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résumé

De nos jours, les sciences expérimentales doivent traiter une quantité de données
importante et grandissante. A�n de comprendre les phénomènes naturels ainsi que les
lois qui les régissent, les scienti�ques ont construit des outils améliorant leurs possibilités
d'observer le monde, comme des microscopes ou téléscopes. Augmenter la précision de
ces outils, ou bien mesurer des quantités �invisibles� par la technologie actuelle sont
toujours des préoccupations importantes aujourd'hui. Cette approche empirique soulève
toutefois la question de l'analyse et de l'interpétation des données recueillies, de par leur
volume et leur complexité. Il s'agit ainsi d'un problème récurrent en neuro-sciences où
l'on e�ectue diverses mesures de l'activité cérébrale, en bio-informatique, où l'on mesure
l'expression de gènes, ou bien en radioastronomie avec l'observation du rayonnement
fossile de l'univers.

D'autres domaines, en dehors du champ des sciences purementexpérimentales, doi-
vent faire face à des problématiques similaires. Ainsi, en robotique, vision arti�cielle, ou
imagerie médicale, les scienti�ques souhaitent �comprendre� automatiquement des �ux
video contenant des millions de pixels ; en sociologie et sciences humaines obtenir des
statistiques de population sur de larges bases de données peut être une tâche di�cile
pour les mêmes raisons. Par ailleurs, le développement d'outils e�caces de traitement de
données peut aussi a�ecter la vie de tous les jours. Nous produisons ainsi pour des raisons
de divertissement une grande quantité de signaux, ne serait-ce que par nos appareils
photo numériques ou bien nos téléphones portables.

Trouver la meilleure façon de représenter ces signaux numériques est par conséquent
une question importante et toujours d'actualité, bien qu'elle ait fait l'objet d'un nombre
considérable de publications. Nous étudions dans cette thèse une représentation particu-
lière, intitulée codage parcimonieux, fondée sur une méthode d'apprentissage statistique
qui s'est révélée empiriquement être très e�cace pour certains types de signaux comme
les images naturelles. Notre but est de développer de nouveaux outils algorithmiques ex-
ploitant cette méthode de codage, ainsi que de nouveaux domaines d'application. Nous
adopterons une approche multi-disciplinaire que nous allons détailler par la suite.

Plus concrètement, le codage parcimonieux consiste à représenter des signaux comme
combinaisons linéaires de quelques éléments d'un dictionnaire. Ceci peut être vu comme
une extension du cadre classique des ondelettes, dont le butest de construire de tels
dictionnaires (souvent des bases orthonormales) adaptés aux signaux naturels. De nom-
breux types d'ondelettes ont ainsi été proposés dans le passé, qui varient essentiellement
par leur complexité et leurs propriétés géométriques, maisdé�nir manuellement de tels
dictionnaires demeure une tâche di�cile. La ligne de recherche que nous poursuivons
dans cette thèse di�ère du cadre des ondelettes dans le sens où le dictionnaire n'est
plus �xe et pré-dé�ni par son utilisateur, mais appris à partir de données d'entraîne-
ment. Cette approche admet donc des similarités avec l'analyse en composantes princi-
pales (ACP), qui �apprend� des �directions principales� or thonormales représentant des
données, la principale di�érence étant l'absence de contrainte d'orthogonalité entre les
éléments du dictionnaire. Il en résulte un problème non convexe de factorisation de ma-
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trice, qui en pratique nécessite l'utilisation d'outils d' optimisation convexe de fonctions
non régulières. Le principal succès des méthodes d'apprentissage de dictionnaire a été la
modélisation d'imagettes dans les images naturelles, et laperformance des algorithmes
de débruitage les utilisant, ce qui a été une motivation importante pour le sujet de nos
recherches.

Nous traitons plusieurs questions ouvertes dans cette thèse : Comment apprendre ef-
�cacement un dictionnaire ? Comment enrichir le codage parcimonieux en structurant le
dictionnaire ? Peut-on améliorer les méthodes de traitementd'image utilisant le codage
parcimonieux ? Comment doit-on apprendre le dictionnaire pour une tâche autre que la
reconstruction de signaux, quelles en sont les applications en vision par ordinateur ? Nous
essayons de répondre à ces questions par une approche multidisciplinaire, en empruntant
des outils d'apprentissage statistique, d'optimisation convexe et stochastique, de traite-
ment des signaux et des images, de vision par ordinateur, mais aussi d'optimisation sur
des graphes.

L'apprentissage de dictionnaire est souvent considéré comme un processus très coû-
teux en terme de temps de calcul. La première contribution decette thèse est un nou-
vel algorithme d'apprentissage en ligne, fondé sur des méthodes d'approximation sto-
chastique, qui permet d'obtenir un point stationnaire du problème d'optimisation non
convexe initial. Notre méthode permet de traiter de grandesbases de données contenant
des millions d'exemples d'apprentissage, et s'étend à une large panoplie de problèmes
de factorisation de matrices, tels que la factorisation de matrices positives ou l'ana-
lyse en composantes principales parcimonieuses. Dans le cadre de ce travail, nous avons
aussi développé un logiciel utilisable gratuitement, dontla performance dépasse de façon
signi�cative les méthodes concurrentes en termes de vitesse.

Nous nous intéressons ensuite au problème de la structuration du dictionnaire, et à la
résolution e�cace des problèmes d'optimisation correspondants. A cet e�et, nous exploi-
tons des travaux récents qui fournissent un cadre naturel à notre problématique, intitulé
codage parcimonieux structuré. Nous étudions en particulier le cas où les dictionnaires
sont munis d'une structure hiérarchique, et le cas général où leurs éléments sont struc-
turés en groupes qui se recouvrent. La principale di�culté soulevée par cette nouvelle
formulation est le problème d'optimisation correspondantà la décomposition d'un signal
étant donné un dictionnaire structuré �xe. La solution que nous proposons combine des
outils d'optimisation convexe et d'optimisation sur des graphes et peut en fait être uti-
lisée pour résoudre une grande variété de problèmes d'apprentissage. Plus précisément,
nous montrons que l'opérateur proximal associé à la régularisation structurée que nous
considérons, est relié à un problème de �ot sur un graphe particulier, et peut être calculé
e�cacement et à grande échelle grâce à un algorithme que nousavons développé. Nous
espérons que cette avancée permettra d'ouvrir de nouveaux champs d'application aux
méthodes parcimonieuses structurées. Un logiciel implémentant les outils proposés sera
disponible gratuitement.

La troisième question traitée dans cette thèse concerne l'amélioration des techniques
de traitement d'image utilisant l'apprentissage de dictionnaire. Pour ce faire, nous propo-
sons en sus du codage parcimonieux, d'exploiter explicitement les similarités à l'intérieur
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des images, ce qui est le fondement de l'approche de moyennage non-local pour la restau-
ration. A cette �n, nous utilisons le codage parcimonieux simultané, en décomposant de
façon jointe des groupes de signaux similaires sur des sous-ensembles d'un dictionnaire
appris. Nous montrons que cette approche permet d'obtenir des résultats qui dépassent
l'état de l'art pour les tâches de débruitage et dématriçagedans les images, et qu'elle
permet de traiter des données brutes d'appareils photos numériques en proposant une
qualité meilleure que celle o�erte par les logiciels commerciaux.

Nous concluons cette thèse en utilisant l'apprentissage dedictionnaire pour des tâches
autres que purement reconstructives. A cet e�et, nous présentons une méthode d'appren-
tissage supervisée, fondée sur un algorithme d'optimisation stochastique, pour des tâches
de classi�cation ou de régression, adaptée à des signaux quiadmettent des représenta-
tions parcimonieuses. Nous illustrons aussi ce concept en modélisant des imagettes de
façon discriminative, et montrons que ceci permet de modéliser les contours dans les
images. En particulier, nous présentons un détecteur de contour, qui peut aussi être
utilisé pour apprendre l'apparence locale des contours d'objets spéci�ques.
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abstract

Many �elds from experimental sciences now deal with a large and growing amount of
data. To understand natural phenomena and eventually theirunderlying laws, scientists
have built physical devices that have enhanced their observation capabilities, such as
various types of microscopes or telescopes. Improving uponphysical devices, to obtain a
better precision or to measure quantities that are invisible with current technologies, is of
course still an active scienti�c topic. On the other hand, scientists have also developed
tools to record and process their observations with computers, to analyze and better
understand them. This is for instance a common approach to neuroscience with diverse
types of measurements of the neural activity, in bioinformatics with gene expressions, or
in radio astronomy with measurements of the cosmic microwave background. However,
this approach also raises new challenging questions, such as how one should process the
resulting large amount of data.

The same need for scalable and e�cient data processing toolsarises in other �elds
than pure experimental sciences, such as robotics, computer vision, and biomedical imag-
ing, where one wishes to �understand� continuous video streams containing millions of
pixels; but also sociology, where obtaining population statistics from large databases
can be di�cult. Moreover, developing new data processing tools could also a�ect the
everyday life, where devices such as CCD sensors from digital cameras or cell phones are
intensively used for entertainment purposes.

The question of how to represent these digital signals is therefore still acute and of
high importance, despite the fact that it has been the topic of a tremendous amount of
work in the past. We study in this thesis a particular signal representation calledsparse
coding, based on a machine learning technique, and which has provento be e�ective
for many modalities such as natural images. Our goal is to provide new algorithmic
tools and applications to this coding method, by addressingthe problem from various
perspectives, which we will detail in the sequel.

Concretely, sparse coding consists of representing signals as linear combinations of a
few elements from a dictionary. It can be viewed as an extension of the classical wavelet
framework, whose goal is to design such dictionaries (oftenorthonormal basis) that are
adapted to natural signals. Numerous types of wavelets haveindeed been proposed in the
past, which essentially vary in terms of complexity and geometric properties. Designing
by hand such dictionaries remains, however, a di�cult task. The line of research we follow
in this thesis di�ers from wavelets in the sense that the dictionary is not �xed and pre-
de�ned, but learned from training data. It shares a similar goal as principal component
analysis (PCA), which also �learns� how to represent data by computing orthonormal
�principal directions�. From an optimization point of view , dictionary learning results
in a nonconvex matrix factorization problem, but often deals with nonsmooth convex
optimization tools. An important success of dictionary learning has been its ability to
model natural image patches and the performance of image denoising algorithms that it
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has yielded, which has been an important motivation for our research.
We address in this thesis several open questions: How to e�ciently optimize the

dictionary? How can sparse coding be enriched by structuring the dictionary? How can
one improve sparse coding for image processing tasks? Can welearn the dictionary for
a di�erent task than signal reconstruction, and what are the possible applications to
computer vision? We try to answer these questions with a multidisciplinarity point of
view, using tools from statistical machine learning, convex and stochastic optimization,
image and signal processing, computer vision, but also optimization on graphs.

Dictionary learning is often considered as a computationally demanding process. The
�rst contribution of this thesis is a new online learning algorithm, based on stochastic
approximations, which is proven to converge to a stationary point of the nonconvex
optimization problem. It gracefully scales up to large datasets with millions of training
samples, and naturally extends to various matrix factorization formulations, making it
suitable for a wide range of learning problems, such as non-negative matrix factorization
and sparse principal component analysis. Along with this work, we have developed a
freely available software package, which signi�cantly outperforms other approaches in
terms of speed.

We then address the questions of how to structure the dictionary, and how to solve the
corresponding challenging optimization problems. To thate�ect, we exploit recent works
on structured sparsity, which provide a natural framework to answer our question. We
study the case where dictionaries are embedded in a hierarchy and the general case where
dictionary elements are structured into overlapping groups. The main di�culty raised by
this new formulation is how to decompose a signal given a �xedstructured dictionary.
The solution we propose combines ideas from convex optimization and network �ow
optimization. It in fact extends beyond the dictionary lear ning framework and can be
used for solving a new class of regularized machine learningproblems. More precisely,
we show that the proximal operator associated with the structured regularization we
consider is related to a quadratic min-cost �ow problem, and can be solved e�ciently
at large scale with an algorithm we propose. We therefore make a bridge between
the literature of sparse methods, and network �ow optimization. We hope that this
contribution will open up a new range of applications for structured sparse models. A
software package implemented these methods has been developed and will be made freely
available.

The third question we address also consists of enriching thebasic dictionary learning
framework, but in a speci�c way for image processing applications. Explicitly exploiting
the self-similarities of natural images has led to the successful �non-local means� ap-
proach to image restoration. We propose simultaneous sparse coding as a framework for
combining this approach with dictionary learning in a natur al manner. This is achieved
by jointly decomposing groups of similar signals on subsetsof the learned dictionary.
We show that this approach achieves state-of-the-art results for image denoising and de-
mosaicking, and competes with commercial software for restoring raw data from digital
cameras.

We concludes this thesis by considering dictionary learning as a way to learn features
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for a di�erent task. We show that it can be used in a supervised way for di�erent
classi�cation or regression tasks, for data that admit sparse representation, and show
how to use a stochastic gradient descent algorithm for addressing the new learning
problem. We also show that this idea can be used in computer vision for modelling
the local appearance of natural image patches in a discriminative way, and that it is
especially well adapted for modelling edges in natural images. In particular, we address
with this approach the problem of edge detection, category-based edge detection and
show that it leads to state-of-the-art results for other tasks such as digit recognition of
inverse half-toning.
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Introduction and Related Work

Finding �good� signal representations has been the topic ofa large amount of research
since early works in signal and image processing. Estimation problems arising in these
�elds, such as denoising, reconstruction from incomplete data, or more generally restora-
tion, are indeed often di�cult to solve without an arbitrary a priori model of the data
source.

Various smoothness assumptions were �rst used, leading forinstance to Laplacian
�ltering ( Kovasznay and Joseph, 1955), anisotropic �ltering ( Perona and Malik, 1990)
or total variation ( Rudin and Osher, 1994) in image processing, to cite only a few of
them. More recent works have focused on representing data vectors as linear combina-
tions of few elements from a pre-de�neddictionary , which is often an orthonormal basis
set, introducing the concept of sparsity. Finding low-dimensional representations of a
given signal in a well chosen basis set is intuitively usefulfor restoration:1 Suppose that
we have at our disposal a dictionary which is good at reconstructing a class of signals
(i.e., the signals admit sparse representations over the dictionary), and bad at recon-
structing noise. Then, one hopes that a sparse approximation of a noisy signal with the
dictionary signi�cantly reduces the amount of noise without losing signal information.2

Experiments have shown that such a model with sparse decompositions (sparse coding)
is very e�ective in many applications (Chen et al., 1998).

However, the question of designing good dictionaries adapted to di�erent modalities
(e.g., natural images) remains open, and has in fact been an active topic of research.
The discrete cosine transform (Ahmed et al., 1974), wavelets (seeMallat , 1999, and
references therein), curvelets (Candes and Donoho, 2002, 2004), contourlets (Do and
Vetterli , 2003a,b), wedgelets (Donoho, 1998), bandlets (Mallat and Pennec, 2005a,b;
Mallat and Peyré, 2008), and steerable wavelets (Freeman and Adelson, 1991; Simoncelli
et al., 1992) are all attempts to ful�ll the above sparse coding model for natural signals.

1The terminology �basis� is slightly abusive here since the element s of the dictionary are not neces-
sarily linearly independent and the set can be overcomplete�that i s, have more elements than the signal
dimension.

2Formally, let x be a clean signal in Rn which lives in a linear subspace � of dimension L � n, and
let us consider a noisy version y = x + w, where w is a white and Gaussian noise vector of standard
deviation � . A projection of the noisy vector y onto the linear subspace � is equal to x + w 0, with
E[kw 0k2

2 ] = L� 2 � E[kwk2
2 ] = n� 2 , and the amount of noise is reduced. The main di�culty is in fact to

�nd the right subspace �, which is usually unknown.
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1. Introduction and Related Work

Indeed, they have led to e�ective algorithms for many image processing applications,
such as compression (Mallat , 1999; Chang et al., 2000), denoising (Starck et al., 2002;
Portilla et al. , 2003; Matalon et al., 2005; Eslami and Radha, 2006), inpainting ( Elad
et al., 2005), and more. Note that the terminology of �models� we have used so far is a
bit loose. The ones we have mentioned and will use in this thesis are not �true� models in
the generative sense.3 They in fact de�ne classes of regularized signals which hopefully
contain the ones one wants to represent, but also contain (infact mostly) irrelevant ones.

Originally introduced by Olshausen and Field(1996, 1997) to model the receptive
�elds of simple cells in the mammalian primary visual cortex, the idea of learning the
dictionary instead of using a prede�ned one has recently ledto state-of-the-art results in
numerous low-level signal processing tasks such as image denoising (Elad and Aharon,
2006; Mairal et al. , 2008b,d, 2009c), texture synthesis (Peyré, 2009), and audio process-
ing (Zibulevsky and Pearlmutter, 2001; Grosse et al., 2007; Févotte et al., 2009), as well
as higher-level tasks such as image classi�cation (Raina et al., 2007; Mairal et al. , 2008a,
2009b; Bradley and Bagnell, 2009; Yang et al., 2009; Boureau et al., 2010), showing
that sparse learned models are well adapted to a large class of natural signals. Unlike
decompositions based on principal component analysis and its variants, these models
do not impose that the basis vectors be orthogonal, allowingmore �exibility to adapt
the representation to the data, and they have been shown to signi�cantly improve sig-
nal reconstruction (Elad and Aharon, 2006). Although some of the learned dictionary
elements may sometimes �look like� wavelets (or Gabor �lters), they are tuned to the
input images or signals, leading to much better results in practice.

It is interesting to see that some of the concepts presented here have also emerged
in statistics and machine learning from a slightly di�erent viewpoint. In this literature,
What we have called �dictionary� in the previous paragraphs is usually �xed, and is
de�ned as a set of �predictors� or �variables�. Statistical estimators and solutions of
machine learning problems are often de�ned as linear combinations of such �predictors�
and in fact, due to their simplicity, these linear models arethe most widely used ones for
prediction tasks (Hastie et al., 2009). In supervised learning, an empirical risk (usually
a convex loss) is minimized, so that the linear model �ts sometraining data, and one
hopes that the learned model generalizes well on new data points. However, due to pos-
sibly small numbers of training samples and/or a large number of predictors, over�tting
can occur, meaning that the learned parameters do �t well thetraining data, but have
a bad generalization performance. This issue can be solved by making a priori assump-
tions on the solution, naturally leading to the concept of regularization. When smooth
solutions are preferred, one can for instance use the Tikhonov regularization (Tikhonov
and Arsenin, 1977), also used in ridge regression (Hoerl and Kennard, 1970). When one
knows in advance that the solution is sparse�that is, only a f ew predictors are relevant,
a sparsity-inducing regularization such as the`1-norm is well adapted, leading for in-
stance to the Lasso (Tibshirani , 1996), or equivalently to the basis pursuit formulation

3 In a generative setting, one usually models the underlying probabil ity distribution of input data,
from which it is possible to draw new samples. To the best of our know ledge, no such good model exists
for natural images.
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from the signal processing literature (Chen et al., 1998). Note that the `1-norm was also
used by Markowitz (1952) for the problem of portfolio selection, and has in fact been
revisited several times.

More generally, it is possible to encode additional knowledge in the regularization
than just sparsity. A recent topic of research indeed consists of building structured
sparsity-inducing norms, which encourage the solutions of sparse regularized problems
to have speci�c patterns of non-zero coe�cients. One may wantsuch patterns to be struc-
tured in non-overlapping groups (Turlach et al. , 2005; Yuan and Lin, 2006; Obozinski
et al., 2009), in a tree (Zhao et al., 2009; Bach, 2009), or in overlapping groups (Jenatton
et al., 2009; Jacob et al., 2009; Huang et al., 2009; Baraniuk et al., 2010).

The work presented in this thesis follows these lines of research. It provides e�cient
algorithmic tools for dictionary learning and structured sparse decomposition problems.
It also extends the dictionary learning formulation to a supervised setting, and presents
applications in image processing and computer vision that achieves state-of-the-art re-
sults for di�erent tasks. We present in more details these contributions in Section 1.1,
before introducing in Section 1.2 the notation used throughout the thesis. We also
present in Section1.3 sparsity-inducing norms, and in Section1.4 the optimization tools
for sparse methods which we have used. We brie�y review the literature of dictionary
learning in Section 1.5, as well as its successful applications in image processingin Sec-
tion 1.6.

