambiguate each don’t care.

Even more, most of the autocorrelations occur only twice and this two occur-
rences do overlap (note that in Fig. (a), all autocorrelations of size bigger than
5,000 trivially overlap). In a LZ77-like parse this could be a minor problem, but
for use in a context-free grammar this poses a major hurdle.

Irredundant motifs were used by Apostolico et al. [19] in a LZ78-like parse of
the original sequence. The dictionary is set with the motifs chosen by an inexact
extension of Greedy, which implies that once the LZ78-like parse selects one
motif, all its occurrences have to be replaced. Two kind of results are reported,
for lossy compression (the don’t cares are not disambiguated) and lossless (an
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Figure 5.7: Redundant autocorrelations are depicted in red and with a radius
three times bigger. (b) is a zoom of (a).
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extra stream is added at the end). The Greedy preprocessing is skipped in [18]
and an algorithm is presented that can be considered as the extension of the Ziv-
Lempel-Welsh (ZLW) for the case of inexact repeats. For the lossless variant, a
set of resolvers is added that disambiguate the don’t cares. The total number of
phrases that belong to the dictionary at the end is reported, and is significantly
less than in the case of the traditional ZLW. This algorithm is then improved
in Apostolico [12] to a linear variant.

5.4.2 Straight-line Grammars with Don’t Cares

In this section we will consider how to extend the notion of straight-line context-
free grammars to include rigid patterns. In particular, we would like to keep the
uniqueness of the generated sequence, but the presence of “don’t care” symbols
forces to add information that will specify by which symbols each don’t care
will be replaced.

We therefore define a straight-line grammar with don’t cares as a
tuple 〈G, E〉 where G is a straight-line grammar such that • ∈ Σ, E ∈ N but
E does not appear in the derivation of G. We will suppose a total order on the
non-terminals, such that S is the maximum element and E the minimum. The
right-hand side of E will contain the replacement of the don’t care symbols. The
derivation proceeds as follows: first, the minimal non-terminal N1 different from
E is replaced everywhere with its corresponding right-hand side α1. Suppose
there are f occurrences of N1 and α1 contains d don’t care symbols. The first
f × d symbols of the right-hand side of E are then used to replace this don’t
care symbols, before continuing replacing N2.

An algorithm that generates a straight-line grammar with don’t cares has
to face an additional challenge because of the exponential number of rigid pat-
terns. The use of existing maximal classes, which was of great help in the case
of exact repeats to get feasible algorithms, does not overcome this difficulty.
Regarding maximal repeats, there may still be an exponential number. While
irredundant motifs were used successfully for lossy compression schema, their
(few) occurrences are prone to overlap and they consist mainly of don’t cares.
In a lossless context-free grammar-based compressor, where each don’t care has
to be specified for each occurrence, this may easily become too costly.

In order to limit the number of motifs to consider, we limit here to those
that contains exactly a good exact repeat. We first select a good exact maximal
repeat, and then try to extend it to a maximal non-overlapping motif. E.
Ukkonen [234] defines the function M(w) that takes any motif w and computes
the only maximal motif of the occurrence-equivalent class of w. Instead of taking
the non-overlapping list of motif M(w) we extend w only until it overlaps, and
take the list of occurrences inherited from w:

Definition 27 (Motif extension). Given a motif w over sequence s, ext(w) =
〈m, o〉, where w appears exactly in m, o ⊆ pos(m) is non-overlapping, o =
Ls(w) + d, and m has maximal length. w will be called the seed of m.

Inspired by the good performance of IRR-S, we present here a similar algo-
rithm based on rigid patterns. We name this algorithm IMR (for Iterative Motif
Replacement) and give pseudocode for it in Algorithm 12. G〈m,o〉7→N is defined
as the replacement of the motif m at its occurrence list o (o ⊆ pos(m)) by a
new symbol N . Also, for each occurrence from left to right, each symbol that is
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masked by a don’t care is appended (from left to right) to the right-hand side
of rule E.

From all exact maximal repeat, we select the repeat ω that would reduce the
most Ĥ(Gω 7→N ). In order to not conflict with the derivation, we enforce that no
repeat may contain a don’t care symbol. We then extend ω to m using the ext
function. However, m may present a high number of don’t cares. We compute
therefore a submotif of m that contains ω: first we find its best extension to the
left (line 5) and then to the right.

Algorithm 12 Iterative Motif Replacement (IMR).
Input: s is a sequence
Output: G, a straight-line grammar with don’t cares
1: G← [ 〈Σ(s), {S}, {S → s}, S〉
2: while ∃ω : ω ← [ arg minα∈MR(P) Ĥ(Gα7→N ) ∧ Ĥ(Gα7→N ) < Ĥ(G) do
3: m←[ ext(ω)
4: j ← [ end position of ω in m
5: iℓ ← [ arg mini Ĥ(G〈m[i:j],o+i〉7→N )

6: ir ← [ arg mini Ĥ(G〈m[iℓ:j+i],o+iℓ〉7→N )
7: G← [ G〈m[iℓ:ir],o+iℓ〉7→N

8: end while
9: return G

Motifs are also searched in the right-hand side of E, but thanks to how don’t
cares are replaced in the unique derivation, this does not pose problems for the
decoder.

The result of IMRc (which search also in the complement strand) is given
in Table 5.7. We achieved our goal of reducing the compression size of those
sequences that produced a lot of rules with IRR-S. On the other sequences, the
final compression was pretty much the same (note that the exception rule in
these cases is empty or very short). Somehow surprising is the better perfor-
mance of IMR compared to IMR-c on humghcs, the most repetitive sequence,
We think this may be due to the greedy characteristic of the parsing choice, and
that the inclusion of our Minimal Grammar Parsing problem could overcome
this difference. Finally, the final compression achieved with the straightforward
linear representation and AAC-2 proves to achieve similar ratios as the best
DNA compressors.
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sequence
IMR IMRc

bpb |N | |αE | bpb |N | |αE |
chmpxx 1.8427 16 0 1.6793 25 0
chntxx 1.9379 14 2 1.6196 19 2
hehcmv 1.9649 30 0 1.8542 29 8
humdyst 1.9303 4 0 1.9331 5 0
humghcs 1.1486 248 4,422 1.1820 252 3,635
humhbb 1.8457 37 558 1.8313 44 730
humhdab 1.8763 85 1,435 1.8814 97 397
humprtb 1.8969 72 279 1.8839 77 410
mpomtcg 1.9384 99 289 1.9157 119 443
mtpacga 1.8587 32 74 1.8571 40 76
vaccg 1.8660 27 4 1.7743 18 2

Table 5.7: Compression results of IMR and IMRc over DNA corpus, number of
non-terminals (including S and E) and size of the right-hand side of E.
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Chapter 6

Conclusions

Afinal, futebol é bola na rede, o resto é conversa.
BBC Brazil

June, 29th 2009

The real thing in life is what you are doing, why you are searching, and not
actually getting the answer. It is like golf: some people think the purpose of

golf is getting the ball into the hole, but really the purpose of golf is to have an
excuse to be outside. It would be a shame if we actually get to the end.

Donald Knuth
March, 16th 2009

6.1 Summary

Motivated by the problem of deciphering the structure of DNA sequences, we
studied the Smallest Grammar Problem. This problem is easy to define and
finds numerous uses in a wide range of fields. We identified three big groups
of applications, namely Structure Discovery, Kolmogorov Complexity and Data
Compression.

Our approach to the general Smallest Grammar Problem was to break it
down into two complementary optimisation problems: the choice of constituents,
and the choice of which occurrence of these constituents to use in a mini-
mal grammar parsing of these constituents. This decomposition allowed us
to present a new formalisation of the Smallest Grammar Problem in form of a
complete and correct search space. With respect to the choice of constituents,
we analysed the consequences of considering different classes of repeats. Be-
cause of the NP-hardness of this problem, we were particularly interested in
efficiency issues. Using maximal repeats and overlapping occurrences we re-
duced the computational complexity of the generic off-line framework IRR from
cubic to quadratic. We furthermore accelerated this framework providing an in-
place update for the enhanced suffix array used to compute the repeats in each
iteration. Regarding the Minimal Grammar Parsing problem, we resolved it in
an optimal way with a polynomial algorithm. This enabled us to present differ-
ent algorithms that outperform the previous best algorithm we had identified,
by about 10% in the final grammar size.
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Due to the lack of a standard “gold” structure of (non-coding) DNA se-
quences, we evaluated the quality of the resulting grammars with several ap-
proaches. Adopting a Kolmogorov Complexity perspective we evaluated our
algorithms using standard experiments showing that they report consistent re-
sults. From the Structure Discovery viewpoint, we analysed if, and how, the
Smallest Grammar Problem may be useful. In the first part we lower-bounded
the worst case for the number of smallest grammars, presenting diverse exam-
ples that showed an exponential behaviour. We then analysed and compared
minimal grammars on some real-life sequences. We conclude that the huge
number of minimal grammars seems to originate from the presence of small
constituents. The largest constituents and the highest level of the parse tree
remain very stable between minimal grammars.

We put special emphasis on the application of this problem in Data Compres-
sion. For this, we studied each step of a grammar-based encoder. In particular,
we presented an inference algorithm in the line of the general IRR family that
outperforms any other grammar-based DNA compressor. Inspired by the pres-
ence of similar repeats in DNA, we then included rigid patterns. These are exact
repeats that allow the presence of a “don’t care symbol” matching any other sym-
bol. The choice of this special kind of repeat is motivated by the MDL-principle.
They allow a very cheap encoding of the mutations or exceptions, while with
the edit distance, for instance, we would have to specify the exact position of
the changes. Carefully encoding the exceptions allows a lossless recovery of the
sequence represented by the grammar. We then implemented an algorithm ap-
proximating in each iteration the maximal motif that would compress the most
the resulting grammar. Our experiments on the standard corpus yield results
in average only less than 5% worse than DNALight [76], the current state of
the art. Moreover, considering these inexact repeats allows to obtain a richer
structure over the sequence. On one hand, they permit to capture constituents
that are not completely identical and specify where the differences (the don’t
cares) lie. On the other hand the use of rigid patterns allows us to produce a
richer parse tree compared to the case of exact repeats were the height of the
resulting parse is limited by the size of the longest repeat.

