Skip to Main content Skip to Navigation

Au delà du principe du maximum pour des systèmes d'opérateurs elliptiques

Abstract : This thesis is devoted to the study of solutions of some elliptic systems, either on bounder non regular domains or on R^N. \l In the first part, solutions respect the Refined Dirichlet Condition. This condition, defined by Strook and Varadhan, is adapted to bounded domains, whithout condition of regularity. Some adapted Krein-Rutman's Theorem permit to know the sign of solutions of the system. \l In the second part, operators are Schrödinger operators. We study comparison with the fundamental state for 2\times 2 systems, in the case of systems with constant coefficients, and in the case of some systems with variable coefficients.
Document type :
Complete list of metadatas

Cited literature [24 references]  Display  Hide  Download
Contributor : Marie-Hélène Lécureux-Têtu <>
Submitted on : Saturday, May 21, 2011 - 5:09:27 PM
Last modification on : Thursday, March 5, 2020 - 5:57:07 PM
Long-term archiving on: : Monday, August 22, 2011 - 2:21:28 AM


  • HAL Id : tel-00594884, version 1


Marie-Hélène Lécureux. Au delà du principe du maximum pour des systèmes d'opérateurs elliptiques. Mathématiques [math]. Université des Sciences Sociales - Toulouse I, 2008. Français. ⟨tel-00594884⟩



Record views


Files downloads