1.1 Contributions of the Thesis

This thesis brings several contributions to the �elds of sparse methods in machine learn-
ing, signal and image processing, and computer vision. We now review them, following
the organization of the manuscript:

� Chapter 2 presents a fast dictionary learning algorithm based on stochastic ap-
proximations, which, to the best of our knowledge, signi�cantly outperforms all
approaches in terms of speed. This procedure allows learning dictionaries with
millions of training samples, and can be extended to variousmatrix factorization
problems, such as non-negative matrix factorization and sparse principal compo-
nent analysis. An e�cient C++ implementation of this algorit hm is available in
the software SPAMS, and is presented in more details in Appendix D.4

� Chapter 3 introduces new algorithmic tools for solving structured sparse decom-
position problems. We show that the proximal operator associated with the norms
we consider is related to �nding a �ow with minimum cost on a particular graph,
which makes a bridge between the literature of sparse methods and network �ow
optimization. We propose an e�cient an scalable procedure for solving it, which
opens up a new range of applications for structured sparse models. We illustrate
our approach for learning hierarchically structured dictionaries of natural image

4The software can be freely downloaded at http://www.di.ens.fr/willow/SPAMS/ .
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patches that show improved performance over classical unstructured ones in noisy
settings, and background subtraction in videos.

� We show in Chapter 4 how to exploit both image self-similarities and sparse repre-
sentations for image restoration using simultaneous sparse coding. The proposed
approach achieves state-of-the-art results for image denoising and image demo-
saicking, as well as competitive results for denoising raw data from CCD sensors
of digital cameras.

� In Chapter 5, we introduce discriminative sparse representations, which are well
suited for modelling the appearance of image patches, especially edges in images.
We use these representations for classifying patches from di�erent textures, from
di�erent objects, and learning a class-speci�c edge detector.

� In Chapter 6, we present a more general formulation than in Chapter5 for learning
dictionaries adapted to classi�cation or regression tasks and an e�cient optimiza-
tion procedure for solving it. This approach leads to (or close to) state-of-the-art
results for several problems such as digit recognition and non-linear inverse image
mapping tasks such as inverse halftoning.

1.2 Notation

We denote vectors by bold lower case letters, and matrices bybold upper case ones.
For a vector x in Rm and and integer j in J1;mK, f 1; : : : ; mg, the j -th entry of x is
denoted by x j . For a matrix X in Rm� n , and a pair of integers (i; j ) 2 J1;mK� J1;nK,
the entry at row i and column j of X is denoted byX ij . When � � J1;mKis a �nite set
of indices, the vectorx � of sizej� j contains the entries ofx corresponding to the indices
in �. Similarly, when X is a matrix of size m � n and � � J1;nK, X � is the matrix of
sizem � j � j containing the columns of X corresponding to the indices in �.

We de�ne for q � 1 the `q-norm of a vector x in Rm as:

kxkq ,
� mX

i =1

jx j jq
� 1=q

; and kxk1 , max
j =1 ;:::;m

jx j j = lim
q!1

kxkq:

We also de�ne the `0 pseudo-norm as the sparsity measure which counts the number of
nonzero elements in a vector:5

kxk0 , # f j s.t. x j 6= 0g = lim
q! 0+

� mX

j =1

jx j jq
�
:

We denote the Frobenius norm of a matrixX in Rm� n by

kX kF ,
� mX

i =1

nX

j =1

X 2
ij

� 1=2
:

5Note that it would be more proper to write kxk0
0 instead of kxk0 to be consistent with the traditional

notation kxkq . However, for the sake of tradition, we will keep this notation unchange d.
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We usually denote a sequence of scalars and real-valued functions with lower indices,
for instance ut , for t � 0, and sequences of vectors and matrices using upper indices, for
instance x t or X t , t � 0. For a sequence of vectors (or matrices)x t and scalarsut , we
write x t = O(ut ) when there exists a constantK > 0 so that for all t, kx t k2 � Ku t .
Note that for �nite-dimensional vector spaces, the choice ofnorm is essentially irrelevant
(all norms are equivalent).

We denote by B " (x ) the open ball of radius " centered in x. Given two matrices X
in Rm1 � n1 and Y in Rm2 � n2 , X 
 Y denotes the Kronecker product betweenX and Y ,
de�ned as the matrix in Rm1m2 � n1n2 , with blocks of sizesm2 � n2 equal to X ij Y . For
more details and properties of the Kronecker product, seeGolub and Van Loan (1996),
and Magnus and Neudecker(1999). When necessary, other speci�c notations will also
be introduced in the remaining chapters.

1.3 Sparse Methods and Sparsity-Inducing Norms

Sparse regularized problems in machine learning and signalprocessing often consist
of �tting some model parameters � in Rp to training data, while making the a priori
assumption that � should be sparse. This is usually achieved by minimizing some smooth
convex function f : Rp ! R,6 which is typically an empirical risk in machine learning or
a data �tting term in signal processing, and a sparsity-inducing regularization 
:

min
� 2A

�
g(� ) , f (� ) + � 
( � )

�
; (1.1)

where A � Rp is a convex set,� is a vector in A , and � is a non-negative parameter
controlling the trade-o� between data �tting and regulariza tion. To encourage sparsity
in � , a natural choice would be to take 
 to be the `0 pseudo-norm that counts the
number of non-zero coe�cients in � . However, solving Eq. (1.1) in this setting is often
intractable, such that one has either to look for an approximate solution using a greedy
algorithm, or one should resort to a convex relaxation instead. A typical example of
such a convex formulation is for instance the`1-decomposition problem, also known as
the Lasso (Tibshirani , 1996) or basis pursuit (Chen et al., 1998):

min
� 2 Rp

h1
2

kx � D � k2
2 + � k� k1

i
; (1.2)

where x in Rm is a signal andD = [ d1; : : : ; dp] in Rm� p is a dictionary whose columns
are the dictionary elements. As shown below, when the value of � is large enough,�
is known to be sparse, and only a few dictionary elements are involved. The problem
of e�ciently solving Eq. ( 1.2) has received a lot of attention lately. Indeed, the corre-
sponding literature is abundant, vast, but also redundant and confusing. We will present
later in this manuscript optimization methods which have experimentally proven to be
e�cient for the applications we are interested in.

Before that, let us develop a bit more the discussion on sparse regularization prob-
lems, by answering our �rst important question

6We often assumef to be di�erentiable with a Lischitz continuous gradient.
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1.3.1 Does The `1-norm Induce Sparsity?

Let us consider the general formulation of Eq. (1.1) and let us take 
 to be the `1-norm.
Our �rst remark will be a bit contradictory with the terminol ogy of �sparsity-inducing
norm� often used to characterize the `1-norm, but we will clarify this in the sequel.
Indeed, depending on the choice off , the `1 regularization in Eq. (1.1) does not always
lead to sparse solutions. Let us consider for instance the problem of minimizing onR+

the function g(� ) � 2
p

� + � j� j, where � is a scalar. The solution is� ?(� ) = 1
� 2 , which

is never zero for any value of� . To enjoy sparsity-inducing properties of the `1-norm,
we need to be a bit more careful in the choice of the functionf we want to regularize.
For instance, whenf is di�erentiable at zero, then the solution is exactly zero when � is
large enough (we will characterize in Section1.4 why this is true). The Lasso formulation
presented in Eq. (1.2) enjoys this property, and so will be all the functions that we will
consider in this thesis. We will now assume thatf satis�es this condition.

Let us now suppose that the solution of Eq. (1.1), which we denote by � ?(� ), is
unique. We know that � ?(� ) is equal to 0 when � is large enough, but one can also
wonder whether � can help us in controlling the sparsity of � ?(� ). In other words, if
given � the solution � ?(� ) has a sparsity s , k� ?(� )k0, can we increase (or decrease)
the value of s by reducing (respectively increasing) the value of� ? We have observed
in this thetis that it is empirically often true, even though there are no clear analytical
arguments relating the `1-norm of a solution to the corresponding sparsity that it yields.
On the other hand, it is very easy to generate counter-examples, where this �expected�
behavior is not exactly satis�ed for every value of � , especially when using randomly
generated data, for which no good dictionary exists. Let us illustrate this with an
example: We consider a random dictionaryD in R5� 5 whose entries are i.i.d. samples
from a normal distribution N (0; 1). We generate a vectorx in R5 the same way. We
present in Figure 1.1 the regularization path of the corresponding Lasso formulation�
that is, all the solutions � ?(� ) for every value of � for two di�erent couples ( D ; x)
obtained in this manner. We observe on the �rst one a �typical� behavior: When � is
large enough, the solution is 0. When� progressively decreases, variables enter the set
of active variables, one at a time, until the solution is not sparse anymore. In this case,
the sparsity of the solution is a decreasing function of� . The second case is a counter-
example, where variable number 4 gets active in the path before getting inactive again,
making the sparsity of the solution non decreasing with� . Note that these regularization
paths that we have plotted are piecewise linear. This is in fact a property of the Lasso,
which we will formally detail later.

We have presented results on the choice of thè1-norm which are both positive and
negative, showing that it can induce sparsity under some conditions, and claiming that
controlling the `1-norm of a solution makes it possible to control its sparsity in many
practical situations. Let us now give some intuition about the reasons why.
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(a) �Typical Scenario�

0 1 2 3 4
-0.5

0

0.5

1

1.5

l
co

ef
fic

ie
nt

 v
al

ue
s

 

 

a
1

a
2

a
3

a
4

a
5

(b) Counter-example

Figure 1.1: Values of the solutions� ?(� ). Each curve corresponds to one entry in� ? as
a solution of the regularization parameter � .

1.3.2 Why Does the `1-Norm Induce Sparsity?

As already mentioned, there is no general analytical link relating the `1-norm of a solution
with the sparsity in general. However, there are several intuitive reasons why an`1-norm
regularizer encourages sparse solutions in general.

Analytical Analysis in 1-D � Soft-Thresholding

Let us consider the one-dimensional case, with the followingoptimization problem

min
� 2 R

�
g(� ) ,

1
2

(x � � )2 + � j� j
�
;

wherex is a scalar. The functiong is piecewise quadratic with a kink (non-di�erentiable
point) at 0. Optimality conditions of this problem are the fo llowing

� If j� j > 0, g is di�erentiable at � and g0(� ) = x � � + � sign(� ) = 0.

� If � = 0, the right and left derivatives of g at 0 are both positive, leading to the
conditions � � + � � 0 and � � � � � 0.

It is easy to see from these conditions that the solution� ? is necessary obtained with
the soft-thresholding operator introduced by Donoho and Johnstone(1995):

� ?(x; � ) = sign( x)( jxj � � )+ ;

7



1. Introduction and Related Work

where (:)+ , max(:; 0). The `1-norm in this problem has �rst a thresholding e�ect (the
solution is 0 when jxj is smaller than � ), but also a shrinkage e�ect (when jxj > � ,
j� ?(x; � )j = jxj � � ). In comparison, when using the `0-pseudo-norm instead of the
`1-norm, the solution � ?(x; � ) also admits a closed form which is the hard-thresholding
operator � ?(x; � ) = 1jx j�

p
2� x, and when using the squared`2-norm, the solution is

obtained by a scaling� ?(x; � ) = x
1+2 � . These di�erent e�ects are shown in Figure 1.2.

x

� ?

(a) scaling operator

x

� ?

�
� �

(b) soft-thresholding operator

x

� ?

p
2�

�
p

2�

(c) hard-thresholding operator

Figure 1.2: From left to right: scaling, soft-thresholding, hard-thresholding operators.
The value of � ?(x; � ) is reported as a function of the input x for a �xed � . The black
dotted curve is the function � ?(x; 0) (no regularization), whereas the red plain curve
corresponds to the value of� ?(x; � ).

We have seen that in 1-D, the`1-norm amounts to using a sparsity-inducing operator
on the input data�that is for a �xed x, � ?(x; � ) = 0 for � large enough. We now give
a physical illustration of this e�ect.

�Physical Explanation� in 1-D

Let us �rst compare the squared `2-regularization with the `1-norm. In Figure 1.3,
we have plotted the corresponding 
 functions and their derivatives (where they are de-
�ned). A physical interpretation of these functions is to see them as �potential energies�,
which are minimum when � is equal to zero, and see their derivatives as the intensity
of the �force� that tends to make � smaller. In the case of the squared̀ 2-norm, the
intensity of this force vanishes when� gets closer to 0, preventing the regularization to
induce sparsity if the minimum of f is di�erent than 0. In the case of the `1-norm, the
intensity is constant when � gets closer to 0, and is proportional to the parameter� ,
making it possible to drive � down to 0.

This can further be illustrated with a more concrete example, which we show in
Figure 1.4. We start by considering in Figure 1.4a two springs with zero mass and
negligible length that are �xed to a wall (the �xation points are represented by red
circles). These correspond to initial conditions. The height of the blue points is denoted
by x. On Figure 1.4b, we attach to the left spring another one, whose other extremity

8
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( � ) = � 2


 0(� ) = 2 �

(a) `2 squared regularization


( � ) = j� j


 0(� ) = � 1


 0(� ) = 1

(b) `1 norm

Figure 1.3: Comparison of the Tikhonov (̀ 2 squared) and `1 regularization in one di-
mension. Blue curves represents the regularizers as functions of � , and red curves the
derivatives.

is �xed to the ground. Due to the action of the new spring, the height of the blue point
decreases to a new value� . The two springs have respective energiesE1 = k1

2 (x � � )2

and E2 = k2
2 � 2, where k1 and k2 are the elasticity coe�cients of the springs, and the

system stabilizes when the total energyk1
2 (x � � )2 + k2

2 � 2 is minimum. The second
spring therefore acts as a Tykhonov regularizer on the energy of the �rst spring, and
it can be controlled by its elasticity coe�cient k2. On the right spring, we �x instead
an object of massm. Due to its action, the height of the corresponding blue point also
decreases to a new position� . The potential energy of this object is E2 = mg� , whereg
is the magnitude of the Earth's gravitational �eld, and the s ystem stabilizes when the
total energy k1

2 (x � � )2 + mgj� j is minimum, with the constraint � � 0. The object
therefore acts as aǹ 1 regularization, which can be controlled by its massm. Figure 1.4b
illustrates the situation when the amount of regularization is small�that is, the second
spring on the left is weak, and the object on the right is light. Both systems stabilizes
with � > 0. Figure 1.4c illustrates the situation when one increases the amount of
regularization. On the left side, despite the fact that the spring is strong (k2 is large),
the blue point does not touch the ground. On the right, when the object is massive
enough the object touches the ground and� = 0. In fact, as shown in the previous
section, the solution � is obtained by soft-thresholding.

�Geometrical Explanation� in 2-D and 3-D

We now present a more classical (but still informal) explanation of the sparsity-inducing
property of the `1-norm based on the geometry of thè 1-ball. We consider the Lasso
formulation of Eq. ( 1.2). We know from classical convex optimization arguments (Boyd
and Vandenberghe, 2004) that there exists a parameter T > 0 such that Equation (1.2)

9
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E1 = 0 E1 = 0

x

(a) Initial position.

E1 = k1
2 (x � � )2

E2 = k2
2 � 2 �

�

E1 = k1
2 (x � � )2

E2 = mgj� j, � � 0

(b) Small regularization, smallest energy state

E1 = k1
2 (x � � )2

E2 = k2
2 � 2 �

� = 0

E1 = k1
2 (x � � )2

E2 = mgj� j; � � 0

(c) High regularization, smallest energy state

Figure 1.4: Simple physical illustration of the sparsifying e�ect of the `1-norm compared
to the Tikhonov regularization. The system stabilizes for the value of � that minimizes
the energy E1 + E2. See comments in the text.
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has the same solution as the following equivalent constrained optimization problem:7

min
� 2 Rp

1
2

kx � D � k2
2 s.t. k� k1 � T:

We present in Figures1.5a and 1.5c the `1-balls of radius T in 2 and 3 dimensions, and
the level sets of the function� 7! 1

2kx � D � k2
2. At optimality, the level set corresponding

to the optimum value � ? are necessarily tangent to thè 1-ball of radius T. This tangency
point is represented by a small red circle in the �gures. In Figure 1.5b, we represent a
similar situation when using the squared`2-norm instead of the `1. Whereas the`1-ball
is anisotropic and encourages a solution to be on one of the axis x or y (corresponding
to sparse solutions), the isotropy of the`2-ball does not. In the case of the`1-norm,
illustrated on Figure 1.5a, it becomes more �likely� that the solution ends up on a
corner of the ball, even though it is easy to build counter-examples, where the solution
ends up on a face. This sparsifying phenomenon is also true in3-D, as illustrated in
Figure 1.5c, and in fact it is even stronger in higher dimensions.

Now that we have given some intuitive explanations of the sparsity-inducing prop-
erty of the `1-norm, we give a more structured sparse regularization, which we will use
intensively in this thesis.

1.3.3 Beyond the `1-norm: Group Sparsity

A popular extension of the Lasso is the group Lasso (Yuan and Lin, 2006; Turlach et al. ,
2005; Obozinski et al., 2009; Bach, 2008). It supposes that variables are structured
into prede�ned groups g 2 G, where G is a partition of J1;pK. In this context, the
sparsity-inducing regularization takes the form:


( � ) =
X

g2G

k� gk;

where k:k is some norm (in practice, often the`2 or `1 -norms). In this case, 
 is still
a norm, and can be interpreted as the`1-norm (a sum) of norms of groups, therefore
inducing sparsity at the group level.

The goal of using such a regularization is to encodea priori knowledge of the sparsity
patterns that the coe�cients � should have. When such a priori knowledge is given and
one knows beforehand that the patterns should be structuredin groups, using such
a norm can improve the prediction performance and/or interpretability of the learned
models (Roth and Fischer, 2008; Yuan and Lin, 2006; Huang et al., 2009; Obozinski
et al., 2009). Applications of such norms include for instance multi-task learning, where
one is looking for predictors that are shared among di�erent tasks (Obozinski et al.,
2009; Quattoni et al. , 2009), and multiple kernel learning (Bach, 2008), where groups of
variables corresponding to di�erent kernels are selected.

7 The original formulation of the Lasso proposed by Tibshirani (1996) is actually this constrained
formulation.
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x

y

(a) 2-D case, `1-norm

x

y

(b) 2-D case, `2-norm

x

z

y

(c) 3-D case, `1-norm

Figure 1.5: In red, balls for the`1-norm in Figures (a) and (c), and `2-norm for Figure (b) .
In blue, some level sets of a quadratic function are plotted.At optimality, the level sets
are tangent to the red balls. Corners and edges of thè1-ball correspond to sparse
solutions.
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1.4. Optimization for Sparse Regularized Problems

We present a concrete application of this group Lasso regularization to image process-
ing in Chapter 4. Another generalization of the group Lasso to the case of overlapping
groups have been proposed byZhao et al. (2009); Jenatton et al. (2009); Jacob et al.
(2009); Baraniuk et al. (2010). These will be discussed in Chapter3.

1.4 Optimization for Sparse Regularized Problems

Sections 1.4.1, 1.4.2 and the benchmark presented in Section1.4.5 are based on
material from the book chapter:

F. Bach, R. Jenatton, J. Mairal and G. Obozinski. Convex Optimization with Sparsity-
Inducing Norms. In S. Sra, S. Nowozin, and S. J. Wright, editors, Optimization for
Machine Learning, 2011, to appear.

We present here optimization tools and algorithms for solving sparse regularized machine
learning and signal processing problems. This section is relatively independent from the
rest of the manuscript. It is therefore not mandatory to read it in details before the
remaining chapters, but it can be referred to whenever necessary. Section1.4.1introduces
classical material for non-smooth optimization. Sections1.4.2 to 1.4.6 give some keys
for solving sparse decomposition problems. In particular,we present in Section1.4.5 a
benchmark comparing a large class of methods for solving theLasso in di�erent scenarii.
Section 1.4.8 brie�y presents network �ow optimization and its connectio n with sparse
methods.

1.4.1 Duality and Non-Smooth Convex Optimization

We describe in this section important tools to study non-smooth convex optimization
problems related to sparse methods. Most of them can be foundin classical books
on convex optimization (Boyd and Vandenberghe, 2004; Bertsekas, 1999; Borwein and
Lewis, 2006; Nocedal and Wright, 1999), but for self-containedness reasons, we present
here a few of them. We consider again the general formulationof Eq. (1.1), which we
recall below

min
� 2 Rp

h
g(� ) , f (� ) + � 
( � )

i
;

but we restrict 
 to be a norm (and therefore a convex function).