6.2 Perspectives

With respect to our choice of focusing on the smallest grammar, our desire of
general applicability leaves few choices other than Occam’s Razor. During the
main part of this thesis, we therefore considered a grammar of minimal size,
where size was defined as the number of symbols necessary to represent the
grammar. Such a definition does not take into account the size of the alphabet
used. Two different grammars with the same size are considered equivalent,
without regarding the number of different symbols each one uses. It would
be worth considering an MDL-inspired definition of size that also contemplates
the growing of the alphabet. The good compression performance of our IRR-S
algorithm compared to IRR-MC underlines this point.

Our main motivation to strive for simplicity (and therefore for smallest
grammars) was our explicit requirement of not introducing any other struc-
tural knowledge as learning bias. The work presented here is just a first step
and an ad-hoc application could take advantage of domain knowledge to refrain
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from the limitations of using size alone as an objective. In the same direction,
more information about what the searched structure looks like could be used
to define IRR algorithms with more sophisticated score functions. So far, the
IRR algorithms presented here consider only length and occurrence number of
substrings. Other interesting indicators could be the mutual information of a
single word [64] and scores used for automatic keyword detection [113].

Another way of enhancing the final structure is to allow finite recursion, using
a recursion counter for instance, but an efficient algorithm for this deserves more
research.

We have shown that grammar-based codes have the capacity to compete with
other DNA compression algorithms. In particular, the IMR algorithm yields
compression rates close to the current best compressors. A direct extension we
conceive is to extend the Minimal Grammar Parsing to the case of rigid motifs.
A particular characteristic of IMR is that it allows the appearance of unitarian
rules (of the form A → B) which are too costly for compression purposes.
Combining the MGP solution with a clean-up that removes too costly rules
could increase the final compression capacity. It would require some more work
to use such an algorithm for efficient compression purpose on big databases.
But the main goal of such an algorithm is not necessarily to be a competitive
compressor, but to extract (hierarchical) redundancy. It should be noted that
almost none of the current DNA compressors scale up very well. Kuruppu et al.
[137], for instance, report that it takes 93 hours to compress the human genome
with XM [42], a rather fast algorithm.

A more important characteristic of IMR is that it yields a richer structure.
In particular, it is a first step into introducing errors and gaps, a fundamental
step to correctly analyse DNA sequences. But the most promising direction we
see is to loosen the constraint of the uniqueness of the generated sequence. Our
straight-line grammars with don’t cares are already a step in this direction. If
the E rule — which contains the symbols disambiguating the don’t cares —
is suppressed, then the final grammar could generate more than one sequence.
Such a two-step encoding (the model plus the exceptions) lies in the middle
between pure straight-line grammars and parse tree compression, two compres-
sion frameworks that use formal grammars. In parse tree compressors, both
the encoder and the decoder work with the same grammar, and the encoding
of the sequence consists in the indexes of the successive production rules to ap-
ply. This is applied in cases where a known grammar is available, such as for
programming languages [41] or XML documents [111].

Besides generalising the final parse tree, we mentioned a second possible
approach to complete an inference process through a learning algorithm that
uses the parse tree to provide additional structural information. Another future
direction is thus an adaptation of Sakakibara’s learning algorithm [202].

With respect to the extension toward a framework consisting of a general
model plus the exceptions, Charikar et al. [50] analyse two similar extensions
from a theoretical viewpoint. These are advice grammars (where a non–straight-
line grammar is used, together with an advice string specifying which produc-
tions to use during the derivation) and edit grammars (where the productions
are of the form A→ α[e], with e a single edit operation). They prove that the
size of a smallest such model is equivalent within a constant (logarithmic in the
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case of edit grammars) factor to the size of a smallest straight-line grammar.
Nevertheless, the conclusions of this thesis and the improvement of IMRc with
respect to IRRc-S allow us to presume that such an approach could make a
difference in practical applications.

Similarly Calude et al. [40] use such advice strings in the case of regular
automaton. They propose to approximate Kolmogorov Complexity with finite
transducers. As the class of finite transducers generates exactly the regular
languages, this could therefore be considered as going yet one step lower in the
Chomsky hierarchy. In their definition of complexity they use both the size of the
topology of the transducer and an input string that determines the final string.
They also implement an algorithm that computes the finite-state complexity
for a string. As expected, this algorithm is unsuitable for application on larger
sequences. We collaborated with Tania Roblot to approximate this complexity
through the previous computation of a straight-line grammar. Having defined
a transformation from a straight-line context-free grammar to a transducer we
implemented an algorithm similar to IRRMGP∗ that optimises the expected
size of the final transducer. See Coste and Roblot [73] for details.

Some of the most successful applications of formal grammars in bioinfor-
matics are based om Stochastic Context-Free Grammars [78, 197, 203]. In a
straight-line grammar, the use of probabilities makes no sense, but if the gram-
mar is to be generalised, the use of probabilities could resolve ambiguous parses.

With respect to a further validation of the discovered structure on DNA
sequences, we are currently analysing two directions. Michel Termier, Alain
Denise and Yann Ponty helped us to design an artificial grammar for a chro-
mosome. Such a definition is hard to achieve, because of varying and unclear
definitions of gene and alternative splicing, for example. The literature is very
sparse on such grammars with non-trivial height, and we report this grammar
in Fig. 6.2. This grammar is still a very high-level grammar: the terminals are
not nucleotides, but represent known modules. A second direction aims at pro-
viding a tool for structure discovery on sequences with an unknown structure
through a visualisation tool. In particular, the Pygram [79] tool was developed
to visualise the repeats in form of pyramids over a DNA sequence. Tweaking the
input in order to consider only the repeats and occurrences used by a straight-
line grammar permits to visualise the parse trees as in Fig. 6.1. The tool also
provides an interactive mode to navigate over the sequence.

We now come back to our original motivation, namely learning a meaning-
ful structure of one DNA sequence. With respect to model DNA with formal
grammars, there seems to be a certain consensus in regarding DNA as a for-
mal language in the most general interpretation. It clearly contains a message
and is generated by a yet unknown machinery. It has been long acknowledged
that DNA provides examples of non–context-free structures [28, 219]. How-
ever, the same is true for natural-language1, but this did not limit the use of
context-free grammars in the first years. Several definitions of Joshi’s idea of
mildly-context sensitive [120] and other concepts has been given. Joshi him-
self formalises Tree Adjoining Grammars2 and examples of other formalisms

1Chomsky [59] already suggested that “such grammars are too limited to give a true picture
of linguistic structure”

2with a dedicated series of conference that in 2010 had its tenth edition
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(a) The whole sequence

(b) A zoom

(c) The interactive viewer

Figure 6.1: Some snapshots of the Pygram tool visualising the parse tree of
humghcs obtained with IRRMGPc∗.
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Chr → θ s γ s θ
x → α | ν | τ | g
c → e o c | eœ c | e
œ → dœ′ ℓœ′ a
s → i x s | i
g → r y g | u c u
o → d o′ l o′ a

Terminal Meaning
θ Telomere
γ Centromere
i Intergenic region (IGR)
α Origin of Replication (ARS)
ν Non-coding ARN
τ Transposon
r Regulatory region
y Spacer
u Non-coding but transcript region
e Exon
d Donor (transferase process)
ℓ Lariat
a Acceptor (transferase process)
o′ Intron
œ′ Intron/Exon (alternative splicing)
Non-terminal Meaning
Chr Chromosome
s Sequence of genes
x Gene
g Coding region + Regulators
c Coding region for a protein
o Intron
œ Intron/Exon (alternative splicing)

Figure 6.2: A context-free grammar for a chromosome.

are linear-indexed grammars [97], well-nested multiple context-free grammars
(see Kanazawa and Salvati [122] for an overview), re-writing rules [86], depen-
dency models [131], Tree Substitution Grammar (the DOP model, see [32] for
an introduction) and Binary Feature Grammars [66, 67]. It seems worth to con-
sider the inference of one derivation, instead of a generic model, in the cases of
these richer formalisms. Chiang et al. [57] in particular advocates the use of Tree
Adjoining Grammar to model RNA. However, so far there is no consensus about
which is a correct formalism. Furthermore, most of these richer models come
with an extra cost in the learning process. Given our current state of knowledge
of DNA and the difficulty of defining a formal but still accurate model, the use
of a context-free grammar (that does capture a lot of typical DNA structures)
seems to be a good compromise in a first phase. Moreover, we underline that
in this thesis we did not focus on the generative power of these grammars, but
rather on the structure they give over the sequence. A context-free grammar
excels in this sense thanks to its easy interpretation of the structure in the form
of a parse tree.
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Appendix A

Corpora

Through this thesis we validate the practical use and compare algorithms on
some classical benchmarks. The corpora we use for this are the following:

Canterbury The standard benchmark to evaluate and compare lossless compression
methods. For the principle used to select the files belonging to this corpus
see Arnold and Bell [23]. Downloaded from http://corpus.canterbury.

ac.nz. See Table A.1.

Large Most of the sequences of the Canterbury Corpus are rather short. We
will use this corpus when we want to exemplify execution on larger se-
quences, or have a measure of the growth of the time needed by an al-
gorithm in practice. Downloaded from http://corpus.canterbury.ac.

nz/descriptions/#large. See Table A.2.

DNA The standard corpus traditionally used for comparing the performance
of DNA compressors. This corpus contains human genes, a chloroplast,
some mitochondria and a virus genome. Every sequence contains only four
different symbols. It dates from 1993 [106], being the corpus used on the
first specific DNA compressor. Of course, the growth of available sequences
and of the length of this sequences in particular rises the question a having
an up-to-date representative corpus. Downloaded from http://people.

unipmn.it/manzini/dnacorpus/historical/. See Table A.3.
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sequence length # repeats
length

|Σ| description
alice29.txt 152,089 1.45 74 english text (Alice Wonderland)
asyoulik.txt 125,179 1.22 68 english text (Shakespeare, As you Like It)
cp.html 24,603 4.32 86 HTML source (a list of links)
fields.c 11,150 5.03 90 C source code
grammar.lsp 3,721 3.43 76 LISP source code
kennedy.xls 1,029,744 0.08 256 Excel Spreadsheet
lcet10.txt 426,754 2.00 84 english text (technical)
plrabn12.txt 481,861 1.02 81 english text (Milton, Paradise Lost)
ptt5 513,216 194.74 159 fax b/w image
sum 38,240 17.44 255 SPARC executable
xargs.1 4,227 1.77 74 GNU manual page

Table A.1: Description of the Canterbury corpus.
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sequence length # repeats
length

|Σ| description
bible.txt 4,047,392 2.57 63 King James version of Bible (english)
e.coli 4,638,690 4.76 4 Complete genome of E. Coli
world192.txt 2,473,400 4.47 94 CIA World fact book 1992

Table A.2: Description of the Large Corpus.

