aT b2 +Q/BM; 7Q° K +?BM2 H2 "MBM;- BK ;
M/ +QKTmi2 pBbBQM
CmHB2M J B H

hQ +Bi2 i?Bb p2 bBQM,

CmHB2M J B HX aT "b2 +Q/BM; 7Q° K +?BM2 H2 "MBM;- BK ;2 T'Q+2t
J i?2K iB+b (K i?X:J)X 0+QH2 MQ 'K H2 bmTd'B2m 2 /2 * +? M @ 1lLa * -
kyRy.lLayy9y X i2H@yy8N8jRKk

> G A/, i ZH@Yyy8N8jRK
?2iiTbh,ffi2HX "+?Bp2b@Qmp2 i2bX7 fiZH@yy8N
am#KBii2/ QM k9 J v kyRR

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X



%I INRIA

THESE DE DOCTORAT
DE L'ECOLE NORMALE SUPERIEURE DE CACHAN

présentée palULIEN MAIRAL

pour obtenir le grade de
DOCTEUR DE L'ECOLE NORMALE SUPERIEURE DE CACHAN

Domaine :MATHEMATIQUES APPLIQUEES

Sujet de la thése :
Représentations parcimonieuses en apprentissage statistique,
traitement d'image et vision par ordinateur

Sparse coding for machine learning, image processing and
computer vision

These présentée et soutenue a Cachan le 30 novembre 2010 ldevant
jury composé de :

Francis BACH Directeur de recherche, INRIA Paris-Rocquencourt Direictehese
Stéphane MALLAT  Professeur, Ecole Polytechnique, New-York UniversifypoReur

Eric MOULINES Professeur, Télécom-ParisTech Examinateur

Bruno OLSHAUSEN Professeur, University of California, Berkeley Rapporteur

Jean PONCE Professeur, Ecole Normale Supérieure, Paris Directeur de thése
Guillermo SAPIRO Professeur, University of Minnesota Examinateur

Jean-Philippe VERT Directeur de recherche, Ecoles des Mines-ParisTéotaminateur

These préparée au sein de I'équipe Willow du laboratormiiatique

de I'Ecole Normale Supérieure, Paris. (INRIA/ENS/CNRS UMR 8548).
23 avenue d'ltalie, 75214 Paris.






résume

De nos jours, les sciences expérimentales doivent traiterng quantité de données
importante et grandissante. A n de comprendre les phénomeéas naturels ainsi que les
lois qui les régissent, les scienti ques ont construit des watils améliorant leurs possibilités
d'observer le monde, comme des microscopes ou téléscopesigikenter la précision de
ces outils, ou bien mesurer des quantités invisibles par & technologie actuelle sont
toujours des préoccupations importantes aujourd'hui. Cete approche empirique souléve
toutefois la question de l'analyse et de l'interpétation des données recueillies, de par leur
volume et leur complexité. Il s'agit ainsi d'un probléme réairrent en neuro-sciences ou
I'on e ectue diverses mesures de l'activité cérébrale, enib-informatique, ou I'on mesure
I'expression de génes, ou bien en radioastronomie avec I'sérvation du rayonnement
fossile de l'univers.

D'autres domaines, en dehors du champ des sciences puremeampérimentales, doi-
vent faire face a des problématiques similaires. Ainsi, enabotique, vision arti cielle, ou
imagerie médicale, les scienti ques souhaitent comprence automatiquement des ux
video contenant des millions de pixels; en sociologie et smices humaines obtenir des
statistiques de population sur de larges bases de donnéesypeétre une tache dicile
pour les mémes raisons. Par ailleurs, le développement d'tls e caces de traitement de
données peut aussi a ecter la vie de tous les jours. Nous pragsons ainsi pour des raisons
de divertissement une grande quantité de signaux, ne seraite que par nos appareils
photo numériques ou bien nos téléphones portables.

Trouver la meilleure facon de représenter ces signaux numigues est par conséquent
une question importante et toujours d'actualité, bien qu'elle ait fait I'objet d'un nombre
considérable de publications. Nous étudions dans cette tls& une représentation particu-
liere, intitulée codage parcimonieuxfondée sur une méthode d'apprentissage statistique
qui s'est révélée empiriquement étre trés e cace pour certins types de signaux comme
les images naturelles. Notre but est de développer de nouver outils algorithmiques ex-
ploitant cette méthode de codage, ainsi que de nouveaux donrees d'application. Nous
adopterons une approche multi-disciplinaire que nous allos détailler par la suite.

Plus concrétement, le codage parcimonieux consiste a regénter des signaux comme
combinaisons linéaires de quelques €léments d'un dictiomire. Ceci peut étre vu comme
une extension du cadre classique des ondelettes, dont le beist de construire de tels
dictionnaires (souvent des bases orthonormales) adaptéaua signaux naturels. De nom-
breux types d'ondelettes ont ainsi été proposés dans le passsqui varient essentiellement
par leur complexité et leurs propriétés géométriques, maislé nir manuellement de tels
dictionnaires demeure une tache dicile. La ligne de recheche que nous poursuivons
dans cette thése diere du cadre des ondelettes dans le sensi ¢e dictionnaire n'est
plus xe et pré-dé ni par son utilisateur, mais appris a partir de données d'entraine-
ment. Cette approche admet donc des similarités avec l'angbe en composantes princi-
pales (ACP), qui apprend des directions principales or thonormales représentant des
données, la principale di érence étant I'absence de contiate d'orthogonalité entre les
éléments du dictionnaire. Il en résulte un probléme non conexe de factorisation de ma-



trice, qui en pratique nécessite l'utilisation d'outils d' optimisation convexe de fonctions
non réguliéres. Le principal succés des méthodes d'appréssage de dictionnaire a été la
modélisation d'imagettes dans les images naturelles, et lperformance des algorithmes
de débruitage les utilisant, ce qui a été une motivation impatante pour le sujet de nos
recherches.

Nous traitons plusieurs questions ouvertes dans cette thés: Comment apprendre ef-
cacement un dictionnaire ? Comment enrichir le codage paramonieux en structurant le
dictionnaire ? Peut-on améliorer les méthodes de traitemend'image utilisant le codage
parcimonieux ? Comment doit-on apprendre le dictionnaire pair une tache autre que la
reconstruction de signaux, quelles en sont les applicatiaen vision par ordinateur ? Nous
essayons de répondre a ces questions par une approche mukiplinaire, en empruntant
des outils d'apprentissage statistique, d'optimisation @nvexe et stochastique, de traite-
ment des signaux et des images, de vision par ordinateur, msiaussi d'optimisation sur
des graphes.

L'apprentissage de dictionnaire est souvent considéré came un processus trés coi-
teux en terme de temps de calcul. La premiére contribution decette thése est un nou-
vel algorithme d'apprentissage en ligne, fondé sur des méttes d'approximation sto-
chastique, qui permet d'obtenir un point stationnaire du probléeme d'optimisation non
convexe initial. Notre méthode permet de traiter de grandeshases de données contenant
des millions d'exemples d'apprentissage, et s'étend a uneuge panoplie de problemes
de factorisation de matrices, tels que la factorisation de ratrices positives ou I'ana-
lyse en composantes principales parcimonieuses. Dans ledea de ce travail, nous avons
aussi développé un logiciel utilisable gratuitement, dontla performance dépasse de facon
signi cative les méthodes concurrentes en termes de vitess

Nous nous intéressons ensuite au probléme de la structuratih du dictionnaire, et a la
résolution e cace des problemes d'optimisation correspoiants. A cet e et, nous exploi-
tons des travaux récents qui fournissent un cadre naturel a otre problématique, intitulé
codage parcimonieux structuré. Nous étudions en particuér le cas ou les dictionnaires
sont munis d'une structure hiérarchique, et le cas général w leurs éléments sont struc-
turés en groupes qui se recouvrent. La principale di culté soulevée par cette nouvelle
formulation est le probléeme d'optimisation correspondanta la décomposition d'un signal
étant donné un dictionnaire structuré xe. La solution que nous proposons combine des
outils d'optimisation convexe et d'optimisation sur des graphes et peut en fait étre uti-
lisée pour résoudre une grande variété de problemes d'apprissage. Plus précisément,
nous montrons que l'opérateur proximal associé a la régul@ation structurée que nous
considérons, est relié a un probléme de ot sur un graphe patitulier, et peut étre calculé
e cacement et a grande échelle grace a un algorithme que nouavons développé. Nous
espérons que cette avancée permettra d'ouvrir de nouveauwhamps d'application aux
méthodes parcimonieuses structurées. Un logiciel implénméant les outils proposés sera
disponible gratuitement.

La troisiéme question traitée dans cette thése concerne Ifaélioration des techniques
de traitement d'image utilisant I'apprentissage de dictionnaire. Pour ce faire, nous propo-
sons en sus du codage parcimonieux, d'exploiter expliciteent les similarités a l'intérieur
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des images, ce qui est le fondement de I'approche de moyenmagon-local pour la restau-

ration. A cette n, nous utilisons le codage parcimonieux smultané, en décomposant de
facon jointe des groupes de signaux similaires sur des soussembles d'un dictionnaire

appris. Nous montrons que cette approche permet d'obtenir ds résultats qui dépassent
I'état de l'art pour les taches de débruitage et dématricagedans les images, et qu'elle
permet de traiter des données brutes d'appareils photos nuériques en proposant une
gualité meilleure gque celle o erte par les logiciels commaraux.

Nous concluons cette thése en utilisant I'apprentissage ddictionnaire pour des taches
autres que purement reconstructives. A cet e et, nous présetons une méthode d'appren-
tissage supervisée, fondée sur un algorithme d'optimisatin stochastique, pour des taches
de classi cation ou de régression, adaptée a des signaux qadmettent des représenta-
tions parcimonieuses. Nous illustrons aussi ce concept enadélisant des imagettes de
facon discriminative, et montrons que ceci permet de modéler les contours dans les
images. En particulier, nous présentons un détecteur de caour, qui peut aussi étre
utilisé pour apprendre l'apparence locale des contours dlgjets spéci ques.






abstract

Many elds from experimental sciences now deal with a large ad growing amount of
data. To understand natural phenomena and eventually theirunderlying laws, scientists
have built physical devices that have enhanced their obsemltion capabilities, such as
various types of microscopes or telescopes. Improving upgohysical devices, to obtain a
better precision or to measure quantities that are invisible with current technologies, is of
course still an active scienti ¢ topic. On the other hand, sdentists have also developed
tools to record and process their observations with computes, to analyze and better
understand them. This is for instance a common approach to neroscience with diverse
types of measurements of the neural activity, in bioinformaics with gene expressions, or
in radio astronomy with measurements of the cosmic microwag background. However,
this approach also raises new challenging questions, sucls aow one should process the
resulting large amount of data.

The same need for scalable and e cient data processing toolsrises in other elds
than pure experimental sciences, such as robotics, computegision, and biomedical imag-
ing, where one wishes to understand continuous video strams containing millions of
pixels; but also sociology, where obtaining population stéistics from large databases
can be dicult. Moreover, developing new data processing tools could also a ect the
everyday life, where devices such as CCD sensors from digiteameras or cell phones are
intensively used for entertainment purposes.

The question of how to represent these digital signals is theefore still acute and of
high importance, despite the fact that it has been the topic d a tremendous amount of
work in the past. We study in this thesis a particular signal representation calledsparse
coding, based on a machine learning technique, and which has proveto be e ective
for many modalities such as natural images. Our goal is to preide new algorithmic
tools and applications to this coding method, by addressingthe problem from various
perspectives, which we will detail in the sequel.

Concretely, sparse coding consists of representing sigrsaés linear combinations of a
few elements from a dictionary. It can be viewed as an extenen of the classical wavelet
framework, whose goal is to design such dictionaries (oftenrthonormal basis) that are
adapted to natural signals. Numerous types of wavelets havindeed been proposed in the
past, which essentially vary in terms of complexity and geonetric properties. Designing
by hand such dictionaries remains, however, a di cult task. The line of research we follow
in this thesis di ers from wavelets in the sense that the dictionary is not xed and pre-
de ned, but learned from training data. It shares a similar goal as principal component
analysis (PCA), which also learns how to represent data by computing orthonormal
principal directions. From an optimization point of view , dictionary learning results
in a nonconvex matrix factorization problem, but often deals with nonsmooth convex
optimization tools. An important success of dictionary learning has been its ability to
model natural image patches and the performance of image deising algorithms that it
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has yielded, which has been an important motivation for our research.

We address in this thesis several open questions: How to e @ntly optimize the
dictionary? How can sparse coding be enriched by structurig the dictionary? How can
one improve sparse coding for image processing tasks? Can Vearn the dictionary for
a di erent task than signal reconstruction, and what are the possible applications to
computer vision? We try to answer these questions with a mulidisciplinarity point of
view, using tools from statistical machine learning, conv& and stochastic optimization,
image and signal processing, computer vision, but also optiization on graphs.

Dictionary learning is often considered as a computationdl demanding process. The
rst contribution of this thesis is a new online learning algorithm, based on stochastic
approximations, which is proven to converge to a stationary point of the nonconvex
optimization problem. It gracefully scales up to large datasets with millions of training
samples, and naturally extends to various matrix factorizaion formulations, making it
suitable for a wide range of learning problems, such as non-gative matrix factorization
and sparse principal component analysis. Along with this wok, we have developed a
freely available software package, which signi cantly ouperforms other approaches in
terms of speed.

We then address the questions of how to structure the dictioary, and how to solve the
corresponding challenging optimization problems. To thate ect, we exploit recent works
on structured sparsity, which provide a natural framework to answer our question. We
study the case where dictionaries are embedded in a hierargland the general case where
dictionary elements are structured into overlapping groups. The main di culty raised by
this new formulation is how to decompose a signal given a xedstructured dictionary.
The solution we propose combines ideas from convex optimitian and network ow
optimization. It in fact extends beyond the dictionary lear ning framework and can be
used for solving a new class of regularized machine learningroblems. More precisely,
we show that the proximal operator associated with the strudured regularization we
consider is related to a quadratic min-cost ow problem, and @n be solved e ciently
at large scale with an algorithm we propose. We therefore mak a bridge between
the literature of sparse methods, and network ow optimization. We hope that this
contribution will open up a new range of applications for structured sparse models. A
software package implemented these methods has been devedal and will be made freely
available.

The third question we address also consists of enriching thbasic dictionary learning
framework, but in a speci ¢ way for image processing appliciions. Explicitly exploiting
the self-similarities of natural images has led to the succesul non-local means ap-
proach to image restoration. We propose simultaneous spagscoding as a framework for
combining this approach with dictionary learning in a natur al manner. This is achieved
by jointly decomposing groups of similar signals on subset®f the learned dictionary.
We show that this approach achieves state-of-the-art resultsdr image denoising and de-
mosaicking, and competes with commercial software for resting raw data from digital
cameras.

We concludes this thesis by considering dictionary learnig as a way to learn features
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for a dierent task. We show that it can be used in a supervisedway for di erent
classi cation or regression tasks, for data that admit spaise representation, and show
how to use a stochastic gradient descent algorithm for addresing the new learning
problem. We also show that this idea can be used in computer gion for modelling
the local appearance of natural image patches in a discrimiative way, and that it is
especially well adapted for modelling edges in natural imags. In particular, we address
with this approach the problem of edge detection, category-bsed edge detection and
show that it leads to state-of-the-art results for other tasks sich as digit recognition of
inverse half-toning.
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Introduction and Related Work

Finding good signal representations has been the topic ofa large amount of research
since early works in signal and image processing. Estimatioproblems arising in these
elds, such as denoising, reconstruction from incomplete dta, or more generally restora-
tion, are indeed often di cult to solve without an arbitrary a priori model of the data
source.

Various smoothness assumptions were rst used, leading fomstance to Laplacian
Itering ( Kovasznay and Joseph 1955, anisotropic ltering ( Perona and Malik, 1990
or total variation ( Rudin and Osher, 19949 in image processing, to cite only a few of
them. More recent works have focused on representing data eeors as linear combina-
tions of few elements from a pre-de neddictionary, which is often an orthonormal basis
set, introducing the concept of sparsity. Finding low-dimensional representations of a
given signal in a well chosen basis set is intuitively usefufor restoration:! Suppose that
we have at our disposal a dictionary which is good at reconstrcting a class of signals
(i.e., the signals admit sparse representations over the dtionary), and bad at recon-
structing noise. Then, one hopes that a sparse approximatio of a noisy signal with the
dictionary signi cantly reduces the amount of noise without losing signal information.?
Experiments have shown that such a model with sparse decomiions (sparse coding
is very e ective in many applications (Chen et al., 1998.

However, the question of designing good dictionaries adapt to di erent modalities
(e.g., natural images) remains open, and has in fact been anctve topic of research.
The discrete cosine transform Ahmed et al.,, 1974, wavelets (seeMallat, 1999 and
references therein), curvelets Candes and Donohg 2002 2004, contourlets (Do and
Vetterli, 2003gb), wedgelets Ponoho, 1998, bandlets (Mallat and Pennec, 20053b;
Mallat and Peyré, 2008, and steerable wavelets Freeman and Adelson 1991, Simoncelli
et al., 1992 are all attempts to ful Il the above sparse coding model for natural signals.

1The terminology basis is slightly abusive here since the element s of the dictionary are not neces-
sarily linearly independent and the set can be overcomplete thati s, have more elements than the signal
dimension.

ZFormally, let x be a clean signal inR" which lives in a linear subspace of dimension L n, and
let us consider a noisy versiony = x + w, where w is a white and Gaussian noise vector of standard
deviation . A projection of the noisy vector y onto the linear subspace is equal to x + w® with
Elkw’3]= L 2 E[kwk3]= n 2, and the amount of noise is reduced. The main di culty is in fact to
nd the right subspace , which is usually unknown.



1. Introduction and Related Work

Indeed, they have led to e ective algorithms for many image pocessing applications,
such as compressionNlallat, 1999 Chang et al.,, 2000, denoising (Starck et al., 2002
Portilla et al., 2003 Matalon et al., 2005 Eslami and Radha 2006, inpainting ( Elad
et al., 2005, and more. Note that the terminology of models we have used so far is a
bit loose. The ones we have mentioned and will use in this thés are not true models in
the generative sensé. They in fact de ne classes of regularized signals which hogelly
contain the ones one wants to represent, but also contain (ifiact mostly) irrelevant ones.

Originally introduced by Olshausen and Field(1996 1997 to model the receptive
elds of simple cells in the mammalian primary visual cortex, the idea of learning the
dictionary instead of using a prede ned one has recently ledo state-of-the-art results in
numerous low-level signal processing tasks such as image @&sing (Elad and Aharon,
2006 Mairal et al., 2008hd, 20099, texture synthesis (Peyre, 2009, and audio process-
ing (Zibulevsky and Pearlmutter, 2001, Grosse et al, 2007 Févotte et al., 2009, as well
as higher-level tasks such as image classi cationRaina et al., 2007 Mairal et al., 20083
20090 Bradley and Bagnell, 2009 Yang et al., 2009 Boureau et al., 2010, showing
that sparse learned models are well adapted to a large clasg natural signals. Unlike
decompositions based on principal component analysis andsi variants, these models
do not impose that the basis vectors be orthogonal, allowingmore exibility to adapt
the representation to the data, and they have been shown to gini cantly improve sig-
nal reconstruction (Elad and Aharon, 2006. Although some of the learned dictionary
elements may sometimes look like wavelets (or Gabor lters), they are tuned to the
input images or signals, leading to much better results in pactice.