Subgradients
Given a convex functiong : Rp ! R and a vector � in Rp, let us de�ne the subdi�erential
of g at � as

@g(� ) , f � 2 Rp j g(� ) + � > (� 0� � ) � g(� 0) for all vectors � 0 2 Rpg:

13



1. Introduction and Related Work

The elements of@g(� ) are called the subgradientsof g at � . This de�nition admits a
clear geometric interpretation: Any subgradient � in @g(� ) de�nes an a�ne function
� 0 7! g(� )+ � > (� 0� � ) which is tangent to the graph of the function g at � . Moreover,
there is a b¼ection (one-to-one correspondence) between such�tangent a�ne functions�
and the subgradients. We illustrate this property in Figure 1.6.

�

(a) Smooth case

�

(b) Non-smooth case

Figure 1.6: Gradients and subgradients for smooth and non-smooth functions. Red
curves represent the graph of a function. Blue lines represent subgradients of this func-
tion at a point � . On the left, the function is smooth and the unique subgradient
corresponds to the tangent line. On the right, the function is not di�erentiable and the
subgradients are not unique.

Let us now illustrate how subdi�erential can be useful for studying nonsmooth op-
timization problems with the following classical proposition (see Borwein and Lewis,
2006):

Proposition 1 (Subgradients at optimality)
For any convex function g : Rp ! R, a point � in Rp is a global minimum of g if and

only if vector 0 belongs to@g(� ).

Note that the concept of subdi�erential is mainly useful for nonsmooth functions. If g
is di�erentiable in � , the set @g(� ) is indeed the singletonfr g(� )g, and the condition
0 2 @g(� ) amounts to the classical �rst-order optimality condition r g(� ) = 0.

Dual Norm and Optimality Conditions
The next tool we introduce is the dual norm, which is important to study sparsity-
inducing regularizations (Jenatton et al., 2009; Bach, 2009; Negahban et al., 2009). It
notably comes up in the analysis of estimation bounds (Negahban et al., 2009), and in
the designs of active-set strategies (Jenatton et al., 2009). The dual norm 
 � of 
 is
de�ned for any vector � in Rp by


 � (� ) , max
� 2 Rp

� > � s.t. 
( � ) � 1:

14



1.4. Optimization for Sparse Regularized Problems

It is easy to show that in the case of an`q-norm, q 2 [1; +1 ] the dual norm is the
`q0-norm, with q0 in [1; + 1 ] such that 1

q + 1
q0 = 1. In particular, the `1- and `1 -norms

are dual to each other, and the`2-norm is self-dual.
The dual norm plays a direct role in obtaining optimality con ditions for sparse reg-

ularized problems. By applying Proposition 1 to Eq. (1.1), we obtain, for instance, that
a vector � in Rp is optimal for Eq. (1.1) if and only if

�
1
�

r f (� ) 2 @
( � ) =

(
f � 2 Rp; 
 � (� ) � 1g if � = 0 ;

f � 2 Rp; 
 � (� ) � 1 and � > � = 
( � )g otherwise:
(1.3)

We have presented a useful duality tool for norms. More generally, there exists a related
concept for convex functions, which we now introduce.

Fenchel Conjugate and Duality Gaps
Let us denote by f � the Fenchel conjugate of a convex functionf (Borwein and Lewis,
2006), de�ned by

f � (� ) , sup
� 2 Rp

[� > � � f (� )]:

The Fenchel conjugate is related to the dual norm. Let us de�ne the indicator func-
tion 1
 such that 1
 (� ) is equal to 0 if 
( � ) � 1 and +1 otherwise. Then, 1
 is
a convex function and its conjugate is exactly the dual norm 
 � . For many objective
function, the Fenchel conjugate admits closed forms, and can therefore be computed
e�ciently ( Borwein and Lewis, 2006). In this case, it is useful for monitoring the con-
vergence of optimization algorithms with duality gaps, as illustrated by the following
proposition:

Proposition 2 (Duality for Problem ( 1.1))
If f � and 
 � are respectively the Fenchel conjugate off and the dual-norm of 
 ,

max
� 2 R p ;
 � (� )� �

� f � (� ) � min
� 2 R p

f (� ) + � 
( � )

Moreover, if the domain of f is non-empty, strong duality holds and the inequality be-
comes an equality.

Therefore, if � ? is a solution of Eq. (1.1), and � ; � in Rp such that 
 � (� ) � � , the
following inequality holds

f (� ) + � 
( � ) � f (� ?) + � 
( � ?) � � f � (� ): (1.4)

The di�erence between the left and right term of Eq. (1.4) is called a duality gap. It
represents the di�erence between the value of the primal objective function f (� )+ � 
( � )
and a dual objective function � f � (� ), where � is a dual variable. Duality gaps are
important in convex optimization. By upperbounding the di� erence between the current
value of an objective function and the optimal value, they de�ne proper stopping criterion
for iterative optimization algorithms. Finding a good dual variable � when minimizing
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a primal objective function is easy in many cases. Given a primal variable � , we often
choose the dual variable� = �

max(
 � (r f (� )) ;� ) r f (� ), which guarantees the duality gap to
be zero at optimality. When � = � ?, the conditions presented in Eq. (1.3) are satis�ed.
It follows that � = r f (� ) with 
 � (� ) � � , and � > � = � 
( � ). Since f is di�erentiable,
it is also easy to show that f � (� ) = � > � � f (� ). Therefore, � f � (� ) = f (� ) + � 
( � )
and the duality gap is zero.

Note that in many of the formulations we are going to introduce, the function f has
a particular form f (� ) = ~f (D � ), where ~f is an auxiliary function, and D a dictionary
matrix. In this case, one may be interested in the Fenchel conjugate ~f � instead of f � .
Fenchel conjugacy naturally extends to this case (see for more details Borwein and
Lewis, 2006, Theorem 3.3.5). We present more concrete examples in Appendix D.2 with
a toolbox implementing several solvers for sparse methods,where the convergence of the
di�erent optimization methods are monitored with such dual ity gaps.

1.4.2 Least Angle Regression - Homotopy

We present in this section a dedicated active-set method for solving the Lasso prob-
lem (Tibshirani , 1996), also known as basis pursuit (Chen et al., 1998), which is pre-
sented in Eq. (1.2). Under mild assumptions, (which we will detail later) the solution of
Eq. (1.2) is unique, and we denote it by � ?(� ). Let us also recall the de�nition of the
regularization path, which is the function � 7! � ?(� ) that associates with a regularization
parameter � the corresponding solution� ?(� ). We will show that this function is piece-
wise linear, an interesting property that leads both to an e� cient algorithm presented
in this section, and to a better understanding of the Lasso formulation. This behavior
was illustrated in Figure 1.1, where the entries of� ?(� ) for particular instances of the
Lasso are represented as functions of� .

The regularization path can therefore be characterized by aset of contiguous linear
segments. It is now appealing to build an algorithm that �nds a solution of Eq. (1.2)
for a particular value of � , for which �nding this solution is trivial, and then follows
the piecewise-linear path, computing the directions of the current linear parts, and the
points where the direction changes (kinks). This piecewiselinearity property was �rst
discovered and exploited byMarkowitz (1952) in the context of portfolio selection, re-
visited by Osborne et al. (2000a) describing an homotopy algorithm, and popularized
by Efron et al. (2004) with the LARS algorithm. Even though the basic version of LA RS
is a bit di�erent from the procedure we have just described, it is closely related, and
indeed a simple modi�cation makes it possible to obtain the full regularization path of
Eq. (1.2).

Let us now construct the solution path. Applying the optimal ity conditions presented
in Eq. (1.3) to the Lasso formulation for a �xed value of � yields

8j 2 J1;pK;

(
jd j > (x � D � ?)j � � if � ?

j = 0
d j > (x � D � ?) = � sign(� ?

j ) if � ?
j 6= 0 ;

(1.5)
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where d j denotes the j -th column of D , and � ?
j the j -th entry of � ?. We de�ne the

set of variables � , f j 2 J1;pK; jd j > (x � D � ?)j = � g, and the vector " , sign
�
D > (x �

D � ?)
�
. We assume the matrixD >

� D � to be invertible (which is a necessary and su�cient
condition to guarantee the uniqueness of� ?), and it follows from Eq. ( 1.5) that

� ?
� (� ) = ( D >

� D � ) � 1(D >
� x � � " � ):

This is an important point: if one knows in advance the set � an d the signs " � , then
the solution � ?(� ) admits a simple closed-form, showing that the di�culty of th e Lasso
is essentially to �nd the pair (� ; " � ).

Moreover, when � and " � are �xed, the function � 7! (D >
� D � ) � 1(D >

� x � � " � ) is
a�ne in � . With this observation in hand, we can now present the main steps of the path-
following algorithm. It basically starts from a trivial sol ution of the regularization path,
follows the path by exploiting this formula, updating � and " � whenever needed so that
optimality conditions ( 1.5) remain satis�ed. This procedure requires some assumptions�
namely that (A) the regularization path is unique (which is equivalent to assuming
D >

� D � always invertible), and (B) that updating � along the path consists of adding
or removing from this set a single variable at the same time. Concretely, we proceed as
follows

1. Set � to kD > xk1 for which it is easy to show from Eq. (1.5) that � ?(� ) = 0
(trivial solution). This gives us a starting point on the reg ularization path.

2. Set � , f j 2 J1;pK; jd j > x j = � g, assumingj� j = 1 (assumption [B] ).

3. Follow the regularization path by decreasing the value of� , with the formula
� ?

� (� ) = ( D >
� D � ) � 1(D >

� x � � " � ) keeping � ?
� C = 0, until one of the following

events occurs

� There exists j in � C such that jd j > (x � D � ?)j = � . Then, add j to the set �.

� There existsj in � such that a non-zero coe�cient � ?
j hits zero. Then, remove

j from �.

We suppose that only one of such events can occur at the same time (assump-
tion [B] ). It is also easy to show that the value of � corresponding to the next
event can be obtained in closed form, using the fact that for a�xed pair (� ; " ),
the quantities � ?

j and d j > (x � D � ?) for all j in J1;pKare also a�ne in � .

4. Go back to 3

Let us now brie�y discuss assumptions(A) and (B) . When the matrix D >
� D � is not

invertible, the regularization path is non-unique, and the algorithm fails. This can easily
be �xed by addressing instead a slightly modi�ed formulation. It is indeed possible to
consider the elastic-net formulation of Zou and Hastie (2005)�that is, with 
( � ) =
� k� k1 + 


2k� k2
2, by replacing the matrix D >

� D � by D >
� D � + 
 I p, which is positive

de�nite and therefore always invertible. Using a small value for 
 solves the problem of
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non-invertibility of D >
� D � in practice. The second assumption(B) can be unsatis�ed in

practice because of the precision machine. To the best of ourknowledge, the algorithm
will fail in such cases, but we consider this scenario unlikely.

Now that we are able to follow the regularization path, it is important to notice that
we are also able to solve constrained versions of Eq. (1.2), namely

min
� 2 Rp

kx � D � k2
2 s.t. k� k1 � T; (1.6)

and
min
� 2 Rp

k� k1 s.t. kx � D � k2
2 � "; (1.7)

These formulations are sometimes said to be �equivalent� toEq. (1.2) in the sense that
for every value of T, there exists a value� such that Eq. (1.2) that admits the same
solution as Eq. (1.6), and vice versa. This is also true for Eq. (1.7) for every value of " .
They are, however, not equivalent in practice since the relation between "; � and T is
unknown.

The complexity of the above procedure depends on the number of kinks of the reg-
ularization path (which correspond to the number of iterati ons of the algorithm). It is
of course possible to stop the algorithm before its end, if one is not interested in the full
path. Even though it is possible to build examples where the number of kinks is large,
we often observe in practice that the event where one variable gets out of the active set
is rare. The complexity also depends on the implementation.By maintaining the values
of d j > (x � D � ?) and a Cholesky decomposition of (D >

� D � ) � 1, it is possible to obtain
an implementation in O(psm+ ps2 + s3) operations, wheres is the number of iterations
of the algorithm, with a memory cost in O(p2). The product psm corresponds to the
computation of D >

� D � , ps2 to the updates of the correlationsd j > (x � D � ?) along the
path, and s3 to the Cholesky decomposition of (D >

� D � ) � 1.
One can observe from this analysis that the path-following LARS algorithm can be

e�cient for solving small-scale problems, when the solution one is looking for is sparse
(s is small), with a smaller cost than a singlep� p matrix inversion, which is 0(p3). This
algorithm is also e�cient with highly correlated features, as long as the matrix D >

� D �

remains invertible. A fast Cholesky-based implementation of this algorithm is available
in the toolbox SPAMS, which we present in SectionD.1.

1.4.3 Proximal Methods

Proximal methods play an important role in non-smooth optimi zation. They generalize
�rst-order gradient descent algorithms to handle non-smooth components. This section
brie�y introduce these methods in a slightly restricted but useful framework (for a more
detailed review and general framework, seeCombettes and Pesquet 2010).

In the context of this thesis, we apply these methods to convex optimization prob-
lems of the same form as Eq. (1.1), with f convex and di�erentiable with a Lipschitz
continuous gradient, and 
 a non-smooth convex function. Whereas it is often possi-
ble to address this kind of optimization problems using subgradient descent algorithms,
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1.4. Optimization for Sparse Regularized Problems

proximal methods are preferred because of both theoretically and practically faster con-
vergence rates, which we will detail in the sequel.

The most basic variant of these methods is an iterative procedure which, at step k,
updates the current estimate � k by solving a proximal problem, de�ned as follows

� k+1  arg min
� 2 Rp

h
f (� k ) + r f (� k )> (� � � k ) + � 
( � ) +

L
2

k� � � kk2
2

i
; (1.8)

where f (� k ) + r f (� k )> (� � � k ) is a linear approximation of f around the current
estimate � k , the quadratic term L

2 k� � � kk2
2 keeps the update of� in a neighborhood

of � k , where the linear approximation is correct, and L > 0 is a parameter. It is
possible to show that whenL is well chosen (actually larger or equal to the inverse of
the Lipschitz constant of r f ), this optimization scheme converges to the solution of the
original problem. This provides a simple scheme for solvingEq. (1.1), supposing that
one knows how to e�ciently solve Eq. (1.8). Finding automatically a good value for L is
also easy, using practical line-search strategies (seeNesterov, 2007; Beck and Teboulle,
2009).

Note that Eq. ( 1.8) can equivalently be rewritten as

� k+1  arg min
� 2 Rp

h1
2






 � �

�
� k �

1
L

r f (� k )
� 






2

2
+

�
L


( � );

meaning that the new estimate � k+1 should be close to the quantity � k � 1
L r f (� k )

(equivalent to a classical gradient step), while taking into account the non-smooth com-
ponent � 
( � ). When � = 0, we obtain that � k+1 = � k � 1

L r f (� k ).
More generally, we de�ne the proximal operator (sometimes calledproximity opera-

tor ) associated with our regularization term � 
 as the function that maps a vector u
in Rp to the (unique by strong convexity) solution of

min
v 2 Rp

h1
2

ku � vk2
2 + � 
( v)

i
: (1.9)

This operator was initially introduced by Moreau (1962) to generalize the projection
operator onto a convex set. Since it is called many times within proximal algorithms, it
has to be solved e�ciently. What makes this appealing for sparse methods is that this
operator can often be obtained in closed-form. For instance:

� When 
 is the `1-norm�that is, 
( u) = kuk1, the proximal operator is the well-
known elementwise soft-thresholding operator introduced in the previous sections:

8j 2 J1;pK v j  sign(u j )( ju j j � � )+ =

(
0 if ju j j � �

sign(u j )( ju j j � � ) otherwise:

� When 
 is a Group-Lasso penalty with `2-norms�that is, 
( u) =
P

g2G kugk2,
with G being a partition of J1;pK, the proximal problem is separablein every group,
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and the solution is a generalization of the soft-thresholding operator to groups of
variables:

8g 2 G vg  

8
<

:

0 if kugk2 � �
ku g k2 � �

ku g k2
ug if kugk2 > �:

� When 
 is a Group-Lasso penalty with `1 -norms�that is, 
( u) =
P

g2G kugk1 ,
the solution is also a group-thresholding operator:

8g 2 G vg  ug � � k:k1 � � [ug];

where � k:k1 � � denotes the orthogonal projection onto the`1-ball of radius � . Note
that when kugk1 � � , we have a group-thresholding e�ect, with vg = 0.

More generally, when dealing with norms, these closed-formscan be derived from a
simple relation between the proximal operator and the projection operator onto the ball
of the dual norm:

Lemma 1 (Relation between proximal and projection operator for norms)
Let u be a vector inRp and let v? be the solution of the proximal operator

min
v 2 Rp

h1
2

ku � vk2
2 + � 
( u)

i
; (1.10)

where 
 is any norm. Then,

v? = u � � 
 � (:)� � [u]; (1.11)

Where � 
 � (:)� � is the orthogonal projector onto the ball of radius� of the dual norm 
 � .

The proof can be obtained by using simple calculus rules for computing proximal
operators described byCombettes and Pesquet(2010), or by simply writing the Fenchel
dual of the proximal problem, which is described in Proposition 2. This directly gives
the solution.

This proximal scheme for solving sparse decomposition problems has been the fo-
cus of a lot of attention lately and has been revisited several times. It indeed admits
variants (essentially concerning line-search strategies for automatically choosing the pa-
rameter L ). We give here a few names under which it is known, to help the reader �nd
his/her way in the literature. Combettes and Pesquet(2010) present a detailed review of
proximal methods and call this a forward-backward splitting algorithm, Nesterov (2007)
call it gradient method, and Beck and Teboulle (2009) iterative shrinkage-thresholding
algorithm (ISTA). Re�nements have been proposed byWright et al. (2009b) under the
name SpaRSA, and byHale et al. (2007) under the name�xed-point continuation method
(FPC). Nesterov (2007) and Beck and Teboulle(2009) have shown that the value of the
objective function decreases asO( 1

k ), and under strong convexity assumptions onf , Nes-
terov (2007) has further shown that it enjoys a linear convergence rate of O(� k ), with
0 � � < 1. Interestingly, building on early works by Nesterov (1983), accelerated vari-
ants of proximal methods have been proposed byNesterov(2007) and Beck and Teboulle
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1.4. Optimization for Sparse Regularized Problems

(2009) with guaranteed convergence rate ofO( 1
k2 ), which can be proven to be optimal

among �rst-order methods. In order to enjoy these fast rates, the proximal operator
must be computed both e�ciently and exactly. This is the topic of Chapter 3 for two
particular sparsity-inducing norms.

We have implemented in the software presented in SectionD.2 the forward-backward
(or ISTA) and the accelerated FISTA algorithms of Beck and Teboulle(2009). We show
in Section 1.4.5 how these methods compare to other approaches.

1.4.4 Coordinate and Block Coordinate Descent Algorithms

We present here a coordinate descent algorithm for solving the Lasso formulation of
Eq. (1.2). It was originally introduced by Fu (1998), rediscovered byDaubechies et al.
(2004), and recently popularized by Wu and Lange (2008) and Friedman et al. (2007).
We �rst present the basic algorithm, and then show how it extends to the group Lasso
in some speci�c settings.

Coordinate descent is a procedure that iteratively �xes every entry but one of the
current estimate � , and optimizes with respect to the selected entry. It cyclesamong
the coordinates, solving each time simple sub-problems thatadmit closed form solutions.
For instance, supposing the columns ofD have unit `2-norm, updating the entry � j can
be done as follows

� j  arg min
� j 2 R

h1
2

kx �
X

i 6= j

� i d i � � j d j k2
2 + � j� j j

i

 arg min
� j 2 R

h1
2

�
d j > (x �

X

i 6= j

� i d i ) � � j
� 2 + � j� j j

i

 sign(cj )( jcj j � � )+ with cj , d j > (x �
X

i 6= j

� i d i ):

This is the simple soft-thresholding operation introduced earlier. This coordinate de-
scent procedure is appealing since it is simple. Supposing that the matrix D > D is
pre-computed, fast implementations maintain the values of the quantity D > (x � D � ).
Then, updating a coordinate costO(1) operations if its value does not change, andO(p)
otherwise. Such an implementation is available in the software SPAMS presented in
Appendix D.

The convergence properties of such an algorithm are relatively weak. Coordinate
descent algorithms for minimizing non-di�erentiable funct ions are not convergent in
general (seeTseng, 2001, for su�cient conditions in such non-di�erentiable setting s). It is
however possible to rewrite equivalently the Lasso as a smooth di�erentiable optimization
problem under separable constraints:

min
� + ;� � 2 Rp

h1
2

kx � D � + + D � � k2
2 + � � >

+ 1p + � � >
� 1p

i
s.t. � + � 0; � � � 0:

We have here split the vector � into two vectors � + and � � in Rp with nonnegativity
constraints. It is easy to show that this problem is equivalent to the Lasso, and that the
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coordinate-descent scheme we have introduced is also equivalent to a coordinate-descent
algorithm for this new formulation. In such a setting, and under additional conditions
that are satis�ed here, we know that all the limit points of th e sequence of estimates of the
solution are stationary points of the Lasso (seeBertsekas, 1999, proposition 2.7.1). To
the best of our knowledge, no convergence rate is available,but we show in Section1.4.5
that the method can be competitive in certain situations.