123



sequence length # repeats
length

|Σ| description
chmpxx 121,024 0.82 4 marchantia polymorpha (liverwort) chloroplast
chntxx 155,844 0.77 4 tobacco chloroplast
hehcmv 229,354 1.46 4 human cytomegalovirus (strain AD169)
humdyst 38,770 0.77 4 human dystrophin gene (chr X)
humghcs 66,495 13.77 4 human growth hormone and chorionic somatomammotropin genes (chr 17)
humhbb 73,308 9.01 4 human beta globin region (chr 11)
humhdab 58,864 1.21 4 human contig sequence comprising 3 cosmids (HDAB, HDAC, HDAD)
humprtb 56,737 1.07 4 human hypoxanthine phosphoribosyltransferase (chr X)
mpomtcg 186,609 1.36 4 mitochondria of marchantia polymorpha (liverwort)
mtpacga 100,314 0.97 4 mitochondria of podospora anserina (a filamentous fungus)
vaccg 191,737 2.21 4 vaccinia virus

Table A.3: Description of the DNA corpus.

12
4



LIST OF FIGURES

List of Figures

2.1 Example of Arithmetic coding . . . . . . . . . . . . . . . . . . . . 17
2.2 Schematic process of a encoder that uses a straight-line grammar. 22
2.3 A bibliographic overview of Sequitur . . . . . . . . . . . . . . . 30

3.1 Growth of the number of normal and maximal repeats. . . . . . . 41
3.2 Growth of normal, maximal, largest-maximal and super-maximal

repeats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Run time for computing normal, maximal, largest-maximal and

super-maximal repeats. . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Influence on the final size of a grammar using normal, maximal,

largest-maximal and super-maximal repeats in IRR-MC. . . . . . 49
3.5 Run time of using normal, maximal, largest-maximal and super-

maximal repeats in IRR-MC. . . . . . . . . . . . . . . . . . . . . 50
3.6 Deletion of an index on ESADL . . . . . . . . . . . . . . . . . . . 57
3.7 Moving groups on indices in an ESADL . . . . . . . . . . . . . . 58
3.8 Execution time of the in-place update of a suffix array. . . . . . . 65
3.9 Memory usage of the in-place update of a suffix array. . . . . . . 68

4.1 Example of GP-Graph . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Execution time of IRR-MC and IRRCOOC-MC. . . . . . . . . . 79
4.3 Execution time of IRR-MC and IRRMGP. . . . . . . . . . . . . . 81

5.1 Two different trees with the same yield. . . . . . . . . . . . . . . 88
5.2 Number of different parses per position by minimal grammars. . 91
5.3 Example of our extension of composition of functions. . . . . . . 93
5.4 Performance of distance metric to cluster parse trees. . . . . . . . 96
5.5 The unrooted binary tree after applying the maketree command

of the CompLearn toolkit on a distance matrix obtained with
IRRMGP∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 An example of used-by graph. . . . . . . . . . . . . . . . . . . . . 102
5.7 Redundant and irredundant autocorrelations. . . . . . . . . . . . 111

6.1 Some snapshots of the Pygram tool visualising the parse tree of
humghcs obtained with IRRMGPc∗. . . . . . . . . . . . . . . . . 119

6.2 A context-free grammar for a chromosome. . . . . . . . . . . . . 120

125



126



LIST OF TABLES

List of Tables

2.1 Comparison of DNA compressors . . . . . . . . . . . . . . . . . . 21
2.2 Comparison of final grammar size on standard corpora . . . . . . 36
2.3 Comparison of straight-line grammar DNA compressors . . . . . 37

3.1 A Taxonomy of Exact Repeats. . . . . . . . . . . . . . . . . . . . 45
3.2 Accelerated version of IRR-MC. . . . . . . . . . . . . . . . . . . . 53
3.3 Speedup factor for in-place solution for updating a suffix array. . 67

4.1 Final grammar size of our algorithms compared to the state of
the art. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Execution time and final grammar size of IRRMGP∗ compared
to the accelerated version of IRR-MC. . . . . . . . . . . . . . . . 80

4.3 Results of IRRMGP∗ on model organisms . . . . . . . . . . . . . 82

5.1 Sequence length, grammar size, number of constituents, and num-
ber of grammars for different sequences. . . . . . . . . . . . . . . 87

5.2 Number of minimal grammar on a local minimum. . . . . . . . . 89
5.3 Dicek values on a sample of minimal grammars. . . . . . . . . . . 90
5.4 Biological Classification on data-set used by Ferragina et al. [89]

with IRRMGP∗ to compute the distances. The reported mea-
sures are F-Measure (for CK-36 and SP-86) and partition dis-
tance for AA-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Compression results of IRR-S compared to zip and PPMd. . . . . 104
5.6 Compression results of IRR-S and IRRc-S on the DNA corpus. . 105
5.7 Compression results of IMR and IMRc over DNA corpus. . . . . 114

A.1 Description of the Canterbury corpus. . . . . . . . . . . . . . . . 122
A.2 Description of the Large Corpus. . . . . . . . . . . . . . . . . . . 123
A.3 Description of the DNA corpus. . . . . . . . . . . . . . . . . . . . 124

127



128



LIST OF ALGORITHMS

List of Algorithms

1 Iterative Repeat Replacement (IRR) . . . . . . . . . . . . . . . . 34
2 Calculation of largest-maximal repeats with an enhanced suffix

array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3 In-place update of a suffix array: delete indices . . . . . . . . . . 57
4 In-place update of a suffix array: update order]Restore consis-

tency of suffix array order . . . . . . . . . . . . . . . . . . . . . . 59
5 In-place update of a suffix array: move a block of indices . . . . . 60
6 In-place update of a suffix array: recalculation of lcp . . . . . . . 62
7 In-place update of a suffix array: update of lcp array . . . . . . . 62
8 Iterative Repeat Choice with Occurrences Optimisation (IRRCOO) 72
9 Iterative Repeat Replacement with Occurrence Optimisation and

Cleanup (IRRCOOC) . . . . . . . . . . . . . . . . . . . . . . . . 74
10 Zig-Zag algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 76
11 IRR plus MGP (IRRMGP∗) . . . . . . . . . . . . . . . . . . . . . 80
12 Iterative Motif Replacement (IMR). . . . . . . . . . . . . . . . . 113

129



Index

R, 12
R̂, 12

adaptive arithmetic coder, 17, 37, 101,
103

n-AAC, 18
Arithmetic Coding, 17

Bisection, 31
bracketing, 88

canonical sequential representation, 14
constituent, 14, 22, 70, 72
costly rule, 74

DNASequitur, 20, 30, 34, 35
Double-Linked Enhanced Suffix Array,

54

empirical entropy, 103
Enhanced Suffix Array, 42

fixed size dictionary, 16

Grammar Parsing, 71
Grammar Parsing graph, 72
Grammar-Based Codes, 20–23
grammars

P, 12
axiom, 12
Chomsky Normal Form, 13
context-free grammars, 13
context-sensitive grammar, 13
language of a grammar, 12
language of a non-terminal, 12
left-hand side, 12
non-terminals, 12
production, 12
regular grammars, 13
right-hand side, 12
rule, 12
starting symbol, 12

symbol, 12
terminals, 12
unrestricted grammar, 13

Grammatical Inference, 6
Theorem of Sakakibara, 7, 117

Greedy, 31, 34, 35, 39, 69

irreducible grammars, 20

Kolmogorov Complexity, 25, 32, 97

largest-maximal repeat, 46–48
largest-maximal repeats, 43
lattice, 74, 76

ancestors, 75
descendants, 75
global minimum, 75
local minimum, 75

left-context tree, 55
LongestFirst, 22, 31, 34, 35, 39
LZ77, 28, 33
LZ78, 29

maximal repeats, 4, 42, 106
MDLCompress, 28, 32, 34, 35, 69
mgp, 72
minimal grammar, 71
Minimal Grammar Parsing, 71
Minimum Description Length, 8
motif

�, 106
autocorrelation, 107
covers, 108
implies, 107
occurs, 107
redundant, 107
seed, 112

Normalised Compression Distance, 27,
85

Occam’s Razor, 8

130



INDEX

RePair, 25, 28, 31, 32, 34, 39
repeat, 12
RNACompress, 23

Sequential, 30
Sequitur, 20, 28, 29
smallest grammar, 14
Smallest Grammar Problem, 14
stable symbol, 106
straight-line grammar with don’t cares,

112
straight-line grammars, 13
string

Ls(w), 12
poss(w), 12
s[..j], 12
s[i, j], 12
s[i..], 12
empty string, 12
normalised non-overlapping occur-

rence list, 12
occurrences, 12
overlap, 12
prefix, 12
substring, 12
suffix, 12

String Statistics Problem, 52
super-maximal repeats, 43

yield of tree, 88

131



132



BIBLIOGRAPHY

Bibliography

[1] S Abney, S Flickenger, C Gdaniec, C Grishman, P Harrison, D Hindle,
R Ingria, F Jelinek, J Klavans, M Liberman, M Marcus, S Roukos, B San-
torini, and T Strzalkowski. Procedure for quantitatively comparing the
syntactic coverage of english grammars. In E. Black, editor, Workshop
on Speech and Natural Language, pages 306–311, Morristown, NJ, USA,
1991. Association for Computational Linguistics. 5.1.2

[2] Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Re-
placing suffix trees with enhanced suffix arrays. Journal of Discrete
Algorithms, 2:53–86, February 2004. 3.1, 3.2.2, 3.2.2, 3.4.2

[3] Don Adjeroh, Yong Zhang, Amar Mukherjee, Matt Powell, and Timothy
Bell. DNA sequence compression using the Burrows-Wheeler Transform.
In IEEE Computer Society Bioinformatics Conference, volume 1, pages
303–13, January 2002. 2.3.3

[4] Pieter Adriaans. Learning as data compression. In Computability in
Europe, pages 11–24, Berlin, Heidelberg, 2007. Springer-Verlag. 1.3