It is interesting to see that some of the concepts presenteddre have also emerged
in statistics and machine learning from a slightly di erent viewpoint. In this literature,
What we have called dictionary in the previous paragraphs is usually xed, and is
de ned as a set of predictors or variables. Statistical estimators and solutions of
machine learning problems are often de ned as linear combiations of such predictors
and in fact, due to their simplicity, these linear models arethe most widely used ones for
prediction tasks (Hastie et al., 2009. In supervised learning, an empirical risk (usually
a convex loss) is minimized, so that the linear model ts sometraining data, and one
hopes that the learned model generalizes well on new data pas. However, due to pos-
sibly small numbers of training samples and/or a large numbe of predictors, over tting
can occur, meaning that the learned parameters do t well thetraining data, but have
a bad generalization performance. This issue can be solved/lmmaking a priori assump-
tions on the solution, naturally leading to the concept of regularization. When smooth
solutions are preferred, one can for instance use the Tikhav regularization (Tikhonov
and Arsenin, 1977, also used in ridge regressionHoerl and Kennard, 1970. When one
knows in advance that the solution is sparse that is, only a f ew predictors are relevant,
a sparsity-inducing regularization such as the ;-norm is well adapted, leading for in-
stance to the Lasso Tibshirani, 1996, or equivalently to the basis pursuit formulation

%In a generative setting, one usually models the underlying probabil ity distribution of input data,
from which it is possible to draw new samples. To the best of our knowledge, no such good model exists
for natural images.
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from the signal processing literature Chen et al., 1998. Note that the ";-norm was also
used by Markowitz (1952 for the problem of portfolio selection, and has in fact been
revisited several times.

More generally, it is possible to encode additional knowlede in the regularization
than just sparsity. A recent topic of research indeed consis of building structured
sparsity-inducing norms, which encourage the solutions of garse regularized problems
to have speci ¢ patterns of non-zero coe cients. One may wantsuch patterns to be struc-
tured in non-overlapping groups (Turlach et al., 2005 Yuan and Lin, 2006 Obozinski
et al., 2009, in a tree (Zhao et al,, 2009 Bach, 2009, or in overlapping groups (Jenatton
et al., 2009 Jacob et al, 2009 Huang et al., 2009 Baraniuk et al., 2010.

The work presented in this thesis follows these lines of resech. It provides e cient
algorithmic tools for dictionary learning and structured sparse decomposition problems.
It also extends the dictionary learning formulation to a supervised setting, and presents
applications in image processing and computer vision that ehieves state-of-the-art re-
sults for di erent tasks. We present in more details these catributions in Section 1.1,
before introducing in Section 1.2 the notation used throughout the thesis. We also
present in Sectionl.3 sparsity-inducing norms, and in Sectionl1.4 the optimization tools
for sparse methods which we have used. We brie y review the terature of dictionary
learning in Section 1.5, as well as its successful applications in image processitig Sec-
tion 1.6.

1.1 Contributions of the Thesis

This thesis brings several contributions to the elds of spase methods in machine learn-
ing, signal and image processing, and computer vision. We noreview them, following
the organization of the manuscript:

Chapter 2 presents a fast dictionary learning algorithm based on stoleastic ap-
proximations, which, to the best of our knowledge, signi cartly outperforms all

approaches in terms of speed. This procedure allows learrgndictionaries with
millions of training samples, and can be extended to variousnatrix factorization

problems, such as non-negative matrix factorization and spese principal compo-
nent analysis. An e cient C++ implementation of this algorit hm is available in
the software SPAMS, and is presented in more details in Appedix D.*

Chapter 3 introduces new algorithmic tools for solving structured sparse decom-
position problems. We show that the proximal operator asso@ted with the norms
we consider is related to nding a ow with minimum cost on a particular graph,
which makes a bridge between the literature of sparse methadand network ow
optimization. We propose an e cient an scalable procedure br solving it, which
opens up a new range of applications for structured sparse nuels. We illustrate
our approach for learning hierarchically structured dictionaries of natural image

“The software can be freely downloaded at http://www.di.ens.fr/willow/SPAMS/
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patches that show improved performance over classical ungictured ones in noisy
settings, and background subtraction in videos.

We show in Chapter 4 how to exploit both image self-similarities and sparse repre
sentations for image restoration using simultaneous spaescoding. The proposed
approach achieves state-of-the-art results for image denoisg and image demo-
saicking, as well as competitive results for denoising raw @a from CCD sensors
of digital cameras.

In Chapter 5, we introduce discriminative sparse representations, with are well
suited for modelling the appearance of image patches, esgatly edges in images.
We use these representations for classifying patches fromi drent textures, from
di erent objects, and learning a class-speci ¢ edge detecto

In Chapter 6, we present a more general formulation than in Chapter5 for learning
dictionaries adapted to classi cation or regression tasks ad an e cient optimiza-
tion procedure for solving it. This approach leads to (or clese to) state-of-the-art
results for several problems such as digit recognition and an-linear inverse image
mapping tasks such as inverse halftoning.

1.2 Notation

We denote vectors by bold lower case letters, and matrices byold upper case ones.
For a vector x in R™ and and integerj in J1;mK, f1;:::;mg, the j-th entry of x is
denoted by x;. For a matrix X in R™ ", and a pair of integers (;j ) 2 J1;mK J1;nK
the entry at row i and columnj of X is denoted by X;j . When J1; mKis a nite set
of indices, the vectorx of sizej j contains the entries ofx corresponding to the indices
in . Similarly, when X is a matrix of sizem n and J1;nK X is the matrix of
sizem | | containing the columns of X corresponding to the indices in .

We de ne for g 1 the "¢-norm of a vector x in R™ as:

xn
kxKq , ixj i . and kxky | max_jx;j = lim kxkg
- j=1i !

We also de ne the "¢ pseudo-norm as the sparsity measure which counts the numberfo
nonzero elements in a vectoP.

xn
kxko, #fj st x; 60g= lim ixjj9 :
gl O* j=1

We denote the Frobenius norm of a matrixX in R™ " by

Xn X , 172
kX k|: , Xij :
i=1j=1

5Note that it would be more proper to write  kxk instead of kxko to be consistent with the traditional

notation kxky. However, for the sake of tradition, we will keep this notation unchange d.
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We usually denote a sequence of scalars and real-valued fuimts with lower indices,
for instance u, fort 0, and sequences of vectors and matrices using upper indigder
instance x! or X', t 0. For a sequence of vectors (or matricesx! and scalarsuy, we
write x' = O(u;) when there exists a constantK > 0 so that for all t, kx'k,  Kuy.
Note that for nite-dimensional vector spaces, the choice ofnorm is essentially irrelevant
(all norms are equivalent).

We denote by B-(x) the open ball of radius" centered inx. Given two matrices X
in RM M andY in RM2 "2 X Y denotes the Kronecker product betweenX and Y,
de ned as the matrix in RMM2 NNz with blocks of sizesm, n, equal to Xj Y. For
more details and properties of the Kronecker product, se&olub and Van Loan (1996,
and Magnus and Neudecker(1999. When necessary, other speci ¢ notations will also
be introduced in the remaining chapters.

1.3 Sparse Methods and Sparsity-Inducing Norms

Sparse regularized problems in machine learning and signgrocessing often consist
of tting some model parameters in RP to training data, while making the a priori
assumption that should be sparse. This is usually achieved by minimizing sosmsmooth
convex functionf : RP ! R,® which is typically an empirical risk in machine learning or
a data tting term in signal processing, and a sparsity-inducing regularization :

min o( ). F()+ () (L)

where A RP is a convex set, is a vector in A, and is a non-negative parameter
controlling the trade-o between data tting and regulariza tion. To encourage sparsity
in , a natural choice would be to take to be the "¢ pseudo-norm that counts the
number of non-zero coe cients in . However, solving Eq. (L.1) in this setting is often
intractable, such that one has either to look for an approximate solution using a greedy
algorithm, or one should resort to a convex relaxation instad. A typical example of
such a convex formulation is for instance the ;-decomposition problem, also known as
the Lasso (Tibshirani, 1996 or basis pursuit (Chen et al., 1998:

h i
.M
min Skx D K3+ k ki ; (1.2)

are the dictionary elements. As shown below, when the valuefo is large enough,
is known to be sparse, and only a few dictionary elements arenvolved. The problem
of e ciently solving Eqg. ( 1.2) has received a lot of attention lately. Indeed, the corre-
sponding literature is abundant, vast, but also redundant and confusing. We will present
later in this manuscript optimization methods which have experimentally proven to be
e cient for the applications we are interested in.

Before that, let us develop a bit more the discussion on spagesregularization prob-
lems, by answering our rst important question

®We often assumef to be di erentiable with a Lischitz continuous gradient.
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1.3.1 Does The ";-norm Induce Sparsity?

Let us consider the general formulation of Eq. (.1) and let us take to be the “i-norm.

Our rst remark will be a bit contradictory with the terminol ogy of sparsity-inducing

norm often used to characterize the “;-norm, but we will clarify this in the sequel.

Indeed, depending on the choice of , the "1 regularization in Eq. (1.1) does not always
lead to sparse soluti%ns Let us consider for instance the problem of minimizing onR*

the function g( ) 2 ~ + |j j, where is a scalar. The solutionis ?( )= -, which

is never zero for any value of . To enjoy sparsity-inducing properties of the “1-norm,

we need to be a bit more careful in the choice of the functiorf we want to regularize.
For instance, whenf is di erentiable at zero, then the solution is exactly zero when is
large enough (we will characterize in Sectiorl.4 why this is true). The Lasso formulation

presented in Eq. (L.2) enjoys this property, and so will be all the functions that we will

consider in this thesis. We will now assume thatf satis es this condition.

Let us now suppose that the solution of Eq. (.1), which we denote by ?( ), is
unique. We know that ?( ) is equal to 0 when is large enough, but one can also
wonder whether can help us in controlling the sparsity of ?( ). In other words, if
given the solution ?( ) has a sparsitys, k ?( )ko, can we increase (or decrease)
the value of s by reducing (respectively increasing) the value of ? We have observed
in this thetis that it is empirically often true, even though there are no clear analytical
arguments relating the " 1-norm of a solution to the corresponding sparsity that it yields.
On the other hand, it is very easy to generate counter-exampleswhere this expected
behavior is not exactly satis ed for every value of , especially when using randomly
generated data, for which no good dictionary exists. Let us llustrate this with an
example: We consider a random dictionaryD in R® ° whose entries are i.i.d. samples
from a normal distribution N (0;1). We generate a vectorx in R® the same way. We
present in Figure 1.1 the regularization path of the corresponding Lasso formul&on
that is, all the solutions ?( ) for every value of for two dierent couples (D:x)
obtained in this manner. We observe on the rst one a typical behavior: When s
large enough, the solution is 0. When progressively decreases, variables enter the set
of active variables, one at a time, until the solution is not garse anymore. In this case,
the sparsity of the solution is a decreasing function of . The second case is a counter-
example, where variable number 4 gets active in the path bef@ getting inactive again,
making the sparsity of the solution non decreasing with . Note that these regularization
paths that we have plotted are piecewise linear. This is in fat a property of the Lasso,
which we will formally detail later.

We have presented results on the choice of the;-norm which are both positive and
negative, showing that it can induce sparsity under some coditions, and claiming that
controlling the “1-norm of a solution makes it possible to control its sparsity h many
practical situations. Let us now give some intuition about the reasons why.

6



1.3. Sparse Methods and Sparsity-Inducing Norms

15
—a
%] 1 2|] n
Q a Q
g | __a g
g o5 _a 5
L Q
© \ ©
S o 3
/
-0.5 :
0 1 | 2 3
(@) Typical Scenario (b) Counter-example

Figure 1.1: Values of the solutions ?( ). Each curve corresponds to one entry in ’ as

a solution of the regularization parameter .

1.3.2 Why Does the “;-Norm Induce Sparsity?

As already mentioned, there is no general analytical link réating the " ;1-norm of a solution
with the sparsity in general. However, there are several intiitive reasons why an” 1-norm
regularizer encourages sparse solutions in general.

Analytical Analysis in 1-D  Soft-Thresholding

Let us consider the one-dimensional case, with the followin@ptimization problem
min g( ) }(x 2+ g
R L3 i

wherex is a scalar. The functiong is piecewise quadratic with a kink (non-di erentiable
point) at 0. Optimality conditions of this problem are the fo llowing

If j j> 0,qgis dierentiable at andg{ )= x + sign( )=0.

If =0, the right and left derivatives of g at O are both positive, leading to the
conditions + 0 and 0.

It is easy to see from these conditions that the solution ? is necessary obtained with
the soft-thresholding operator introduced by Donoho and Johnstone(1995:

() =sign(x)(ixj )"
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where ()* , max(:;0). The "1-norm in this problem has rst a thresholding e ect (the
solution is 0 when jxj is smaller than ), but also a shrinkage e ect (when jxj >
i 7 )i = X ). In comparison, when using the “o-pseudo-norm instead of the
*1-norm, the solution ?(x; ) also admits a closed form which is the hard-thresholding
operator *(x; ) = 1jxj P>-x, and when using the squared ;-norm, the solution is
obtained by a scaling “(x; )= 175~ These dierent e ects are shown in Figure 1.2.

(a) scaling operator (b) soft-thresholding operator (c) hard-thresholding operator

Figure 1.2: From left to right: scaling, soft-thresholding, hard-thresholding operators.
The value of ?(x; ) is reported as a function of the input x for a xed . The black
dotted curve is the function ?(x; 0) (no regularization), whereas the red plain curve
corresponds to the value of “(x; ).

We have seen that in 1-D, the ;-norm amounts to using a sparsity-inducing operator
on the input data that is fora xed x, ?(x; )=0for large enough. We now give
a physical illustration of this e ect.

Physical Explanation in 1-D

Let us rst compare the squared ",-regularization with the “i-norm. In Figure 1.3,
we have plotted the corresponding functions and their derivatives (where they are de-
ned). A physical interpretation of these functions is to see them as potential energies ,
which are minimum when is equal to zero, and see their derivatives as the intensity
of the force that tends to make smaller. In the case of the squared ,-norm, the
intensity of this force vanishes when gets closer to O, preventing the regularization to
induce sparsity if the minimum of f is di erent than 0. In the case of the “;-norm, the
intensity is constant when gets closer to 0, and is proportional to the parameter
making it possible to drive  down to O.

This can further be illustrated with a more concrete example which we show in
Figure 1.4. We start by considering in Figure 1.4a two springs with zero mass and
negligible length that are xed to a wall (the xation points are represented by red
circles). These correspond to initial conditions. The heidpt of the blue points is denoted
by x. On Figure 1.4b, we attach to the left spring another one, whose other extrerity

8
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)= 1

(a) "2 squared regularization (b) "1 norm

Figure 1.3: Comparison of the Tikhonov (> squared) and "1 regularization in one di-
mension. Blue curves represents the regularizers as funotis of , and red curves the
derivatives.

is xed to the ground. Due to the action of the new spring, the height of the blue point
decreases to a new value. The two springs have respective energieg; = %(x )2
and E, = "72 2 where k; and k, are the elasticity coe cients of the springs, and the
system stabilizes when the total energy%(x )2 + %2 2 is minimum. The second
spring therefore acts as a Tykhonov regularizer on the enesgof the rst spring, and
it can be controlled by its elasticity coe cient k.. On the right spring, we X instead
an object of massm. Due to its action, the height of the corresponding blue poir also
decreases to a new position . The potential energy of this objectisE, = mg , whereg
is the magnitude of the Earth's gravitational eld, and the s ystem stabilizes when the
total energy %(x )2+ mgj j is minimum, with the constraint 0. The object
therefore acts as an ; regularization, which can be controlled by its massm. Figure 1.4b
illustrates the situation when the amount of regularization is small that is, the second
spring on the left is weak, and the object on the right is light. Both systems stabilizes
with > 0. Figure 1.4c illustrates the situation when one increases the amount of
regularization. On the left side, despite the fact that the soring is strong (k2 is large),
the blue point does not touch the ground. On the right, when the object is massive
enough the object touches the ground and = 0. In fact, as shown in the previous
section, the solution is obtained by soft-thresholding.

Geometrical Explanation in 2-D and 3-D

We now present a more classical (but still informal) explandion of the sparsity-inducing
property of the “1-norm based on the geometry of the i-ball. We consider the Lasso
formulation of Eq. (1.2). We know from classical convex optimization arguments Boyd
and Vandenberghe 2004 that there exists a parameter T > 0 such that Equation (1.2)

9
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(a) Initial position.
Ei=%(xx )2
Ei=%(xx )2
E2=mgj j, 0
Eo= k72 2

(b) Small regularization, smallest energy state

Nty
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E2:
0

(c) High regularization, smallest energy state

Figure 1.4: Simple physical illustration of the sparsifying e ect of the *1-norm compared
to the Tikhonov regularization. The system stabilizes for the value of that minimizes

the energyE; + E». See comments in the text.
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has the same solution as the following equivalent constraied optimization problem:’

min %kx D ki st k kg T:
We present in Figures1.5aand 1.5cthe "1-balls of radius T in 2 and 3 dimensions, and
the level sets of the function 7! %kx D k3. At optimality, the level set corresponding
to the optimum value ? are necessarily tangent to the' 1-ball of radius T. This tangency
point is represented by a small red circle in the gures. In Figure 1.5b, we represent a
similar situation when using the squared’>-norm instead of the “;. Whereas the " 1-ball
is anisotropic and encourages a solution to be on one of the &xx or y (corresponding
to sparse solutions), the isotropy of the »-ball does not. In the case of the ;-norm,
illustrated on Figure 1.5a it becomes more likely that the solution ends up on a
corner of the ball, even though it is easy to build counter-exanples, where the solution
ends up on a face. This sparsifying phenomenon is also true i8-D, as illustrated in
Figure 1.5¢ and in fact it is even stronger in higher dimensions.

Now that we have given some intuitive explanations of the spasity-inducing prop-
erty of the “1-norm, we give a more structured sparse regularization, whic we will use
intensively in this thesis.

1.3.3 Beyond the “;-norm: Group Sparsity

A popular extension of the Lasso is the group LassoYuan and Lin, 200§ Turlach et al.,
2005 Obozinski et al.,, 2009 Bach, 2008. It supposes that variables are structured
into prede ned groups g 2 G, where G is a partition of J1;pK In this context, the
sparsity-inducing regularization takes the form:

where k:k is some norm (in practice, often the > or "1 -norms). In this case, is still
a norm, and can be interpreted as the ;-norm (a sum) of norms of groups, therefore
inducing sparsity at the group level.

The goal of using such a regularization is to encoda priori knowledge of the sparsity
patterns that the coe cients  should have. When such a priori knowledge is given and
one knows beforehand that the patterns should be structuredin groups, using such
a norm can improve the prediction performance and/or interpretability of the learned
models (Roth and Fischer, 2008 Yuan and Lin, 2006 Huang et al., 2009 Obozinski
et al., 2009. Applications of such norms include for instance multi-task learning, where
one is looking for predictors that are shared among di erenttasks (Obozinski et al.,
2009 Quattoni et al., 2009, and multiple kernel learning (Bach, 2008, where groups of
variables corresponding to di erent kernels are selected.

" The original formulation of the Lasso proposed by Tibshirani (1996) is actually this constrained
formulation.