This algorithm extends in a straightforward way to the group Lasso, when the dictio-
nary elements corresponding to a same group are orthogonal to each other. Whereas this
might seem a strong limitation, it turns out to be the case in some practical situation,
such as simultaneous sparse coding (Tropp et al. , 2006; Tropp, 2006) and multi-task
formulations (Obozinski et al., 2009). In this case, the natural extension of the algo-
rithm is a block-coordinate descent scheme, where one iteratively updates the entries
of � corresponding to a group, while �xing the other ones. This can be written for a
group g in G:

� g  arg min
� g 2 Rj gj

h1
2

kx �
X

h6= g

D h � h � D g� gk2
2 + � 
( � g)

i

 arg min
� g 2 Rj gj

h1
2

kD >
g (x �

X

h6= g

D h � h) � � gk2
2 + � 
( � g)

i
;

and the solution is given by computing a proximal operator associated with the norm 
.
We gave such closed forms in the previous section in the case of the `2- and `1 -norms.
Note that a variant of coordinate descent algorithms have been proposed byTseng(2001)
when there is no closed form for updating a variable.

1.4.5 The Lasso: Which Algorithm to Choose and When?

We present in this section a large benchmark evaluating the performance of various
optimization methods for solving the Lasso. As already mentioned before, the literature
on the topic is vast, and there is no clear consensus about which method does perform
the best. The purpose of this section is to experimentally clarify this open question.
To do so, we have designed a benchmark that takes into accountseveral criteria which
signi�cantly in�uence the convergence speed of all algorithms. More speci�cally, our
benchmark obeys the following rules:

� E�ciency of implementations : We use the languages C or C++ and e�cient
BLAS and LAPACK libraries for basic linear algebra operations, with the hope that
the running times of our software correctly re�ects the true number of operations
required by every algorithm.

� Exhaustivity : We have chosen to compare what we believe are the main ap-
proaches used in the literature, namely the LARS algorithm, coordinate-descent
(CD), reweighted-`2 scheme (Re-̀2), a simple proximal method (ISTA), and its
accelerated version (FISTA). We also include in the comparison generic tools such
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1.4. Optimization for Sparse Regularized Problems

as a subgradient descent algorithm (SG), and a commercial software (Mosek) for
cone programming (CP) and quadratic programming (QP) problems. The reader
should refer to (Bach et al., 2011) for all methods that have not been presented
here.

� In�uence of scale : We measure the performance of algorithms for several prob-
lems sizes. We design a small-scale experiment withn = 200; p = 200, and a
medium/large scale one withn = 2000; p = 10000. With this collection of settings,
we compare the in�uence of the parametersn and p for all algorithms.

� In�uence of correlation : When the dictionary is orthogonal, the Lasso admits a
closed-form solution and is easy to solve. When the columns are highly correlated,
the optimization problem can become ill-conditioned and di� cult. To evaluate the
robustness of the di�erent methods to this criterion, we generate dictionaries with
three levels of correlation between the columns.

� In�uence of the regularization : We measure the performance for three di�erent
levels of regularization, corresponding to di�erent sparsities of the solutions.

� In�uence of the required precision : We report the value of the objective
function versus the time of computation. When a low precision is required, a
method that quickly provide a rough solution might be preferred.

We therefore compare 8 methods for 18 di�erent conditions (2scales� 3 levels of cor-
relation � 3 levels of regularization).

We generated dictionary matrices as follows. For the scenario with low correlation,
all entries of D are independently drawn from a Gaussian distribution N (0; 1=

p
n),

which is often a setting used for evaluating optimization algorithms in the literature.
For the scenario with medium correlation, we draw the rows ofthe matrix D from a
multivariate Gaussian distribution in a way such that the av erage absolute value of the
correlation between two di�erent columns is four times the one of the scenario with low
correlation. We proceed the same way for the scenario with high correlation, increasing
again the amount of correlation. Test data vectorsy = D � + n where � are randomly
generated, with three levels of sparsity to be used with the three di�erent levels of
regularization. The variable n is a noise vector whose entries are i.i.d. samples from a
Gaussian distribution N (0; 0:1kD � k2=

p
n).

In the low regularization setting, the sparsity of the vectors � is s = 0 :5 min(n; p), in
the medium regularization ones = 0 :1 min(n; p), and in the high regularization one s =
0:01 min(n; p), corresponding to fairly sparse vectors. For the subgradient method (SG),
we take the step size to be equal toa=(k + b), where k is the iteration number, and (a; b)
are the best8 parameters selected in a logarithmic grid (a; b) 2 f 10� 3; 1O� 2; : : : ; 10g �
f 102; 103; 104g ; we proceeded this way not to disadvantage SG by an arbitrarychoice
of stepsize.

8 �The best step size� is understood here as being the step size leading to the smallest objective
function after 500 iterations.
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We report the value of the objective functions for every combination of criterion, as
a function of computation time in Figures 1.7 and 1.8. All reported results are obtained
by averaging 5 runs of each experiment on a single-core of a 3.07GHz CPU with 8Go
of memory. Interestingly, we observe that the hierarchy between the di�erent methods
signi�cantly changes with the scenario. We can now summarize our conclusions for every
class of method:

� LARS : For the small-scale problem, LARS outperforms every other method for
almost every scenario and precision regime. It is thereforede�nitely the right
choice for small-scale settings.With a computational complexity of O(ps2 + pns)
and memory complexity of O(ps),9 its scalability is, however, a bit limited. When
the matrix D > D is pre-computed, its complexity goes down toO(ps2 + ps), but it
is not the case for our benchmark.

One of its main advantages is that unlike �rst-order methods, the LARS complexity
does not depend on the correlation in the dictionary, but only on the sparsity s
of the solution. In our large-scale settings, LARS has provento be competitive
either when the solution is very sparse (high regularization), or when there is
high correlation in the dictionary (in that case, other methods do not perform as
well). One important advantage of the LARS is that it gives an exact solution and
computes the whole regularization path.

� Proximal methods (ISTA, FISTA) : Our �rst conclusion is that FISTA has
always been better than ISTA except for high regularization or low correlation,
where both methods have a similar performance. These methods are almost always
outperformed by LARS in the small-scale setting, except forlow precision and low
correlation.

They su�er from correlated features since their convergence rate is proportional
to the Lipschitz constant of the gradient of f , which itself grows with the amount
of correlation. They are well adapted to large-scale settings, with low or medium
correlation.

� Coordinate descent (CD) : To the best of our knowledge, no theoretical conver-
gence rate is available for this method. The empirical convergence rate we have
observed has been relatively surprising. In every experiment, we observe a �warm-
up� phase where updating one coordinate requires computingone column of the
matrix D > D (which we store into memory). During this phase, the convergence is
very slow. When all columns ofD > D are computed, the convergence rate becomes
often empirically linear.

Its performance in the small-scale setting is relatively good(even though always
behind LARS), but less e�cient in the large-scale one. For a reason we can not
explain, it does not su�er much from correlated features. Like LARS, this method
could also bene�t from an o� line pre-computation of D > D .

9Note that we did not take into account the memory complexity in our bench mark.
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1.4. Optimization for Sparse Regularized Problems

� Reweighted- `2: This method has proven to be relatively disappointing in all our
experiments and has never taken the lead against other dedicated methods.

� Generic Methods (SG, QP, CP) : As expected, generic methods have proven
not to be adapted for solving the Lasso and are always outperformed by dedicated
ones such as LARS.

1.4.6 Greedy Methods

We have presented so far the problem of sparse decompositionwith a convex optimization
point of view, considering the formulation of Eq. (1.1) where 
 is a sparsity-inducing
norm, often used as a proxy for the`0 pseudo-norm. We present here algorithms that
directly address the following `0-decomposition problem

min
� 2 Rp

1
2

kx � D � k2
2 s.t. k� k0 � s; (1.12)

where s is the desired sparsity of the solution. Approaches providing an approximate
solution to this problem are greedy procedures, and usuallydo not provide the global
optimum since the problem is NP-hard. However, they have someoptimality guarantees
in a few cases as shown byTropp (2004). Empirically, they have shown to provide
local optima yielding good results in many image processingapplications, as shown in
Chapter 4. They are known as forward selection techniques in statistics (Weisberg,
1980), and matching pursuit algorithms in signal processing (Mallat and Zhang, 1993).

We present here two variants called matching pursuit and orthogonal matching pur-
suit. Both approaches start with a null vector � , and iteratively update one entry in �
until the sparsity of � reaches the thresholds.

� Matching pursuit (MP) selects at each step the dictionary elementd {̂ that is
the most correlated with the residual according to the formula

{̂  arg min
i 2 J1;pK

jd i > r j;

where r denotes the residualx � D � . Then, the residual is projected on the line
generated byd {̂:

� {̂  � {̂ + d {̂> r

r  r � (d {̂> r )d {̂:

Matching Pursuit can in fact be interpreted as a non-cyclic coordinate descent
algorithm. It is guaranteed to decrease the objective function at each iteration,
but is not guaranteed to converge in a �nite number of steps.

� Orthogonal matching pursuit (OMP) improves upon Matching Pursuit by en-
suring that the residual of the decomposition is alwaysorthogonal to all previously
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Figure 1.7: Benchmark for solving the Lasso for the small-scale experiment (n = 200; p =
200), for the three levels of correlation and three levels ofregularization, and 8 optimiza-
tion methods (see main text for details). The curves represent the relative value of the
objective function as a function of the computational time in second on a log10 =log10
scale.
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Figure 1.8: Benchmark for solving the Lasso for the medium-scale experiment n =
2000; p = 10000, for the three levels of correlation and three levelsof regularization,
and 8 optimization methods (see main text for details). The curves represent the relative
value of the objective function as a function of the computational time in second on a
log10 =log10 scale.
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selected dictionary elements. It sequentially adds a di�erent dictionary element to
a set of active variables, which we denote by �, trying to solve Eq. (1.12) for every
sparsity value s0 � s, and stops when the desired sparsity is reached. In some
sense, it builds a regularization path, and therefore shares similarities with LARS,
even though the two algorithms address di�erent optimization problems. These
similarities are even stronger in terms of implementation. Similar tricks as those
described in Section1.4.2 for the LARS algorithm can be used, and in fact both
algorithms have the same complexity, and have many steps in common. At each
iteration, an active set � containing the indices of the selected dictionary elements
is obtained. A good criterion for choosing the next dictionary element is to select
the one that helps most reducing the objective function

{̂  arg min
i 2 � C

min
� 2 Rj � j +1

1
2

kx � D � [f i g� k2
2:

This might seem computationally expensive since it requires solving j� C j least-
squares problems, but the solution can in fact be obtained e�ciently using some
tricks, based on Cholesky decomposition and basic linear algebra, which we will
not detail here for simplicity reasons. More details can be found in Cotter et al.
(1999) or in the software SPAMS presented in SectionD.1.

After this step, the active set is updated �  � [ f {̂g, and the corresponding
residual r and coe�cients � are

�  (D >
� D � ) � 1D >

� x;

r  (I p � D � (D >
� D � ) � 1D >

� )x ;

where r is the residual of the orthogonal projection ofx onto the linear subspace
spanned by the columns ofD � . It is worth noticing that one does not need to
compute these two quantities in practice, but only updating the Cholesky de-
composition of (D >

� D � ) � 1 and computing directly D > r , via simple linear algebra
relations.

OMP naturally extends to the case of group sparsity, addressing the problem

min
� 2 Rp

1
2

kx � D � k2
2 s.t. # fk � gk 6= 0; g 2 Gg � s;

where G is a set of groups, and the number of active groups should be smaller than s.
The optimization scheme in this setting is the same as OMP, except that one has to
select groups instead of individual variables. The active set � is now a subset of G, and
the criterion for choosing the next group ĝ can be

ĝ  arg min
g2 � C

kD > (x � D � )k2:

This modi�ed version of OMP was �rst proposed by Tropp et al. (2006) in the context
of simultaneous sparse coding with a slightly di�erent criterion, and revisited by Lozano
et al. (2009). This version also admits an e�cient Cholesky-based implementation, which
we have used in Chapter4 for image processing.
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1.4. Optimization for Sparse Regularized Problems

1.4.7 Di�erence of Convex (DC) Programming - Reweighted- `1

Schemes

This section addresses the problem of solving

min
� 2 Rp

h
g(� ) , f (� ) + � 
( � )

i
;

where 
 is a non-convex regularization function which is separablein every component
of � �that is, there exists a function  : R+ ! R+ such that for all � in Rp, 
( � ) =
P p

i =1  (j� i j), with  di�erentiable and concave.
It is possible for instance to choose 
(� ) = k� kq

q ,
P p

i =1 j� i jq, where k:kq is an `q-
pseudo-norm with 0< q < 1. Another classical choice is also 
(� ) =

P p
i =1 log(j� i j + " )

(seeCandès et al., 2008).
The main motivation for using such approaches is to exploit aregularization function

that induces more sparsity than the `1-norm, and which might be addressed with other
tools than greedy methods. The unit balls corresponding to the `q pseudo-norms and
norms for several values ofq are illustrated in Figure 1.9. When q decreases, thè q-ball
get �closer� to the `0-ball, and better induces sparsity.

(a) `0-ball, 2-D (b) `0:5-ball, 2-D (c) `1-ball, 2-D (d) `2-ball, 2-D

Figure 1.9: Open balls in 2-D corresponding to several̀q norms and pseudo-norms.

Even though the corresponding optimization problem is not convex and still not
smooth, a local optimum can be obtained using a DC-programming type of approach (see
Gasso et al., 2009; Candès et al., 2008, and references therein). The idea behind such a
scheme is relatively simple. It consists of iteratively minimizing convex surrogates ~gk of
the cost function g that are tangent to the graph of g around the current estimate � k .
In other words, at iteration k, ~gk (� k ) = g(� k ) and ~gk (� ) � g(� ) for all � . To obtain
such surrogates, the key is to exploit the concavity of the functions  on R+ , which are
always below their tangents. This is illustrated in Figure 1.10. It is then easy to show
that such an iterative scheme can be written

� k+1  arg min
� 2 Rp

h
f (� ) + �

pX

i =1

 0(j� k
i j)j� i j

i
;

which is a reweighted-̀ 1 decomposition problem. Note that with this scheme, the �rst
step is usually a simple Lasso, with no weights. The e�ect of the new weights 0(j� k

i j) is
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to push to zero the smallest non-zero coe�cients returned by the Lasso, and in practice
two or three iterations are enough to obtain the desired sparsifying e�ect.

� k

(a) red: f (� ).

� k

(b) red:  (� ) = log( j� j + " ).
blue: convex surrogate  0(� k )j� j + C.

� k

(c) red: g(� ) = f (� ) +  (� ).
blue: convex surrogate ~gk (� ) = f (� ) +  0(� k )j� j + C.

Figure 1.10: Illustration of the DC-programming approach. The non-convex part of the
function g is upperbounded by a convex weighted̀ 1-norm. The graphs of g and its
surrogate ~gk are tangent.

1.4.8 Network Flow Optimization

We present in this section some elements of network �ow optimization (see Bertsekas,
1991; Ahuja et al. , 1993, and references therein for more details), and its connections
with sparse methods, which we further exploit in Chapter 3.
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1.4. Optimization for Sparse Regularized Problems

Let us consider a directed graphG = ( V; E; s; t), where V is a set of vertices,E �
V � V an arc set,s is a vertex calledsource, and t is a vertex calledsink, such that there
is no arc directed to s, and no arc outcoming from t.

We de�ne a non-negativecapacity function c : E ! R+ on the arcs. A �ow f : E !
R+ is a non-negative function on arcs that satis�es capacity constraints on all arcs (the
value of the �ow on an arc is less than or equal to the arc capacity) and conservation
constraints on all vertices (the sum of incoming �ows at a vertex is equal to the sum of
outgoing �ows) except for the source and the sink.10

To simplify the notations, we can arbitrarily order the vert ices and identify V n f s; tg
with a set J1;pK, where p , jV j � 2, so that an arc in E can be identi�ed by two
indices (i; j ). Denoting respectively cij and f ij the capacity and the �ow on an arc (i; j )
in E , we can write the capacity constraints as

8(i; j ) 2 E; f ij � cij ;

and the conservation constraints

8i 2 V;
X

j ;( i;j )2 E

f ij

| {z }
outgoing �ow from i

=
X

j ;( j;i )2 E

f ji

| {z }
incoming �ow to i

The value of the �ow is the amount of �ow outgoing from s,
P

i 2 V ;(s;i )2 E f si which is
equal to the �ow incoming to t,

P
i 2 V ;( i;t )2 E f it . This is illustrated in Figure 1.11

s

1

f s1

2

f s2

4

f 24f 14

3

f 13

5

f 15 f 25

t

f 3t f 4t f 5t

Figure 1.11: Example of a directed graphG = ( V; E; s; t), with �ows f ij , (i; j ) 2 E . The
�ow should respect the capacity constraint f ij � cij for all ( i; j ) in E .

10 Note that we only consider here the case of real-valued functions, since this is the one we need in
this thesis. Network �ow problems with integer-valued functions can also be considered, and in fact
many results that are true in the continuous settings are also true in t he discrete one.
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1. Introduction and Related Work

A classical problem in network �ow optimization is the max-�ow problem (Ford and
Fulkerson, 1956), which consists of �nding a �ow of maximum value in the graph .

We can also de�ne an (s; t)-cut in the graph, which is a partition ( S; T) of V with s
in S and t in T. It is possible to de�ne the capacity of the cut

P
(i;j )2 E ;i 2 S;j 2 T cij ,

and the problem min-cut consists of �nding a cut in the graph with minimum capacity.
With these tools in hand, we can now move to the �rst interesting result due to Ford
and Fulkerson (1956):

Proposition 3 (Max-�ow / min-cut theorem)
The maximum value of a �ow in a graph is equal to the minimum capacity cut.

This proposition is not yet related to sparse methods. It just presents a duality
relation between the max-�ow and min-cut problems. We will int ensively use it in
Chapter 3. For solving the max-�ow problem, a popular algorithm called �push-relabel�
is due to Goldberg and Tarjan (1986). We have implemented it in the software presented
in Section D.2, using re�nements presented byCherkassky and Goldberg(1997). An
example of a cut in a graph is presented in Figure1.12 as long as a few properties of
min (s; t)-cuts, namely:

� There is no �ow going from T to S (seeBertsekas, 1991).

� The cut goes through all arcs going fromS to t, and all arcs going froms to T,
and such arcs are saturated (the value of the �ow on the arc equals the capacity).

s

1

f s1

S 2

f s2

T

4

f 14f 24

3

f 13

5

f 25

t

f 3t f 4t f 5t

Figure 1.12: Example of a cut in a graph. Arcs in bold are saturated (the value of the
�ow equals the capacity) and the �ow on dotted arcs is zero.

We will also consider in this thesis the class ofmin-cost �ow problems, which we now
present. In addition to the capacity function, let us de�ne cost functions Cij : R ! R,
one for every arc (i; j ) in E . The min-cost �ow problem consists of �nding a �ow f

32



1.5. Dictionary Learning and Matrix Factorization

that minimizes the total cost on the graph
P

(i;j )2 E Cij (f ij ). The costs Cij are often
linear in the �ow f ij , and in fact the terminology �min-cost �ow problem� often ref ers
to this particular setting in the literature. The more inter esting case because of its
connection with sparse methods is that of quadratic cost functions. In particular, we
show in Chapter 3 that the problem of projecting a vector onto the simplex, which can
be written as follows

min
� 2 Rp

1
2

ku � � k2
2 s.t.

pX

i =1

� i = 1 ; � � 0;

is a particular cost of a quadratic min-cost �ow problem, also known as continuous
quadratic knapsack problem. This has been addressed with linear-time algorithms by
Brucker (1984), revisited later by Maculan and de Paula (1989), and rediscovered re-
cently in the machine learning community by Duchi et al. (2008). We further explore
these connections between network �ow algorithms and sparse methods in Chapter3.

1.5 Dictionary Learning and Matrix Factorization

We have presented in the previous section several tools to solve sparse decomposition
problems when the dictionary is �xed. We now move to the dictionary learning frame-
work.