[5] Pieter W Adriaans, Marco Vervoort, and P Muidergracht. The EMILE 4.1
grammar induction toolbox. In International Colloquium on Grammatical
Inference, January 2002. 1.2.1

[6] Tatsuya Akutsu, Daiji Fukagawa, and Atsuhiro Takasu. Approximating
tree edit distance through string edit distance. Algorithmica, 57(2):325–
348, January 2010. 5.1.3

[7] Benjamin Allen and Mike Steel. Subtree transfer operations and their
induced metrics on evolutionary trees. Annals of combinatorics, 5(1):1–
15, 2001. 5.1.3

[8] Lloyd Allison, T Edgoose, and Trevor I Dix. Compression of strings with
approximate repeats. In International Conference on Intelligent Systems
for Molecular Biology, May 1998. 2.3.3

[9] Miguel Ángel Jiménez-Montaño. On the syntactic structure of protein se-
quences and the concept of grammar complexity. Bulletin of Mathematical
Biology, 46(4):641–659, 1984. 2.4.1, 2.6.7

[10] Natalie Angier. Biologists seek the words in DNA’s unbroken text. New
York Times, July, 9th 1991. 1.1.1

133



[11] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987. 1.2, 1.2.2

[12] Alberto Apostolico. Fast gapped variants for Lempel-Ziv-Welch compres-
sion. Information and Computation, 205(7):1012–1026, January 2007.
5.4.1

[13] Alberto Apostolico and Stefano Lonardi. Off-line compression by greedy
textual substitution. Proceedings of the IEEE, 88:1733–1744, January
2000. 2.6.9, 3.4.1, 4, 5.3.2

[14] Alberto Apostolico and Stefano Lonardi. Compression of biological se-
quences by greedy off-line textual substitution. In Data Compression
Conference, pages 143–153, 2000. 2.6.9, 1, 2.7.3, 4

[15] Alberto Apostolico and Laxmi Parida. Incremental paradigms of motif
discovery. Journal Computational Biology, 11(1):15–25, January 2004.
5.4.1

[16] Alberto Apostolico and Franco P Preparata. Data structures and al-
gorithms for the string statistics problem. Algorithmica, 15(5):481–494,
January 1996. 3.3

[17] Alberto Apostolico and Claudia Tagliacollo. Optimal offline extraction of
irredundant motif bases. In International Computing and Combinatorics
Conference, pages 360–371, 2007. 5.4.1

[18] Alberto Apostolico, Matteo Comin, and Laxmi Parida. Motifs in Ziv-
Lempel-Welch clef. In Data Compression Conference, pages 1–10, March
2004. 5.4.1

[19] Alberto Apostolico, Matteo Comin, and Laxmi Parida. Bridging lossy
and lossless compression by motif pattern discovery. Electronic Notes in
Discrete Mathematics, 21:219–225, 2005. 5.4.1

[20] Alberto Apostolico, Matteo Comin, and Laxmi Parida. VARUN: Dis-
covering extensible motifs under saturation constraints. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 99, 2008.
5.4.1

[21] Patrick Argos. The language of protein folding: Many forked tongues.
Computers and Chemistry, 16(2):93–102, April 1992. 1.1.2

[22] Hiroki Arimura and Takeaki Uno. An efficient polynomial space and poly-
nomial delay algorithm for enumeration of maximal motifs in a sequence.
Journal of Combinatorial Optimization, 13(3):243–262, 04 2007. 9

[23] Ross Arnold and Tim Bell. A corpus for the evaluation of lossless com-
pression algorithms. In Data Compression Conference, pages 201–211,
Washington, DC, USA, 1997. IEEE Computer Society. A

[24] Ricardo A Baeza-Yates. A fast set intersection algorithm for sorted se-
quences. In Combinatorial Pattern Matching, pages 400–408, 2004. 5.4.1

134



BIBLIOGRAPHY

[25] Behshad Behzadi and Fabrice Le Fessant. DNA compression challenge
revisited: A dynamic programming approach. In Combinatorial Pattern
Matching, 2005. 2.3.3

[26] Timothy Bell, John Cleary, and Ian H Witten. Text Compression. Prentice
Hall, 1990. 2.3.1, 2.6.7

[27] Jon Bentley and Douglas McIlroy. Data compression using long common
strings. In Data Compression Conference, pages 287–295, March 1999.
2.6.8

[28] Robert C Berwick. The language of genes. In Julio Collado-Vides,
Boris Magasanik, and Temple Smith, editors, Integrative approaches to
molecular biology. MIT Press, 1996. 6.2

[29] Philip Bille. A survey on tree edit distance and related problems.
Theoretical Computer Science, 337(1-3):217–239, January 2005. 5.1.3

[30] Philip Bille, Gad M Landau, Rajeev Raman, Kunihiko Sadakane, Srini-
vasa Rao Satti, and Oren Weimann. Random access to grammar com-
pressed strings. In ACM-SIAM Symposium on Discrete Algorithms, Jan-
uary 2011. 2.3.7

[31] Anslem Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K
Warmuth. Occam’s razor. Information Processing Letters, 24:377–380,
1987. 1.3

[32] Rens Bod. The data-oriented parsing approach: Theory and application.
In J. Fulcher and L. Jain, editors, The Data-Oriented Parsing Approach:
Theory and Application, pages 307–342. Springer, November 2008. 6.2

[33] Sebastian Bonhoeffer, Andras V M Herz, Maarten C Boerlijst, S Nee,
Martin A Nowak, and Robert M May. No signs of hidden language in
noncoding DNA. Physical Review Letters, 76(11):1977–1977, January
1996. 1.1.2

[34] Sebastian Bonhoeffer, Andreas V M Herz, Maarten C Boerlijst Sean Nee,
Martin A Nowak, and Robert M May. Explaining “linguistic features” of
noncoding DNA. Science, 271(5245):14–15, 1996. 1.1.2

[35] A Bookstein and ST Klein. Compression, information theory, and gram-
mars: a unified approach. ACM Transactions on Information Systems, 8
(1):27–49, 1990. 5.3.2

[36] Matías Bordese. Análisis y alternativas para la compresión de XML. Mas-
ter’s thesis, FaMAF, Universidad Nacional de Córdoba, Argentina, July
2009. 2.3.6

[37] V Brendel and H G Busse. Genome structure described by formal lan-
guages. Nucleic Acids Research, 12(5):2561–2568, 1984. 1.1.3

[38] Gerth Stølting Brodal, Rune Lyngsø, Anna Östlin, and Christian N S
Pedersen. Solving the string statistics problem in time O(n log n). In
International Colloquium on Automata, Languages, and Programming,
pages 728–739, April 2002. 3.3

135



[39] Frederick Brooks, Jr. Three great challenges for half-century-old computer
science. Journal of the ACM, 50(1), January 2003. 1, 2.5

[40] Cristian Calude, Kai Salomaa, and Tania Roblot. Finite-state complexity
and the size of transducers. In International Workshop on Descriptional
Complexity of Formal Systems, volume 31, pages 38–47, August 2010. 6.2

[41] Robert Cameron. Source encoding using syntactic information source
models. IEEE Transactions on Information Theory, 34(4):843–850, July
1988. 6.2

[42] Minh Duc Cao, Trevor I Dix, Lloyd Allison, and Chris Mears. A sim-
ple statistical algorithm for biological sequence compression. In Data
Compression Conference, 2007. 2.3.3, 6.2

[43] Rafael Carrascosa. Gramáticas Mínimas y descubrimiento de patrones.
Master’s thesis, Universidad Nacional de Córdoba, February 2010. 4.2.2

[44] Rafael Carrascosa, François Coste, Matthias Gallé, and Gabriel Infante-
Lopez. Choosing word occurrences for the smallest grammar problem. In
Language and Automata Theory and Applications, February 2010. 4.3

[45] Rafael Carrascosa, François Coste, Matthias Gallé, and Gabriel Infante-
Lopez. The smallest grammar problem as constituents choice and minimal
grammar parsing. submitted http://www.irisa.fr/symbiose/images/

stories/mgalle/papers/sgp_ccmpg.pdf, 2011. 4, 5.1, 5.1.2

[46] Rafael Carrascosa, François Coste, Matthias Gallé, and Gabriel Infante-
Lopez. Searching for smallest grammars on large sequences and applica-
tion to DNA. Journal of Discrete Algorithms, 2011. 3, 4

[47] Daniele Cerra and Mihai Datcu. A similarity measure using smallest
context-free grammars. In Data Compression Conference, pages 346–355,
2010. 2.4.2

[48] Ho-Leung Chan, Wing-Kai Hon, Tak-Wah Lam, and Kunihiko Sadakane.
Compressed indexes for dynamic text collections. ACM Transactions on
Algorithms, 3(2), May 2007. 3.4.1

[49] CH Chang. DNAC: A compression algorithm for DNA sequences by
nonoverlapping approximate repeats. Master’s thesis, National Taiwan
University, Taiwan, 2004. 2.3.3

[50] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prab-
hakaran, April Rasala, Amit Sahai, and Abhi Shelat. Approximating the
smallest grammar: Kolmogorov complexity in natural models. In Annual
ACM Symposium on Theory of Computing, January 2002. 2.2, 2.4.1, 6.2

[51] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prab-
hakaran, April Rasala, Amit Sahai, and abhi shelat. The smallest gram-
mar problem. IEEE Transactions on Information Theory, 51(7):2554–
2576, July 2005. 1, 2.2, 2.3.4, 2.6.1, 2.6.5, 2.6.11, 2.7, 3.2.3, 4, 1, 5.3

136

http://www.irisa.fr/symbiose/images/stories/mgalle/papers/sgp_ccmpg.pdf
http://www.irisa.fr/symbiose/images/stories/mgalle/papers/sgp_ccmpg.pdf


BIBLIOGRAPHY

[52] CA Chatzidimitriou-Dreismann, RMF Streffer, and D Larhammar. Lack
of biological significance in the ’linguistic features’ of noncoding DNA – a
quantitative analysis. Nucleic Acids Research, 24(9):1676–1681, January
1996. 1.1.2

[53] Gang Chen, Simon Puglisi, and William F Smyth. Lempel-Ziv factoriza-
tion using less time & space. Mathematics in Computer Science, January
2008. 2.6.1

[54] Xin Chen, Sam Kwong, and Ming Li. A compression algorithm for DNA
sequences. Engineering in Medicine and Biology Magazine, January 2001.
2.3.3