11
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@

(a) 2-D case, “;1-norm

X
‘ )
y N——

(b) 2-D case, "2-norm (c) 3-D case, "1-norm

Figure 1.5: Inred, balls for the " ;1-norm in Figures (a) and (c), and " >-norm for Figure (b).
In blue, some level sets of a quadratic function are plotted.At optimality, the level sets
are tangent to the red balls. Corners and edges of the;-ball correspond to sparse
solutions.
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We present a concrete application of this group Lasso reguti&ation to image process-
ing in Chapter 4. Another generalization of the group Lasso to the case of ov&apping
groups have been proposed byhao et al. (2009; Jenatton et al. (2009; Jacob et al.
(2009; Baraniuk et al. (2010. These will be discussed in Chapter3.

1.4 Optimization for Sparse Regularized Problems

Sections 1.4.1, 1.4.2 and the benchmark presented in Sectionl.4.5 are based on
material from the book chapter:

F. Bach, R. Jenatton, J. Mairal and G. Obozinski. Convex Optimization with Sparsity-
Inducing Norms. In S. Sra, S. Nowozin, and S. J. Wright, editos, Optimization for
Machine Learning, 2011, to appear.

We present here optimization tools and algorithms for solvihg sparse regularized machine
learning and signal processing problems. This section is laively independent from the
rest of the manuscript. It is therefore not mandatory to read it in details before the
remaining chapters, but it can be referred to whenever necessiry. Sectionl.4.lintroduces
classical material for non-smooth optimization. Sectionsl1.4.2to 1.4.6 give some keys
for solving sparse decomposition problems. In particularwe present in Sectionl.4.5a
benchmark comparing a large class of methods for solving thieasso in di erent scenarii.
Section 1.4.8 brie y presents network ow optimization and its connectio n with sparse
methods.

1.4.1 Duality and Non-Smooth Convex Optimization

We describe in this section important tools to study non-smodh convex optimization
problems related to sparse methods. Most of them can be foundh classical books
on convex optimization (Boyd and Vandenberghe 2004 Bertsekas 1999 Borwein and
Lewis, 2006 Nocedal and Wright, 1999, but for self-containedness reasons, we present
here a few of them. We consider again the general formulatiomf Eq. (1.1), which we
recall below h i

min o ), f()+ ()5

but we restrict to be a norm (and therefore a convex function).

Subgradients
Given a convex functiong: RP! R and a vector in RP, let us de ne the subdi erential
ofgat as

@¢ ), f 2RPjg( )+ “( % ) g( 9forall vectors °2 RPg:
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1. Introduction and Related Work

The elements of @¢ ) are called the subgradientsof g at . This de nition admits a
clear geometric interpretation: Any subgradient in @¢ ) de nes an ane function

071 g( )+ >( © ) whichis tangent to the graph of the function gat . Moreover,
there is a b%ection (one-to-one correspondence) between sutdmgent a ne functions
and the subgradients. We illustrate this property in Figure 1.6.

(a) Smooth case (b) Non-smooth case

Figure 1.6: Gradients and subgradients for smooth and non-swoth functions. Red
curves represent the graph of a function. Blue lines represe subgradients of this func-
tion at a point . On the left, the function is smooth and the unique subgradiet
corresponds to the tangent line. On the right, the function is not di erentiable and the
subgradients are not unique.

Let us now illustrate how subdi erential can be useful for studying nonsmooth op-
timization problems with the following classical proposition (see Borwein and Lewis,
20009:

Proposition 1  (Subgradients at optimality)
For any convex functiong: RP! R, a point in RP is a global minimum of g if and
only if vector O belongs to@¢ ).

Note that the concept of subdi erential is mainly useful for nonsmooth functions. Ifg
is di erentiable in , the set @¢ ) is indeed the singletonfr g( )g, and the condition
02 @@ ) amounts to the classical rst-order optimality condition r g( ) =0.

Dual Norm and Optimality Conditions

The next tool we introduce is the dual norm, which is important to study sparsity-
inducing regularizations (Jenatton et al., 2009 Bach, 2009 Negahban et al, 2009. It
notably comes up in the analysis of estimation bounds llegahban et al, 2009, and in
the designs of active-set strategies Jenatton et al., 2009. The dual norm of is
de ned for any vector in RP by

(),mzzigg> st. () L

14



1.4. Optimization for Sparse Regularized Problems

It is easy to show that in the case of an'¢-norm, q 2 [1;+1 ] the dual norm is the
“ge-norm, with ¢®in [1;+1 ] such that % + El’ = 1. In particular, the 1- and "1 -norms
are dual to each other, and the >-norm is self-dual.

The dual norm plays a direct role in obtaining optimality con ditions for sparse reg-
ularized problems. By applying Proposition 1 to Eq. (1.1), we obtain, for instance, that
a vector in RP is optimal for Eq. (1.1) if and only if

(
frrze y= oo ) 8 S0 )
2RP; () 1land = ( )g otherwise
We have presented a useful duality tool for norms. More genetlly, there exists a related
concept for convex functions, which we now introduce.

Fenchel Conjugate and Duality Gaps
Let us denote byf the Fenchel conjugate of a convex functionf (Borwein and Lewis
2006, de ned by

f(), sup[ = f()
2RP

The Fenchel conjugate is related to the dual norm. Let us de re the indicator func-
tion 1 suchthat1l ( )isequaltoOif ( ) 1and +1 otherwise. Then,1 is
a convex function and its conjugate is exactly the dual norm . For many objective
function, the Fenchel conjugate admits closed forms, and aa therefore be computed
e ciently ( Borwein and Lewis 2006. In this case, it is useful for monitoring the con-
vergence of optimization algorithms with duality gaps, as ilustrated by the following

proposition:

Proposition 2  (Duality for Problem ( 1.1))
If f and are respectively the Fenchel conjugate of and the dual-norm of ,

pimax FC) mntC)+ ()

Moreover, if the domain of f is non-empty, strong duality holds and the inequality be-
comes an equality.

Therefore, if ? is a solution of Eqg. (1.1), and ; in RP such that ( ) , the
following inequality holds
fC)y+ () fCH+ 9 f() (1.4)

The di erence between the left and right term of Eq. (1.4) is called a duality gap. It
represents the di erence between the value of the primal olgctive functionf ( )+ ( )
and a dual objective function f ( ), where is a dual variable. Duality gaps are
important in convex optimization. By upperbounding the di erence between the current
value of an objective function and the optimal value, they dene proper stopping criterion
for iterative optimization algorithms. Finding a good dual variable when minimizing
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1. Introduction and Related Work

a primal objective function is easy in many cases. Given a pral variable , we often
choose the dual variable = mr f (), which guarantees the duality gap to
be zero at optimality. When = 7, the conditions presented in Eq. (L.3) are satis ed.
It follows that = r f( )with () ,and > = (). Sincef is dierentiable,
it is also easy to show thatf ( )= ~ f( ). Therefore, f ()=f( )+ ( )

and the duality gap is zero.

Note that in many of the formulations we are going to introduce, the function f has
a particular form f( ) = f{D ), where f~is an auxiliary function, and D a dictionary
matrix. In this case, one may be interested in the Fenchel cojgate f~ instead of f .
Fenchel conjugacy naturally extends to this case (see for mre details Borwein and
Lewis, 2006 Theorem 3.3.5). We present more concrete examples in Appe€ix D.2 with
a toolbox implementing several solvers for sparse methodsyhere the convergence of the
di erent optimization methods are monitored with such dual ity gaps.

1.4.2 Least Angle Regression - Homotopy

We present in this section a dedicated active-set method for alving the Lasso prob-
lem (Tibshirani, 1996, also known as basis pursuit Chen et al, 1998, which is pre-
sented in Eq. (1.2). Under mild assumptions, (which we will detail later) the solution of
Eqg. (1.2) is unique, and we denote it by ?( ). Let us also recall the de nition of the
regularization path, which is the function 7! ?( ) that associates with a regularization
parameter the corresponding solution ?( ). We will show that this function is piece-
wise linear, an interesting property that leads both to an e cient algorithm presented
in this section, and to a better understanding of the Lasso fomulation. This behavior
was illustrated in Figure 1.1, where the entries of ?( ) for particular instances of the
Lasso are represented as functions of.

The regularization path can therefore be characterized by aset of contiguous linear
segments. It is now appealing to build an algorithm that nds a solution of Eq. (1.2)
for a particular value of , for which nding this solution is trivial, and then follows
the piecewise-linear path, computing the directions of the arrent linear parts, and the
points where the direction changes (kinks). This piecewisdinearity property was rst
discovered and exploited byMarkowitz (1952 in the context of portfolio selection, re-
visited by Osborne et al. (20009 describing an homotopy algorithm, and popularized
by Efron et al. (2004 with the LARS algorithm. Even though the basic version of LARS
is a bit di erent from the procedure we have just described, t is closely related, and
indeed a simple modi cation makes it possible to obtain the fill regularization path of
Eq. (1.2).

Let us now construct the solution path. Applying the optimal ity conditions presented
in Eq. (1.3) to the Lasso formulation for a xed value of vyields

(.
jd>(x D ?)j if 7=0

d>(x D ? = sign( }) if /60;

8j 2 J1;pK (1.5)
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1.4. Optimization for Sparse Regularized Problems

where d! denotes thej-th column of D, and 7 the j-th entry of ?. We de ne the
set of variables , fj 2 J1;pKjdi>(x D ?)j= g, and the vector" , sign D> (x
D ?) . We assume the matrixD> D to be invertible (which is a necessary and su cient
condition to guarantee the uniqueness of ?), and it follows from Eq. (1.5) that

’()=(P’D ) P>x ")

This is an important point: if one knows in advance the set and the signs" , then
the solution ?( ) admits a simple closed-form, showing that the di culty of th e Lasso
is essentially to nd the pair ( ;" ).

Moreover, when and " are xed, the function 7! (D>D ) ¥D>x ") is
anein . With this observation in hand, we can now present the main seps of the path-
following algorithm. It basically starts from a trivial sol ution of the regularization path,
follows the path by exploiting this formula, updating and " whenever needed so that
optimality conditions ( 1.5) remain satis ed. This procedure requires some assumptios
namely that (A) the regularization path is unique (which is equivalent to asuming
D> D always invertible), and (B) that updating along the path consists of adding
or removing from this set a single variable at the same time. ©ncretely, we proceed as
follows

1. Set to kD>xky for which it is easy to show from Eq. (1.5) that ?( ) =0
(trivial solution). This gives us a starting point on the reg ularization path.

2. Set , fj 2J1;pKjdi>xj= g, assumingj j =1 (assumption [B]).

3. Follow the regularization path by decreasing the value of , with the formula
()=(D>D ) ¥{D>x " ) keeping ?. = 0, until one of the following
events occurs

There existsj in  © suchthatjdi>(x D ?)j= . Then, add]j to the set .
There existsj in such that a non-zero coe cient f hits zero. Then, remove
j from .

We suppose that only one of such events can occur at the samemnie (assump-
tion [B]). It is also easy to show that the value of corresponding to the next
event can be obtained in closed form, using the fact that for axed pair ( ;"),
the quantities 7 andd!”(x D ?)forall j in Ji;pKare also ane in

4. Go back to 3

Let us now brie y discuss assumptions(A) and (B) . When the matrix D> D is not
invertible, the regularization path is non-unique, and the algorithm fails. This can easily
be xed by addressing instead a slightly modi ed formulation. It is indeed possible to
consider the elastic-net formulation of Zou and Hastie (2009 that is, with ( ) =
k ki + sk k3, by replacing the matrix DD by DD + I, which is positive
de nite and therefore always invertible. Using a small value for solves the problem of
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non-invertibility of D> D in practice. The second assumptionB) can be unsatis ed in
practice because of the precision machine. To the best of olnowledge, the algorithm
will fail in such cases, but we consider this scenario unlikg.

Now that we are able to follow the regularization path, it is important to notice that
we are also able to solve constrained versions of Eql(), namely

: 2 :
rglgp kx D k5 st k ki T; (1.6)

and
. 2 ",
rrzqupk ki st. kx D k5 a.7)

These formulations are sometimes said to be equivalent toEqg. (1.2) in the sense that
for every value of T, there exists a value such that Eq. (1.2) that admits the same
solution as Eq. (1.6), and vice versa. This is also true for Eq. (L.7) for every value of ".
They are, however, not equivalent in practice since the reldion between"; and T is
unknown.

The complexity of the above procedure depends on the numberfkinks of the reg-
ularization path (which correspond to the number of iterations of the algorithm). It is
of course possible to stop the algorithm before its end, if oais not interested in the full
path. Even though it is possible to build examples where the nmber of kinks is large,
we often observe in practice that the event where one variald gets out of the active set
is rare. The complexity also depends on the implementation By maintaining the values
ofd>(x D ?) and a Cholesky decomposition of P>D ) 1, it is possible to obtain
an implementation in O(psm+ ps? + s%) operations, wheres is the number of iterations
of the algorithm, with a memory cost in O(p?). The product psm corresponds to the
computation of D>D , ps? to the updates of the correlationsd!>(x D ?) along the
path, and s2 to the Cholesky decomposition of D>D ) 1.

One can observe from this analysis that the path-following LARS algorithm can be
e cient for solving small-scale problems, when the solution me is looking for is sparse
(s is small), with a smaller cost than a singlep p matrix inversion, which is 0(p®). This
algorithm is also e cient with highly correlated features, as long as the matrix D~ D
remains invertible. A fast Cholesky-based implementation & this algorithm is available
in the toolbox SPAMS, which we present in SectionD.1.

1.4.3 Proximal Methods

Proximal methods play an important role in non-smooth optimization. They generalize
rst-order gradient descent algorithms to handle non-smooth components. This section
brie y introduce these methods in a slightly restricted but useful framework (for a more
detailed review and general framework, se€ombettes and Pesquet 2010

In the context of this thesis, we apply these methods to conve optimization prob-
lems of the same form as Eq. 1.1), with f convex and di erentiable with a Lipschitz
continuous gradient, and a non-smooth convex function. Whereas it is often possi-
ble to address this kind of optimization problems using subgadient descent algorithms,

18



1.4. Optimization for Sparse Regularized Problems

proximal methods are preferred because of both theoreticgl and practically faster con-
vergence rates, which we will detail in the sequel.

The most basic variant of these methods is an iterative procdure which, at step k,
updates the current estimate ¥ by solving a proximal problem, de ned as follows

h i
K+ 1 argmin f( K+ r f( 47 Ky+  ()+ Ly kK2 ; (1.8)
2RP 2
where f ( X)+ r f( ¥)>( k) is a linear approximation of f around the current
estimate ¥, the quadratic term 5k kKkZ keeps the update of in a neighborhood

of K, where the linear approximation is correct, andL > 0 is a parameter. It is

possible to show that whenL is well chosen (actually larger or equal to the inverse of
the Lipschitz constant of r ), this optimization scheme converges to the solution of the
original problem. This provides a simple scheme for solving=q. (1.1), supposing that
one knows how to e ciently solve Eq. (1.8). Finding automatically a good value for L is
also easy, using practical line-search strategies (sd¢esterov, 2007 Beck and Teboullg
2009.

Note that Eq. (1.8) can equivalently be rewritten as

_hy L1 2

argzglmé Erf( ) 2+f( );

k+1

meaning that the new estimate **1 should be close to the quantity * Lr f( k)
(equivalent to a classical gradient step), while taking into account the non-smooth com-
ponent ( ). When =0, we obtainthat **1 = & Lrf( k).

More generally, we de ne the proximal operator (sometimes calledproximity opera-
tor) associated with our regularization term  as the function that maps a vector u
in RP to the (unigue by strong convexity) solution of

hq , i
min -ku vk5+ V) : 1.9
min 3 3+ (V) (1.9)
This operator was initially introduced by Moreau (1962 to generalize the projection
operator onto a convex set. Since it is called many times witin proximal algorithms, it
has to be solved e ciently. What makes this appealing for spase methods is that this
operator can often be obtained in closed-form. For instance:

When isthe “j;-normthatis, ( u) = kukj, the proximal operator is the well-
known elementwise soft-thresholding operator introduced m the previous sections:

(

| . o . 0 if jujj
8j 2 J1;pK v; sign(u; )(jui =
j PK vj  signuj)(juji ) signu;)(ju;j ) otherwise:

P
When is a Group-Lasso penalty with “>-normsthatis, ( u) = g kugke,
with G being a partition of J1;pK the proximal problem is separablein every group,

19
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and the solution is a generalization of the soft-thresholdig operator to groups of
variables: 8
842G v <0 if kugks
IEE Ve sy it kugke >

. - , P
When is a Group-Lasso penalty with "1 -normsthatis, ( u) = g kugks ,
the solution is also a group-thresholding operator:

892G vy Ug kk, [Ugl;

where .y, denotes the orthogonal projection onto the;-ball of radius . Note
that when kugk; , we have a group-thresholding e ect, with vy = 0.

More generally, when dealing with norms, these closed-formsan be derived from a
simple relation between the proximal operator and the projetion operator onto the ball
of the dual norm:

Lemma 1 (Relation between proximal and projection operator for norms)
Let u be a vector inRP and let v’ be the solution of the proximal operator

h

L1 2 '
\[rzqu) éku vks+ (u); (1.10)
where is any norm. Then,
vi=u ¢ [ul; (1.11)

Where () Is the orthogonal projector onto the ball of radius of the dual norm

The proof can be obtained by using simple calculus rules foranputing proximal
operators described byCombettes and Pesquet(2010, or by simply writing the Fenchel
dual of the proximal problem, which is described in Propositon 2. This directly gives
the solution.

This proximal scheme for solving sparse decomposition prdbms has been the fo-
cus of a lot of attention lately and has been revisited severatimes. It indeed admits
variants (essentially concerning line-search strategiesof automatically choosing the pa-
rameter L). We give here a few names under which it is known, to help the eader nd
his/her way in the literature. Combettes and Pesquei{2010 present a detailed review of
proximal methods and call this a forward-backward splitting algorithm, Nesterov (2007
call it gradient method and Beck and Teboulle (2009 iterative shrinkage-thresholding
algorithm (ISTA). Re nements have been proposed byWright et al. (2009b under the
name SpaRSA, and byHale et al. (2007 under the name xed-point continuation method
(FPC). Nesterov (2007 and Beck and Teboulle (2009 have shown that the value of the
objective function decreases a@(%), and under strong convexity assumptions onf , Nes-
terov (2007 has further shown that it enjoys a linear convergence rate ® O( ¥), with
0 < 1. Interestingly, building on early works by Nesterov (1983, accelerated vari-
ants of proximal methods have been proposed biNesterov (2007 and Beck and Teboulle
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(2009 with guaranteed convergence rate ofO(k%), which can be proven to be optimal
among rst-order methods. In order to enjoy these fast rates,the proximal operator
must be computed both e ciently and exactly. This is the topic of Chapter 3 for two
particular sparsity-inducing norms.

We have implemented in the software presented in Sectiol.2 the forward-backward
(or ISTA) and the accelerated FISTA algorithms of Beck and Teboulle (2009. We show
in Section 1.4.5 how these methods compare to other approaches.

1.4.4 Coordinate and Block Coordinate Descent Algorithms

We present here a coordinate descent algorithm for solvinghte Lasso formulation of
Eqg. (1.2). It was originally introduced by Fu (1998, rediscovered byDaubechies et al.
(2004, and recently popularized by Wu and Lange (2008 and Friedman et al. (2007).
We rst present the basic algorithm, and then show how it extends to the group Lasso
in some speci ¢ settings.