The problem of learning a basis set, �rst introduced by Olshausen and Field(1996,
1997), can be formulated as a matrix factorization problem. More speci�cally, given a
training set of n signalsX = [ x1; : : : ; xn ] in Rm� n , one looks for a dictionary matrix D
in Rm� p such that each signalx i admits a sparse decomposition inD . This can be
written in a general form

min
D 2D ;A 2A

1
n

nX

i =1

h1
2

kx i � D � i k2
2 + � 
( � i )

i
;

where D and A are convex sets,A = [ � 1; : : : ; � n ] is in A � Rp� n and 
 is a sparsity-
inducing regularization term. The number of samplesn is usually large, whereas the
signal dimensionm is relatively small, for example, m = 100 for 10 � 10 image patches,
and n � 100 000 for typical image processing applications. In general, we also havep � n
(e.g., p = 200 for n = 100 000), but each signal only uses a few elements ofD in its
representation, say 10 for instance. Note that, in this setting, overcomplete dictionaries
with p > m are allowed.

This problem can equivalently be rewritten as a matrix factorization problem:

min
D 2D ;A 2A

h1
2

kX � DA k2
F + � 
 0(A )

i
;

where 
 0(A ) , 1
n

P n
i =1 
( � i ). A classical choice consists for instance in choosing 
 to

be the `1-norm, A to be unconstrained (A = Rp� n ), and D to be the set of matrices
whose columns have bounded̀2-norms:

D , f D 2 Rm� p s.t. 8j 2 J1;pK; kd j k2
2 � 1g:
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Since the term DA is invariant by multiplying D by a diagonal matrix on the right
and A by its inverse on the left, preventing D from being arbitrarily large (which would
make A arbitrarily small) has indeed proven to be necessary in practice.

We now present other matrix factorization formulations tha t are related to dictionary
learning.

1.5.1 Classical Matrix Factorization Methods

We start by principal component analysis (PCA), then move to vector quantization and
non-negative matrix factorization.

Principal Component Analysis

Principal component analysis is a widely used tool for data analysis. It looks for a set
of orthogonal directions that maximize the explained variance of data vectors. This is
equivalent to the matrix factorization problem

min
D 2 Rm � p ;A 2 Rp� n

1
2

kX � DA k2
F s.t. D > D = I m and AA > is diagonal:

The solution can be obtained by a singular value decomposition (SVD), and the columns
on D are the desiredprincipal components.

Vector Quantization - Hard Assignment

Vector quantization (or clustering) can also be seen as a matrix factorization problem.
Given n data vectors X = [ x1; : : : ; xn ], one can look for p clusters, de�ned by their
centroids [d1; : : : ; dp] and a binary assignment for each data vector, which can be rep-
resented by binary vectors � i in f 0; 1gp such that

P p
j =1 � i

j = 1�that is, one single
entry of � i is equal to 1, and the rest is zero. Since the assignments havebinary values,
one often uses the terminology �clustering with hard assignment�, as opposed to �soft
assignment�, which is the topic of the next section.

With these notations in hand, we rewrite the clustering problem as

min
D 2 Rm � p ;A 2f 0;1gp� n

1
2

kX � DA k2
F s.t.

pX

j =1

� i
j = 1 ; for all i 2 J1;pK;

which is the same optimization problem addressed by the algorithm K-means (seeHastie
et al., 2009, and references therein). It can be seen as a speci�c sparse matrix factor-
ization, where the columns of A are forced to have a sparsity of one. And in fact,
the algorithm K-SVD introduced by Aharon et al. (2006) for learning dictionaries, is
presented by their authors as a generalization of K-means, emphasizing the tight links
between clustering and dictionary learning.
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1.5. Dictionary Learning and Matrix Factorization

Vector Quantization - Soft Assignment

One possible view of vector quantization with soft assignment is to model data vectors
as non-negative linear combinations of centroids that sum toone. More precisely, the
corresponding optimization problem is

min
D 2 Rm � p ;A 2 Rp� n

1
2

kX � DA k2
F s.t.

pX

j =1

� i
j = 1 ; for all i 2 J1;pK; and A � 0;

which is even closer to dictionary learning than vector quantization with hard assign-
ment. Interestingly, these connections have been recentlyfurther exploited in computer
vision by Yang et al. (2009); Boureau et al. (2010) in the so-calledbags-of-featuresmodels,
using dictionary learning instead of classical vector quantization techniques for building
visual codebooks that are used for image classi�cation tasks.

Non-negative Matrix Factorization

We now mention the non-negative matrix factorization technique proposed byLee and
Seung(2001). In its simplest form, it consists of solving

min
D 2 Rm � p ;A 2 Rp� n

1
2

kX � DA k2
F s.t. D � 0 and A � 0;

With this formulation, the matrices D and A are forced to have non negative entries,
which can lead to sparse solutions. When applied to images, such as faces,Lee and Seung
(2001) have shown that the learned features are more �localized� than the ones learned
with a classical singular value decomposition. Whereas theimportance of NMF in com-
puter vision remain unclear, it has led to interesting results for audio analysis (Févotte
et al., 2009), but with a di�erent loss function than the square loss that is more adapted
to audio modalities. Variants of NMF with sparsity constrai nts (Hoyer, 2002, 2004) have
also been proposed, with strong connections with dictionary learning.

1.5.2 Dictionary Learning Algorithms

We now move to one of the main topics of this thesis, which is dictionary learning.
Like all the matrix factorization formulations presented i n the previous section, the
corresponding optimization problems are non-convex, and weclassify them into two
categories. Those relying on`1-regularization, and those exploiting directly the `0-
pseudo-norm.

Matrix Factorization with `1-regularization

We start by considering the `1-regularized dictionary learning problem, de�ned as

min
D 2D ;A 2 Rm � p

1
n

nX

i =1

h1
2

kx i � D � i k2
2 + � k� i k1

i
;
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which was �rst considered by Olshausen and Field(1996), along with other non-convex
smooth regularizers that induce approximately sparse vectors (vectors that are not sparse
but that have many small coe�cients).

Even though the optimization problem is not jointly convex i n (D ; A ), it is convex
with respect to each variable D or A when the other one is �xed. A natural way
of optimizing the cost function is therefore to alternate the minimization between D
and A , �xing one and optimizing with respect to the other. Optimiz ing with respect
to A can be done with any technique we have presented so far in thisthesis, even though
we might prefer LARS for the classical setting where thex i 's are relatively small and
the solution very sparse. As shown in our benchmark presented in Section 1.4.5, LARS
is indeed particularly e�cient in this case. Optimizing wit h respect to D can be done
with a gradient descent approach as done byOlshausen and Field(1996), or a Newton
method in a dual formulation, as proposed byLee and Seung(2001). We propose in
Chapter 2 other approaches to address this problem, which have provento be more
e�cient.

Matrix Factorization with `0-regularization

The `0 dictionary learning formulation can be written as follows

min
D 2D ;A 2 Rm � p

1
n

nX

i =1

1
2

kx i � D � i k2
2 s.t. k� i k0 � s; 8i 2 J1;nK: (1.13)

The approach proposed byEngan et al. (1999) and called MOD (method of optimal
directions) is also an alternate minimization approach.

� During the sparse coding stepD is �xed, and the vectors � i are obtained using a
greedy approach, such as the ones presented in Section1.4.6.

� During the dictionary learning step, A is �xed and D is updated with the formula

D  � D [XA (AA > ) � 1];

where XA (AA > ) � 1 is the solution of the minimization of Eq. (1.13) with respect
to D when the coe�cients A are �xed and the constraints D are dropped. � D is
the projection operator on D, that in practice normalizes the columns of a given
matrix. Since the cost function of Eq. (1.13) is invariant by replacing D by D� and
A by � � 1A where � is a positive de�nite diagonal matrix, it is possible to show
that such an update minimizes Eq. (1.13) with respect to D , when in addition one
authorizes the rows ofA to be rescaled.

The K-SVD is another approach proposed byAharon et al. (2006). It is also an
alternate minimization approach between two steps. The sparse coding step is the same
as for MOD, but the dictionary update step updates both D and the values of the
non-zero coe�cients of A . The dictionary learning step consists of one pass of a block-
coordinate approach, where sequentially for allj in J1;pK, one column d j is updated
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(keeping the other �xed) simultaneously with the non-zero entries of the j -th row of A .
Such an update can equivalently be rewritten as a one-rank approximation of a matrix,
which can be obtained with a one-rank singular value decomposition (SVD), giving its
name to the algorithm.

1.6 Dictionary Learning for Image Processing

Some of the results presented in this section are reported from the following works,
which have been undertaken before the beginning of this PhD:

J. Mairal, M. Elad and G. Sapiro. Sparse representation for color image restoration.
IEEE Transactions on Image Processing. 17(1):53�69. 2008.

J. Mairal, G. Sapiro, and M. Elad. Learning multiscale sparse representations for image
and video restoration. SIAM Multiscale Modelling and Simulation, 7(1):214�241, April
2008.

J. Mairal, G. Sapiro, and M. Elad. Multiscale sparse image representation with learned
dictionaries. Proceedings of the IEEE International Conference on Image Processing,
2007.

We show in this section several applications of the dictionary learning problem, whose
successes have motivated our research.

1.6.1 Dictionary Learning for Natural Image Patches

Before moving to concrete applications, we show the result of learning dictionaries on
a database of natural images patches, as originally proposed by Olshausen and Field
(1996). To do so, we use the algorithm which will be presented in Chapter 2 on a
database of 10 millions patches of size 12� 12 pixels, randomly extracted from natural
images. We process both grayscale image patches, and RGB color image patches that
are concatenated as a single vector as done byMairal et al. (2008b). For grayscale
patches, the mean value of each patch is removed and the patches are normalized to
have unit `2-norm. For the color patches, the mean color of the patch is removed and
the patches are also normalized. We show in Figure1.13 visual results obtained when
learning p = 256 dictionary elements, using the `1-regularized version of dictionary
learning, with a parameter � = 0 :1. As already reported in the literature (seeOlshausen
and Field, 1996; Elad and Aharon, 2006), we observe intriguing results: some of the
dictionary elements looking like oriented edges (somewhatsimilar to Gabor �lters), some
others look like low-pass �lters. As for the color patches, weobserve an interesting
phenomenon, namely that most of the dictionary elements look gray, and might therefore
be �devoted�, to reconstructing geometrical structures in images. As for the colored
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dictionary elements, they typically have low frequencies and seem, to some extent, to
present two opposite colors, with groups of �green-magenta�or �yellow-blue� dictionary
elements. A similar observation was also made earlier byHoyer and Hyvärinen (2000)
with a di�erent technique called independent component analysis (ICA), which is used
to model data vectors as linear mixtures of independent latent variables. When applied
to natural image patches, this technique visually leads to similar results as dictionary
learning.

Figure 1.13: Example of a learned dictionaries on 12� 12 patches of natural images
with p = 256 dictionary elements. Left: dictionary learned on grayscale image patches.
Right: dictionary learned on RGB color image patches. The dictionary is learned using
the algorithm of Chapter 2 on a database of 10 millions patches. Since patches may have
negative values, they are arbitrarily translated and rescaled for display.

We now move to restoration tasks exploiting this image patchrepresentation, which
have been quite successful.

1.6.2 Image Denoising

We present in this section a successful denoising method �rst introduced by Elad and
Aharon (2006). Let us consider �rst the classical problem of restoring a noisy imagey
in Rn which has been corrupted by a white Gaussian noise of standard deviation � .

Classical techniques often formulate the image denoising problem as an energy min-
imization one, trying to �nd an estimate x̂ that minimizes

min
x 2 Rn

1
2

ky � xk2
2 +  (x);
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where the �rst quadratic term is called a data �tting term , ensuring that the estimate is
close enough to the noisy measurementy, and  (x) is a regularization function ensuring
that the estimate x respects a particular image model.11

Finding a good image model is a notably di�cult task. Early wo rks have assumed
the image to be smooth using �ltering techniques (Kovasznay and Joseph, 1955; Per-
ona and Malik, 1990), to have a small total variation ( Rudin and Osher, 1994), or have
used Markov Random Fields (MRF) to model regularity between adjacent pixels (Zhu
and Mumford, 1997). We now use the assumption that the clean signal can be ap-
proximated by a sparse linear combination of elements from a dictionary. Like many
recent works (Buades et al., 2005; Roth and Black, 2005) the approach we present is
patch-based.

Under this assumption, denoising a patchy i in Rm with a dictionary D in Rm� p

(with p elements), amounts to solving the following sparse decomposition problem

min
� 2 Rp


( � ) s.t. ky i � D � k2
2 � "; (1.14)

where D � is an estimate of the clean signal, and 
 is a sparsity-inducing regularization
function. It can be the `1-norm, leading to the well-known Lasso (Tibshirani , 1996)
and basis pursuit (Chen et al., 1998) problems, or the `0-pseudo-norm. FollowingElad
and Aharon (2006); Mairal et al. (2008b, 2009c), " can be chosen according to the
(supposed known) standard deviation� of the noise. One indeed expects the residual
y i � D � to behave as a Gaussian vector, and thusky i � D � k2

2=� 2 to follow a chi-squared
distribution � 2

m concentrated aroundm. The strategy proposed byMairal et al. (2008b)
is to put a threshold the cumulative distribution function Fm of the � 2

m distribution and
choose" as " = � 2F � 1

m (� ), where F � 1
m is the inverse ofFm . Selecting the value� = 0 :9

leads in practice to acceptable values of" (Mairal et al. , 2008b, 2009c).
Various types of wavelets (Mallat , 1999) have been used as dictionaries for natural

images. Building on ideas proposed byOlshausen and Field(1997) to model neuronal
responses in the V1 area of the brain,Elad and Aharon (2006) have proposed instead
to learn a dictionary D adapted to the image at hand, and demonstrated that learned
dictionaries lead to better empirical performance than o�-t he-shelf ones. Since images
may be very large, e�ciency concerns naturally lead to sparsely decomposing image
patches rather than the full image. For an image of sizen, a dictionary in Rm� p adapted
to the n overlapping patches of sizem (typically m = 8 � 8 � n) associated with the
image pixels, is learned by addressing the following optimization problem

min
D 2D ;A 2 Rp� n

nX

i =1


( � i ) s.t. ky i � D � i k2
2 � "; (1.15)

where D is the set of matrices in Rm� p with unit `2-norm columns, A = [ � 1; : : : ; � n ]
is a matrix in Rp� n , y i is the i -th patch of the noisy image y, � i is the corresponding

11 In a probabilistic model, the optimization problem would be written min x 2 Rn
1

2� ky � xk2
2 � log p(x ),

where p is a prior distribution for x . Therefore  can be related to a log-prior.
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code, andD � i is the estimate of the denoised patch. Note that this procedure implic-
itly assumes that the patches areindependent from each other, which is questionable
since they overlap. However, this approximation makes the corresponding optimization
tractable. Adding some consistency in the reconstruction of adjacent patches, instead of
processing them independently is in fact an interesting open topic, which, to the best of
our knowledge, has never been addressed e�ectively.

Once the dictionary D and codes� i have been learned, every pixel admitsm esti-
mates (one per patch containing it), and its value can be computed by averaging these:

x =
1
m

nX

i =1

R i D � i ; (1.16)

where R i in Rn� m is the binary matrix which places patch number i at its proper posi-
tion in the image. This approach learns the dictionary on the set of overlapping noisy
patches, thereby adapting the dictionary to the image itself, which is a key element in ob-
taining better results. Such an aggregation procedure averaging estimators obtained by
applying a non-translation-invariant operation on di�erent shifted versions of patches, is
related to the classical translation-invariant denoising proposed byCoifman and Donoho
(1995), which basically proceeds in the same way with wavelet denoising. Even though
aggregating estimators by straight averaging might look suboptimal, we are not aware
of any other technique, in the context of dictionary learning, leading to better results
for reconstructing the �nal image from the estimated patches.

How to choose between thè 1- or `0-regularizations is not a priori clear. Following
Elad and Aharon (2006), we have experimentally observed that, given a �xed dictio-
nary D , the reconstructed image is in general of better quality when using the `0-
pseudo-norm rather than its convex `1 counterpart. However, we have also observed
that dictionaries learned with the `1-norm are usually better for denoising, even when
the �nal reconstruction is done with the `0-pseudo-norm. We investigate this question
more thoroughly in Section 1.6.5.

1.6.3 Dictionary Learning with Missing Data � Inpainting

It is possible to model the presence of missing data in the dictionary learning formula-
tion (see Mairal et al. , 2008b). For a patch i in J1;nK, we introduce a binary maskM i

as a diagonal matrix in Rm� m whose value on thej -th entry of the diagonal is 1 if
the pixel y i

j is known and 0 otherwise, wherey i
j is the j -th pixel of the i -th patch of

an imagey in Rn . The general dictionary learning formulation with missing data then
becomes

min
D 2D ;A 2 Rp� n

1
n

nX

i =1

1
2

kM i (y i � D � i )k2
2 + � 
( � i ):

In practice, the presence of the binary mask does not drastically change the optimization
procedure, and one still can alternates between the optimization of D and A . When
the imagey is only corrupted by missing pixels and not by other additive noise, one can
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also enforce hard reconstruction constraints, and address

min
D 2D ;A 2A


( � i ) s.t. M i (y i � D � i ) = 0 :

Before showing any inpainting result, we shall comment onwhen these formulations are
supposed to work.

� First, the formulation exploits independently for each patch the available pixel
values. It can therefore only handle holesthat are smaller than the patch size.
Handling large holes might be possible with a di�erent formulation, for instance
with a di�usion process that would allow �lling in holes (see Roth and Black, 2005,
for such a strategy).

� Second, one assumes thatthe noise pattern does not admit a sparse represen-
tation, which the dictionary could learn otherwise. The demosaicking task (see
Mairal et al. , 2008b) is a typical example of inpainting small holes with such a
problematic pattern. In this case, di�erent strategies can be used, such as learning
the dictionary o�ine on a database of clean signals, and thenpossibly re�ne it on
an estimate of the demosaicked image.

We now show inpainting results in Figure 1.14, one from Mairal et al. (2008b), and one
from Mairal et al. (2008d), where a multiscale variant of K-SVD is introduced.

1.6.4 Video Processing

The extension of dictionary learning techniques for dealing with videos has been proposed
by Protter and Elad (2009). Given a noisy video sequence, a �rst naive approach consists
of processing each frame independently. To exploit temporal consistency and improve
the performance of this approach, some key components can beadded:

� One should process several frames at the same time, for instance T frames, and
consider video patches corresponding to 3-D blocks of sizem = e � e � T in the
video, where e is the edge size of a patch. Typical sizes might be for instance
e = 10 pixels and T = 5 frames.

� After processing T frames, one can move to the next block ofT frames (which
possibly overlaps with the previous one), and one should usethe previously learned
dictionary as an initialization of the learning process that adapts the dictionary to
the current block.

We show examples in Figures1.15 and 1.16 two video processing results from (Mairal
et al., 2008d), where this video extension has been adapted to the inpainting and color
video denoising tasks.
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(a) Example A, Damaged (b) Example A, Restored

(c) Example B, Damaged (d) Example B, Restored

Figure 1.14: Top: Inpainting result from Mairal et al. (2008b), where the text is auto-
matically removed on the restored image. Images are under copyright c
 IEEE. Bottom:
Inpainting result presented from Mairal et al. (2008d), where 80% of the pixels are ran-
domly removed from the original image. The algorithm is ableto reconstruct the brick
texture on the right, without seeing the original image. Images under copyright c
 SIAM.
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(a) Original (b) Damaged (c) Image Denoising (d) Video Denoising

(e) Zoom on (a) (f) Zoom on (b) (g) Zoom on (c) (h) Zoom on (d)

Figure 1.15: Color video denoising result fromMairal et al. (2008d). The third column
show the result when each frame is processed independently from the others. Last column
show the result of the video processing approach. Images under copyright c
 SIAM.
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(a) Original (b) Damaged (c) Image Inpainting (d) Video Inpainting

(e) Zoom on (a) (f) Zoom on (b) (g) Zoom on (c) (h) Zoom on (d)

Figure 1.16: Video inpainting result from Mairal et al. (2008d). The third column show
the result when each frame is processed independently from the others. Last column
show the result of the video processing approach. Images under copyright c
 SIAM.
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1.6.5 `0 vs `1 for Image Denoising

In this section, we address the question of whether one should use the `0 or the `1-
regularization for restoring natural images. We use the following methodology for pro-
cessing one image, which follows fromElad and Aharon (2006), but allows using a
di�erent regularization scheme for learning the dictionary than for reconstructing the
image:

1. Patch Extraction : Extract all overlapping patches from the image.

2. Dictionary Learning Step : Learn a dictionary on this set of patches using a
regularization scheme(A) . We use the alternate minimization approach described
before, with 50 iterations between updates of the coe�cients and updates of the
dictionary, after initializing the dictionary with random ly extracted patches from
the image.