[55] Xin Chen, Ming Li, Bin Ma, and John Tromp. DNACompress: fast and
effective DNA sequence compression. Bioinformatics, January 2002. 2.3.3,
5.4

[56] Neva Cherniavsky and Richard Lander. Grammar-based compression of
DNA sequences. In DIMACS Working Group on The Burrows-Wheeler
Transform, page 21, 2004. 2.3.4, 2.6.4, 3, 5.3

[57] David Chiang, Aravind Joshi, and David B Searls. Grammatical represen-
tations of macromolecular structure. Journal of Computational Biology,
13(5):1077–1100, January 2006. 1.1.3, 6.2

[58] Sheng-Yuan Chiu, Wing-Kai Hon, Rahul Shah, and Jeffrey Vitter. I/O-
efficient compressed text indexes: From theory to practice. In Data
Compression Conference, pages 426–434, 2010. 2.3.7

[59] Noam Chomsky. Three models for the description of language. IEEE
Transactions on Information Theory, 2(3):113–124, January 1956. 1, 1.2,
1

[60] Noam Chomsky. Syntactic Structures. Mouton and Co., 1957. 1.2

[61] Scott Christley, Yiming Lu, Chen Li, and Xiaohui Xie. Human genomes
as email attachments. Bioinformatics, 25(2):274–275, January 2009. 2.3.3

[62] Rudi Cilibrasi. Statistical Inference Through Data Compression. PhD
thesis, Institute for Logic, Language and Computation, University of Am-
sterdam, December 2007. 2.4.2

[63] Rudi Cilibrasi and Paul Vitanyi. Clustering by compression. IEEE
Transactions on Information Theory, 51(4):1523–1545, 2005. 2.4.2, 5.2,
5.2.2

[64] Alexander Clark. Learning deterministic context free grammars: The
Omphalos competition. Machine Learning, pages 93–110, January 2007.
1.2.1, 6.2

[65] Alexander Clark. Three learnable models for the description of language.
In Language and Automata Theory and Applications, pages 16–31, 2010.
1.1.3

137



[66] Alexander Clark, Rémi Eyraud, and Amaury Habrard. A polynomial
algorithm for the inference of context free languages. In International
Colloquium on Grammatical Inference, July 2008. 1.2.1, 6.2

[67] Alexander Clark, Rémi Eyraud, and Amaury Habrard. A note on con-
textual binary feature grammars. In EACL Workshop on Computational
Linguistic Aspects of Grammatical Inference, February 2009. 6.2

[68] Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based com-
pression. Fundamenta Informaticae, August 2010. 2.3.7

[69] Francisco Claude, Antonio Fari na, Miguel Martínez-Prieto, and Gon-
zalo Navarro. Compressed q-gram indexing for highly repetitive bio-
logical sequences. In International Conference on Bioinformatics and
Bioengineering, 2010. 2.3.7

[70] Julio Collado-Vides. The search for a grammatical theory of gene reg-
ulation is formally justified by showing the inadequacy of context-free
grammars. Bioinformatics, 7(3):321, 1991. 1.1.3

[71] Julio Collado-Vides. Grammatical model of the regulation of gene expres-
sion. Proceedings of the National Academy of Sciences, 89(20):9405–9409,
January 1992. 1.1.3

[72] Matteo Comin and Davide Verzotto. Classification of protein sequences
by means of irredundant patterns. BMC Bioinformatics, 11, 2010. 5.4.1

[73] François Coste and Tania K Roblot. Towards evaluating the finite-state
complexity of DNA. Technical report, INRIA Rennes – Bretagne Atlan-
tique, 2010. 6.2

[74] Francis Crick. Central dogma of molecular biology. Nature, 227(5258):
561–563, 1970. 1.1.1

[75] Colin de la Higuera. Grammatical Inference Learning Automata and
Grammars. Cambridge University Press„ 2010. 1.2

[76] Sérgio Deusdado. Análise e compressão de sequências genómicas. PhD
thesis, Universidade do Minho, Portugal, July 2008. 2.3.3, 6.1

[77] Pedro Domingos. The role of Occam’s Razor in knowledge discovery. Data
Mining and Knowledge Discovery, January 1999. 1.3

[78] Robin D Dowell and Sean R Eddy. Evaluation of several lightweight
stochastic context-free grammars for RNA secondary structure prediction.
BMC Bioinformatics, page 14, June 2004. 6.2

[79] Patrick Durand, F Mahé, A Valin, and Francois Nicolas. Browsing repeats
in genomes: Pygram and an application to non-coding region analysis.
BMC Bioinformatics, January 2006. 6.2

[80] Werner Ebeling and Miguel A Jiménez-Montaño. On grammars, complex-
ity, and information measures of biological macromolecules. Mathematical
Biosciences, 52(1–2):53–71, November 1980. 2.2, 2.4.1

138



BIBLIOGRAPHY

[81] Amr Elmasry. The subset partial order: Computing and combinatorics.
In Workshop on Analytic Algorithmics and Combinatorics, 2010. 5.4.1

[82] Scott Charles Evans. Kolmogorov complexity estimation and application
for information system security. PhD thesis, Rensselaer Polytechnic In-
stitute, August 2003. 2.5, 2.6.10, 2.7.2

[83] Scott Charles Evans, Bruce Barnett, Stephen Bush, and Gary J Saulnier.
Minimum description length principles for detection and classification of
FTP exploits. In IEEE Military Communications Conference, volume 1,
pages 473–479, January 2004. 2.6.10

[84] Scott Charles Evans, Antonis Kourtidis, T Stephen Markham, Jonathan
Miller, Douglas S Conklin, and Andrew S Torres. MicroRNA target detec-
tion and analysis for genes related to breast cancer using MDLcompress.
EURASIP Journal on Bioinformatics and Systems Biology, 2007. 2.5,
2.6.10, 4, 2.7.3, 4

[85] Rémi Eyraud. Inférence Grammaticale de Langages Hors-Contextes. PhD
thesis, Université Jean Monnet de Saint-Étienne, February 2006. 1.2.2

[86] Rémi Eyraud, Colin de la Higuera, and Jean-Christophe Janodet. LARS:
A learning algorithm for rewriting systems. Machine Learning, January
2007. 6.2

[87] Paolo Ferragina. Data structures: Time, I/Os, entropy, joules! invited
talk European Symposium on Algorithms, 2010. 2.3.7

[88] Paolo Ferragina, Roberto Grossi, and Manuela Montangero. On updating
suffix tree labels. Theoretical Computer Science, 201(1-2):249–262, 1998.
3.4.1

[89] Paolo Ferragina, Raffaele Giancarlo, Valentina Greco, Giovanni Manzini,
and Gabriel Valiente. Compression-based classification of biological se-
quences and structures via the universal similarity metric: experimental
assessment. BMC Bioinformatics, 8:252, Jan 2007. 2.4.2, 5.2, 5.2.1, 2, 5.4,
A

[90] Edward Fiala and Daniel H Greene. Data compression with finite win-
dows. Communications of the ACM, 32(4):490–505, 1989. 3.4.1

[91] F Flam. Hints of a language in junk DNA. Science, 266(5189):1320, 1994.
1.1.2

[92] Philip Gage. A new algorithm for data compression. The C Users Journal,
12(2), February 1994. 2.6.7

[93] Travis Gagie and Paweł Gawrychowski. Grammar-based compression in a
streaming model. In Language and Automata Theory and Applications,
pages 273–284, 2010. 2.6.11

[94] Matthias Gallé. A new tree distance metric for structural comparison of se-
quences. In Alberto Apostolico, Andreas Dress, and Laxmi Parida, editors,
Structure Discovery in Biology: Motifs, Networks & Phylogenies, num-
ber 10231 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2010.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. 5.1.3

139



[95] Matthias Gallé, Pierre Peterlongo, and François Coste. In-place update of
suffix array while recoding words. In Jan Holub and Jan Žďárek, editors,
Prague Stringology Conference, pages 54–67, Czech Technical University
in Prague, Czech Republic, 2008. 3

[96] Matthias Gallé, Pierre Peterlongo, and François Coste. In-place update
of suffix array while recoding words. International Journal of Foundations
of Computer Science, 20(6):1025–1045, January 2009. 3

[97] Gerald Gazdar. Applicability of indexed grammars to natural languages.
In U. Reyle and C. Rohrer, editors, Natural Language Parsing and
Linguistic Theories, pages 69–94. Springer, 1988. 6.2

[98] Raffaele Giancarlo, Davide Scaturro, and Filippo Utro. Textual data com-
pression in computational biology: a synopsis. Bioinformatics, 25(13):
1575–86, July 2009. 2.3.3

[99] Mario Gimona. Protein linguistics - a grammar for modular protein as-
sembly? Nature Reviews Molecular Cell Biology, 7(1):68–73, January
2006. 1.1.3

[100] Leszek Gąsieniec, Roman Kolpakov, Igor Potapov, and Paul Sant. Real-
time traversal in grammar-based compressed files. In Data Compression
Conference, 2005. 2.3.7

[101] Özkan U Nalbanto glu, David J Russell, and Khalid Sayood. Data com-
pression concepts and algorithms and their applications to bioinformatics.
Entropy, 12(1):34–52, January 2010. 2.3.3

[102] E Mark Gold. Language identification in the limit. Information and
Control, 10(5):447–474, 1967. 1.2

[103] E Mark Gold. Complexity of automaton identification from given data.
Information and Control, 37(3):302–320, 1978. 1.2

[104] Michael Gribskov. The language metaphor in sequence analysis.
Computers and Chemistry, 16(2):85–88, April 1992. 1.1.2

[105] Roberto Grossi, Andrea Pietracaprina, Nadia Pisanti, Geppino Pucci, Eli
Upfal, and Fabio Vandin. MADMX: A novel strategy for maximal dense
motif extraction. In Workshop on Algorithms in Bioinformatics, pages
362–374, 2009. 5.4.1

[106] Stéphane Grumbach and Fariza Tahi. A new challenge for compression
algorithms: Genetic sequences. In Data Compression Conference, 1993.
2.3.3, A

[107] Stéphane Grumbach and Fariza Tahi. A new challenge for compression
algorithms: Genetic sequences. Information Processing and Management,
30(6):875–886, 1994. 2.3.3, 2.7.3, 5.3.2