Coordinate descent is a procedure that iteratively xes evey entry but one of the
current estimate , and optimizes with respect to the selected entry. It cyclesamong
the coordinates, solving each time simple sub-problems thaadmit closed form solutions.
For instance, supposing the columns oD have unit “>-norm, updating the entry ; can
be done as follows

hq X . . i
; argmin Zkx d' Ak ]
j2rR 2 i6]
hi . X . ) i
argmin = d!”(x id) T ]
j2R 2 i6]

sign(ci)(jcjj )t with ¢, di”(x X id"):

i6]
This is the simple soft-thresholding operation introduced earlier. This coordinate de-
scent procedure is appealing since it is simple. Supposinchat the matrix D> D is
pre-computed, fast implementations maintain the values of he quantity D”(x D ).
Then, updating a coordinate costO(1) operations if its value does not change, and(p)
otherwise. Such an implementation is available in the softvare SPAMS presented in
Appendix D.

The convergence properties of such an algorithm are relately weak. Coordinate
descent algorithms for minimizing non-di erentiable functions are not convergent in
general (se€lseng, 2001, for su cient conditions in such non-di erentiable setting s). Itis
however possible to rewrite equivalently the Lasso as a smtlodi erentiable optimization
problem under separable constraints:

h i

; 1 2 . :
_min,_ Sk« D 4 +D kgt i1+ 71, st . O o:
We have here split the vector into two vectors . and in RP with nonnegativity

constraints. It is easy to show that this problem is equivalent to the Lasso, and that the
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coordinate-descent scheme we have introduced is also equlieat to a coordinate-descent
algorithm for this new formulation. In such a setting, and under additional conditions
that are satis ed here, we know that all the limit points of th e sequence of estimates of the
solution are stationary points of the Lasso (seeBertsekas 1999 proposition 2.7.1). To
the best of our knowledge, no convergence rate is availableut we show in Section1.4.5
that the method can be competitive in certain situations.

This algorithm extends in a straightforward way to the group Lasso, when the dictio-
nary elements corresponding to a same group are orthogonabteach other. Whereas this
might seem a strong limitation, it turns out to be the case in some practical situation,
such as simultaneous sparse codingTfopp et al., 2006 Tropp, 2006 and multi-task
formulations (Obozinski et al., 2009. In this case, the natural extension of the algo-
rithm is a block-coordinate descent scheme, where one iterakely updates the entries
of  corresponding to a group, while xing the other ones. This can be written for a
group g in G

h X i

.
g argmin Zkx Dh n Dg gk3+ ( o
g2Rig hég
_hg > X 2 !
argmin kD7 (x Dh n)  gko+ ( o)
g2 Rigi h6 g

and the solution is given by computing a proximal operator asociated with the norm .
We gave such closed forms in the previous section in the casé the "»- and "1 -norms.
Note that a variant of coordinate descent algorithms have ben proposed byTseng (2001
when there is no closed form for updating a variable.

1.4.5 The Lasso: Which Algorithm to Choose and When?

We present in this section a large benchmark evaluating the prformance of various
optimization methods for solving the Lasso. As already menibned before, the literature
on the topic is vast, and there is no clear consensus about wthh method does perform
the best. The purpose of this section is to experimentally d@rify this open question.
To do so, we have designed a benchmark that takes into accourgeveral criteria which
signi cantly in uence the convergence speed of all algorihms. More speci cally, our
benchmark obeys the following rules:

E ciency of implementations : We use the languages C or C++ and e cient
BLAS and LAPACK libraries for basic linear algebra operations, with the hope that
the running times of our software correctly re ects the true number of operations
required by every algorithm.

Exhaustivity : We have chosen to compare what we believe are the main ap-
proaches used in the literature, namely the LARS algorithm, coordinate-descent
(CD), reweighted-", scheme (Re-;), a simple proximal method (ISTA), and its
accelerated version (FISTA). We also include in the comparson generic tools such
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as a subgradient descent algorithm (SG), and a commercial $tware (Mosek) for
cone programming (CP) and quadratic programming (QP) problems. The reader
should refer to (Bach et al., 2011) for all methods that have not been presented
here.

In uence of scale : We measure the performance of algorithms for several prob-
lems sizes. We design a small-scale experiment with = 200;p = 200, and a
medium/large scale one withn = 2000; p = 10000. With this collection of settings,
we compare the in uence of the parametersn and p for all algorithms.

In uence of correlation : When the dictionary is orthogonal, the Lasso admits a
closed-form solution and is easy to solve. When the columns arhighly correlated,
the optimization problem can become ill-conditioned and di cult. To evaluate the
robustness of the di erent methods to this criterion, we gererate dictionaries with
three levels of correlation between the columns.

In uence of the regularization : We measure the performance for three di erent
levels of regularization, corresponding to di erent sparsties of the solutions.

Inuence of the required precision . We report the value of the objective
function versus the time of computation. When a low precisiam is required, a
method that quickly provide a rough solution might be preferred.

We therefore compare 8 methods for 18 di erent conditions (2scales 3 levels of cor-
relation 3 levels of regularization).

We generated dictionary matrices as follows. For the scenaw with low correIaBon,
all entries of D are independently drawn from a Gaussian distribution N (0; 1="n),
which is often a setting used for evaluating optimization aborithms in the literature.
For the scenario with medium correlation, we draw the rows ofthe matrix D from a
multivariate Gaussian distribution in a way such that the av erage absolute value of the
correlation between two di erent columns is four times the one of the scenario with low
correlation. We proceed the same way for the scenario with Igh correlation, increasing
again the amount of correlation. Test data vectorsy = D + n where are randomly
generated, with three levels of sparsity to be used with the hree dierent levels of
regularization. The variable n is a noiSe vector whose entries are i.i.d. samples from a
Gaussian distribution N (0; 0:1kD k=" n).

In the low regularization setting, the sparsity of the vectors is s = 0:5min(n;p), in
the medium regularization ones = 0:1 min(n; p), and in the high regularization one s =
0:01 min(n; p), corresponding to fairly sparse vectors. For the subgradint method (SG),
we take the step size to be equal ta=(k + b), where k is the iteration number, and (a; b)

f10%; 10%; 10%g ; we proceeded this way not to disadvantage SG by an arbitrarychoice
of stepsize.

8 The best step size is understood here as being the step size kading to the smallest objective
function after 500 iterations.
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We report the value of the objective functions for every comlination of criterion, as
a function of computation time in Figures 1.7 and 1.8. All reported results are obtained
by averaging 5 runs of each experiment on a single-core of a 3BHz CPU with 8Go
of memory. Interestingly, we observe that the hierarchy betveen the di erent methods
signi cantly changes with the scenario. We can now summarie our conclusions for every
class of method:

LARS : For the small-scale problem, LARS outperforms every other nethod for
almost every scenario and precision regime. It is thereforale nitely the right
choice for small-scale settings With a computational complexity of O(ps? + pns)
and memory complexity of O(ps),® its scalability is, however, a bit limited. When
the matrix D D is pre-computed, its complexity goes down toO(ps? + ps), but it
is not the case for our benchmark.

One of its main advantages is that unlike rst-order methods, the LARS complexity
does not depend on the correlation in the dictionary, but only on the sparsity s
of the solution. In our large-scale settings, LARS has proverto be competitive
either when the solution is very sparse (high regularization), or when there is
high correlation in the dictionary (in that case, other methods do not perform as
well). One important advantage of the LARS is that it gives an exact solution and
computes the whole regularization path.

Proximal methods (ISTA, FISTA) : Our rst conclusion is that FISTA has
always been better than ISTA except for high regularization or low correlation,
where both methods have a similar performance. These methadare almost always
outperformed by LARS in the small-scale setting, except folow precision and low
correlation.

They su er from correlated features since their convergence rate is proportional
to the Lipschitz constant of the gradient of f , which itself grows with the amount
of correlation. They are well adapted to large-scale settings, with low or medium
correlation.

Coordinate descent (CD) : To the best of our knowledge, no theoretical conver-
gence rate is available for this method. The empirical convegence rate we have
observed has been relatively surprising. In every experintg, we observe a warm-
up phase where updating one coordinate requires computingone column of the
matrix D> D (which we store into memory). During this phase, the convergnce is
very slow. When all columns ofD~ D are computed, the convergence rate becomes
often empirically linear.

Its performance in the small-scale setting is relatively good(even though always
behind LARS), but less e cient in the large-scale one For a reason we can not
explain, it does not su er much from correlated features. Like LARS, this method
could also bene t from an o line pre-computation of D> D.

9Note that we did not take into account the memory complexity in our bench mark.
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Reweighted- “»: This method has proven to be relatively disappointing in al our
experiments and has never taken the lead against other dedited methods.

Generic Methods (SG, QP, CP) . As expected, generic methods have proven
not to be adapted for solving the Lasso and are always outpedirmed by dedicated
ones such as LARS.

1.4.6 Greedy Methods

We have presented so far the problem of sparse decompositiovith a convex optimization
point of view, considering the formulation of Eq. (1.1) where is a sparsity-inducing
norm, often used as a proxy for the ¢ pseudo-norm. We present here algorithms that
directly address the following " o-decomposition problem

min %kx D k3 st k ko s; (1.12)
where s is the desired sparsity of the solution. Approaches providig an approximate
solution to this problem are greedy procedures, and usuallydo not provide the global
optimum since the problem is NP-hard. However, they have someptimality guarantees
in a few cases as shown byropp (2004. Empirically, they have shown to provide
local optima yielding good results in many image processingpplications, as shown in
Chapter 4. They are known as forward selection techniques in statistis (Weisberg
1980, and matching pursuit algorithms in signal processing Mallat and Zhang, 1993.

We present here two variants called matching pursuit and orhogonal matching pur-
suit. Both approaches start with a null vector , and iteratively update one entry in
until the sparsity of  reaches the thresholds.

Matching pursuit  (MP) selects at each step the dictionary elementd! that is
the most correlated with the residual according to the formua

£ argminjd”rj;
12 J1:pK

wherer denotes the residualx D . Then, the residual is projected on the line
generated byd?:

£ ¢+ d{>r
roor (d®r)dt
Matching Pursuit can in fact be interpreted as a non-cyclic cardinate descent

algorithm. It is guaranteed to decrease the objective funcion at each iteration,
but is not guaranteed to converge in a nite number of steps.

Orthogonal matching pursuit (OMP) improves upon Matching Pursuit by en-
suring that the residual of the decomposition is alwaysorthogonal to all previously
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Figure 1.7: Benchmark for solving the Lasso for the small-sda experiment (n = 200;p =
200), for the three levels of correlation and three levels ofegularization, and 8 optimiza-
tion methods (see main text for details). The curves represat the relative value of the
objective function as a function of the computational time in second on a logy =log;q
scale.
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selected dictionary elements It sequentially adds a di erent dictionary element to
a set of active variables, which we denote by , trying to solve Eq. (1.12) for every
sparsity value s° s, and stops when the desired sparsity is reached. In some
sense, it builds a regularization path, and therefore share similarities with LARS,
even though the two algorithms address di erent optimization problems. These
similarities are even stronger in terms of implementation. Similar tricks as those
described in Sectionl.4.2 for the LARS algorithm can be used, and in fact both
algorithms have the same complexity, and have many steps inanmon. At each
iteration, an active set containing the indices of the selected dictionary elements
is obtained. A good criterion for choosing the next dictionay element is to select
the one that helps most reducing the objective function
: .1 5

£ aﬁ? rrcun 2nR1l_|rJ]+1 Ekx D rig k2
This might seem computationally expensive since it require solvingj ©j least-
squares problems, but the solution can in fact be obtained e ciently using some
tricks, based on Cholesky decomposition and basic linear gébra, which we will
not detail here for simplicity reasons. More details can be dund in Cotter et al.
(1999 or in the software SPAMS presented in SectionD.1.

After this step, the active set is updated [f 40, and the corresponding
residualr and coe cients are
(D”D ) D”x;

r (I, D (D”D ) 'D7)x;

wherer is the residual of the orthogonal projection ofx onto the linear subspace
spanned by the columns ofD . It is worth noticing that one does not need to
compute these two quantities in practice, but only updating the Cholesky de-
composition of (D>D ) ! and computing directly D r, via simple linear algebra
relations.

OMP naturally extends to the case of group sparsity, addressg the problem

1 2 : :
rglFrgpékx D k5 st #fk 4k60;,92Gg s;

where G is a set of groups, and the number of active groups should be sier than s.
The optimization scheme in this setting is the same as OMP, egept that one has to
select groups instead of individual variables. The active st is now a subset of G, and
the criterion for choosing the next group g can be
g argminkD”(x D )ko:
92 ©

This modi ed version of OMP was rst proposed by Tropp et al. (2006 in the context
of simultaneous sparse coding with a slightly di erent criterion, and revisited by Lozano
et al. (2009. This version also admits an e cient Cholesky-based implementation, which
we have used in Chapter4 for image processing.
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N

1.4.7 Dierence of Convex (DC) Programming - Reweighted- 1
Schemes

This section addresses the problem of solving
h i
min g( ), fC)+ ()i

where is a non-convexregularization function which is separablein every component
f that is, there exists a function :R*! R" suchthatforall inRP, ( )=
f’:l (j i), with  di erentiable and concave. P

It is possible for instance to choose ( )= k k¥, = P j ij9 where kikq is an “g-
pseudo-norm with 0< q < 1. Another classical choice is also ( ) = f’zl logG ij+")
(seeCandés et al, 2008.

The main motivation for using such approaches is to exploit aregularization function
that induces more sparsity than the “1-norm, and which might be addressed with other
tools than greedy methods. The unit balls corresponding to he "¢ pseudo-norms and
norms for several values ofj are illustrated in Figure 1.9. When q decreases, the y4-ball

~

get closer to the "g-ball, and better induces sparsity.

AN
NN

(@) “o-ball, 2-D (b) “o:s-ball, 2-D (c) “1-ball, 2-D (d) “z-ball, 2-D

Figure 1.9: Open balls in 2-D corresponding to severalg norms and pseudo-norms.

Even though the corresponding optimization problem is not @nvex and still not
smooth, a local optimum can be obtained using a DC-programmig type of approach (see
Gasso et al, 2009 Candeés et al, 2008 and references therein). The idea behind such a
scheme is relatively simple. It consists of iteratively minmizing convex surrogatesgg of
the cost function g that are tangent to the graph of g around the current estimate K.
In other words, at iteration k, g( ¥)= g( *)and e( ) g¢( )forall . To obtain
such surrogates, the key is to exploit the concavity of the finctions on R*, which are
always below their tangents. This is illustrated in Figure 1.10. It is then easy to show
that such an iterative scheme can be written

h XP [
argmin f( )+ G DI
2RP i=1

k+1

which is a reweighted-, decomposition problem. Note that with this scheme, the rst
step is usually a simple Lasso, with no weights. The e ect of he new weights 4j ¥j)is
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to push to zero the smallest non-zero coe cients returned by the Lasso, and in practice
two or three iterations are enough to obtain the desired spasifying e ect.

k N -

(@) red: (). (b)yred: ()=log(j j+").
blue: convex surrogate °( *)j j+ C.

(©red: g( )=f()+ ()

blue: convex surrogategw( )= f( )+ o ¥)j j+ C.

Figure 1.10: lllustration of the DC-programming approach. The non-convex part of the
function g is upperbounded by a convex weighted ;-norm. The graphs of g and its
surrogate gx are tangent.

1.4.8 Network Flow Optimization

We present in this section some elements of network ow optinzation (see Bertsekas
1991 Ahuja et al., 1993 and references therein for more details), and its conneains
with sparse methods, which we further exploit in Chapter 3.
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Let us consider a directed graphG = (V;E;s;t), where V is a set of vertices,E
V V an arc set,s is a vertex calledsource andt is a vertex calledsink, such that there
is no arc directed tos, and no arc outcoming fromt.

We de ne a non-negative capacity function c: E! R* onthe arcs. A ow f :E !
R* is a non-negative function on arcs that satis es capacity costraints on all arcs (the
value of the ow on an arc is less than or equal to the arc capady) and conservation
constraints on all vertices (the sum of incoming ows at a vetex is equal to the sum of
outgoing ows) except for the source and the sink!®

To simplify the notations, we can arbitrarily order the vert ices and identify V nfs; tg
with a set J1;pK wherep , jVj 2, so that an arc in E can be identied by two
indices ;] ). Denoting respectively ¢ and fjj the capacity and the ow on an arc (i;] )
in E, we can write the capacity constraints as

8(;j)2E; fj cj;

and the conservation constraints

X X
8i 2 V; fij = fji
1;(I_;J)ZE_} 1(J_I)ZE_}

outgoing ow from i incoming ow to i

. . P L
The value of the ow is the amgunt of ow outgoing from s,  j5y.(si)2e fsi Which is
equal to the ow incoming to t, i,y 1)z fit. This is illustrated in Figure 1.11

s
fs1 fs2
1
fq fra| fop<fis |[fos
O
far fat 5t

Figure 1.11: Example of a directed graphG = (V; E;s;t), with ows fj, (i;j) 2 E. The
ow should respect the capacity constraint fj  ¢; for all (i;j ) in E.

ONote that we only consider here the case of real-valued functions, sine this is the one we need in
this thesis. Network ow problems with integer-valued functions can also be considered, and in fact
many results that are true in the continuous settings are also true in t he discrete one.
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A classical problem in network ow optimization is the max- ow problem (Ford and
Fulkerson, 1956, which consists of nding a ow of maximum value in the graph.

We can also de ne an §;t)-cut in the graph, which is a partition lgS;T) of V with s
in Sandtin T. Itis possible to dene the capacity of the cut (i 2e.i25;27 Gi »
and the problem min-cut consists of nding a cut in the graph with minimum capacity.
With these tools in hand, we can now move to the rst interesting result due to Ford
and Fulkerson (1956:

Proposition 3  (Max- ow / min-cut theorem)
The maximum value of a ow in a graph is equal to the minimum capcity cut.

This proposition is not yet related to sparse methods. It jud presents a duality
relation between the max- ow and min-cut problems. We will int ensively use it in
Chapter 3. For solving the max- ow problem, a popular algorithm called push-relabel
is due to Goldberg and Tarjan (1986. We have implemented it in the software presented
in Section D.2, using re nements presented byCherkassky and Goldberg(1997. An
example of a cut in a graph is presented in Figurel.12 as long as a few properties of
min (s; t)-cuts, namely:

There is no ow going from T to S (seeBertsekas 1991).

The cut goes through all arcs going fromS to t, and all arcs going froms to T,
and such arcs are saturated (the value of the ow on the arc eqals the capacity).

Figure 1.12: Example of a cut in a graph. Arcs in bold are satuated (the value of the
ow equals the capacity) and the ow on dotted arcs is zero.

We will also consider in this thesis the class omin-cost ow problems, which we now
present. In addition to the capacity function, let us de ne cost functions Cj : R! R,
one for every arc {;j) in E. The min-cost ow problem consists of nding a ow f
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1.5. Dictionary Learning and Matrix Factorization

that minimizes the total cost on the graph P i;)2e Ci (fij). The costs Cj; are often
linear in the ow fj, and in fact the terminology min-cost ow problem often ref ers
to this particular setting in the literature. The more inter esting case because of its
connection with sparse methods is that of quadratic cost fuetions. In particular, we
show in Chapter 3 that the problem of projecting a vector onto the simplex, which can
be written as follows

min }ku k3 s.t. =1 0;

2RP 2 i=1
is a particular cost of a quadratic min-cost ow problem, also known as continuous
qguadratic knapsack problem This has been addressed with linear-time algorithms by
Brucker (1984, revisited later by Maculan and de Paula (1989, and rediscovered re-
cently in the machine learning community by Duchi et al. (2008. We further explore
these connections between network ow algorithms and spars methods in Chapter 3.