3. Final Reconstruction Step : Reconstruct every patch of the image using a reg-
ularization scheme(B) .

4. Averaging Step : Reconstruct the image using the averaging formula of Eq. (1.16).

For the quantitative evaluation, we have chosen a dataset of12 standard images,
which we also use later in Chapter4. These images are presented in Figure1.17.

(a) house (b) peppers (c) Cameraman (d) lena (e) barbara (f) boat

(g) hill (h) couple (i) man (j) �ngerprint (k) bridge (l) �intstones

Figure 1.17: Dataset of 12 standard images.

We compare the denoising performance of̀0 and `1-regularization, during the train-
ing of the dictionary, and the �nal reconstruction of the ima ge patches. We arbitrarily
choose image patches of size 8� 8, following Elad and Aharon (2006) and a dictionary
size ofp = 200 elements. We add synthetic noise to the 12 images, with standard de-
viations � in f 5; 10; 15; 20; 25; 50; 75; 100g. For each image, we follow the restoration
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procedure described above. For learning the dictionary, wealternate 50 times between
the minimization of A and D using the regularization scheme(A) . Then, we decompose
again every patch of the image using the regularization scheme (B) , before reconstruct-
ing the �nal image with the averaging procedure. The regularization schemes(A) and
(B) for decomposing a patchy in Rm can be

min
� 2 Rp

1
2

ky � D � k2
2 + � k� k1; (`1-P)

min
� 2 Rp

k� k1 s.t. ky � D � k2
2 � "; (`1-R)

min
� 2 Rp

1
2

ky � D � k2
2 + � k� k0; (`0-P)

min
� 2 Rp

k� k0 s.t. ky � D � k2
2 � ": (`0-R)

For " , we try the values " = Cm� 2 with C taken on a grid f 0:9; 0:94; 0:98; : : : ; 1:2g,
which we re�ne on an additive scale with step 0:01. For � , we try the values � = 10 i � ,
with i taken on a grid f� 6; � 5; : : : ; 1g, which we further re�ne by trying values of the
form � = 10

i
4 � , and then � = 10

i
16 � For each value of noise, we keep the parameters

providing the best results on average on the �rst 3 images,house, peppersand cameraman,
after 20 dictionary updates.

The average PSNR of the reconstructed images are presented on Table 1.1, for each
value of noise, and each combination where we train with one of of the regularization
schemes, and �nally reconstruct the image with another one. The corresponding per-
formance of the reconstruction for each individual patchesbefore the averaging stepis
presented on Table1.2.

Our conclusions from this experiment are the following:

� The averaging step is a key component of the denoising algorithm. The quality of
the results is much higher after the averaging step than before.

� For reconstructing individual patches (before the averaging step), the`1-regulari-
zation is signi�cantly better than `0 one.

� For reconstructing full images (after the averaging step), it is always better to use
an `0-regularization during the �nal reconstruction than `1, but at the same time,
it is also better to use an`1-regularization during the dictionary learning step.

� For large amount of noise, penalized formulations (̀0-P or `1-P) should be pref-
ered to constrained formulations (̀ 0-Ror `1-R). For small standard deviations, one
should prefer the constrained formulations.

These conclusions are intriguing, and to the best of our knowledge have only been
mentioned before by us in (Mairal et al. , 2009c). We do not have clear theoretical
explanations for them, but propose the following intuitive arguments.

46



1.6. Dictionary Learning for Image Processing

� = 5 � = 10
H H H H HH(A)

(B)
`0-P `0-R `1-P `1-R `0-P `0-R `1-P `1-R

`0-P 37.07 37.45 36.84 37.05 33.75 33.81 32.52 33.38
`0-R 37.39 37.45 36.89 37.16 33.75 33.83 33.14 33.43
`1-P 37.08 37.62 36.63 37.31 33.88 33.91 33.34 33.47
`1-R 37.59 37.62 37.23 37.31 33.89 33.94 33.41 33.50

� = 15 � = 20
H H H H HH(A)

(B)
`0-P `0-R `1-P `1-R `0-P `0-R `1-P `1-R

`0-P 31.79 31.81 31.13 31.30 30.47 30.41 29.78 29.84
`0-R 31.77 31.85 31.31 31.34 30.50 30.47 29.81 29.88
`1-P 31.87 31.86 31.37 31.33 30.49 30.43 29.88 29.85
`1-R 31.90 31.92 31.34 31.39 30.55 30.50 29.90 29.91

� = 25 � = 50
H H H H HH(A)

(B)
`0-P `0-R `1-P `1-R `0-P `0-R `1-P `1-R

`0-P 29.44 29.34 28.76 28.71 26.23 25.95 25.57 25.31
`0-R 29.47 29.40 28.81 28.76 26.24 25.95 25.53 25.28
`1-P 29.43 29.34 28.82 28.71 26.22 25.93 25.65 25.29
`1-R 29.52 29.41 28.87 28.78 26.24 25.94 25.59 25.26

� = 75 � = 100
H H H H HH(A)

(B)
`0-P `0-R `1-P `1-R `0-P `0-R `1-P `1-R

`0-P 24.20 23.77 23.70 23.34 22.61 22.32 22.42 22.10
`0-R 24.15 23.74 23.63 23.32 22.65 22.26 22.37 22.07
`1-P 24.19 23.73 23.77 23.32 22.74 22.30 22.46 22.09
`1-R 24.14 23.72 23.66 23.29 22.62 22.22 22.36 22.05

Table 1.1: Comparison betweeǹ 0 and `1-regularizations for image denoising. Results
are presented in PSNR. For every value of the standard deviation � , we present the
results for every combination of regularization schemes, where the ones(A) for learning
the dictionary are represented on rows, and the ones for reconstructing the image (B)
on columns. Best results are in bold.
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� = 5 � = 10
H H H H HH(A)

(B)
`0-P `0-R `1-P `1-R `0-P `0-R `1-P `1-R

`0-P 34.28 34.61 36.00 36.01 30.66 30.74 31.49 32.14
`0-R 35.01 34.82 35.95 36.08 30.90 30.96 32.03 32.17
`1-P 34.28 34.50 35.55 36.26 30.52 30.63 32.16 32.22
`1-R 34.66 34.63 36.31 36.26 30.78 30.77 32.26 32.26

� = 15 � = 20
H H H H HH(A)

(B)
`0-P `0-R `1-P `1-R `0-P `0-R `1-P `1-R

`0-P 28.62 28.73 29.93 29.94 27.18 27.27 28.58 28.38
`0-R 28.93 28.84 30.00 29.98 27.48 27.35 28.63 28.44
`1-P 28.41 28.39 30.06 29.97 26.97 27.07 28.63 28.41
`1-R 28.78 28.65 30.14 30.03 27.29 27.21 28.72 28.46

� = 25 � = 50
H H H H HH(A)

(B)
`0-P `0-R `1-P `1-R `0-P `0-R `1-P `1-R

`0-P 26.28 26.27 27.52 27.18 23.07 22.71 24.06 23.42
`0-R 26.39 26.25 27.54 27.22 22.94 22.58 23.97 23.44
`1-P 26.08 26.08 27.60 27.18 23.03 22.65 24.21 23.39
`1-R 26.33 26.17 27.57 27.24 22.79 22.48 24.07 23.43

� = 75 � = 100
H H H H HH(A)

(B)
`0-P `0-R `1-P `1-R `0-P `0-R `1-P `1-R

`0-P 20.83 20.23 21.92 21.33 17.94 18.79 20.48 20.01
`0-R 20.72 20.21 21.80 21.31 19.06 18.69 20.38 19.95
`1-P 20.88 20.37 22.09 21.31 19.24 18.78 20.56 20.00
`1-R 20.65 20.14 21.84 21.28 19.02 18.63 20.35 19.93

Table 1.2: Comparison between`0 and `1-regularizations for denoising individual
patches. Results are presented in PSNR. For every value of the standard deviation � ,
we present the results for every combination of regularization schemes, where the ones
(A) for learning the dictionary are represented on rows, and theones for reconstructing
the image (B) on columns. Best results are in bold.
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We believe that the reason of the good performance of̀1-regularization for learning
the dictionary might be: (i) a better stability of the sparsi ty patterns than the ones
obtained with `0, and/or (ii) a better behavior in terms of optimization, whe re the
`1-schemes guarantee to obtain a stationary point of the formulation, whereas`0 does
not.

The stability argument that favors `1 might explain why this regularization is better
than `0 for individual patches. However, the reason why the hierarchy is reversed after
the averaging step remain alusive. It may be that the errors made with `0 are greater
than with `1 for individual patches, but are quite independent from a patch to another
one, even when the latter overlap. This would explain why these errors are greatly
reduced by the averaging step. As for thè 1-regularization, the errors are individually
smaller, but are highly correlated from one patch to another, and do not average well.
One could argue that the Lasso estimator is biased, and indeed it is classical to use the
Lasso for selecting the dictionary elements, and then perform an orthogonal projection
onto the span of these selected dictionary elements to obtain an unbiased estimator (see
Hastie et al., 2009, and references therein). This argument is true in part, andwe have
indeed observed that the quality of images obtained with the`1 reconstruction improve
with this modi�cation, but it is not su�cient. Even with un un biased estimator based on
`1, signi�cantly better results are obtained using greedy approaches. Note also that these
conclusions stand for the dictionary learning approach based on alternate minimization
which we have described before, but we have not observed signi�cant di�erences when
trying other approaches such as the online learning procedure we present in Chapter2,
or the K-SVD introduced by Aharon et al. (2006).
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2

Online Learning for Matrix Factorization and
Sparse Coding

Chapter abstract: Sparse coding�that is, modelling data vectors as sparse linear combina-
tions of basis elements�is widely used in machine learning, neuroscience, signal processing, and
statistics. This work focuses on the large-scale matrix factorization problem that consists of
learning the basis set in order to adapt it to speci�c data. Variations of this problem include
dictionary learning in signal processing, non-negative matrix factorization and sparse principal
component analysis. In this work, we propose to address these tasks with anew online op-
timization algorithm, based on stochastic approximations, which scales up gracefully to large
data sets with millions of training samples, and extends naturally to variousmatrix factorization
formulations, making it suitable for a wide range of learning problems. A proof of convergence
is presented, along with experiments with natural images and genomic data demonstrating that
it leads to state-of-the-art performance in terms of speed and optimization forboth small and
large data sets.

The reader is advised to read the Section1.5 on dictionary learning before reading this
chapter. The material of this part is based on the two following publications:

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary learning for sparse cod-
ing. In Proceedings of the International Conference on Machine Learning (ICML) , 2009.

J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization
and sparse coding.Journal of Machine Learning Research, 11:19�60, 2010.

2.1 Introduction

In machine learning, statistics and signal processing, slightly di�erent matrix factoriza-
tion problems are formulated in order to obtain a few interpretable basis elements from
a set of data vectors. This includes dictionary learning, non-negative matrix factoriza-
tion and its variants ( Lee and Seung, 2001; Hoyer, 2002, 2004; Lin , 2007), and sparse
principal component analysis (Zou et al., 2006; d'Aspremont et al., 2007, 2008; Witten
et al., 2009; Zass and Shashua, 2007). As shown in this chapter, these problems have
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strong similarities; even though we �rst focus on the problem of dictionary learning,
the algorithm we propose is able to address all of them. Whilelearning the dictionary
has proven to be critical to achieve (or improve upon) state-of-the-art results in signal
and image processing, e�ectively solving the corresponding optimization problem is a
signi�cant computational challenge, particularly in the c ontext of large-scale data sets
that may include millions of training samples. Addressing this challenge and designing
a generic algorithm which is capable of e�ciently handling various matrix factorization
problems, is the topic of this chapter.

Most recent algorithms for dictionary learning (Engan et al., 1999; Lewicki and Se-
jnowski, 2000; Aharon et al., 2006; Lee et al., 2007) are iterative batch procedures,
accessing the whole training set at each iteration in order to minimize a cost function
under some constraints, and cannot e�ciently deal with very large training sets (Bot-
tou and Bousquet, 2008), or dynamic training data changing over time, such as video
sequences. To address these issues, we propose anonline approach that processes the
signals, one at a time, or in mini-batches. This is particularly important in the context
of image and video processing (Protter and Elad , 2009; Mairal et al. , 2008d), where it
is common to learn dictionaries adapted to small patches, with training data that may
include several millions of these patches (roughly one per pixel and per frame). In this
setting, online techniques based on stochastic approximations are an attractive alterna-
tive to batch methods (see, e.g.,Bottou , 1998; Kushner and Yin, 2003; Shalev-Shwartz
et al., 2009). For example, �rst-order stochastic gradient descent with projections on
the constraint set (Kushner and Yin, 2003) is sometimes used for dictionary learning
(seeOlshausen and Field, 1997, 1996; Aharon and Elad, 2008; Kavukcuoglu et al., 2008
for instance). We show in this chapter that it is possible to go further and exploit the
speci�c structure of sparse coding in the design of an optimization procedure tuned to
this problem, with low memory consumption and lower computational cost than classical
batch algorithms. As demonstrated by our experiments, it scales up gracefully to large
data sets with millions of training samples, is easy to use, and is faster than competitive
methods.

The chapter is structured as follows: Section2.2brie�y recalls the dictionary learning
problem. The proposed method is introduced in Section2.3, with a proof of convergence
in Section2.4. Section2.5extends our algorithm to various matrix factorization prob lems
that generalize dictionary learning, and Section2.6 is devoted to experimental results,
demonstrating that our algorithm is suited to a wide class of learning problems.

2.1.1 Contributions

This chapter makes four main contributions:

� We cast in Section 2.2 the dictionary learning problem as the optimization of a
smooth nonconvex objective function over a convex set, minimizing the (desired)
expectedcost when the training set size goes to in�nity, and propose in Section2.3
an iterative online algorithm that solves this problem by e� ciently minimizing
at each step a quadratic surrogate function of the empiricalcost over the set of
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constraints. This method is shown in Section2.4 to converge almost surely to a
stationary point of the objective function.

� As shown experimentally in Section2.6, our algorithm is signi�cantly faster than
previous approaches to dictionary learning on both small and large data sets of
natural images. To demonstrate that it is adapted to di�cult , large-scale image-
processing tasks, we learn a dictionary on a 12-Megapixel photograph and use it
for inpainting�that is, �lling some holes in the image.

� We show in Sections2.5 and 2.6 that our approach is suitable to large-scale ma-
trix factorization problems such as non-negative matrix factorization and sparse
principal component analysis, while being still e�ective on small data sets.

� To extend our algorithm to several matrix factorization pro blems, we propose in
Appendix C e�cient procedures for projecting onto two convex sets, which can be
useful for other applications that are beyond the scope of this chapter.

2.2 Problem Statement

Classical dictionary learning techniques for sparse representation (Engan et al., 1999;
Lewicki and Sejnowski, 2000; Aharon et al., 2006; Lee et al., 2007) consider a �nite
training set of signalsX = [ x1; : : : ; xn ] in Rm� n and optimize the empirical cost function

f n (D ) ,
1
n

nX

i =1

`(x i ; D ); (2.1)

where D = [ d1; : : : ; dp] in Rm� p is the dictionary, each column representing a basis
vector, and ` is a loss function such that `(x ; D ) should be small if D is �good� at
representing the signalx in a sparse fashion. The number of samplesn is usually large,
whereas the signal dimensionm is relatively small, for example, m = 100 for 10 � 10
image patches, andn � 100; 000 for typical image processing applications. In general,we
also havep � n (e.g., p = 200 for n = 100; 000), but each signal only uses a few elements
of D in its representation, say 10 for instance. Note that, in this setting, overcomplete
dictionaries with p > m are allowed. As others (see for exampleOlshausen and Field,
1997, 1996; Lee et al., 2007), we de�ne `(x ; D ) as the optimal value of the `1 sparse
coding problem:

`(x ; D ) , min
� 2 Rp

1
2

kx � D � k2
2 + � k� k1; (2.2)

where� is a regularization parameter. To preventD from having arbitrarily large values
(which would lead to arbitrarily small values of � ), it is common to constrain its columns
d1; : : : ; dp to have an `2-norm less than or equal to one. We will callD the convex set
of matrices verifying this constraint:

D , f D 2 Rm� p s.t. 8j 2 J1;pK; kd j k2
2 � 1g:
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Note that the problem of minimizing the empirical cost f n (D ) is not convex with respect
to D . It can be rewritten as a joint optimization problem with res pect to the dictionary D
and the coe�cients A = [ � 1; : : : ; � n ] in Rp� n of the sparse decompositions, which is not
jointly convex, but convex with respect to each of the two variables D and � when the
other one is �xed:

min
D 2D ;A 2 Rp� n

nX

i =1

h1
2

kx i � D � i k2
2 + � k� i k1

i
: (2.3)

This can be rewritten as amatrix factorization problem with a sparsity penalty:

min
D 2D ;A 2 Rp� n

1
2

kX � DA k2
F + � kA k1;1;

where, as before,X = [ x1; : : : ; xn ] is the matrix of data vectors, and kA k1;1 denotes
the `1 norm of the matrix A �that is, the sum of the magnitude of its coe�cients.
A natural approach for solving this problem is to alternate between the two variables,
minimizing over one while keeping the other one �xed, as proposed byLee et al. (2007)
(see alsoEngan et al. 1999and Aharon et al. 2006, who use`0 rather than `1 penalties,
or Zou et al. 2006for the problem of sparse principal component analysis).1 Since the
computation of the coe�cients vectors � i dominates the cost of each iteration in this
block-coordinate descent approach, a second-order optimization technique can be used
to accurately estimate D at each step when� is �xed.

As pointed out by Bottou and Bousquet (2008), however, one is usually not interested
in the minimization of the empirical cost f n (D ) with high precision, but instead in the
minimization of the expected cost

f (D ) , Ex [`(x ; D )] = lim
n!1

f n (D ) a.s.;

where the expectation (which is supposed �nite) is taken relative to the (unknown)
probability distribution p(x) of the data.2 In particular, given a �nite training set, one
should not spend too much e�ort on accurately minimizing the empirical cost, since it is
only an approximation of the expected cost. An �inaccurate� solution may indeed have
the same or better expected cost than a �well-optimized� one. Bottou and Bousquet
(2008) further show that stochastic gradient algorithms, whose rate of convergence is
very poor in conventional optimization terms, may in fact in certain settings be shown
both theoretically and empirically to be faster in reaching a solution with low expected
cost than second-order batch methods. With large training sets, the risk of over�tting is
lower, but classical optimization techniques may become impractical in terms of speed
or memory requirements.

In the case of dictionary learning, the classical projected�rst-order projected stochas-
tic gradient descent algorithm (as used byOlshausen and Field 1997, 1996; Aharon and

1 In our setting, as in Lee et al. (2007), we have preferred to use the convex `1 norm, that has
empirically proven to be better behaved in general than the `0 pseudo-norm for dictionary learning.

2We use �a.s.� to denote almost sure convergence.

54



2.3. Proposed Approach

Elad 2008; Kavukcuoglu et al. 2008for instance) consists of a sequence of updates ofD :

D t = � D

h
D t � 1 � � t r D `(x t ; D t � 1)

i
;

where D t is the estimate of the optimal dictionary at iteration t, � t is the gradient step,
� D is the orthogonal projector onto D, and the vectors x t are i.i.d. samples of the
(unknown) distribution p(x). Even though it is often di�cult to obtain such i.i.d. sam-
ples, the vectorsx t are in practice obtained by cycling on a randomly permuted training
set. As shown in Section2.6, we have observed that this method can be competitive in
terms of speed compared to batch methods when the training set is large and when � t

is carefully chosen. In particular, good results are obtained using a learning rate of the
form � t , a=(t + b), where a and b have to be well chosen in a data set-dependent way.
Note that �rst-order stochastic gradient descent has also been used for other matrix
factorization problems (seeKoren et al., 2009and references therein).

The optimization method we present in the next section fallsinto the class of online
algorithms based on stochastic approximations, processing one sample at a time (or
a mini-batch), but further exploits the speci�c structure of the problem to e�ciently
solve it by sequentially minimizing a quadratic local surrogate of the expected cost. As
shown in Section2.3.5, it uses second-order information of the cost function, allowing
the optimization without any explicit learning rate tuning .

2.3 Proposed Approach

We present in this section the basic components of our onlinealgorithm for dictionary
learning (Sections 2.3.1� 2.3.3), as well as a few minor variants which speed up our
implementation in practice (Section 2.3.4) and show some links with a Kalman algorithm
(Section 2.3.5).