[108] Peter Grünwald. The Minimum Description Length principle. MIT Press,
2007. 1.3

140



BIBLIOGRAPHY

[109] Ming Gu, Martin Farach, and Richard Beigel. An efficient algorithm
for dynamic text indexing. In ACM-SIAM symposium on Discrete
Algorithms, pages 697–704, 1994. 3.4.1

[110] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, January
1997. 3.2, 3.2, 3.2.1, 3.2.2, 3.2.2

[111] S Harrusi, A Averbuch, and A Yehudai. XML syntax conscious compres-
sion. In Data Compression Conference, 2006. 6.2

[112] Danny Hermelin, Gad M Landau, Shir Landau, and Orenw Weimann. Uni-
fied compression-based acceleration of edit-distance computation. Arxiv
preprint arXiv:1004.1194, 2010. 2.3.7

[113] Juan Herrera and Pedro Pury. Statistical keyword detection in literary
corpora. European Physical Journal, May 2008. 6.2

[114] Wing-Kai Hon, Rahul Shah, and Jeffrey S Vitter. Compression, indexing,
and retrieval for massive string data. invited talk Combinatorial Pattern
Matching, 2010. 2.3.7

[115] John E Hopcroft and Jefrey D Ullman. Introduction to Automata Theory,
Languages and Computation. Adison-Wesley Publishing Company, 1979.
2.1.2

[116] Shunsuke Inenaga, Takashi Funamoto, Masayuki Takeda, and Ayumi Shi-
nohara. Linear-time off-line text compression by longest-first substitution.
In String Processing and Information Retrieval, volume 2857, pages 137–
152, 2003. 2.6.8

[117] Nathan E Israeloff, M Kagalenko, and K Chan. Can Zipf distinguish
language from noise in noncoding DNA? Physical Review Letters, 76:
1976–1976, 1996. 1.1.2

[118] Sungchul Ji. The linguistics of DNA: words, sentences, grammar, phonet-
ics, and semantics. Annals of the New York Academy of Sciences, 870:
411–417, 1999. 1.1.2

[119] Sungchul Ji. The cell as the smallest DNA-based molecular computer.
Biosystems, 52(1-3):123–133, January 1999. 1.1.2

[120] Aravind Joshi. Tree adjoining grammars: How much context-
sensitivity is required to provide reasonable structural descriptions? In
Natural Language Parsing, Psycological, Computational and Theoretical
Perspectives. Cambridge University Press, May 1985. 6.2

[121] Horace Freeland Judson. The Eighth Day of Creation: Makers of the
Revolution in Biology. Simon and Schuster, 1979. 1.1.1

[122] Makoto Kanazawa and Sylvain Salvati. The copying power of well-nested
multiple context-free grammars. In Language and Automata Theory and
Applications, January 2010. 6.2

141



[123] Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array
construction. In International Conference on Automata, Languages and
Programming, pages 943–955. Springer, 2003. 3.1, 3.4.4

[124] Jyrki Katajainen and Timo Raita. An analysis of the longest match and
the greedy heuristics in text encoding. Journal of the ACM, 39(2), April
1992. 2.3.1

[125] Goulven Kerbellec. Apprentissage d’automates modélisant des familles de
séquences protéiques. PhD thesis, Université de Rennes 1, April 2008. 1

[126] Takuya Kida, Tetsuya Matsumoto, Yusuke Shibata, Masayuki Takeda,
Ayumi Shinohara, and Setsuo Arikawa. Collage system: a unifying frame-
work for compressed pattern matching. Theoretical Computer Science,
298(1):253–272, January 2003. 2.3.7

[127] John C Kieffer and En-Hui Yang. Grammar-based codes: a new class of
universal lossless source codes. IEEE Transactions on Information Theory,
46(3):737–754, May 2000. 2.2, 2.3.4, 4, 2.6.5, 2.6.6, 3.2.3

[128] John C Kieffer, En-Hui Yang, Gregory Nelson, and Pamela Cosman.
Universal lossless compression via multilevel pattern matching. IEEE
Transactions on Information Theory, 46:1227–1245, January 2000. 2.6.6

[129] Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear
time construction of suffix arrays. In Combinatorial Pattern Matching,
pages 186–2003, 2003. 3.1

[130] Dan Klein. The Unsupervised Learning of Natural Language Structure.
PhD thesis, University of Stanford, 2005. 5.1.2

[131] Dan Klein and Christopher D Manning. Corpus-based induction of syn-
tactic structure: Models of dependency and constituency. In Association
for Computational Linguistics, January 2004. 6.2

[132] Friedhart Klix. Struktur, Strukturbeschreibung und Erkennungsleis-
tung. In Friedhart Klix, editor, Organismische Informationsverarbeitung:
Zeichenerkennung, Begriffsbildung, Problemlösen, pages 110–130, 108
Berlin, Leipziger Str.3–4, 1973. Akademie-Verlag. 2.4.1

[133] Pang Ko and Srinivas Aluru. Space efficient linear time construction of suf-
fix arrays. In Combinatorial Pattern Matching, pages 200–210. Springer,
2003. 3.1

[134] Roman Kolpakov and Gregory Kucherov. Finding maximal repetitions in
a word in linear time. In Symposium on Foundations of Computer Science,
pages 596–604, New York, USA, 1999. IEEE. 3.2.2

[135] Gergely Korodi and Ioan Tabus. Compression of annotated nucleotide
sequences. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, January 2007. 2.3.3

[136] Harold W Kuhn. The Hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2:83–87, 1955. 5.1.3

142



BIBLIOGRAPHY

[137] Shanika Kuruppu, Bryan Beresford-Smith, Thomas Conway, and Justin
Zobel. Repetition-based compression of large DNA datasets. In
International Conference on Computational Molecular Biology, April
2009. 2.3.3, 6.2

[138] J Kevin Lanctot, M Li, and En hui Yang. Estimating DNA sequence
entropy. In ACM-SIAM Symposium on Discrete Algorithms, pages 409–
418, January 2000. 2.5, 2.6.8, 2, 2.7.3, 3.4.1

[139] N Jesper Larsson and Alistair Moffat. Off-line dictionary-based compres-
sion. Proceedings of the IEEE, 88(11):1722–1732, November 2000. 2.6.7,
3

[140] N Jesper Larsson and Kunihiko Sadakane. Faster suffix sorting. Technical
report, Department of Computer Science, Lund University, Sweden, May
1999. 3.1, 3.4.4

[141] Eric Lehman. Approximation algorithms for grammar-based data com-
pression. Master’s thesis, Massachusetts Institute of Technology, 2002.
2.2, 2.6.11

[142] G Leighton, J Diamond, and T Muldner. AXECHOP: a grammar-based
compressor for XML. In Data Compression Conference, page 467, March
2005. uses Multilevel Pattern Matching from KY. 2.3.6

[143] G Leighton, James Diamond, and T Müldner. A grammar-based approach
for compressing XML. Technical report, Acadia University, August 2005.
2.3.6

[144] Siu-Wai Leung, Chris Mellish, and Dave Robertson. Basic gene grammars
and DNA-ChartParser for language processing of escherichia coli promoter
DNA sequences. Bioinformatics, 17(3):226–236, January 2001. 1.1.3

[145] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity
and its Applications. Springer Verlag, third edition, 2008. 2.4

[146] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul Vitányi. The similarity
metric. IEEE Transactions on Information Theory, 50(12):3250–3264,
March 2003. 2.4.2

[147] Yongjing Lin, Youtao Zhang, Quanzhong Li, and Jun Yang. Supporting
efficient query processing on compressed XML files. In ACM symposium
on Applied computing, pages 660–665, 2005. 2.3.6

[148] Alan H Lipkus. A proof of the triangle inequality for the Tanimoto dis-
tance. Journal Mathematical Chemistry, 26(1-3):263–265, January 1999.
5.1.3

[149] Qi Liu, Yu Yang, Chun Chen, Jiajun Bu, Yin Zhang, and Xiuzi Ye.
RNACompress: Grammar-based compression and informational complex-
ity measurement of RNA secondary structure. BMC Bioinformatics, 9:
176, January 2008. 2.3.5, 5.3

143



[150] David Loewenstern and Peter N Yianilos. Significantly lower entropy
estimates for natural DNA sequences. Journal of Computational Biology,
6, February 1999. 2.3.3

[151] Christopher Loose, Kyle Jensen, Isidore Rigoutsos, and Gregory
Stephanopoulos. A linguistic model for the rational design of antimicrobial
peptides. Nature, 443(7113):867–869, January 2006. 1.1.3

[152] Bin Ma, John Tromp, and Ming Li. PatternHunter: faster and more
sensitive homology search. Bioinformatics, 18(3):440–5, March 2002. 2.3.3

[153] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line
string searches. In ACM-SIAM Symposium on Discrete Algorithms, pages
319–327, 1991. 3.1

[154] Michael A Maniscalco and Simon J Puglisi. An efficient, versatile approach
to suffix sorting. ACM Journal of Experimental Algorithmics, 12:1–23,
2008. 2

[155] R N Mantegna, S V Buldyrev, A L Goldberger, S Havlin, C K Peng, M Si-
mons, and H E Stanley. Linguistic features of noncoding DNA sequences.
Physical Review Letters, 73(23):3169–3172, 1994. 1.1.2

[156] Giovanni Manzini and Paolo Ferragina. Engineering a lightweight suffix
array construction algorithm. Algorithmica, 40(1):33–50, 2004. 3.1, 1

[157] Giovanni Manzini and Marcella Rastero. A simple and fast DNA com-
pressor. Software - Practice and Experience, February 2004. 2.3.3

[158] T Stephen Markham, Scott C Evans, Jeremy Impson, and Eric Stein-
brecher. Implementation of an incremental MDL-based two part com-
pression algorithm for model inference. In Data Compression Conference,
pages 322–331, 2009. 3, 5.3

[159] Shirou Maruyama, Hiromitsu Miyagawa, and Hiroshi Sakamoto. Im-
proving time and space complexity for compressed pattern matching. In
International Symposium Algorithms and Computation, pages 484–493,
2006. 2.3.7

[160] Shirou Maruyama, Yohei Tanaka, Hiroshi Sakamoto, and Masayuki
Takeda. Context-sensitive grammar transform: Compression and pat-
tern matching. In String Processing and Information Retrieval, January
2008. 2.3.7