1.5 Dictionary Learning and Matrix Factorization

We have presented in the previous section several tools to k@ sparse decomposition
problems when the dictionary is xed. We now move to the dictionary learning frame-
work.

The problem of learning a basis set, rst introduced by Olshausen and Field(1996
1997, can be formulated as a matrix factorization problem. More speci cally, given a

in R™ P such that each signalx' admits a sparse decomposition inD. This can be
written in a general form
h i
min 1% EONI K+ (N ;
D2D:A2A N ._, 2
where D and A are convex setsA =[ 1;:::; "isin A RP " and is a sparsity-
inducing regularization term. The number of samplesn is usually large, whereas the
signal dimensionm is relatively small, for example, m = 100 for 10 10 image patches,
andn 100000 for typical image processing applications. In genal, we also havep n
(e.g., p = 200 for n = 100000), but each signal only uses a few elements @ in its
representation, say 10 for instance. Note that, in this seting, overcomplete dictionaries
with p > m are allowed.
This problem can equivalently be rewritten as a matrix factorization problem:
h :

: 1 2 g
DZg];l,pZA ikx DAkE+  HA);

P . . . . . . .
where qA), % L ). A classical choice consists for instance in choosing to
be the “;-norm, A to be unconstrained A = RP "), and D to be the set of matrices
whose columns have bounded,-norms:

D, fD2R™ P st 8 2JI;pK kdlki 1g:
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Since the term DA is invariant by multiplying D by a diagonal matrix on the right
and A by its inverse on the left, preventing D from being arbitrarily large (which would
make A arbitrarily small) has indeed proven to be necessary in pradte.

We now present other matrix factorization formulations that are related to dictionary
learning.

1.5.1 Classical Matrix Factorization Methods

We start by principal component analysis (PCA), then move to vector quantization and
non-negative matrix factorization.

Principal Component Analysis

Principal component analysis is a widely used tool for data aalysis. It looks for a set
of orthogonal directions that maximize the explained variance of data vectors. This is
equivalent to the matrix factorization problem

. 1 L
o™i SKX DA k! st. DD =1, and AA ~ is diagonal

The solution can be obtained by a singular value decompositin (SVD), and the columns
on D are the desiredprincipal components

Vector Quantization - Hard Assignment

Vector quantization (or clustering) can also be seen as a maix factorization problem.

centroids [d*;:::;dP] and a binary assignment for egch data vector, which can be @
resented by binary vectors ' in f0;1g° such that = P, | = 1that is, one single
entry of ' is equal to 1, and the rest is zero. Since the assignments hawénary values,
one often uses the terminology clustering with hard assigment, as opposed to soft
assignment , which is the topic of the next section.

With these notations in hand, we rewrite the clustering problem as

min Lx DA k& s.t. . i =1; forall i 2 J1;pK
D2R™ P;A2f 0;1gP " 2 =1
which is the same optimization problem addressed by the algithm K-means (seeHastie
et al., 2009 and references therein). It can be seen as a speci ¢ sparseatrix factor-
ization, where the columns of A are forced to have a sparsity of one. And in fact,
the algorithm K-SVD introduced by Aharon et al. (2009 for learning dictionaries, is
presented by their authors as a generalization of K-means, ephasizing the tight links
between clustering and dictionary learning.
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1.5. Dictionary Learning and Matrix Factorization

Vector Quantization - Soft Assignment

One possible view of vector quantization with soft assignmet is to model data vectors
as non-negative linear combinations of centroids that sum toone. More precisely, the
corresponding optimization problem is

x
min Lx  pa k¢ sit. j=1;foralli2Ji;pKk and A O;
D2RM PA2RP N 2 i=1

which is even closer to dictionary learning than vector quatization with hard assign-
ment. Interestingly, these connections have been recentlfurther exploited in computer
vision by Yang et al. (2009; Boureau et al. (2010 in the so-calledbags-of-featureanodels,
using dictionary learning instead of classical vector quatization techniques for building
visual codebooks that are used for image classi cation task

Non-negative Matrix Factorization

We now mention the non-negative matrix factorization technique proposed bylLee and
Seung(200]). In its simplest form, it consists of solving

. 1
min “kX DAkKZ st. D OandA O
D2R™ P:A2RP 0 2

With this formulation, the matrices D and A are forced to have non negative entries,
which can lead to sparse solutions. When applied to imagesush as faces|.ee and Seung
(2007 have shown that the learned features are more localized han the ones learned
with a classical singular value decomposition. Whereas th@nportance of NMF in com-
puter vision remain unclear, it has led to interesting resuts for audio analysis (Févotte
et al., 2009, but with a di erent loss function than the square loss that is more adapted
to audio modalities. Variants of NMF with sparsity constrai nts (Hoyer, 2002 2004 have
also been proposed, with strong connections with dictionay learning.

1.5.2 Dictionary Learning Algorithms

We now move to one of the main topics of this thesis, which is ditionary learning.
Like all the matrix factorization formulations presented in the previous section, the
corresponding optimization problems are non-convex, and welassify them into two
categories. Those relying on’j-regularization, and those exploiting directly the -
pseudo-norm.

Matrix Factorization with “1-regularization
We start by considering the ";-regularized dictionary learning problem, de ned as
_ 11X hq . o
min = “kx! D K3+ k kg ;

D2D;A2R™ P N,_ 2
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which was rst considered by Olshausen and Field(1996, along with other non-convex
smooth regularizers that induce approximately sparse vedairs (vectors that are not sparse
but that have many small coe cients).

Even though the optimization problem is not jointly convex in (D;A), it is convex
with respect to each variable D or A when the other one is xed. A natural way
of optimizing the cost function is therefore to alternate the minimization between D
and A, xing one and optimizing with respect to the other. Optimiz ing with respect
to A can be done with any technique we have presented so far in thihesis, even though
we might prefer LARS for the classical setting where thex''s are relatively small and
the solution very sparse. As shown in our benchmark presentkin Section 1.4.5 LARS
is indeed particularly e cient in this case. Optimizing wit h respect to D can be done
with a gradient descent approach as done byOlshausen and Field(1996, or a Newton
method in a dual formulation, as proposed bylLee and Seung(2001). We propose in
Chapter 2 other approaches to address this problem, which have provemo be more
e cient.

Matrix Factorization with “o-regularization

The “¢ dictionary learning formulation can be written as follows

mn <7 Lo b 'k st k ko s; 8i2J1;nK (1.13)
D2D;A2R™ PN, _, 2
The approach proposed byEngan et al. (1999 and called MOD (method of optimal

directions) is also an alternate minimization approach.

During the sparse coding steD is xed, and the vectors ' are obtained using a
greedy approach, such as the ones presented in Sectidm.6.

During the dictionary learning step, A is xed and D is updated with the formula
D p[XA (AA>) 1];

where XA (AA >) 1is the solution of the minimization of Eq. (1.13) with respect
to D when the coe cients A are xed and the constraints D are dropped. p is
the projection operator on D, that in practice normalizes the columns of a given
matrix. Since the cost function of Eq. (1.13) is invariant by replacing D by D and
A by A where is a positive de nite diagonal matrix, it is possible to show
that such an update minimizes Eq. (L.13) with respect to D, when in addition one
authorizes the rows ofA to be rescaled.

The K-SVD is another approach proposed byAharon et al. (2006. It is also an
alternate minimization approach between two steps. The spese coding step is the same
as for MOD, but the dictionary update step updates both D and the values of the
non-zero coe cients of A. The dictionary learning step consists of one pass of a bloek
coordinate approach, where sequentially for allj in J1;pK one columnd! is updated
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(keeping the other xed) simultaneously with the non-zero ertries of the j -th row of A.
Such an update can equivalently be rewritten as a one-rank apximation of a matrix,
which can be obtained with a one-rank singular value decompdton (SVD), giving its
name to the algorithm.

1.6 Dictionary Learning for Image Processing

Some of the results presented in this section are reported dm the following works,
which have been undertaken before the beginning of this PhD:

J. Mairal, M. Elad and G. Sapiro. Sparse representation for olor image restoration.
IEEE Transactions on Image Processing. 17(1):53 69. 2008.

J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse representations for image
and video restoration. SIAM Multiscale Modelling and Simulation, 7(1):214 241, April
2008.

J. Mairal, G. Sapiro, and M. Elad. Multiscale sparse image r@resentation with learned
dictionaries. Proceedings of the IEEE International Confeence on Image Processing,
2007.

We show in this section several applications of the dictionay learning problem, whose
successes have motivated our research.

1.6.1 Dictionary Learning for Natural Image Patches

Before moving to concrete applications, we show the result folearning dictionaries on
a database of natural images patches, as originally propogeby Olshausen and Field
(1996. To do so, we use the algorithm which will be presented in Chater 2 on a
database of 10 millions patches of size 12 12 pixels, randomly extracted from natural

images. We process both grayscale image patches, and RGB aoplimage patches that
are concatenated as a single vector as done biylairal et al. (2008h. For grayscale
patches, the mean value of each patch is removed and the patels are normalized to
have unit “>-norm. For the color patches, the mean color of the patch is reraved and
the patches are also normalized. We show in Figuré..13 visual results obtained when
learning p = 256 dictionary elements, using the ";-regularized version of dictionary
learning, with a parameter =0:1. As already reported in the literature (seeOlshausen
and Field, 1996 Elad and Aharon, 2006, we observe intriguing results: some of the
dictionary elements looking like oriented edges (somewhadimilar to Gabor Iters), some

others look like low-pass lIters. As for the color patches, weobserve an interesting
phenomenon, namely that most of the dictionary elements lok gray, and might therefore
be devoted, to reconstructing geometrical structures in images. As for the colored
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dictionary elements, they typically have low frequencies ad seem, to some extent, to
present two opposite colors, with groups of green-magentaor yellow-blue dictionary
elements. A similar observation was also made earlier byloyer and Hyvarinen (2000
with a di erent technique called independent component andysis (ICA), which is used
to model data vectors as linear mixtures of independent latat variables. When applied
to natural image patches, this technique visually leads to snilar results as dictionary
learning.

Figure 1.13: Example of a learned dictionaries on 12 12 patches of natural images
with p = 256 dictionary elements. Left: dictionary learned on grayscale image patches.
Right: dictionary learned on RGB color image patches. The dctionary is learned using
the algorithm of Chapter 2 on a database of 10 millions patches. Since patches may have
negative values, they are arbitrarily translated and rescaed for display.

We now move to restoration tasks exploiting this image patchrepresentation, which
have been quite successful.

1.6.2 Image Denoising

We present in this section a successful denoising method tsintroduced by Elad and
Aharon (2006. Let us consider rst the classical problem of restoring a roisy imagey
in R" which has been corrupted by a white Gaussian noise of standdrdeviation

Classical techniques often formulate the image denoisingrpblem as an energy min-
imization one, trying to nd an estimate ® that minimizes

o1 2 ]
min Sky - xkg+ (X)),
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1.6. Dictionary Learning for Image Processing

where the rst quadratic term is called a data tting term , ensuring that the estimate is
close enough to the noisy measurement, and (x) is a regularization function ensuring
that the estimate x respects a particular image modek!

Finding a good image model is a notably di cult task. Early wo rks have assumed
the image to be smooth using ltering techniques ovasznay and Joseph 1955 Per-
ona and Malik, 1990, to have a small total variation ( Rudin and Osher, 1994, or have
used Markov Random Fields (MRF) to model regularity between adjacent pixels (Zhu
and Mumford, 1997. We now use the assumption that the clean signal can be ap-
proximated by a sparselinear combination of elements from a dictionary. Like many
recent works (Buades et al, 2005 Roth and Black, 2005 the approach we present is
patch-based.

Under this assumption, denoising a patchy' in R™ with a dictionary D in R™ P
(with p elements), amounts to solving the following sparse decomysition problem

; [ 2w
rglpr;p( ) st. ky' D k5 (1.14)

whereD is an estimate of the clean signal, and is a sparsity-inducing regularization
function. It can be the “1-norm, leading to the well-known Lasso {Tibshirani, 1996
and basis pursuit (Chen et al,, 1999 problems, or the "¢-pseudo-norm. Following Elad
and Aharon (2009; Mairal et al. (2008 20099, " can be chosen according to the
(supposed known) standard deviation of the noise. One indeed expects the residual
y' D tobehave as a Gaussian vector, and thuky! D k3= 2 to follow a chi-squared
distribution 2, concentrated aroundm. The strategy proposed byMairal et al. (2008b
is to put a threshold the cumulative distribution function Fp, of the 2, distribution and
choose" as" = 2F.,%( ), where F,! is the inverse of Fr,. Selecting the value =0:9
leads in practice to acceptable values of (Mairal et al., 2008k 20099.

Various types of wavelets Mallat, 1999 have been used as dictionaries for natural
images. Building on ideas proposed byOlshausen and Field(1997 to model neuronal
responses in the V1 area of the brainElad and Aharon (2006 have proposed instead
to learn a dictionary D adapted to the image at hand, and demonstrated that learned
dictionaries lead to better empirical performance than o -the-shelf ones. Since images
may be very large, e ciency concerns naturally lead to sparely decomposing image
patches rather than the full image. For an image of sizen, a dictionary in R™ P adapted
to the n overlapping patches of sizem (typically m =8 8 n) associated with the
image pixels, is learned by addressing the following optinzation problem

min Y st. ky' D k3 1.15

D 2D :A2RP ni=1 ( ) y 2 ( )

where D is the set of matrices inR™ P with unit “2-norm columns, A = [ Loy M
is a matrix in RP ", y' is the i-th patch of the noisy imagey, ' is the corresponding

In a probabilistic model, the optimization problem would be written  minxzrn 5~ky xk3 logp(x),
where p is a prior distribution for x. Therefore can be related to a log-prior.
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code, andD ' is the estimate of the denoised patch. Note that this procedue implic-
itly assumes that the patches areindependentfrom each other, which is questionable
since they overlap. However, this approximation makes the arresponding optimization
tractable. Adding some consistency in the reconstruction dadjacent patches, instead of
processing them independently is in fact an interesting ope topic, which, to the best of
our knowledge, has never been addressed e ectively.

Once the dictionary D and codes ' have been learned, every pixel admitsn esti-
mates (one per patch containing it), and its value can be compted by averaging these:

R'D '; (1.16)

whereR'" in R” ™ is the binary matrix which places patch numberi at its proper posi-

tion in the image. This approach learns the dictionary on the set of overlapping noisy
patches, thereby adapting the dictionary to the image itsef, which is a key element in ob-
taining better results. Such an aggregation procedure avaging estimators obtained by
applying a non-translation-invariant operation on di erent shifted versions of patches, is
related to the classical translation-invariant denoising proposed byCoifman and Donoho

(1995, which basically proceeds in the same way with wavelet derising. Even though

aggregating estimators by straight averaging might look sioptimal, we are not aware

of any other technique, in the context of dictionary learning, leading to better results

for reconstructing the nal image from the estimated patches.

How to choose between the ;- or “g-regularizations is not a priori clear. Following
Elad and Aharon (2006, we have experimentally observed that, given a xed dictio-
nary D, the reconstructed image is in general of better quality wha using the -
pseudo-norm rather than its convex 1 counterpart. However, we have also observed
that dictionaries learned with the "1-norm are usually better for denoising, even when
the nal reconstruction is done with the "“¢-pseudo-norm. We investigate this question
more thoroughly in Section 1.6.5

1.6.3 Dictionary Learning with Missing Data Inpainting

It is possible to model the presence of missing data in the dtonary learning formula-
tion (see Mairal et al., 20080. For a patch i in J1;nK we introduce a binary maskM '
as a diagonal matrix in R™ ™ whose value on thej-th entry of the diagonal is 1 if
the pixel y} is known and O otherwise, Where'yji is the j -th pixel of the i-th patch of
an imagey in R". The general dictionary learning formulation with missing data then
becomes

|

min
D2D;A2RP "N, 2

kM'(y' D DHki+ ()
In practice, the presence of the binary mask does not drastally change the optimization
procedure, and one still can alternates between the optimiation of D and A. When

the imagey is only corrupted by missing pixels and not by other additive noise, one can
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also enforce hard reconstruction constraints, and address

min Y st. Mi(y' D )=o0:

D 2D ;A 2A - y )

Before showing any inpainting result, we shall comment orwhen these formulations are
supposed to work

First, the formulation exploits independently for each patch the available pixel
values. It can therefore only handle holesthat are smaller than the patch size.
Handling large holes might be possible with a di erent formulation, for instance
with a di usion process that would allow Iling in holes (see Roth and Black, 2005
for such a strategy).

Second, one assumes thathe noise pattern does not admit a sparse represen-
tation, which the dictionary could learn otherwise. The demosaickng task (see
Mairal et al., 2008D is a typical example of inpainting small holes with such a
problematic pattern. In this case, di erent strategies can be used, such as learning
the dictionary o ine on a database of clean signals, and thenpossibly re ne it on
an estimate of the demosaicked image.

We now show inpainting results in Figure 1.14, one from Mairal et al. (2008b, and one
from Mairal et al. (2008d, where a multiscale variant of K-SVD is introduced.

1.6.4 Video Processing

The extension of dictionary learning techniques for dealiig with videos has been proposed
by Protter and Elad (2009. Given a noisy video sequence, a rst naive approach condis

of processing each frame independently. To exploit tempotdaconsistency and improve
the performance of this approach, some key components can tselded:

One should process several frames at the same time, for instee T frames, and
consider video patches corresponding to 3-D blocks of sizm = e e T in the
video, where e is the edge size of a patch. Typical sizes might be for instarc
e =10 pixels and T =5 frames.

After processing T frames, one can move to the next block oflT frames (which
possibly overlaps with the previous one), and one should usthe previously learned
dictionary as an initialization of the learning process tha adapts the dictionary to
the current block.

We show examples in Figuresl.15 and 1.16 two video processing results from fairal
et al., 2008d, where this video extension has been adapted to the inpaimtg and color
video denoising tasks.
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(a) Example A, Damaged (b) Example A, Restored

(c) Example B, Damaged (d) Example B, Restored

Figure 1.14: Top: Inpainting result from Mairal et al. (2008b, where the text is auto-
matically removed on the restored image. Images are under pgright cIEEE. Bottom:
Inpainting result presented from Mairal et al. (2008d), where 80% of the pixels are ran-
domly removed from the original image. The algorithm is ableto reconstruct the brick
texture on the right, without seeing the original image. Images under copyright ¢ SIAM.
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(a) Original (b) Damaged (c) Image Denoising (d) Video Denoising

(e) Zoom on (a) (f) Zoom on (b) (g) Zoom on (c) (h) Zoom on (d)

Figure 1.15: Color video denoising result fromMairal et al. (2008d. The third column
show the result when each frame is processed independentlpi the others. Last column
show the result of the video processing approach. Images ued copyright ¢ SIAM.
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(a) Original (b) Damaged (c) Image Inpainting (d) Video Inpainting

(e) Zoom on (a) (f) Zoom on (b) (g) Zoom on (c) (h) Zoom on (d)

Figure 1.16: Video inpainting result from Mairal et al. (2008d. The third column show
the result when each frame is processed independently fromhé others. Last column
show the result of the video processing approach. Images ued copyright ¢ SIAM.
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1.6.5 "¢ vs '; for Image Denoising

In this section, we address the question of whether one shatdiluse the "¢ or the ;-
regularization for restoring natural images. We use the fdbwing methodology for pro-
cessing one image, which follows fronElad and Aharon (2006, but allows using a
di erent regularization scheme for learning the dictionary than for reconstructing the

image:
1. Patch Extraction : Extract all overlapping patches from the image.