2.3.1 Algorithm Outline

Our procedure is summarized in Algorithm1. Assuming that the training set is composed
of i.i.d. samples of a distribution p(x), its inner loop draws one elementx t at a time, as
in stochastic gradient descent, and alternates classical sparse coding steps for computing
the decomposition� t of x t over the dictionary D t � 1 obtained at the previous iteration,
with dictionary update steps where the new dictionary D t is computed by minimizing
over D the function

f̂ t (D ) ,
1
t

tX

i =1

h1
2

kx i � D � i k2
2 + � k� i k1

i
; (2.4)

and the vectors � i , for i < t , have been computed during the previous steps of the
algorithm. The motivation behind this approach is twofold:

� The function f̂ t , which is quadratic in D , aggregates the past information with a
few su�cient statistics obtained during the previous steps of the algorithm, namely
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2. Online Learning for Matrix Factorization and Sparse Coding

the vectors � i , and it is easy to show that it upperbounds the empirical costf t (D t )
from Eq. (2.1). One key aspect of our convergence analysis will be to show that
f̂ t (D t ) and f t (D t ) converge almost surely to the same limit, and thus that f̂ t acts
as asurrogate for f t .

� Sincef̂ t is close tof̂ t � 1 for large values oft, so areD t and D t � 1, under suitable as-
sumptions, which makes it e�cient to use D t � 1 as warm restart for computing D t .

Algorithm 1 Online dictionary learning.
Require: x 2 Rm � p(x) (random variable and an algorithm to draw i.i.d samples

of p), � 2 R (regularization parameter), D 0 2 Rm� p (initial dictionary), T (number
of iterations).

1: B 0 2 Rp� p  0, C0 2 Rm� p  0 (reset the �past� information).
2: for t = 1 to T do
3: Draw x t from p(x).
4: Sparse coding: compute using LARS

� t , arg min
� 2 Rp

1
2

kx t � D t � 1� k2
2 + � k� k1:

5: B t  B t � 1 + � t � t> .
6: C t  C t � 1 + x t � t> .
7: Compute D t using Algorithm 2, with D t � 1 as warm restart, so that

D t , arg min
D 2D

1
t

tX

i =1

� 1
2

kx i � D � i k2
2 + � k� i k1

�
;

= arg min
D 2D

1
t

� 1
2

Tr( D > DB t ) � Tr( D > C t )
�
: (2.5)

8: end for
9: return D T (learned dictionary).

2.3.2 Sparse Coding

The sparse coding problem of Eq. (2.2) with �xed dictionary is an `1-regularized linear
least-squares problem. A number of recent methods for solving this type of problems are
based on coordinate descent with soft thresholding (Fu, 1998; Friedman et al., 2007; Wu
and Lange, 2008). When the columns of the dictionary have low correlation, we have
observed that these simple methods are very e�cient. However, the columns of learned
dictionaries are in general highly correlated, and we have empirically observed that these
algorithms become much slower in this setting. This has led us to use instead the LARS-
Lasso algorithm, a homotopy method (Osborne et al., 2000b; Efron et al., 2004) that
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Algorithm 2 Dictionary update.
Require: D = [ d1; : : : ; dp] 2 Rm� p (input dictionary),

B = [ b1; : : : ; bp] 2 Rp� p,
C = [ c1; : : : ; cp] 2 Rm� p.

1: repeat
2: for j = 1 to p do
3: Update the j -th column to optimize for ( 2.5):

u j  
1

B jj
(cj � Db j ) + d j ;

d j  
1

max(ku j k2; 1)
u j :

(2.6)

4: end for
5: until convergence
6: return D (updated dictionary).

provides the whole regularization path�that is, the soluti ons for all possible values of� .
With an e�cient Cholesky-based implementation (see Efron et al., 2004; Zou and Hastie,
2005) for brief descriptions of such implementations), it has proven experimentally at
least as fast as approaches based on soft thresholding, while providing the solution with
a higher accuracy and being more robust as well since it does not require an arbitrary
stopping criterion. We provide more details on these methods in Sections1.4.3� 1.4.2.

2.3.3 Dictionary Update

Our algorithm for updating the dictionary uses block-coordinate descent with warm
restarts (seeBertsekas, 1999). One of its main advantages is that it is parameter free
and does not require any learning rate tuning. Moreover, theprocedure does not require
to store all the vectors x i and � i , but only the matrices B t =

P t
i =1 � i � i > in Rp� p

and C t =
P t

i =1 x i � i > in Rm� p. Concretely, Algorithm 2 sequentially updates each
column of D . A simple calculation shows that solving (2.5) with respect to the j -th
column d j , while keeping the other ones �xed under the constraintkd j k2 � 1, amounts
to an orthogonal projection of the vector u j de�ned in Eq. ( 2.6), onto the constraint
set, namely the`2-ball here, which is solved by Eq. (2.6). Since the convex optimization
problem (2.5) admits separable constraints in the updated blocks (columns), convergence
to a global optimum is guaranteed (Bertsekas, 1999). In practice, the vectors � i are
sparse and the coe�cients of the matrix B t are often concentrated on the diagonal,
which makes the block-coordinate descent more e�cient.3 After a few iterations of our
algorithm, using the value of D t � 1 as a warm restart for computingD t becomes e�ective,

3We have observed that this is true when the columns of D are not too correlated. When a group
of columns in D are highly correlated, the coe�cients of the matrix B t concentrate instead on the
corresponding principal submatrices of B t .
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and a single iteration of Algorithm 2 has empirically found to be su�cient to achieve
convergence of the dictionary update step. Other approacheshave been proposed to
update D : For instance, Lee et al. (2007) suggest using a Newton method on the dual
of Eq. (2.5), but this requires inverting a p � p matrix at each Newton iteration, which
is impractical for an online algorithm.

2.3.4 Optimizing the Algorithm

We have presented so far the basic building blocks of our algorithm. This section dis-
cusses a few simple improvements that signi�cantly enhanceits performance.

Handling Fixed-Size Data Sets

In practice, although it may be very large, the size of the training set often has a
prede�ned �nite size (of course this may not be the case when the data must be treated
on the �y like a video stream for example). In this situation, the same data points may
be examined several times, and it is very common in online algorithms to simulate an
i.i.d. sampling of p(x) by cycling over a randomly permuted training set (seeBottou
and Bousquet, 2008and references therein). This method works experimentallywell in
our setting but, when the training set is small enough, it is possible to further speed
up convergence: In Algorithm 1, the matrices B t and C t carry all the information from
the past coe�cients � 1; : : : ; � t . Suppose that at time t0, a signal x is drawn and the
vector � t0 is computed. If the same signalx is drawn again at time t > t 0, then it is
natural to replace the �old� information � t0 by the new vector � t in the matrices B t

and C t �that is, B t  B t � 1 + � t � t>
� � t0 � t0> and C t  C t � 1 + x t � t> � x t � t0> . In

this setting, which requires storing all the past coe�cient s � t0 , this method amounts to
a block-coordinate descent for the problem of minimizing Eq.(2.3). When dealing with
large but �nite sized training sets, storing all coe�cients � i is impractical, but it is still
possible to partially exploit the same idea, by removing theinformation from B t and C t

that is older than two epochs(cycles through the data), through the use of two auxiliary
matrices ~B t and ~C t of sizep � p and m � p respectively. These two matrices should be
built with the same rules as B t and C t , except that at the end of an epoch,B t and C t

are respectively replaced by~B t and ~C t , while ~B t and ~C t are set to 0. Thanks to this
strategy, B t and C t do not carry any coe�cients � i older than two epochs.

Scaling the �Past� Data

At each iteration, the �new� information � t that is added to the matrices B t and C t has
the same weight as the �old� one. A simple and natural modi�cation to the algorithm
is to rescale the �old� information so that newer coe�cients � t have more weight, which
is classical in online learning. For instance,Neal and Hinton (1998) present an online
algorithm for EM, where su�cient statistics are aggregated over time, and an exponential
decay is used to forget out-of-date statistics. In this work, we propose to replace lines 5
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and 6 of Algorithm 1 by

B t  � t B t � 1 + � t � t> ;

C t  � t C t � 1 + x t � t> ;

where � t ,
�
1 � 1

t

� � , and � is a new parameter. In practice, one can apply this strategy
after a few iterations, onceB t is well-conditioned. Tuning � improves the convergence
rate, when the training sets are large, even though, as shownin Section 2.6, it is not
critical. To understand better the e�ect of this modi�catio n, note that Eq. ( 2.5) becomes

D t , arg min
D 2D

1
P t

j =1 (j=t ) �

tX

i =1

� i
t

� � � 1
2

kx i � D � i k2
2 + � k� i k1

�
;

= arg min
D 2D

1
P t

j =1 (j=t ) �

� 1
2

Tr( D > DB t ) � Tr( D > C t )
�
:

When � = 0, we obtain the original version of the algorithm. Of course, di�erent
strategies and heuristics could also be investigated. In practice, this parameter� is useful
for large data sets only (n � 100 000). For smaller data sets, we have not observed a
better performance when using this extension.

Mini-Batch Extension

In practice, we can also improve the convergence speed of ouralgorithm by drawing
� > 1 signals at each iteration instead of a single one, which is aclassical heuristic in
stochastic gradient descent algorithms. In our case, this is further motivated by the
fact that the complexity of computing � vectors � i is not linear in � . A Cholesky-
based implementation of LARS-Lasso for decomposing a singlesignal has a complexity
of O(pms + ps2), where s is the number of nonzero coe�cients. When decomposing�
signals, it is possible to pre-compute the Gram matrixD t> D t and the total complexity
becomesO(p2m + � (pm + ps2)), which is much cheaper than� times the previous com-
plexity when � is large enough ands is small. Let us denote byx t;1; : : : ; x t;� the signals
drawn at iteration t. We can now replace lines 5 and 6 of Algorithm1 by

B t  B t � 1 +
1
�

�X

i =1

� t;i � t;i > ;

C t  C t � 1 +
1
�

�X

i =1

x t;i � t;i > :

Slowing Down the First Iterations

As in the case of stochastic gradient descent, the �rst iterations of our algorithm may
update the parameters with large steps, immediately leading to large deviations from the
initial dictionary. To prevent this phenomenon, classical implementations of stochastic
gradient descent use gradient steps of the forma=(t + b), where b �reduces� the step size.
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An initialization of the form B 0 = t0I and C0 = t0D 0 with t0 � 0 also slows down the
�rst steps of our algorithm by forcing the solution of the dic tionary update to stay close
to D 0. As shown in Section2.6, we have observed that our method does not require this
extension to achieve good results in general.

Purging the Dictionary from Unused Atoms

Every dictionary learning technique sometimes encounterssituations where some of the
dictionary atoms are never (or very seldom) used, which typically happens with a very
bad initialization. A common practice is to replace these during the optimization by
randomly chosen elements of the training set, which solves in practice the problem in
most cases. For more di�cult and highly regularized cases, it is also possible to choose
a continuation strategy consisting of starting from an easier, less regularized problem,
and gradually increasing� . This continuation method has not been used in this work.

2.3.5 Link with Second-order Stochastic Gradient Descent

For unconstrained learning problems with twice di�erentia ble expected cost, the second-
order stochastic gradient descent algorithm (seeBottou and Bousquet, 2008 and refer-
ences therein) improves upon its �rst-order version, by replacing the learning rate by the
inverse of the Hessian. When this matrix can be computed or approximated e�ciently,
this method usually yields a faster convergence speed and removes the problem of tun-
ing the learning rate. However, it cannot be applied easily to constrained optimization
problems and requires at every iteration an inverse of the Hessian. For these two rea-
sons, it cannot be used for the dictionary learning problem,but nevertheless it shares
some similarities with our algorithm, which we illustrate w ith the example of a di�erent
problem.

Suppose that two major modi�cations are brought to our original formulation: (i)
the vectors � t are independent of the dictionaryD �that is, they are drawn at the same
time as x t ; (ii) the optimization is unconstrained�that is, D = Rm� p. This setting leads
to the least-square estimation problem

min
D 2 Rm � p

E(x ;� )
�
kx � D � k2

2
�
; (2.7)

which is of course di�erent from the original dictionary learning formulation. Nonethe-
less, it is possible to address Eq. (2.7) with our method and show that it amounts to
using the recursive formula

D t  D t � 1 + ( x t � D t � 1� t )� t>
� tX

i =1

� i � i >
� � 1

;

which is equivalent to a second-order stochastic gradient descent algorithm: The gradient
obtained at (x t ; � t ) is the term � (x t � D t � 1� t )� t> , and the sequence (1=t)

P t
i =1 � i � i >

converges to the Hessian of the objective function. Such sequence of updates admit a
fast implementation called Kalman algorithm (seeKushner and Yin, 2003; Bottou , 1998
and references therein).
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2.4 Convergence Analysis

The main tools used in our proofs are the convergence of empirical processes (Van der
Vaart , 1998) and, following Bottou (1998), the convergence of quasi-martingales (Fisk,
1965). Our analysis is limited to the basic version of the algorithm, although it can in
principle be carried over to the optimized versions discussed in Section 2.3.4. Before
proving our main result, let us �rst discuss the (reasonable) assumptions under which
our analysis holds.

2.4.1 Assumptions

(A) The data admits a distribution with compact support K . Assuming a com-
pact support for the data is natural in audio, image, and video processing applications,
where it is imposed by the data acquisition process.

(B) The quadratic surrogate functions f̂ t are strictly convex with lower-
bounded Hessians. We assume that the smallest eigenvalue of the positive semi-
de�nite matrix 1

t B t de�ned in Algorithm 1 is greater than or equal to some constant� 1.
As a consequence,B t is invertible and f̂ t is strictly convex with Hessian I 
 2

t B t . This
hypothesis is in practice veri�ed experimentally after a few iterations of the algorithm
when the initial dictionary is reasonable, consisting for example of a few elements from
the training set, or any common dictionary, such as DCT (bases of cosines products)
or wavelets (Mallat , 1999). Note that it is easy to enforce this assumption by adding
a term � 1

2 kD k2
F to the objective function, which is equivalent to replacing the positive

semi-de�nite matrix 1
t B t by 1

t B t + � 1I . We have omitted for simplicity this penalization
in our analysis.
(C) A particular su�cient condition for the uniqueness of the spa rse coding
solution is satis�ed. Before presenting this assumption, let us brie�y recall classical
optimality conditions for the `1 decomposition problem in Eq. (2.2) (Fuchs, 2005). For x
in K and D in D, � in Rp is a solution of Eq. (2.2) if and only if

d j > (x � D � ) = � sign(� j ) if � j 6= 0 ;

jd j > (x � D � )j � � otherwise:
(2.8)

Let � ? be such a solution. Denoting by � the set of indicesj such that jd j > (x � D � ?)j =
� , and D � the matrix composed of the columns fromD restricted to the set �, it is easy
to see from Eq. (2.8) that the solution � ? is necessary unique if (D >

� D � ) is invertible
and that

� ?
� = ( D >

� D � ) � 1(D >
� x � � " � ); (2.9)

where � ?
� is the vector containing the values of� ? corresponding to the set � and " �

carries the signs of� ?
� (elementwise). With this preliminary uniqueness condition in

hand, we can now formulate our assumption:We assume that there exists� 2 > 0 such
that, for all x in K and all dictionaries D in the subset ofD considered by our algorithm,
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the smallest eigenvalue ofD >
� D � is greater than or equal to � 2. This guarantees the

invertibility of ( D >
� D � ) and therefore the uniqueness of the solution of Eq. (2.2). It

is of course easy to build a dictionaryD for which this assumption fails. However,
having D >

� D � invertible is a common assumption in linear regression and in methods
such as the LARS algorithm aimed at solving Eq. (2.2) (Efron et al., 2004). It is also
possible to enforce this condition using an elastic net penalization ( Zou and Hastie,
2005), replacing k� k1 by k� k1 + � 2

2 k� k2
2 and thus improving the numerical stability of

homotopy algorithms, which is the choice made byZou et al. (2006). Again, we have
omitted this penalization in our analysis.

2.4.2 Main Results

Given assumptions (A) � (C) , let us now show that our algorithm converges to a sta-
tionary point of the objective function. Since this work is dealing with non-convex
optimization, neither our algorithm nor any one in the liter ature is guaranteed to �nd
the global optimum of the optimization problem. However, such stationary points have
often been found to be empirically good enough for practicalapplications, for example,
for image restoration (Elad and Aharon, 2006; Mairal et al. , 2008b).

Our �rst result (Proposition 4 below) states that given (A) � (C) , f (D t ) converges
almost surely and f (D t ) � f̂ t (D t ) converges almost surely to 0, meaning thatf̂ t acts as
a converging surrogate off . First, we prove a lemma to show that D t � D t � 1 = O(1=t).
It does not ensure the convergence ofD t , but guarantees the convergence of the positive
sum

P 1
t=1 kD t � D t � 1k2

F , a classical condition in gradient descent convergence proofs
(Bertsekas, 1999).

Lemma 2 (Asymptotic variations of D t .)
Assume(A) � (C) . Then,

D t+1 � D t = O
� 1

t

�
a.s.

The proof of this lemma as well the ones of the subsequent propositions are all
given in Appendix B for readability purposes. We can now state and prove our �rst
proposition, which shows that we are indeed minimizing a smooth function.

Proposition 4 (Regularity of f .)
Assume(A) to (C) . For x in the support K of the probability distribution p, and D in
the feasible setD, let us de�ne

� ?(x ; D ) = arg min
� 2 Rp

1
2

kx � D � k2
2 + � k� k1: (2.10)

Then,

1. the function ` de�ned in Eq. ( 2.2) is continuously di�erentiable and

r D `(x ; D ) = � (x � D � ?(x ; D )) � ?(x ; D )> :

2. f is continuously di�erentiable and r f (D ) = Ex
�
r D `(x ; D )

�
;
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3. r f (D ) is Lipschitz on D.

Now that we have shown that f is a smooth function, we can state our �rst result
showing that the sequence of functionsf̂ t acts asymptotically as a surrogate off and
that f (D t ) converges almost surely in the following proposition.

Proposition 5 (Convergence of f (D t ) and of the surrogate function.)
Let f̂ t denote the surrogate function de�ned in Eq. (2.4). Assume (A) to (C) . Then,

1. f̂ t (D t ) converges almost surely;

2. f (D t ) � f̂ t (D t ) converges almost surely to0;

3. f (D t ) converges almost surely.

With Proposition 5 in hand, we can now prove our �nal and strongest result, namely
that �rst-order necessary optimality conditions are veri�e d asymptotically with proba-
bility one.

Proposition 6 (Convergence to a stationary point.)
Under assumptions(A) to (C) , the distance betweenD t and the set of stationary points
of the dictionary learning problem converges almost surelyto 0 when t tends to in�nity.

2.5 Extensions to Matrix Factorization

In this section, we present variations of the basic online algorithm to address di�erent
optimization problems. We �rst present di�erent possible r egularization terms for the
coe�cients � and D , which can be used with our algorithm, and then detail some speci�c
cases such as non-negative matrix factorization, sparse principal component analysis,
constrained sparse coding, and simultaneous sparse coding.

2.5.1 Using Di�erent Regularizers for �

In various applications, di�erent priors for the coe�cient s � may lead to di�erent reg-
ularizers 
( � ). As long as the assumptions of Section2.4.1 are veri�ed, our algorithm
can be used with:

� Positivity constraints on � that are added to the `1-regularization. The homotopy
method presented byEfron et al. (2004) is able to handle such constraints.

� The Tikhonov regularization, 
( � ) = � 1
2 k� k2

2, which does not lead to sparse solu-
tions.

� The elastic net (Zou and Hastie, 2005), 
( � ) = � 1k� k1 + � 2
2 k� k2

2, leading to a
formulation relatively close to Zou et al. (2006).

� The group Lasso (Yuan and Lin, 2006; Turlach et al. , 2005; Bach, 2008), 
( � ) =
P s

i =1 k� i k2, where � i is a vector corresponding to a group of variables.
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Non-convex regularizers such as thè0 pseudo-norm, `q pseudo-norms with q < 1 can
be used as well. However, as with any classical dictionary learning techniques exploiting
non-convex regularizers (e.g.,Olshausen and Field, 1997; Engan et al., 1999; Aharon
et al., 2006), there is no theoretical convergence results in these cases. Note also that
convex smooth approximation of sparse regularizers (Bradley and Bagnell, 2009), or
structured sparsity-inducing regularizers (Jenatton et al., 2009; Jacob et al., 2009) could
be used as well even though we have not tested them.