[161] Toshiko Matsumoto, Kunihiko Sadakane, and Hiroshi Imai. Biological
sequence compression algorithms. In Genome informatics Workshop on
Genome Informatics, volume 11, pages 43–52, January 2000. 2.3.3

[162] Edward M McCreight. A space-economical suffix tree construction algo-
rithm. Journal ACM, 23(2):262–272, 1976. 3.4.1

[163] David McKay. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, 2003. 2.3

144



BIBLIOGRAPHY

[164] Aleksandar Milosavljević and Jerzy Jurka. Discovery by minimal length
encoding: A case study in molecular evolution. Machine Learning, 12(1):
69–87, 1993. 3, 2.3.3

[165] Yuta Mori. libdivsufsort project (libdivsufsort-2.0.0), August 2008.
http://code.google.com/p/libdivsufsort/. 1, 3.4.4

[166] Yuta Mori. An implementation of the induced sorting algorithm, 2008.
http://yuta.256.googlepages.com/sais. 3.4.4

[167] Ryosuke Nakamura, Hideo Bannai, Shunsuke Inenaga, and Masayuki
Takeda. Simple linear-time off-line text compression by longest-first sub-
stitution. In Data Compression Conference, pages 123–132, Washington,
DC, USA, 2007. IEEE Computer Society. 2.6.8

[168] Ryosuke Nakamura, Shunsuke Inenaga, Hideo Bannai, Takashi Funamoto,
Masayuki Takeda, and Ayumi Shinohara. Linear-time text compression
by longest-first substitution. Algorithms, 2(4):1429–1448, 2009. 2.6.8, 12,
3, 3.4.1

[169] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. ACM
Computing Surveys, 39(1):2, 2007. 2.3.7

[170] Gonzalo Navarro and Luís Russo. Re-pair achieves high-order entropy. In
Data Compression Conference, page 537, 2008. 2.6.7

[171] Craig G Nevill-Manning. Inferring Sequential Structure. PhD thesis,
University of Waikato, 1996. 1.2.1, 2.5, 2.3, 5.1

[172] Craig G Nevill-Manning and Ian H Witten. Compression and explanation
using hierarchical grammars. The Computer Journal, 40(2,3):103–116,
February 1997. 2.2, 2.3, 5, 5.1

[173] Craig G Nevill-Manning and Ian H Witten. Identifying hierarchical
structure in sequences: A linear-time algorithm. Journal of Artificial
Intelligence Research, 7, January 1997. 2.3, 5.1

[174] Craig G Nevill-Manning and Ian H Witten. Linear-time, incremental
hierarchy inference for compression. In Data Compression Conference,
1997. 2.3

[175] Craig G Nevill-Manning and Ian H Witten. Inferring lexical and gram-
matical structure from sequences. In Compression and Complexity of
Sequences, 1997. 2.3

[176] Craig G Nevill-Manning and Ian H Witten. Phrase hierarchy inference
and compression in bounded space. In Data Compression Conference,
pages 179–188, 1998. 2.3

[177] Craig G Nevill-Manning and Ian H Witten. On-line and off-line heuristics
for inferring hierarchies of repetitions in sequences. In Data Compression
Conference, pages 1745–1755. IEEE, November 2000. 2.3, 2.6.8, 2.6.9, 2.7,
3.4.1

145



[178] Craig G Nevill-Manning, Ian H Witten, and David Maulsby. Compression
by induction of hierarchical grammars. In Data Compression Conference,
pages 244–253, 1994. 2.3.4, 2.3, 4, 5.3

[179] Craig G Nevill-Manning, Ian H Witten, and Dan Olsen, Jr. Compress-
ing semi-structured text using hierarchical phrase identification. In Data
Compression Conference, January 1996. 2.3

[180] Craig G Nevill-Manning, Ian H Witten, and Gordon W Paynter. Browsing
in digital libraries: a phrase-based approach. In International Conference
on Digital libraries, pages 230–236, 1997. 2.3

[181] Craig G Nevill-Manning, Ian H Witten, and Gordon W Paynter. Lexically-
generated subject hierarchies for browsing large collection. International
Journal of Digital Libraries, 2/3(111–123), 1999. 2.3

[182] Jacques Nicolas, Patrick Durand, Grégory Ranchy, Sébastien Tempel, and
AS Valin. Suffix-tree analyser (STAN): looking for nucleotidic and pep-
tidic patterns in chromosomes. Bioinformatics, 21(24):4408–4410, January
2005. 1.1.3

[183] Jacques Nicolas, Christine Rousseau, Anne Siegel, Pierre Siegel, François
Coste, Patrick Durand, Sébastien Tempel, Anne-Sophie Valin, and
Frédéric Mahé. Modeling local repeats on genomic sequences. Techni-
cal report, INRIA, 2008. 3.2

[184] Laxmi Parida, Isidore Rigoutsos, Aris Floratos, Dan Platt, and Yuan Gao.
Pattern discovery on character sets and real-valued data: linear bound
on irredundant motifs and polynomial time algorithms. In ACM-SIAM
Symposium on Discrete Algorithms, pages 297–308, 2000. 5.4.1

[185] Johann Pelfrêne, Saïd Abdeddaïm, and Joël Alexandre. Extracting ap-
proximate patterns. Journal of Discrete Algorithms, 3(2-4):293–320, 2005.
8, 9, 5.4.1

[186] Matthieu Perrin. Compression de séquences d’ADN à base de grammaires
minimales. Technical report, ENS Cachan/Bretagne, 2010. 5.3, 5.3.1,
5.3.1

[187] Nadia Pisanti, Maxime Crochemore, Roberto Grossi, and Marie-France
Sagot. A comparative study of bases for motif inference. In String
Algorithmics, pages 195–225. KCL Press, 2004. 5.4.1

[188] Nadia Pisanti, Maxime Crochemore, Roberto Grossi, and Marie-France
Sagot. Bases of motifs for generating repeated patterns with wild cards.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
2(1), 2005. 5.4.1, 5.4.1

[189] O Popov, DM Segal, and Edward N Trifonov. Linguistic complexity of
protein sequences as compared to texts of human languages. Biosystems,
38(1):65–74, January 1996. 1.1.2

[190] Paul Pritchard. A simple sub-quadratic algorithm for computing the sub-
set partial order. Information Processing Letters, 56(6):337–341, 1995.
5.4.1

146



BIBLIOGRAPHY

[191] Paul Pritchard. On computing the subset graph of a collection of sets.
Journal of Algorithms, 33(2):187–203, 1999. 5.4.1

[192] Simon Puglisi, William F Smyth, and Andrew Turpin. A taxonomy of
suffix array construction algorithms. ACM Computing Surveys, 39(2),
July 2007. 3.1, 3.4.4

[193] Simon J Puglisi, William F Smyth, and Munina Yusufu. Fast optimal
algorithms for computing all the repeats in a string. In Jan Holub and
Jan Zdarek, editors, Prague Stringology Conference, pages 161–169, 2008.
3.2.2, 3.2.2

[194] I Rigoutsos, T Huynh, K Miranda, A Tsirigos, A McHardy, and D Platt.
Short blocks from the noncoding parts of the human genome have in-
stances within nearly all known genes and relate to biological processes.
PNAS, 2006. 1.3

[195] Eric Rivals, Jean-Paul Delahaye, Olivier Delgrange, and Max Dauchet. A
guaranteed compression scheme for repetitive DNA sequences. In Data
Compression Conference, January 1996. 2.3.3

[196] Eric Rivals, Olivier Delgrange, Jean-Paul Delahaye, and Max Dauchet.
Detection of significant patterns by compression algorithms: the case of
approximate tandem repeats in DNA sequences. Bioinformatics, January
1997. 1.3, 2.3.3

[197] E Rivas and SR Eddy. The language of RNA: a formal grammar that
includes pseudoknots. Bioinformatics, 16(4):334, 2000. 6.2

[198] Judith Roof. The poetics of DNA. U of Minnesota Press, 2007. 1.1.1

[199] Christine Rousseau, Mathieu Gonnet, Marc Le Romancer, and Jacques
Nicolas. CRISPI: a CRISPR interactive database. Bioinformatics, 25(24),
2009. 3.2

[200] Wojciech Rytter. Application of Lempel-Ziv factorization to the approx-
imation of grammar-based compression. Theoretical Computer Science,
302(1-3):211–222, 2003. 2.6.1, 2.6.11, 2.7.2

[201] Süleyman Cenk Sahinalp and U Vishkin. Efficient approximate and dy-
namic matching of patterns using a labeling paradigm. In Symposium
on Foundations of Computer Science, page 320, Washington, DC, USA,
1996. IEEE Computer Society. 3.4.1

[202] Yasubumi Sakakibara. Efficient learning of context-free grammars from
positive structural examples. Information and Computation, 97(1):23–60,
1992. 1.2, 1, 6.2

[203] Yasubumi Sakakibara. Learning context-free grammars using tabular rep-
resentations. Pattern Recognition, 38(9):1372–1383, December 2005. 6.2

[204] Hiroshi Sakamoto. A fully linear-time approximation algorithm for
grammar-based compression. In Combinatorial Pattern Matching, vol-
ume 2676, pages 348–360, January 2003. 2.6.11

147



[205] Hiroshi Sakamoto. A fully linear-time approximation algorithm for
grammar-based compression. Journal of Discrete Algorithms, 3(2–4):416–
430, January 2005. 2.6.11

[206] Hiroshi Sakamoto, Takuya Kida, and Shinichi Shimozono. A space-
saving linear-time algorithm for grammar-based compression. In String
Processing and Information Retrieval, pages 218–229, 2004. 2.6.11

[207] Sherif Sakr. XML compression techniques: A survey and comparison.
Journal of Computer and System Sciences, 75(5):303–322, January 2009.
2.3.6

[208] Mikaël Salson, Thierry Lecroq, Martine Léonard, and Laurent Mouchard.
Dynamic Burrows-Wheeler transform. In Jan Holub and Jan Žďárek, ed-
itors, Prague Stringology Conference, pages 13–25, Czech Technical Uni-
versity in Prague, Czech Republic, 2008. 3.4.1

[209] Geoffrey Sampson. A proposal for improving the measurement of parse
accuracy. International Journal of Corpus Linguistics, 5:53–68, 2000. 5.1.2