2. Dictionary Learning Step : Learn a dictionary on this set of patches using a
regularization scheme(A) . We use the alternate minimization approach described
before, with 50 iterations between updates of the coe cients and updates of the
dictionary, after initializing the dictionary with random ly extracted patches from

the image.

3. Final Reconstruction Step  : Reconstruct every patch of the image using a reg-
ularization scheme(B) .

4. Averaging Step : Reconstruct the image using the averaging formula of Eq.1.16).

For the quantitative evaluation, we have chosen a dataset ofl2 standard images,
which we also use later in Chapter4d. These images are presented in Figuré.17.

(a) house (b) peppers (c) Cameraman (d) lena (e) barbara (f) boat

(g) hill (h) couple (i) man () ngerprint (k) bridge () intstones

Figure 1.17: Dataset of 12 standard images.

We compare the denoising performance ofy and " 1-regularization, during the train-
ing of the dictionary, and the nal reconstruction of the ima ge patches. We arbitrarily
choose image patches of size 88, following Elad and Aharon (2006 and a dictionary
size ofp = 200 elements. We add synthetic noise to the 12 images, withtandard de-
viations  in f5;10; 15; 20; 25;50; 75;100y. For each image, we follow the restoration
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procedure described above. For learning the dictionary, welternate 50 times between
the minimization of A and D using the regularization schemgA) . Then, we decompose
again every patch of the image using the regularization schee (B) , before reconstruct-
ing the nal image with the averaging procedure. The regulaization schemes(A) and

(B) for decomposing a patchy in R™ can be

1 .
min Sky D k2+ Kk ki; (1-P)
- 2 m, * -
mink ki st ky D ki " (1R
nSky D KB+ Kk ko “o-P
min Sky 5 o (o-P)
. 2 ". A
nglrgpk ko st. ky D k& ™ (o-R

For ", we try the values" = Cm 2 with C taken on a grid f0:9;0:94; 0:98; : 113129,
which we re ne on an additive scale with step Q01. For , we try the values =10' ,

form =107 , and then =101 For each value of noise, we keep the parameters
providing the best results on average on the rst 3 imageshouse peppersand cameraman
after 20 dictionary updates.

The average PSNR of the reconstructed images are presentedh dable 1.1, for each
value of noise, and each combination where we train with one foof the regularization
schemes, and nally reconstruct the image with another one. The corresponding per-
formance of the reconstruction for each individual patchesbefore the averaging steps
presented on Tablel.2.

Our conclusions from this experiment are the following:

The averaging step is a key component of the denoising algahim. The quality of
the results is much higher after the averaging step than befre.

For reconstructing individual patches (before the averaging step), the 1-regulari-
zation is signi cantly better than " one.

For reconstructing full images (after the averaging step), it is always better to use
an “o-regularization during the nal reconstruction than "1, but at the same time,
it is also better to use an " i-regularization during the dictionary learning step.

For large amount of noise, penalized formulations {p-P or “;-P) should be pref-
ered to constrained formulations (g-Ror “;-R). For small standard deviations, one
should prefer the constrained formulations.

These conclusions are intriguing, and to the best of our knovedge have only been
mentioned before by us in Mairal et al., 20099. We do not have clear theoretical
explanations for them, but propose the following intuitive arguments.
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- =5 =10

"

(/T)H'S'BiH ‘P | R | 1P| -R| 0P | oR | 1-P | 1R
P | 37.07 | 37.45 | 36.84| 37.05|| 33.75 | 33.81 | 32.52| 33.38
R | 37.39 | 37.45 | 36.89 | 37.16| 33.75 | 33.83 | 33.14| 33.43
P | 37.08 | 37.62 | 36.63| 37.31| 33.88 | 33.91 | 33.34| 33.47
"R | 3750 | 37.62 | 37.23| 37.31| 33.80 | 33.94 | 33.41| 33.50

) =15 =20

RIANC)) . . . .

gy, | 0P| R eP | CeR | eP | CoR | P | R
P | 3179 | 31.81 | 31.13| 31.30|| 30.47 | 30.41 | 29.78 | 29.84
R | 3177 | 31.85 | 31.31| 31.34|| 30.50 | 30.47 | 29.81| 29.88
P | 31.87 | 31.86 | 31.37| 31.33|| 30.49 | 30.43 | 29.88| 29.85
R | 31.90 | 31.92 | 31.34| 31.39| 30.55 | 30.50 | 29.90| 29.91

) =25 =50

RTIANC)) . . . . . . . .

iy, | 0P | R eP | eR | eP | CoR | P | R
0P | 29.44 | 29.34 | 28.76| 28.71|| 26.23 | 25.95 | 25.57| 25.31
R | 29.47 | 29.40 | 28.81| 28.76|| 26.24 | 25.95 | 25.53| 25.28
P | 29.43 | 29.34 | 28.82| 28.71| 26.22 | 25.93 | 25.65| 25.29
'R | 29.52 | 29.41 | 28.87 | 28.78|| 26.24 | 25.94 | 25.50| 25.26

) =75 =100

H

(X')H,SE?H P | R | 1P | 1R || P | R | 1P | 1R
0P | 2420 | 23.77 | 23.70| 23.34| 22.61 | 22.32 | 22.42| 22.10
"R | 24.15 | 23.74 | 23.63| 23.32| 22.65 | 22.26 | 22.37| 22.07
P | 24.19 | 23.73 | 23.77| 23.32| 22.74 | 22.30 | 22.46 | 22.09
R | 24.14 | 23.72 | 23.66| 23.29| 22.62 | 22.22 | 22.36| 22.05

Table 1.1: Comparison between oy and " ;-regularizations for image denoising. Results
are presented in PSNR. For every value of the standard deviabn , we present the
results for every combination of regularization schemes, here the onegA) for learning
the dictionary are represented on rows, and the ones for recstructing the image (B)
on columns. Best results are in bold.
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o =5 =10

H

H B < < < < < <

(A)H,SzH oP | oR| 1P | 1R | oP | oR| "1-P | "1-R
P | 34.28| 34.61| 36.00 | 36.01| 30.66| 30.74| 31.49 | 32.14
oR | 35.01| 34.82| 3595 | 36.08 | 30.90| 30.96 | 32.03 | 32.17
‘P | 34.28| 3450 35.55 | 36.26|| 30.52| 30.63| 32.16 | 32.22
'R | 34.66| 34.63| 36.31 | 36.26|| 30.78| 30.77| 32.26 | 32.26

) =15 =20

"H, (B .

gy, | 0P| CoR | CeP | iR P | CoR | PR
P | 28.62| 28.73| 29.93 | 29.04|| 27.18| 27.27| 28.58 | 28.38
oR | 28.03| 28.84| 30.00 | 29.98 | 27.48| 27.35| 28.63 | 28.44
‘P | 28.41| 28.39| 30.06 | 29.97|| 26.97| 27.07| 28.63 | 28.41
'R | 28.78| 28.65| 30.14 | 30.03|| 27.29| 27.21| 28.72 | 28.46

=25 = 50

H

H B < < < < < < < R

(A)H,ﬂiH oP | R | 1P | 1R || 0P | oR| 1P | iR
P | 26.28| 26.27| 2752 | 27.18| 23.07| 22.71| 24.06 | 23.42
oR | 26.39| 26.25| 27.54 | 27.22 | 22.94| 2258 23.97 | 23.44
‘P | 26.08| 26.08| 27.60 | 27.18| 23.03| 22.65| 24.21 | 23.39
‘R | 26.33| 26.17| 27.57 | 27.24|| 22.79| 22.48| 24.07 | 23.43

) =75 =100

’

H B < < < < < < < <

(A)H,ﬂiH oP | R | :-P | 1R || 0P | ¢R| 1P | iR
P | 20.83| 20.23| 21.92 | 21.33|| 17.94| 18.79| 20.48 | 20.01
R | 20.72| 20.21| 21.80 | 21.31| 19.06| 18.69| 20.38 | 19.95
"-P__ | 20.88| 20.37| 22.09 | 21.31| 19.24| 18.78| 20.56 | 20.00
:-R__ | 20.65| 20.14| 21.84 | 21.28|| 19.02| 18.63| 20.35 | 19.93

Table 1.2: Comparison

between’y and "i-regularizations for denoising individual
patches. Results are presented in PSNR. For every value of thstandard deviation
we present the results for every combination of regularizabn schemes, where the ones
(A) for learning the dictionary are represented on rows, and theones for reconstructing

the image (B) on columns. Best results are in bold.
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We believe that the reason of the good performance of;-regularization for learning
the dictionary might be: (i) a better stability of the sparsi ty patterns than the ones
obtained with "o, and/or (ii) a better behavior in terms of optimization, whe re the
“1-schemes guarantee to obtain a stationary point of the formuition, whereas o does
not.

The stability argument that favors "1 might explain why this regularization is better
than "¢ for individual patches. However, the reason why the hierarby is reversed after
the averaging step remain alusive. It may be that the errors nade with " are greater
than with “; for individual patches, but are quite independent from a patch to another
one, even when the latter overlap. This would explain why these errors are greatly
reduced by the averaging step. As for the ;-regularization, the errors are individually
smaller, but are highly correlated from one patch to another and do not average well.
One could argue that the Lasso estimator is biased, and indekit is classical to use the
Lasso for selecting the dictionary elements, and then perfon an orthogonal projection
onto the span of these selected dictionary elements to obtaian unbiased estimator (see
Hastie et al., 2009 and references therein). This argument is true in part, andwe have
indeed observed that the quality of images obtained with the™; reconstruction improve
with this modi cation, but it is not su cient. Even with un un  biased estimator based on
"1, signi cantly better results are obtained using greedy appoaches. Note also that these
conclusions stand for the dictionary learning approach basd on alternate minimization
which we have described before, but we have not observed sigrant di erences when
trying other approaches such as the online learning procede we present in Chapter2,
or the K-SVD introduced by Aharon et al. (2006.
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2

Online Learning for Matrix Factorization and
Sparse Coding

Chapter abstract:  Sparse coding that is, modelling data vectors as sparse linear combina-
tions of basis elements is widely used in machine learning, neuroscience, signal processj, and
statistics. This work focuses on the large-scale matrix factorization poblem that consists of
learning the basis set in order to adapt it to specic data. Variations of this problem include
dictionary learning in signal processing, non-negative matrix factorization axd sparse principal
component analysis. In this work, we propose to address these tasks with aew online op-
timization algorithm, based on stochastic approximations, which scaés up gracefully to large
data sets with millions of training samples, and extends naturally to variousmatrix factorization
formulations, making it suitable for a wide range of learning problems. A praf of convergence
is presented, along with experiments with natural images and genomic data demonsiting that
it leads to state-of-the-art performance in terms of speed and optimization forboth small and
large data sets.

The reader is advised to read the Sectiorl.5 on dictionary learning before reading this
chapter. The material of this part is based on the two following publications:

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse cod-
ing. In Proceedings of the International Conference on Machine Leming (ICML) , 2009.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning br matrix factorization
and sparse coding.Journal of Machine Learning Research 11:19 60, 2010.

2.1 Introduction

In machine learning, statistics and signal processing, giintly di erent matrix factoriza-
tion problems are formulated in order to obtain a few interpretable basis elements from
a set of data vectors. This includes dictionary learning, nm-negative matrix factoriza-
tion and its variants (Lee and Seung 2001, Hoyer, 2002 2004 Lin, 2007, and sparse
principal component analysis ¢ou et al., 2006 d'Aspremont et al., 2007, 2008 Witten
et al., 2009 Zass and Shashua2007. As shown in this chapter, these problems have
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strong similarities; even though we rst focus on the problen of dictionary learning,
the algorithm we propose is able to address all of them. Whildearning the dictionary
has proven to be critical to achieve (or improve upon) state-é-the-art results in signal
and image processing, e ectively solving the correspondig optimization problem is a
signi cant computational challenge, particularly in the c ontext of large-scale data sets
that may include millions of training samples. Addressing this challenge and designing
a generic algorithm which is capable of e ciently handling various matrix factorization
problems, is the topic of this chapter.

Most recent algorithms for dictionary learning (Engan et al., 1999 Lewicki and Se-
jnowski, 200Q Aharon et al., 2006 Lee et al, 2007 are iterative batch procedures,
accessing the whole training set at each iteration in order & minimize a cost function
under some constraints, and cannot e ciently deal with very large training sets (Bot-
tou and Bousquet, 2008, or dynamic training data changing over time, such as video
sequences. To address these issues, we proposeaafine approach that processes the
signals, one at a time, or in mini-batches. This is particulaty important in the context
of image and video processingRrotter and Elad, 2009 Mairal et al., 20089, where it
is common to learn dictionaries adapted to small patches, vth training data that may
include several millions of these patches (roughly one peripel and per frame). In this
setting, online techniques based on stochastic approxim&ns are an attractive alterna-
tive to batch methods (see, e.g.Bottou, 1998 Kushner and Yin, 2003 Shalev-Shwartz
et al., 2009. For example, rst-order stochastic gradient descent with projections on
the constraint set (Kushner and Yin, 2003 is sometimes used for dictionary learning
(seeOlshausen and Field 1997 1996 Aharon and Elad, 2008 Kavukcuoglu et al., 2008
for instance). We show in this chapter that it is possible to go further and exploit the
speci ¢ structure of sparse coding in the design of an optingation procedure tuned to
this problem, with low memory consumption and lower computdional cost than classical
batch algorithms. As demonstrated by our experiments, it s@les up gracefully to large
data sets with millions of training samples, is easy to use, iad is faster than competitive
methods.

The chapter is structured as follows: Sectior2.2 brie y recalls the dictionary learning
problem. The proposed method is introduced in Sectior®.3, with a proof of convergence
in Section2.4. Section2.5extends our algorithm to various matrix factorization prob lems
that generalize dictionary learning, and Section2.6 is devoted to experimental results,
demonstrating that our algorithm is suited to a wide class oflearning problems.

2.1.1 Contributions

This chapter makes four main contributions:

We cast in Section 2.2 the dictionary learning problem as the optimization of a
smooth nonconvex objective function over a convex set, mimizing the (desired)
expectedcost when the training set size goes to in nity, and propose m Section2.3
an iterative online algorithm that solves this problem by e ciently minimizing

at each step a quadratic surrogate function of the empiricalcost over the set of
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constraints. This method is shown in Section2.4 to converge almost surely to a
stationary point of the objective function.

As shown experimentally in Section2.6, our algorithm is signi cantly faster than
previous approaches to dictionary learning on both small ad large data sets of
natural images. To demonstrate that it is adapted to di cult , large-scale image-
processing tasks, we learn a dictionary on a 12-Megapixel phograph and use it
for inpainting that is, lling some holes in the image.

We show in Sections2.5 and 2.6 that our approach is suitable to large-scale ma-
trix factorization problems such as non-negative matrix fadorization and sparse
principal component analysis, while being still e ective on small data sets.

To extend our algorithm to several matrix factorization pro blems, we propose in
Appendix C e cient procedures for projecting onto two convex sets, which can be
useful for other applications that are beyond the scope of tis chapter.

2.2 Problem Statement

Classical dictionary learning techniques for sparse repsentation (Engan et al,, 1999
Lewicki and Sejnowski 2000 Aharon et al., 2006 Lee et al, 2007 consider a nite

1 X

fn(D), “(x';D); (2.1)

i=1

vector, and ~ is a loss function such that "(x;D) should be small if D is good at
representing the signalx in a sparse fashion. The number of samples is usually large,
whereas the signal dimensiorm is relatively small, for example, m = 100 for 10 10
image patches, anch 100, 000 for typical image processing applications. In generalyve
also havep n (e.g.,p =200 for n = 100; 000), but each signal only uses a few elements
of D in its representation, say 10 for instance. Note that, in this setting, overcomplete
dictionaries with p > m are allowed. As others (see for exampl®Ishausen and Field
1997, 1996 Lee et al, 2007, we de ne “(x;D) as the optimal value of the “; sparse
coding problem:

‘(x;D), ngiFrgp%kx D Ks+ k ky; (2.2)

where is a regularization parameter. To preventD from having arbitrarily large values
(which would lead to arbitrarily small values of ), itis common to constrain its columns

of matrices verifying this constraint:
D, fD2R™ P st 8 2JI;pK kdlki 1g:
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Note that the problem of minimizing the empirical cost f,(D) is not convex with respect
to D. It can be rewritten as a joint optimization problem with res pect to the dictionary D
and the coecients A =[ 1;:::; "]in RP " of the sparse decompositions, which is not
jointly convex, but convex with respect to each of the two varablesD and when the
other one is xed:
X hq . o
min “kx! D K3+ k kg : (2.3)
D2D;A2RP ", _, 2

This can be rewritten as amatrix factorization problem with a sparsity penalty:
kX DAKZ+ kAKyq;

. 1
min —
D2D:A2RP N 2

the “1 norm of the matrix A that is, the sum of the magnitude of its coe cients.
A natural approach for solving this problem is to alternate between the two variables,
minimizing over one while keeping the other one xed, as propsed bylLee et al. (2007
(see alsoEngan et al. 1999and Aharon et al. 2006 who use’( rather than “; penalties,
or Zou et al. 2006for the problem of sparse principal component analysis}. Since the
computation of the coe cients vectors ' dominates the cost of each iteration in this
block-coordinate descent approach, a second-order optimitan technique can be used
to accurately estimate D at each step when is xed.

As pointed out by Bottou and Bousquet (2008, however, one is usually not interested
in the minimization of the empirical cost f,(D) with high precision, but instead in the
minimization of the expected cost

f(D). Ex[(x:D)]= lip fa(D) as:

where the expectation (which is supposed nite) is taken rehtive to the (unknown)
probability distribution p(x) of the data.? In particular, given a nite training set, one
should not spend too much e ort on accurately minimizing the empirical cost, since it is
only an approximation of the expected cost. An inaccurate solution may indeed have
the same or better expected cost than a well-optimized one. Bottou and Bousquet
(2008 further show that stochastic gradient algorithms, whose rate of convergence is
very poor in conventional optimization terms, may in fact in certain settings be shown
both theoretically and empirically to be faster in reaching a solution with low expected
cost than second-order batch methods. With large training s&s, the risk of over tting is
lower, but classical optimization techniques may become irpractical in terms of speed
or memory requirements.

In the case of dictionary learning, the classical projectedrst-order projected stochas-
tic gradient descent algorithm (as used byOlshausen and Field 19971996 Aharon and

YIn our setting, as in Lee et al. (2007), we have preferred to use the convex 1 norm, that has
empirically proven to be better behaved in general than the "¢ pseudo-norm for dictionary learning.
2We use a.s. to denote almost sure convergence.
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Elad 2008 Kavukcuoglu et al. 2008for instance) consists of a sequence of updates Bf:
h [
D'= pD'' o (xiD' Y ;

where D! is the estimate of the optimal dictionary at iteration t, ; is the gradient step,

p is the orthogonal projector onto D, and the vectors x! are i.i.d. samples of the
(unknown) distribution p(x). Even though it is often di cult to obtain such i.i.d. sam-
ples, the vectorsx! are in practice obtained by cycling on a randomly permuted training
set. As shown in Section2.6, we have observed that this method can be competitive in
terms of speed compared to batch methods when the training $&s large and when
is carefully chosen. In particular, good results are obtaied using a learning rate of the
form , a=t+ b), where a and b have to be well chosen in a data set-dependent way.
Note that rst-order stochastic gradient descent has also ben used for other matrix
factorization problems (seeKoren et al., 2009 and references therein).