2.5.2 Using Di�erent Constraint Sets for D

In the previous subsection, we have claimed that our algorithm could be used with
di�erent regularization terms on � . For the dictionary learning problem, we have con-
sidered an `2-regularization on D by forcing its columns to have less than unit `2-
norm. We have shown that with this constraint set, the dictionary update step can be
solved e�ciently using a block-coordinate descent approach. Updating the j -th column
of D , when keeping the other ones �xed is solved by orthogonally projecting the vector
u j = d j + (1 =B jj )(cj � Db j ) on the constraint set D, which in the classical dictionary
learning case amounts to a projection ofu j on the `2-ball.

It is easy to show that this procedure can be extended to di�erent convex constraint
setsD0 as long as the constraints are a union of independent constraints on each column
of D and the orthogonal projections of the vectorsu j onto the set D0 can be done
e�ciently. Examples of di�erent sets D0 that we propose as an alternative toD are

� The �non-negative� constraints:

D0 , f D 2 Rm� p s.t. 8j 2 J1;pK; kd j k2 � 1 and d j � 0g:

� The �elastic-net� constraints:

D0 , f D 2 Rm� p s.t. 8j 2 J1;pK; kd j k2
2 + 
 kd j k1 � 1g:

These constraints induce sparsity in the dictionaryD (in addition to the sparsity-
inducing regularizer on the vectors� i ). By analogy with the regularization pro-
posed byZou and Hastie(2005), we call these constraints �elastic-net constraints.�
Here, 
 is a new parameter, controlling the sparsity of the dictionary D . Adding
a non-negativity constraint is also possible in this case. Note that the presence of
the `2 regularization is important here. It has been shown byBach et al. (2008)
that using the `1-norm only in such problems lead to trivial solutions when p is
large enough. The combination of`1 and `2 constraints has also been proposed
recently for the problem of matrix factorization by Witten et al. (2009), but in a
slightly di�erent setting.

� The �fused lasso� (Tibshirani et al. , 2005) constraints. When one is looking for
a dictionary whose columns are sparse and piecewise-constant, a fused lasso reg-
ularization can be used. For a vectoru in Rm , we consider the`1-norm of the
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consecutive di�erences ofu denoted by

FL( u) ,
mX

i =2

ju i � u i � 1j;

and de�ne the �fused lasso� constraint set

D0 , f D 2 Rm� p s.t. 8j 2 J1;pK; kd j k2
2 + 
 1kd j k1 + 
 2 FL( d j ) � 1g:

This kind of regularization has proven to be useful for exploiting genomic data
such as CGH arrays (Tibshirani and Wang, 2008).

In all these settings, replacing the projections of the vectors u j onto the `2-ball by
the projections onto the new constraints, our algorithm is still guaranteed to converge
and �nd a stationary point of the optimization problem. The o rthogonal projection onto
the �non negative� ball is simple (additional thresholding ) but the projection onto the
two other sets is slightly more involved. In Appendix C, we propose two algorithms for
e�ciently solving these problems. The �rst one is presented in Section C.1 and computes
the projection of a vector onto the elastic-net constraint in linear time, by extending the
e�cient projection onto the `1-ball from Maculan and de Paula(1989) and Duchi et al.
(2008). The second one is a homotopy method, which solves the projection on the
fused lasso constraint set inO(ps), where s is the number of piecewise-constant parts
in the solution. This method also solves e�ciently the fused lasso signal approximation
problem presented inFriedman et al. (2007):

min
u2 Rn

1
2

kb � uk2
2 + 
 1kuk1 + 
 2 FL( u) + 
 3kuk2

2:

Being able to solve this problem e�ciently has also numerousapplications, which are
beyond the scope of this work. For instance, it allows us to use the fast algorithm of
Nesterov(2007) for solving the more general fused lasso problem (Tibshirani et al. , 2005).
Note that the proposed method could be used as well with more complex constraints for
the columns of D , which we have not tested in this work, addressing for instance the
problem of structured sparse PCA (Jenatton et al., 2010c).

Now that we have presented a few possible regularizers for� and D , that can be
used within our algorithm, we focus on a few classical problems which can be formulated
as dictionary learning problems with speci�c combinations of such regularizers.

2.5.3 Non Negative Matrix Factorization

Given a matrix X = [ x1; : : : ; xn ] in Rm� n , Lee and Seung(2001) have proposed the non
negative matrix factorization problem (NMF), which consists of minimizing the following
cost

min
D 2D ;A 2 Rp� n

nX

i =1

h1
2

kx i � D � i k2
2

i
s.t. D � 0; 8 i; � i � 0;
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where we recall that A = [ � 1; : : : ; � n ]. With this formulation, the matrix D and the
vectors � i are forced to have non negative components, which leads to sparse solu-
tions. When applied to images, such as faces,Lee and Seung(2001) have shown that
the learned features are more localized than the ones learned with a classical singular
value decomposition. As for dictionary learning, classical approaches for addressing this
problem are batch algorithms, such as the multiplicative update rules ofLee and Seung
(2001), or the projected gradient descent algorithm ofLin (2007).

Following this line of research,Hoyer (2002, 2004) has proposed non negative sparse
coding (NNSC), which extends non-negative matrix factorization by adding a sparsity-
inducing penalty to the objective function to further contr ol the sparsity of the vectors� i :

min
D 2D ;A 2 Rp� n

nX

i =1

h1
2

kx i � D � i k2
2 + �

pX

j =1

� i
j

i
s.t. D � 0; 8 i 2 J1;nK; � i � 0:

When � = 0, this formulation is equivalent to NMF. The only di�erenc e with the dic-
tionary learning problem is that non-negativity constraint s are imposed onD and the
vectors � i . A simple modi�cation of our algorithm, presented above, allows us to han-
dle these constraints, while guaranteeing to �nd a stationary point of the optimization
problem. Moreover, our approach can work in the setting whenn is large.

2.5.4 Sparse Principal Component Analysis

Principal component analysis (PCA) is a classical tool for data analysis, which can be
interpreted as a method for �nding orthogonal directions maximizing the variance of the
data, or as a low-rank matrix approximation method. Jolli�e et al. (2003), Zou et al.
(2006), d'Aspremont et al. (2007), d'Aspremont et al. (2008), Witten et al. (2009) and
Zass and Shashua(2007) have proposed di�erent formulations for sparse principal com-
ponent analysis (SPCA), which extends PCA by estimating sparse vectors maximizing
the variance of the data, some of these formulations enforcing orthogonality between the
sparse components, whereas some do not. In this work, we formulate SPCA as a sparse
matrix factorization which is equivalent to the dictionary learning problem with possibly
sparsity constraints on the dictionary�that is, we use the `1-regularization term for �
and the �elastic-net� constraint for D (as used in a penalty term byZou et al. 2006):

min
D 2 Rm � p ;A 2 Rp� n

nX

i =1

h1
2

kx i � D � i k2
2 + � k� i k1

i
s.t. 8j 2 J1;pK; kd j k2

2 + 
 kd j k1 � 1:

As detailed above, our dictionary update procedure amountsto successive orthogonal
projection of the vectors u j on the constraint set. More precisely, the update ofd j

becomes

u j  
1

B jj
(cj � Db j ) + d j ;

d j  arg min
d2 Rm

ku j � dk2
2 s.t. kdk2

2 + 
 kdk1 � 1;

which can be solved in linear time using Algorithm 9 presented in Appendix C. In
addition to that, our SPCA method can be used with fused Lassoconstraints as well.
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2.5.5 Constrained Sparse Coding

Constrained sparse coding problems are often encountered in the literature, and lead to
di�erent loss functions such as

`0(x ; D ) = min
� 2 Rp

kx � D � k2
2 s.t. k� k1 � T; (2.11)

or
`00(x ; D ) = min

� 2 Rp
k� k1 s.t. kx � D � k2

2 � "; (2.12)

where T and " are pre-de�ned thresholds. Even though these loss functionslead to
equivalent optimization problems in the sense that for given x; D and � , there exist "
and T such that `(x ; D ), `0(x ; D ) and `00(x ; D ) admit the same solution � ?, the problems
of learning D using `, `0 of `00are not equivalent. For instance, using`00has proven
experimentally to be particularly well adapted to image denoising (Elad and Aharon,
2006; Mairal et al. , 2008b).

For all T , the same analysis as for̀ can be carried for`0, and the simple modi�cation
which consists of computing� t using Eq. (2.11) in the sparse coding step leads to the
minimization of the expected cost minD 2 C Ex [`0(x ; D )].

Handling the case`00is a bit di�erent. We propose to use the same strategy as for
`0�that is, using our algorithm but computing � t solving Eq. (2.12). Even though our
analysis does not apply since we do not have a quadratic surrogate of the expected cost,
experimental evidence shows that this approach is e�cient in practice.

2.5.6 Simultaneous Sparse Coding

In some situations, the signalsx i are not i.i.d samples of an unknown probability distribu-
tion, but are structured in groups (which are however independent from each other), and
one may want to address the problem of simultaneous sparse coding, which appears also
in the literature under various names such as group sparsityor grouped variable selection
(Cotter et al. , 2005; Turlach et al. , 2005; Yuan and Lin, 2006; Obozinski et al., 2009, 2008;
Zhang et al., 2008; Tropp et al. , 2006; Tropp, 2006). Let X = [ x1; : : : ; xq] 2 Rm� q be a
set of signals. Suppose one wants to obtain sparse decompositions of the signals on the
dictionary D that share the same active set (non-zero coe�cients). LetA = [ � 1; : : : ; � q]
in Rp� q be the matrix composed of the coe�cients. One way of imposingthis joint spar-
sity is to penalize the number of non-zero rows of� . A classical convex relaxation of
this joint sparsity measure is to consider the`1;2-norm on the matrix �

kA k1;2 ,
pX

j =1

kA j k2;

where A j is the j -th row of A . In that setting, the `1;2-norm of A is the `1-norm of the
`2-norm of the rows of A .

The problem of jointly decomposing the signalsx i can be written as a `1;2-sparse
decomposition problem, which is a subcase of the group Lasso(Turlach et al. , 2005;
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Yuan and Lin, 2006; Bach, 2008), by de�ning the cost function

`000(X ; D ) = min
A 2 Rp� q

1
2

kX � DA k2
F + � kA k1;2;

which can be computed using a block-coordinate descent approach (Friedman et al.,
2007) or an active set method (Roth and Fischer, 2008).

Suppose now that we are able to draw groups of signalsX i , i = 1 ; : : : ; n which have
bounded size and are independent from each other and identically distributed, one can
learn an adapted dictionary by solving the optimization problem

min
D 2D

lim
n!1

1
n

nX

i =1

`000(X i ; D ):

Being able to solve this optimization problem is important for many applications. For
instance, in Mairal et al. (2009c), state-of-the-art results in image denoising and demo-
saicking are achieved with this formulation. The extensionof our algorithm to this case
is relatively easy, computing at each sparse coding step a matrix of coe�cients A , and
keeping the updates ofB t and C t unchanged.

All of the variants of this section have been implemented. Next section evaluates
some of them experimentally. An e�cient C++ implementation with a Matlab interface
of these variants is available on the Willow project-team webpage.4

2.6 Experimental Validation

In this section, we present experiments on natural images and genomic data to demon-
strate the e�ciency of our method for dictionary learning, no n-negative matrix factor-
ization, and sparse principal component analysis.

2.6.1 Performance Evaluation for Dictionary Learning

For our experiments, we have randomly selected 1:25 � 106 patches from images in the
Pascal VOC'06 image database (Everingham et al., 2007), which is composed of varied
natural images; 106 of these are kept for training, and the rest for testing. We used these
patches to create three data setsA, B , and C with increasing patch and dictionary sizes
representing various settings which are typical in image processing applications: We have

Data set Signal sizem Nb p of atoms Type
A 8 � 8 = 64 256 b&w
B 12� 12� 3 = 432 512 color
C 16� 16 = 256 1024 b&w

centered and normalized the patches to have unit̀ 2-norm and used the regularization

4http://www.di.ens.fr/willow/SPAMS/
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parameter � = 1 :2=
p

m in all of our experiments. The 1=
p

m term is a classical nor-
malization factor ( Bickel et al., 2009), and the constant 1:2 has shown to yield about 10
nonzero coe�cients for data set A and 40 for data sets B and C inthese experiments.
We have implemented the proposed algorithm in C++ with a Matl ab interface. All the
results presented in this section use the re�nements from Section 2.3.4since this has lead
empirically to speed improvements. Although our implementation is multithreaded, our
experiments have been run for simplicity on a single-CPU, single-core 2.66Ghz machine.

The �rst parameter to tune is � , the number of signals drawn at each iteration.
Trying di�erent powers of 2 for this variable has shown that � = 512 was a good choice
(lowest objective function values on the training set�empi rically, this setting also yields
the lowest values on the test set). Even though this parameter is fairly easy to tune since
values of 64, 128, 256 and 1024 have given very similar performances, the di�erence with
the choice� = 1 is signi�cant.

Our implementation can be used in both the online setting it is intended for, and
in a regular batch mode where it uses the entire data set at each iteration. We have
also implemented a �rst-order stochastic gradient descent algorithm that shares most of
its code with our algorithm, except for the dictionary updat e step. This setting allows
us to draw meaningful comparisons between our algorithm andits batch and stochastic
gradient alternatives, which would have been di�cult other wise. For example, comparing
our algorithm to the Matlab implementation of the batch appr oach fromLee et al.(2007)
developed by its authors would have been unfair since our C++program has a built-
in speed advantage.5 To measure and compare the performances of the three tested
methods, we have plotted the value of the objective functionon the test set, acting as a
surrogate of the expected cost, as a function of the corresponding training time.

Online vs. Batch

The left column of Figure 2.1 compares the online and batch settings of our implemen-
tation. The full training set consists of 106 samples. The online version of our algorithm
draws samples from the entire set, and we have run its batch version on the full data set
as well as subsets of size 104 and 105 (see Figure2.1). The online setting systematically
outperforms its batch counterpart for every training set size and desired precision. We
use a logarithmic scale for the computation time, which shows that in many situations,
the di�erence in performance can be dramatic. Similar experiments have given similar
results on smaller data sets. Our algorithm uses all the speed-ups from Section 2.3.4.
The parameter � was chosen by trying the values 0; 5; 10; 15; 20; 25, and t0 by trying
di�erent powers of 10. We have selected (t0 = 0 :001; � = 15), which has given the best
performance in terms of objective function evaluated on thetraining set for the three
data sets. We have plotted three curves for our method:OL1 corresponds to the optimal

5Both LARS and the feature-sign algorithm ( Lee et al., 2007) require a large number of low-level
operations which are not well optimized in Matlab. We have indeed obser ved that our C++ implemen-
tation of LARS is up to 50 times faster than the Matlab implementation of th e feature-sign algorithm
of Lee et al. (2007) for our experiments.
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setting (t0 = 0 :001; � = 15). Even though tuning two parameters might seem cumber-
some, we have plotted two other curves showing that, on the contrary, our method is
very easy to use. The curveOL2, corresponding to the setting (t0 = 0 :001; � = 10), is
very di�cult to distinguish from the �rst curve and we have ob served a similar behavior
with the setting ( t0 = 0 :001; � = 20). showing that our method is robust to the choice
of the parameter � . We have also observed that the parameter� is useful for large data
sets only. When using smaller ones (n � 100; 000), it did not bring any bene�t.

Moreover, the curve OL3 is obtained without using a tuned parameter t0�that is,
� = 15 and t0 = 0, and shows that its in�uence is very limited since very good results are
obtained without using it. On the other hand, we have observed that using a parameter
t0 too big, could slightly slow down our algorithm during the �r st epoch (cycle on the
training set).

Comparison with Stochastic Gradient Descent

Our experiments have shown that obtaining good performancewith stochastic gradient
descent requires using both the mini-batch heuristicand carefully choosing a learning
rate of the form a=(�t + b). To give the fairest comparison possible, we have thus
optimized these parameters. As for our algorithm, sampling� values among powers of
2 (as before) has shown that� = 512 was a good value and gives a signi�cant better
performance than � = 1.

In an earlier version of this work (Mairal et al. , 2009a), we have proposed a strategy
for our method which does not require any parameter tuning except the mini-batch �
and compared it with the stochastic gradient descent algorithm (SGD) with a learning
rate of the form a=(�t ). While our method has improved in performance using the new
parameter � , SGD has also proven to provide much better results when using a learning
rate of the form a=(�t + b) instead of a=(�t ), at the cost of an extra parameter b to
tune. Using the learning rate a=(�t ) with a high value for a results indeed in too large
initial steps of the algorithm increasing dramatically the value of the objective function,
and a small value ofa leads to bad asymptotic results, while a learning rate of theform
a=(�t + b) is a good compromise.

We have tried di�erent powers of 10 for a and b. First selected the couple (a =
100; 000; b = 100; 000) and then re�ned it, trying the values 100; 000� 2i for i = � 3; : : : ; 3.
Finally, we have selected (a = 200; 000; b = 400; 000). As shown on the right column
of Figure 2.1, this setting represented by the curveSG1leads to similar results as our
method. The curve SG2corresponds to the parameters (a = 400; 000; b = 400; 000) and
shows that increasing slightly the parametera makes the curves worse than the others
during the �rst iterations (see for instance the curve between 1 and 102 seconds for
data set A), but still lead to good asymptotic results. The curve SG3corresponds to a
situation where a and b are slightly too small (a = 50; 000; b = 100; 000). It is as good as
SG1for data sets A and B, but asymptotically slightly below the others for data set C. All
the curves are obtained as the average of three experiments with di�erent initializations.
Interestingly, even though the problem is not convex, the di�erent initializations have
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Figure 2.1: Left: Comparison between our method and the batch approach for dictionary
learning. Right: Comparison between our method and stochastic gradient descent. The
results are reported for three data sets as a function of computation time on a logarithmic
scale. Note that the times of computation that are less than 0:1s are not reported. See
text for details.
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led to very similar values of the objective function and the variance of the experiments
was always insigni�cant after 10 seconds of computations.

2.6.2 Non Negative Matrix Factorization and Non Negative Sp arse
Coding

In this section, we compare our method with the classical algorithm of Lee and Seung
(2001) for NMF and the non-negative sparse coding algorithm ofHoyer (2002) for NNSC.
The experiments have been carried out on three data sets withdi�erent sizes:

� Data set D is composed ofn = 2 ; 429 face images of sizem = 19 � 19 pixels from
the the MIT-CBCL Face Database #1 ( Sung, 1996).

� Data set E is composed ofn = 2 ; 414 face images of sizem = 192 � 168 pixels from
the Extended Yale B Database (Georghiades et al., 2001; Lee et al., 2005).

� Data set F is composed ofn = 100; 000 natural image patches of sizem = 16 � 16
pixels from the Pascal VOC'06 image database (Everingham et al., 2007).

We have used the Matlab implementations of NMF and NNSC of P. Hoyer, which
are freely available at http://www.cs.helsinki.fi/u/phoyer/software.html . Even
though our C++ implementation has a built-in advantage in term s of speed over these
Matlab implementations, most of the computational time of NMF and NNSC is spent
on large matrix multiplications, which are typically well o ptimized in Matlab. All the
experiments have been run for simplicity on a single-CPU, single-core 2.4GHz machine,
without using the parameters � and t0 presented in Section2.3.4�that is, � = 0 and
t0 = 0. As in Section 2.6.1, a minibatch of size � = 512 is chosen. Following the original
experiment of Lee and Seung(2001) on data set D, we have chosen to learnp = 49 basis
vectors for the face images data sets D and E, and we have chosen p = 64 for data set F.
Each input vector is normalized to have unit `2-norm.

The experiments we present in this section compare the valueof the objective function
on the data sets obtained with the di�erent algorithms as a function of the computation
time. Since our algorithm learns the matrix D but does not provide the matrix � ,
the computation times reported for our approach include two steps: First, we run our
algorithm to obtain D . Second, we run one sparse coding step over all the input vectors
to obtain � . Figure 2.2 presents the results for NMF and NNSC. The gradient step for
the algorithm of Hoyer (2002) was optimized for the best performance and� was set to

1p
m . Both D and � were initialized randomly. The values reported are those obtained

for more than 0:1s of computation. Since the random initialization provides an objective
value which is by far greater than the value obtained at convergence, the curves are
all truncated to present signi�cant objective values. All t he results are obtained using
the average of 3 experiments with di�erent initializations . As shown on Figure2.2, our
algorithm provides a signi�cant improvement in terms of speed compared to the other
tested methods, even though the results for NMF and NNSC could be improved a bit
using a C++ implementation.
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