[210] Hisahiko Sato, Takashi Yoshioka, Akihiko Konagaya, and Tetsuro Toy-
oda. DNA data compression in the post genome era. Genome Informatics
Series, pages 512–514, 2001. 2.3.3

[211] Ulrich Scheidereiter. Zur Beschreibung strukturierter Objeckte mit kon-
textfreien Grammatiken. In Friedhart Klix, editor, Organismische
Informationsverarbeitung: Zeichenerkennung, Begriffsbildung,
Problemlösen, pages 131–135, 108 Berlin, Leipziger Str.3–4, 1973.
Akademie-Verlag. 1, 2.2, 2.4.1, 5.1

[212] Michael Schrage. Learning to speak the language of life. Los Angeles
Times, April, 22nd 1993. 1.1.1

[213] Ernst J Schuegraf and H S Heaps. A comparison of algorithms for data
base compression by use of fragments as language elements. Information
Storage and Retrieval, 10:309–319, 1974. 2.3.1, 4.1.1

[214] Klaus-Bernd Schürmann and Jens Stoye. An incomplex algorithm for
fast suffix array construction. Software - Practice and Experience, 37(3):
309–329, 2007. 3.4.4

[215] David B Searls. The computational linguistics of biological sequences.
In Lawrence Hunter, editor, Artificial Intelligence and Molecular Biology,
page 75. AAAI Press Copublications, March 1993. 1.1.3, A

[216] David B Searls. String variable grammar: A logic grammar formalism for
the biological language of DNA. Journal of Logic Programming, 24(1-2):
73–102, January 1995. 1.1.3

[217] David B Searls. Linguistic approaches to biological sequences. Computer
Applications in the Biosciences, 13(4):333–344, January 1997. 1.1.3

[218] David B Searls. Reading the book of life. Bioinformatics, January 2001.
1.1.3

148



BIBLIOGRAPHY

[219] David B Searls. The language of genes. Nature, February 2002. 1, 1.1.2,
1.1.3, 6.2

[220] David B Searls. Linguistics: trees of life and of language. Nature, 426
(6965):391–2, November 2003. 1.1.3

[221] Abhi Shelat. Evaluating grammar-based data compression algorithms.
Master’s thesis, Massachusetts Institute of Technology, 2001. 4

[222] Jeong Seop Sim. Time and space efficient search for small alphabets with
suffix arrays. In Conference on Fuzzy Systems and Knowledge Discovery,
pages 1102–1107, 2005. 3.4.2

[223] Matthew Simon. Emergent Computation: Emphasizing Bioinformatics.
Springer, 2005. 1.1.3

[224] Zach Solan, David Horn, Eytan Ruppin, and Shimon Edelman. Unsuper-
vised learning of natural languages. Proceedings of the National Academy
of Sciences, January 2005. 1.2.1

[225] James A Storer and Thomas G Szymanski. Data compression via textual
substitution. Journal of the ACM, 29(4):928–951, April 1982. 1, 2.2, 2.3.1

[226] Bonnie J Strait and T Gregory Dewey. The Shannon information entropy
of protein sequences. Biophysical Journal, 71(1):148–155, January 1996.
1.1.2

[227] Ioan Tabus, Gergely Korodi, and Jorma Rissanen. DNA sequence com-
pression using the normalized maximum likelihood model for discrete re-
gression. In Data Compression Conference, page 10, February 2003. 2.3.3

[228] Vojtech Toman. Compression of XML data. In International Conference
on Advanced Information Systems Engineering, pages 1–12, April 2004.
2.3.6

[229] Helene Touzet. A linear tree edit distance algorithm for similar ordered
trees. In Combinatorial Pattern Matching, volume 3537, pages 334–345,
January 2005. 5.1.3

[230] Edward N Trifonov. The multiple codes of nucleotide sequences. Bulletin
of Mathematical Biology, 51(4):417–432, 1989. 1.1.2

[231] Edward N Trifonov and Volker Brendel. Gnomic: a dictionary of genetic
codes. Balaban, 1986. 1.1.2

[232] Anastasios A Tsonis, James B Elsner, and Panagiotis A Tsonis. Is DNA
a language? Journal of Theoretical Biology, 184(1):25–29, 1997. 1.1.2

[233] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14:
249–260, 1995. 3.4.2

[234] Esko Ukkonen. Maximal and minimal representations of gapped and
non-gapped motifs of a string. Theoretical Computer Science, 410(43):
4341–4349, 2009. String Algorithmics: Dedicated to Professor Maxime
Crochemore on the occasion of his 60th birthday. 5.4.1, 5.4.2

149



[235] Menno van Zaanen. ABL: Alignment-Based Learning. In International
Conference on Computational Linguistics, 2000. 1.2.1

[236] Menno van Zaanen. Bootstrapping Structure into Language:
Alignment-Based Learning. PhD thesis, University of Leeds, February
2002. 1.2.1

[237] Menno van Zaanen and Pieter W Adriaans. Comparing two unsupervised
grammar induction systems: Alignment-Based Learning vs. EMILE. Tech-
nical Report TR2001.05, University of Leeds, Leeds, UK, March 2001. 8

[238] Robert Wagner. Common phrases and minimum-space text storage.
Communications of the ACM, 16(3), March 1973. 2.3.1

[239] JD Wang, Hsiang-Chuan Liu, Jeffrey JP Tsai, and Ka-Lok Ng. Scaling be-
havior of maximal repeat distributions in genomic sequences. International
Journal of Cognitive Informatics and Natural Intelligence, 2(3):12, May
2008. 1.1.2

[240] Dennis Waters. The linguistic model in biology: Implications for recogniz-
ing life and intelligence. In Astrobiology Science Conference: Evolution
and Life: Surviving Catastrophes and Extremes on Earth and Beyond,
page 5368, January 2010. 1.1.1

[241] W Timothy J White and Michael D Hendy. Compressing DNA sequence
databases with coil. BMC Bioinformatics, 9:242, January 2008. 2.3.3

[242] J Gerard Wolff. An algorithm for the segmentation of an artificial language
analogue. British Journal of PsychologyJ, 66:79–90, 1975. 2.5, 2.6.7

[243] J Gerard Wolff. Learning syntax and meanings through optimization and
distributional analysis. Categories and processes in language acquisition,
January 1988. 1.2.1

[244] En-Hui Yang and John C Kieffer. Efficient universal lossless data com-
pression algorithms based on a greedy sequential grammar transform. 1:
Without context models. IEEE Transactions on Information Theory, 46
(3):755–777, May 2000. 2.3.4, 5, 5.3

[245] En-Hui Yang and John C Kieffer. Efficient universal lossless data com-
pression algorithms based on a greedy sequential grammar transform. 2:
With context models. IEEE Transactions on Information Theory, 49(11):
2874–2894, November 2003. 2.3.4, 5

[246] Daniel M Yellin. Algorithms for subset testing and finding maximal sets.
In ACM-SIAM Symposium on Discrete Algorithms, pages 386–392, 1992.
5.4.1

[247] Sen Zhang, Ge Nong, and Wai Hong Chan. Fast and space efficient linear
suffix array construction. In Data Compression Conference, Washington,
DC, USA, 2008. IEEE Computer Society. 3.4.4

[248] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential
data compression. IEEE Transactions on Information Theory, January
1977. 2.6.1

150



BIBLIOGRAPHY

[249] Jacob Ziv and Abraham Lempel. Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory, 24(5):
530–536, January 1978. 2.6.2

151



                      VU :                                                                                         VU : 
 
          Le Directeur de Thèse                                                Le Responsable de l'École Doctorale 
                  (Nom et Prénom) 

 
              

                                                                                                         

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                               VU pour autorisation de soutenance 
 

                                               Rennes, le  
 

 
Le Président de l'Université de Rennes 1 

 
 

 
               Guy CATHELINEAU 

 
 

 
 
 
 
 
 
 

                           VU  après soutenance pour autorisation de publication : 
 

                                     Le Président  de  Jury,  
                                                                                                               (Nom et Prénom) 
 
 
 
 
 
 
 
 

 
 
 
 


	Introduction
	Linguistics of DNA
	The Linguistic Metaphor
	Identifying Words
	Modeling with Grammars

	Grammatical Inference
	Learning CFG from Positive Data Only
	Learning CFG from Structural Descriptions

	Occam's Razor and MDL principle
	Overview of this Thesis

	The Smallest Grammar Problem
	Definitions
	Sequences
	Grammars
	Straight-Line Grammars

	Origins of the Smallest Grammar Problem
	Data Compression
	Dictionary based
	Statistical methods
	DNA Compression
	The SGP in Data Compression
	RNA compression with SLG
	XML Compression with SLG
	Compressed Data Structures

	Kolmogorov Complexity
	The SGP in Kolmogorov Complexity
	The Similarity Metric

	Structure Discovery
	Algorithms
	LZ77
	LZ78
	Sequitur
	DNASequitur
	Sequential
	Bisection / MPM
	RePair
	Longest First
	Greedy
	MDLCompress
	Bounding the Worst Case

	Comparison
	IRR: a general offline framework
	Final grammar size
	DNA Compression


	Efficiency
	The Suffix Array
	A Taxonomy of Repeats
	Bounds
	Computation
	Use in IRR

	Non-overlapping Occurrences
	In-place Update of Suffix Array
	Motivation
	Double-linked Enhanced Suffix Array
	Algorithm
	Efficiency

	Summary

	Smaller Grammars
	The Minimal Grammar Parsing Problem
	Grammar Parsings and Minimal Grammar Parsings
	IRR with Occurrence Optimisation
	Removing Costly Rules

	A Search Space for the Smallest Grammar Problem
	The Search Space
	The ZZ Algorithm
	Non-monotonicity of the search space

	A Practical Algorithm
	Summary

	Applications
	Structure Discovery
	Non-uniquenes of the Smallest Grammar: in Theory
	Non-uniqueness of the Smallest Grammar: in Practice
	Structural Comparison of Sequences: a New Tree Distance Metric
	Summary

	Kolmogorov Complexity
	Biological Classification
	Mammalian Phylogeny

	Compression with IRR
	Compressing Small Grammars
	An IRR Algorithm for Compression Purpose

	Lossless DNA compression with Rigid Motifs
	A Taxonomy of Rigid Motifs
	Straight-line Grammars with Don't Cares


	Conclusions
	Summary
	Perspectives

	Corpora
	List of Figures
	List of Tables
	List of Algorithms
	Index
	Bibliography