The optimization method we present in the next section fallsinto the class of online
algorithms based on stochastic approximations, processm one sample at a time (or
a mini-batch), but further exploits the specic structure of the problem to e ciently
solve it by sequentially minimizing a quadratic local surrogate of the expected cost. As
shown in Section2.3.5 it uses second-order information of the cost function, allaing
the optimization without any explicit learning rate tuning .

2.3 Proposed Approach

We present in this section the basic components of our onlinalgorithm for dictionary
learning (Sections 2.3.1 2.3.3), as well as a few minor variants which speed up our
implementation in practice (Section 2.3.4) and show some links with a Kalman algorithm
(Section 2.3.5).

2.3.1 Algorithm Outline

Our procedure is summarized in Algorithm 1. Assuming that the training set is composed
of i.i.d. samples of a distribution p(x), its inner loop draws one elementx! at a time, as

in stochastic gradient descent, and alternates classicalgrse coding steps for computing
the decomposition ! of x! over the dictionary D' ! obtained at the previous iteration,

with dictionary update steps where the new dictionary D! is computed by minimizing

over D the function

|

Xt hy . .
1 %kx' D K3+ k kg ; (2.4)

fy(D),
i=1
and the vectors !, for i < t, have been computed during the previous steps of the
algorithm. The motivation behind this approach is twofold:

The function f3, which is quadratic in D, aggregates the past information with a
few su cient statistics obtained during the previous steps of the algorithm, namely
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2. Online Learning for Matrix Factorization and Sparse Coding

the vectors ', and it is easy to show that it upperbounds the empirical costf(D*!)
from Eqg. (2.1). One key aspect of our convergence analysis will be to shovhat
fy (DY) and f(D*!) converge almost surely to the same limit, and thus thatf; acts
as asurrogate for f.

Sincef’} is close tof’} 1 for large values oft, so areD' and D! 1, under suitable as-
sumptions, which makes it e cient to use D' ! as warm restart for computing D*.

Algorithm 1 Online dictionary learning.

Require: x 2 R™M p(x) (random variable and an algorithm to draw i.i.d samples
of p), 2 R (regularization parameter), D% 2 R™ P (initial dictionary), T (number
of iterations).

1: B2 RP P 0,C°2R™ P 0 (reset the past information).
2.for t=1to T do
3:  Draw x; from p(x).
4.  Sparse coding: compute using LARS
v argmin}kxt D' K3+ k ki
2RP
6 C! Cll+xt t,
7:  Compute D' using Algorithm 2, with D! 1 as warm restart, so that
X1 . .
D! , argmin= “kx! D K3+ k kg ;
p2p b, 2
11 S t > At
= argmin — =Tr(D°DB") Tr(D”C") : (2.5)
pap t 2
8: end for
9: return D T (learned dictionary).

2.3.2 Sparse Coding

The sparse coding problem of Eq. 2.2) with xed dictionary is an "i-regularized linear
least-squares problem. A number of recent methods for solvinthis type of problems are
based on coordinate descent with soft thresholdingKu, 1998 Friedman et al., 2007 Wu

and Lange 2008. When the columns of the dictionary have low correlation, we have
observed that these simple methods are very e cient. Howeve, the columns of learned
dictionaries are in general highly correlated, and we haverapirically observed that these
algorithms become much slower in this setting. This has led s to use instead the LARS-
Lasso algorithm, a homotopy method Osborne et al, 2000y Efron et al., 2004 that
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Algorithm 2 Dictionary update.
Requwe D =[dY:::;dP]2 R™ P (input dictionary),
— [bl ..... bp] 2 Rp p
C — [Cl ..... Cp] 2 RM P,

1: repeat
2. for j=1to pdo
3 Update the j -th column to optimize for (2.5):
. 1 . .
u’ B—(cJ Dbl)+ d!;
_ b (2.6)
d —0ul
max(ku! ko; 1)
4: end for
5. until convergence
6: return D (updated dictionary).

provides the whole regularization path that is, the soluti ons for all possible values of .
With an e cient Cholesky-based implementation (see Efron et al., 2004 Zou and Hastig,
2009 for brief descriptions of such implementations), it has proven experimentally at
least as fast as approaches based on soft thresholding, wéiproviding the solution with
a higher accuracy and being more robust as well since it doesohrequire an arbitrary
stopping criterion. We provide more details on these method in Sections1.4.3 1.4.2

2.3.3 Dictionary Update

Our algorithm for updating the dictionary uses block-coordinate descent with warm
restarts (seeBertsekas 1999. One of its main advantages is that it is parameter free
and does not require any Iearnlng rate tuning. Moreover, theprocegure does not require
to store aIIF;he vectors x' and ', but only the matrices Bt = ~ {_; ' > in RP P
and Ct = ' x' ™ in R™ P Concretely, Algorithm 2 sequentially updates each
column of D. A simple calculation shows that solving (2.5 with respect to the j-th
column d!, while keeping the other ones xed under the constraintkd'k, 1, amounts
to an orthogonal projection of the vector ul de ned in Eq. (2.6), onto the constraint
set, namely the ",-ball here, which is solved by Eq. ¢.6). Since the convex optimization
problem (2.5) admits separable constraints in the updated blocks (colums), convergence
to a global optimum is guaranteed Bertsekas 1999. In practice, the vectors ' are
sparse and the coe cients of the matrix B! are often concentrated on the diagonal,
which makes the block-coordinate descent more e cient® After a few iterations of our
algorithm, using the value of D' ! as a warm restart for computingD ! becomes e ective,

3We have observed that this is true when the columns of D are not too correlated. When a group
of columns in D are highly correlated, the coe cients of the matrix B' concentrate instead on the
corresponding principal submatrices of B*.

57
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and a single iteration of Algorithm 2 has empirically found to be su cient to achieve
convergence of the dictionary update step. Other approachesiave been proposed to
update D: For instance, Lee et al. (2007 suggest using a Newton method on the dual
of Eq. (2.5), but this requires inverting a p p matrix at each Newton iteration, which
is impractical for an online algorithm.

2.3.4 Optimizing the Algorithm

We have presented so far the basic building blocks of our algithm. This section dis-
cusses a few simple improvements that signi cantly enhancedts performance.

Handling Fixed-Size Data Sets

In practice, although it may be very large, the size of the traning set often has a
prede ned nite size (of course this may not be the case when lhe data must be treated
on the vy like a video stream for example). In this situation, the same data points may
be examined several times, and it is very common in online alyrithms to simulate an
i.i.d. sampling of p(x) by cycling over a randomly permuted training set (seeBottou
and Bousquet 2008 and references therein). This method works experimentallywell in
our setting but, when the training set is small enough, it is possible to further speed
up convergence: In Algorithm 1, the matrices B! and C! carry all the information from
the past coecients 1;:::; '. Suppose that at time tg, a signal x is drawn and the
vector '° is computed. If the same signalx is drawn again at time t > t o, then it is
natural to replace the old information ' by the new vector ! in the matrices B!
and Ctthatis, Bt Bt 1+ t ¥ to 0> gndCct Ct 1+ xt & xt > |p
this setting, which requires storing all the past coe cients '°, this method amounts to
a block-coordinate descent for the problem of minimizing Eq.(2.3). When dealing with
large but nite sized training sets, storing all coe cients ' is impractical, but it is still
possible to partially exploit the same idea, by removing theinformation from B! and C!
that is older than two epochs(cycles through the data), through the use of two auxiliary
matrices B! and C! of sizep pandm p respectively. These two matrices should be
built with the same rules asB! and C!, except that at the end of an epoch,B! and C!
are respectively replaced byB! and C!, while B! and C! are set to 0. Thanks to this
strategy, B! and C! do not carry any coe cients ' older than two epochs.

Scaling the Past Data

At each iteration, the new information ! that is added to the matrices Bt and C! has
the same weight as the old one. A simple and natural modi cation to the algorithm
is to rescale the old information so that newer coe cients ' have more weight, which
is classical in online learning. For instance Neal and Hinton (1998 present an online
algorithm for EM, where su cient statistics are aggregated over time, and an exponential
decay is used to forget out-of-date statistics. In this work, we propose to replace lines 5
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and 6 of Algorithm 1 by

Bt tBt l+ t t>.

C'[ tCt l+X'[ t>;

where {, 1 % , and is a new parameter. In practice, one can apply this strategy
after a few iterations, onceB! is well-conditioned. Tuning improves the convergence
rate, when the training sets are large, even though, as showin Section 2.6, it is not

critical. To understand better the e ect of this modi catio n, note that Eq. (2.5) becomes

1 X1 iL2 i
D¢, argmin pr—r—— - —kx D 'k5+ k 'ki ;
D2D ,1(Jt).1t 2
-argmlnP— Tr(D DBY Tr(D”C!Y :
p2p =1 (J=t)
When = 0, we obtain the original version of the algorithm. Of course, dierent

strategies and heuristics could also be investigated. In actice, this parameter is useful
for large data sets only it 100000). For smaller data sets, we have not observed a
better performance when using this extension.

Mini-Batch Extension

In practice, we can also improve the convergence speed of oatgorithm by drawing

> 1 signals at each iteration instead of a single one, which is alassical heuristic in
stochastic gradient descent algorithms. In our case, thisg further motivated by the
fact that the complexity of computing  vectors ' is not linear in . A Cholesky-
based implementation of LARS-Lasso for decomposing a singlggnal has a complexity
of O(pms + ps?), where s is the number of nonzero coe cients. When decomposing
signals, it is possible to pre-compute the Gram matrixD' D! and the total complexity
becomesO(p?m + (pm+ ps?)), which is much cheaper than times the previous com-
plexity when s large enough ands is small. Let us denote byxt?%;:::;x% the signals
drawn at iteration t. We can now replace lines 5 and 6 of Algorithml by

Bt Bt 1+ }X ti ti>.
i=1

Ct C'[ 1+ }x Xt;i t;i>:
i=1

Slowing Down the First Iterations

As in the case of stochastic gradient descent, the rst iterdions of our algorithm may
update the parameters with large steps, immediately leadig to large deviations from the
initial dictionary. To prevent this phenomenon, classical implementations of stochastic
gradient descent use gradient steps of the forna=(t + b), where b reduces the step size.
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An initialization of the form B° = tgl and C° = t,D° with t; 0 also slows down the
rst steps of our algorithm by forcing the solution of the dic tionary update to stay close
to DC. As shown in Section2.6, we have observed that our method does not require this
extension to achieve good results in general.

Purging the Dictionary from Unused Atoms

Every dictionary learning technique sometimes encountersituations where some of the
dictionary atoms are never (or very seldom) used, which typtally happens with a very
bad initialization. A common practice is to replace these duing the optimization by
randomly chosen elements of the training set, which solvesi practice the problem in
most cases. For more di cult and highly regularized cases, 1 is also possible to choose
a continuation strategy consisting of starting from an easer, less regularized problem,
and gradually increasing . This continuation method has not been used in this work.

2.3.5 Link with Second-order Stochastic Gradient Descent

For unconstrained learning problems with twice di erentia ble expected cost, the second-
order stochastic gradient descent algorithm (seeéBottou and Bousquet, 2008 and refer-
ences therein) improves upon its rst-order version, by rephcing the learning rate by the
inverse of the Hessian. When this matrix can be computed or aproximated e ciently,
this method usually yields a faster convergence speed andmves the problem of tun-
ing the learning rate. However, it cannot be applied easily b constrained optimization
problems and requires at every iteration an inverse of the Hssian. For these two rea-
sons, it cannot be used for the dictionary learning problem,but nevertheless it shares
some similarities with our algorithm, which we illustrate with the example of a di erent
problem.

Suppose that two major modi cations are brought to our original formulation: (i)
the vectors ! are independent of the dictionary D that is, they are drawn at the same
time as x!; (ii) the optimization is unconstrained thatis, D = R™ P. This setting leads
to the least-square estimation problem

Dzrging JEi ) kx D K3 ; (2.7)
which is of course di erent from the original dictionary learning formulation. Nonethe-
less, it is possible to address EqQ.4.7) with our method and show that it amounts to
using the recursive formula

D! D' l4(x! D' 1Yy ® X 1;
i=1
which is equivalent to a second-order stochastic gradient decent algorithm: T|;1e gradient
obtained at (x!; Y)istheterm (x! D' 1 ') ¥ andthe sequence () ., ' >
converges to the Hessian of the objective function. Such sagnce of updates admit a
fast implementation called Kalman algorithm (see Kushner and Yin, 2003 Bottou, 1998
and references therein).
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2.4 Convergence Analysis

The main tools used in our proofs are the convergence of emjpial processes Yan der
Vaart, 1998 and, following Bottou (1998, the convergence of quasi-martingalesKisk,
1969. Our analysis is limited to the basic version of the algorithm, although it can in
principle be carried over to the optimized versions discussd in Section 2.3.4. Before
proving our main result, let us rst discuss the (reasonablg assumptions under which
our analysis holds.

2.4.1 Assumptions

(A) The data admits a distribution with compact support K. Assuming a com-
pact support for the data is natural in audio, image, and video processing applications,
where it is imposed by the data acquisition process.

(B) The quadratic surrogate functions fi are strictly convex with lower-
bounded Hessians. We assume that the smallest eigenvalue of the positive semi-
de nite matrix %B‘ de ned in Algorithm 1 is greater than or equal to some constant ;.
As a consequenceB! is invertible and f is strictly convex with Hessian | %Bt. This
hypothesis is in practice veri ed experimentally after a few iterations of the algorithm
when the initial dictionary is reasonable, consisting for «éample of a few elements from
the training set, or any common dictionary, such as DCT (base of cosines products)
or wavelets (Mallat, 1999. Note that it is easy to enforce this assumption by adding
a term -1kDkZ to the objective function, which is equivalent to replacing the positive
semi-de nite matrix %B‘ by %B‘ + 1l. We have omitted for simplicity this penalization
in our analysis.

(C) A particular su cient condition for the uniqueness of the spa rse coding
solution is satis ed. Before presenting this assumption, let us brie y recall classical
optimality conditions for the *1 decomposition problem in Eq. 2.2) (Fuchs, 2005. For x
in K and D in D, in RPis a solution of Eq. (2.2) if and only if

i> = RNTI :
d (x D )-— sign( J)- if ;60; 2.8)
jdZ(x D )j otherwise
Let ? be such a solution. Denoting by the set of indicesj such thatjdi>(x D ?)j=
, and D the matrix composed of the columns fromD restricted to the set , it is easy
to see from Eq. @.8) that the solution 7 is necessary unique if P~ D ) is invertible

and that

7=(D>D ) Y(D>x ") (2.9)

where ? is the vector containing the values of ? corresponding to the set and "

carries the signs of ? (elementwise). With this preliminary uniqueness condition in
hand, we can now formulate our assumption:We assume that there exists » > 0 such
that, for all x in K and all dictionaries D in the subset ofD considered by our algorithm,
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the smallest eigenvalue oD~ D is greater than or equal to ,. This guarantees the
invertibility of ( D> D ) and therefore the uniqueness of the solution of Eq. %.2). It
is of course easy to build a dictionaryD for which this assumption fails. However,
having D> D invertible is a common assumption in linear regression andn methods
such as the LARS algorithm aimed at solving Eq. @.2) (Efron et al., 2004. It is also
possible to enforce this condition using an elastic net peraation (Zou and Hastie
2009, replacing k ki by k kg + -2k k3 and thus improving the numerical stability of
homotopy algorithms, which is the choice made byZou et al. (2006§. Again, we have
omitted this penalization in our analysis.

2.4.2 Main Results

Given assumptions(A) (C), let us now show that our algorithm converges to a sta-
tionary point of the objective function. Since this work is dealing with non-convex
optimization, neither our algorithm nor any one in the liter ature is guaranteed to nd

the global optimum of the optimization problem. However, such stationary points have
often been found to be empirically good enough for practicabpplications, for example,
for image restoration (Elad and Aharon, 2006 Mairal et al., 2008b.

Our rst result (Proposition 4 below) states that given (A) (C), f (D') converges
almost surely andf (D1) f’}(Dt) converges almost surely to 0, meaning that; acts as
a converging surrogate off . First, we prove a lemma to show thatD! Dt 1= O(1=t).
It does not ensure the convergence db!, but guarantees the convergence of the positive
sum t1=1 kDt D! 1k§, a classical condition in gradient descent convergence pods
(Bertsekas 1999.

Lemma 2 (Asymptotic variations of D t.)
Assume(A) (C) . Then,

Dt Dt:O% a.s.

The proof of this lemma as well the ones of the subsequent pragsitions are all
given in Appendix B for readability purposes. We can now state and prove our rst
proposition, which shows that we are indeed minimizing a smoth function.

Proposition 4 (Regularity of f.)
Assume (A) to (C) . For x in the support K of the probability distribution p, and D in
the feasible seD, let us de ne

?(x;D) = arg min L« D k3+ k ki (2.10)
2Rp 2
Then,
1. the function ~ de ned in Eq. (2.2) is continuously di erentiable and
ro (x;D)= (x D ?(x;D)) ’(x;D):
2. f is continuously di erentiable and r f (D)= Ex r p (x;D) ;

62



2.5. Extensions to Matrix Factorization

3. r (D) is Lipschitz on D.

Now that we have shown thatf is a smooth function, we can state our rst result
showing that the sequence of functiond; acts asymptotically as a surrogate off and
that f (D') converges almost surely in the following proposition.

Proposition 5 (Convergence of f (D!) and of the surrogate function.)

Let f} denote the surrogate function de ned in Eq. @.4). Assume (A) to (C) . Then,
1. f’}(Dt) converges almost surely;
2. (D) fy(D!) converges almost surely td;

3. f (D) converges almost surely.

With Proposition 5 in hand, we can now prove our nal and strongest result, namely
that rst-order necessary optimality conditions are veri e d asymptotically with proba-
bility one.

Proposition 6 (Convergence to a stationary point.)

Under assumptions(A) to (C) , the distance betweerD! and the set of stationary points
of the dictionary learning problem converges almost surelyo 0 whent tends to in nity.

2.5 Extensions to Matrix Factorization

In this section, we present variations of the basic online ajorithm to address di erent
optimization problems. We rst present di erent possible r egularization terms for the
coe cients and D, which can be used with our algorithm, and then detail some spci ¢
cases such as non-negative matrix factorization, sparse mtipal component analysis,
constrained sparse coding, and simultaneous sparse coding

2.5.1 Using Di erent Regularizers for

In various applications, di erent priors for the coe cient s may lead to di erent reg-
ularizers (). As long as the assumptions of Sectior2.4.1 are veri ed, our algorithm
can be used with:

Positivity constraints on  that are added to the "1-regularization. The homotopy
method presented byEfron et al. (2004 is able to handle such constraints.

The Tikhonov regularization, ( = 4k k3, which does not lead to sparse solu-
tions.

The elastic net (Zou and Hastig 2009, ( )= 1k ki + £k k3, leading to a
formulation relatively close to Zou et al. (2006.

Ehe group Lasso (fuan and Lin, 2006 Turlach et al., 2005 Bach, 2008, ( )=
1 k kg, where ' is a vector corresponding to a group of variables.
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Non-convex regularizers such as theg pseudo-norm, " pseudo-norms withqg < 1 can
be used as well. However, as with any classical dictionary &ning techniques exploiting
non-convex regularizers (e.g.,Olshausen and Field 1997 Engan et al., 1999 Aharon
et al., 2000, there is no theoretical convergence results in these case Note also that
convex smooth approximation of sparse regularizersBradley and Bagnell, 2009, or
structured sparsity-inducing regularizers (Jenatton et al., 2009 Jacob et al, 2009 could
be used as well even though we have not tested them.

2.5.2 Using Di erent Constraint Sets for D

In the previous subsection, we have claimed that our algoritm could be used with
di erent regularization terms on . For the dictionary learning problem, we have con-
sidered an ",-regularization on D by forcing its columns to have less than unit ",-
norm. We have shown that with this constraint set, the dictionary update step can be
solved e ciently using a block-coordinate descent approach Updating the j-th column
of D, when keeping the other ones xed is solved by orthogonally mjecting the vector
uw =d +(1=Bj)(cd DbJ) on the constraint set D, which in the classical dictionary
learning case amounts to a projection ofu! on the ~,-ball.

It is easy to show that this procedure can be extended to di eent convex constraint
setsD%as long as the constraints are a union of independent constiats on each column
of D and the orthogonal projections of the vectorsu! onto the set D° can be done
e ciently. Examples of di erent sets D?that we propose as an alternative toD are

The non-negative constraints:

D°, fD2R™ P st 8 2J1;pK kd'k, 1 and d! Og:

The elastic-net constraints:
D% fD2R™ P st 8 2J1;pKk kd'ki+ kdk, 1g:

These constraints induce sparsity in the dictionaryD (in addition to the sparsity-
inducing regularizer on the vectors '). By analogy with the regularization pro-
posed byZou and Hastie (2005, we call these constraints elastic-net constraints.
Here, is a new parameter, controlling the sparsity of the dictionay D. Adding
a non-negativity constraint is also possible in this case. Nte that the presence of
the “, regularization is important here. It has been shown byBach et al. (2009
that using the "1-norm only in such problems lead to trivial solutions whenp is
large enough. The combination of ; and ", constraints has also been proposed
recently for the problem of matrix factorization by Witten et al. (2009, but in a
slightly di erent setting.

The fused lasso (Tibshirani et al., 2005 constraints. When one is looking for
a dictionary whose columns are sparse and piecewise-constaa fused lasso reg-
ularization can be used. For a vectoru in R™, we consider the ;-norm of the
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consecutive di erences ofu denoted by

Xrl - .
FL(u) , jui Ui 1j;
i=2

and de ne the fused lasso constraint set
D% fD2R™ P st 8 2J;pKk kd'ki+ 1kd'ky+ oFL(d)) 1g:

This kind of regularization has proven to be useful for expliting genomic data
such as CGH arrays {libshirani and Wang, 2008.

In all these settings, replacing the projections of the veabrs ul onto the »-ball by
the projections onto the new constraints, our algorithm is gill guaranteed to converge
and nd a stationary point of the optimization problem. The o rthogonal projection onto
the non negative ball is simple (additional thresholding ) but the projection onto the
two other sets is slightly more involved. In Appendix C, we propose two algorithms for
e ciently solving these problems. The rst one is presented in Section C.1 and computes
the projection of a vector onto the elastic-net constraint in linear time, by extending the
e cient projection onto the ";-ball from Maculan and de Paula(1989 and Duchi et al.
(2008. The second one is a homotopy method, which solves the projgdon on the
fused lasso constraint set inO(ps), where s is the number of piecewise-constant parts
in the solution. This method also solves e ciently the fused lasso signal approximation
problem presented inFriedman et al. (2007):

min kb uk3 + ikuk;+ 2FL(u)+ skuk3:
u2Rn 2

Being able to solve this problem e ciently has also numerousapplications, which are
beyond the scope of this work. For instance, it allows us to us the fast algorithm of
Nesterov (2007 for solving the more general fused lasso problemlibshirani et al., 2005.
Note that the proposed method could be used as well with moreamplex constraints for
the columns of D, which we have not tested in this work, addressing for instage the
problem of structured sparse PCA (Jenatton et al., 20109.

Now that we have presented a few possible regularizers for and D, that can be
used within our algorithm, we focus on a few classical probkas which can be formulated
as dictionary learning problems with speci ¢ combinations of such regularizers.

2.5.3 Non Negative Matrix Factorization

negative matrix factorization problem (NMF), which consists of minimizing the following

cost _
X hy o .
min “kx' D 'k3 st. D O;8i; ' O
D2D;A2RP ", _, 2
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where we recall thatA = [ 1;:::; "]. With this formulation, the matrix D and the

vectors ' are forced to have non negative components, which leads to apse solu-
tions. When applied to images, such as faced,ee and Seung(2001) have shown that

the learned features are more localized than the ones leardewith a classical singular
value decomposition. As for dictionary learning, classichapproaches for addressing this
problem are batch algorithms, such as the multiplicative update rules of Lee and Seung
(2002, or the projected gradient descent algorithm ofLin (2007).

Following this line of research,Hoyer (2002 2004 has proposed non negative sparse
coding (NNSC), which extends non-negative matrix factorizaion by adding a sparsity-
inducing penalty to the objective function to further contr ol the sparsity of the vectors '

X hq . X .
min “kx! D K3+ i st D 0,8i2J;nK ' 0
D2D;A2RP ", _, 2 =1

When =0, this formulation is equivalent to NMF. The only di erenc e with the dic-
tionary learning problem is that non-negativity constraint s are imposed onD and the
vectors . A simple modi cation of our algorithm, presented above, alows us to han-
dle these constraints, while guaranteeing to nd a stationay point of the optimization
problem. Moreover, our approach can work in the setting whemn is large.

2.5.4 Sparse Principal Component Analysis

Principal component analysis (PCA) is a classical tool for dta analysis, which can be
interpreted as a method for nding orthogonal directions maximizing the variance of the
data, or as a low-rank matrix approximation method. Jollie et al. (2003, Zou et al.
(2009, d'Aspremont et al. (2007, d'Aspremont et al. (2008, Witten et al. (2009 and
Zass and Shashugd2007) have proposed di erent formulations for sparse principal com-
ponent analysis (SPCA), which extends PCA by estimating spase vectors maximizing
the variance of the data, some of these formulations enforog orthogonality between the
sparse components, whereas some do not. In this work, we foutate SPCA as a sparse
matrix factorization which is equivalent to the dictionary learning problem with possibly
sparsity constraints on the dictionary that is, we use the ";-regularization term for
and the elastic-net constraint for D (as used in a penalty term by Zou et al. 2009:
X hqg _ o _ _
min “kx' D 'k3+ k 'k; st 8 2J;pK kd'ki+ kd'k; 1L
D2R™ PIA2RP 7. 2
As detailed above, our dictionary update procedure amountsto successive orthogonal
projection of the vectors ul on the constraint set. More precisely, the update ofd!
becomes
1

u  —=( Dbl)+d;
dl argminku! dk3 st kdk3+ kdk; 1;
d2Rm

which can be solved in linear time using Algorithm 9 presented in Appendix C. In
addition to that, our SPCA method can be used with fused Lassoconstraints as well.
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2.5.5 Constrained Sparse Coding

Constrained sparse coding problems are often encountered the literature, and lead to
di erent loss functions such as

“qx;D) = min_kx D kK3 sit. k kg T; (2.11)

or
“0x:D) = min k ki st kx D k3 " (2.12)

where T and " are pre-de ned thresholds. Even though these loss functiondead to
equivalent optimization problems in the sense that for givan x;D and , there exist "
and T such that *(x; D), “qx; D) and “%x; D) admit the same solution ?, the problems
of learning D using *, “° of “®are not equivalent. For instance, using °has proven
experimentally to be particularly well adapted to image denoising (Elad and Aharon,
2006 Mairal et al., 2008bH.

For all T, the same analysis as fof can be carried for'% and the simple modi cation
which consists of computing ! using Eq. (2.11) in the sparse coding step leads to the
minimization of the expected cost minp ¢ Ex[ 4x;D)].

Handling the case"%is a bit di erent. We propose to use the same strategy as for
“Othat is, using our algorithm but computing ' solving Eq. (2.12). Even though our
analysis does not apply since we do not have a quadratic surgate of the expected cost,
experimental evidence shows that this approach is e cient in practice.

2.5.6 Simultaneous Sparse Coding

In some situations, the signalsx' are noti.i.d samples of an unknown probability distribu-
tion, but are structured in groups (which are however indepedent from each other), and
one may want to address the problem of simultaneous sparse dimg, which appears also
in the literature under various names such as group sparsityr grouped variable selection
(Cotter et al., 2005 Turlach et al., 2005 Yuan and Lin, 2006 Obozinski et al., 2009 2008

set of signals. Suppose one wants to obtain sparse decompasis of the signals on the
dictionary D that share the same active set (non-zero coe cients). LetA =[ 1;:::; 9]

in RP 9 be the matrix composed of the coe cients. One way of imposingthis joint spar-

sity is to penalize the number of non-zero rows of . A classical convex relaxation of
this joint sparsity measure is to consider the 1.,-norm on the matrix

xXP
kA Ky , KA ka;
i=1

where Aj is the j -th row of A. In that setting, the "1,>-norm of A is the ";-norm of the
“s>-norm of the rows of A.

The problem of jointly decomposing the signalsx' can be written as a1.»-sparse
decomposition problem, which is a subcase of the group Lass@urlach et al., 2005
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Yuan and Lin, 2006 Bach, 2008, by de ning the cost function

1
<0 . _ : - 2 o
™:D)= min SkX DAKE+ KAk

which can be computed using a block-coordinate descent appach (Friedman et al.,
2007 or an active set method (Roth and Fischer, 2008.

bounded size and are independent from each other and identdly distributed, one can
learn an adapted dictionary by solving the optimization problem

1 X .
min lim = 99 D):
po il n._, 06( )

Being able to solve this optimization problem is important for many applications. For
instance, in Mairal et al. (20099, state-of-the-art results in image denoising and demo-
saicking are achieved with this formulation. The extensionof our algorithm to this case
is relatively easy, computing at each sparse coding step a niréx of coe cients A, and
keeping the updates ofB' and C' unchanged.

All of the variants of this section have been implemented. Ng&t section evaluates
some of them experimentally. An e cient C++ implementation with a Matlab interface
of these variants is available on the Willow project-team webpage?

2.6 Experimental Validation

In this section, we present experiments on natural images ah genomic data to demon-
strate the e ciency of our method for dictionary learning, no n-negative matrix factor-
ization, and sparse principal component analysis.

2.6.1 Performance Evaluation for Dictionary Learning

For our experiments, we have randomly selected:25 10° patches from images in the
Pascal VOC'06 image database Everingham et al., 2007, which is composed of varied
natural images; 1¢ of these are kept for training, and the rest for testing. We u®d these
patches to create three data sets\, B, and C with increasing patch and dictionary sizes
representing various settings which are typical in image pocessing applications: We have

Data set Signal sizem Nb p of atoms | Type
A 8 8=64 256 b&w
B 12 12 3=432 512 color
C 16 16 =256 1024 b&w

centered and normalized the patches to have unit,-norm and used the regularization

4http://www.di.ens.friwillow/SPAMS/
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parameter = 1:2:pm in all of our experiments. The 1=pﬁ term is a classical nor-
malization factor (Bickel et al., 2009, and the constant 1:2 has shown to yield about 10
nonzero coe cients for data set A and 40 for data sets B and C inthese experiments.
We have implemented the proposed algorithm in C++ with a Matl ab interface. All the

results presented in this section use the re nements from Sgion 2.3.4since this has lead
empirically to speed improvements. Although our implemenfation is multithreaded, our

experiments have been run for simplicity on a single-CPU, sigle-core 2.66Ghz machine.

The rst parameter to tune is , the number of signals drawn at each iteration.
Trying di erent powers of 2 for this variable has shown that =512 was a good choice
(lowest objective function values on the training set empi rically, this setting also yields
the lowest values on the test set). Even though this parameteis fairly easy to tune since
values of 64, 128, 256 and 1024 have given very similar perfoances, the di erence with
the choice =1 is signi cant.

Our implementation can be used in both the online setting it is intended for, and
in a regular batch mode where it uses the entire data set at edciteration. We have
also implemented a rst-order stochastic gradient descent &yorithm that shares most of
its code with our algorithm, except for the dictionary update step. This setting allows
us to draw meaningful comparisons between our algorithm andts batch and stochastic
gradient alternatives, which would have been di cult other wise. For example, comparing
our algorithm to the Matlab implementation of the batch appr oach fromLee et al. (2007
developed by its authors would have been unfair since our C++program has a built-
in speed advantage. To measure and compare the performances of the three tested
methods, we have plotted the value of the objective functionon the test set acting as a
surrogate of the expected cost, as a function of the correspaling training time.

Online vs. Batch

The left column of Figure 2.1 compares the online and batch settings of our implemen-
tation. The full training set consists of 10° samples. The online version of our algorithm
draws samples from the entire set, and we have run its batch wsion on the full data set
as well as subsets of size Gand 10° (see Figure2.1). The online setting systematically
outperforms its batch counterpart for every training set size and desired precision. We
use a logarithmic scale for the computation time, which show that in many situations,
the di erence in performance can be dramatic. Similar expeiments have given similar
results on smaller data sets. Our algorithm uses all the spekups from Section2.3.4.
The parameter was chosen by trying the values 05; 10; 15; 20; 25, and ty by trying
di erent powers of 10. We have selected fp = 0:001; = 15), which has given the best
performance in terms of objective function evaluated on thetraining set for the three
data sets. We have plotted three curves for our method:OL1 corresponds to the optimal

®Both LARS and the feature-sign algorithm ( Lee et al., 2007) require a large number of low-level
operations which are not well optimized in Matlab. We have indeed obser ved that our C++ implemen-
tation of LARS is up to 50 times faster than the Matlab implementation of th e feature-sign algorithm
of Lee et al. (2007) for our experiments.
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2. Online Learning for Matrix Factorization and Sparse Coding

setting (to = 0:001; = 15). Even though tuning two parameters might seem cumber-
some, we have plotted two other curves showing that, on the aatrary, our method is
very easy to use. The curveOL2, corresponding to the setting to = 0:00%;, = 10), is
very di cult to distinguish from the rst curve and we have ob served a similar behavior
with the setting (to = 0:001;, = 20). showing that our method is robust to the choice
of the parameter . We have also observed that the parameter is useful for large data
sets only. When using smaller onesrn{ 100, 000), it did not bring any bene t.
Moreover, the curve OL3 is obtained without using a tuned parameter tg that is,

=15 and tg = 0, and shows that its in uence is very limited since very goaod results are
obtained without using it. On the other hand, we have observel that using a parameter
to too big, could slightly slow down our algorithm during the r st epoch (cycle on the
training set).

Comparison with Stochastic Gradient Descent

Our experiments have shown that obtaining good performancevith stochastic gradient
descent requires using both the mini-batch heuristicand carefully choosing a learning
rate of the form a=(t + b). To give the fairest comparison possible, we have thus
optimized these parameters. As for our algorithm, sampling values among powers of
2 (as before) has shown that = 512 was a good value and gives a signi cant better
performance than = 1.

In an earlier version of this work (Mairal et al., 20099, we have proposed a strategy
for our method which does not require any parameter tuning exept the mini-batch
and compared it with the stochastic gradient descent algorihm (SGD) with a learning
rate of the form a=(t). While our method has improved in performance using the new
parameter , SGD has also proven to provide much better results when usip a learning
rate of the form a=(t + b) instead of a=(t), at the cost of an extra parameter b to
tune. Using the learning rate a=( t ) with a high value for a results indeed in too large
initial steps of the algorithm increasing dramatically the value of the objective function,
and a small value ofa leads to bad asymptotic results, while a learning rate of theform
a=(t + b) is a good compromise.

We have tried di erent powers of 10 for a and b. First selected the couple & =
100,000, b= 100; 000) and then re ned it, trying the values 100;000 2 fori = 3::::;3.
Finally, we have selected & = 200; 000G b = 400;000). As shown on the right column
of Figure 2.1, this setting represented by the curveSG1lleads to similar results as our
method. The curve SG2corresponds to the parameters & = 400; 00G, b = 400; 000) and
shows that increasing slightly the parametera makes the curves worse than the others
during the rst iterations (see for instance the curve between 1 and 16 seconds for
data set A), but still lead to good asymptotic results. The curve SG3corresponds to a
situation where a and b are slightly too small (a = 50; 000, b= 100; 000). It is as good as
SG1for data sets A and B, but asymptotically slightly below the others for data set C. All
the curves are obtained as the average of three experimentsitiv di erent initializations.
Interestingly, even though the problem is not convex, the dierent initializations have
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Figure 2.1: Left: Comparison between our method and the bath approach for dictionary
learning. Right: Comparison between our method and stochatc gradient descent. The
results are reported for three data sets as a function of comyttation time on a logarithmic
scale. Note that the times of computation that are less than 01s are not reported. See
text for details.
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led to very similar values of the objective function and the variance of the experiments
was always insigni cant after 10 seconds of computations.

2.6.2 Non Negative Matrix Factorization and Non Negative Sp arse
Coding

In this section, we compare our method with the classical algrithm of Lee and Seung
(2001 for NMF and the non-negative sparse coding algorithm ofHoyer (2002 for NNSC.
The experiments have been carried out on three data sets withli erent sizes:

Data set D is composed o = 2;429 face images of sizen =19 19 pixels from
the the MIT-CBCL Face Database #1 ( Sung 1996.

Data set E is composed oh = 2; 414 face images of sizen =192 168 pixels from
the Extended Yale B Database Georghiades et al, 2001, Lee et al, 2005.

Data set F is composed oh = 100; 000 natural image patches of sizen =16 16
pixels from the Pascal VOC'06 image databaseHKveringham et al., 2007).

We have used the Matlab implementations of NMF and NNSC of P. Hbyer, which
are freely available at http://www.cs.helsinki.fi/u/phoyer/software.html . Even
though our C++ implementation has a built-in advantage in term s of speed over these
Matlab implementations, most of the computational time of NMF and NNSC is spent
on large matrix multiplications, which are typically well o ptimized in Matlab. All the
experiments have been run for simplicity on a single-CPU, sigle-core 2.4GHz machine,
without using the parameters and ty presented in Section2.3.4that is, =0 and
to = 0. As in Section 2.6.1, a minibatch of size =512 is chosen. Following the original
experiment of Lee and Seung200]) on data set D, we have chosen to learp = 49 basis
vectors for the face images data sets D and E, and we have chaosp = 64 for data set F.
Each input vector is normalized to have unit “>-norm.

The experiments we present in this section compare the valuef the objective function
on the data sets obtained with the di erent algorithms as a function of the computation
time. Since our algorithm learns the matrix D but does not provide the matrix
the computation times reported for our approach include two steps: First, we run our
algorithm to obtain D. Second, we run one sparse coding step over all the input veats
to obtain . Figure 2.2 presents the results for NMF and NNSC. The gradient step for
the algorithm of Hoyer (2002 was optimized for the best performance and was set to
p%. Both D and were initialized randomly. The values reported are those otained
for more than 0:1s of computation. Since the random initialization provides an objective
value which is by far greater than the value obtained at convegence, the curves are
all truncated to present signi cant objective values. All t he results are obtained using
the average of 3 experiments with di erent initializations. As shown on Figure2.2, our
algorithm provides a signi cant improvement in terms of speed compared to the other
tested methods, even though the results for NMF and NNSC couw be improved a bit
using a C++ implementation.
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